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Abstract

In a linguistic theory, features constrain a well-formed constituent, such as a
phrase or a sentence. Identifying such a constituent from an input can be cast as a
constraint-solving problem. Delaying the resolution of certain constraints is an es-
tablished method for solving goals in logic programming languages. This method
can be adapted not only for linguistic problem solving in general, but specifically
for constraints in the form of complex, typed feature structures. Constraints which
wait upon more information are called guarded constraints.

This thesis generalizes delays for processing a linguistic theory by providing
a specification for guarded constraints as descriptions of typed feature structures.
I extend the description language, a shorthand for typed feature structures, de-
scribed fully in Carpenter (1992). My work enables the successful evaluation of
modern grammars as written, even with highly lexicalized constraints. The work
includes a full description of the implementation of three relevant linguistic ex-
amples. These are the Japanese causative, German topicalization, and quantifier
scoping in English.

By generalizing delays over feature structures, I make three primary contribu-
tions. First, I give the operational semantics of guarding on typed feature struc-
tures. I show how either rules can be guarded, or descriptions of feature struc-
tures themselves can be guarded. Descriptions constrain the choice of available
goals during resolution. Second, I place the work in a linguistic context, pre-
senting a variety of analyses for which delaying is a good approach. The work
enables a uniform treatment of many phenomena, all of which are analyzed lin-
guistically via argument sharing. Third, with guards, I extend ALE (Carpenter &
Penn 1994), a logic programming system that can be used for parsing and genera-
tion of large-scale grammars. The work is language independent and independent
of the underlying parsing or generation algorithm.
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Chapter 1

Introduction

Feature based theories of grammar provide a concise formalism in which to ex-
press linguistic concepts and relationships among concepts. Bundles of features
are especially useful during automatic processing of written text as a way of spec-
ifying both syntactic relations and semantic concepts. A specific set of feature
values can pick out a particular semantic category, while syntactic relations are
realized in the graph or tree structure that feature-value pairs describe. For exam-
ple, the feature structure in example 1 commonly represents a third person singular
verb. In this feature structure, the boldfaced words are types. Each feature struc-
ture in this notation has a type, and sg (singular) and 3rd are atomic types, which
are unique semantic concepts that have no further features. The words in small
capitals such as NUMBER and PERSON are the features.

verbform
(1) | NUMBER:sg
PERSON:3rd

The dog runs is a sentence whose grammatical categories such as subject and
head verb are expressed in the feature structure in example 2. The variable index
points to the part of the feature structure that contains referential index features
for the subject Dog, including number and person. By appearing both under a
grammatical category (SUBJECT) and a semantic category (RUNNER), the use of
indicates that information is shared in two places the feature structure.
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[ sentence
category
CATEGORY: SUBJECT:DogBT d,sg]
2) HEAD:verb
content
CONTENT: | RELATION:run
RUNNER [1]

Paths of features and values can be mapped to branches and nodes in a graph
or a tree structure. If the value of the subject feature is mapped to NP and the head
feature to VP, then the feature structure in example 2 corresponds to this more
familiar tree diagram:

3) S
/\
NP VP
/\ ‘

Det N runs
\ \
the dog

In order to use a feature-based formalism to full advantage, one can leave in-
formation underspecified. Feature values may be underspecified. This means that
there is more than one possible value for a feature to take on and still be gram-
matical. In a typed system, types may be underspecified, which means that the
subtype is unresolved. A typical example of underspecification is the ambiguous
number value for English nouns which are alike in their singular and plural forms.
Words of this kind include fish and sheep.

A simple feature structure showing the semantic features for the noun sheep
might look as in example 4. The type nom-object refers to the fact that a sheep
belongs to the class of things that are nominal objects.

nom-object
content
) CONTENT: | PERSON:3rd

RELATION:sheep

The feature NUMBER is simply left unstated. We understand that the underspeci-
fied value of the number feature is simply the type number, which has subtypes



of either singular or plural. The subtypes inherit from the supertype in a simple
type hierarchy, which shows the supertype at the bottom:

singular plural

5) number

Re-stating the feature structure more explicitly, we have:

[ nom-object 1
content
(6) CONTENT: PERSON:3rd
" | NUMBER:number
RELATION:sheep

Clues from other parts of the grammar could help to make the feature or type
more specific when the feature structure gains information during natural language
processing. We refer to these clues as constraints. In the sentence The sheep graze,
the “filled-in” version of the feature structure has the subtype of number resolved
to plural in 7:

[ nom-object
content
(7 CONTENT: PERSON:3rd
" | NUMBER:plural
RELATION:sheep

The sentence The sheep bleats would likewise resolve to the singular form. The
number for the noun is obtained via unification with the number form on the in-
flected verb. Typically, the number for the verb form is related to a basic, also
underspecified feature structure for the verb’s base form, by way of some mor-
phological analysis. The benefit of such a representation is generality; the number
of lexical entries is kept to a minimum, limiting lexical ambiguity. In this case
ambiguity resolution may therefore be understood as further feature value refine-
ment.
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If the noun phrase (NP) the sheep is the subject of a sentence, information
from the verb is the clue to further resolving the number of the subject. If the NP
were the object of the sentence, as in We saw the sheep, the single lexical entry in
6 would still suffice. In fact, without other contextual knowledge, such as a prior
sentence, the noun in object position would remain as either singular or plural.
The strategy used to “fill in” the information in 7 is to wait until enough new
information is gained from the verb or elsewhere to further instantiate the entry.

Technically speaking, waiting is delaying the resolution of the constraint on
the number of the noun phrase. Delaying is a proven method for solving goals in
programming languages such as Prolog, and can be adapted not only for linguistic
problem solving in general, but specifically for constraints in the form of complex,
typed feature structures. In the programming language community, constraints
which wait upon more information are called guarded constraints.

This thesis generalizes delays for processing a linguistic theory by providing
a specification for guarded constraints as descriptions of typed feature structures.
I extend the description language, a shorthand for typed feature structures, de-
scribed fully in Carpenter (1992). My work enables the successful evaluation of
modern grammars as written, even with highly lexicalized constraints. The work
includes a full description of the implementation of three relevant linguistic ex-
amples.

Delaying was introduced to the feature-based grammar community by Bouma
and van Noord as a methodology for implementing linguistic constraints (1994).
Johnson & Dorre (1995) also presented an approach with delaying for van Noord
& Bouma’s (1994) work, in the framework of Categorial Grammar (Ajdukiewicz
1935; Bar-Hillel 1953; Lambek 1958). While delays have been part of large-scale
feature grammar processing systems such as CUF (Doérre & Dorna 1993), FUF
(Elhadad & Robin 1992), and ConTroll (G6tz et al. 1997; Gotz & Meurers 1997,
Gotz & Meurers 1998), there has been no complete account of the link between
constraint based linguistic theory and delays in practice. By providing this ac-
count, I show that delaying is a practical way for a parsing or generation system
to successfully process highly constrained lexical entries, instances of which de-
pend upon gaining information from various parts of the overall grammar.

1.1 Linguistic Background

A number of feature-based grammar formalisms have been used for computation,
including Functional Unification Grammar (FUG) (Kay 1983; Kay 1985), PATR-
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II (Shieber er al. 1983), Lexical-Functional Grammar (LFG) (Bresnan 1982b),
Generalized Phrase Structure Grammar (GPSG) (Gazdar er al. 1985), and Head-
Driven Phrase Structure Grammar (HPSG) (Pollard & Sag 1987; Pollard & Sag
1994). All of these formalisms have unification in common as a way to combine
information and obtain a result. The focus here is not on unification per se but
rather on various approaches to expressing linguistic knowledge in feature struc-
tures and, in turn, a methodology for assimilating that information during natural
language processing.

In a linguistic theory, constraints on feature structures restrict the possible val-
ues that a feature may take with respect to a well-formed constituent, such as a
phrase or a sentence. Complex constraints may appear throughout the grammar,
and have been adopted with greater frequency in the lexicon, hence the term “lex-
icalized” grammars. The term grammar is used here in a general sense to refer
to the components of a theory, such as the lexicon, phrase and sentence rules,
phonology, and context.

HPSG is a constraint-based formalism expressed fully in feature structure de-
scriptions and relations over feature structures (Pollard & Sag 1987; Pollard &
Sag 1994). Feature structures are assigned a type, and types are declared in an in-
heritance hierarchy. There are also conditions for determining which features are
appropriate for a given type. One advantage to this theory’s concise and uniform
representation scheme is that there are no absolute boundaries between lexical,
syntactic and semantic levels of representation. The caveat here is that the gram-
mar writer is free to push the limits of the representation scheme, which tradition-
ally includes a separate lexicon and constituent grammar. In much work of the
past decade, operations on the arguments of syntactic heads, such as adjunction,
fronting, extraposition, etc., have been expressed directly in the lexicon. These
are part of the syntax in more traditional grammars.

An example of the blending of lexicon and syntax is the use of a lexical rule
to add adverbial adjuncts onto a verb, first proposed for HPSG by Bouma and van
Noord 1994, with reference to similar work by Miller (1992). The work has its
roots in Categorial Grammar. Traditionally, adverbs such as vandaag in 8b are
added onto a verb phrase (VP) node by way of a syntactic rule of adjunction (9).

(8) a. dat Arie Bob wil kussen
that Arie Bob wants to-kiss
Arie wants to kiss Bob.
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b. dat Arie Bob vandaag wil  kussen

that Arie Bob today  wants to-kiss
Arie wants to kiss Bob today. (van Noord & Bouma 1994:12)

9 VP
/\
VP Adv

Lexical rules are used to build up lexicons from a set of basic entries. The rule
in example 10 applies to the basic entry for a Dutch verbal complex such as wil
kussen. The feature structure to the left of the arrow is the lexical entry for the
verb complex, and the feature structure to the right is a lexical entry for a verb
complex that has an adverbial adjunct. The notation A © B denotes the list A
minus the elements in B, while A @ B concatenates the lists A and B.

['verbal T
adverbial
verbal mod
(10) | SUBCAT1]@®[2]| —» | SUBCAT:1]® { vob: | ARG ) @2
SEM:[4] VAL
| SEM 3]

The basic verb entry has a list of subcategorized arguments, or SUBCAT list,
consisting of a predicate [1] plus a subject [2]. The SUBCAT list for a verb derived
from an application of the rule consists of the predicate, plus an adjunct, shown
as a feature structure of type adverbial, plus the subject. A verb, then, may be
realized with or without adjoined adverbials, without a separate syntactic rule for
adjunction. The entire process of adverbial adjunction is “located” in the lexicon.
That the adverb can adjoin to the main verb or the auxiliary verb by different
applications of the rule accounts for differences in scope of the adverb.

A lexical theory of argument extraction is another example of a lexicalized
grammar. Extracted complements are complements that appear outside the ar-
gument position of a headed phrase, such as topicalized noun phrases (Kim,
Sandy likes), and the Wh-constituents in questions (Which book did you read?).
Constraint-based extraction enables the removal from the grammar of syntacti-
cally motivated features, such as traces, which are central to generative accounts
of these phenomena (Ross 1967; Chomsky 1981) and also part of GPSG (Gazdar
1981).
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Bouma er al.’s (2001) Argument Realization constraint on the subcategoriza-
tion list of a word is shown as example 11. In this example, the feature COMPS
refers to the local complements subcategorized for by the head. These are the
complements that appear inside the phrase headed by the word. The COMPS plus
the subject make up the SUBCAT list (not shown). The feature DEPENDENTS is
an intermediate level of representation for the local (non-extracted) complements
and those that have been extracted.

All subcategorized complements are pointed to by the index [2] By describing
the complements list as

o list(gap-synsem)
the authors leave open the possibility that there are some extracted arguments, the
list of elements of type gap-synsem. Extracted complements, if any, appear as
being “removed” from the complements list in the lexical entry.

Note that the list of extracted complements, /ist(gap-synsem), could be empty.

word
SUBJECT:[1]

COMPS[2] © list(gap-synsem)
DEPENDENTS 1] &

oy

With similar treatment, the semantic QSTORE and QRETRIEVAL features for
quantifier scope and retrieval which originate from Montague semantics (Mon-
tague 1974; Cooper 1975; Cooper 1983) may be expressed as constraints in the
lexicon (Pollard & Yoo 1997; Manning & Sag 1998).

1.2 Processing Background

We consider existing methods for solving constraints in NLP systems. In particu-
lar, the constraint resolver may be the parser itself, which decides among compet-
ing grammar rules, or it may be a separate module that works in conjunction with
a traditional parser. Early HPSG grammar systems were modelled as general con-
straint resolvers (Franz 1990; Emele & Zajac 1990). Over time, researchers have
found that interleaving constraint solving with traditional parsing methods, such
as chart parsing, retains the advantages of bottom-up methods. This is prefer-
able for obtaining fast, real-time processing. Other approaches for implement-
ing constraint-based grammars include compiling lexical entries into constraints
which are fired during runtime (Meurers & Minnen 1995; Meurers & Minnen
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1996). Their approach for solving lexical constraints is constraint propagation.
With this technique, many constraints at once provide information to each other
until no more can be solved.

One solution to the problem of associating constraints of all types with partic-
ular feature structures is to adopt the strategy of delays used in logic programming
languages. The notion of guarding a constraint dates from Prolog II (Colmerauer
1982). This technique is useful for processing terms that change information state
dynamically. For this reason, guarded constraints allow highly lexicalized gram-
mars to be processed.

The when predicate in SICStus Prolog (SICStus (1995)) is an example of a
delaying predicate.

(12) when(+Condition, Goal)

A call to the predicate in 12 blocks Goal until the Condition is true. For exam-
ple, when (nonvar (X) , append (X, Y, Z) ) says that when the value of the
term X is nonvariable, we can solve the goal append (X, Y, Z) . Else, the goal is
blocked, and it will not be called if X is still variable. We are especially interested
in statements such as when (Condition, Goal) as they apply to conditions on
the arguments of subcategorization lists of heads, because these arguments may
be shared across many structures, and information about them may be gained at
different times. Furthermore, we would like for these arguments to be not sin-
gle feature values or types but entire feature structures using a feature structure
description language. These might be adverbial adjuncts such as the feature struc-
ture of type adverbial in 10 or an entire list of extracted complements such as the
gap-synsem arguments in 11.

1.3 Outline of the Thesis

By generalizing delays over feature structures, I make three primary contributions.
First, I give the operational semantics of guarding on typed feature structures. I
show how either rules can be guarded, or descriptions of feature structures them-
selves can be guarded. If descriptions are guarded, SLD resolution can be used.
Otherwise, descriptions constrain the choice of goal during resolution. The com-
pilation of inequations as delays illustrates how the control of guarded constraints
can be handed from the grammar writer to the program. Second, I place the work
in a linguistic context, presenting a variety of linguistic analyses for which delay-
ing is good approach. This enables a uniform treatment of a variety of phenomena,
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for which underspecification is key. Third, I apply guarding in a system already
in use by computational linguists writing large-scale grammars. My generalized
description of guarding can be used in lexical rules, grammar rules, constraint de-
scriptions, or definite clause procedures, and I provide examples of how this may
be done. The work is language independent and independent of the underlying
parsing or generation algorithm.

When coding up a linguistic theory for implementational purposes, one can
express it in such a way that makes implementation more practical. It is possible
to create HPSG grammars in a system such as ALE (Carpenter & Penn 1994)
using phrase-structure rules, for example, while no such rules exist in the theory
per se. Rather, schemata exist which are constraints on well-formed phrasal signs.
The idea behind adding guards to a grammatical theory is that the theory can be
implemented as closely as possible to the original specification. That is to say, if a
constraint appears in the lexicon in the theory, then it can be coded in the lexicon
in the implemented grammar as well. Simply put, the work described in this thesis
makes it not only easier but possible to implement lexical constraints directly in
the lexicon.

The writer of the implementational grammar must have some instruction as to
where to put the guards. Ideally, they would be automatically derived by inspec-
tion from a grammar without guards. I have written them by hand. The places
where guards are necessary is where there is argument sharing projected from
a lexical head. This happens with argument raising in general, and specifically
where the arguments of a head are underspecified but expected to gain informa-
tion from other sources. This occurs in the expression of traditionally syntactic
operations, such as complement extraction, in the lexicon. In the latter case, infor-
mation is needed about as yet uninstantiated arguments in order for the constraints
to successfully apply. Several examples of such cases are given in chapter two.

A linguist would need to look first for shared arguments in a lexical entry, and
second, for constraints on variable arguments. Furthermore, the linguist would
need to know how to express guarding on these arguments, or, which portions of
the feature structures to guard. In my example cases I have waited until local fea-
tures are instantiated. This is either syntactic category or semantic content, in the
case of verb raising, or the quantifier store, in the case of constraints on quanti-
fiers. Therefore, it is non-trivial to write guarded rules, but a pattern does emerge.
Guards are compiled automatically for inequations (the case of the binding the-
ory). In chapter 5, I show how guarded descriptions can be added into the theory
of feature structures itself, so that the linguist can write the original theory with
guards. In this case, the implementation directly follows the theory.
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The thesis is organized as follows. In chapter two, I review the relevant lin-
guistic literature, providing a wide range of linguistic data for which the technique
of delaying will prove useful in implementation. I show an example of a problem
which is encountered when attempting to evaluate underspecified feature struc-
tures during processing using traditional means. In chapter three, I review the field
of Constraint Logic Programming (CLP) and its application in Computational
Linguistics. In chapter four, I lay out the framework of feature structures, and
review the existing CLP systems for processing feature based grammars. Next, in
chapter five, I give the operational semantics of delaying on typed feature structure
descriptions. I show how delaying is used in the case of verb raising by auxiliary
in German. I discuss my approach to inequations as an instance of guarded de-
scriptions. In chapter six, I use the binding theory as a linguistic test case for the
system. I present this example for Japanese. I also present quantifier retrieval in
English as an example of guarding on types. I evaluate all examples with respect
to the specification, the grammar and lexicon, and the parsing algorithm. Finally,
in chapter seven, I draw conclusions about this work. The thesis is extensible to
a wide range of linguistic analyses, and is language independent. The resolution
algorithm is abstracted away from the parsing architecture, providing a practical
advantage for implementation efforts.



Chapter 2
Describing Linguistic Objects

I begin by presenting a cross section of linguistic data which analyzes arguments
as being shared by more than one head. For example, in the case of raising struc-
tures, a verb like seem in English might share an NP subject with another verb,
a predicate for which it subcategorizes. A variety of contexts include argument
raising by Germanic and Romance auxiliaries, sharing by semantic predicates in
Chichewa and Japanese, lexical rules for syntactic operations such as the passive
and complement extraction, quantifier raising, and argument sharing in word order
domains. These analyses are unified by the fact that arguments are shared across
more than one structure. This may be a semantic predicate, a subcategorization
frame, a word order domain, or a nonlocal set (such as the SLASH value or the
quantifier store).

Argument sharing is relevant in processing because one head may rely on
information about an argument that is provided only within the context of the other
head. And so, the order of argument instantiation becomes relevant during natural
language processing. In this chapter I address the impact of structure sharing
on evaluation. Our interest in argument sharing is established. I use the case of
raising by the German auxiliary werden as a specific example. The question we
consider in particular is whether typical processing methods have been sufficient
for cases of argument sharing.

2.1 Raising by Auxiliary

Raising verbs are a class of verbs that subcategorize for an argument that is
assigned a semantic role by an embedded predicate. The term raising comes

11
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from transformational grammar (see e.g. Chomsky 1973; Soames & Perlmut-
ter 1979; Chomsky 1981). We look here at raising-to-subject verbs, because we
will next consider auxiliary verbs, which can be analyzed as a particular case of
these. Raising-to-subject verbs “raise” the subject of the embedded clause up to
the subject position of the main clause. The main clause verb does not assign a
semantic role to the subject.! Example 13 is an example of this from English.

(13) Kim seems to be happy.

Chomsky described raising as a transformation from an underlying form to a
surface form. For example, the underlying representation may be the tree structure
in 14 and the surface representation that in 15. The raised subject Kim is the
grammatical subject of seems in 15. But seems does not assign a semantic role
to Kim; Kim is not “seeming” anything in any sense, though Kim is the thematic
argument of the predicate be happy; Kim may be the theme or experiencer, for
example.

(14) VP
/\
A\ S
\ —
seems NP VP

(15) S
/\
NP VP
/\
‘ /\
seems NP VP

e; be happy

Structure sharing within a single graph is another framework which can be
used to describe raising (Bresnan 1982a). For an explanation of raising phenom-
ena in HPSG, the reader is referred to Pollard & Sag (1994:chapter 3). In their

I"This contrasts with Equi verbs, which assign semantic roles to all of their arguments, but have
an argument in common with the embedded predicate. e.g. Kim tries to leave. Kim is both the one
who tries and the one who leaves.
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account of example 13, there is not movement of NP constituents from one clause
to another, but rather a structure sharing of the subject NP by the raising verb and
the head of its verbal complement. Structure sharing in this example means that
the subject for each of the two verbs is one and the same object. Example 16
shows a simplified lexical entry for seem. Structure sharing is marked in the ex-
ample by the index [2]. If the feature structure were drawn as a graph, structure
sharing would be characterized by two arcs entering the same node.

[local 1
[ category
HEAD:verb
vp
(16) CAT: COMPS:({ VFORM:inf (1)
SUBJ:([2np)
SUBJ:([2])
i seem
_CONTENT: SOA-ARGI]

The work of Johnson (1986) and Hinrichs & Nakazawa (1989), Baker (1999),
and Abeillé & Godard (1994) has analyzed auxiliary verbs as raising the argu-
ments of the verbs for which they subcategorize in German and French. Monach-
esi (1993a); Monachesi (1993b) has a similar analysis for Italian.> The auxiliary
raises all of the arguments of the verb for which is subcategorizes. In each case,
the structural result is a flat tree structure (17) as opposed to a binary branching
structure. A template for a lexical entry for an auxiliary which raises the argu-
ments of a verb is shown in example 18. This template applies across different
languages. This is in contrast to a more traditional analysis, in which an auxiliary
subcategorizes for a full verb phrase as a single argument (e.g. Gazdar et al. 1982
for English, Pollock 1989 for French).

7) VP

AUX  V[comps(Cy,...,Cp)] Co 4 e Cy,

2The use of argument composition continues in other languages as well, for Korean, Dutch,
and Polish.
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[ auxiliary
verb
HEAD: | VFORM:base
AUX:+
SUBJ:[1]{np
(18) op) _
HEAD verb
COMPS:2]® ( "| VFORM:base )
COMPS 2]
SUBJ{1]

In feature-based analyses of examples from German, French and Romance
clitics (19b through 24b) below, the lexical entry for raising auxiliary is notable
because the arguments that the auxiliary verb shares with the subcategorized verb
are not instantiated in the lexicon. In fact, no information about the individual
members of the verb’s valence list is available from this entry alone. The infor-
mation must be combined with information provided by the lexical entry for the
head verb and from the specific arguments in an instance of verb usage.

2.1.1 German

The evidence for a flat tree structure for German sentences stems primarily from
constituent scrambling. A verb’s arguments are not always adjacent to the main
verb when an auxiliary is present. The auxiliary verb appears between nominal
constituents and the main verb in the so-called “modal flip” construction, which
is example 19c.

(19) a. Peter wird das Buch lesen.
Peter will the book read.
Peter will read the book.

b. Peter das Buch lesen konnen  wird
Peter the book read be-able-to will
Peter will be able to read the book.

c. (dass) Peter das Buch wird lesen kdnnen
(that) Peter[nom] the book will read be-able-to
Peter will be able to read the book.
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An instantiated version of the template in example 18 for the auxiliary werden
(19a) is simplified in example 20. As arguments have been encountered in the
sentence, we see that the verb’s arguments include an accusative nominal argu-
ment Buch, which is subcategorized for lexically both by the main verb lesen and
by the auxiliary werden.

[ werden
verb
HEAD: | VFORM:base
AUX:+
SUBJ[1{ N P[nom]Peter)
(20) [verb T
lesen
HEAD: VFORM:base‘|
CcoMPS:[2]N Placc]Buch + { COMPS 3] )
SUBJ[1]
| NPCOMP:- |

2.1.2 French

In the case of French, Abeillé and Godard argue for raising of all complements
by auxiliary and against a VP constituent, which results in the flat structure as
shown in example 17. One argument is that manner adverbs may appear between
the auxiliary and the main verb, yet do not have properties that allow them to be
fronted.

(21) a. Jean a attentivement écouté son professeur.
Jean has attentively  listened-to his teacher
Jean has attentively listened to his teacher.

b. ?7?Attentivement, Jeana écouté son professeur.

Attentively, Jean has listened-to his teacher
Attentively, Jean has listened to his teacher. (Abeillé & Godard 1994:9a,b)

If the adverb attentivement were a sister node to a VP node écouté son pro-
fesseur, one would expect that the adverb would be free to be topicalized, but it
is not. More specifically, arguments are presented against the structures for verb
phrase in 22a and 23a:
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(22) a. VP
/\
AUX VP
PS
ADV VP

b. xAttentivement prendre des notes ne suffit pas a faire unbon étudiant
Attentively taking of notes not suffice [neg] to make a good student
To attentively take notes is not sufficient to make a good student. (Abeillé
& Godard 1994:13a)

If the adverb artentivement were assumed to be part of an embedded VP node
in 22a, then one would expect manner adverbs to occur generally in VP-initial
position, but they cannot.

(23) a. VP
/\
AUX VP
S
AUX ADV

b. Jeana attentivement écouté son professeur et pris des notes.
Jean has attentively  listened-to his professor and taken of notes.
Jean has attentively listed to his teacher and taken notes.

This can only mean that Jean listend to his teacher with atten-
tion and took notes; it cannot mean that Jean attentively took
notes.

(Abeillé & Godard 1994:14a)

If the adverb were assumed to be adjoined to the auxiliary, separately from
an embedded VP, as in 23a, then one would expect it to take wide scope over a
sequence of participles and their complements, but it takes narrow scope in this
case.

Abeillé and Godard, in the course of establishing argument composition by
French auxiliaries, also contest the assumption of a separate VP constituent for
participles in French on the basis of the of weakness of standard constituency
tests for this type of VP. These are tests such as pronominalization of the VP, VP
deletion (also called null complement anaphora), etc. These have been provided
as evidence for a VP node for French infinitival verb complements in the literature
(Emonds 1978; Fradin 1993).
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2.1.3 Romance Clitics

“Clitic climbing” in Romance languages motivates argument sharing by an auxil-
iary and a subcategorized verb in Italian (Monachesi 1993b),(Monachesi 1993a)
and French (Miller & Sag 1995). The basic argument is that, because a clitic can
attach to either an auxiliary or the subcategorized verb, that the clitic must be an
argument of both. More will be said in section 2.3.2 about a lexical treatment of
this phenomenon.

(24) a. Annavuole comprarlo.
Anna wants-to buy-clitic[acc]
Anna wants to buy it.

b. Annalo vuole  comprare.
Anna clitic[acc] wants-to buy
Anna wants to buy it. (Monachesi 1998:9a,b)

The tree structure for Monachesi’s analysis of “restructuring” verbs as in 24b
is shown in 25. These verbs include not only modal verbs but also aspectual verbs
(Rizzi 1982).

(25) VP (Monachesi 1998:18)
7
clitic-V v Complement

2.2 Morphology

In this section I examine morphological valence-changing operations. In a more
traditional view, these add or subtract an argument or arguments from the valence
list of a head (Williams 1981; Comrie 1981; Marantz 1984). Taking this additive
view of the causative, for example, the presence of the causative morpheme adds
an external subject argument to the embedded predicate to yield a new causative
predicate with one more argument than the embedded predicate, or a valency that
is one higher than that of the predicate. The causee is expressed as being “de-
moted” from e.g. direct object to indirect object along a hierarchy of grammatical
relations (26).

(26) subject > direct object > indirect object > oblique object
Keenan & Comrie (1977)
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In the analyses I focus on here, a semantic argument of both the causative pred-
icate and the embedded predicate is shared, linking the two in a single representa-
tion. By this linking, the causee may inherit properties from either subcategorizing
verb, resulting in the different syntactic positions or semantic interpretations that
it may take. Furthermore, this is done as a constraint rather than an operation. We
look at analyses of causatives in Chichewa and Japanese. A third, related case is
an example of the passive in German, which can be viewed as a valence reduc-
ing operation. In the structure sharing version of the passive, information about a
nominal is shared.

2.2.1 Alsina’s analysis of Chichewa

Alsina’s (1992) analysis of Chichewa is a semantic treatment of the causative, in
contrast with the syntactic incorporation accounts of Baker (1988) and Li (1990).
In an incorporation account, a morpheme at the level of V in X-bar theory (a
lexical verb) (Jackendoff 1977) adjoins to the causative affix, which is itself a
verb which subcategorizes for a CP (a complement phrase), to form a new verb.
A tree diagram is shown in (27). The verb V; which adjoins to the causative
morpheme is moved from a position from within the CP. I have left out the details
of the structure of the CP here because it is not central to the discussion, and also
because there are a few different scenarios.

27 S
,/\
NP VP
//\
\Y% CP
T T
V; \Y% VP
‘ /\
-cause A\ NP

\
15

An example of a causative verb is i-na-phik-its-a ‘make cook’ in Chichewa in
28a. In a theory in which verbs assign case to their arguments based on syntactic
position, such as the incorporation accounts, this verb can assign a thematic or
semantic role only to the external subject Nungu ‘porcupine.’” This is because it is
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presumed that the embedded verb ‘cook’ has case marked its predicate arguments
kadzidzi ‘owl’ and maringu ‘pumpkins’ in the complement clause.?

(28) a. Nungu i-na-phik-its-a kadzidzi malingu
9 porcupine 9 s-PS-cook-CST-FV la owl 6 pumpkins
The porcupine made the owl cook the pumpkins.

b. Ningu i-na-phik-its-a malingu  kwi kadzidzi
9 porcupine 9 s-PS-cook-CST-FV 6 pumpkins to  1a owl
The porcupine had the pumpkins cooked by the owl.

Alsina argues instead that the patient of a causative predicate shares a thematic
role with one of the arguments of the embedded predicate, without deriving one
from the other. Alsina explains his theory using argument sharing as it constrains
the surface forms of the syntax. He proposes a three-place causative relation for
Chichewa and other Bantu languages. The three arguments are a causer, a causee,
and an event. The causer is an agent which acts on the second argument, a causee,
which has the semantic role of patient; the patient brings about the third argument,
an event; and the patient is itself an argument of the event. A diagram of the
relationship is shown in (29). ag refers to the agent and pr to the patient of the
causative verb.

caused event
(29) CAUSE(ag pt PRED{(...0...))
T T

In (29) some thematic role # within the embedded predicate is linked, or
shared, with the patient of the causative predicate, shown by the two up arrows
(1). This is in contrast to syntactic accounts, in which the causing predicate has
two arguments, an agent and a predicate, and no argument sharing. The theory
correctly predicts that the causee of the causative verb can be linked with more
than one argument of the embedded predicate. These can have different syntactic

3 Alsina explains his diacritics: Tones and vowel length are marked in the Chichewa sentences
as follows: long vowels may be low 7 high ”, rising 7, and falling 4 and short vowels are either
high ’°, or low, which is unmarked. Each noun in Bantu belongs to one of eighteen noun classes,
denoted in the glosses by Arabic numerals. Roman numeral I designates first person singular. The
following abbreviations are used:

S subject PS past CST causative  FV final vowel

O object INF infinitive PAS  passive FoC focus

PR present ERG ergative ACC accusative REL relative
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positions. Alsina’s analysis explains the fact that the causee may be either the
direct object of the verb (as in 28a) or an oblique object of a preposition (28b).
In (28a) the causee is kadzidzi ‘owl. The causee is expressed syntactically as an
object of the causative predicate. In this case, the causee ‘owl’ shares a thematic
role with the agent of the embedded predicate ‘cook.” In example 28b, the causee
is the ‘pumpkins.” The causee here is an oblique, which is an intermediary who
carries out the action. In this sentence, the causee shares its role with the patient
of ‘cook.

2.2.2 The Japanese Causative

Manning et al. (1999) present an analysis of Japanese causatives which is compat-
ible with Alsina’s Chichewa analysis. As in Alsina (1992), the causee argument
of the causative predicate is linked to the arguments of the embedded predicate.
Manning et al.’s presentation goes further, however, in that it also describes the
morphosyntax of the causative construction. Their analysis casts the causative as
a lexical constraint, and the causative verb as a lexical entry with a simple valence
list.

Japanese causatives are formed by adding the causative morpheme -(s)ase to
a verb stem, as shown in example 30. The subject of the causative is marked with
the nominative particle ga, and the causee is marked with the dative particle ni.
The accusative particle o is optional if the verb stem is intransitive.

(30) Taroo ga  Zirooni Hanakoo  tazune-sase-ta
Taroo NOM Ziroo DAT Hanako ACC visit-CAUSE-PAST
Taroo made/had Ziroo visit Hanako.

