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Abstract

Text-to-speech synthesis (TTS) has progressed to such a stage that given a
large, clean, phonetically balanced dataset from a single speaker, it can pro-
duce intelligible, almost natural sounding speech. However, one is severely
limited in building such systems for low-resource languages where there is a
lack of such data and there is no access to a native speaker.

Thus, the goal in this thesis is to use the data that is freely available on the
web, a.k.a, “Found Data” to build TTS systems. However, since this data is
collected from different sources, it is noisy and contains a lot of variations
in terms of speaker, language and channel characteristics as well as prosody
and speaking style. Conventional TTS systems on the other hand, require a
large collection of clean, phonetically balanced, single-speaker data recorded
specifically for the purposes of building TTS systems. This presents us with
a number of challenges in using found data for building TTS systems within
the current pipeline.

In this thesis, we address three of these challenges. First we look at data
selection strategies to select good utterances from noisy found data which
can produce intelligible speech.

Second, we investigate data augmentation techniques from cleaner external
sources of data. Specifically, we study cross lingual data augmentation tech-
niques from high resource languages. However, often found audio data is
untranscribed. Thus, we also look at methods of using untranscribed audio
along with unrelated text data in the same language to build a decoder for
transcription. Furthermore, we address the issue of language, speaker, and
channel variations, by training multi-language, multi-speaker models, in a
grapheme based neural attention framework.

Lastly, since most of the speech data available on the web is in the form
of audiobooks and podcasts, we explore iterative methods of learning a good
prosody labelling for long form audio as well as learning prosody embeddings
which mimic metrical structure of utterances in an unsupervised fashion to
better match the acoustics of the data. In addition, we investigate methods
of learning a set of “prominence weights” in attention based neural models,
with the goal of improving prosody as well as overall quality of synthesized
speech.
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Chapter 1

Introduction

In text-to-speech synthesis systems, we model three parts of the vocal production mech-
anism. The movement of the vocal chords (as the pitch model), which models the source
of excitation, and the movement of the vocal tract and articulators (the tongue, teeth
and mouth) as the vocal tract acoustics and the duration models. The parameters for
these models are learned from a clean, phonetically balanced set of recordings from a
single speaker. The goal in text-to-speech synthesis is to combine these models to be able
to predict natural sounding, intelligible speech from text.

However, if we want to build such a system as part of a speech-to-speech transla-
tion system to be used in a disaster relief effort in areas such as Nepal, Orissa or Pak-
istan where the languages spoken are dialects of Nepali, Oriya and Pashto, then we are
severely limited in our ability to build such systems because we do not have access to
a native speaker who speaks the language and is available for recording. On the other
hand, we might want to build a personalized voice for a target speaker who has limited
ability to produce speech such as people afflicted with motor neuron disease or vocal
cord paralysis. Such a voice would need to match the physical and dialectical character-
istics of the speaker. Both of these scenarios are examples where we would like to build
TTS systems but are limited by an access to a large, clean phonetically balanced dataset
of recordings from a single speaker, that matches our requirements.

To alleviate this problem, we propose to build systems from the abundant but noisy
data available on the web. Speech data, especially from low resource languages, is be-
coming increasingly available on YouTube and other streaming services in the form of
news and radio broadcasts, speeches, demo-videos, etc. In addition, with the grow-
ing popularity of neural networks and other big machine learning models, large multi-
speaker datasets mainly for the purposes of speech recognition, have become available.
Even if such data is unavailable on the web it can be crowd sourced via the web [Caines
et al., 2015], examples of such corpora include the Babel corpus [Harper, 2011] pro-
vided by IARPA for multiple low-resource languages and the NCHLT Xitsonga corpus
[Barnard et al., 2014] collected by the South African Centre for Digital Language Re-
sources. In theory, this large variety of data available on the web would allow us to build
voices matching the dialectical and physical characteristics of a particular speaker and
also give us access to a huge variety of languages allowing us to build TTS systems for
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low-resource languages.

Thus, the question is can this large quantity of phonetically imbalanced, noisy, multi-
speaker corpora be used to build better synthesis systems that are understandable. Fur-
thermore, can this data be integrated with existing clean data to give more natural sound-
ing systems?

1.1 Thesis Statement

Thus, in this thesis, we will try to answer these two questions. We will explore techniques
for building voices from found speech, i.e., speech which was not recorded specifically
for the purposes of TTS and is available freely on the Internet. we will further divide this
problem into three parts:

e Data Selection : In this part of the thesis we will look at methods of selecting an
appropriate subset of data and techniques for noise removal. For dataset selection,
the goal is to select new utterances to insert into a small subset of seed utterances,
such that it it is both representative of the target voice and informative to the exist-
ing model built with the seed utterances. Informativeness and representativeness
measures will have to span categories such as acoustic (Mel cepstral features, du-
rations, pitch, speaking rate, energy, etc), linguistic (linguistic features and units
such as phone distribution, etc), speaker (age, gender, dialect) and channel (vari-
ous noise types). In this regard, we will look at various subset selection techniques,
such as rank-and-select based methods for different metrics such as mean cepstral
distortion [Kominek et al., 2008] (a measure of acoustic prediction for TTS) and
duration and find which measures can automatically allow us to select sentences
to build intelligible TTS systems.

e Data Augmentation: This part of the thesis explores cross-lingual and cross-corpus
adaptation techniques to leverage and use external, cleaner sources of data as well
as other higher resource languages to augment the more noisy found data. We con-
sider two cases. In the first case we assume the availability of transcribed training
data. Thus, the main goal here is to first identify good sources of external data
for augmentation and then identify how to integrate this in the TTS pipeline, after
normalizing across channel, speaker and language.

However, it might not always be the case that we have transcribed audio. This is of-
ten the case for low resource languages where you can find translated audiobooks
in the language but it is hard to find transcriptions. If one has access to an ASR
model in that language, we can get transcription of the audio. To build a decoder,
we need to define a phoneset for the language. Thus, in the second part, we will
explore methods of building an acoustic unit detector, which will involve segment-
ing the acoustic stream into small phoneme like units and learning the phonetic
inventory, which can then be used as transcriptions to train a TTS system for an
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unknown language.

e Models for Long form Audio: Most of the data found on the web is in the form
of audiobooks or podcasts which contain prosodically rich, long form audio, where
the prosodic realization of a sentence needs to be synthesized by taking into ac-
count longer term global context over multiple sentences. Thus, in this part of the
thesis we will first explore traditional frame based RNN models for prosody on au-
diobooks. In the second part we explore an iterative strategy to improve prosody
labelling. We also look at end-to-end models and propose a multi-scale attention
mechanism for better prosody modelling. Finally, we look at augmenting these end-
to-end models with prosody embeddings guided by learning a metrical structure in
an unsupervised manner.