Traditional transformational analyses of the Japanese causative, including Kuroda
(1965) and Shibatani (1976), present the causative as a verb which subcategorizes
for an NP argument, which is itself an embedded sentence, or S node. Gunji
(1987), in the framework of a unification-based Japanese grammar, argues that
instead, the causative morpheme subcategorizes for VP. Whether the embedded
argument is a VP or S node is non-crucial in Manning et al.’s (1999) approach,
since the causative morpheme does not subcategorize for any arguments. Instead,
it constrains the entire causative verbal form. This is a crucial departure from pre-
vious analyses.* The reader is referred to (Manning et al. 1999) for a complete

“The authors note the similarity of their work in some respects to lexical Government-Binding
accounts, including Miyagawa (1980) and Kitagawa (1986).
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account of the motivation for a lexical rather than a syntactic approach. The au-
thors explain that Japanese causatives behave as a single clause with respect to
case, word order and other properties, following the Lexical Integrity Principle of
Bresnan & Mchombo (1995). Construal processes such as honorification, bind-
ing, and quantifier scoping, which have been used to motivate a complex syntactic
structure, are used here to motivate instead a complex argument structure, which
can be located in the lexicon.

In Manning et al. (1999) the causative morpheme -sase is a lexical constraint
(in the style of derivational morphology following Riehemann 1993) which con-
strains both the content of the causative verb as a whole, and the features of the
stem of the embedded verb. Lexical constraints, as they are used in modern anal-
yses, rely greatly on a fine-grained type inheritance hierarchy for the lexicon. The
constraint is a partial feature structure, as shown in example 31. Following Pollard
& Sag (1994) and Levine & Green (1999), we assume that fully-specified feature
structures correspond with linguistic objects in the theory, while constraints on
members of a class of objects only contain enough feature values to distinguish
the particular class. The constraints in the theory are referred to either as partial
feature structures, or feature structure descriptions. Alternatively, the term AVM,
for attribute value matrix, is used for the familiar feature-value pair notation which
gives partial information about a class of objects.

[ causative-stem
PHONOLOGY : Fy g (1))

ARGUMENT-STRUCTURE:(NP;, NP}, .. .)

cause-relation
ACTOR:?

UNDERGOER:j
EFFECT[3]
verb-stem

LEXICAL-DAUGHTER: | PHONOLOGY :[1]
CONTENT:[3]

(31) | CONTENT:

The causative has three semantic roles, an ACTOR, an UNDERGOER, and an
EFFECT. The causative morpheme inherits some constraints also from the types
related to actor and undergoer verbs. The embedded verb stem is considered
a lexical daughter of the causative morpheme. This means that it is the basic
stem from which the morphologically derived sign is derived. The content of the
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embedded verb stem is co-indexed with the EFFECT of the causative predicate.
The actor and undergoer are co-indexed with the semantic indices (i, j) of the
nominal arguments of the causative verb stem.

The feature structure for the causative form of the simple transitive verb tazune
(‘visit’) is shown as example 32. The combination of the root plus the phonologi-
cal suffix -sase is done in the phonology. -sase is part of a phonological combina-
tion rule and has no constraints associated with it independently. The phonological
combination rule used to derive the phonology of the mother is the function Fl,,
which yields X + sase, if X is vowel-final, and X + ase otherwise.

[ verb
PHON:(tazune + sase)

SUBJ:([np[N];)
comps: (2np[D];, 3np[A]x)

ARG-S:([1], 21, 3])
CONTENT:causes (1, j, visit(j, k))

(32)

In example 32, the CONTENT of the subcategorized verb, visit(j,k), is embed-
ded as the third argument of the three-place cause predicate, causes(i,j, visit(j,k)).
The complement object of the embedded verb tazune, indexed with [3], is structure
shared with the second object of the causative verb tazunesase. This highly lex-
icalized analysis of the Japanese causative has been proposed because it enables
the argument structure of the embedded predicate to be the site of adverb scoping.
It also predicts that the lower object may be subject to Principle A of the binding
theory in either clause. Principle A says roughly that anaphors must be bound
in their immediate clause (see Chomsky 1986, Pollard & Sag 1994, chapter 6).
Taroo is the first argument on the ARG-S list of the causative verb, and Ziroo is the
first argument on the ARG-S list of the verb stem. In this case, the binding of the
reflexive zibun-zisin is predicted to be ambiguously either the causer Taroo or the
causee Ziroo in example 33. I will re-visit these facts in chapter 6, where I present
an implementation of this analysis.

(33) Taroo ga Ziroo ni zibun-zisin o  hihan-sase-ta
Taroo; NOM Ziroo; DAT himself;/j ACC criticize-CAUSE-PAST
Taroo made/had Ziroo criticize him;/himself;.
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2.2.3 The German Passive

We now consider the passive, which, like the causative, is traditionally viewed as
morphological valence-changing operation. First we mention lexical rules, since
they are prominent in many analyses. Lexical rules apply to lexical entries create
additional entries in the lexicon. We may think of them as unary re-writing rules,
or as templates which get filled in with information from an “input” word, or as
operations which create new lexical entries from old ones. Pollard & Sag (1987);
Pollard & Sag (1994) speak of lexical rules as “rules of inference” and state that

Mathematically, we think of the base forms and lexical rules as a
signature from which the full lexicon is generated as a free algebra.
... This algebraic perspective, which is netrual between the declara-
tive and procedural interpretations, lends much conceptual clarity to
the analysis of word formation; e.g. inflection, derivation, and com-
pounding correspond to unary sort-preserving, unary sort-changing,
and binary algebra operations respectively (Pollard & Sag 1987: chap-
ter 8, note 11).

Whether the forms which are the “outputs” to lexical rules are derived or declared
in the lexicon, we are challenged when the arguments in the “inputs” are them-
selves underspecified. For example, it is not possible to extract one complement
out of a list of members before the members of the list are known, as in the case
of raising by auxiliary.

In the German personal passive, as in English, the accusative direct object of
the active voice is realized as the subject of the passive:

(34) a. Otto[nom] schenkt seinem Neffen[dat] ein Klavier[acc].
Otto gives  to-his nephew a piano
Otto gives piano to his nephew.

b. Ein Klavier[nom] wird seinem Neffen[dat] geschenkt.
a piano is  to-his nephew given.
A piano is given to his nephew. (Pollard 1994:1a,b)

The main verb is schenken ‘give’ and the passive participle is geshenkt ‘given.’
In the view of passive as lexical rule (Pollard & Sag 1987), the active verb in the
input to the rule subcategorizes for a subject and an object. This is shown here
in example 35. The semantic indices of these are [4] and [3], respectively. On the
subcategorization list of the output to the rule, the subject has been dropped and it
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has been reassigned as the object of the optional prepositional phrase headed by
von ‘by’ (PP[VON]). The object becomes the subject.

(35) Passive Lexical Rule

[ base-and-trans
PHON[1]

PAST-PART 2] —
SYN:LOC:SUBCAT(. .., NPz, NEg)
SEM:CONT[5]

[base-and-trans

PHON:fpsp (7 )
SYN:LOC:SUBCAT:((PP[VON]g), ..., NH, )

SEM:CONT 5]

(36) schenken — geschenkt

We consider next the analysis of Kathol (1994), and the related analysis of
Pollard (1994), in which the German passive may be represented with a lexical
entry for a raising auxiliary. The analysis in example 37 differs from the operative
view of passive (e.g. the lexical rule in 35) in that the relationship between the
arguments of the active and passive verb is wholly contained within the lexical
argument for the auxiliary. This obviates the need for a separate rule that mediates
the arguments, though there is still place for a rule of morphological inflection.

[werden
SUBJ:(np[NOM])
[ verb ]
37 vform
HEAD: .
COMPS:[2] + ( VFORM:part 1i >

comps:np[ACC] &
SUBJ:(np)

For the noun which is subject of the auxiliary and object of the embedded verb,
the semantic information is shared by the tag [1] Sharing semantic rather than
syntactic information enables the case of that noun to be realized in the nominative
case as the subject of the auxiliary, or as an accusative object as the direct object
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of the subcategorize verb. The other complements of the subcategorized verb
(indexed with [2]) are shared by the auxiliary. The auxiliary does not know, and
indeed does not need to know, exactly which verb it is that is in the passive form,
nor what its arguments are.

2.3 Complement Extraction and Romance Clitics

There are (at least) two approaches to the encoding of operations on arguments.
We may encode them as lexical rules (Pollard & Sag 1987, Flickinger 1987) or
define them declaratively in terms of constraints (Riehemann 1993), as shown in
the analysis of the Japanese causative in section 2.2.2. In the following examples
I show lexical rules, but note the theoretical equivalence of the two approaches.

2.3.1 Complement Extraction

We consider complement extraction by lexical rule (CELR), which has been pro-
posed in Pollard & Sag (1994) and adopted freely for other lexical operations in
HPSG, including clitic extraction, as we will show in the next section. Extrac-
tion in the framework of “HPSG III,” that is, the version of HPSG in chapter 9
of Pollard & Sag (1994), is handled without empty categories. The departure
from the use of traces to indicate the deep structure position of a “moved” el-
ement, standard in transformational accounts of extraction, is motivated by the
psycholinguistic work of Pickering & Barry (1991). The authors seek to explain
Pickering and Barry’s data, which suggests that comprehension of extracted ele-
ments is completed during human sentence processing not when a trace position
for that element is reached, but rather when the head which subcategorizes for the
extracted element is encountered.

In the CELR, a lexical entry is created for a head with one of its arguments
extracted. The extracted argument is found in SLASH, the position for extraction
(Gazdar et al. (1985)). A simplified version of the rule is given in example 38. In
its most general conception, the CELR can extract any argument from the subcat-
egorization list of the verb and put it into SLASH, e.g. Kim, Sandy likes; I wonder
who Sandy loves; On Kim, Sandy depends.

(38) Simplified Complement Extraction Lexical Rule:
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synsem
local

LOCAL: _| category
“|comps:(...,[1],...)

—

[synsem
local
LOCAL: _ [category ]
COMPS:(...... )
nonlocal ]

sLASH:{[1]}

NONLOCAL.:

The case of Partial Verb Phrase Fronting, or PVP fronting, in German and
Dutch, is one example of the operation of the CELR on an input with uninstan-
tiated arguments (Hinrichs & Nakazawa (1994), Nerbonne (1994), Baker (1994),
van Noord & Bouma (1995), and others). A PVP is a verb phrase which may in-
clude some number, but not necessarily all, of the verb’s arguments, as shown in
examples 39 and 40. This variety of verb phrase appears in topicalized position:

(39) a. Das Mirchen erziahlen wird er ihr.
The fairy-tale[acc] tell will he[nom] to-her[dat]
He will tell her the fairy-tale.

b. Thr erzahlen wird er das Mirchen.
to-her[dat] tell will he[nom] the fairy-tale[acc
He will tell her the fairy-tale.

(40) Das Examen bestehen wird er konnen.
The exam[acc] pass will he[nom] be-able-to
He will be able to pass the exam.

The PVP takes as input a lexical entry for auxiliary, such as the one shown in
example 18, and outputs a similar entry with the subcategorized verb appearing as
the head of a partial or complete verb phrase in the SLASH feature of the auxiliary.
I show the SYNSEM values of the resulting auxiliary in example 41. “synsem”
stands for features pertaining to syntax and semantics.
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[ synsem ]
local

category
verb
AUX:+

41 COMPS 2]
nonlocal

vp

SLASH:{ | HEAD:

LOCAL: CAT: | HEAD:

NONLOCAL:

VFORM:bse] }
COMPS:[2]

Any arguments “left behind” remain on the COMPS lists of the slashed VP and of
the auxiliary.’ The PVP case is interesting for this reason: If an auxiliary verb
is analyzed as raising the complements of the verb for which it subcategorizes,
then the lexical entry for the auxiliary simply leaves the verb’s, and hence its own,
arguments unspecified, since no information about them is available. Therefore,
“unknown” arguments appear in the input and output to the PVP lexical rule. This
results in a potentially infinite number of lexical instances, since without further
restrictions, the rule can keep applying to its own output. This may be a rather
unpleasant consequence in implementations of this phenomenon, because it leads
to non-termination and/or unruly lexicons. Delaying the application of lexical
rules is one solution to the problems of nontermination or unneeded lexical entries.

2.3.2 Romance Clitics

The CELR is closely tied to the lexical handling of clitics in Romance languages
as described in a series of papers including Miller (1992), Sag & Godard (1993),
and Abeill€ et al. (1998). The following example, from Miller & Sag (1995)
illustrates how the simple case of clitic extraction works.

(42) a. Le garcona qui  Marie croit que Jean-Paul parle.
The boy  to whom Marie thinks that Jean-Paul speaks.

b. Jean-Paul lui parle
Jean-Paul speaks to him.

3In the analysis of Hinrichs & Nakazawa (1994), the fronted VP is always full, and any “miss-
ing” complements are slashed back to the main clause.
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First, the CELR is applied to the base form parler (‘speak’) to create a form of
that verb in which a complement, le garcon in example 42a, is extracted. Operat-
ing on that form is a lexical rule for clitic affixation, which takes an argument out
of the SLASH set of extracted elements and affixes it onto the main verb, yielding
the base form [ui-parler and the inflected form of 42b. The clitic affixation rule of
Sag & Godard (1993) is given in example 43.

(43) Simplified Clitic Affixation Lexical Rule:

[ synsem
local
category

LOCAL:
CAT: verb
HEAD: ]

CLTS:S;

nonlocal
SLASH:{[1]} U S,

NONLOCAL.:

—

[synsem
local
category
verb
crrs:S; U {11}
nonlocal
SLASH: SQ]

LOCAL:
CAT:
HEAD:

| IS

NONLOCAL.:

We recall Abeillé & Godard’s (1994) analysis of French tensed auxiliaries
in which avior and étre are argument-raising verbs. For these auxiliaries, the
arguments are not lexically specified beyond the fact that they are shared with
the main verb. Like the Complement Extraction lexical rule, the Clitic Affixation
lexical rule (CALR) may be dealing with unknown arguments, this time in the
SLASH set of the head verb. Order of rule application is important, here. In order

to identify the slashed arguments, the rule must first obtain an instantiated instance
of the CELR.®

5The rules are freely ordered, but it is a so-called rule “feeding” relation, in that once the CELR
applies, then the CALR can apply to its output.
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2.4 Quantifier Raising

In Pollard & Sag (1994:chapter 8), all quantifiers begin in storage, using a standard
interpretation of Cooper storage (Cooper (1983)). Quantifiers from the daughters
of a phrase are passed up until a site for scope assignment is reached, at which
time one or more quantifiers may be retrieved and given a wide scope interpreta-
tion. Pollard & Yoo (1997) show a departure from Cooper storage of quantifiers.
Pollard & Yoo propose to make QSTORE a local feature, rather than a feature on
the type sign, which is the most basic type of objects in HPSG. By being a lo-
cal feature, it is part of the bundle of basic syntactic and semantic information of
the sign. Unscoped quantifiers in QSTORE are passed up to the mother from the
semantic head daughter by means of the semantics principle. The Pollard & Yoo
analysis makes it possible to derive the de dicto or narrow scope reading for the
following example:

(44) a. A unicorn seems to be approaching.

b. It seems that there is a unicorn approaching. (de dicto)

c. There is a unicorn that seems to be approaching. (de re )

(45) S
/\
np
[ QsTORE:{[ 1]} ] |:‘(;l;TORE:{} ]
i /\
a unicorn v >
QUANTS:() [ v . ]
QSTORE:{} QSTORE:{}
//\
| v vp
seems QSTORE:{} QSTORE:{}
i T
to v vp
QsTorRE:{[ 1]} QsTorE:{[ 1]}
| |
be v
SUBJ:()
QSTORE:{}

\
approaching
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The tree in example 45 shows a derivation for example 44c. In 45 the fea-
ture RETRIEVED is not shown at VP nodes, but could be assumed, or could be
absent, following the analysis of Manning & Sag (1998). We start unwrapping
this tree from the bottom up. The QSTORE value of the subject NP a unicorn
is the set containing the quantifier value for a unicorn, which we abbreviate with
Jz.unicorn(zx) (following Pollard & Sag (1994)). Since the main verb approach-
ing subcategorizes only for one argument, its subject a unicorn, and since its own
QUANTS value is empty, then its QSTORE value will be the same as its subject’s
(noted in example 45 with the structure shared argument [2]).

At each VP node is a chance for the quantifier to be retrieved. A VP node is
defined here as any point at which the subtree is headed by a verb. We follow
the VP nodes in the tree up to the VP node fo be approaching. At this node the
quantifier for the subject NP a unicorn has been retrieved, inside the scope of the
raising verb seems. We note this as the value of QUANTS. The QSTORE value for
the VP to be approaching is the empty set. This QSTORE value is equal to the set
of quantifiers stored for the subcategorized VP be approaching — still equal to the
QSTORE value of the subject NP — minus its own QUANTS value. The wide scope
reading that is available occurs when retrieval does not occur until the topmost S
node.

Manning & Sag (1998) point out a problem with an earlier version of the Pol-
lard & Yoo analysis of in that it lets quantifier retrieval happen in several places.
Both this method for quantifier storage and retrieval and the analysis of Pollard &
Sag (1994) allow spurious analyses of every available reading.” Manning & Sag
propose to let quantifier scope assignment and retrieval be entirely lexical in na-
ture, eliminating the feature RETRIEVED. The value for QSTORE for a verb is the
union of the quantifiers stored for its arguments, minus its own quantifiers. Using
the Manning & Sag (1998) analysis for quantifier storage and retrieval, we obtain
the lexical entry for seems shown in example 46.

"Pollard and Yoo address the spurious ambiguity problem by constraining a phrase with a
semantically vacuous head to have an empty RETRIEVED value. They offer evidence that phrase-
level quantifier retrieval accounts for wh-scoping, following Carpenter (1994). They also suggest
that

... the best solution lies in the direction of abandoning the whole notion of retrieval
at structural nodes, and instead constraining the relation between CONTENT and
phrase structure in some other way that makes no reference to retrieval in this
sense.(Pollard & Yoo 1997:30)



2.5. CONSTRAINTS ON LINEAR ORDER 31

[local
category
HEAD:verb

vp

CAT: CATEGORY: | VFORM:inf
COMPS:( SUBJ:([1lnp) )

(46) CONTENT[2]
QSTORE:[3]

SUBJ:([1])

) psoa
SOA-ARG 2]
QUANTS:z

| QSTORE[3] \

CONTENT:

For the verb seems, the value for QSTORE is the set of quantifiers stored for the
subcategorized VP minus its own quantifiers, i.e. its QSTORE is the QSTORE of
the embedded verb minus its own QUANTS value. We don’t know, however, just
what the quantifiers of the embedded verb are at this lexical level, since the em-
bedded VP is not instantiated at this level. Furthermore, it is only by looking at
the entire sentence tree in 45 that we know that the QUANTS value of any of the
VP is 3z.unicorn(z). Had the subject been a proper NP, such as Kim, then the
QUANTS values would all be empty. The lexical entries for verbs employing lexi-
cal quantifier raising allow for this possibility by structure sharing quantifiers with
subcategorized thematic complements, yet leaving these underspecified.

This program of gathering quantifier values for any SIGN is complemented by
the analysis of Sag (1997), where lexical amalgamation of the features SLASH and
REL is assumed.

2.5 Constraints on Linear Order

In West-Germanic languages, the order of words in the Mittelfeld, is somewhat
free, resulting in discontinuous constituents. The Mittelfeld is the part of the
German clause between the finite verb and the clause final verb or verb cluster, if
any.
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(47) Dann wird die Pille der Doktor dem Patienten geben.
Then will the pill the doctor to-the patient  give.
Then the doctor will give the pill to the patient.

The arguments of geben (give) in sentence 47, including the subject Doktor, may
be permuted (Uszkoreit 1987:93a-b):

(48) a. Die Pille gibt der Doktor dem Patienten.
b. Dem Patienten gibt die Pille der Doktor.

Linear precedence (LP) constraints are the second component of ID/LP gram-
mars, which include GPSG (Gazdar et al. (1985)). Separating dominance and
precedence relations disassociates the daughters in a phrase from the order(s) in
which they are admissible. LP constraints order daughters of an unordered phrase
structure rule with respect to each other. In HPSG work of the last decade, start-
ing with Reape (1996) and including Kathol & Pollard (1995) and Kathol (1995),
the domain of the linear precedence relation has been contained in the DOM or
domain feature of a phrasal projection. A word order domain for a phrase is an
ordered sequence of constituents, and consists of their PHON or phonology values

phrasal-sign
(49) [PHON:[i]o...0
DOM:({[PHON[1]], ..., [PHON[m])

The ordering of elements of a domain with respect to each other and the or-
dering of domains with respect to each other allows for accounts of complex word
order phenomena. Elements from different domains may be “shuffled” or inter-
spersed into the domain of the mother, as long as the relative order of each domain
is preserved. A simple example of domain ordering from the German Mittelfeld
is the constraint that pronouns precede nonpronouns.

(50) a. Ich gebe ihm das Buch.
I give him the book.
I give him the book.

b. *Ich gebe das Buch ihm.
1 give the book him[dat].
I give him the book.

c. *Ich gebe ihm ihn.
I give him[dat] it[acc].
I give it to him.
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d. Ich gebe ihn  ihm.
I give it[acc] him[dat]
I give it to him.

Erbach et al. (1995:example 8) express the constraint on domains as in exam-
ple 51, in the context of discussing tools for grammar development:

(51) Vz,y € Dom: if (x = pron) A (y # pron) then precedes(z, y)

A rendering of the constraint using an HPSG type signature looks as follows,
relative to the complements of a verb phrase:

(52) [LOC:CONT : pron| < [LOC:CONT : npro|

The constraint can neither be satisfied nor fail until all nominal contributors
to the ordering domain DOM have their NOM-OBJ values specified, showing the
types of noun phrases that they are. And so it shows that ordering must be done
at a time when each constituent that maps to an ordering domain is sufficiently
instantiated.

Penn (1999) uses embedded word order domains to formalize the placement
of second-position clitics in Serbo-Croatian. This grammatical placement of the
clitic je "he’ in 53b makes the syntactic NP U lepi grad discontinuous.

(53) a. U lepi grad je  stigao.
in beautiful city cl.3s arrived
He has arrived in the beautiful city.

b. U lepi je grad stigao.

To show the contribution of prosody to word order, Penn posits a PROSODY
feature with its own domain lists (PDOM). The domain DOM of the entire sign is
the result of appending the lists of domain objects in the list of prosodic words.
In this way a prosodic word may be the relevant object with respect to which
the clitic is ordered, demonstrating interdependence between the syntactic and
prosodic features.

2.6 Problems for Evaluation

The examples in this chapter have all been selected because they pose particular
problems for evalution during natural language processing. We look now at the
evaluation of argument sharing, first introduced in section 2.1. The problem we
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discover is that one head might need to gain information which is projected from a
different head, but underspecified. In the processing paradigm, one way a feature
structure is underspecified is if the path value at the node which is being evalu-
ated is undefined. It may also be that the type in a typed feature structure is not
a maximally specific type, or that an entire piece of the structure is co-referenced
or shared with another. In a parsing or generation process, we store all the in-
formation we gain as we go along in a common feature structure, updating that
information and creating new path values as we process. It may be the case that a
feature value that is undefined or not maximally resolved early in the computation
will be more specific later, as a result of gaining new information during the parse.

A simple feature structure showing the semantic features for the noun sheep
might look as in example 54. The type nom-object refers to the fact that a sheep
belongs to the class of things that are nominal objects.

nom-object |
content
(54) CONTENT: PERSON:3rd
| NUMBER :number
RELATION:sheep

Clues from other parts of the grammar could help to make the feature or type
more specific when the feature structure gains information during natural language
processing. We refer to these “clues” as constraints. In the sentence The sheep
graze, the “filled-in” version of the feature structure has the subtype of number
resolved to plural in 55:

[ nom-object
content
(55) CONTENT: PERSON:3rd
"| NUMBER:plural
RELATION:sheep

The sentence The sheep bleats would likewise resolve to the singular form. The
number for the noun is obtained via unification with the number form on the in-
flected verb. Typically, the number for the verb form is added into a basic, also
underspecified feature structure for the verb’s base form, by way of some mor-
phological analysis.

For our test case, we look at a lexical rule that has the potential to extract
underspecified complements from an auxiliary at the point of the lexicon. The
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feature structure template for the raising auxiliary werden is repeated here as ex-
ample 56.

werden
verb
HEAD: | VFORM:bse
AUX:+
SUBJ[1}{(NP)
(56) [ |

verb ]

HEAD: \ EoRM :bse

COMPS 2] )

SUBJ:[1]
| NPCOMP:-

COMPS:[2] +

In section 2.3.1 I introduced PVP fronting as a technique from HPSG for ob-
taining fronted verb phrases in Germanic languages. We saw that a partial verb
phrase has a verb for its head and some number of the verb’s complements, but it
may not be saturated.® A specific instance of the Complement Extraction Lexical
Rule is the Partial Verb Phrase (PVP) Fronting Rule of Baker (1994). A naive
or preliminary implementation of the PVP rule as it has been written using the
ALE system of Carpenter & Penn (1994) is shown in figure 2.1. The append
relation that is assumed states that the concatenation of outstanding complements
of the partial verb phrase (PVPComps) and the PVP itself (1oc : PVP) yields the
list of all of the arguments on the SUBCAT or subcategorization list of the output
auxiliary (SubcatComps):

(57) append (PVPComps,
[ (loc:PVP,non_Jloc: (inherited: (slash: (elt:PVP)))) 1,
SubcatComps)

I will now consider various strategies which could be considered generally in the
implementation of the PVP rule. I describe three methodologies for handling con-
straints or rules such as this, which appear in the lexicon: Brute Force, Accommo-
dation, and Control. These methods can be roughly characterized as follows:

e Brute Force: Explicit rendering of a constraint to be satisfied via instantiation
of its possibilities.

8The word “saturated” is used to mean that a head has picked up all of its complements and no
longer subcategorizes for any of them in the phrase.
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%% % Partial Verb Phrase Fronting Rule
pvp lex_rule
(word,

subcat: [Subj|0OldComps],
synsem: (loc: (cat: (head: (Head, verb,vform:bse, aux:plus, flip:minus),
subj: [Subj],
comps:01dComps) ),
non_loc: (inherited: (slash:01dSlash))))
* k>
(word,
subcat: [Subj|SubcatComps],
synsem: (loc: (cat: (head:Head,
subj: [Subj],
comps :PVPComps) ,
cont:Cont),
non_loc: (inherited: (slash: (elt: (PVP, cat: (head: (verb,vform:bse),
lex:minus,
subj: [Subj],
comps :PVPComps) ,
cont:Cont),

elts:01dSlash)))))
%% The next line is key

[
H

(append (VComps, [ (loc:cat: (head: (verb,viorm:bse),
lex:plus,
comps :VComps, subj: [Subjl)) ],
OldComps),

three_or_less (PVPComps),

append (PVPComps,
[(loc:PVP,non_loc: (inherited: (slash: (elt:PVP)))) 1,
SubcatComps)

Figure 2.1: PVP rule — naive implementation
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e Accommodation: Hand-coded software changes to account for anticipated
problems.

e Control: Keeping certain constraints from consideration during the con-
straint resolution algorithm, while stating them where they most naturally
occur.

2.6.1 Brute Force

One approach is to use a “brute force solution” to lexical underspecification. In
order to make sure that a lexical constraint is satisfied early, one adds a lexical
entry for every instantiation of the constraint. The problem with this approach is
that some instantiations may not be needed, or worse, may not be reasonable, but
are generated due to the generality of the constraint. They also load up the lexicon
with entries that lead to parse ambiguity.

For example, for the case of an auxiliary verb raising the complements of the
verb it governs, there is no natural way to use the list data structure to state that
the last element of a list is the head verb and that all the other arguments are the
verb’s argument. That is because a list is described as the head, or first element
of the list, and the rest, or tail, of the list. In Prolog, this is rendered simply as in
example 58. Unless the length of the list is known and the list can be reversed, the
last element cannot be referred to with a variable.

(58) [Head|Tail]

The following examples 59a through 59c are instantiations of the auxiliary
konnen where the verb that is governed may have one, two, or three possible
arguments. The PVP rule can be applied to each of these lexical entries. In these
entries, I show only the relevant SYNSEM values.

(59) a. minus flip aux,
taking an intransitive verb

koennen —--->

word,

synsem:loc: (cat: (head: (verb,
mod:none,
vform:bse,
aux:plus,
flip:minus),

subj: [ (NP, @ np(_)) 1,
comps: [loc: (cat: (head: (verb,vform:bse),
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subj: [NP],

comps:e_list,

lex:plus),
cont:Prop) ]

b. minus flip aux,
taking a verb plus one complement

koennen —--—-—>
word,
synsem:loc: (cat: (head: (verb,
mod:none,
vform:bse,
aux:plus,
flip:minus),
subj: [ (NP, @ np(_)) 1,
comps: [Compl, (loc: (cat: (head: (verb,vform:bse),
subj: [NP],
comps: [Compl],
lex:plus),
cont:Prop)) ]

c. minus flip aux,
taking a verb plus two complements

koennen —--—->
word,
synsem:1loc: (cat: (head: (verb,
mod:none,
vform:bse,
aux:plus,
flip:minus),

subj: [ (NP, @ np(_)) 1,
comps: [Compl,Comp2, (loc: (cat: (head: (verb,vform:bse),
subj: [NP],
comps: [Compl, Comp2],
lex:plus),

cont:Prop)) ]

With a simple grammar and lexicon and the rule in figure 2.1, we are able to
parse German sentences with fronted verb phrases such as example 60.

(60) Kim sehen wird Sandy.
Kim see will Sandy
‘Sandy will see Kim.’
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We obtain four more lexical entries for wird after the application of the PVP
rule at the time of compilation of the lexicon, for the cases where the governed
verb has zero, one, two or three things on its COMPS list of complements. We
have limited the number of complements to three; this is discussed in more detail
as the strategy of accommodation, below. Having more than one lexical entry for
wird populates the chart in a bottom-up chart parsing strategy, but is not a source
multiple solutions for this particular example (60).

Things get more interesting, however, when we add to the grammar another
variant of the CELR which extracts a noun from a base form verb. Such a version
of the CELR enables examples with NP fronting such as 61 to be parsed.

(61) Kim wird Sandy sehen.

Kim will Sandy see.
‘Sandy will see Kim.’

The feature structure template version of this rule is shown as example 62.

(62) Lexical rule to extract a noun complement:

synsem
local
LOCAL: _| category
lCOMPS:(. LSNP, .. .)]

—

[synsem
local
LOCAL: _| category
lCOMPS PR ) ]

nonlocal ]

NONLOCAL: SLASH:{}
Having both rules in the grammar creates numerous entries in the lexicon. Besides
the correct parse of sentence 61, we obtain a bizarre parse for the sentence as a
phrase with a mythical VP in SLASH, which itself has a VP in SLASH, which is
headed by the verb ‘see.’ This is certainly incorrect. This is the result of three
separate steps conspiring. First, allowing the auxiliary werden to be slashed for
PVP; second, joining the auxiliary with the verb sehen, which is slashed for NP;
and third, picking up the NP Kim, but no VP, in slash. The constraint on the




40 CHAPTER 2. DESCRIBING LINGUISTIC OBJECTS

PVP lexical rule says that the PVP in SLASH subcategorizes back for the elements
that the auxiliary has already picked up. The bottom line, of course, is that in
example 61 we have no need for lexical entries for auxiliary with slashed VP.
These will only create unwanted ambiguity during parsing. And if they are there,
the grammar must be fine-tuned to prevent over-generation, stating the proper
conditions on slashed elements.

The most obvious improvement to the brute force approach would be to leave
the COMPS list as a single uninstantiated variable and then state separately that
auxiliary raising is taking place. It seems important to know at the outset, of
course, that the auxiliary must take at least a verb as its primary argument.

2.6.2 Accommodation

Accommodation is hand-coding the knowledge sources in order to account for any
program behavior which may result from premature solving of constraints. An
example of accommodation is adding a limit on the length of an uninstantiated list,
so that an infinite search path does not result. This actually changes the meaning
of the program.

The conditions in the i f clause at the bottom of the rule in figure 2.1 include
the definite clause three_or_less (PVPComps) . This instantiates the list of
complements in the fronted verb phrase, the list PVPComps, to be of length three
complements or less. Without this statement, the compiler goes into an infinite
loop as it tries to solve the append relation. In that case, neither the complements
list of the fronted verb nor of the auxiliary output to the lexical rule are known,
and so the Prolog engine enters into an infinite search branch trying to come up
with arguments that will satisfy the relation.

As we have mentioned, the interaction of partial verb phrase fronting with the
CELR causes some interesting results. The output of the CELR is grammatical in
HPSG theory. In practice, however, we need to be a bit wary:

e First, we want to curb the application of the rule over and over, potentially
infinitely, on entries where the argument structure is largely variable, and
the output could easily match the input. This problem is described by Hohle
(1995), who suggests suitable restrictions on the ARGSTORE of output to the
rule. (such a constraint is present on the feature SUBCAT, for subcategoriza-
tion, in figure 2.1).

As van Noord & Bouma (1995) indicate, if lexical rules are written instead
as unary grammar rules encountered in the syntax, we may have just pushed
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off to a different processing stage the problem of infinite derivations.

e Second, we wonder if our process will terminate. In Prolog, for example,
the concatenate operation, which relates two lists, e.g. the subcategorization
lists of a verb and its governing auxiliary, will go into an infinite search loop
if the first or third arguments are variable.

e Third, even for non-auxiliaries, whose arguments are available in the lexicon,
we will increase local ambiguity during parsing if our lexicon contains a
priori an entry for every word with every possible complement extracted.

Are these real problems during a parsing or generation process? Certainly the
CELR could be tailored for a specific case via greater specification of inputs and
outputs (as in Meurers 1994), or the processing system could set bounds on the
number of rule applications (as in Carpenter & Penn 1994), which provides for
limiting the total number of lexical rule applications) in order to curb these prob-
lems. However, the former solution will certainly result in a loss of generality, and
the second, though easy to implement, is only a partial fix. In operational terms,
a lexical argument extraction should only take place once when a single extracted
argument is present in SLASH.

2.6.3 Control

Control is a strategy for constraint resolution. It results in a constraint ordering.
Control may be done explicitly, by ordering constraints by hand, or implicitly,
by using the program’s goal resolution algorithm. Or, the two methods can be
combined. In our example of complement extraction, the most straightforward
solution may be to code the constraint on extracted elements separately, as in
example 63, and fire the constraint during the parsing process, when we know that
the extracted argument has been found. The grammar writer may simply list the
constraint among the all the constraints fired, and at the appropriate time.

word
SUBJECT[1]

COMPLEMENTS 2] © gapped-args
DEPENDENTS 1] &®

(63)

Example 64 is the verb-phrase grammar rule in a German grammar. It is
an instance of Schema 2 in HPSG theory, which is implemented as a phrase-
structure rule. The goal keyword indicates definite clause goals which must
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be solved before the rule is complete. In this example, one goal, the constraint
aux_raising, checks that the subcategorized verb plus its complements list
equals the complements list of the auxiliary. The means that the “problem” as-
sociated with stating the constraint on empty arguments in the lexicon is not an
issue, since the constraint has been moved out of the lexicon and into the syntax.
(64) schemaZpvp rule
(Mother, phrase)
===>
goal> three_or_less (Comps),
cats> Comps,
cat> (HeadDtr,word, synsem: (HeadSyn,
loc:cat: (head:
(verb,inv:minus, flip:minus),
subj: [SubjSynl]),
non_loc:inherited:slash:e_set)),
goal> (synsems_to_signs (FoundCompSyns, Comps),
head_feature_principle (Mother, HeadDtr),
valence_principle (Mother,HeadDtr, [],FoundCompSyns, []),
semantics_principle (Mother, HeadDtr, Comps),

aux_raising (HeadSyn, FoundCompSyns, SubjSyn)) .

The complement extraction case is somewhat more complicated than simple
raising by auxiliary, because the head of a filler-head construction is a verb phrase,
and not a lexical head. In traditional HPSG grammars, the schema 2 rule or “verb
phrase rule” is the only site for checking constraints between a lexical head and its
complements. So, locating a lexical constraint on extraction at the site of the filler-
head rule may take some gymnastics, or perhaps the percolation of the ARG-S
feature to the phrase as a head feature, which I presume is not the intent of Bouma
et al. (2001).

Control can still be achieved by stating the constraint on auxiliary raising in
the lexicon, where the arguments to which it applies are introduced into the gram-
mar, but indicating that it should be delayed. With this strategy, the program
control can check for the satisfaction of the constraint once the word has actually
encountered its arguments during processing. In this way, the grammar writer
need not be concerned about which phrase structure rule it is that actually unites
these constituents.

In order to use control explicitly in grammar descriptions, yet not be wor-
ried unduly with attaching delay statements to lexical or grammar constructs, one
can build delays into the description language. The solution we seek is to ex-
tend the description language for typed feature structures in Carpenter (1992) to
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include waits on satisfaction of feature structure descriptions. The waits may
occur any place feature structure terms are used, including lexical descriptions,
constraint descriptions, or definite clause statements. We will show how delayed
rules may also be used. The idea of waiting began with negations in Prolog II
Naish (1985) and has been generalized to the paradigm of Constraint Logic Pro-
gramming, which is introduced in the following chapter.

2.7 Summary

In this chapter we have looked at a variety of analyses in which arguments are
shared across structures. Having established the linguistic data, we look ahead
to implementational issues. How does sharing impact the ability to process these
structures in a parsing or generation context? Constraints are sensitive to the in-
formation available to solve them. Sometimes, information, such as complement
structure, is shared by more than one head. This means that one head may need to
wait for that part of the data which is provided by the other head. In this chapter
I have shown the inadequacy of some methods for processing feature structure
grammars, including brute force approaches and hand-tailored approaches. Be-
ginning in the following chapter, I describe delaying, which is used to apply con-
straints only after there is enough information to make them effective. Delaying
also avoids non-termination problems. This methodology will be useful in any
number of linguistic contexts, including the causative, the passive, complement
extraction, clitic movement, quantifier raising, and word order.
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Chapter 3
Logic Programming

As a parallel exposition to the linguistic literature in chapter two, I review in this
chapter the field of Logic Programming. I review the methodology for SLD res-
olution, and include a definition of resolution for Constraint Logic Programming
(CLP). Iintroduce the concept of delaying and show guarded rules for CLP. I give
an example of guarding from NLP and consider some other approaches to con-
straint solving. A formal description of feature structures follows in chapter 4.
We will then be able to show how guarded rules and feature structures can be
used together to solve the general problem of processing underspecified linguistic
objects.

The definitions for concepts in logic programming (section 3.1) have been
written largely with reference to Sterling & Shapiro (1986), and the definitions for
CLP (section 3.2) have been written after a close reading of Marriott & Stuckey
(1998).

3.1 Logic Programming

In logic programming, a program is made of a series of statements, or goals. Goals
are also called definite clauses.

Definition 3.1 (Terms) A term t is a variable, a constant, or a function symbol
flt1, ... ty),n > 0. Variable names begin with an upper case letter, e.g. X, Y,
Feats, Cat.

Constants are integers or names that begin with a lower case letter, e.g. kim,
sandy.

A function symbol is a name that begins with a lower case letter, e.g. successor.

45
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Some function symbols may be built in to the language. For example, lists in
Prolog are built underlyingly using the function operator cons. The first argu-
ment of cons is the first element of the list and the second argument is the whole
remainder, or tail, of the list. The empty list [ ] is a constant. Instead of writing
cons (a, cons (b, c) ), one may use square brackets around the members of
the list, i.e. [a,b, c]. Therefore, a list is a valid term. A vertical bar may be
used to separate the head of the list from the rest of the list, e.g. [a|b,c] or
[X]Y].

Definition 3.2 (Goal) A goal is a expression of the form p(ty,...,t,),n > 0
where p is a relation symbol and the t; are terms. A relation symbol is a name
that begins with a lower case letter.

Example goals are father(kim,sandy) and append([ ], X,X).

Definition 3.3 (Clause) A clause is a goal or a statement of the form
A<+ By,B,,...,B,,n>0where A, B1, By, ..., B, are goals. A is the head
of the clause.

An example clause is
append(cons(X, X s),Y s, cons(X, Zs)) < append(Xs,Y's, Zs).

Definition 3.4 (Program) A logic program is a finite set of clauses.
A simple program for appending two lists together is

(65) append ([ 1,Xs,Xs).
append ([X|Xs],Ys, [X|Zs]) <—— append(Xs,¥Ys, Zs)

Definition 3.5 (Resolvent) A resolvent is a conjunction of goals to be proved.

In logic programming the technique of SLD resolution is used to deduce a
goal given a program. This technique dates to Robinson (1965) and is described
in Lloyd (1984). Each clause in logic program has a goal on the left hand side
that can be proven from instances of the goals on the right hand side. During res-
olution, clauses work together to prove new instances of goals that can be reused
in other clauses, until the input goal is proven. The operational definition of SLD
resolution from Sterling & Shapiro (1986) is shown in figure 3.1. Two concepts
are key in understanding resolution. The first is substitution and the second is
unification. A substitution is a choice of a term ¢ to take the place of each oc-
currence of a particular variable X as it occurs throughout a term s. Unification
occurs when two terms s; and sy are made identical through a series of variable
substitutions.
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Definition 3.6 (Substitution) A substitution is a finite set (possibly empty) of
pairs of the form X=t, where X is a variable and t is a term, and with no two
pairs having the same variable as left-hand side. For any substitution

0 ={X; = t,Xs = to,..., X, = t,} and term s, the term sf denotes the
result of simultaneously replacing in s each occurrence of the variable X; by t;,
1 <4 < n. The term s8 is called an instance of s.(Sterling & Shapiro 1986)

The substitution § = {X's = [a], Y's = [b]} applied to the term append(X s, Y's, Zs)
yields append([a], [b], Zs).

Definition 3.7 (Unification) A substitution 0 unifies s, and ss if $10 = s50.

The terms append(X s, Y's, [a, b]) and append([a], [b], Zs) may be unified with
the substitution § = {X's = [a],Y's = [b], Zs = [a, b]} to yield the common term

append([a], [b], [a, b]).

Definition 3.8 (Most General Unifier) A term s is an instance of a term t if s
is obtainable from t via substitution. A term s is more general than t if s is an
instance of t but t is not an instance of s. For each unifiable set of terms s;
and so there is a substitution that produces a unique most general term s. This
substitution is known as the most general unifier, or MGU, of the two terms. The
uniqueness of s is up to the renaming of variables, taking care not to reuse names
which occur elsewhere in the term.

For the two terms s; = append(Xs,Y's, Zs) and s, = append([a], Rest, List)
a most general unifier is § = Xs = [a],Y's = Rest, Zs = List resulting in the
term s = append(X s, Rest, List). Another MGU wouldbe § = {Xs = [a],Y's =
Ysl,Zs =Ysl, Rest = Ysl, List = Ys1} resulting in the term
append([a],Y s1, Zs1). The unifier @ = {Xs = [a],Y's = Rest = [b], Zs =
Rest = [a, b]} applied to s; and s, would yield the term s’ = append([al, [b], [a, b]),
but #" would not be the most general unifier since s is an instance of s’ but s’ is
not an instance of s.

The steps in solving a goal with resolution can be shown as a search tree, with
the goal to solve as the root node of the tree. Each branch from that node goes to
a clause from the program unified with the goal selected from the resolvent. The
search tree in figure 3.2 shows a proof of goal append(|a, b], [c, d], Q). This is the
goal of concatenating the lists [a, b] and [c, d] to yield [a, b, ¢, d]. Figure 3.3 shows
all the steps in resolving this goal. There is one goal to choose from in the resol-
vent and there are two clauses to choose from in the program P, which is shown in
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Input: A logic program P
A goal G
Output: G4, if this was the instance of G deduced from P,

or failure if failure has occurred.

Algorithm:
Initialize the resolvent to be G, the input goal.

While the resolvent is not empty do
Choose a goal A from the resolvent
and a (renamed) clause A’ < By, Bs, ..., B,,n > 0, from P
such that A and A’ unify with MGU 6
(exit if no such goal and clause exist).
Remove A from and add By,Bs,. . ., and B,, to the resolvent.
Apply 6 to the resolvent and to G.

If the resolvent is empty output G, else output failure

Figure 3.1: SLD Resolution. (Sterling & Shapiro 1986: Figure 4.2)

jppend([a, 0], e, d], Q) {X = a.Xs = [b].Y's = [c, d].Q = [X|Zs]}
append([b|[ 1], [c, d], [b] Zs1]) {Xs = [X1|Xs1],X1=0Xsl=]],
Zs=1[X1|Zsl]}

1

append(( ], e, d),[e,d)). {V's = Zs1)

Figure 3.2: Search tree for proof of append(|a, b], [c, d], Q). By composition, the
value of () is equal to the composition of substitutions in the proof tree.
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program P:
append ([]1,X,X) .
append ([X|Xs],Ys, [X|Zs]) <—— append(Xs,Ys, Zs) .

goal G = append([a, b], ¢, d], Q)

1. Resolvent: {append([a, b], [c,d], @)}. Choose this goal.

Choose append ([X|Xs],Ys, [X|Zs]) <—-
append (Xs, Ys, Zs) from P.

Rename clause append([a|b], [c, d], [X|Zs]) < append(b, [c,d], Zs).
§={X=0a,Xs=0,Ys=]cd,Q=[a|Zs]}
Resolvent: {append(|[b, [c,d|, Zs)}
Apply theta to G: append([a, b], ¢, d], [a|Zs])
2. Choose goal append([b, [c, d], Zs) from the resolvent.

Choose append ( [X1|Xsl1],Ysl, [X1|Zsl]) <—--
append (Xsl,Ysl, Zs1l) fromP.

Rename clause append([b|[]], [c, d], [b| Zs1] « append([], [c, d], Zs1).
§ = above substitutions plus {X1 = b, Xsl = [|,Ysl = [¢,d],Zs =
[b|Zs1]}
Resolvent: {append([], [c,d], Zs1)}
Apply theta to G: append([a, b], [¢, d], [a|[b| Zs1]])
3. Choose goal append([], [c, d], Zs1) from the resolvent.
Choose append ([], X3, X3) from P.
Rename clause append(]], [c, d], [c, d]).
6 = above substitutions plus { X3 = [¢, d], X3 = Zs1}
Apply theta to G: append(|[a, b], [c, d], [a|[b|[c, d]]])
Resolvent is empty { } so output G: append(|[a, b], [c, d], [a|[b|[c, d]]])

Figure 3.3: Steps in resolving the goal of concatenating the two lists [a,b] and
[c,d] to output list [a,b,c,d].
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append([X|X s1], [c, d], [X|Vs1){Q1 = [X|Xs1], Q2 = [X|V's1]}
ippend(Xsl, e, d], Vs1){Xs1 = [X1|X52], Vsl = [X1]Ys2]}
ippend(XsQ, e, d], V's2){Xs2 = [X2|Xs3],Vs2 = [X2|Vs3]}
%ppend(Xs?), lc, d], Ys3)

Figure 3.4: Search tree with an infinite branch. Goal is append(Xs, [c, d], Ys]).
The first and third list arguments are variable and so can grow infinitely long,
by pushing down a new first element on the tail of the list.(Sterling & Shapiro
1986: Figure 5.4)

example 65. In figure 3.3, the correct clause can be chosen deterministically, but
in general, the process is non-deterministic.

In fact, it is possible to keep selecting clauses which lead to an infinite path.
Suppose we are solving the goal append(Q1, [c, d], Q2). If we choose the clause
append([ |, X s, X's) then we have a successful derivation with Q1=[ ],Q2=[c,d].
But if we choose the clause append([X | X s],Y's, [X|Zs]) < append(Xs,Y's, Zs)
then we can push down infinitely on the tails of the first and third arguments of
the goal, which are lists. This type of infinite search tree is shown as figure 3.4.

3.1.1 Negation as Failure

The way negation is used in logic programming is called negation as failure. The
symbol not is applied to goals. In the search tree for G, if all solutions for a goal
G fail in the search without any infinite search trees, then the goal not G succeeds.
Conversely, if one instance of GG succeeds, then not G fails. The substitution used
to solve the goal not GG extends the current substitution and is scoped to G. The
classic work on the semantics of negation as failure is Clark (1978).

Definition 3.9 (Finite Failure) A goal G finitely fails with respect to a program
P if every branch of an SLD search tree having G as its root terminates in failure.
Otherwise, not G finitely fails if G succeeds. (Kowalski 1992)

Prolog II (Colmerauer 1982) and MU-Prolog (Naish 1985) are instances of
logic programming. Prolog is an implementation of logic programming in which



3.2. CONSTRAINT LOGIC PROGRAMMING 51

an order is used to control search of both clauses in the program and goals in
the body of a clause. In Prolog II, the domain of Prolog is extended to infinite
trees and unification is achieved by solving systems of equations and inequations.
Inequations allow a not equals operator to be used on variables, in order to declare
that two variables are not unifiable. These inequations will become important in
a linguistic context, as the constraints of the binding theory are discussed. In
Prolog II and MU-Prolog, strategies for control, including wait declarations, are
introduced. These provide the ability to delay the evaluation of a call to a goal until
one or more argument variables of the goal are bound. We show delay constraints
in more detail in the following section.

3.2 Constraint Logic Programming

In particular, the Constraint Logic Programming (CLP) paradigm of Jaffar &
Lassez (1987) is relevant for the current work. In this model of logic program-
ming, the operational step in execution is based upon SLD resolution plus deter-
mining the solvability of constraints. Jaffar & Lassez characterized systems such
as CLP(R) (Prolog with real numbers) (Jaffar & Michaylov 1987) and Prolog III
(Colmerauer 1990). Hohfeld & Smolka (1988) generalized the CLP framework
for arbitrary constraint languages, so that a constraint could be represented in a
domain specific fashion. This meant that constraints were not limited to the syn-
tax of first-order logic. Hohfeld & Smolka established their work for the domain
of Knowledge Representation, which includes the feature logics used to express
linguistic theories such as HPSG.

Definition 3.10 (Atomic Constraint) An atomic constraint of the form

p(t1,ta, - - ., ty) is a relation symbol over terms. A relation symbol p is a name with
a lower case letter or a arithmetic relation symbol such as <,>,=. A constraint
has a value of true, false or unknown, relative to an assignment of values for
variables in p. A relation that is not an arithmetic relation is defined elsewhere.

Examples of an atomic constraints are nonvar(X), X < 2, and X = Y.
These constraints narrow down the search space for a solution by restricting the
set of values a variable could take. This might include, for example, a constraint
on whether the variable has been instantiated. e.g. nonvar(X) is true when X is
instantiated.
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Definition 3.11 (Constraint) A constraint ¢ for CLP is a conjunction of atomic
constraints. ¢ is true if every atomic constraint is ¢ is true and is false if any
atomic constraint in ¢ is false, and is unknown otherwise.

Definition 3.12 (Satisfiability) A constraint ¢ over a list of terms t1,1s, ..., 1, is
satisfiable if there is an assignment 0 of values for variables in t1,1s,...,1t, such
that ¢ is true. A constraint ¢ is unsatisfiable if there is no assignment of values
for variables such that ¢ is true.

Definition 3.13 (CLP Goal) A CLP goal is defined as ¢ N By N By A ...\ By,
n > 0, for ¢ a constraint. By, Bo, . .., B, are goals.

Definition 3.14 (CLP Clause) CLP clauses are of the form A < (¢ A By A By A
...\ By) where ¢ is a constraint and A, By, Bs, . . ., By, are goals. A substitution
0 of values for variables that satisfies ¢ must also satisfy By A Bo A ...\ By,

Resolution for CLP is similar to standard SLD resolution, except that the solv-
ability of the constraints that have accumulated is checked at each new goal. At
any time that the constraints are not satisfiable, then the resolution fails. Refer to
figure 3.5. It is possible to complete a derivation without being able to verify that
the accumulated constraints, called the constraint store, are satisfiable.

3.2.1 Guarded Rules in CLP

A CLP clause can be used a means of controlling the evaluation of a CLP program.
Beginning with IC-Prolog, Prolog II or MU-Prolog, simple delay primitives have
been available to the programmer to delay the evaluation of a particular goal until
constraints are satisfied. The constraint language for delays is made up of relations
which are primitives of comparison between two terms, such as equality, inequal-
ity, and less than or greater than comparisons. Prolog also allows delaying on the
instantiation and grounding of terms. This is very useful when processing under-
specified terms, which are used in natural language, as we shall see in chapter 6.
The idea of guarding a rule is really no different than establishing preconditions
for its completion, an idea that dates in Computational Linguistics at least to the
Augmented Transition Networks (ATNs) of the 1970’s (Woods 1970). In the case
of preconditions, there is not explicit delaying, but implicit rule ordering, such
that one rule is able to “feed” another. With guarding, rules enter a state of supen-
sion if the rule matches but the constraints cannot be satisfied. This means that the
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Input: A logic program P
A goal G
A constraint store C

Output: Gl and C, if C' # false,
or failure if failure has occurred or C' = false.
If C = true, then G# is an answer for G.

Algorithm:
Initialize the resolvent to be G, the input goal.
Initialize the constraint store C to be empty.

While the resolvent is not empty do
Choose a goal A from the resolvent
and a (renamed) clause A’ < ¢, By, By, ..., B,,n > 0, from P
such that A, A’ and ¢ unify with MGU @
(Exit if no such goal and clause exist).

Add ¢ to C. Continue if C is not false, and exit otherwise.
Remove A from and add By,Bs,. . ., and B,, to the resolvent.

Apply 6 to the resolvent, to G, and to C.

Figure 3.5: SLD Resolution with Constraints. The derivation fails if the con-
straints in the constraint store are not satisfiable, and succeeds otherwise. If the
constraint store is true, then an answer has been found. Otherwise, the derivation
has completed without an answer.
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rule is out of consideration until its guard is satisfied during the course of another
search path.

Delaying the evalutaion of a constraint ¢ is also known as guarding a con-
straint, and ¢ is a guarded constraint. The when predicate shown in example 66
is an example of a delaing predicate from SICStus Prolog (SICStus 1995). We
will wait to evaluate a constraint in a clause from a CLP program until we have
“enough information.”

(66) when (+Condition, Goal)

The predicate when blocks Goal until Condition is true, where Condi-—
t ionisaProlog goal with restricted syntax. Conditionis restricted in SICStus
Prolog to nonvar (X), ground (X),or ?= (X, Y).

Definition 3.15 (Delay Constraint) A delay constraint is a constraint used to de-
lay the evaluation of a goal. The set of delay constraints is a subset of the set of
constraints in the language.

Definition 3.16 (Guard) A guard is a conjunction or disjunction of delay con-
straints.

Lists are often used in feature structure grammars. Guarding can be attached
to list append in order to assure termination. We recall the program for appending
two lists together in example 65. We have seen that a depth-first search will not
terminate if either the first or third arguments of append are variable, because the
search will continue to push down on the recursive call in the second clause, given
that each of these lists has a variable tail. A guarded version of append ensures
that either of these two lists has been instantiated before the clause is selected. A
guarded version of append using SICStus Prolog appears as in example 67. The
semicolon is used for disjunction of constraints.

(67) append ([ 1,Xs,Xs).

append ([X|Xs],¥Ys, [X|Zs]) <--
when ( (nonvar (Xs) ;nonvar (Zs) ), append(Xs,Ys,Zs)).

Definition 3.17 (Guarded Rule) A guarded rule has the syntax
Gd|A < ( ANBy AN By A ... N\ By,) where Gd is a guard, ¢ is a constraint and
A, By, Bs, ..., B, are goals.

Using the syntax in definition 3.17 the rule in example 67 looks as in 68.
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program P:

append ([],X,X) .

append ([X|Xs],Y¥Y¥s, [X]Zs]) <—— when ((nonvar (Xs);nonvar (Zs)),
append (Xs,Ys, Zs)) .

goal G = append(Q1, [c, d], Q2)

1

append([X|Xs1], [, d], [X|VsT){Q1 = [X|Xs1],Q2 = [X|V's1]}

!

(nonvar (X sl); nonvar(Ysl))|append(X s1, [c,d], Ys1) This goal is suspended
since Xs1 and Ys1 are variable.

goal G = append(Q1, [c, d], Q2)
1
append([], [¢,d], [c,d]]) {Q1 =[], X =[c,d],Q2 = X}

Figure 3.6: Search tree with a suspended goal. The infinite search path is avoided
by putting a guard on the goal which could trigger it.

(68) nonvar (Xs);nonvar (Zs) | append([X|Xs],Ys, [X|Zs]) <--
append (Xs, Ys, Zs)

The guard Gd is nonvar (Xs) ;nonvar (Zs) which says that the list ar-
gument Xs or the list argument Zs must be non-variable (instantiated) before
the CLP goal append ([X|Xs],Ys, [X|Zs]) <-— append(Xs,Ys,Zs)
is solved for. The constraint ¢ is understood to be either ¢rue or the same as Gd.
We can now solve the problem append(Xs, [c,d],Y s) from figure 3.4 without
going into an infinite search path, as shown in figure 3.6.

3.2.2 Resolution with Guarded Rules

Resolution with CLP clauses can be represented as a state space search. We have
as a state a pair (G;, C;) where G is a CLP goal and C' is a set of constraints in the
constraint store.

(69) <Go, CO) — <G1, Cl> A SR <Gn, Cn)

Definition 3.18 (Derivation Step for CLP search) A search state for CLP is a
pair (G;, C;) where G is a CLP goal and C'is a set of constraints in the constraint
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store. A derivation step (G, C;) — (Giy1,Ciy1) for the search is defined as
Jfollows:

1. Let G be ¢, By, By, ..., By,. Then Ciy1 is C; plus ¢. If Ciy is false, then
G, is the empty goal and the state is a fail state. Otherwise, G;.1 is By, Bo, ..., By,.

2. Let G; be B, B,,...,B,. Then Gi—l—l isBi1,By ..., B;_1, Bi+1, ceey BnplI/tS
a rewriting for B; such that B; is the head of a CLP clause and the rewriting is
the right hand side of that clause. The clause is rewritten using a substitution 0 of
values for variables. C; 1 is C;(6).

Definition 3.19 (Success and Failure States for CLP search) A success state is
(G, C) where G is the empty goal and C#false. A fail state is (G, C) where G is
the empty goal and C=false. If G is a goal, then an answer for G is a derivation
for the state (G, true). (Marriott & Stuckey 1998)

Definition 3.20 (Suspension) A suspended state ((Gd, G),C) is a guarded goal
G plus a constraint C, such that the guard Gd is not satisfied by the constraints
in C plus a substitution 0 of values for the variables in G and C.

Search with guarded rules proceeds much the same as regular CLP search.
The difference is that if a goal is suspended, search cannot continue from this
point. Search must proceed with a goal that is not suspended. A suspended goal
does not necessarily halt the search; it simply removes that goal from immediate
consideration. Search continues with goals whose guards can be satisfied. If
another goal enables the guard on the suspended goal to be satisfied, search can
resume by selecting the suspended goal next. Some systems automatically return
to the suspended goal as soon as a variable substitution 6 triggers it, even before it
has been determined whether the goal which triggered the unsuspension succeeds
with the same substitution.

Definition 3.21 (Qualified Answer) A derivation

(Go,Co) — (G1,C1) —> ... —> .. .Gy, Cy) is successful if C, # false and
either (G, Cy) is suspended or G, is the empty goal. If G, is suspended then
(Gp, Cy) is a qualified answer to the goal (G, Cy).

(70) program P:
ne (X,Y) <—— not (X=Y).
when ( (ground (X) ,ground (Y)), ne(X,Y)).
goal G: X=2,ne(X,Y)
Go: (ne(X,Y), X = 2). (Marriott & Stuckey 1998: chapter 9)
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There are no transitions available from the state GG in example 70 because Y is
not ground. Therefore, (ne(X,Y’), X = 2) is a final state. Since G is not empty
then (ne(X,Y), X = 2) is a qualified answer to the goal G.

In order to prefer suspended goals over goals that have not been suspended,
we can add a third element to the state space, in order to keep track of which
goals are suspended and which are not. The new variable S stands for a list of
suspended goals. The procedure is shown in figure 3.7. It is this algorithm that
we will adapt for feature structures in chapter 5. Goals are moved to the list S as
they are found to be suspended, and their reduction is put back on G when they
are unsuspended. The algorithm is simplified in that it does not handle the case of
automatically triggering suspensions by linking them together.

3.2.3 An Example from NLP

van Noord & Bouma (1994) introduce the technique of using Prolog delaying in
a linguistic context, to handle adverbial adjunction to verb clusters in Dutch. In
their analysis, an adjunct adjoins to a verb phrase to create a new verb phrase
with an additional element on the complements list. The linguistic phenomenon
in support of the analysis is that, in Dutch subordinate clauses, the arguments of
a main verb as well as adverbials can be realized to the left of an intervening
auxiliary verb, such as a modal verb.

(71) a. dat Arie Bob cadeautjes wil  geven
that Arie Bob presents ~ wants to-give
that Arie wants to give presents to Bob

b. dat Arie Bob zou moeten kunnen willen kussen
that Arie Bob should must can want to-kiss
that Arie should be able to want to kiss Bob

c. dat Arie Bob vandaag wil  kussen
that Arie Bob today  wants to-kiss
that Arie wants to kiss Bob today (van Noord & Bouma 1994: examples
5,7,11)

Applying the technique shown in our example 67, van Noord & Bouma delay
the concatenation of verb arguments if the tail of the verb’s subcategorization list
is variable. Recall that verb arguments may be underspecified if they have been
raised by an auxiliary, as occurs in several linguistic analyses including Hinrichs
& Nakazawa (1989). Refer to chapter 2, section 2.1.
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A search state for guarded CLP is a triple (G, S,C) where G and S are CLP
goals and C' is the constraint store. Transition from a state (G;, S;, C;) —
(Giy1, Siy1, Ciy1) is defined as follows:

1. Let CLP goal S; be By, By, ..., B,.
B; is the head of a CLP clause with guard Gd.

o If Gd = true then Si-l—l is Bl, Bg ey Bi—l; Bi+1, ceey Bn
G118 G; plus a rewriting for B;, such that the rewriting is the right
hand side of the clause headed by B;. The clause is rewritten using a
substitution # of values for variables.
Ci+1 is Cz (9)

o If Gd = false, then S;;; = S; minus B;. G, is the empty goal and
Citq 1s false.

e If (Gd is unknown, then there is no transition from this state.

2. Let CLP goal G; be ¢, By, By, ..., B,. Then C;;, is C; plus ¢. If C;14 is
false, then ;1 is the empty goal and the state is a fail state. Otherwise,
Gi—l—l is Bl, BQ, ceey Bn and S’H—l = SZ

3. Let CLP goal GG; be By, Bo, ..., B,.
B; is the head of a CLP clause with guard Gd.

o If Gd = truethen G4, is B1, By ..., B; 1, Bi.1,. .., B, plus a rewrit-
ing for B; such that the rewriting is the right hand side of the clause
headed by B;. The clause is rewritten using a substitution # of values
for variables. C;1 is C;(6), and S is S;.

o If Gd = unknown, then B; is suspended. G;;1 is G; minus B;. S;11 =
S; plus B;.

Ciy1=Ci.
e If Gd = false, then G, is the empty goal and C);; is false.

Figure 3.7: Search with Guarded Rules. This search prefers the unsuspension
of suspended goals over the execution of goals which have not been suspended.
Search proceeds as follows: For S the set of suspended goals not empty, choose a
goal from S, until all goals have been tried. Then choose a goal from G. Repeat
until all states are fail states or there are no more goals in G.
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Figure 3.8: A lexical rule that adds an adjunct to the subcategorization list of a
verb. The input to the rule is a verb template which is used to parse the phrase
Arie Bob wil kussen, while the output is used for Arie Bob vandaag wil kussen. In
both cases, [1]is the object Bob and [2]is the subject Arie. Separate rules order the
elements of the phrase. (van Noord & Bouma 1994).

Delays are applied to the Prolog relation add_adj (for “add adjuncts”). The
code is shown in 72, while the accompanying HPSG lexical rule is in figure 3.8.
In the two-place predicate in 72, the first argument is the feature structure for the
verb sign, and the second argument is the feature structure for the adverbial sign.
In the four-place predicate, the first two arguments are the subcategorization lists
of the verb and adverbial, and the third and fourth arguments are the semantics of
the same. We are looking in particular at the subcategorization lists in the first and
second places of the four-place predicate.

sign sign
| SUBCAT:A | | SUBCAT:J .
(72) add_adj( SEM: B | sEM:K ) < add_adj(A,J,B,K).

SUBJ:Subj SUBI:Subj
add_adj((),(),A,A).
add_adj({C—D),(C—E),A,B) < add_adj(D,E,A,B).
adverbial

mod
MOD: | ARG:B

VAL:E
(van Noord & Bouma 1994: Figure 8)

add_adj(A,( —D),B,C) + add_adj(A,D,E,C)

For the four-place predicate, delaying is achieved by using the Prolog block
declaration.

(73) :—= block add_adj(?,_,??)
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This declaration says that the add_adj goal is blocked if the second argument is
variable. This prevents an infinite chain of pushing adjuncts onto an verb subcat-
egorization list with a variable tail. This is semantically equivalent to using the
when predicate introduced in section 3.2.1:

(74) when (nonvar (D) ,add_adj (A,D,E,C)) .

Other linguistic phenomena are handled similarly, including the addition of
adjuncts to the subcategorization list of a verb and long distance dependencies.
The context of the delaying operation is lexical rules. This implementation does
not precompile lexical rules but rather handles lexical rules as complex constraints
on lexical categories. The delay statements are fulfilled during parsing as subcat-
egorized elements are realized. We will show a way to handle delay statements in
the context of compilation of lexical entries before parsing.