1.2 Contributions in this Thesis:

Previous methods have looked at building speech synthesis systems from audio books
[Prahallad and Black, 2011], [Stan et al., 2016], [Watts et al., 2013] and ASR corpora
[Yamagishi et al., 2010]. These systems have only looked at systems for languages with a
Latin script and which one would not necessarily categorize as being low-resource [Stan
et al., 2013]. In this thesis, the goal is to look at a variety of languages, English, Hindi,
Bengali, Marathi, Tamil, Pashto and a variety of data conditions such as audiobooks,
speeches, telephone speech etc.

In [Braunschweiler and Buchholz, 2011], they show that diverse speech with differ-
ent speaking styles contained in audiobook data can be detrimental to the quality of
synthesized speech and they show that by using certain acoustic and linguistic based
measures one can identify and remove sentences that might be detrimental for speech
synthesis. Along similar lines, in results shown in [Cooper et al., 2016b], they use low-
level acoustic features such as speaking rate, pitch and energy to select utterances to
improve naturalness of synthesized speech. In addition, previous studies have been done
for unit-selection synthesis [Black and Lenzo, 2001] optimizing for coverage of linguistic
units and phone coverage. However, most of these techniques have looked at measures
that perform well on relatively clean, single-speaker datasets such as audiobook data
[Braunschweiler and Buchholz, 2011] and radio broadcast corpus (BURNC) [Cooper
et al., 2016b]. In this thesis we would like to look at an incremental approach to select
good utterances from a variety of single and multi-speaker datasets which are suitable for
synthesis and identify metrics that can detect noise found in found corpora, specifically
mis-alignment errors and errors due to channel noise.

In addition, most previous techniques have concentrated on building average voice
models using a variety of adaptive training techniques. Moreover, most of these adap-
tation techniques such as shared decision tree context clustering [Yamagishi, 2006] and
speaker adaptive training such as MAP and MLLR based methods [Yamagishi et al., 2009]
have concentrated on HMM based synthesis models. In this thesis, we would like to ex-
plore newer neural network based models which do not need explicit adaptation and
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can be trained on multiple speakers and multiple languages in an adaptive framework
[Swietojanski and Renais, 2016],[Li and Zen, 2016],[Fan et al., 2015].

Furthermore, cross-lingual adaptation has been used so far as a voice conversion
technique to improve speech-to-speech translation for a particular speaker and assumes
access to trained models in both languages [Wester et al., 2010]. However, in this thesis
we would like to look at cross-lingual techniques to augment low resource data and build
a robust system in the low-resource target language from found data which may or may
not have transcriptions available.

Thus, this thesis takes a first look at building TTS systems from found data. In this
thesis, we consider the problem from the three aspects; the data, how much performance
improvement can one squeeze out of the data itself by selecting and pre-processing it in-
telligently. Second, we look at how one can integrate external resources such as resources
from other major languages as well as cleaner resources from the same language to adapt
to the noisy dataset and finally we look at various models for better prosody prediction
of long form audio and methods to improve its labelling. Concretely, the contributions
in this thesis are as follows:

e Chapter 3: Data Selection: In this chapter we explore various metrics to rank ut-
terances based on its suitability for speech synthesis. We look at metrics spanning
categories including linguistic (frequency of occurrence of phones), acoustic (Mel
cepstral distortion (MCD), modulation spectrum, instantaneous frequency), dura-
tion as well as correlation based features. We show that selecting utterances based
on Mel Cepstral Distortion and duration give the best results in terms of synthesis
quality on both artificially degraded corpus as well as two corpora of found speech,
one a single-speaker corpus of public speeches and the other a multi-speaker corpus
of telephone conversations.

e Chapter 4: Data Augmentation: In this chapter, we explore best methods to aug-
ment our target low-resource found speech corpora with external data. We con-
sider two scenario. In the first scenario, we assume we have transcribed speech
and text available. In Section 4.1, we first explore various methods of augment-
ing cross-lingual resources in an end-to-end neural attention based multi-speaker,
multi-language model. We show that attention based neural models with multiple
languages benefit from augmentation with higher resource languages belonging to
the same language family and can be adapted on a new language with as little as
half hour of data when fine-tuned with the target data. We also show that these
models tend to over-fit to the data and learn super sentential context. We also ex-
plore the robustness of these models on two corpora of noisy found multi-lingual
data of Bengali and Gujarati speech and show that these models are significantly
better than the clustergen models when trained with noisy data.

In Section 4.2, we consider the case of augmenting from cleaner resources of the
same language, when we have data from speaker’s with different pitch, accent and
speaking style. We first consider the effect of augmenting the training data with
data that matches the target speaker’s characteristics in terms of pitch and accent.
We show that domain adaptation to the target speaker’s voice by modifying the
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training data has little effect, while adapting solely on the target speaker’s data has
a much larger effect in producing good quality of speech. We also explore building
models with multiple speaking styles and style transfer experiments from clean to
other conversational styles as well as from noisy to clean. We show that it is possible
to transfer from noisy to clean speech and produces much more intelligible speech,
than when using the original speaking style.

The second scenario we consider is a zero-resource setting, where we only have
the audio and no other language resources. For these experiments, which are
described in Section 4.3, we explore cross-lingual methods of building an acous-
tic decoder, the first step of which is acoustic unit discovery. We consider both a
clean and noisy multi-speaker dataset of Hindi and Xitsonga, respectively, and show
that our method of cross-lingual “inferred phoneme” method out performs phonetic-
decoding when using a clean multi-speaker corpus, but is not very well suited to a
very noisy datasets such as crowd-sourced telephone conversations.

Chapters 5 and 6: Prosody Models for Long-form Audio: In the final two chap-
ters we explore neural network approaches to modelling long-form audio. In Sec-
tion 5.2, we explore traditional frame-based approaches to modelling long-form
audio with various RNN based sequence models. We show that these models are
good at intelligibility, however, they fall short on modelling naturalness well. Thus,
in Section 5.3, we look at methods to improve the labelling of prosodic features as
well as adding in prosodic relation features inspired by learning metrical tree rela-
tions in order to match the text better to the tune of the acoustics that are actually
present in the data.

In Chapter 6, we explore unsupervised methods of improving prosody modelling
in neural attention based models. First in Section 6.2, we explore two methods of
introducing a notion of “prominence weights” in neural attention models. In the first
method we use a multi-headed, multi-hop, multi-scale attention mechanism (3M
attention) to learn “where” and “when” to focus and in the second we use the errors
from the decoder to weights the inputs to the post-net, a mechanism we call “error-
feeding”. In the second part of this chapter, we augment the neural attention model
with another prosody encoder, that learns an utterance-level prosody embedding,
guided by metrical theory. We show that even though addition of the prosody em-
bedding does not improve synthesized prosody significantly, the embedding space
learns some notion of quoted vs. narrated utterances for syllable inputs.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 gives an introduction to characteristics of
found speech and lays out the background of previous work done in this area. Chap-
ter 3 discusses the data selection strategies. Chapter 4 discusses cross-lingual and same
language methods of data augmentation for transcribed data and shows results on a
number of noisy datasets. Furthermore, Chapter 4 also discusses the acoustic unit dis-
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covery method for untranscribed audio. Chapters 5 and 6 discuss various methods of
refining prosody models for both frame based and end-to-end neural frameworks respec-
tively. Finally, Chapter 7 summarizes the work done in this thesis and lays out future
directions and extensions.