3.3 Other Techniques for Constraint Solving

3.3.1 Constraint Satisfaction and Propagation

Constraint satisfaction is an entire area of concentration in Artificial Intelligence
that focuses on obtaining a result given an initial set of constraints. Planning
and scheduling problems are often solved by constraint satisfaction. An initial
set of independent constraints is known and yet the output, such as an effective
plan or an optimized schedule, is difficult to obtain.! Constraint propagation is a
technique used within the scope of constraint satisfaction for sharing information
among constraints and quickly eliminating unsatisfiable hypotheses for variable
assignment, often by focussing on a small subset of the problem.

Constraint propagation is used in CLP when there many constraints in the
constraint store. Constraint propagation can not only rule out bad hypotheses,
but also reduce the search space by making the arguments of calls to goals more
specific. It can be used as an alternative to co-routining (delaying those predicates
which are not specific enough) or in conjunction with it. Meurers & Minnen
(1995) describe compilation of lexical rules into definite clause predicates. They
write

... one is forced to execute the call to [the predicate] directly when the
lexical entry is used during processing, independent of the processing

'Koller & Niehren (2000) point out that these problems are notoriously combinatoric, and
typically NP-hard.
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strategy used. Otherwise, there is no information available to restrict
the search space of a generation or parsing process.

The authors write that they would prefer to perform lexical expansion “on the
fly’, or sometime after lexical lookup. They add the technique of off-line con-
straint propagation (Meurers & Minnen 1996). Their methodology is to use auto-
matic methods to identify those places in the theory where linguistically motivated
underspecification would lead to inefficient processing, and then apply constraint
propagation at those places, which results in more specific arguments. The authors
point out that even delayed goals can be used in the propagation step.

3.3.2 Concurrent Constraint Programming

Concurrency allows more than one process to run simultaneously. In Concurrent
Constraint Programming (Saraswat 1993) user-defined constraints are viewed as
processes, and a state is regarded as a network of processes linked through shared
variables via the constraint store. The constraint store contains all known infor-
mation about variables and their values. Processes communicate by adding con-
straints to the store and synchronize by waiting for the store to enable a delay
condition (Marriott & Stuckey 1998).

Oz (Smolka 1995) is a programming language with concurrency. Oz handles
constraints and AVMs (attribute value matrices) as terms, which are unifiable via
term unification.” The term AVM is used for the familiar feature-value pair no-
tation, and is independent of a particular theory of feature structures. The condi-
tional has blocking: a statement is true, false or suspended based on the constraint
store. An OR statement blocks until only a single clause is left. The different dis-
junctions are solved in parallel. Constraint propagation and distribution are both
used in Oz. Distribution is making a non-deterministic choice once the partial
information about a variable assignment can no longer be improved. Oz has been
used for expressing linear precedence constraints in German, which are parsed us-
ing dependency grammars (Hudson 1990, Duchier 1999). A good survey paper on
constraint programming in Computational Linguistics, which includes concurrent
constraint programming, is Koller & Niehren (2000).

2In Oz terminology, the terms are called predicates, but “predicates are values and thus can be
assigned to variables.”(Duchier ef al. 1998)
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3.3.3 Memoizing

An alternative to using delay constraints in parsing is to use the technique of mem-
oizing. Chart parsers (Earley 1970) are memoizing parsers because active edges
are available in the chart. Standard memoizing techniques are associated with
variable copying because of the many attempts that are made to form new edges
from existing edges. If an attempt eventually fails, the original edge must remain
intact, hence the need for copying. In a memoizing implementation of CLP, a con-
straint is carried along dynamically, or stored without a need to recompute, during
processing, until a point at which it can be effectively resolved. Johnson & Dorre’s
(1995) work of the mid-1990s combines the coroutining (delaying) facilities of
Prolog with memoization. Johnson and Dorre formalize their approach within the
outline of CLP given in Hohfeld & Smolka (1988). They suggest how their work
might be used in chart parsing. Constraints can be propagated along with variable
bindings. Because a goal consists of both relations and constraints, both can then
associated with edges in the chart. By propagating constraints at the point of ap-
plying the fundamental rule (combining rule), the amount of variable copying is
reduced, because certain combinations are ruled out. Johnson & Dorre’s work is
in the framework of constraint-based Categorial Grammar (Bouma & van Noord
1994).

3.4 Summary

This chapter provides a thorough introduction to the main ideas of Logic Pro-
gramming and Constraint Logic Programming. The concepts of SLD resolution,
satisfaction, negation as failure, and guarding have been defined. We look at fea-
ture structures in more detail in chapter 4, and then can apply the ideas of this
chapter to feature structures in chapter 5. Related work discussed above includes
constraint satisfaction, concurrency, and memoization.



Chapter 4

Feature Structures and Grammar
Processing

This chapter introduces feature structures. After reviewing feature structures in
linguistic theory, I introduce a notation for describing them (Carpenter 1992). I
then review computational systems that process feature based grammars. These
are in the family of Constraint Logic Programming (CLP) languages, which have
been introduced in chapter 3. I note where delay techniques, which are part of
CLP, have been incorporated into these systems. This thesis fits into the body of
work in this chapter in two ways. First, it extends the feature structure description
language by generalizing the language for delay statements to feature structure de-
scriptions. Second, it describes an implementation which is a logic programming
system in general, and in particular, an extension of the ALE system (Carpenter
& Penn 1994) with delays.

4.1 Introduction

A number of feature-based grammar formalisms have been used for computa-
tion, including Functional Unification Grammar (FUG) (Kay 1979; Kay 1983;
Kay 1985), PATR-II (Shieber et al. 1983), Lexical-Functional Grammar (LFG)
(Bresnan 1982b), Generalized Phrase Structure Grammar (GPSG) (Gazdar et al.
1985), and Head-Driven Phrase Structure Grammar (HPSG) (Pollard & Sag 1987;
Pollard & Sag 1994). The combining operation for these grammars is unification,
which is a method of uniting two terms, or in this case, two feature structures (refer
to definition 3.7). Shieber (1986) provides a good overview of the first formalisms

63
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for feature based grammars. Shieber divides these into two categories, the tool
type (e.g. PATR-II, FUG, DCG (Definite Clause Grammars) (Pereira & Warren
1980)) and the theory type (e.g. LFG, GPSG). He reviews the fact that tools for
computation generally possess general mechanisms for expression, while theories
incorporate “very specific” mechanisms related to a particular type of linguistic
analysis. It is this distinction that we will address. We will explore what type of
tool or tools are appropriate for implementing modern feature based grammars.
An overview of the theory we will use is in section 4.2. We extend this theory in
chapter 5. A review of the tools that have been developed for processing feature
structures, using logic programming, is in section 4.3. We will be extending one
of these, the ALE system (Carpenter & Penn 1994), in chapter 6.

4.2 Formalization of Feature Structures

Carpenter (1992) provides a theory for the specification and implementation of
typed feature structures. Carpenter employs a general attribute-value logic, fol-
lowing Rounds and Kasper (Kasper & Rounds 1986; Kasper & Rounds 1990), in
order that his work may be applied to the domains of phrase structure grammars,
definite clause programs, and general constraint resolution systems. Feature struc-
tures in Carpenter’s sense can be represented by directed, finite, labeled attribute-
value graphs. Each node in a feature structure has a type, and a type is appropriate
for a feature structure relative to a type signature, also called a type inheritance
hierarchy.

Definition 4.1 (Type Inheritance Hierarchy) An inheritance hierarchy is a fi-
nite bounded complete partial order (Type, C) (Carpenter 1992: Definition 2.1)

We assume a finite set Type of types, ordered according to their specificity. A
type 7 is said to inherit information from another type o if 7 is more specific than
o. This is written as ¢ C 7. If 0 C 7, then o is a supertype of T, or inversely, 7 is
a subtype of 0.

A sample hierarchy for types of semantic objects in HPSG is shown in fig-
ure 4.1. In this figure, semantic objects can be of three subtypes: nominal objects,
parameterized states of affairs, or psoas, or quantifiers. Psoas are associated with
relations. We focus on the hierarchy of nominal objects and have left some details
out of the other two branches of the picture. We will make use of the nominal
hierarchy later on when we study the binding theory in chapter 6. At the type
nom_obj, two features are introduced, and are inherited by all subtypes. The
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recp refl
\/
ana ppro
\/
npro pron
nom_obj
INDEX:ind

RESTR: set_psoa

sem_obj

Figure 4.1: A type hierarchy for the types of nominals.

first is an INDEX, which is similar to the lettered subscripts used for reference in
theoretical linguistics e.g. John; saw himself;. The second is a set of semantic
restrictions or RESTR on the noun, such as qualifying information. Nominal ob-
jects can be pronouns (pron) or non-pronouns (npro). Pronouns can be anaphors
(ana) or personal pronouns (ppro), and anaphors are reciprocal (recp) or reflexive
(refl).

The interesting thing for us about feature structures is that they may provide
only partial information about types and features. The case of partial information
is a result of the fact that the function J, which computes the value of a path at a
node, is a partial function (example 4.2). Partial information also results because
there is underspecification of types and structure sharing. Viewed as a state of a
process, a set of feature structures represents what is known about an object during
each step of computation.

Definition 4.2 (Feature Structure) For this definition we assume a finite set Feat
of features and a type inheritance hierarchy (Type, C).
A feature structure over Type and Feat is a tuple F' = (Q,q, 0, 0) where:

e (): afinite set of nodes rooted at §
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it theyf masc fem neut sing plur first second third
index GEN:gender gender number person

NUM:number
PERS:person

\

L

Figure 4.2: Hierarchy of types which are required to construct a nominal index.
The sign L or bottom is the most general or universal type.

e G € QQ: the root node
e 0:(@Q — Type: a total node typing function
e () : Feat x () — Q- a partial feature value function

Let { denote the collection of feature structures. (Carpenter 1992: Definition 3.1)

In the framework we have adopted, a description is a shorthand notation for
a feature structure. We follow Carpenter (1992), after Kasper & Rounds (1986)
in that a non-disjunctive description picks out a feature structure. That there is a
most general feature structure structure that satisfies the description is a theorem
which we will introduce in this section. Because of the morphism between de-
scriptions and feature structures, descriptions and feature structures can be used
interchangeably relative to a type signature. The description in 75 is relative to
the type hierarchy in figure 4.2. A feature structure that is a most general satisfier
for 75, i.e. a feature structure picked out by 75, is shown in 76:

(75) NUM:sing A PERS:third

index
NUM:sing
PERS:third
GEN:gender

(76)

The features NUM, PERS and GEN are appropriate in a hierarchy of HPSG types
for the type index, which is the type for a bundle of referential or index features
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for nominal objects. With regards to this hierarchy, we can infer that the feature
structure in 75 must be of type index. This is true even though the type is not
explicitly mentioned in the description, because the features in the structure are
appropriate for that type. Furthermore, the type index has subtypes appropriate to
nouns or expletive pronouns. We do not know whether this bundle of features is
for a noun or a pronoun, so the subtype is not resolved further by the description
itself. Another way of saying this is that the type is underspecified. A last point
to make is that, since the feature GEN is appropriate for the type index, it is part
of the feature structure in 76, even though this feature is not given a value in the
description in 75. This is in accordance with version of typing called strong typing
which says that every feature that is appropriate for a type must be present. The
gender is left unresolved to any of the sub-types.
We define descriptions:

Definition 4.3 (Description) The set of descriptions over the collection Type of
types, Feat of features and Var of variables is the least set Desc satisfying these
conditions:

e 0 € Descifo € Type

e 1€ Desc

e r € Descifz € Var

e 7:¢ € Descifn € Path, ¢ € Desc
e 1 =Ty € Desc if my, m € Path

o N, ¢V 1Y € Descif ¢, € Desc

(Carpenter 1992: Definition 4.1)

Subsumption and satisfaction are important notions not only for talking about
feature structures in general, but also for explaining delays on feature structures.
Subsumption is an ordering on feature structures. If a feature structure contains
at least as much information as another, then the more general feature structure
is said to subsume the more specific. For the definition of subsumption in 4.4 we
assume that we are dealing with feature structures defined over a fixed inheritance
hierarchy (Type, C).

Definition 4.4 (Subsumption) F' = (Q, G, 0,0) subsumes F' = (Q',7,0',d") if
and only if there is a total function h : Q — @', called a morphism such that:
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o hq) =¢
(q) C &' (h(q)) for every q € Q

6
e h(6(f,q)) = §(f, h(q)) for every q € Q and feature f such that §(f,q) is
defined

(Carpenter 1992: Definition 3.4)

We can order the feature structure in example 76 in the subsumption relation
with other feature structures, using the type hierachy for index features in fig-
ure 4.2. In 77a, the type masc of the gender feature GEN is more specific on the
right hand side of the relation than on the left hand side. In 77b the feature values
have not changed, but the subtype of index has been resolved to it.

[index i [index
NUM:sing NUM:sing
(77) a. PERS:third = PERS:third
| GEN:gender | | GEN:masc
[index i it
NUM:sing NUM:sing
b. PERS:third = PERS:third
| GEN:gender | | GEN:gender

An isomorphism is a mapping between two feature structures such that they
subsume each other. We will discuss isomorphism more formally in chapter 6,
where it is used in implementation. A feature structure F' will always be sub-
sumed by infinitely many other feature structures, but these may not be unique
with respect to isomorphism. The most general of all of these, that is, the one
with the least specific information, is the most general satisfier for F'. The feature
structure in (76) is the most general satisfier of the description in (75). Due to
the correspondence between feature structures and non-disjunctive descriptions,
satisfaction is actually defined as a relation between a feature structure and a de-
scription. We say that a description ¢ has a most general satisfier, where we
understand that ¢ may be “satisfied” or semantically implied by many features
structures.

Subsumption is a syntactic notion, and satisfaction is its semantic counterpart.
If a feature structure is satisfied, then all feature structures that it subsumes are
also satisfied. The formal definition of satisfaction is in 4.5. @ is a substitution
operating on a variable x.



4.3. LOGIC GRAMMAR SYSTEMS 69

Definition 4.5 (Satisfaction conditions for feature structures)
o FE!siff Type(F)CE o

FE 2z iff(x) = F

FE n:®iff F@r =7 @

FE'm =mif F@r = F@m,

FE (@0 ifFE ®and F E? ¥

e FEY (W) iff FE Dor FEX U

(Carpenter 1992: Definition 4.2)

Theorem 4.6 (Non-Disjunctive Most General Satisfier) There is a partial func-
tion MGSat : NonDisjDesc — F such that:

F = ¢ (read “F satisfies ¢”) if and only if MGSat(¢) T F (Carpenter
1992: Theorem 4.5)

Theorem 4.6 says that, for each description ®,,, there is a feature structure F;,
such that F; is the most general satisfier of ®,. Given 6, a substitution of values for
variables in the feature structure F', then Fy =’ ®; and F; Y ®;. The function
MG Sats returns a set of possible satifiers, in case the description is disjunctive.
This means finding a satisfier for at least one of the description’s disjuncts.

Theorem 4.7 (Disjunctive Most General Satisfier) There is a total function MGSats
mapping descriptions to sets of pairwise incomparable feature structures such
that F' |= ¢ if and only if F T F' for some F € MGSats(¢). (Carpenter
1992: Theorem 4.7)

4.3 Logic Grammar Systems

In this section we move from the language used to describe feature structures to
systems that have been built to interpret them (Shieber’s “tools™). I start with
early systems for feature structure processing, including FUG (Kay 1983; Kay
1985), PATR-II (Shieber et al. 1983), and LOGIN (Ait-Kaci & Nasr 1986). I then
move on to more recent systems for feature structure processing, including the
work of Dorre & Dorna (1993), Erbach et al. (1995), Carpenter & Penn (1994),
Elhadad et al. (1997), Gotz et al. (1997), and Doérre & Manandhar (1997). These
systems are frameworks for resolving constraints on feature structures. These
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have included delay functions, in order for the grammar writer to impose some
control on specific feature values. The goal of this thesis is to allow more freedom
with respect to the placement of constraints in the grammar, and to remove infinite
resolution chains in particular. I also note the LinGO system (Copestake et al.
1999; Copestake & Flickinger 2000) because this system is among the largest
and most widely used system for processing HPSG grammars, although this is
not a delaying system. However, none of the applications of the logic grammar
systems discussed here is truly large-scale. The main and crucial difference is
the motivation for the systems. Using a theoretical, grammar-based approach,
one attempts to achieve complete and accurate grammatical coverage for part or
all of a theory of language. In contrast, a particular corpus usually motivates
commercial and statistical development systems, and leads to larger grammars
and lexicons.

4.3.1 Early Work

Constraint Logic Programming includes the Prolog family of programming lan-
guages. Colmerauer and colleagues (Colmerauer et al. 1973) developed these
languages for NLP, and definite clause grammars (DCGs) fall out of their definite
clause structure. One of the first systems making use of Prolog for NLP was the
CHAT-80 system (Pereira & Warren 1980).

Basic formalisms for feature structures appeared in the late 1970’s and early
1980’s. The Functional Unification Grammar (FUG) (Kay 1983; Kay 1985) and
the PATR-II system (Shieber et al. 1983) were both general systems for express-
ing feature structures, with unification as the combining operation. In PATR-II,
feature structures are expressed as directed acyclic graphs, or dags. In FUG, the
feature structure is called a functional structure, and the features are regarded as
functions. FUG allows re-entrancy (shared values), and extends the formalism by
adding features with special interpretations in their unificational behavior. Fea-
ture structures were also part of the linguistic theory of LFG (Kaplan & Bresnan
1982), which began during this same time period.

At the same time that tools for writing and manipulating feature structures
were becoming more sophisticated, a line of research in logic programming led
to the use of feature structures, and typed feature structures in particular, as terms
in a logic programming language. Ait-Kaci showed how to add a type inference
operation to a unification process (Ait-Kaci 1984). Ait-Kaci & Nasr’s (1986)
LOGIN language is an example of a definite clause language over typed feature
structure terms, with type consistency checking. Earlier knowledge representation
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systems such as KL-ONE (Brachman & Schmolze 1985) inspired Ait-Kaci, and
led the way for the implementation of typed linguistic theories such as HPSG.

The next set of systems, in use during the 1990’s and into the present, are
presented in alphabetical order by system name.

4.3.2 Advanced Linguistic Engineering Platform (ALEP)

Erbach et al. (1995) devised constraint solvers for grammar development as part
of the Advanced Linguistic Engineering Platform (ALEP). Their premise is that
while the formalisms used in computational linguistics can encode very high-level
constructs, grammar development environments have provided only basic fea-
tures. The authors have provided grammar developers with tools for manipulating
sets and managing constraints. Sets are used in computational linguistic theories
to express such things as the quantifier store and the SLASH set of extracted el-
ements. The ALEP project allows manipulation of sets by providing operations
on sets, such as set disjointness and set union. Prolog typically operates on lists.
The constraints in this project include an extension of the guarded constraints of
the LIFE system (Ait-Kaci & Podelski 1994), which like the Oz system (Smolka
1995) include functional terms, or predicates. The ALEP tool set extends guards
to include guards on linear precedence constraints and guards on set constraints
(e.g. set membership). The extensions were implemented as Prolog modules and
may be used either standalone or integrated with existing grammar formalisms.
The work of Erbach et al. (1995) has been used in the implementation of German
word order.

4.3.3 Attribute Logic Engine (ALE)

The Attribute Logic Engine (Carpenter & Penn 1994) integrates phrase structure
parsing and constraint logic programming, using typed feature structures as terms.
The theory behind ALE is (Carpenter 1992). ALE allows type inheritance and ap-
propriateness specifications for features and values. ALE was designed to gener-
alize logic programming over PATR-II style feature structures in a Rounds-Kasper
logic (Kasper & Rounds 1990). It allows for the specification of HPSG grammars
with complete detail (Pollard & Sag 1987; Pollard & Sag 1994). The phrase struc-
ture component of ALE allows definite clause attachments to rules and includes
a lexical rule component. Grammars may interleave unification steps with logic
programming calls, allowing parsing to be interleaved with other system compo-
nents. Currently ALE allows for the evaluation of inequations. Penn’s (2000)
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extension to the system, called TRALE, includes delaying as implemented in the
Constraint Handling Rules, or CHR package of SICStus Prolog. Delays may be
done on inequation-free and function-free descriptions which are characterized as
Prolog terms. This differs from the ALE terms described in (Carpenter & Penn
1996), which are the basis for the implementation in this thesis. While theoreti-
cally elegant, there are drawbacks to his encoding related to efficiency. The term
encoding available for typed feature structures, which uses attributed variables,
does not have any notion of appropriateness. Also, direct encoding of delays us-
ing Prolog when is found to run much faster ( 60 times) than using the CHR
library for delays.

4.3.4 Categorial Grammar Frameworks

Ingria (1990) showed how unification is inadequate for a theory of coordination. It
is impossible for the feature specification of a conjunctive NP to be consistent with
both conjuncts, if they are inconsistent with each other (e.g. dative and accusative
NPs are inconsistent). In an account based on subsumption rather than unification,
the use of partial agreement feature specifications plays a different role than that
of being a shorthand for a fully specified feature structure. It indicates rather a
feature set from which the types of the conjuncts may be implied. Given a logical
interpretation, the feature set of the two conjuncts subsumes each of them. Follow-
ing Bayer & Johnson (1995), Dorre & Manandhar (1997) give rules for entailment
in the context of a Categorial Grammar style, constraint based feature grammar.
The authors use subsumption checking in the binding of their arguments. This is
motivated by linguistic data from coordination, and enables a Lambek style proof
theory. The logic they give for their simple feature based system includes rules
for delaying if neither entailment nor disentailment can be proven. In chapter 5
of this thesis I will also give rules for entailment, disentailment and delay in the
context of a full unification grammar.

4.3.5 Constraint Unification Formalism (CUF)

The CUF system of Dorre & Dorna (1993) is characterized by these authors as
being roughly a feature structure description language similar to Kasper/Rounds
logic (Kasper & Rounds 1990), combined with the possibility of stating definite
clauses over typed feature terms. A sort in CUF is feature term similar to a type,
but it can take variable arguments. Since a sort has definite clause attachments,
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it is used as a goal in resolution. Delay patterns are part of CUF. Delay patterns
have this format:

(78) delay(sort/arity, Delayed Parameters).

The delay parameters are integer indices into the parameters (arguments) of
the sort. If the value of the path f; : ... : f, at the 5" parameter is uninstantiated,
then evaluation of the sort is delayed. If the list of delay specifications has more
than one element, e.g., for different parameters or different paths of one para-
menter, the statements mean a conjunction of the delay conditions. Disjunction of
delay conditions is expressed using more than one delay pattern for the same sort.

An example of delayed append is in 79.

(79) The sort append/ 2 is defined as:

append(list,lkist) —-> list.
append ([], L) := L.
append ([F|R], L) := [Flappend(R,L)].

and the corresponding delay pattern is:
delay (append/2, [0,1])

which indicates that either the first parameter or the result (numbered 0) must
be instantiated. (Dorre & Dorna 1993: examples 11 and 13)

SLD resolution in the context of CLP (resolution plus constraint satisfaction)
is the proof strategy used in CUF. As the authors note,

...SLD-resolution describes only the general scheme of the proof.
The actual strategy for goal selection, i.e. the computation rule, has a
dramatic influence on the size of the search space that has to be con-
sidered. It is this computation rule that is refined by the addition of
delay statements. As a general strategy the computation rule employed
in the CUF system always selects deterministic goals, if such goals
are present. A deterministic goal is a goal for which no choice point
needs to be introduced, i.e. for which only one clause has satisfiable
constraints. Only if no such goals are leftover the left-most nondeter-
ministic goal which is not delayed according to a delay statement will
be expanded. The search induced by the nondeterminism is performed
depth-first, using chronological backtracking. In the exceptional case
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where all goals are delayed, the first one of the goal list will be ex-
panded, optionally indicating this condition to the user. The user may
restrict the recursion using a depth bound. This guarantees termination,
but the proof procedure is no longer complete.(Dorre & Dorna 1993: p.
19)

Simple variable equality or inequality can be checked with variable unifica-
tion, as with Prolog when. CUF also delays implicitly in the solving of term
inequality constraints. We will show how this same strategy works for solving
inequations between feature structures.

4.3.6 ConTroll

ConTroll is a logic grammar system that allows for the solving of constraint based
grammars (Gotz et al. 1997; Gtz & Meurers 1997; Gotz & Meurers 1998). Con-
Troll and ALE are both based on a typed feature logic with appropriateness condi-
tions for the domains and ranges of features (for ConTroll cf King (1989)). Unlike
ALE, ConTroll allows for implicational descriptions . Implication such as ¢ —
is assumed to be the same as —¢ V (¢ A 1)). Thus, negation of features is compiled
out to disjunctive normal form in the sense that the description —¢ is assumed to
be 1y Vv V ... for every type which is not consistent with ¢. The drawback to
this approach is that it results in a system in which every possible disjunction of
“species” (King’s terminology for a partitioning of the objects in the domain) is
represented by a type. As Carpenter (1992) points out, this means that there are
2™ types derived from King’s construction if there are n species. In ConTroll this
has been given some tools to delay compilation to disjunctive normal form or to
“hide” it in an auxiliary relation. Gotz & Meurers indicate that a debugger is an
“indispensible” tool as grammars increase in size and the data structures become
highly complex.

Delay statements are used in ConTroll to partially determine the order in which
goals will be executed by the system. The delay/2 delay statement takes a re-
lation name as its first argument, and a delay pattern as its second. Delay patterns
are a a subset of feature terms with no negation, relation calls or list syntax. An
example is a delay on the argument of a relation

(80) delay (append,argl: (e_list ; ne_list))

The statement above says that the first argument must be more specific than
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the plain 1ist type, i.e., an instantiated list.! A second type of delay is applied
to constraints on a type:

(81) delay (phrase, subcat:1list)

This delays the principles on type phrase (also known as type constraints)
until the subcategorization information is known. Another form of delay statement
is delay.deterministic/1. It requires that a goal of a given relation only
be executed if at most one clause matches it. The user is also allowed to delay a
particular constraint by name.

A subsumption check determines when the delay pattern is “undelayed.” This
is the same check that is used on the antecedent of an implication by the Con-
straint Handler CHR which is part of SICStus Prolog (Friihwirth & Abdennadher
1997), i.e. the head of a rule is matched by a subsumption check (see also Penn
(2000)). Implicational principles in ConTroll are compiled out to an implication
with a type antecedent. The negation of the complex antecedent is added to the
consequent, which can result in highly disjunctive specifications. Gotz & Meur-
ers (1997) indicate that their delay strategy, which prefers deterministic goals, is
similar to the one in CUF, and which too is based on the Andorra Model (Haridi
& Janson 1990). The authors say that CUF does not include what they call “uni-
versal principles” such as the principles of the linguistic theory HPSG. ALE can
express these as definite relations; CUF allows for definite relations as well. The
authors may be referring to the fact that unlike CUF, they have a separate syntactic
construct for implicational constraints with complex antecedents.

4.3.7 Functional Unification Formalism (FUF)

The Functional Unification Formalism (FUF) (Elhadad & Robin 1992; Elhadad
et al. 1997) is a logic programming language with constraints, as an extended
version of FUGs (Kay 1979). The generator SURGE uses FUF in the context of
English generation.

A wait statement in FUF specifies that the decision corresponding to a dis-
junction depends on the value of certain features. The waiting is applied to the
value of a feature or set of features. An alt is a disjunction of possible unifiers
for a functional description (feature structure). In example 82, the alt TP depends
on the value of the feature P. If feature P is instantiated, then evaluate normally.

't is not clear that one can delay until the first or result argument is more specific than list.
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If P is not instantiated, the whole disjunction is delayed. It is put on hold, on an
agenda.

(82) (alt TP (:wait P) ...)

Periodically, the unifier checks the agenda to determine if one of the frozen alts
(alternatives in the disjunction) can be awakened. In FUF, this period is whenever
a new choice point is met, or, whenever a top level disjunction is entered. The
author notes that this needs further optimization. “l am experimenting with a
“granularity” control system, which controls how often the agenda of frozen dis-
junctions is checked. This is currently not implemented.” (footnote p. 137)

At the end of the unification stage, the determination stage checks if any de-
cision is still on the agenda. This situation is reached if not enough information
could be gathered to evaluate the frozen alts. Then evaluation is “forced,” even
though some of the requested information is missing. A unique agenda identi-
fier is assigned to each frozen alt. Standard control flow in FUF is top-down,
breadth-first, in a tree of constituents.

Floating constraints are semantic constraints on the outcome of generation
which are context-sensitive. That is, they may be realized at different places in
the syntactic grammar, depending upon the input constraints. An example of a
floating constraint is a manner adverbial. It can be realized as implicit in the verb
as in nipped or as a verb plus an adverb as in narrowly beat. The default is to use
an adverb. The code for this is shown as example 83. In this example, delay is
achieved through using the keyword :bk—-class, or backtracking class.

(83) (manner ((alt manner—adverbial (:bk-class manner)

( ;; Can be realized by other means —-- delay
(( manner-conveyed any))

;7 Map manner to an adverbial adjunct

;; and mark that manner has been realized

(({adverb} ((synt-cat adverb) (concept { ~ ~ concept})))
(manner-conveyed adverb))))))

-)

The feature manner—conveyed is used to record the syntactic category of
the constituent realizing the manner constraint. It remains nil as long as the
constraint is not conveyed elsewhere in the syntax. This alt waits to generate
manner as an adverbial as long as the manner-conveyed feature has some
value (specified by the keyword “any”). If all of the locations for manner realiza-
tion in the backtracking class (: bk—class) have been checked and there is still
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no value, then manner defaults to assignment via an adverbial adjunct. The BK-
CLASS mechanism is a way of restricting the points at which backtracking retries
a search, to keep it tractable.

4.3.8 Linguistic Grammars Online (LinGO) and the LKB sys-
tem

The Linguistic Grammars Online (LinGO) project at Stanford University includes
a broad-coverage implementation of English using HPSG (Copestake et al. 1999;
Copestake & Flickinger 2000). The LKB system on which the grammar runs
is designed for efficiency and scalability.> This system supporting an English
grammar of “over 15,000 lines of code” and a lexicon of about 5000 entries as
of 2000.> On measure of size of implementations, this may be the most suc-
cessful of the systems discussed in this section. This contrasts, however, with
e.g. the KANT lexicon for Caterpillar, Inc., based on the LFG formalism, with
some 70,000 lexical entries (Nyberg & Mitamura 1992; Kamprath et al. 1998).
Another comparison is the statistical parser of Collins (Collins 1996), which has
been trained on 40,000 sentences from a 1-million word corpus of the Wall Street
Journal, available through the Penn Treebank(Marcus et al. 1993).

An implementation of the binding theory using the LinGO formalism is avail-
able online with the LKB system (Copestake ef al. 1999). Much of the rules are
commented out. The grammar is part of an implementation of Sag & Wasow’s
(1999) syntax textbook. The comments indicate that is costly to implement the
argument realization constraint of Manning et al., which is one of the constraints
which motivates the work in this thesis, along with the binding constraints for-
mulated as the Anaphoric Agreement Priciple.* Assuming a tradeoff between
development cost or efficiency and theoretical accuracy, the quest is to bridge the
gap, and ask what constructs could be added to practical systems to allow them to

2LKB formerly stood for Lexical Knowledge Base, but is now known as the LKB system for
grammar development.

3Size of the grammar and lexicon are the standard measure of the scope of an implementation,
though admittedly, the constraints in a constraint based grammar may not resemble context free
rules. The number of entries in the lexicon generally is a measure of the breadth of corpora that
could be covered by a system, though again, a constraint or inheritance based lexicon may have
a smaller number of entries. The number of semantic concepts or lexical types would be the true
measure of lexicon size in this case.

“The Anaphoric Agreement Principle states that coindexed elements must share the same
agreement value.
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handle theoretically interesting problems as well. We will look at delaying in this
light.

4.4 Summary

The logic for feature structures has been introduced in this chapter. This includes
definitions both for feature structures and for feature structure descriptions, which
are a shorthand way of picking out a partial feature structure. Computational
systems for processing feature-based grammars have also been introduced. Past
and present systems for feature structure processing have included means for the
grammar writer to wait on specific feature values in order to delay evaluation.
These have provided a way for the grammar writer to have a hand in the control
of the evaluation process. They have generally been restricted to waiting on a
specific part of the feature structure, and may be limited to particular operations
(e.g. list append).

In the next chapter, I present a formal description of delaying for feature struc-
tures. This is a complete description which follows the paradigm of Jaffar &
Lassez (1987) and Hohfeld & Smolka (1988). The advantage of my approach
over other approaches is that a feature structure description may be used as a de-
lay term, which is both a compact and complete way to express a delay term. |
also allow negation in the descriptions by allowing inequations. These waits are
more general than waits on only types or feature values in that they employ the
full description language, including conjunction, disjunction and inequality with
other descriptions. Examples of the implementation follow in chapter 6.



Chapter 5

Guarded Constraints on Feature
Structures

We have looked at a number of linguistic analyses which pose a challenge for
constraint resolution. When arguments are shared, more than one head is provid-
ing the pieces of information required to process an argument during parsing or
generation. This requires us to adopt a strategy for constraint resolution that is
sensitive to the amount of information available at a given time. The paradigm of
Constraint Logic Programming (CLP) has guarding in place as a way to combine
constraint solving and goal resolution. In order to describe delaying for linguistic
problems in a feature based framework, we need to have a language for the rule set
and also for feature structure terms, which are the objects of the linguistic theory.
The guarded rules which are part of CLP have been introduced in chapter 3. We
have also introduced the logic of typed feat-ure structures in chapter 4. We have,
then, all the tools that we need to start using linguistic descriptions as the guards
on the evaluation of feature structure terms.

In this chapter I present two specific ways to describe guarding on feature
structures. One is by using guarded descriptions, which adds to the expressive
power of the description language, but does not affect the rule set. The other is
via guarded rules, as have been introduced in chapter 3. I provide the operational
semantics for guarded constraints on typed feature structures in the context of SLD
resolution. I also describe how to write negations such that they are an instance of
delaying. This will be important in linguistics when handling constraints which
are written as statements of negation, such as inequations, as we will see in more
detail in chapter 6.

In the work of Jaffar & Lassez (1987) and Hohfeld & Smolka (1988), the

79
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attribute-value description language defines terms over which definite relations
are solved, using a process of constraint resolution. It is possible to view Carpen-
ter’s (1992) feature structure description language as an instance of CLP in two
different ways. On the one hand, arbitrary descriptions provide the constraints on
feature structures, and feature structure unification is employed as the method of
constraint resolution. The eventual goal is to find a feature structures with sub-
structures that satisfy the constraints on their types. Or, one can employ a definite
clause resolution scheme in which the clauses can be mapped e.g. to a phrase
structure grammar. The mother and daughter nodes are feature structures, each
of which has a mapping to a clause. The two ways of applying CLP have been
combined in the ALE system (Carpenter & Penn 1994). We make use of the fact
that either methodology provides an opportunity for adding delay constraints.
Starting with the notion of satisfaction from chapter 4, we want to define a
constraint that can be used as a delay condition on the evaluation of a feature
structure. The delay term that we use will be a feature structure description. We
will ask whether the feature structure satisfies the description. Use of subsump-
tion and satisfaction is related both to equality (do two feature structures subsume
each other?) and to instantiation (do we have enough information to answer the
question?), which are the primitives used to build up user-defined constraints in
logic programming. It turns out that simple type checking (does a feature struc-
ture have a particular type?) is a particular instance of satisfaction. We return later
to the question of whether we need to know if two feature structures are identi-
cal. Gerald Penn (personal communication) has also suggested asking whether a
given feature structure is maximal, that is, fully instantiated. We would need an
additional function maximal (F) to include that check in our constraint set.

5.1 Guarded Descriptions

One way to guard feature structures is to expand the definition of descriptions
to include guarded descriptions. In this case it is descriptions, rather than rules,
that are guarded. Of the two approaches, this one may be the more appealing
representation of guarding on feature structures. First, it captures the fact that
satisfaction is the relevant constraint relation for guarding. Second, we are able
to use the regular algorithm for resolution, that is, an algorithm without guarded
rules. The context is an NLP parsing or generation process, where we are incre-
mentally building up feature structures that are answers to queries. Descriptions
are the arguments of definite clause rules, and are a shorthand for feature structure
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terms.
Definition 5.1 (Guarded Description) ¢ — ;v € Desc if 9,1, v € Desc

Definition 5.2 ( Satisfaction Conditions for Guarded Descriptions ) F = (¢ —
b;v) iff

o F = ¢and F = 1 (entailment) OR

o (VF')FUF' W ¢and F = v (disentailment)

Definition 5.2 says that in order for a feature structure F' to satisfy a guarded
description ¢ — ;v then either F' must satisfy both ¢ and ¥ (¢ A ¥) or F will
not satisfy ¢ and it will satisfy v.

We now look at a few examples of feature structures and the guarded descrip-
tions that they satisfy. We start with the verb are, which can be the second person,
present tense form of the verb be (You are in school). Or, it can be any plural form
(we are, you are, they are). The AVM notation for a partially completed lexical
entry for are is shown in figure 5.1. One way to express the possibilities for the
person and number of the subject is by using a guarded description. We put a
guard on the INDEX value of the subject. We say that the feature structure tagged
with [2]in figure 5.1 satisfies the description in example 84:

(84) [2] = NUMBER:plural — true ; PERSON:second

This says that if my number is plural, then my person value is consistent with any
value. Else, my person is second person.

Another example showing the satisfaction of a guarded description by a fea-
ture structure is the example of German determiners. The determiner der may be
the masculine nominative, the feminine dative or genitive, or the genitive plural.
An AVM for the German determiner is shown in figure 5.2. A noun is the value of
the SPEC feature for the determiner. This is the noun that the determiner specifies
for. The noun has a determiner as its specifier or SPR value (not shown). We guard
on the LOCAL value for the noun ([1] in figure 5.2), which includes the head fea-
tures and agreement features for the noun. These include the head feature CASE,
as well as the INDEX feature values. We say that if the case of the NP is nomina-
tive, then the noun must be masculine. Else, the noun is feminine or plural. The
guarded description is shown as 85.

(85) [1] = CAT:HEAD:CASE:nom — CONT:INDEX:GENDER:masculine ;
CONT:INDEX:(GENDER:feminine V NUMBER:plural)
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[ category
verb
HEAD: | VERBFORM :finite
AUXILIARY :+
[ synsem 7
[ local T
category
SUBJ:(1 CAT: noun
m LOCAL: HEAD: CASE:nom] )
_| nom-object
| CONT: INDEX 2] ] ]
[synsem 1
local
category
comPs:( LOCAL: _| propositional
CAT:| HEAD:| Loy ]
SUBJ:([1])

Figure 5.1: AVM notation for the syntactic category of the verb are. This is the
auxilary form of the verb to be that takes a predicative complement (I am happy,
you are in trouble). We will show how the person and number of the subject can
be filled in with a guarded description for the index value [2].

We now consider the most general satisfier for guarded descriptions. As in
chapter 4, we start with the non-disjunctive definition, and then move on to the
disjunctive definition M G Sats. In order to define the most general satisfier, we
introduce a notion counter to it, that is to say, the set of most general inconsistent
feature structures for a description ¢. This is the set of feature structures that can’t
be extended to satisfy ¢.

Definition 5.3 (Most General Inconsistent Feature Structure) Fora description
o, MGIncons(®) is the set of most general inconsistent feature structures.

MGIncons(¢) ={F | forall F',F C F' | F' = ¢}

We now consider the case where the description may be disjunctive, and so
we may have more than one most general satisfier for a description.
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word
PHON:(der)
[ synsem
[local
[ category |
[det 1
synsem
CAT: local
SYNSEM:| HEAD: | cppc: LocaLq) | car: category 1
) "| HEAD:noun
CONT[2] |
quant
CONT[3] DET:the
RESTIND 2]
set-quani
QSTORE: | ELT:[3]
ELTS:e_set

Figure 5.2: AVM for German determiner der

Definition 5.4 (Disjunctive Most General Satisfier for Guarded Descriptions )
MGSats(¢p — ;v) = MGSats(p ANYp) U{F UG | F € MGIncons(¢),G €
MGSats(v)}

Procedurally, the way to think about guarded descriptions is to view them as
if-then-else statements appropriate for variables. In the rules of the program, an
unguarded description from the description language in definition 4.3 will not nec-
essarily trigger a match on a guarded description. In other words, the satisfaction
conditions for the description ¢ are not the same as the satisfaction conditions for
the description ¢ — ; v.

Following Carpenter (1992) we define Sats(¢) as the set of all feature struc-
tures that satisfy ¢.

(86) Sats(¢) ={F € F|F = ¢}
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5.2 Using Descriptions as Constraints

In chapter 3, we introduced first logic programming and then logic programming
with constraints. In this section we will show how the general algorithm for res-
olution with constraints can be applied in the context of feature terms. We use
descriptions as the constraints on feature structures. The terms of the CLP rules
are feature structure terms, and these terms may be constrained to satisfy partic-
ular descriptions in the constraint store. As long as the arguments in a goal are
consistent with the constraints in the constraint store, the goal may be chosen from
the resolvent.

Definition 5.5 (Constrained Feature Structure) A constrained feature structure
is a pair F:¢ of a feature structure F' plus a description ¢ € Desc. F is said to be
constrained to satisfy ¢.

We will use the notation F':¢ for a constrained feature structure. We can use
one or more of these as a constraint set in constraint logic programming. If F
is one of the arguments of a goal in the logic program, F":¢ indicates that F' is
constrained to satisfy ¢. Goals and Clauses for CLP are defined as in chapter 3.
So that we do not confuse a description ¢ with a constraint, we refer here to a
constraint as C. First we use feature structures as the objects in a goal.

Definition 5.6 (Goal) A goal is a expression of the form p(fi,..., fa),n > 0
where p is a relation symbol and f; € F.

Definition 5.7 (CLP Goal) A CLP goal is defined as C or C, By, By, . . ., B, for
C' a (possibly empty) set of constrained feature structures fi : ¢1, fo @ ¢o, ...,
fnt Gn, and By, By, . .., B, goals.

When writing clauses in a program, descriptions of feature structures can be
used to “pick out” the feature structure objects that will satisfy them.

Definition 5.8 (Clause) For p a relation symbol and ¢,, € Desc, a clause is
written p0(¢015 ¢02) B ¢0n) — P1(¢11a ¢125 EERY (bln), p2(¢21a ¢22a teey ¢2n)" c o
pn(¢n17 ¢n2a RS} ¢nn)

We can attach constraints to a clause in the program. The feature structures
in the constraints can be written using the variables available in the description
language, e.g. Number:plural, Comps:ne _list.
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Definition 5.9 (Constrained Clause (CLP Clause)) A CLP clause is a clause
plus a set C of constrained variables Xy : ¢o, X1 : ¢1,..., Xy @ ¢p. We write
C | Clause.

Guarded descriptions could be used in constraints, or even in the feature struc-
tures themselves. Resolution with guarded descriptions is an instance of logic
programming. A description must first be satisfied by the current state of knowl-
edge, or with the addition of information. Then, a goal constrained by this de-
scription can proceed. A description such as (¢ — v; v) is self-guarding, in that
information about a term f; and ¢ must be known before the guarded description
is satisfied by f;. There is no need for the addition of a guard. In this case, one
would use the usual algorithm for resolution over ordinary goals (figure 3.1), but
allow guarded descriptions anywhere in the goal descriptions.

Figure 5.3 describes the process of resolution with the addition of constrained
feature structures in a constraint store. We assume that the constraint store C'Store
has the value of true if all of the constraints in it are not false, else it has a value
of false. In definition 5.10 we show how resolution is done step-wise, in case
guarded descriptions are included in the constraint set.

Definition 5.10 (Resolution with Guarded Descriptions) Given f;, a feature struc-
ture, ¢, Y and v € Desc, goal p(fi1,..., fi,---, fn), a (renamed) clause C' | A" +
Bi, By, ..., By, suchthat goal p, A" and C unify with mgu 0, and C; a constraint
on fi, C;=X; : (¢p > ¢;v) € C:

o If fi = &, then unify X; with f"in MGSats().
o If fi i~ &, then unify X; with " in MG Sats(v).

If f; neither satisfies nor dissatisfies ¢, then goal p cannot unify with C;, and
so p cannot be selected from the resolvent.

Use of guarded constraints is part of a working grammar for local quantifier
storage. The constraint (Pollard & Yoo 1997) says that the pool of quantifiers for
a head comes from its thematic arguments.

(87) The POOL is the union of the QSTORES of all selected arguments, defined as
either

e thematic elements selected via the SUBJ or COMPS feature,
e clements selected via the SPR feature, or
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Input: A logic program P
An input goal G
A constraint store CStore

Output: G[0] and CStore, if CStore # false,
or failure if failure has occurred or C'Store = false.
If C'Store = true, then G[0] is an answer for G.

Algorithm:
Initialize the resolvent to {G}.
Initialize CStore to { }.

While the resolvent is not empty do
Choose a goal A from the resolvent
and a (renamed) clause C' | A’ < By, By, ..., By,n > 0, from P
such that A, A" and C unify with mgu 6.

For each C; in C do
For C; a constraint on term f; in A, C; = X; : ¢,
If f; E ¢, unify X; with f" in MGSats(g).
(Exit if no such goal and clause exist).

Add the constraints in C to C'Store.
Continue if C'Store is not false, and exit otherwise.

Remove A from and add B;,Bs,. . ., and B,, to the resolvent.

Apply 6 to the resolvent, to G, and to CStore.

Figure 5.3: SLD Resolution over Feature Structures with Descriptions as Con-
straints. Terms are feature structure terms which must be unifiable with the de-
scriptions that constrain them in the constraint store. This algorithm has non-
deterministic selection of goals.
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e clements selected via the MOD feature.
(Pollard & Yoo 1997:15)

A specific instance of this constraint is that for verbs with thematic arguments,
the quantifiers will be pooled from the subject and object. This POOL can be built
explicitly in each verb’s lexical entry. Alternatively, it can be stated as a con-
straint across most verbs, noting that verbs with non-thematic arguments such as
raising verbs (e.g. appear in the working grammar) and modal verbs are handled
separately.! The description of the constraint on the POOL value is, “for each ar-
gument on my argument list, make sure it has its QSTORE value, before the POOL
is determined.” The QSTORE value itself is a set of quantifiers. This set may be a
non-empty set of index values, or it may be empty. We assume a type hierarchy
for sets of quantifiers as follows:

ne_set_quant e_set
ELT: quant
ELTSset_q<nt /
(88) set_quant

A guarded description which describes the behavior we want from the QSTORE
value is shown in 89.

(89) ELT:RESTIND:INDEX:ref — true;e_set

The description 89 says that a value contributed to my QSTORE needs to be of
type ref, else my QSTORE value is an empty set. The description ELT:RESTIND:INDEX: ref
in 89 is only part of the story, in that it is not just one element of the set that must
have an index element of type ref, it is any remaining elements as well. The rest
of the set of quantifiers, stored as the value of the feature ELTS, has the same
description as 89.

90 is a bit of a grammar for the guarded description in 89. It appears in a
type constraint on certain verbs. 1oc: gstore is the path value for the QSTORE,
which is an attribute of the bundle of syntactic and semantic features having type
synsem. then_else is a keyword that takes the place of “then true, else...”?

'In a hierarchy of lexical types such as in Riehemann (1993), the constraint can be stated on a
type at the point of inheritance by all such verbs. This is the strategy which has been used in the
following example.

2The keyword syntax for guards using ALE is described fully in chapter 6. We will introduce
the keyword then_else_set to mean that the description is meant to recurse through a set.
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Either each set member must satisfy a description of a referential element, or the
whole is an empty set. Waiting may indeed occur until the verb obtains one of
its QSTORE values from its subject. Only after a verb’s subject has correctly been
identified during parsing, and a determination made of whether it has a quantifier,
will the verb’s QSTORE set be complete.

(90) loc:gstore: (elt:restind:index:ref then_else e_set)

In the constraint in 87, for example, there is another instance of guarding. It
is necessary to wait on the SUBCAT values of a verb to be instantiated before the
QSTORE values of those arguments can be checked. I have implemented this and
other constraints in HPSG theory using guarded rules. In the quantifier gram-
mar, the guarded description in 90 appears nested inside a guarded rule. In other
instances as well, much use is made of guarded rules. These are described be-
ginning with the following section. First, one needs a way to express constraints
negatively, so that the descriptions in the constraints can be either guarded de-
scriptions or regular descriptions.

Negation can be expressed as a guarded description. We can write “not ¢” as
a guarded constraint without using a negation symbol. Fail and true are assumed
to be unification with the types L and T, respectively.

Definition 5.11 (Negation of Descriptions) —(¢) = (¢ — fail; true)

It follows from definition 5.11 that a negative description is equivalent to fail-
ing when the positive description is satisfied. A negative description can be used
in implementation as a shorthand for succeeding on dissatisfaction conditions.
The algorithm for mutual satisfaction between feature structures is shown in the
next chapter.

We can use a negative description as guarded constraint. In an implementation,
we need to know when a feature structure F' has enough information to either
satisfy or not satisfy ¢. The constrained feature structure F' : (¢ — fail; true) is
true when F’ satisfies this description (example 91).

1) F = (¢ — fail; true)



5.3. USING GUARDED RULES 89

5.3 Using Guarded Rules

5.3.1 Goal Selection

With a way to express negation, we can now use guarded rules to describe guard-
ing over feature structures, without using guarded descriptions in the description
language or in the constraint language. The allowable constraint in the guard
is a feature structure constrained by a regular description. We explicitly delay
rules until certain satisfaction conditions are met. A constrained feature structure
F : (¢ — 1;v) can be written alternatively with guarded rules as follows:

Definition 5.12 (Rewriting Rules for Guarded Descriptions) A rule

{Xi : (¢ — ¥;v)} | Clause can be written with regular descriptions as
follows:

{X;:6,X;: v} | Clause

or

{Xi: ¢} | fail, {X; : v} | Clause

The algorithm in figure 5.3 does not describe an ordering on goals or clauses.
In Prolog, goals are stored in a list structure, and the first goal on the list is chosen.
In chapter 3 we described an algorithm for guarding which prefers goals which
have tried but whose constrants are found to be unsatisfiable (figure 3.7). We
call these suspended goals. As for the list of suspended goals, any of these is
triggered immediately once its guard is satisfiable. The objective of the program
is to provide a set of rules which will awaken goals.

Definition 5.13 (Suspended Goal) Given goal p(fi,..., fn) and a (renamed) clause
C | A"« By, By, ..., By, such that goal p, A', C unify with mgu 6, and C; a con-
strainton f;, C; = X; : ¢ € C:

e [f f; neither satisfies nor dissatisfies ¢, a suspension of a goal p(f1, - - ., fn)is
created. A suspension is a pointer to the conjunction of goals which are de-
layed by the constraint. If ¢ is already constrained to satisfy any p'(f1, . - ., fn),
then p is added to the conjunction of goals.

e p is wakened if X; is unified with a feature structure that satisfies ¢. Then,
the action taken is to first execute the suspension of p, and then resume the
present goal.
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The definition 5.13 always tries to expand the newest unresolved goal, and
first tries to resolve any suspended goals before unsuspended ones. Prolog makes
use of a stack as well as a list. Using a queue rather than a stack would result in
breadth-first evaluation of goals, rather than depth-first. Note that clauses need to
be ordered in the program as well as the set of goals remaining to be solved, in
order to provide a precise order of evaluation.

5.3.2 Example: Guarding in the Lexicon

It is with definition 5.12 that we have implemented guarding for German. We
look at guarded rules in the case of argument raising by auxiliary. During pro-
cessing, we wish to “check off”” the noun arguments we encounter from the sub-
categorization list of the head verb. In this case the head is an auxiliary whose
subcategorization list is not fully instantiated. We must find the verb that is the
semantic head, unify the head verb’s semantics with the semantics of the auxil-
iary, and then go back and fill in the missing pieces for the auxiliary. Then we can
check off the same nouns from the auxiliary list, and move on to a completed sen-
tence. The sentence will gain its information ultimately from the auxiliary, since
it is the head of the sentence.

The example of German partial verb phrase fronting shows how extraction
from the auxiliary is possible in the lexicon, even though the auxiliary’s argu-
ments are not yet realized. In this implementation I use a guarded lexical rule.
The application of the lexical rule for complement extraction from a verb passes
along the guards on the extracted complements, and the goals associated with the
rule are suspended. These goals are constrained by the verb arguments in SLASH.
These wait until the verb arguments are realized during parsing. This prevents the
user from having to put an artificial constraint on the length or form of the com-
plements list of the head verb. Consequently, one does not overgenerate numerous
lexical entries with various combinations of complements in SLASH at the time of
lexical compilation, which is the former solution available without guarding. The
guarded rule is shown as example 92 (with the arguments of the append relation
simplified), and 93 is its implemented form.

I f is the keyword in ALE for goals associated with a lexical rule.® Tf_guard
is a version of If that signals that in addition to the goals, a guard will be given
first. Prop guard nucleus:relation is a feature structure constraint,
with Prop the variable for a feature structure, and NUCLEUS:RELATION the de-

31f is used elsewhere also to signal a list of goals.
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pvp lex_rule
(word,
synsem: (loc: (cat: (head: (Head,
verb,vform:bse, aux:plus, flip:minus),
subj: [Subij],
comps :PVPComps) ,
cont:Cont),
non_Jloc: (inherited: (slash:e_set)))),

* kK>

(word,
subcat: [Subj|SubcatComps],
synsem: (HeadSyn,
(loc: (cat: (head:Head,
subj: [Subijl,
comps :PVPComps) ,
cont: (Cont,nucleus:modal_arg:Prop)),
non_loc: (inherited:
(slash: (elt: (PVP,
cat: (PVPHead,
head: (verb, vform:bse),
lex:minus,
subj: [Subj],
comps :PVPComps) ,
cont:Prop),
elts:e_set)))))),

if_guard
Prop guard nucleus:relation then_else_fail

(append (PVPComps,
[ (loc:PVP,
non_loc: (inherited: (slash: (elt:PVP)))) 1,
SubcatComps),
aux_raising (HeadSyn, PVPComps, Subj))

Figure 5.4: Partial verb phrase fronting as guarded lexical rule. The guard state-
ment says that once the relation type of the verb (the modal argument) is known,
then the value of the SUBCAT list of the derived verb is the concatenation of the
complements list of the Partial Verb Phrase, plus the verb phrase itself as the last
element of the list. Once the arguments are known, check the constraint on argu-
ment raising.
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scription that Prop must satisfy. The keyword then_else_fail stands for
“then true, else fail.” It gives the constraint which should be added to the con-
straint store with satisfaction of the guard. In this case the alternative to satisfac-
tion of the description by the feature structure Prop is not a different description
but simply failure. In other words, if Prop [~ nucleus : relation, then fail.

(92) Prop = nucleus : relation | lex_rule(word(...), word(..., Prop,...)) <
append(PV PComps, PV P, SubcatComps),
auzx_raising(HeadSyn, PV PComps, Subj).

(93) if_guard
Prop guard nucleus:relation then_else_fail

(append (PVPComps,
[ (loc:PVP,
non_Jloc: (inherited: (slash: (elt:PVP)))) 1],
SubcatComps) ,
aux_raising (HeadSyn, PVPComps, Subij))

The guard in the lexical rule is a description in the description language, which
the feature structure extracted to SLASH must satisfy. The description is nu-—
cleus:relation. This means that the semantic relation of the verb has to be
determined before the arguments can be raised. The complete rule as it appears in
the grammar is given in figure 5.4.

In addition, raising of all verb arguments by a head auxiliary is achieved by a
guarded lexical entry. Because it is impossible to specify all of the arguments of
an auxiliary verb in the lexicon, the list is simply left underspecified. Constraints
on the semantics of the auxiliary and the verb are executed after the verb is found.
It is especially important to wait since the auxiliary is the right-most complement
(least oblique) in the list rather than the left-most. The head of a list may be
selected with a variable, but not the last element of the list. The lexical entry with
a guard on auxiliary raising is shown as figure 5.5. The key word 1 f_guard_all
signals a “for all” version of guarding for lists that waits with the same constraint
on each member of a list argument. This constraint is that each member of the list
of complements must be instantiated as a substantive, or type subst. The subtype
of its head feature will be either noun, verb, etc.

Instead of then_else_fail the next keyword used here is then_else.
This points to the alternative description that the variable Comps satisfies if it is
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werden ———>
word,
synsem: (Synsem, loc: (cat: (head: (verb,
mod:none,
viorm:bse,
aux:plus),

subj: [ (NP,@ np(_)) 1,
comps:Comps,
spr:[1,

marking:unmarked,
lex:plus),
cont: (nucleus: future,
quants:[]),
conx:backgr:e_set)),
(@ empty_non_loc),
gstore:e_set

if _guard_all
Comps guard loc:cat:head:subst then_else e_list
(aux_raising (Synsem, Comps,NP)) .

Figure 5.5: Lexical entry for auxiliary with guarding. A guard is placed on the on
the head value of each member of the COMPS list. Once all arguments satisfy the
type subst, then apply the auxiliary raising constraint (aux_raising).

not a list of substantives. That is an empty list, or e_list. (This is the description v
in the guarded constraint F' : (¢ — ¢;v).)

The guards on both the lexical rule and the lexical entry successfully wait
together to yield unique parses for fronted PVP constructions such as: gehen
wird Sandy, Sandy sehen wird Kim, Sehen wird Kim Sandy, etc.
as well as double infinitive constructions Sandy wird Kim sehen kdnnen,
Sehen kdnnen wird Kim Sandy, etc. and non-fronted constructions Wird
Kim Sandy sehen koénnen?. The implementation is true to the analysis
in Baker (1999).
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5.3.3 Inequations

Inequations are a specific instance of guarding, where the formula being negated
is a path equation. Where II is a path value in a feature structure, example 94 is
the representation for inequations.

94) II; # 11,

Using definition 5.11 this can be written as the negation of the positive path
value:

Definition 5.14 (Inequations) I1; # I1, = =(II; = II,)

This is the same notion of negation used by Moshier (Moshier & Rounds
1987),(Moshier 1988). Definition 5.14 also gives the same results for negation
of inequations as the ALE system (Carpenter & Penn 1994). This fact will be
exploited in the implementation described in chapter 6. We introduce an imple-
mentation of the binding theory in this chapter.

Inequations can be used in an implementation of the binding theory. We re-
view the principles of the binding theory. These are cast in the framework of
HPSG:; the relevant comparisons between this version and a Government/Binding
account are given in Pollard & Sag (1994:chapter 6).

(95) HPSG Binding Theory:

Principle A. A locally o-commanded anaphor must be locally o-bound.
Principle B. A personal pronoun must be locally o-free.
Principle C. A nonpronoun must be o-free.

(Pollard & Sag 1994: chapter 6, 40)
O-command is defined as a relation on members of SUBCAT lists:

(96) HSPG o-command:
One referential synsem object 0-commands another provided they have dis-
tinct LOCAL values and either
1. the second is more oblique (to the right on the SUBCAT list) than the
first,
2. the second is a member of the SUBCAT list of a synsem object that is
o-commanded by the first, or
3. the second has the same LOCAL:CATEGORY:HEAD value as a synsem
object that is o-commanded by the first.(Pollard & Sag 1994)
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Co-indexing is defined for objects of type synsem as having token-identical
values for the path value LOCAL:CONTENT:INDEX. A synsem object is referential
if its LOCAL:CONTENT:INDEX value is of type ref. In order to verify principles
B and C for feature structures, one must verify that there is no structure sharing
between the LOCAL:CONTENT:INDEX value of the personal pronoun (Principle B)
or the nonpronoun (Principle C) and the same value for a referential synsem object
which o-commands it. In order to do this, two path values must be compared and
found to be non-identical. We define inequality for path values in the following
section, and then move on to an example.

In our example we assume following Manning (1994) and Manning et al.
(1999) that the lexical entry for a verb specifies a list of arguments in order of
obliqueness for binding, and that the arguments on this list are token-identical
with, but possibly differently ordered than, the concatenation of the arguments on
the valence lists of the verb (e.g. SUBJ, OBJ). This list has been named e.g. as the
SUBCAT list of Pollard & Sag (1994:chapter 9) and the ARG-S of Manning et al.
(1999) and others.

like T
verb
HEAD:
SUBJ[1]
COMPS:([2])
| ARG-S: <, >

VFORM :bse

7)

We wish to obtain the following grammaticality judgments for the following
examples using the single lexical entry in example 97. The subscripts i,j,k, etc.
are used to mark reference to a unique person or object:

(98) a. John; likes himself;.
b. John; likes him;.

c. *John; likes him,;.

We can think of the binding theory as a set of constraints on the sign for John
likes himself, in which the arguments of /ike are fully instantiated, or on the lexical
entry for likes, in which the arguments are not. If in fact the ARG-S list is a lexical
feature, as is argued in Pollard & Sag (1994) and Manning & Sag (1998), the
site of binding will not be propagated to the phrasal head of the sign for John
likes him/self. In this case the binding constraints must be specified in the lexicon.
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But anaphoric, nominal and pronominal INDEX values are underspecified in the
lexicon. Hence the need for delayed evaluation during processing.

For example 98a, the subject John and the reflexive object himself must be co-
indexed. This means that feature structures tagged with [1]and [2]in 97, for the sub-
ject and object, respectively, will share a value for the path LOCAL:CONTENT:INDEX
(tagged in examples 99 and 100 with [3]). 99 shows the LOCAL values for the sub-
ject (these are the syntactic and semantic features of concern to us here) and 100
shows the shared index value as part of the LOCAL value for the reflexive object.

[local

[ category
HEAD:noun
CAT: COMPS:[]
SUBJ:|]
SPR:(|
[mpro

ref
GENDER:masculine

CONTENT: | INDEX[3]| \u o« N -third

(99) .
NUMBER:singular
| RESTRICTION :e_set |
[ context i
[background 1
[ psoa 1
naming
CONX:| B ACKGR: | ELT: | NUCLEUS: | BEARER 3]
NAME:john
QUANTS:[]
i ELTS:e_set ]
local
refl
(100)

CONTENT: | INDEX:[3]
RESTRICTION :e_set

For examples 98b and 98c, the direct object is a personal pronoun. Since the
subject John o-commands the object him, then they must not be co-indexed. If
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they are co-indexed as in 98c, the sentence is ungrammatical. The inequation
between subject and object which is in effect in 98b is shown in 101.

(101) [ #
The semantic index for both the noun and the pronoun in 98b is this:

(102) index: (ref, Ind,
gender:masculine
person:third
number:singular)

There is no description available to distinguish the INDEX features of the noun
John from those of the pronoun him. That is, in the feature structures above, there
is no description that the index value of him could satisfy in order to show that it
was not the same exact feature structure as [3]. This means that satisfaction alone
is not enough to prove or disprove an inequation. Different approaches to using
guarding for solving inequations are discussed in the following chapter. It is there
that we will discuss the notions of intensional and extensional identity.

5.4 Summary

In order to process the many underspecified linguistic theories in chapter 2 I have
defined guarded constraints on feature structures. I use the description language in
Carpenter (1992). Guarding may be done either with guarded rules or by adding
guarded descriptions to the language. The latter approach enables rules to be de-
layed by subsumption conditions and without altering the algorithm for resolution
introduced in chapter 3. The example of German partial verb phrase fronting de-
scribes a method for compiling lexical rules with delay statements attached, such
that the lexicon may still be closed under lexical rules at compile time. This is
a departure from the methods of Meurers & Minnen (1995), who wait until run
time to apply such lexical rules. Inequations are described as instances of guard-
ing on satisfaction conditions. In the next chapter, more detail is provided about
the implementation of guarded constraints, and evaluation metrics for the system
are discussed.
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Chapter 6

Implementation and Evaluation

The ALE system (Carpenter & Penn 1994) combines phrase structure parsing and
constraint logic programming with typed feature structures as terms. The addition
of guarding to this system allows a number of linguistic analyses to be processed
more directly using guarded descriptions. First I describe a general approach to
the implementation of guarding for the case of typed feature structures. Then, I
present specific test cases. These are quantifier raising in English and binding in
Japanese. The quantifier raising example associates delays with a general type,
the type sign. This demonstrates that delays may be associated with virtually any
or all objects in the domain, by virtue of their types. A trace of the parse of this
example is provided. I then move on to a specific instance of binding, which
has been introduced in chapter 5. Linguistic binding conditions are stated in part
negatively. The Japanese example shows the handling of inequations as delays in
detail.

The set of examples, including the example of German partial verb phrase
fronting introduced in the previous chapter, can be evaluated with respect to three
criteria. First, are these grammars a faithful rendering of the specification in chap-
ter 5?7 Second, is the satisfaction algorithm independent of the parser? Third,
what are the advantages of using this approach compared with an implementation
without guarding?

6.1 Implementing Delays

We use the satisfaction of a description by a feature structure to signal when con-
straints are fired. If a feature structure entails a description, then the constraint

99
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associated with the description is fired. If the description is inconsistent with the
feature structure, we either fire an alternative constraint, or fail. We have a ques-
tion, however, to answer: What do we actually do during processing if we have
neither entailment nor disentailment? In this case we need to wait and check back
to see if the main feature structure, which we will call F', gains more information.
A second question is, how do we define “enough information”? We may only be
interested in a particular piece of the puzzle, for example, the subcategorization
list of a head.

In implementing delays, we put a delay on the type of the information that we
are looking for. When the type is specific enough, then we have our answer. If
we don’t get an answer, then our goal can’t apply. That is because we never delay
any goals that could have been solved with a less specific type. This is important
if we are to find a solution.