Chapter 2

Found Speech in Speech Synthesis

This chapter first describes the TTS pipeline and then describes some of the adaptation
techniques that have been used in speech synthesis so far. It then describes what found
speech is and what are the characteristics of found speech.

2.1 Background

There are broadly two ways of synthesizing speech. The first is unit-selection speech syn-
thesis, which mainly involves stitching together small chunks of speech units to render
the waveform after applying various signal processing techniques. The second method
which we will be concentrating on in this thesis involves training models to predict
vocoder parameters which can then be synthesized into waveforms.

2.1.1 Traditional Statistical Parametric Speech Synthesis (SPSS) Pipeline

Traditional statistical parametric speech synthesis involves a training stage and a synthe-
sis stage. Within the Festival system, we use the CLUSTERGEN framework [Black, 2006]
for training and synthesis. The pipeline used in the Festival [Black et al., 2014] system is
shown in Fig. 2.1. As can be seen, there are three main parts in this system.

e Text Analysis: This stage which also forms the front-end of the TTS pipeline, in-
volves converting the raw text into a form that can be used to train acoustic and
duration models. Thus, in this step, the raw text is converted into a heterogeneous
relation graph (HRG) [Taylor et al., 2001] from which we can then extract lin-
guistic features as desired. Each utterance in the training dataset is represented
as an HRG. This utterance structure [Taylor et al., 1998], consists of relations and
items. The Relations as defined in [Taylor et al., 2001] are graph structures which
contain nodes and named edges. They can be trees, lists, or other structures. All
“atomic linguistic entities such as words, syllables and phones are represented as
items. They contain linguistic information in the form of features. New relations
and items are added onto the utterance structure as the TTS processing proceeds
until waveform generation.
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Figure 2.1: Overview of the TTS Pipeline




Thus, to get linguistic features, first the raw text is converted to tokens and nor-
malized, where the abbreviations and numerical forms are expanded. Then, we
extract POS tags. Then the characters are expanded to the phones using the lexical
look-up if the word is present in the lexicon, otherwise we use letter-to-sound rules
to expand the word [Black et al., 1998], [Sitaram, 2015]. Prosodic phrasing is then
predicted based on punctuation rules and other data-driven approaches [Parlikar,
2013]. Pitch accents are predicted on top of these prosodic breaks, using simple
rules or data-driven approaches [Anumanchipalli, 2013]. The linguistic features
are then extracted from this hierarchical graph. These linguistic features contain
both numerical questions such as identity of the linguistic unit, POS tag, intona-
tional features as well as numerical values relating to the phone type, duration,
lexical stress and other features relating to the characteristics of the articulators
used in producing the phone.

Parametric Models: After the linguistic features are extracted they are used by
the parametric models to predict the vocoder parameters. The parametric models
mainly consist of three models. The FO model which predicts the FO parameters,
the acoustic model which predicts the acoustic parameters such as MCEPs, LSPs etc
and the duration model which predicts the duration of each HMM state. Then the
MCEP relation is added to the hierarchical relation graph and frame-wise linguistic
features are extracted.

Training: To train these models, we require both speech and its transcription. The
audio is first segmented to get the sub-phonetic segmentation. This segmentation
also serves as the output on which the duration model is trained. Then appropriate
FO and acoustic parametrization are derived on a frame level (at 5 ms frame shifts)
and labelled according to the output of the decoder. These labelled frame-wise
features then form the outputs for training. The text is made to undergo the text
analysis and linguistic features are extracted on a per-frame basis. Given the frame-
wise linguistic and acoustic features, CART trees[Breiman et al., 1984] are trained
to cluster speech frames having similar linguistic contexts for each HMM state. The
mean and variance of the pooled data at each node is calculated.

Synthesis During synthesis, given the linguistic features, first the durations per
HMM state are predicted from the duration model. Then the means for those
segments are predicted from the acoustic model and the FO model. Given these
parameters for the utterance it is then sent to the next stage.

Waveform generation: Since the means are predicted on a per HMM state ba-
sis, the contour that is generated, is very monotonous per HMM state with rapid
changes at the boundaries. In order to make it more like how human speech is
produced by smoothly changing articulator positions, speech parameter generation
algorithm [Tokuda et al., 2000] is applied to the trajectories in order to make it
smoothly varying within a state and not have rapid changes at the boundaries.
Optionally, after this stage a post-filter such as described in [Toda and Tokuda,
2007],[Li and Atlas, 2005], [Yoshimura, 2002] can be applied to counter over-
smoothing effects in the high frequency regions and then it is sent to the synthesis
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Figure 2.2: Different Speaker Adaptive Training (SAT) Techniques.

filter [Imai et al., 1983] to re-synthesize the waveforms.

More recent techniques use neural network models to model the FO, acoustics and dura-
tion, predicted either separately or jointly. This mainly involves replacing the CART trees
with Neural network models [Zen, 2015]. The advantage of Neural Network models is
that the data does not get split for each phone, since a single model is trained on all of
the data.

2.1.2 Adaptation Techniques in SPSS

Adaptation techniques in TTS, can broadly be classified as feature based adaptation tech-
niques and model based adaptation techniques. There is a large body of work that has
been investigated previously in building average speaker independent models in TTS
and applying different methods of both speaker and cross-lingual adaptation [Yamagishi,
2006], [Yamagishi et al., 2007a], [Yamagishi et al., 2003b], [Yamagishi and Kobayashi,
2007], [Yamagishi et al., 2007b], [Wester et al., 2010], [Yamagishi et al., 2009]. I de-
scribe some of these model based methods below.
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Linear Methods

These methods are the most widely used methods for speaker adaptation in TTS [Yamag-
ishi, 2006], [Yamagishi et al., 2008], [Yamagishi et al., 2007b]. It involves first building
an average voice, by pooling all the speakers together and then applying some speaker
specific linear transform to the model parameters to adapt the average canonical model
to the speech of the specific speaker. Maximum Likelihood Linear Regression (MLLR)
[Gales, 1998], involves transforming the means and sometimes variances of the model
by applying an affine transformation to the mean/variance of the average model. There
is a constrained version of this called CMLLR which constrains the variance to have the
same form as the mean. Maximum aposterior adaptation technique is the other tech-
nique that is used which maximizes the posterior of the Gaussian parameters. However,
MAP is local and applied to only the Gaussians seen in the training data. While MLLR
applies the same transformation to all the tied states. There are other variants such as
Structure MAP, which applies MAP to tied states and makes the prior the parent of the
leaf node in the tree [Yamagishi et al., 2009]. Similar linear transforms can directly be
applied to the features instead of the model.

Cluster Adaptive Training

This method involves learning a set of basis functions in order to describe the input space
[Gales, 2000], [Zen et al., 2012], [Wan et al., 2014b], [Wan et al., 2014a]. The advan-
tage of using cluster adaptive training is that it can factorize out the various conditions
seen in the training data. Adapting a speaker primarily involves learning a set of cluster
weights for each speaker and thus requires less adaptation data.