The work is implemented in SICStus Prolog (SICStus 1995). The data struc-
ture Tag-SVs is the Prolog term for our feature structure. The structure is fully
described in Carpenter & Penn (1996). The tag is a variable which acts as pointer,
and gets instantiated to a new value each time the feature structure is updated.
The SVs value is an array of sort values for the feature structure, which may
themselves be feature structures. When new information is added to the whole, it
is added as an instantiation of the tag at the front of the structure. By fully deref-
erencing the feature structure, the chains are compacted and a new variable tag
becomes the new pointer and the site of further guarding.

The main reason for guarding during processing is that a feature structure F'
may not be fully instantiated. The type may be L or it may have a non-maximal
type. If the type of the feature structure variable is not specific enough to de-
termine whether F' satisfies the type 7', a wait placed on the tag of the feature
structure in case it gains a type more specific which satisfies 7. The reason to
place a wait on the tag of the feature structure is that the tag changes if the feature
structure gains a more specific type. I have defined the sat i sfies relation over
feature structures and descriptions. Guarding in satisfies occurs when ask-
ing whether a feature structure F' satisfies a type 7'. The code for satisfiesis
shown in Appendix A.

In asking whether a feature structure satisfies a feature-value pair Feat:Desc,
a wait is also placed on the tag of the feature structure if it does not already satisty
a type for which Feat is appropriate. Recursively, satisfies is called on the
feature structure at Feat, with respect to Desc. This is a simply a specific instance
of waiting for a type to change.

In the code we use, descriptions are used to stand for feature structure terms,
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and the descriptions are compiled out to feature structures at runtime. This means
that as we ask whether a feature structure satisfies a particular description, that
in practice we are checking whether one feature structure subsumes another. A
specific adaptation of guarding for feature structures involves checking whether
two feature structures are isomorphic. Morphisms have been introduced in defini-
tion 4.4, repeated below as 6.1 for convenience.

Definition 6.1 (Subsumption) F' = (Q,q,0,0) C F' ={(Q',q,0',0") ifand only
if there is a total function h : Q — @Q', called a morphism such that:

* Mg =7

e 0(q) E 6'(h(q)) for every g € Q

e h(d(f,q)) = §(f,h(q)) for every q € Q and feature f such that §(f,q) is
defined

(Carpenter 1992: Definition 3.4)

An isomorphism occurs if there is a mapping from the nodes and arcs of one
feature structure to those of the other, and vice versa.

Definition 6.2 (Isomorphism) Two features F' and F' are isomorphic iff F C F'
and F'C F.

By definition 6.2 it is possible for two feature structures not to have the same
value for a feature and still be isomorphic. For example, consider the case of the
two feature structures in 103, which have a different value for the feature F, and
yet still subsume each other:

o
(103) a. [F:]

g

These two feature structures could both be collapsed to the simpler form
in 103a using a process called extensional unification (see Carpenter 1992, chap-
ter 8). We adopt a stricter notion of isomorphism for the purposes of implemen-
tation. We determine not the isomorphism in 6.2, but rather whether two feature
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structures are extensionally identical. This means that they can be unified to pro-
duce a common extensional feature structure. The code refers to the procedure as
iso, but technically speaking, i so will not succeed on the case of determining
whether the cyclic feature structures in 103 are isomorphic.

Theorem 6.3 (Extensionality) Letr TF be the collection of well-typed feature
structures and let ET F be the collection of extensional well-typed feature struc-
tures. There is a partial function Ext : TF — ETF such that if ' € TF and
F' € ETF are such that F C F', then Ext(F) C F'.

Proof: To carry out extensionalization, we iterate the following step: select a
pair of nodes assigned a common extensional supertype and sharing all appropri-
ate features and identify them (unify the feature structures rooted at these nodes).
(Carpenter 1992: Theorem 8.3)

We introduce the procedure used in the code for finding an isomorphism. For
the case where Desc is compiled to a feature structure F’, determine recursively
from the top down whether the two feature structures F' and F' are isomorphic.
Assume that for F' and F’, the respective data structures are Tagl-SVs1 and
Tag2-SVs2. Then, follow this procedure:

1. If the tags Tagl and Tag?2 are identical, stop. This means they are the same
object, or intensionally identical.

2. If the tags Tagl and Tag2 of two feature structures Tagl-SVsl and
Tag2-SVs?2 can be unified, do unify them and recursively determine whether
the arrays of feature values SVs1 and SVs2 are isomorphic. Do this by de-

termining whether, for each feature slq, slo,...,sl, in SVs1, the feature
structures rooted at s14, slo, ..., s, are isomorphic to the the feature struc-
tures rooted at s21, $2, ...,82, in SVs2.

3. If the types of two feature structures are not incompatible, then wait until
the type of one if the feature structures becomes more specific, and retry the
isomorphism, starting from step 1.

Currently the isomorphism is retried every time one of the two tags changes.
The program is not smart enough to wait until the tags of the feature structures
are unifiable, because determining this in itself would involve awakening and
re-freezing of a variable. The pseudo-code for the procedure for processing an
isomorphism with delaying is shown in example 104. If a goal is called, the pro-
cedure has a return value of ’true’, or if the isomorphism fails, it has a return
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value of ’fail.” Else, since there is information that is still being waited on, the
return value is undefined. Assume a guarded description ¢ — 1; v. F; is a feature
structure and Fs is a feature structure which satisfies ¢.

(104) iso(Fy,Fp),v) iff
if F1 = F5, add ¢
else
if Type(F1) U Type(F») = L, add v
else
if Type(F1) = Type(F3) then
iso_values(Feats(F}),Feats(F3),1),v)
else
delay(F1,Type(Fs),iso(F,Fo,10,v0),0)
else
delay(Fy, Type(F}),iso(F, Fo,10,v0),0)

iSO—ValueS([F117F123- . -aFln]7[F217F223- . -aFQan’U) if
iso(F},Fyq,is0_values([ Flo,. . .., F1, ][ Fog,. - . F5,],00,0),0)

6.2 ALE syntax

The implementation is an extended version of ALE. Here we show the BNF gram-
mar for definite clause rules, type constraints, and guarded rules and constraints.
<pred_sym> and <prolog_goal> are predicate symbols and goals from Pro-
log. <t ype> is a type from the inheritance hierarchy. The type hierarchy specifies
the types and appropriateness conditions for feature structures, and is declared as
part of an ALE program.

(105) Literals.

<literal> ::= <pred_sym>
| <pred_sym> (<desc_seq>)

(106) Goals.

= true
| <literal>
| (<goal>,<goal>)

<goal> ::
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| (<goal>;<goal>)

| (<desc> =@ <desc>)

| !

| (\+ <goal>)

| prolog(<prolog_goal>)

(107) Descriptions.

<desc_seqg> ::= <desc>
| <desc>,<desc_seqg>

<desc> ::= <type>
| <variable>
| (<feature>:<desc>)
| (<desc>,<desc>)
| (<desc>;<desc>)
| (=\= <desc>)
| (<path> == <path>)
| <guarded_desc>

<guarded_desc> ::= <desc> then_else_fail
| <desc> then else <desc>
| <desc> then_else_set <desc>

(108) Guards.

<guard> ::= <variable> guard <desc>

then_else_fail signals that if the <variable> does not satisfy the guard,
then fail. then_else signals that if the <variable> does not satisfy the first
description, then it must satisfy the other (second) description. then_else_set
applies to sets.!

The guarded feature structure <variable> could actually be any descrip-
tion, but in practice, it is always a variable that stands for a feature structure that
the grammar writer picks out. It is unified with a relevant description in a lexical
rule, grammar rule or type constraint, by taking advantage of Prolog unification
on variables.

'then_else_set means every member of the set must satisfy the description, or the descrip-
tion must be an empty set (e_set). This is parochial to this implementation.
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(109) Type constraints, including guarded constraints.

<cons_spec> ::= | <type> cons <desc>
goal <goal>

| <type> cons <desc>

guarddesc <guard>
goal <goal>

(110) Clauses.

<clause> ::= <literal> if <goal>.
| <literal> if_guard <guard> <goal>.
| <literal> if_guard_all <guard> <goal>.

if_guard_allisakeyword that signals that the description must be satisfied
recursively across the entire list or set, if the variable has the type of a list or set.

It is noted here that there is an inconsistency between the syntax of type con-
straints and clauses. The syntax for both could no doubt be standardized so that
clauses would be written as follows:

<clause> ::= <literal> 1if <goal>.
| <literal> if
guarddesc <guard>
goal <goal>.

Then the notation of i f_guard_all might be transferred to the <guard>
syntax, by using there two keywords, e.g. guard and guard_all.

(111) Phrase Structure Rules.
<rule> ::= <rule_name> rule <desc> ===> <rule_body>.

<rule_body> ::= <rule_clause>
| <rule_clause>, <rule_body>

<rule_clause> ::= cat> <desc>
| cats> <desc>
| goal> <goal>
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6.3 Parsing with Delayed Constraints

6.3.1 Quantifier Raising with Delays

We have explained how guarding involves satisfaction between a feature structure
and a description, which can be broken down as a wait on a specific type. Waiting
on types is employed in the analysis of quantifier raising in Pollard & Yoo (1997),
in which quantifier storage is a feature local to the type sign. A sign is the ba-
sic linguistic entity in HPSG and is comprised of words and phrases (these have
subtypes word and phrase). The quantifier store, or QSTORE, of a sign is derived
from a pool of quantifiers (the value of the feature POOL) and a list of any of those
quantifiers which may have been retrieved for scoping, in the case of a verbal sign
(the RETRIEVED value). Because of this, it is necessary to associate the constraint
on the QSTORE value of a sign directly with the type sign in the grammar.

We will guard the constraint on the QSTORE value of signs. This means that
we will establish a particular guard that must be satisfied before the goal which
expresses the constraint can be solved. In our formalism, a guard is a variable plus
a description. The guard is satisfied if it is instantiated to a feature structure that
satisfies the description. In particular, we will guard the type of the POOL feature.
The pool is a set. We say that each member of the pool (if it is non empty) must
satisfy the type ref (it is referential). The guard says once we have information
from all of the members of the POOL, compute the RETRIEVED and QSTORE val-
ues from that pool. Because words and phrases are signs, a guarded constraint is
then attached to all phrases and all words as they are encountered during parsing.
However, only if more information is needed will resolution actually need to wait
on the satisfaction of the guard. “More information” might mean knowing what
the subject is in the case of a verb phrase, for example, because the verb phrase
inherits any quantifiers that might be associated with its subject. In the case of
semantically vacuous lexical entries, such as the words to and be (as shown in
Pollard & Yoo (1997)), the constraint will be immediately satisfied; that is, there
is no waiting. This is because these don’t have any POOL of quantifiers to pick
from.

The original constraint on the type sign as described by Pollard and Yoo is
in 112.

(112) Given a POOL value P of a sign, the set of elements in the RETRIEVED
value will form a subset R of P, and the QSTORE will be the set of unre-
trieved values, that is the set difference between P and R.
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The HPSG expression of the constraint is in 113. There is a technical issue here,
in order to relate lists of quantifiers with sets of the same. The type of retrieved
elements in the theory is list_quant, which is a list of quantifiers, the same as it
is in HPSG theory. The relation set-of-elements is a relation that holds between
the list of quantifiers that has been retrieved, and a set of these same quantifiers.
Think of it as a conversion from list to set format. This is simply a convention
so that there can be a uniform set operation over the retrieved, pooled, and stored
quantifiers, the POOL and QSTORE being sets in the theory.

synsem
local
(113) sign — | SYNSEM: |} a1 | QSTORE(T]
POOL:[2]
| RETRIEVED 3] |

Aset-o f-elements([3),[4])
N4 C
AL =[2] -

The guarded type constraint from the implementation of the Pollard & Yoo
analysis is shown in example 114. guarddesc signals that the guarded descrip-
tion is the sign’s POOL value. The constraint says that for a sign with a QSTORE
value of QStore, a POOL value of Pool and a list of retrieved quantifiers Re—
trieved, then wait on the index value of every element of the Poo 1 before com-
puting the QSTORE from the Ret rievedand Pool values. The set _sublist
clause is the goal. It calls the routine that computes the QSTORE. The value of
Pool may alternatively be an empty set; the then_else_set syntax simply
ensures that Poo1 will be properly considered a set and not a list.

(114) sign cons (synsem:loc: (gstore:QStore,pool:Pool),
retrieved:Retrieved)
guarddesc Pool guard (restind:index:ref)
then_else_ set e_set
goal
(set_sublist (Retrieved,Pool,QStore)).

A simple constraint (115) on headed phrases ensures that the POOL value of the
phrase is token-identical with the QSTORE value of the semantic head daughter. >

2For illustrational purposes, the unification shown is between the mother and the head daughter.



108 CHAPTER 6. IMPLEMENTATION AND EVALUATION

(115) phrase cons (synsem:loc:pool:Pool,
head_dtr:synsem:loc:gstore:Pool) .

The semantics principle, a general principle which applies to all headed phrases,
is implementable as a constraint on the type headed_phrase. There is a reason to
apply guarding in the application of the principle to verb phrases. This is that the
QUANTS value of such a phrase depends upon its RETRIEVED value. The list of
retrieved quantifiers is found non-deterministically at any sign of sort psoa. These
signs are verbs, verb phrases, and sentences in a standard grammar. We have seen
that the value of of RETRIEVED depends upon satisfying the relation in the con-
straint in 113. And so once this constraint is satisfied, we may apply the semantics
principle:

Semantics Principle (Pollard & Yoo (1997:examples 23 and 24)):

(116) a. For a headed phrase whose cont is of sort psoa, the NUCLEUS value
is identical with that of the semantic head, and the QUANTS value is the
concatenation of the RETRIEVED value and the semantic head’s QUANTS
value.

b. For a headed phrase whose CONT is not of sort psoa, the CONTENT value
is token-identical to that of the semantic head.

The implementation of the semantics principle as a constraint on the type
verb_phrase is shown in 117. The implementation has been simplified some-
what to apply to phrases headed by verbs, as these have heads whose content is of
type psoa. For other headed phrases, the content value of the head and the phrase
can be unified at the point of the application of the relevant phrase structure rule;
it is clear that in this case, there is no need for a delay statement to apply.

(117) verb_phrase cons (synsem:loc: (cont: (Cont,
nucleus:Nucl,
quants:MQuants) ),

retrieved:Retrieved,
head_dtr:synsem:loc: (cont: (HeadCont,
psoa,nucleus:Nucl,
quants:HQuants)))

guarddesc Retrieved guard (restind:index:ref)

In the case of a head-adjunct phrase, the unification of the mother’s POOL value and the daughter’s
QSTORE would be between the mother and the adjunct daughter, since the adjunct is the semantic
head in that case.
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then_else e_1list
else

append (Retrieved, HQuants,MQuants) .

The variable Ret rieved stores the list of retrieved quantifiers. This is the fea-
ture structure that is being guarded. Once we know whether this is a list of quanti-
fier values or an empty list, we can append this with the quantifier list of the head
to determine the quantifier list of the mother. If the quantifier list of the head is not
yet determined, the append call will still terminate. In that case, the tail of the
mother’s quantifier list will simply unify with the head’s quantifier list, but will
not vary. We show this in more detail in the following section.

Finally, the SUBCAT value on “content” verbs in the lexicon must be guarded.?
The pool of quantifiers for a verb equals all of the quantifiers from its meaning-
bearing complements (subject and objects in the standard case). As a test for
guarded type constraints, I put all such verbs under a common type verb_word in
the type hierarchy, and wrote the constraint as attaching to all verbs. Alternatively,
one could attach it to each individual verb in the lexicon. This goes to show that
there are different ways of achieving the same effect. Attaching this constraint in
only one place is probably simpler.

(118) verb_word cons (synsem:loc: (pool:Pool,
cat :head:
(verb,
aux:minus,
control:minus)),
subcat :Subcat)

guarddesc Subcat
guard
(loc:gstore: (restind:index:ref then_else_set e_set))
then_else e_list
goal
(gstores_of (Subcat,e_set,Pool)).

3These are regular verbs with non-vacuous semantics, e.g. go, swim, run, take, find etc. as
opposed to auxiliaries, control verbs, and the like.
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6.3.2 Parsing Steps

In this section we show how parsing steps are interleaved with guarding, in the
case of the sentence in 119.

(119) A unicorn appears to be approaching.

We use phrase structure rules for parsing. There are 6 phrase structure rule
schemata in HPSG. The reader is referred to these in Appendix B. Schema 2 is
used for creating a verb phrase from a lexical head verb and its complement or
complements. It has other applications also, such as promoting an N to an N’ or a
Det to a determiner phrase (DetP). Schema 1 is used to put phrasal head together
with one of its complements. This could be a verb phrase with its subject in the
case of the rule S — NP VP, or an N’ and its specifier, in the case of NP —
DetP N'. The rules in the trace appear labelled as schemal (for sentence),
schema2 (for verb phrase, N’, or DetP), and head_spr (the case of schemal
for NP).

The ALE rules for schema 1 (the head-subject schema) and the head-specifier
rule are shown in figures 6.1 and 6.2.* The rules are compiled in this fashion: First,
compile the description for the subject or specifier and match it to an edge in the
chart; then, compile the description for the head daughter and match it; solve the
goals; then, compile the mother and add it to the chart. Information about the
mother (result) is gained during the course of the rule, but the description at the
beginning of the rule is added into the feature structure procedurally at the end,
after the goals are solved. The code which compiles rules into a series of definite
clause statements is provided in Appendix C.

The parser is the bottom-up chart parser which is part of the ALE package. The
parser enters edges for words into the chart from right to left, and then parses from
left to right.> In table 6.1 I show for each edge which guarded constraints are un-
blocked by adding that edge to the chart, and when the QSTORE and RETRIEVED
values are computed. Each time a word or phrase is entered into the chart, its
POOL value is guarded, as part of the type constraint on the type sign in exam-
ple 114. I will not mention this explicitly; it will be assumed.

“The semantics principle is not listed as one of the principles in the goal list since it has been
implemented as a constraint on a type (example 117). Another methodology would be to imple-
ment these principles as constraints on the type headed_phrase. This grammar follows the HPSG
grammar for English by Gerald Penn, released with ALE, in showing principles as definite clause
attachments on phrase structure rules. Type constraints have been added to test guarding on types.

SRules for phrases fire as soon as all the necessary words have been added to the chart, even if
there are more words to be added to the left in the sentence.
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schemal rule
(Mother, verb_phrase, synsem:loc:cat:comps:e_list,head dtr:HeadDtr)

\

cat> (SubjDtr,phrase, synsem: (SubjSynsem, loc:cat:comps:e_1list)),
cat> (HeadDtr,phrase,synsem:loc:cat: (head: (func; (prd:minus)),
comps:e_list,
subj: [SubjSynsem])),

goal> (head_feature_principle (Mother,HeadDtr),
inv_minus_principle (Mother),
valence_principle (Mother, HeadDtr, [SubjSynsem], [],[]1),
marking_principle (Mother, HeadDtr),
spec_principle (SubjDtr,HeadDtr),
nonlocal_feature_principle (Mother, HeadDtr, [SubjDtr]),
single_rel_constraint (Mother),
clausal_rel_prohibition (Mother),
relative_uniqueness_principle (Mother, [SubjDtr, HeadDtr]),
conx_consistency_principle (Mother, [SubjDtr, HeadDtr]),
deictic_cindices_principle (Mother, [SubjDtr, HeadDtr])) .

Figure 6.1: Schema 1 in ALE format

Table 6.1: Trace of Parse of quantifier retrieval, showing
guards unblocked

Parser Action Edge Added Guards
lexicon approaching
schema?2 approaching
lexicon be
schema?2 be approaching
lexicon to RETRIEVED value is empty
list
schema?2 to be approach-
ing
lexicon appears
schema?2 appears to be
approaching
lexicon unicorn

continued on next page
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Table 6.1 bottom-up parse, continued

Parser Action Edge Added Guards
schema?2 unicorn

lexicon a

schema?2 a

head_spr rule fires; daughters
are compiled. Head and spec-
ifier not yet related.

Principles fire; spec_principle

fires. Determiner iden-
tified as specifier of N
bar. RESTIND:INDEX

value for unicorn is found

(PER:THIRD,NUM:SING,GEN:NEUT)

POOL value for Detp a is un-
blocked.

POOL value for N bar uni-
corn is unblocked.

POOL value for N unicorn
is unblocked.

POOL value for det a is un-
blocked.

Rest of principles fire.

Mother is compiled. N bar
identified as head daughter
and QSTORE values are uni-
fied.

a unicorn

POOL value for NP a uni-
corn is unblocked.

Rule schemal fires; daugh-
ter descriptions are com-
piled and matched to exist-
ing edges. Subject of verb
phrase daughter is unified
with subject daughter (Sub-
jDtr with synsem Sub-
jSynsem). (Mother edge
not yet compiled)

SUBCAT value for verb ap-
proaching is unblocked.
(since subject found)

continued on next page
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Table 6.1 bottom-up parse, continued

Parser Action

Edge Added

Guards

POOL value for verb ap-
proaching is computed.
POOL value on verb ap-
proaching is unblocked
(sign constraint).
POOL value for VP ap-
proaching is unblocked.
(phrase’s POOL is same as
head daughter’s QSTORE, by
unification)
RETRIEVED, QSTORE values
for VP approaching is
computed. (nondeterministi-
cally)
RETRIEVED value for VP
approaching is  un-
blocked.
POOL value for VP be ap-
proaching is unblocked.
(QSTORE of be is known,
same as QSTORE of comple-
ment approaching)
RETRIEVED, QSTORE values
for VP be approaching
is computed.
RETRIEVED value for VP
be approaching is un-
blocked.
POOL value for VP to
be approaching is un-
blocked. (QSTORE of to
is known, same as gs-
tore of complement be
approaching)

continued on next page
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Table 6.1 bottom-up parse, continued

Parser Action

Edge Added

Guards

RETRIEVED, QSTORE values
for VPto be approach-
ing is computed.
RETRIEVED value for VP to
be approaching is un-
blocked.

POOL value for VP appears
to be be approach-
ing is unblocked. (based on
QSTORE of head)
RETRIEVED, QSTORE values
for VP appears to be
approachingis computed.
RETRIEVED value for VP
appears to be ap-
proaching is unblocked.

(principles associated with
schemal fire here)

Description for mother com-
piled. Head daughter unified
with VP edge appears to
be approaching

a unicorn ap-
pears to be
approaching

POOL value for S a uni-
corn appears to be
be approaching is un-
blocked. (based on QSTORE
of head daughter)
RETRIEVED, QSTORE val-
ues for S a unicorn
appears to be ap-
proaching are computed.
RETRIEVED value for S
a unicorn appears
to be approaching is
unblocked.

continued on next page
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Table 6.1 bottom-up parse, continued

Parser Action Edge Added Guards

The implemented analysis of 119 returns the 6 possible parses described in
Pollard & Yoo (1997). These show quantifier retrieval for the quantifier associated
with a unicorn at each the following nodes in the parse trees in figure 6.3:

. at the verb phrase VP, approaching
. at the verb phrase VP3 be approaching
. at the verb phrase VP to be approaching

1
2
3
4. at the verb phrase VP, appears to be approaching
5. at the sentence node

6

. no retrieval; the quantifier is still in storage.

Retrieval at node VP, VP; or VP, corresponds with the narrow scope reading
of the sentence (it appears that there is a unicorn approaching) (appears(3(z)|uncorn(z)A
approach(z)). One such tree is shown in figure 6.3. Retrieval at S and VP; cor-
respond with the wide scope reading (there is a unicorn which appears to be ap-
proaching) (3(z)|unicorn(z) A appears(approach(z)). This tree is figure 6.4.

The grammar has been implemented so that lexical entries have a RETRIEVED
value of the empty list, so as to reduce spurious ambiguity, but retrieval at a lexical
verb (approaching or appears) is possible in the theory (Pollard & Yoo 1997). In
fact, Pollard & Yoo point out that retrieval is only possible at a lexical node in
the related analysis of Manning & Sag (1998). We have discussed the ambiguities
arising from this analysis in chapter 2. I add here that, while the implementation is
true to the original analysis, adjustments to retrieval sites could certainly be made.
For example, retrieval could be blocked on a phrase headed by a lexically vacuous
particle such as to (VPy).

6.3.3 Using Different Parsers

One significant advantage of guarded grammars is that they are blind to the partic-
ular parsing strategy being adopted. In test scenarios, two guarded HPSG gram-
mars for German and English were each evaluated by two different parsers, a



116 CHAPTER 6. IMPLEMENTATION AND EVALUATION

head_spr rule

(Mother, phrase, synsem:1loc: (cont :HeadCont, cat:comps:e_list),
retrieved:e_list,

head_dtr:synsem:1loc: (cont:HeadCont,gstore:HQStore))

%% Cannot structure share entire Head_dtr. Causes a

%% cycle since the two FS are reciprocal.

(SprDtr,phrase, synsem: (SprSynsem, loc:cat:comps:e_1list)),
(HeadDtr, phrase, synsem:loc: (cat:comps:e_list,
cont :HeadCont,
gstore:HQStore)),
goal> (head_feature_principle (Mother,HeadDtr),
inv_minus_principle (Mother),
valence_principle (Mother,HeadDtr, [],[], [SprSynsem]),
marking_principle (Mother, HeadDtr),
spec_principle (SprDtr, HeadDtr),
nonlocal_feature_principle (Mother, HeadDtr, [SprDtr]),
single_rel_constraint (Mother),
clausal_rel_prohibition (Mother),
relative_uniqueness_principle (Mother, [SprDtr,HeadDtr]),
conx_consistency_principle (Mother, [SprDtr,HeadDtr]),
deictic_cindices_principle (Mother, [SprDtr, HeadDtr])) .

Figure 6.2: ALE rule for a head plus its specifier.

bottom-up chart parser and a left corner parser, which uses a combination of top-
down and bottom up search. The chart parser fills in edges in the chart from right
to left and then goes back and parses from left to right. The left corner parser
works strictly from left to right, asserting mother categories of rules from the top
down once the leftmost daughter has been identified. However, this parser al-
ways works with respect to a list of top-down goals. The top-level code for the
left-corner parser is shown in example 120.

(120) % connect (+Cl:<cat> ,+C2:<cat>, +Ws:<words>, ?WsOut:<words>)
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S
sentence
QUANTS:( )
QSTORE:{ }
RETRIEVED:( )
POOL:{ }
np NP VP
osTore:{[ 1]} [VP . ]
[POOL:{} ] QSTORE:{ }
| /\VPz
a unicorn Vl vp
v QUANTS:()
QUANTS:() QSTORE:{ }
QSTORE:{ } RETRIEVED:()
| POOL:{}
appears .
Va
v vp
QSTORE:{} QSTORE:{}
POOL:{} POOL:{}
| T
to V3 VPy
v i vp
QSTORE:{} QSTORE:{}
pooL:{[1]} rooL:{[1]}
| |
be Va
[v
SUBJ:()
QSTORE:{}
i pooL:{[ 1]}

\
approaching

Figure 6.3: Derivation tree narrow scope reading, lexical quantifier retrieval (“de

dicto” reading). (Pollard & Yoo 1997: example 25)




118 CHAPTER 6. IMPLEMENTATION AND EVALUATION

S
sentence
QuanTs:{[1])
QSTORE:{ }
RETRIEVED: ([ 1])
pooL:{[1]}
/\
[2]vP VP
np vp
QSTORE:{} QsTORE:{[ 1]}
POOL:{} POOL:{}
!
a unicorn /\VP2
141 vp
v QUANTS:( )
QsToRE:{[1]} QsToRE:{[1]}
pooL:{[ 1]} RETRIEVED:( )
| pooL:{[ 1]}
appears .
Va2
v vp
QsTORE:{[ 1]} QsTorE:{[ 1]}
POOL:{} POOL:{}
| T
to Vs VP4
v " vp
QSTORE:{} QSTORE:{}
PO0L:{} PO0L:{}
| S
be V4
i v
SUBJ:()
QsTorE:{[ 1]}
pooL:{[1]}

approaching

Figure 6.4: Derivation tree for wide scope reading, lexical quantifier retrieval (“de

re” reading) (Pollard & Yoo 1997: example 26)
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lc_rec (TagOut-SvVsOut, [W|Ws],WsOut) : —
lex (W, Tag, SVs),
connect (Tag-SVs, TagOut-SVsOut,Ws, WsOut) .

connect (Tag—-SVs, TagOut-FSOut, Wsl,Ws2) :—
deref (Tag, SVs, Tag2, SVs2),
connect2 (Tag2,SVs2, TagOut-FSOut, Wsl,Ws2) .

connect2 (Tag, SVs, Tag—-SVs, Ws, Ws) .

connect2 (Tag, SVs, TagOut—-SvVsOut, Ws,WsOut) :-
rule (Tag, SVs, Ws,WsMid, Tag2-SVs2),
connect2 (Tag2,SVs2, TagOut-SvsOut, WsMid, WsOut) .

The 5-place predicate rule calls a phrase structure rule. More interesting
is the way in which rules are compiled. We use the same phrase structure rules
with both the chart parser and the left corner parser. First the leftmost daughter is
compiled; then the mother is compiled; then a left corner search proceeds on the
rest of the daughters. Therefore, the mother category in a rule is compiled from
a description before the search is performed on the rest of the daughters. The
code for the compilation of the rules is for each of the two parsers is provided in
Appendix C. Search on the left-corners proceeds in a depth-first fashion. Recall
the way in which rules are compiled the chart parser, such that the mother is the
last of the feature structures in a rule (among mother, daughters) to be compiled.
Guards are still attached in the left corner case once the feature structure has a
type associated with it, even though much of the basic information is missing at
first. So the guards are in fact established in a very different order, though they
become unblocked in the same order as before.

We look at the example of quantifier raising in English to note the different
orders in which the signs are guarded using the two different parses. In the case of
the chart parser, edges are entered into the chart in the following bottom-up order
for the example we have been following, A unicorn appears to be approaching:

1. VP4 approaching

2. VP3 be approaching

3. VP to be approaching

4. VPy appears to be approaching
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5. NP a unicorn

6. S node a unicorn appears to be approaching

Each time a verb phrase is entered into the chart, the value for its RETRIEVED
feature is guarded, depending ultimately upon the outcome of its POOL. Its POOL
in turn cannot be determined until the subject NP a unicorn is parsed and con-
nected via subject-verb agreement to the VP, node. Each sub-VP then inherits its
subject from its mother, and then can determine its POOL.

In the left corner scenario, phrasal signs are instantiated for the sentence con-
stituents in this order instead:

NP a unicorn

S node a unicorn appears to be approaching
VP, appears to be approaching

VPs, to be approaching

VP3 be approaching

AN e

VP, approaching

The RETRIEVED values for the verb phrases are guarded in a reverse order
from the chart parser, but the unblocking of the guards proceeds in exactly the
same order. In the case of the chart parser, information proceeds from the head
up to the mother, which is the last edge produced. In the left-corner scenario,
the RETRIEVED value for the S node, although established early, must wait until
the VP,, the smallest VP, has been parsed. This completes the subcategorization
list of each parent VP node up the tree. Once the subcategorization list for the
sentence node is completed, then the POOL can be determined, and the guard on
the RETRIEVED value is unblocked. Since a phrase inherits its POOL value from
the QSTORE of its head in the theory, information percolates upward in both cases,
regardless of the order in which the trees or edges are established.

The use of guarded rules did not cause differences in the set of answers re-
turned by the parsers. In both cases, the same complete set of answers is obtained
for auxiliary raising and quantifier scoping. It is noted that in the case of Ger-
man, the use of a right corner parser may be preferable to parse verb phrase rules
anchored on the right by a head verb.

We show the parsing order for the left corner parser in table 6.2.
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Table 6.2: Trace of quantifier retrieval, using left corner

parser
Parser Action Rule Completed Guards
lexicon a

schema?2 a

lexicon unicorn

schema? unicorn

head_spr rule fires; first
daughter and mother are
compiled.

Parser called recursively on
second daughter.

Principles fire; spec_principle

fires. Determiner iden-
tified as specifier of N
bar. RESTIND:INDEX

value for unicorn is found

(PER:THIRD,NUM:SING,GEN:NEUT)

POOL value for Detp a is un-
blocked.

POOL value for N bar uni-
corn is unblocked.

POOL value for N unicorn
is unblocked.

POOL value for det a is un-
blocked.

Rest of principles fire.

N bar identified as head
daughter and QSTORE values
are unified.

a unicorn

POOL value for NP a uni-
corn is unblocked.

Rule schemal fires with
first daughter a unicorn
is connected. Mother is
compiled. Left-corner parser
is called on head daughter.
lexicon

Rule schema? fires

appears

continued on next page
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Table 6.2 left-corner parse, continued

Parser Action Rule Completed Guards

lexicon to

Rule schema? fires

lexicon be

Rule schema? fires

lexicon approaching

schema?2 approaching

schema?2 be approaching

schema?2 to be approach-
ing

schema?2 appears to be
approaching

in schemal, subject daugh-
ter is unified with subject of
head daughter. SUBCAT value
for verb approaching is
unblocked.  (since subject
found)

POOL value for verb ap-
proaching is computed.

POOL value on verb ap-
proaching is unblocked.
POOL value for VP ap-
proaching is unblocked,
by unification
RETRIEVED, QSTORE values
for VP approaching is
computed.
RETRIEVED value for VP
approaching is  un-
blocked.
POOL value for VP be ap-
proaching is unblocked.
RETRIEVED, QSTORE values
for VP be approaching
is computed.

continued on next page
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Table 6.2 left-corner parse, continued

Parser Action

Rule Completed

Guards

RETRIEVED value for VP
be approaching is un-
blocked.

POOL value for VP to
be approaching is
unblocked.

RETRIEVED, QSTORE values
for VPto be approach-
ing is computed.
RETRIEVED value for VP to
be approaching is un-
blocked.

POOL value for VP appears
to be be approach-
ing is unblocked.
RETRIEVED, QSTORE values
for VP appears to be
approachingis computed.
RETRIEVED value for VP
appears to be ap-
proaching is unblocked.
POOL value for S a uni-
corn appears to be

be approaching is
unblocked.
RETRIEVED, QSTORE

values for S a uni-
corn appears to be
pproaching are computed.
RETRIEVED value for S
a unicorn appears
to be approaching is
unblocked.

continued on next page
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Table 6.2 left-corner parse, continued

Parser Action Rule Completed Guards
(principles associated with a unicorn ap-—
schemal fire here) pears to be

approaching

Although a top-down parser has not been implemented, we can show in the
same manner how the blocking and unblocking of contraints would proceed with
a top-down search. The guards on the POOL value at the topmost S node would
be established right away and would wait once again for information to percolate
all the way up from the lexical entry for the verb approach, which would be one
of the last tree nodes to be instantiated. The guards on the SUBCAT value for
that verb would fire immediately because the noun unicorn, its subject argument,
would already have been found. This is the reverse case from the bottom up parse
in table 6.1, where the guards on approach must wait through much of the parse.
Not shown in this table is the interaction between the guards and the principles of
the theory, which are written as definite clause goals attached to phrase structure
rules. These principles might have to be guarded themselves, since they have been
written assuming fully instantiated daughters.

Table 6.3: Outline of quantifier retrieval, using top down

parser
Parser Action Rule Completed Guards
Rule schemal fires. Motheris S — NP VP guard established on POOL
compiled. value of entire sentence. In

schemal, subject daughter is
unified with subject of head
daughter.

top-down parser is called on

subject NP

head_spr rule fires; mother is NP — DetP NP

compiled. N bar identified

as head daughter and QSTORE

values are unified.

schema?2 a

continued on next page
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Table 6.3 top-down parse, continued

Parser Action Rule Completed Guards

lexicon a

schema?2 unicorn Determiner identified as spec-
ifier of N bar.

lexicon unicorn RESTIND:INDEX value
for unicorn is found
(PER:THIRD,NUM:SING,GEN:NEUT)
POOL value for Detp a is un-
blocked.
POOL value for det a is un-
blocked.
POOL value for N bar uni-
corn is unblocked.
POOL value for NP a uni-
corn is unblocked. (not sure
if before or after N)
POOL value for N unicorn
is unblocked.

a unicorn

schema? VP — V VP

lexicon appears

schema?2 VP — V VP

Rule schema? fires

lexicon to

schema? VP — V VP

lexicon be

schema?2 VP —V

lexicon approaching SUBCAT value for verb ap-—

proaching is unblocked
right away (since subject
found)
POOL value for verb ap-
proaching is computed.
POOL value on verb ap-
proaching is unblocked.
continued on next page
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Table 6.3 top-down parse, continued

Parser Action

Rule Completed

Guards

POOL value for VP ap-
proaching is unblocked.
RETRIEVED, QSTORE values
for VP approaching is
computed.
RETRIEVED value for VP
approaching is  un-
blocked.
POOL value for VP be ap-
proaching is unblocked.
RETRIEVED, QSTORE values
for VP be approaching
is computed.
RETRIEVED value for VP
be approaching is un-
blocked.
POOL value for VP to
be approaching is
unblocked.
RETRIEVED, QSTORE values
for VPto be approach-
ing is computed.
RETRIEVED value for VP to
be approaching is un-
blocked.
POOL value for VP appears
to be be approach-
ing is unblocked.
RETRIEVED, QSTORE values
for VP appears to be
approachingis computed.
RETRIEVED value for VP
appears to be ap-
proaching is unblocked.
continued on next page
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Table 6.3 top-down parse, continued

Parser Action

Rule Completed

Guards

POOL value for S a uni-
corn appears to be

be approaching is
unblocked.
RETRIEVED, QSTORE

values for S a uni-
corn appears to be
pproaching are computed.
RETRIEVED value for S
a unicorn appears
to be approaching is

unblocked.

6.4 Detecting Inequations

Our next example, that of binding in Japanese, shows how one can use guards to
solve for inequations. Inequations can appear anywhere that descriptions can ap-
pear. This might be in constraints, lexical descriptions, and phrase structure rule
descriptions. There are two cases of inequation to consider. One is the case of
semantic disentailment, which of the two is somewhat easier to understand. If a
feature structure and a description do not unify, then disentailment is proven, and,
in turn, inequality is proven as well. The other is the case where two feature struc-
tures have identical values but are not considered token identical. That is, they
must be assigned an inequation to be understood as separate objects. By associ-
ating an inequation between feature structures, one is stating that they should not
be seen as the identical object, that is, never unified. The former case of semantic
disentailment is handled as the negation of the case of semantic entailment de-
scribed in the previous section. The procedure for proving semantic disentailment
simply returns true if the satisfies procedure for adding descriptions returns
false. The procedure for determining an isomorphism in example 104, however,
eagerly unifies tags if they can in fact be unified, which is the step Type(F}) =
Type(F5), using Prolog =.

For the case of semantic disentailment, the user can choose either to eagerly
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unify (causing token identity) or not. If unification is not done, then one continues
to wait until there is enough information to disprove isomorphism. Only then can
an inequation be proven. Otherwise, inequation as defined by token inequality is
still a possibility. The case of delaying on semantic entailment does not explicitly
cover the case of token inequality. The routine for isomorphism can only indicate
either that semantic entailment has occurred, or that the tags of the two feature
structures have already been unified. Then the program must then handle token
inequality by separate means.

When an inequation appears in a description, the compiler compiles that as as
a call to the not _satisfies predicate, which fires when the description is en-
countered the first time during processing. An example of a description containing
an inequation from the “zebra puzzle,” which accompanies the ALE package, is
given in 121. These constraints, all associated with the type background, indi-
cate that the nationalities, pets and beverages of the owners of three houses are all
distinct.

(121) Inequational constraints from the “zebra puzzle:”

background cons
(housel:nationality:N1,
house2:nationality: (N2, (=\= N1)
house3:nationality: ((=\= N1), (=

),
\= N2)),
housel:animal:Al,

house2:animal: (A2, (=\= Al)
house3:animal: ((=\= Al), (=

),
\= AZ)),
housel:beverage:Bl1,

house2:beverage: (B2, (=\= Bl)
house3:beverage: ((=\= Bl), (=

[

)
\= B2))).
}

The compilation of one of these descriptions, e.g.
(=\= N1)

for the nationality of the resident of house 1, looks as follows in the context of the
compiled type constraint for the type background:

(122) Compilation of Inequations (simplified):
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typecons_background (bot, SVs, Tag) : —
featval (housel, SVs-Tag, Housel
featval (nationality,Housel, N1
featval (house2, SVs-Tag, House?2
featval (nationality,House2,N2
not_satisfies (N1,N2, []),

r
14
r

)
)
)
)

14

typecons_backgroundis a list of the type constraints for the type back -
ground as applied to the feature structure Tag—-SVs. The predicate featval
has three arguments, a feature name, a feature structure, and the value of the fea-
ture for that feature structure. The inequation is compiled into the not _satisfies
predicate. The third argument of not _satisfies is for passing along any de-
layed goals that may have been acquired during compilation. In this example,
there are none, hence the empty list []. A more detailed example of compiling
out inequational descriptions follows next section. This is the example of lexical
binding.

6.4.1 Binding and the Japanese Causative

In Manning & Sag (1998) the argument structure of a lexical entry is proposed
as the site of variable binding. This is a revised notion of performing binding
on the SUBCAT (subcategorization) list of Pollard & Sag (1992); Pollard & Sag
(1994). I implement binding theory using delayed evaluation of constraints on the
INDEX values of the members of the argument list. In such an implementation
delaying over feature structures may be explored in some detail. One reason bind-
ing is a good test case is because of the variables embedded within the arguments.
Another is that this example calls for a strategy for evaluating inequations, as was
pointed out by Penn (1993). We will use the strategy for handling inequations
introduced in section 6.4.

The Japanese causative as described in (Manning et al. 1999) is an interesting
test case for binding constraints because there are two possible co-referents for
zibun-zisin, the long distance reflexive anaphor, as in example 123. zibun-zisin
can be co-referenced with either the subject of the causative, the person named
Taroo or the subject of the embedded predicate, the person named Ziroo.

(123) Taroo; ga  Ziroo; ni  aete zibun-zisin;/; 0 hihan  s-ase-ta.
Taroo NOM Ziroo DAT purposefully self ACC criticism do-CAUS-PAST
‘Taroo purposefully made Ziroo criticize himself.” (Kitagawa 1986:92)
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"word i
[ synsem

[local

[ category

verb ]

HEAD: VFORM:bse

SUBJ:(IINP;) —
COMPS:([2]N Py)
content

CAT:

LOCAL:

transitive-relation
NUCLEUS: | ACTOR:j
UNDERGOER:k

[word
ARGUMENT-STRUCTURE:([4], 1], (PROj, [2]))
[ synsem

CONT3]

[local
[ category
verb ]

HEAD \ EORM:bse

SUBI: (4N P;)

LOCAL: | comps:([1], [2)
content

CAT:

causing

CONT: ACTOR:?

NUCLEUS:| UNDERGOER: J

EFFECT 3]

Figure 6.5: Causative lexical rule for Japanese. A causative verb form is derived
from a transitive, base form verb. The actor in the transitive action becomes the
undergoer in the causative action, and the entire content of the transitive verb is
embedded as the content of the causative verb.



6.4. DETECTING INEQUATIONS 131

A lexical rule, shown in figure 6.5, derives the causative form of a verb from
the base form of a transitive verb with the semantic roles of an ACTOR and an UN-
DERGOER. The ACTOR of the input verb is co-referenced with the UNDERGOER
of the causative output verb. This means that the object of the input verb, indexed
with k, can be co-referenced with either the subject of the causative /N P; or with
the subject of the embedded verb N P;. The EFFECT of the output verb is structure
shared with the semantic content of the input verb. This content is an embedded
predicate in the semantics of the whole causative predicate. A subject of type
noun or personal_pronoun must not have the same index as a noun or personal
pronoun which is more oblique on the argument list of the causative. This includes
nouns and pronoun objects in the embedded predicate. In example 123, Taroo and
Ziroo must not be co-indexed.

A set of binding constraints is realized as a definite clause constraint on the
ARG-ST list of the lexical head of a phrase. The subject of the causative must
satisfy the description in example 124; that is, it must be either a non pronoun
(npro or a personal pronoun, and its index value must not be identical to the index
value of the embedded argument. The variable Ind refers to that index value.

(124) loc:cont: ( (npro;ppro),index: (=\= Ind))

The complete binding constraints appear in example 125. if _guard is the
implementation of definite clause if with a feature structure (Subj) specified,
and a description as the constraint on which to guard (example 124). The first
clause is guarded, and the second is not.

(125) a. check_binding(Subj, [ (Ref, loc:cont: ((npro;ppro), index:Ind)) |Rest])
if_guard
Subj guard loc:cont: ((npro;ppro),index: (=\= Ind)) then_else_fail
check_binding (Subj, Rest) .

b. check_binding((Subj, loc:cont: ( (npro;ppro),index:Ind))
[loc:cont: (ana, index:Ind) |[Rest]) if
check_binding (Subj, Rest) .

The indices of the subject and the embedded argument are inequated. This
means that a guard waits on the feature structure for the subject to satisfy the de-
scription in example 124, at which point co-reference between the two indices can
be disproved. Then, any waiting goals are fired, which in this instance amounts to
recursively checking the reference of the subject (its INDEX value, 7)) with any re-
maining arguments to the right. No guarding is needed to co-reference the subject
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and any embedded anaphor (e.g. zibun-zisin). This is achieved via unification,
associating each with the variable Ind in the second clause.

Guarding is used to wait until we can disprove that two feature structures are
the same. This is the way the system solves inequations. Search is done top-
down (or outside-in), depth-first in proving or disproving an isomorphism. If
at any point the two feature structures do not unify, the isomorphism fails, and
satisfaction is disproved.

6.4.2 Inequation and Token Identity

Implementing example 123 raises for discussion the distinction between token iso-
morphism and token identity. In particular, the index values of the two masculine
nouns Taroo and Ziroo are the same, even though Taroo and Ziroo are understood
to be different people, and hence different “linguistic objects.”

The semantic index for the noun in both cases is this:

(126) cont: (npro, index: (ref, Ind,
gen:masc,
per:third
num:sing))

This raises the question of how to indicate that the two are inequated. Waiting
to prove distinctness of the index values will not help in this case. There are some
alternatives:

1. Look outside the index values to see whether the complete feature structures
are identical.

2. Assign unique meta “indices” to the index values to indicate that they are
distinct. This would be analogous to assigning the i, j, k subscripts used in
theoretical linguistics. (examples 127 and 128)

3. Assume token inequality unless token equality can be proven via prior uni-
fication (example 130).

The first solution may not be generalizable in all cases, and so it has not been
considered in this implementation. Both the second and third suggestions have
been tried. The second solution, of assigning indices, is a grammar change which
is transparent to the machinery of guarding. Lexical representations are shown in
examples 127 and 128. Use of these indices does return a semantic disentailment.
In this case, it is up to the grammar writer to assign unique indices to the nominals
in the lexicon. This is only an approximation for knowing the object that a noun
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actually refers to in a discourse context, and so use of this method is discouraged.
For example, there may be more than one person named Taroo in the room, in
which case one would need two different lexical entries.

[local
(127) npro
CONTENT: ref
INDEX:[3] UNIQUE:i
[local 1
o .
(128) PP
CONTENT: re
INDEX{4] UNIQUE:j]

The third solution is a more generalizable solution and has been implemented
as an alternative version of the not _satisfies procedure. The linguist could
perhaps indicate via a switch whether to assume that token inequality holds or
token identity holds as a default for feature structures which are unifiable. This is
an issue for further study.

The difference between the two versions is subtle. The first (129) attempts to
find an isomorphism between description Desc and feature structure Tag-SV's
by passing a return value of 'fail.” The call to iso (example 104) is implicitly
guarded. not _satisfies will succeed as long as iso does not know enough
to return t rue. The goals will be solved as long as the initial call succeeds. The
pruning step simply rewrites goals in an easier to solve form, based on new in-
formation which might have been learned about the variable arguments. If the
initial call eventually fails, then the goals will be retracted during backtracking.
The point here is that if enough information is not gained, there may not be back-
tracking. The second version (130) passes the guarded goals Gs to iso. They
will only be executed when the isomorphism is disproved. Otherwise, they will
remain guarded.

(129)

o

this version is eager; as long as two feature
structures are still not proven isomorphic,
the guards are solved. In some linguistic
instances, that might be preferable if some
values are generally never going to be
instantiated

not_satisfies (Desc,SVs2,Tag2,Gs) :-

iso (Desc, Tag2-SVs2, [], fail),

o o0 d° o° oo o°

o o° o° o° oe
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prune (Gs, Gsout

)y
solve (Gsout). %% since you may still be waiting.

(130) %% this version is "true" delaying; don’t solve Gs
%% until you’re sure whether two FS are isomorphic
not_satisfies (Desc, SVs, Tag,Gs) :—

iso(Desc,Tag-SVs,Gs, fail).

The implemented solution (130) correctly finds two possible co-referents for
zibun-zisin, the long distance reflexive anaphor. The code for iso is in Ap-
pendix A. zibun-zisin can be co-referenced with either the subject of the causative
or the subject of the embedded predicate. The two results show the object of the in-
put verb, indexed with k, co-referenced with the subject of the causative N P; and
with the subject of the embedded verb NV P;. The example of Japanese presents a
case in which specific indices for gender, number and person were not explicitly
assigned by the grammar, and so the feature values for the feature INDEX were
unresolved. The program can either assume uniqueness of all instances or unify
all instances that have not had uniqueness disproved. Another possible solution
would be to use default values, and to assume a default value for features which
are waiting on a value that is never set. This is a way of breaking “deadlocks”
which occur when constraints are waiting on each other, and do not fire. Other
ways to break deadlocks would be to start e.g. a breadth-first search.

6.4.3 Related Work

One alternative to the above implementation of binding is a publicly available
implementation of the HPSG binding theory is the teaching grammar available as
part of the Linguistic Grammars Online Project (LinGO) at Stanford University
(Copestake 1992; Copestake et al. 1999). The grammar is an implementation of
the textbook grammar of Sag & Wasow (1999). This grammar implements the
Anaphoric Agreement Principle, which is paraphrased thus:

Principle A states that an [ANA +] synsem-struc must be out ranked
by a co-indexed synsem-struc’ and B that ’An [ANA -] synsem-struc
must not be.” ... co-indexed elements share the same AGR value.

The grammar is apparently a brute force implementation of binding constraints.
Nine possible instantiations of the binder and bound arguments are handled by
rules, and these rules apply to a type of word, prior to the application of grammat-
ical rules. These rules are provided in Appendix D. They perform the same basic
function as the check binding constraints in 125.
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Rules for argument realization are applied at the same point as the bind-
ing rules. These rules set up the correspondence between the arguments on the
ARG-ST list and the SUBJ, COMPS, and SPR lists. There is also a set of GAP rules
which account for the correspondence between items on the ARG-ST list and ex-
tracted elements on the GAP list. This a situation analogous to the complement
extraction example in chapter 5. A few examples are shown in figure 6.6. It is not
a surprise that both the binding rules and the GAP (complement extraction) rules
are commented out, with notes about performance and the “virtual unreadability”
of the parse chart, because of a proliferation of entries. The approach used in
this grammar is a dead-end, as its writers have found. Problems are due to the
adoption of the “brute force” strategy outlined in chapter 2.6.1. Search time is
increased due to an increase in possibilities that will never be needed. This is par-
ticularly obvious with bottom-up parsing. With a top-down parser, the grammar
rule selected for a verb phrase will impose constraints on the lexical entry for the
verb which heads the rule. Some search will come into play in deciding which
of the many lexical entries is consistent with the constraints in the grammar rule,
but it may be minimal, if lexical entries are indexed. In top-down parsing, the
movement of the above-mentioned argument-realization and binding constraints
to the point of selecting the lexical entry would be ideal, which is essentially what
happens with the guarded approach we present in this chapter.

6.5 Comparison with Other Methods

In chapter 2 we introduced three different methods that might be used for eval-
uating underspecified arguments in the absence of guarding. These were brute
force, accomodation, and control. Brute force is the explicit expression of the
constraint to be satisfied via instantiation of all its possibilities. Accomodation is
hand-coded software or grammar changes, to account for anticipated problems.
Control is stating constraints where they optimally occur. We return to these here
and compare their performance with the performance of guarding.

6.5.1 Brute Force

We have looked at the implementation of lexical binding in the case of the Japanese
causative.
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arg_real-principle-GAP2 := word+targ_real &
[ SYN [ HEAD #head,
SPR #spr,

COMPS < #1 >,

GAP <! #2 !> 71,
SEM #sem,
ARG-ST #arg-st,

ARGS < word+arg_real & [ SYN [ HEAD #head,
SPR #spr,
COMPS < #1, #2 >,
GAP <! !> 171,
SEM #sem,
ARG-ST #arg-st] > 1.

arg_real-principle-GAP2b := word+arg_real &
[ SYN [ HEAD #head,
SPR #spr,

COMPS < #1, #3 >,

GAP <! #2 !> 7],
SEM #sem,
ARG-ST #arg-st,

ARGS < word+arg_real & [ SYN [ HEAD #head,
SPR #spr,
COMPS < #1, #2, #3 >,
GAP <! !> 17,
SEM #sem,
ARG-ST #arg-st] > ].

Figure 6.6: Excerpt from a teaching grammar which shows lexical overgeneration.
The rules are two of the realizations of a complement (#2) from the COMPS list
in the GAP position (topicalized). Later, the authors revise the rules so that the
extracted complement is identified with type topic. (Callison-Burch & Guffey
1999).
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(131) do-CAUS-PAST Taroo; ga  Ziroo; ni  aete zibun-zisin; /j o hihan  s-ase-ta.
Taroo NOM Ziroo DAT purposefully self ACC criticism
‘Taroo purposefully made Ziroo criticize himself.” (Kitagawa 1986:92)

One can compare the results for guarding on this example with the “brute
force” method of listing all possible lexical instantiations. Because inequations
can be handled without delays, the Japanese example, as is true of all of the ex-
amples presented here, does not require delays to be parsed properly. However,
a naive implementation of this same grammar without delays may result in 20
lexical entries for the 3-place causative, reflexive verb hihansaseta.® This number
of entries corresponds with the legal permutations of personal pronoun, noun, and
reflexive anaphoric pronoun in a 3-place predicate, as shown in example 132. This
is the case where all of the possible binding relations are compiled out in advance,
rather than waiting to apply the relations after the binder and bound objects have
been located. Disjunctions between a personal pronoun and a noun, for example,
are compiled out. The parse time on this example is greatly reduced with the re-
duction in the number of lexical entries, due to the reduction in local ambiguity.
Table 6.4 shows binding facts result in 22 lexical entries (no delays) vs. 2 (with
delays). The corresponding run time is 2.5 sec. (no delays) v .54 sec (delays) on
a SPARC 5 (only 21% of the former time).

(132) noun noun noun
noun noun pron
noun noun; ana;
noun pron noun
noun pron pron
noun pron; ana,
noun; ana; noun
noun; ana; pron
noun; noun ana;
noun; pron ana;
pron noun noun
pron noun pron
pron noun; ana;
pron pron noun
pron pron pron
pron pron; ana;

The actual test grammar resulted in 22 lexical entries.
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pron; ana; pron
pron; ana; noun
pron; noun ana;
pron; pron ana;
noun ana ana
pron; ana ana
pron; ana; ana

Table 6.4: Parse time for the Japanese causative verb hi-

hansaseta
Guards Num lexical entries Parse time
no 22 2.5 sec
yes 2 .54 sec

The final version of the binding constraint implemented with delays is given
in figure 6.5.1. The difference between this version and the version discussed
in the previous chapter is that here, there is no guarding in the definite clauses
themselves. All of the guarding takes place on the index values in the lexical en-
try, in the style of the German auxiliary raising example. The lexical rule for the
causative with guarding added is in figure 6.5.1. Inequations continue to be im-
plicitly guarded. Therefore the binding constraint is independent of the lexicon,
and may be shared by two different test grammars. In a grammar without delays,
in order to avoid a proliferation of lexical entries, the constraint must be threaded
by hand after the verb arguments have been parsed. Two lexical entries are pro-
duced in the guarded version due to having a disjunctive description in the guard.
The guard fires when it is known whether the index value of the subject belongs
to either a non-pronoun or a pronoun.

(133) Subj guard loc:cont: (npro;ppro)

6.5.2 Accommodation

The German example of partial verb phrase fronting is parsed by attaching guards
onto a lexical entry. A variety of methods may be used to parse this grammar
without guarding. The most effective technique in this case is accommodation.
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check_binding(e_list) if true.

check_binding([SubjlRest]) if
check_binding (Subj, [],Rest).

check_binding (Subjl,Prevs, [ [Subj2|Tail2]]) if
(check_binding ([Subj2|Tail2])

check_binding(Subjl,Prevs,Tail2)).

check_binding ((Subj, loc:cont: ( (npro;ppro),index:Ind))
,Prevs,
[loc:cont: (ana, index:Ind) |[Rest]) if

check_binding (Subj,Prevs,Rest) .
check_binding(loc:cont: (npro;ppro),_,e_list) if true.

check_binding (Subj,

Prevs,

[ (Ref,loc:cont: (npro;ppro)) |[Rest]) if
not_bound (Ref,Prevs),
check_binding (Subj, [Ref|Prevs],Rest).

not_bound ( (Ref, index:Ind), [index: (=\= Ind) |Rest]) if
not_bound (Ref,Rest) .

not_bound (_Ref,e_list) if true.

Figure 6.7: Lexical binding constraints as a Prolog definite clause. The disjunction
in the third clause accounts for the fact that the objects in an embedded predicate,
such as is found in the causative form, may be bound by either the subject of the
embedded clause or the subject of the embedding clause.
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causative lex_rule
(word,
synsem: (loc: (cat: (head: (verb,
vform:bse,
aux:minus),
subj: [StemSubijl,
comps: [StemObijl),
cont: (Cont,nucleus: (transitive_reln,actor:Indj)),
conx:Conx),
non_loc:NL),
gstore:QStore,
gretr:QRetr)
* ok k>
(word,
arg_struct: (Arg_struct, [Subj,
StemSubj,
[ (@ np(Indj),loc:cont:ppro),StemObijl]l),
synsem: (loc: (cat: (head: (verb,
vform:bse,
aux:minus),
subj: [ (Subj,@ np(Indi))],
comps: [StemSubj, StemObj],
spr:[1),
cont:nucleus: (causing,
actor:Indi,
undergoer:Indj,
effect:Cont),
conx:Conx),
non_loc:NL),
gstore:QStore,
gretr:QRetr)

if _guard
Subj guard loc:cont:nom_obj then_else_fail
check_binding (Arg_struct)

morphs
X becomes (X,s,a,s,e).

Figure 6.8: Causative lexical rule in Japanese (ALE version), showing guarding
on the subject argument of a verb (Sub j) before the binding constraints fire.
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One way to address the problem of non-termination is to prescribe a limit on
the length of the complements list of a verbal head. This is added to the PVP
lexical rule in the naive implementation of PVP fronting introduced in chap-
ter 2. (The lexical rule is repeated here as figure 6.9 for convenience.) The
lexical rule in figure 6.9 avoids an infinite depth-first search with the relation
three_or_less (PVPComps). Under the guarded approach, this relation dis-
appears. This is because the complements of the partial verb phrase, PVPComps,
are guarded until all complements have been found. The conditions attached to
the lexical rule are simplified as well by assuming that auxiliary raising is a sep-
arate constraint. The guarded lexical rule, discussed in chapter 5, is shown as
figure 6.10.

We find that the naive grammar in figure 6.9 introduces 10 lexical entries for
the base form of each auxiliary, each of which generates inflected forms. A dif-
ferent, less ambiguous way to use accomodation in this lexical rule is to put con-
straints on the types of arguments a PVP may have, before it takes it arguments.
e.g. check_phrasal and check_nominal in 134 are requirements on the
types of the members of the complements list of a partial verb phrase, to reduce
the overgeneration of a brute force method. Performance of both of these gram-
mars is reviewed in the following section.

(134) check_nominal ([]) if
!, true.
check_nominal ([loc:cat:head: (noun;prep) | Synsems]) 1if

check_nominal (Synsems) .

check_phrasal([]) if
!, true.
check_phrasal ([loc:cat:lex:minus|Synsems]) if

check_phrasal (Synsems) .

6.5.3 Control via Ordered Rules

The guarded approach is in general a move toward abstraction, of attaching a
principle to a type, and away from a position in the grammar where the principle
applies. It is thus a move away from attaching ordered conditions on phrase struc-
ture rules. For example, the only way to handle the German example of raising
by auxiliary without delaying the constraint is to hand-thread the constraint on
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%% % Partial Verb Phrase Fronting Rule
pvp lex_rule
(word,

subcat: [Subj|0OldComps],
synsem: (loc: (cat: (head: (Head, verb,vform:bse, aux:plus, flip:minus),
subj: [Subj],
comps:01dComps) ),
non_loc: (inherited: (slash:01dSlash))))
* k>
(word,
subcat: [Subj|SubcatComps],
synsem: (loc: (cat: (head:Head,
subj: [Subj],
comps :PVPComps) ,
cont:Cont),
non_loc: (inherited: (slash: (elt: (PVP, cat: (head: (verb,vform:bse),
lex:minus,
subj: [Subj],
comps :PVPComps) ,
cont:Cont),

elts:01dSlash)))))
%% The next line is key

[
H

(append (VComps, [ (loc:cat: (head: (verb,viorm:bse),
lex:plus,
comps :VComps, subj: [Subjl)) ],
OldComps),

three_or_less (PVPComps),

append (PVPComps,
[(loc:PVP,non_loc: (inherited: (slash: (elt:PVP)))) 1,
SubcatComps)

Figure 6.9: PVP rule — naive implementation
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pvp lex_rule
(word,
synsem: (loc: (cat: (head: (Head,
verb,vform:bse, aux:plus, flip:minus),
subj: [Subj],
comps :PVPComps) ,
cont:Cont),
non_loc: (inherited: (slash:e_set)))),

* kx>

(word,
subcat: [Subj|SubcatComps],
synsem: (HeadSyn,
(loc: (cat: (head:Head,
subj: [Subj],
comps :PVPComps) ,
cont: (Cont,nucleus:modal_arg:Prop)),
non_Jloc: (inherited:
(slash: (elt: (PVP,
cat: (PVPHead,
head: (verb,vform:bse),
lex:minus,
subj: [Subijl,
comps :PVPComps) ,
cont:Prop),
elts:e_set)))))),

if _guard
Prop guard nucleus:relation then_else_fail

(append (PVPComps,
[ (loc:PVP,
non_loc: (inherited: (slash: (elt:PVP)))) 1,
SubcatComps) ,
aux_raising (HeadSyn, PVPComps, Subj))

Figure 6.10: Partial verb phrase fronting as guarded lexical rule.
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extracted complements through the grammar, such that it fires at the appropriate
time, that is once the auxiliary, matrix verb and complements have been identified.

In the example of quantifier raising with local quantifier storage, the semantics
principle is used to illustrate how one can guard on a specific type in the grammar,
in this case, on phrases with verbal heads. But it is not necessary to make the
unification of the content values on the mother and semantic head daughter in
this principle be a type constraint, much less a guarded one. It is possible to
unify these directly in the head-complement phrase structure rule. And so the
semantics principle can be divided into portions which are guarded and portions
which are not. This departs from a “pure” implementation, in which the principle
is implemented as a single constraint, but performance needs to be considered.

There are different ways to implement constraints on types. In a grammar with
phrase structure rules, it is possible to build some constraints between a mother
and its head directly into the rule itself. Guarded constraints are appropriate for
situations where there are several arguments which contribute information to a
head which subcategorizes for them, and there may be quite a distance between
that head and one or more of those arguments. Especially in a binary branching
grammar, it is not transparent how to apply a constraint across multiple arguments
within the context of a single rule. They can instead be attached to the sort which
is the type of the mother node of the rule.

Guarded constraints are only as effective as the conditions on which the con-
straints are blocked. The verb raising example points out a problem with early or
late unblocking of guarded constraints. In the sentence

(135) Wird Kim Sandy sehen konnen?

the system waits to evaluate the arguments of werden until all have been found.
Since konnen is also an auxiliary verb, its semantics are not known until it has
found its own arguments. An unforeseen interaction occurs if the constraint which
triggers auxiliary raising has not been unblocked at the time that the first auxiliary
werden encounters konnen as a possible argument. The parser attempts to use
PVP-slashed versions of both werden and konnen in a parse of example 135. The
SLASH values of the two auxiliaries are unified as the Non-local Feature Principle
is executed, since they are consistent. As a result, the first auxiliary is seen as sub-
categorizing for itself, since it subcategorizes for anything that the PVP in SLASH
subcategorizes for. An infinite cycle results. The solution to this problem is to
change the conditions on unblocking. The generality “all arguments are known”
means knowing the key facts about each element, generally, either syntactic head
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features or semantic state of affairs. In this example, the constraint on auxiliary
raising can, and should, fire instead as soon as syntactic features are available.

Sentences in table 6.5 are shown parsed with four grammars: a “naive” gram-
mar with the accomodation strategy in figure 6.9; a grammar with auxiliary raising
as a separate constraint but without guarding; the same grammar with guarding;
and an “ideal” grammar with constraints added to the lexical rule for partial verb
phrase fronting, to reduce the ambiguity that results from overgeneration by this
rule. The constraints added are that the complements of the PVP must be phrasal
and that they must be nominal. The PVP lexical rule for this grammar is shown in
Appendix E.