Shared Decision Tree Context Clustering

This involves building separate speaker specific models and then building a common
tree with common questions from the speaker dependent models. This shared decision
tree is adapted to the speaker and then speaker adaptive training to a specific speaker
[Yamagishi et al., 2003a] is applied to this shared tree. The disadvantage in using this
method is that it requires enough training data from each speaker to be able to build a
speaker dependent voice.

2.1.3 Evaluation Metrics

In speech synthesis we use both objective and subjective measures for evaluation. Fur-
thermore, the two main criteria that TTS systems are evaluated on is naturalness and
intelligibility. In this thesis, we choose to use MCD as the objective measure to evaluate
the intelligibility of the TTS system and subjective tests such as MOS and A/B testing to
test user’s preferences, which would depend on both the naturalness of the voice as well
as how intelligible it is. Some of these measures that we use to determine the quality of
our TTS systems are described below.
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Objective Metric

We use Mean Cepstral Distortion [Kominek et al., 2008] as the objective metric. It is a
weighted root mean square error between the predicted v*"“? and the original acoustic
vectors v"¢/. For an utterance containing a sequence of frames v,(t), from 0 to 7' and
feature dimension 0 to D, It is defined as:

T-1 D
Te re a red re
MCD( ) = 2 %7\ = o (1)
phngsit 1

where, o = 6.14185 and 7' is the minimum number of frames in the shorter of the two
files. In this thesis, we denote the MCD metric calculated using ground-truth durations
as MCD. However, when we do not have a separate duration model as is the case with
neural attention models, we directly compare the synthesized wavefile with the ground-
truth wavefile. In this scenario, we use the dynamic time warping (DTW) algorithm to
first make the sequences of acoustic vectors derived from the wavefiles to be of similar
lengths and then calculate the MCD between these. In this thesis, this measure is denoted
as DTWMCD. Both the MCD and DTWMCD metrics are dataset dependent and cannot
be compared across datasets.

Subjective Metrics

Subjective results are mainly evaluated using A/B preference tests or Mean Opinion
Scores (MOS). The MOS score is a number on a scale from 1-5 where the user is asked
to rate how well they prefer a particular synthesized utterance. Natural vocoded speech
is generally rated around 4.5. A/B preference tests are comparison tests that compare
some baseline system with the new system.

2.2 Found Data

Any data that is available readily in the public domain is called found data. This includes
data from audiobooks, public speeches, news and radio broadcasts, YouTube data and
telephone conversations. This data has large variations in its type and characteristics.

2.2.1 Characteristics of Found Speech

Single speaker databases such as audiobooks, public speeches, channel broadcasts on
YouTube, etc., have the advantage that they are spoken by the same speaker. However in
terms of diversity of the data they have their own challenges. Audiobooks for instance,
have large variations in the prosody and intonation as well as the speech rate. Even
though, these variations in prosody make for interesting listening, they are difficult to
model in current speech synthesis systems. Moreover, since current systems are built us-
ing single isolated utterances, they do not account for long range dependencies as seen
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in audiobooks over paragraphs and sections.

On the other hand public speeches and YouTube broadcasts have a lot of channel noise
due to variations in recording conditions such as variations in microphone characteris-
tics, room acoustics, distance from microphone, etc. These types of databases require
better data pre-processing and feature adaptation and normalization techniques which
will be robust to channel conditions.

Multi-speaker databases include news and radio broadcasts, telephone conversations and
voice search data. These types of utterances are generally short, contain a lot of fillers
and non-speech sounds and distortions.

News broadcasts generally have each segment consisting of multiple speakers and
having many queuing audio sounds like sequences of music and other data. In terms of
building TTS systems with such relatively clean, multi-speaker corpora we need to look
at various voice averaging and voice conversion techniques to average over the different
speakers in the database in addition to data pre-processing techniques in order to select
an optimal subset for synthesis and remove speakers who are very different and not rep-
resentative of our target speaker.

Telephone conversations on the other hand provide a very rich set of data with multiple
issues. They have low sampling frequency and so are of low quality. Furthermore, they
contain lots of channel distortion, background distortions and noisy utterances contain-
ing long periods of silences between utterances, which causes problems with labeling
and alignment. The advantage of using this type of data is it can be easily obtained.
This kind of data needs good pre-processing methods in order to be useful to build TTS
systems which do not fail during training.

Thus in the subsequent chapters we will see ways of handling this variability in dif-
ferent types of found data, by selecting the right data (chapter 3), using better external
resources (chapter 4) and using better prosody modelling techniques (chapters 5 and 6).

13



Found Data

\

-~

Sources of Variation:
prosody, style

/ Audiobooks \/Speeches & Radih

Sources of Variation:
channel variation.

/ Read News

Characteristics: Characteristics: Characteristics: Characteristics:
clean, single speaker, noisy, single speaker, clean, multi - speaker noisy, multi - speaker,
acted. projected. rehearsed. conversational.

variation.

AN

Sources of Variation:
speaker, channel

\ / Telephone \

Sources of Variation:
speaker, channel

\\ variation. J/ \

variation. //

/ Data Selection \

Chapter 3

What is the best method
of selecting and pruning
the data to obtain the best
synthesis system.

- Subset selection
- Pruning strategies

"

/

/ Data Augmentation\

Chapter 4

What is the best method of
using external resources
for adaptation

- Cross-lingual and same
language adaptation

- Degradation with noisy
data and style transfer

/ Prosody Models for \

Long-form Audio
Chapter 5, 6

How do we improve
prosody of long-form audio
using neural models.

- Frame-based methods
- Iterative Approaches
- Prosody weights and

K Acoustic Unit Discov?

Figure 2.3: Found Data

14

embeddings in

K attention models. /




Chapter 3

Data Selection

3.1 Introduction

In the last chapter we saw that the nature of found data is such that it contains a lot of
channel and speaker variability. Most text-to-speech systems are ill-equipped to handle
this variability and noise. For instance, it is hard to build an intelligible voice from a
data pool of 30 hours of poorly recorded, multi-speaker telephone speech, however it is
possible to build an intelligible voice from ten minutes of cleanly recorded, phonetically
balanced data from a single speaker.

Thus, our hypothesis is that given a noisy dataset, there is an optimal subset of that
data that will allow us to build the best TTS system as opposed to using all of the noisy
data in the dataset. The goal in this chapter therefore, is to formulate methods and met-
rics in order to select appropriate data for training TTS systems.

Thus the main goals in this chapter are:
¢ Identify measures which are good selectors of the data to retain for synthesis.

e Find what is the best level at which to prune.

3.2 Related Work

Most of the work relating to data selection techniques for TTS has been investigated pre-
viously for unit selection synthesis, where the main goal is to optimize for phonetic cov-
erage suited for unit selection. In [Black and Lenzo, 2001] they use a greedy, bootstrap
process which weights clusters based on how frequently they are used, and then greedily
selects utterances that have optimal coverage with respect to this frequency weighted
cluster tree. In [Van Santen and Buchsbaum, 1997] they used a greedy approach to the
set covering algorithm by iteratively selecting the sentence with the most diphone units
and then removing those diphone units from the set and in this way, selecting the small-
est set of utterances that cover the phonetic inventory at least once. In [Francois and
Boéffard, 2001] they follow a similar greedy procedure, wherein they prune out units
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which are rare and also repeated triphonemes which are frequent.

Other data selection methods in speech recognition involve active learning methods for
selecting new data to be added to an existing model. These techniques are generally used
to select utterances to be labelled by annotators as in [Hakkani-Tiir et al., 2002], wherein
utterances that generally give low confidence scores by the decoder are selected to be la-
belled by annotators. On the other hand, in some unsupervised settings, the recognizer is
adapted by using the recognition results of sentences which have high confidence scores
as in [Kemp and Waibel, 1999] or they can be combined in a semi-supervised setting as
in [Tur et al., 2005], where the recognition results of the sentences with high confidence
scores are combined with human annotated data for the ones with low confidence scores.
However, these entropy based methods select for diversity, while confidence based mea-
sures are more geared towards representativeness. In [Itoh et al., 2012], they combine
measures of informativeness along with representativeness to select a set of good utter-
ances. They use N-best entropy for each utterance as a measure of informativeness and
a TF-IDF similarity between phones as a measure of representativeness.

There have also been active learning based approaches applied to selecting a good
subset for automatic speech recognition(ASR) and keyword spotting (KWS) for low re-
source languages. In [Wu et al., 2007], they try to obtain a uniform distribution over
the linguistic units (words and phonemes) by maximizing the entropy over the distribu-
tion of these units. While in [Fraga-Silva et al., 2015], they used different variants of
entropy based criterion on words, triphones, phones and HMM states. They find the best
performance when using a mutli-stage approach, specifically, first using letter density to
pre-select and then using acoustic entropy of HMM states for final selection.

Techniques involving maximizing a sub-modular function have recently become fa-
mous for data subset selection in ASR [Wei et al., 2014b], [Lin and Bilmes, 2009], [Wei
et al., 2014a] and machine translation [Kirchhoff and Bilmes, 2014]. However the main
goal here is to ensure minimum loss in performance while using much less data. In these
methods they use an appropriate submodular function to measure the usefulness of each
subset. In [Lin and Bilmes, 2009] they use a Fischer kernel based word similarity mea-
sure derived from acoustics. This maximizes for the representativeness. While, in [Wei
et al., 2014b], they combine this representativeness measure which they call the facility
function with a diversity reward function which basically splits all the utterances into K
disjoint subsets and then it is formulated so as to maximize a function that encourages
selecting from different blocks, thus also maximizing diversity in the subset.

The advantage of using submodular functions is that they have the nice property of
diminishing returns and so implicitly are able to maximize for both representativeness,
and diversity. However, since our goal is to minimize some objective measure which
quantifies the quality of synthesized speech such as MCD, formulating it as a sub-modular
function is difficult.

However, there has been very less work done in the area of selecting utterances from
noisy speech for TTS. Some earlier work which was done in [Cooper et al., 2016b] and
[Cooper et al., 2016a], focused on selecting utterances to get natural synthesized speech.
Their selection metrics relied on low-level acoustic descriptors such as statistics of energy,
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fundamental frequency, speaking rate and articulation. They found the level of articula-
tion to be the best indicator and found that by removing hyper-articulated sentences and
adapting to hypo-articulated sentences gave good results on female speech, which was
not true for the male subsets. Their goal was to optimize for the naturalness of speech
synthesized from the selected data.

The goal in this work is to select data to optimize for intelligibility, by measuring how
well it does on MCD. Moreover, the goal in this work, is to use speech from low-resource
and noisy datasets.

3.3 Experimental Framework

In this chapter, we would like to address the question as to whether all data is good data
or can we find an optimal subset of the data that gives us the best system as measured in
terms of Mean Cepstral Distortion (MCD) [Kominek et al., 2008].

For preliminary investigation, we broadly categorize the error types found in such
data, into two main types, misalignment errors and errors due to variation in channel
conditions. Misalignment errors occur because certain types of sounds are not described
in the transcript such as claps, laughs, coughs, breaths, etc. The second type of error is
caused due to varying microphone conditions, channel noise etc. Misalignment errors are
never good for the system and we would like to detect and remove utterances containing
such errors from our training data . However, errors caused due to channel variation and
noise, might in some cases be good for training our models, adding to the diversity. Thus
our goal here is to find good measures which detect for the misalignment errors and bad
utterances which will be detrimental to the system, while retaining the sentences which
even though they might not be representative of the training set, might still provide
valuable and diverse characteristics to the training data.

We show results on experiments carried out on an artificially degraded dataset to ad-
dress the issues of misalignment errors and errors caused due to large non-representative
channel conditions. We also evaluate the best metric found on the artificially degraded
corpus on two corpora of found data, a single speaker corpus of public speeches and
multi-speaker dataset of telephone speech.

3.4 Data

3.4.1 Artificially Degraded Clean Corpus

Since the goal is to evaluate metrics to detect misaligned data and data that is very
different from the majority of the target domain such as data recorded in very noisy
environments we created this dataset to act as ground truth and provide us an insight
into how well different metrics perform.

To simulate misaligned data we shifted 100 utterances in the ARCTIC dataset for
speaker RMS. For instance, the acoustics of utterance 1 corresponded to the transcription
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for utterance 10. To simulate varying channel conditions, we convolved another set of
100 utterances with an impulse response recorded inside a chamber. We then mixed the
two sets to simulate having both misaligned data and channel noise in the data. The total
duration of this data was about an hour of speech (1000 utterances) out of which ten
minutes (100 utterances) were misaligned and the other 10 minutes had very different
channel characteristics.

3.4.2 Single-Speaker Found Data

The single speaker dataset was created using speeches from the former American Presi-
dent, Barack Obama. We used subsets of three different speeches. The third speech was
chosen to be very noisy with a lot of extraneous sounds such as claps and containing a lot
of reverberation. The other two speech subsets were much cleaner in comparison. The
total number of utterances in the dataset was 495 utterances totaling about 1 hour of
training data. This subset of utterances was selected after running interslice [Prahallad
and Black, 2011] on each of the speeches and selecting utterances that had a minimum
of four words. The utterances in this dataset tended to be longer on an average than the
ARCTIC dataset.

3.4.3 Multi-Speaker Found Data

For the multi speaker found corpus we used the CallHome dataset and created two gen-
der specific sets. The CallHome corpus consists of 30 minutes of unscripted telephone
conversations. For these experiments we used only the primary speakers from each of
the conversations. We first created a clean set of about 400 utterances by removing sen-
tences transcribed as containing laughs, breaths, fillers and other channel distortions.
The noisy version consisted of about 900 utterances. The age range varied from 8 to 70
years for these conversations. The data was further pre-processed to remove too short or
too long utterances.