Table 6.5: Parse times (in msec) for argument raising by aux-

iliary
Sentence Naive Un- Unguarded Guarded Threaded
guarded
Sandy sieht Kim. 70 60 70 70
Sandy wird Kim sehen konnen. 5590 (mult. 4990 (mult. 3620 840
parses) parses)
Sandy sehen wird Kim. 1070 (m) 470 (m) 350 200
Sandy wird Kim sehen. 1240 (m) 810 (m) 710 280
Sandy sehen konnen wird Kim. 3450 (m) 2010 (m) 1110 390
Wird Kim gehen konnen? 2620 (m) 2120 (m) 2210 330
Wird Kim sehen konnen? 4260 (m) 3990 3270 610
Sehen konnen wird Kim Sandy? 3860 (m) no 1020 no
Wird Kim gehen? 540 (m) 1460 430 120
wird Kim koénnen (VP) 1860 (m) 940 (m) 580 160
Wird Kim Sandy sehen? 1220 (m) 1230 (m) 1570 320
Wird Kim Sandy sehen konnen? 5850 (m) 8240 (m) 8900 880

The guarded German grammar performs faster than the unguarded grammar
in the average case, and, unlike that grammar, has no ambiguities. However, both
of these grammars perform up to ten times slower than the best grammar with-
out guards for sentences with an initial and final auxiliary e.g. Wird Kim Sandy
sehen konnen. In the grammars without guards, raising by auxiliary occurs in
phrase-structure rules, rather than the lexicon, and so constraints have been hand-
threaded. In the guarded grammar, argument raising by auxiliary is guarded in
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lexical entries for auxiliary and also in the PVP lexical rule. This is essentially
an experiment to see whether such a constraint can be expressed wholly in the
lexicon. The answer is that yes, it can. However, we learn that guards need to be
implemented more efficiently in order to speed up performance. The slowdown
in the guarded grammar is due to blocking and unblocking of guards when an
auxiliary is the head of a phrase structure rule. As each new constituent added
to the chart for phrases headed on the right, the constraints unblock under the
premise that all arguments may have been found. If the constraint is not satisfied,
the blocking continues under backtracking. The process repeats for verb-initial
phrases headed on the left. In sum, the grammar keeps checking to see whether
an auxiliary has found all of its arguments or not. The advantage of guarding
is that this grammar will handle all of the PVP constructions. Furthermore, no
accomodation strategies need to be developed.

It is important to point out that only the naive grammar and the guarded gram-
mar properly allow a fronted double infinitive (136):

(136) Sehen konnen wird Kim Sandy?

This is because the arguments of a partial verb phrase (PVPComps) are con-
catenated with the PVP (1oc:PVP) to form the argument of the main clause
auxiliary (SubcatComps) in the PVP lexical rule:

(137) append (PVPComps, [ (loc:PVP,
non_1loc: (inherited: (slash: (elt:PVP)))
SubcatComps)

In the guarded grammar, append is guarded. In the unguarded grammar,
append is not guarded. Since the fronted PVP’s arguments are not instantiated
yet at the point of lexical rule application, they match the first clause of append,
which automatically instantiates them to be an empty list. The lexicon compilation
will go on indefinitely if there is no “cut” (halt) in append, as we have seen. This
means that in the unguarded grammar, there is no chance that example 136 will
parse. One needs to use a constraint similar to the naive strategy discussed in
section 6.5.2 in order for the complements list to be of variable size. Parse times
for the naive strategy in table 6.5 show that overall, it a less desireable strategy
than adding the constraints in example 134 (the “ideal” situation).

~
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6.6 Summary

In this chapter we find a successful implementation of guarded constraints as an
instance of Constraint Logic Programming. We try the same guarded grammars
with different parsers, and find no differences in the output of the parse, though the
constraints have been delayed in different orders. We revisit brute force, accom-
modation and control as alternatives to guarding for the chosen grammars. Practi-
cal advantages of guarding are that lexical size may be reduced substantially, and
grammar rules may streamlined in the direction toward a statement of constraints
on more abstract grammatical concepts, such as types, or typed feature structures.
Performance improvements are thus tied to gains associated with improvements to
the grammar. Guarding itself is associated with performance overhead, so must be
balanced with performance gains elsewhere in order to show an overall improve-
ment in the parse. In our implementation, a guard may be unblocked prematurely
and reblocked, which slows down the parse.

The examples in this chapter provide some detail for guarding on feature struc-
tures. Examples from Japanese, German, and English are successfully parsed us-
ing guards. The main thread in all of these examples is that arguments which
provide information to a head may be processed at a later time than the head it-
self, and yet the constraint may be “attached to,” or associated with, the head. In
the example of the causative, the arguments of a verb have indices which must
be instantiated in order to apply binding constraints. In the example of argument
attraction by auxiliary, the auxiliary waits for its verbal head as well as the verb’s
arguments before a constraint on fronted constituents can fire. And in the example
of quantifier raising, the pool of possible quantifiers that a verb has must wait until
all of the verb’s arguments, including the subject, have made their contribution.
Yet, retrieval still occurs at verbal nodes. I show that the Japanese example results
in a total of two lexical entries for the causative, compared with over 20 entries
otherwise, which is more efficient to process. The German and English examples
are full and correct implementations of these theories as written. In the case of
German, the fronted double infinitive construction does not parse without either
guarding or using a naive strategy that, like the case of the Japanese causative,
also increases local ambiguity. In the last chapter I review the main points of the
thesis and discuss future work.
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Chapter 7

Conclusions

The major contribution of this work is a specification and implementation of de-
lays on typed feature structure descriptions. An implementation of this specifi-
cation enables the successful evaluation of modern grammars as written, while
retaining the succinctness of the original grammar. Beginning with a formal de-
scription for guarding and then proceeding to an implementation, the highlights
are the following:

1. Specification of guarded descriptions for typed feature structures.

2. An algorithm for resolution over feature structure terms with delays. Be-
cause any description may be a guard, one is able to guard various objects
in the grammar. In turn, grammatical constructs such as lexical rules and
lexical entries can be guarded by referencing these descriptions.

3. Three independent examples of guarding in practice, which are predicate
sharing in the Japanese causative, raising by auxiliary in the case of German
verb phrases, and locally determined quantifier scoping in English.

The thesis is generalizable such that the mechanism of guarding can be applied
to a wide range of linguistic phenomena and also across various languages. Future
work includes researching its applicability across various feature structure based
grammar formalisms.

7.1 Guarded Descriptions

The specification of a guarded feature structure description from chapter 5 is re-
peated below. The gain in expressive power is that the descriptions themselves
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become procedural statements whereas the resolution algorithm can remain un-
changed.
A guarded description is a description of the form

e ¢ = ;v € Descif ¢,Y,v € Desc

The entailment conditions for guarded descriptions are the following:
(138) for ¢, ¥, v € Desc
F i (¢ — v30) iff
e F = ¢and F E 9 (entailment) OR
o (VF')F U F' i~ ¢ and F = v (disentailment)

We defined negation as a special case of a guarded description:

e ~(¢) = (¢ — fail; true)

With the addition of negation, inequations may be implemented as guarded
descriptions, or with guarded rules. The implementation of the binding theory in
the case of the Japanese causative handles inequations as guarded constraints. The
algorithm for resolution with guarded rules is the following:

(139) Given goal p(fi,..., f,) and a (renamed) clause C' | A’ < By, Bo, ..., By,
such that goal p, A’, C unify with mgu 6, and C; a constraint on f;, C; =
Xi : (b e C:

e If f; neither satisfies nor dissatisfies ¢, a suspension of a goal p(f1, - .-, fn)is
created. A suspension is a pointer to the conjunction of goals which are
delayed by the constraint. If ¢ is already constrained to satisfy any
P (f1,---, fn), then p is added to the conjunction of goals.

e p is wakened if X; is unified with a feature structure that satisfies ¢.
Then, the action taken is to first execute the suspension of p, and then
resume the present goal.

7.2 Extensibility

The data covered in implementation supports the generality of the thesis such that
it is extensible to a wide range of linguistic analyses, and is language indepen-
dent. The specification is generalizable for linguistic analyses of morphologically
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shared predicates, verb raising, long-distance dependencies, clitics, quantifier rais-
ing, and linear order constraints. The reason that all of these phenomena can be
unified by the analysis presented is that in all cases, there are arguments which are
shared across structures by more than one head. A constraint may exist between
a head and one of its arguments, yet another head may project the features which
fully instantiate that argument at a later time.

The description of the resolution algorithm is abstracted away from the pars-
ing architecture, providing a practical advantage for implementation efforts. The
gain is advancement along a continuum toward the statement of independent con-
straints and away from the ordering of rules. Another approach, the proliferation
of possible instantiations in the case of “brute force,” is also eliminated, and gains
are made especially by reducing the number of locally ambiguous lexical entries.

7.3 Scalability

We have seen that the addition of guards to the German grammar slows down its
performance compared with a non-guarded grammar, up to 10x for simple sen-
tences. This would only get worse with longer sentences and more guarded con-
straints in the grammar. It is not hard to see that for speed alone, it is preferable to
write a grammar without guards. We have shown, however, that certain linguistic
analyses make it necessary to have an ordering on constraint resolution, such that
evaluation of shared or uninstantiated arguments should be delayed. Guards are
a way to state constraints where they appear in a linguistic theory and have them
evaluated at the proper time as well. Properly writing a hand-threaded grammar
without guards (a grammar with constraints stated at the place where they are best
evaluated) would be in the least case knowledge intensive, and may be more diffi-
cult to teach in the long run than delays. This is because a grammar writer would
need to become familiar with the algorithm of the parser or generator. In the
case of delays, the training would be focused more on the facets of the expressive
grammar that might be problematic for evaluation in the general case.

The description language used in this thesis is a change from the HPSG theory
of Pollard & Sag (1994). I have advocated an addition to typed feature structures
that is not in the original theory. Carpenter (1991) showed that grammars with
typed feature-structures and rewriting rules are undecidable. This means that there
is no way of stating whether we can find a solution for a fragment of linguistic
theory without guards vs. its guarded counterpart. A grammar with guards would
be harder to write than one without guards, but a grammar without guards might
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not terminate. On the other hand, a grammar with guards may run into deadlocks
that would need to be resolved with a strategy such as breadth-first search. In the
cases presented in this thesis, deadlocks were not a problem.

Feature based grammars are knowledge-based as compared with the empir-
ical methods that became popular as a viable way to do NLP beginning in the
late 1980’s (e.g. Church 1988, Collins 1996). Statistical systems can be trained
from very large corpora with minimal linguistic input. A good reference on this
subject is Manning & Schiitze (1999). Knowledge-based systems require a staff
of linguistically-trained people managing a large lexicon and grammar, largely by
hand, and are generally less robust than statistically trained systems. The relative
disfavor of such grammars has contributed to the fact that logic programming is
not widely used for NLP. Another contributing factor is that goals in standard CLP
are solved for top-down, while a combination of top-down and bottom-up meth-
ods is probably best for NLP parsing systems. ALE, for example, has a bottom-up
chart parser.

Concurrent Constraint Programming has seen the introduction of Constraint
Handling Rules (CHR) (Friihwirth & Abdennadher 1997) into Prolog and other
logic programming language.s These allow for dynamic scheduling of constraints.
Once a constraint is introduced, a constraint handler takes care of deciding when
it should be evaluated, by a subsumption check. This is, then, the next generation
of delays in logic programming. One advantage to using the older guards for
this thesis is that guards could be built into the description language, so that it
became straightforward to show how the theory doubled as an implementation.
Penn (2000) used CHR with ALE with a very different data structure for feature
structures, closely related to a Prolog term, but one requiring attributed variables.
Early results were very slow compared with Prolog guards.

Whether or not logic programming is the actual programming scheme used,
the fact of having to solve linguistic constraints occurs across implementations,
and also across linguistic theories. One assumes interdependence among the con-
straints. This thesis shows one way to cope with that interdependence during
implementation.

7.4 Future Work

Future work should include re-implementing the satisfaction algorithm to maxi-
mize efficiency. In a test situation, hand-threading guards in the German grammar
decreases processing time vs. the guarded version for sentences with initial auxil-
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iaries, as there is no overhead due to the unblocking and reblocking of constraints.
There is no absolute need to trigger a constraint check each time the type variable
for a feature structure changes, unless the desired type has been obtained. In other
words, the satisfaction conditions are currently a constraint that wait on the gain
of any new type information by a feature structure. The satisfaction condition it-
self could be the delay constraint in a more sophisticated implementation. That is,
wait on the satisfaction conditions themselves. That is the approach that I favor
here.

One possibility for future work relates to the generalizability of the approach
for other grammar formalisms. This would be to try the guarding mechanism
on feature structures that are untyped. The KANT knowledge based machine
translation system (Nyberg & Mitamura 1992; Mitamura & Nyberg 2000) has a
large working grammar (544 rules) with rules in the Lexical Functional Grammar
formalism. Each rule can have many lines of equations attached. The grammar
writer must be aware of the order in which the equations fire so that tests on
existing values can be performed at the proper place. This knowledge of ordering
is also very much reliant on knowledge of the parser strategy. One can imagine
a scenario in which the feature value names are presumed to be types, and the
values of the features are tested once they are instantiated, if not in the current
rule, then in a future rule. It is also possible with to remove equations to a unique
set of constraints that become rule independent.
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Appendix A

Satisfaction of a description by a
feature structure

satisfies (Desc,Tag-SVs,Gs) :-
var (Desc),
!, iso (Desc, Tag-SVs, Gs, true).

satisfies (Desc,FS,Gs) :-—
var (FS),
!, when (nonvar (FS),satisfies (Desc,FS,Gs)) .

satisfies (Desc,Tag-SVs,Gs) :-
var (Tag) ,var (Svs), !,
when (nonvar (Tag) ,satisfies (Desc, Tag-SVs,Gs)) .

satisfies (Desc,Tag-SVs,Gs) :-—
!, satisfies (Desc, SVs, Tag,Gs) .

satisfies([],SVs,Tag,Gs) :-
!, satisfies(e_list, SVs, Tag,Gs) .

satisfies([H|T],SVs,Tag,Gs) :—
!, satisfies (hd:H, SVs, Tag, [1),
satisfies(tl:T,SVs,Tag,Gs).

%% variation on satisfies (Type) (see below)
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satisfies (Feat:Desc, SVs, Tag,Gs) :-—
!, introduce (Feat, Type),
type (Type) ,
nonvar (SVs),
deref (Tag, SVs, TagNew, SVsNew) ,
SVsNew =..[Type2|_],
%% The result has to be the type of SVs
%% means that Type2 is type or subtype of Type
(unify_type (Type2, Type, Type2), !,
featval (Feat, SVsNew, TagNew, Tag2-SVs2),
satisfies (Desc,Tag2-SVs2,Gs)
extensional (Type2), !, fail
when (nonvar (TagNew) ,
(
fully_deref_k (TagNew, SVsNew, TagOut, SVsOut),
satisfies (Feat:Desc, TagOut-SvsOut, Gs))
)) .

%% satisfies (Type...) uses Prolog guarding.

satisfies (Type, SVs,Tag,Gs) :-
type (Type), !,
nonvar (SVs),
deref (Tag, SVs, Tag2, SVs2),
SVs2 =..[Type2l_1,
(unify_type (Type2, Type, Type2), !,
prune (Gs, GsOut) , solve (GsOut)
extensional (Type2),!,fail
7

when (nonvar (Tag2),
(fully_deref_k(Tag2,SVs2,TagOut, SVvsOut),
satisfies (Type, TagOut-SvsOut,Gs)))) .

If the type of the feature structure Tag-SVs is not rich enough to
determine satisfaction, then delay on its tag. If the type of the

o o
o o°
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%% FS changes, the tag will also change.

satisfies((D1,D2),SVs,Tag,Gs) :-

!, satisfies (D1, Tag-SVs,
[fully_deref_k(Tag,SVs,NewTag,NewSVs),
satisfies (D2, NewTag—-NewSVs,Gs)]) .

satisfies((D1;D2),SVs,Tag,Gs) :-

|
L4

(satisfies (D1, Tag—SVs,Gs);
satisfies (D2, Tag-SVs,Gs)) .

satisfies ((=\= D1),SVs,Tag,Gs) :-—
!',not_satisfies (D1, SVs, Tag,Gs) .

satisfies (Tag—-SVs, SVs2,Tag2,Gs) :—
iso(Tag-SVs, Tag2-SVs2,Gs, true) .

% iso/4 (FSl:<fs>, FS2:<fs>, Gs<goals>, Done<boolean>)
determines whether structures FS1 and FS2 are isomorphic.

Gs are guarded goals which the user may define in the case the isomorphism
proves satisfaction.

o° o oP

Done is true if the feature structures are isomorphic or fail if
the isomorphism cannot be proven. 1so succeeds as long as guards persist.

o0 o° oo o°

% Assume that two feature structures are isomorphic, by unifying
% their tags. Then recursively see if their feature values are isomorphic.

o° o

iso(Tagl-SvVsl, Tag2-SVs2,Gs,Done) :-—
fully_deref_k (Tagl, SVsl, TaglOut, SVslOut),
fully_deref_k(Tag2,SVs2,Tag20ut, SVs20ut), !,



158APPENDIX A. SATISFACTION OF A DESCRIPTION BY A FEATURE STRUCTURE

prune (Gs, GsOut) ,
delay_iso (TaglOut-SVslOut, Tag20ut-SVs20ut, GsOut, Done) .

delay_iso(Tagl-SVsl, Tag2-SVs2,Gs,Done) :-—
(

Tagl == Tag2,!,solve(Gs),Done=true
’
nonvar (SVsl), SVsl
extensional (Typel),
nonvar (SVs2) ,SVs2 =..[Type2|_1,
extensional (Type2),
(

Tagl = Tag2, %% need to nest the Done=true for the "undefined index"

[ee]

%% example of the Japanese grammar (always still waiting)
iso (SVsl, SVs2, [Done=true|Gs]), !

.- [Typell|_1,

14

Done=fail, \+ (iso(SVsl,SVs2,[])), solve(Gs))).

delay_iso(Tagl-SVsl, Tag2-SVs2,Gs,Done) :-—

if a type of one of the feature structures is not a

maximal subtype, wait to see if it becomes

more specific.

if it does, then retry the isomorphism.

var (SvVsl), !, when (nonvar (Tagl),iso(Tagl-SVsl, Tag2-SVs2,Gs,Done))

* ~ 00 o° oo o°
o° o° o oe

14

var (Svs2), !,

when (nonvar (Tag2) ,1iso (Tagl-SVsl, Tag2—-SVs2, Gs,Done))

SVsl =..[Typell_1,

\+extensional (Typel), !,

%% First check Type against FS to see if they are unifiable
%% when that succeeds, then wait if necessary on the type

satisfies (Typel, Tag2-Svs2,[]),

when (nonvar (Tagl),iso (Tagl-SVsl, Tag2-SVs2,Gs,Done))
7
SVs2 =..[Type2l|_1,
\textensional (Type2),!,
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satisfies (Type2,Tagl-Svsl, []),
when (nonvar (Tag2),iso (Tagl-SVsl, Tag2-SVs2, Gs,Done))

% iso/3 (SVsl:<feature values>, SVs2<feature values>, Gs<guarded goals>) mh(0)

[

% recursive top down search to see whether sorted list of fea-
ture values SVsl

% is isomorphic with SVs2. Guarded goals are passed down from iso/4.
iso(_,_,_) if_h [fail] :-
\t+extensional (_) .

iso(SVsl,SVs2,Gs) if_h [solve(Isos)] :-—
extensional (Sort),
approps (Sort, FRs),
length (FRs,N),
functor (Svsl, Sort,N),
functor (SVs2, Sort,N),
new_isos (N, SVsl, SVs2,Gs, Isos) .
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Appendix B

HPSG phrase structure schemata

Pollard & Sag (1994: Appendix A.3)

Schema 1 (Head-Subject Schema)

The SYNSEM:LOCAL:CATEGORY:SUBCAT value is ( ), and the DAUGHTERS
value is the object of sort head-comp-struc whose HEAD-DAUGHTER value is
a phrase whose SYNSEM:NONLOCAL:TO-BIND:SLASH value is { }, and whose
COMPLEMENT-DAUGHTERS value is a list of length one.

Schema 2 (Head-Complement Schema)

The SYNSEM:LOCAL:CATEGORY:SUBCAT value is a list of length one, and the
DAUGHTERS value is the object of sort head-comp-struc whose HEAD-DAUGHTER
value is a word.

Schema 3 (Head-Subject-Complement Schema)

The SYNSEM:LOCAL:CATEGORY:SUBCAT value is ( ), and the DAUGHTERS
value is the object of sort head-comp-struc whose HEAD-DAUGHTER value is a
word.

Schema 4 (Head-Marker Schema)

The DAUGHTERS value is an object of sort head-marker-struc whose
HEAD-DAUGHTER:SYNSEM:NONLOCAL:TO-BIND:SLASH valueis { }, and whose
MARKER-DAUGHTER:SYNSEM:LOCAL:CATEGORY:HEAD value is of sort marker.

Schema 5 (Head-Adjunct Schema)
The DAUGHTERS value is an object of sort head-adjunct-struc whose
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HEAD-DAUGHTER:SYNSEM value is token-identical to its
ADJUNCT-DAUGHTER:SYNSEM:LOCAL:CATEGORY:HEAD:MOD value and whose
HEAD-DAUGHTERS:SYNSEM:NONLOCAL:TO-BIND:SLASH value is { }.

Schema 6 (Head-Filler Schema)
The DAUGHTERS value is an object of sort head-filler-struc whose

HEAD-DAUGHTER:SYNSEM:LOCAL:CATEGORY value satisfies the description
verb

[HEAD: | VFORM:finite | | whose HEAD-DAUGHTER:SYNSEM:NONLOCAL:INHERITED:SLASH
SUBCAT:( )

value contains an element token-identical to the FILLER-DAUGHTER:SYNSEM:LOCAL

value, and whose HEAD-DAUGHTER:SYNSEM:NONLOCAL:TO-BIND:SLASH value

contains only that element.



Appendix C

Compilation of phrase structure
rules

C.1 Chart Parser

From Carpenter & Penn (1994).

rule (Tag, SVs, Left,Right,N) if_h SubGoals :-
(RuleName rule (Mother ===> Daughters)),
compile_dtrs (Daughters, Tag, SVs,Left,Right,N, SubGoals, [],Mother, RuleName) .

compile_dtrs((cat> Dtr,Rest),Tag,SVs,Left,Right,N,PGoals,PGoalsRest,
Mother, RuleName) : —
!, compile_desc (Dtr, Tag—-SVs,PGoals,PGoalsMid),
compile_dtrs_rest (Rest,Left,Right,PGoalsMid,PGoalsRest,Mother,
[N|DtrsRest],DtrsRest, RuleName) .

compile_dtrs_rest ((cat> Dtr,Rest),Left,Right,
[edge (N, Right, NewRight, Tag, SVs,_,_) |PGoals],
PGoalsRest,Mother, PrevDtrs, [N|DtrsRest], RuleName) :—
!, compile_desc (Dtr, Tag-SVs, PGoals,PGoalsMid),
compile_dtrs_rest (Rest,Left,NewRight,PGoalsMid, PGoalsRest,Mother,

PrevDtrs,DtrsRest, RuleName) .

compile_dtrs_rest ((cats> Dtrs,Rest),Left,Right,PGoals,PGoalsRest,
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Mother, PrevDtrs,DtrsRest, RuleName) :-—

!, compile_desc (Dtrs, Tag-bot, PGoals,

[deref (Tag,bot,_,SVs),

SVs =.. [Sort|Vs],

match_list_rest (Sort,Vs,Right,NewRight,DtrsRest,DtrsRest2) |
PGoalsMid]l),
compile_dtrs_rest (Rest,Left,NewRight,PGoalsMid, PGoalsRest,Mother,
PrevDtrs,DtrsRest2, RuleName) .

compile_dtrs_rest ((goal> Goal,Rest),Left,Right,PGoals,PGoalsRest,
Mother,PrevDtrs,DtrsRest, RuleName) : —
!, compile_body (Goal, [],[],PGoalsBody),
conc (PGoalsBody, PGoalsMid, PGoals),
compile_dtrs_rest (Rest,Left,Right,PGoalsMid, PGoalsRest,Mother,
PrevDtrs,DtrsRest, RuleName) .

compile_dtrs_rest ((cat> Dtr),Left,Right,
[edge (N, Right,NewRight, Tag, SVs,_,_) |PGoals],
PGoalsRest,Mother, PrevDtrs, [N],RuleName) : —

!, compile_desc (Dtr, Tag-SVs,PGoals,PGoalsMid),
compile_desc (Mother, Tag2-bot, PGoalsMid,
[add_edge_deref (Left,NewRight, Tag2, bot,
PrevDtrs,RuleName) |PGoalsRest]) .

compile_dtrs_rest ((cats> Dtrs),Left,Right,PGoals,PGoalsRest,
Mother, PrevDtrs,DtrsRest, RuleName) :-—
!, compile_desc (Dtrs, Tag-bot, PGoals,
[deref (Tag, bot,_, SVs),
SVs =.. [Sort]|Vs],
match_list_rest (Sort,Vs,Right,NewRight,DtrsRest, []) |
PGoalsMid]l),
compile_desc (Mother, Tag2-bot,PGoalsMid,
[add_edge_deref (Left,NewRight, Tag2, bot,
PrevDtrs,RuleName) |PGoalsRest]) .

compile_dtrs_rest ((goal> Goal),Left,Right,PGoals,PGoalsRest,Mother,
PrevDtrs, [],RuleName) : —
!, compile_body (Goal, [],[],PGoalsBody),
conc (PGoalsBody,PGoalsMid, PGoals),
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compile_desc (Mother, Tag2-bot,PGoalsMid,
[add_edge_deref (Left,Right, Tag2, bot,
PrevDtrs, RuleName) |PGoalsRest]) .

C.2 Left Corner Parser
rule (Tag, SVs, WsIn,WsOut, MomTag—-MomSVs, RuleName) if_h SubGoals :-

(RuleName rule (Mother ===> Daughters)),
compile_dtrs (Daughters, Tag, SVs,WsIn, WsOut, MomTag-MomSVs, SubGoals,
[],Mother, RuleName) .

compile_dtrs((cat> Dtr,Rest), Tag,SVs,WsIn,WsOut,MomTag-MomSVs, PGoals,
PGoalsRest,Mother, RuleName) : —
!, compile_desc (Dtr, Tag-SVs,PGoals,PGoalsMid),
compile_desc (Mother, MomTag—-MomSVs, PGoalsMid, PGoalsMore),
compile_dtrs_rest (Rest,WsIn,WsOut,MomTag-MomSVs, PGoalsMore, PGoalsRest,
Mother, RuleName) .

%% the lc step is here:

compile_dtrs_rest ((cat> Dtr,Rest),WsIn,WsOut,MomTag-MomSVs,
[write (' **in rule: ’),write (RuleName),nl,nl,
lc_rec(Tag-SVs,WsIn,WsMid) |PGoals],
PGoalsRest,Mother, RuleName) : —
compile_desc (Dtr, Tag-SVs,PGoals,PGoalsMid),
compile_desc (Mother, MomTag-MomSVs,PGoalsMid, PGoalsMore),
!, compile_dtrs_rest (Rest,WsMid, WsOut,MomTag-MomSVs, PGoalsMore,
PGoalsRest,Mother, RuleName) .

compile_dtrs_rest ((goal> Goal,Rest),WsIn,WsOut, MomTag-MomSVs,PGoals,
PGoalsRest,Mother, RuleName) : —
!, compile_body (Goal, [],[],PGoalsBody),
conc (PGoalsBody,PGoalsMid,PGoals),
compile_dtrs_rest (Rest,WsIn, WsOut,MomTag-MomSVs, PGoalsMid, PGoalsRest,
Mother, RuleName) .

compile_dtrs_rest ((cat> Dtr),WsIn,WsOut,MomTag—MomSVs,
[write (" **in rule: ’),write (RuleName),nl,nl,
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lc_rec(Tag—-SVs,WsIn,WsOut) |PGoals],

PGoalsRest,Mother, RuleName) : —

compile_desc (Dtr, Tag-SVs,PGoals,PGoalsMid),

!, compile_desc (Mother, MomTag—-MomSVs,PGoalsMid, PGoalsRest) .

compile_dtrs_rest ((goal> Goal),WsIn,WsIn,_ MomTag—-_MomSVs,PGoals,
PGoalsRest,_Mother, RuleName) : —
!, compile_body (Goal, [],PGoalsRest,PGoals).



Appendix D

Binding rules as unguarded
constraints

From Callison-Burch & Guffey (1999). Constrasts with the binding approach in
chapter 6.

:begin :instance.
ana_agr-principle-e := wordtarg_real+tana_agr &
[ SYN #syn,

SEM #sem,

ARG-ST #arg-st & < >,

ARGS < word+arg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st ] > 1.
:end :instance.

:begin :instance.

ana_agr-principle-x := word+arg_real+ana_agr &
[ SYN #syn,

SEM #sem,

ARG-ST #arg-st & < [ ] >,

ARGS < wordtarg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st ] > 1.
:end :instance.
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:begin :instance.
ana_agr-principle—-x+ := word+arg_real+ana_agr &
[ SYN #syn,
SEM #sem,
ARG-ST #arg-st & < [SYN [HEAD [AGR #agrll],
SEM [INDEX #ind]], [SYN [HEAD [ANA true,
AGR #agrll,
SEM [INDEX #ind]] >,

ARGS < word+arg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st 1 > ].
:end :instance.

:begin :instance.

ana_agr-principle—-x— := wordtarg_real+tana_agr &
[ SYN #syn,
SEM #sem,
ARG-ST #arg-st & < [ ], [SYN [HEAD [ANA false]]l] >,

ARGS < word+arg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st 1 > ].
:end :instance.

:begin :instance.
ana_agr-principle-x—+ := word+arg_real+ana_agr &
[ SYN #syn,

SEM #sem,

ARG-ST #arg-st & < [SYN [HEAD [AGR #agrll],

SEM [INDEX #ind]],

[SYN [HEAD [ANA false]lll,
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[SYN [HEAD [ANA true,
AGR #agrl],
SEM [INDEX #ind]] >,

ARGS < word+arg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st ] > 1.
:end :instance.

:begin :instance.
ana_agr-principle-x+- := word+arg_real+ana_agr &
[ SYN #syn,
SEM #sem,
ARG-ST #arg-st & < [SYN [HEAD [AGR #agrll],
SEM [INDEX #ind]],

[SYN [HEAD [ ANA true,
AGR #agr]l],
SEM [INDEX #ind]l],

[SYN [HEAD [ANA falsel]] >,
ARGS < word+arg_real & [ SYN #syn,
SEM #sem,

ARG-ST #arg-st ] > 1.
:end :instance.

:begin :instance.

ana_agr-principle-x—- := word+arg_real+ana_agr &
[ SYN #syn,
SEM #sem,
ARG-ST #arg-st & < [ ], [SYN [HEAD [ANA falsell],

[SYN [HEAD [ANA falsell]l >,
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ARGS < wordtarg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st ] > 1.
:end :instance.

:begin :instance.

ana_agr-principle-xi+ := word+arg_real+ana_agr &
[ SYN #syn,
SEM #sem,
ARG-ST #arg-st & < [ ], [SYN [HEAD [ANA false,
AGR #agrll],
SEM [INDEX #ind]], [SYN [HEAD [ANA true,

AGR #agrll],
SEM [INDEX #ind]] >,

ARGS < word+arg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st ] > ].
:end :instance.

:begin :instance.

ana_agr-principle—-x++ := word+arg_real+ana_agr &
[ SYN #syn,
SEM #sem,
ARG-ST #arg-st & < [SYN [HEAD [AGR #agrll],
SEM [INDEX #ind]], [SYN [HEAD [ANA true,

AGR #agr]l],
SEM [INDEX #ind]],

[SYN [HEAD [ANA true,
AGR #agr]l],
SEM [INDEX #ind]] >,

ARGS < word+arg_real & [ SYN #syn,
SEM #sem,
ARG-ST #arg-st 1 > ].
:end :instance.
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Appendix E

Partial verb phrase lexical rule
without guarding

pvp lex_rule
(word,
synsem: (loc: (cat: (head: (Head, verb,
viorm:bse,
aux:plus,
flip:minus),
subj: [Subj],
comps :PVPComps,
spr:Spr,
marking:Mark),
cont:Cont,
conx:Conx),
non_Jloc: (inherited: (slash:e_set,
rel:Rel,
que:Que),
to_bind:ToBind)),
gstore:QStore,
gretr:QRetr)
* k>
(word,
subcat: [Subj|SubcatComps],
synsem: (HeadSyn, (loc: (cat: (head:Head,
subj: [Subj],
comps :PVPComps,
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spr:Spr,
marking:Mark),
cont: (Cont,nucleus:modal_arg:Prop),

conx:Conx),
non_1loc: (inherited:
(slash: (elt: (PVP,
cat: (PVPHead,
head: (verb,vform:bse),
lex:minus,
subj: [Subj],
comps :PVPComps) ,
cont:Prop),
elts:e_set),
rel:Rel,
que:Que)))),
gstore:QStore,
gretr:QRetr)

if (check_phrasal (PVPComps),
check_nominal (PVPComps) ,
append (PVPComps,
[ (loc:PVP,non_loc: (inherited: (slash: (elt:PVP)))) 1,
SubcatComps) ,
aux_raising (HeadSyn, PVPComps, Subj))

morphs
X becomes X.
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