3.5 Rank and Select Methods

Since the main aim in this chapter is to find a measure of goodness of an utterance to
be selected for training, we investigate various metrics for selecting the best subset of
utterances that will help us build a good TTS system. In addition, we investigate two
scenarios with respect to our experiments. Scenario 1 is where there is a seed set of
utterances available, while scenarios 2 involves building a model, assuming no seed set
is available.

3.5.1 Seed data selection

For the artificially degraded corpus we assumed the phonetically balanced subset of 100
utterances of the ARCTIC RMS utterances to be the seed. For the noisy datasets, since
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we did not have a seed dataset to begin with, we investigated different methods of
finding this small seed subset of good utterances. We investigated using only acoustic
measures such as the 100 best performing utterances in terms of MCD, and on the other
hand purely optimizing for coverage of linguistic sub-units such as obtaining phonetically
balanced subset by counting the frequency of occurrences for each HMM state. We also
tried a combination of the two, however, we found that optimizing for linguistic coverage
gave the best results in terms of MCD on a held out test set.

3.5.2 Voice Building

For all of the experiments in this chapter, we have used CLUSTERGEN [Black, 2006] for
the parametric speech synthesis. In addition, we have only used the base voice building
tools without using Move-Label [Black and Kominek, 2009] and Random Forests [Black
and Muthukumar, 2015]. Using move-label or random forests might improve perfor-
mance, however, just using the base is probably sufficient to deciding the best examples.
Moreover, in [Black and Muthukumar, 2015] the results show that the performance im-
provement is uniform over the base model and the score for a single model is strongly
correlated with the score for RFS models. Thus, we only use the base model as it is faster
and the improvements by move-label and random forest will be uniform over the simpler
models, so it will not make a difference with respect to data selection.

3.5.3 Metrics

We evaluated various metrics such as duration, spectral measures and other cross-correlation
based measures that could be directly calculated from the synthesized wavefiles.

Utterance Mean Cepstral Distortion (UMCD)

The mean cepstral distortion [Kominek et al., 2008] is a weighted Euclidean distance
between the true and the predicted Mceps and is evaluated for each predicted frame. We
score each utterance by the frame-wise MCD averaged across the utterance. The main
intuition in using the MCD was because this was a direct measure of the frequency con-
tent of the signal and thus a higher MCD would imply the synthesized wavefile is further
away from the true wavefile in terms of predicted Mceps on the trained model. Thus, a
really high MCD would imply that the acoustics in the utterance are not being modeled
well and so would indicate misalignment errors and errors that are not representative
of the majority of the training data. Note that this MCD is calculated on an utterance
level, so as to select good utterances. This is different from the MCD calculated on the
entire held-out test set which is used to evaluate how well the voice has been modelled
as plotted in Figs. 3.1 - 3.5.
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Duration

For durations, we used the root mean square error between the predicted duration for
each senone in the utterance compared to the true label given to an utterance after
training 30 iterations using Baum Welch. The predicted durations were obtained from
two models, one was from the entire noisy dataset and the other was on a model trained
with a small seed set of a 100 utterances. The main goal here was to eliminate the really
bad utterances which would in turn have bad labeling. This measure was expected to
give good results on the misaligned data.

Modulation Spectrum

Since the modulation spectral trajectories capture the temporal dynamics of components
of the spectral envelopes [Hermansky, 1998], we decided to investigate it as a global
indicator of differences in spectral dynamics between the true and synthesized wavefiles.
Moreover, using the Modulation Spectrum as a postfilter has shown gains in synthesis
[Takamichi et al., 2016]. Thus, we expected this metric to be an informative measure
in capturing large channel differences between recordings. We scored each utterance
with the mean error between the modulation spectrum of the true and the synthesized
wavefile in order to obtain a score per utterance.

Global Variance

This was another global spectral measure we tried since it improves results when used
as a post-filter [Toda and Tokuda, 2007]. The idea here was to investigate whether
differences in global variance of the predicted Mceps as compared to the true ones are
correlated to the noisiness in the data.

Cross-Correlation Based Measures

The main intuition in using this metric was to detect misaligned data. If the two sen-
tences are similar they should have a high peak when the two wavefiles, the true training
wavefile and the synthesized wavefile are cross-correlated. We experimented with three
cross-correlation based measures. We simply cross-correlated the two wavefiles and used
the maximum of the resulting cross-correlated sequence as the measure. We also exper-
imented by cross correlating the Teager Energy operator of the two wavefiles and the
Hilbert envelope. The Teager energy operator gives a running energy estimate [Kaiser,
1990] of the wavefile and is supposed to capture the energy of the system that produced
the speech rather that the energy in the speech itself. Thus, we hoped that this met-
ric would also be helpful in capturing channel distortions. The Hilbert envelope on the
other hand, computes the discrete-time analytic signal of the real part of a complex sig-
nal. The intuition in using this measure was to make it easier to detect the differences in
misaligned data, since it can be used as a correlate to the envelope of the speech signal.
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Instantaneous Frequency

The instantaneous frequency is supposed to capture the the average of the sinusoids at
each point in time in a signal. The utterances were scored by taking the mean of the
absolute difference between the instantaneous frequencies in the synthesized and the
true wavefiles. So we would expect that signals that are similar acoustically will have
smaller differences in error between the true and synthesized waveforms while signals
differing in acoustics will have higher errors.

3.6 Empirical Evaluation

This section discusses the results on artificially degraded speech as well as noisy speech.
We first describe the evaluation of various metrics on the artificially degraded data for
both types of errors and a combination of the two. These metrics are evaluated on how
accurately they can detect the artificially misaligned sentences and sentences that have
been degraded with noise. The best performing metric is then used to iteratively select
10% of the best utterances which are then used to re-train the models. The models can
be retrained at each iteration by re-clustering the state models while assuming fixed seg-
mentation or the models can be re-trained by re-aligning the models each time using only
the selected utterances and then re-clustering based on the new segmentation obtained.
The baseline is calculated as the average MCD error on a held out test set from a model
trained on all of the noisy data. In addition, we also investigate how this metric scales
with larger amounts of noisy data.

3.6.1 Metric Evaluation

We carried out two sets of experiments. The results in Table 3.1 show results when using
synthesized wavefiles obtained from a system trained with a small almost phonetically
balanced seed dataset of about 100 utterances (approximately 10 minutes of speech).
The results in Table 3.2 show results assuming the wavefiles are synthesized from a
model trained on the entire dataset. Since the goal is to find the best metric which can
detect the noisy utterances, we have reported the detection accuracy of each metric in
detecting the artificially degraded utterances. Thus an accuracy of 90 implies that 90 out
of the worst 100 sentences by some metric were the artificially degraded sentences.

We see that the MCD and duration parameters outperform all of the other metrics on
both misaligned data as well as channel noise. It makes sense given the fact that these are
the two main parameters about the vocal production mechanism that we model. More-
over, we see that both of these measures do better on the model trained with the entire
noisy dataset, because on the noisy dataset, the really bad utterances will be synthesized
wrongly, while the good ones that fit the majority of the data will be synthesized nicely.
However, it is not guaranteed that the model trained on the seed dataset encompasses
all of the diversity in the data and so might even reject utterances which might provide
it information and make it a better model.
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Table 3.1: Evaluation metrics on artificially degraded set assuming a model built from a
small seed set of utterances. (% Accuracy of detection, here a 99% accuracy implies that
99 out of a 100 degraded sentences were detected as being noisy)

- Misalignment
Metric llllﬂésijélgnment l(\]}l(l)?;nel + Qhagrlnel
Noise
Utterance MCD 99 88 95.0
Duration 85 36 63.0
Modulation Spectrum 51 27 35.5
Global Variance 59 4 34.0
Cross-corr 87 1 32.5
TEO Cross-corr 20 43 51.5
Hilbert Env. Cross-corr 45 1 34.5
Instantaneous Freq. 53 2 17.5

Table 3.2: Evaluation metrics on artificially degraded set assuming a model built from all
utterances. (% Accuracy of detection, here a 99% accuracy implies that 99 out of a 100
degraded sentences were detected as being noisy)

- Misalignment
Metric II:IAéSisélgnment li};?sr;nel + Qhagnnel
Noise
Utterance MCD 100 94 96.5
Duration 87 43 67.0
Modulation Spectrum 21 25 31.5
Global Variance 86 4 47.0
Cross-corr 44 1 30.5
TEO Cross-corr 36 51 55.5
Hilbert Env. Cross-corr 39 1 33.5
Instantaneous Freq. 13 3 16.0

The cross-correlation metrics do much better on the model trained with the clean
seed subset of about 100 utterances. We find that it is much easier to detect misaligned
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data than it is to detect channel mismatch. The Teager energy operator is quite successful
in detecting channel mismatch, as compared to all of the other correlation metrics.

3.6.2 Re-alignment vs. Re-clustering

The subset of utterances selected was used to either re-cluster and re-align the models to
obtain labels suited to the iteratively changing data subset or fix the labels by training on
the entire corpus of noisy data and then only re-cluster based on the utterances selected
with the MCD metric. Figures 1-4 show plots of iteratively selecting the best 10% of
utterances and using these utterances to either only re-cluster the state models (blue
line) or re-align at each iteration and re-cluster based on new segmentation obtained
(pink line).

5.6 7 —Iterative MCD- no Healighment i
—lterative MCD- with Realignment
- - Baseline

Iteration No.
Figure 3.1: Iterative MCD for artificially misaligned data

We find that realigning the labels each time helps and results in a much lower MCD
on both of the single speaker datasets as illustrated in Figures 3.1 and 3.2. However,
the trend is opposite in case of the multi-speaker corpora for both males and females as
shown in Figures, 3.3 and 3.4. This might be because each subset has a different set of
speakers and having labels trained from the entire data set might be better than having
labels from a smaller set which does not encompass all of the diversity in the data. In
addition, we find that in case of the noisy datasets as seen in Figures 3.2, 3.3 and 3.4,
we see that the results with realignment are not monotonically decreasing upto a certain
point and have a slightly erratic behavior. This might be because at every iteration,
the alignment shifts based on the limited amount of training data, which in some cases
might be representative of the test set , while in some others it might not be. In contrast,
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re-clustering the data, assuming fixed labels obtained by running Baum-Welch on the
entire set always results in the MCD decreasing monotonically to a certain point and
then increasing as bad data keeps getting added.

T T T

—IterativelMCD- no Fle]allignment
6.8 - —Iterative MCD- with Realignment|
|- - Baseline

lteration No.

Figure 3.2: Iterative MCD for Single speaker found data

Thus, we find that even though realigning data gives a higher increase in MCD, it is
also more time consuming. In addition, there is no clear trend as to where we need to
stop and ignore the data, unlike the case when only re-clustering on the data, in which
case there is a clear point after which performance of the system degrades. However in
all of the four plots, Figures 3.1 - 3.4 we see that the MCD metric with re-clustering and
no re-alignment, is in fact doing better than the baseline. Moreover, the lowest MCD
obtained on the artificially misaligned data is the same as obtained when testing on a
model trained only with the clean data. This shows us that this metric is indeed rejecting
the noisy data which is not helpful to the system.

3.6.3 How does it scale?

The question then arises can this metric scale when larger amounts of data are misaligned
and can this high performance in terms of accuracy hold up even when half the dataset
has been artificially misaligned? From the figure, Fig. 3.5, we see that yes indeed, this
method based on pruning out misaligned data does work even when more than half the
data is misaligned. In fact, the gain obtained over the baseline, a change of 0.3 MCD is
significant. A 0.12 MCD change has been shown to be a significant, almost equal to the
improvements obtained by doubling the amount of training data [Kominek et al., 2008].
We also find that results with realignment which is almost 0.3 lower in MCD from the
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Figure 3.4: Iterative MCD for multi-speaker found data-Female

baselines is more beneficial in this case as compared to just re-clustering which is 0.14
MCD lower than the baseline.
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Figure 3.5: Iterative MCD for ARCTIC RMS containing 50% misaligned data

3.7 Summary

In this chapter, we show that our claim that not all data is good data holds. We see
that selecting a smaller, cleaner subset for voice building is much better and less time
consuming than building from the full noisy dataset.

We have explored various utterance level metrics which would be indicators of the
measure of goodness of an utterance. We showed results considering both the availability
of a small seed set of about 100 utterances and building from all of the noisy data without
access to such a seed dataset. We find that there is no advantage in having access to a
seed dataset and we can instead get similar if not better results by training our initial
model on the entire dataset. From all of the measures we explored, we find that the mean
cepstral distortion performs the best followed by the error in the duration prediction. We
surprisingly find that the various cross-correlation based metrics are not good indicators
of the presence of misaligned data. In addition, contrary to our expectations, we find the
global spectral measures, i.e., modulation spectrum and global variance perform poorly
in detecting changes in channel conditions.

In terms of the errors we find that it is much easier to detect misaligned data than
it is to detect noisy channel variations. We also find that the data selection does scale
even when 50% of the dataset has been misaligned and yields a MCD which is 0.3 lower
than the baseline. In addition, we find that re-clustering works better on the multi-
speaker dataset while realigning works better and gives a lower MCD on the two single
speaker corpora. However, when re-clustering on these datasets the MCD monotonically
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improves upto a certain point, while the behavior of the average MCD with each iteration
is erratic when also realigning each time.

We have shown results in this chapter on utterance selection. We show that it scales
well on misaligned data and gives us significantly better results than using the entire
subset of noisy data. Thus, the main takeaway from this chapter is that for noisy datasets,
we can get a gain in MCD by removing at least the worst 10% of the data using MCD
or duration as a scoring metric and retraining the clustering model with it. In the next
chapter we will see how we can make our noisy data models better by augmenting using
other external cleaner data and identify what sources of data are good for augmentation
in found and noisy data scenarios.
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Chapter 4

Data Augmentation

For synthesis we generally require recordings which have consistent characteristics in
terms of speaker and channel. However, since we are dealing with found data, especially
for low resource languages, it is difficult to find enough clean recordings from a single
speaker, to be able to train an understandable speech synthesis system. One method to
use this found data can be to augment it with cleaner data from another speaker of the
same language or if one does not have access to a cleaner dataset of recordings in the
same language, use some form of transfer learning from a higher resource language to
augment the model.

In addition, it is often the case that for many low-resource languages, audio in the
form of audio-books and podcasts are available without transcriptions. However, since,
we require transcribed audio to train a system for speech synthesis, and there is large
amounts of unrelated text data in the same language available in the form of Wikipedia
text and text obtained from other regional websites, question is can we use this data to
obtain transcriptions suitable for building speech synthesis models. Thus the goals in this
chapter are two fold :

¢ To identify good sources of external data for augmentation to integrate in the TTS

pipeline assuming we have transcribed data.

¢ Given un-transcribed audio data and unrelated text in the same language, how can
we use this text data to obtain transcriptions suitable for training TTS systems.
In this chapter, we will first explore cross-lingual data augmentation methods for
transcribed data as well as show results on various styles of transcribed English data and
then explore methods for un-transcribed speech.

4.1 Cross Lingual Augmentation of Transcribed Text

The goal in this section is to investigate techniques to augment end-to-end neural models
with data from a related higher-resource language. Depending on the amount of training
data available in the low-resource language and its proximity to the higher resource
language, this cross-lingual data could be integrated into the whole system or it could
be used to only improve a part of the system. For instance, if we have limited training
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data available in the desired low-resource language, we can train an entire system in
the higher-resource language and use linear transforms to map the distributions to the
lower resource language as was done in the context of cross lingual voice conversion
in [Latorre et al., 2006]. On the other hand, in traditional models we could choose to
improve a specific part of the TTS pipeline such as the feature extraction, the decoder
for segmentation or the context clustering stage. The newer neural style systems [Wang
et al., 2017], [Ping et al., 2018] [Li and Zen, 2016], allow us to pool all of the higher and
lower resource languages to adapt the entire system. Thus, in this section, the goal is to
investigate best methods of identifying good higher resource languages, given a target
low-resource language and then integrate it into a neural seq-to-seq TTS pipeline.

4.1.1 Previous Approaches

Previous approaches in using cross-lingual techniques in speech synthesis have been pri-
marily explored in the direction of cross-lingual speech synthesis [Peng et al., 2010]
or polyglot speech synthesis, [Chen et al., 2014] and [Latorre et al., 2006], where the
goal is to map the speaker’s characteristics from one language to another. Most of these
techniques assume parallel corpora from the speaker in order to learn a phone or state
mapping as in [Wu et al., 2008], [Wu et al., 2009].

However, the goal in this section is to use cross-lingual resources to augment low-
resource data in order to give better intelligible TTS. In this regard our goal is similar
to the unsupervised cross-lingual techniques as in [Gibson, 2010], and polyglot synthe-
sis techniques mentioned in [Latorre et al., 2006] and [Peng et al., 2010]. In [Gibson,
2010], they assume adaptation data to be coming from the same language as the lan-
guage used to train acoustic models and so maps the adaptation acoustic data into the
phone-set of the source language. It then uses a two-pass decision tree clustering stage
to add specific features in the adaptation data in the second stage. While in [Peng et al.,
2010] and [Latorre et al., 2006], they build polyglot synthesis models not assuming
parallel corpora, using transforms such as MLLR and MAP instead to adapt model on
the speaker’s data. However, unlike both of these approaches, our goal is not to re-
tain speaker characteristics, but rather to be able to synthesize intelligible speech in our
target low-resource language, by augmenting with data from a more easily available
higher-resource language. In addition, in this section we explore the newer seq-to-seq
neural style models for multi-lingual synthesis, which to our knowledge has not been
explored yet. In the next section, we briefly describe our factored embedding model and
following that in section, Sec 4.1.3 we describe our experiments and results.

4.1.2 Factored Embedding Model

The model used for this set of experiments is a modified version of the convolutional
model, with multi-step attention (dot-product attention at each decoder layer), as de-
scribed in [Gehring et al., 2017] which was used for machine translation. This model was
adapted as the DeepVoice3 model by Ping et al in [Ping et al., 2018] for multi-speaker
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Figure 4.1: Factored Embedding Model, with global attributes for each speaker (speaker id,
gender, language), learned as a separate embedding.
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speech synthesis of English speech. Similar to most sequence-to-sequence models used
for speech synthesis, it consists of four main blocks. The encoder block, which converts
the input sequence of text units (phones or characters) into a sequence of linguistic em-
beddings, the attention block which produces a context vector at each time step in the
sequence, a compact weighted representation of the linguistic input which is given to
the decoder and post-net. The third block is the decoder, which uses the output from
the encoder and the context vector of the attention block to predict a sequence of Mel
frames, which are then converted to the wavfile using the postnet block, which converts
the sequence of Mel frames to linear spectrograms via time-upsampling using multiple
convolution layers as was done in [Tachibana et al., 2018] and finally synthesizes them
using Griffin-Lim algorithm for phase reconstruction [Griffin and Lim, 1984].

Our model is based on the DeepVoice3 model described in [Ping et al., 2018]. In ad-
dition to using position embeddings for each speaker, the factored version of our model
also includes global embeddings such as speaker, language, and gender which is given
to each encoder, decoder and postnet convolutional layer, as well as added to the po-
sition embeddings and text embeddings. In addition, similar to the implementation in
[Yamamoto, 2017], we use a guided-attention as well as a divergence multi-task loss as
described in [Tachibana et al., 2018], in addition to the L1 Mel and Linear loss. The exact
loss function used is described in more detail in 6.2.2 and the different components of
the model architecture and its hyper-parameters is described in more detail in Appendix
A. Since ours is a grapheme based system, we use the UniTran Sampa Table [Qian et al.,
2010], to map Unicode characters to the Sampa symbol-set and we use this set of input
symbols as the input to the system.

4.1.3 Experiments

In this set of experiments we seek to answer mainly the following questions:

e Factored Embeddings: Is there any advantage to factoring the data across the
global attributes and more importantly whether factoring these global attributes
will help share data across speakers and languages in data scarce scenarios.

e Scaling to a new language: What is the minimum amount of data required in a
new language to be able to synthesize from a trained multilingual model and does
adding other speakers from the same language improve performance.

e Transferrability: Are these global embeddings for gender, language and speakers
transferable, i.e., can we make AXB, an Indian female speaker speak like a man
and can we make AWB, a Scottish male speaker talk in a different language such
as Hindi.

e Degradation with Noisy Datasets:What is the performance degradation when we
train on noisy multi-speaker datasets.
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Factored Embedding Model vs. Un-factored Embedding Model

We first compare a multilingual factored embedding model vs. its unfactored counterpart
for various languages.

Data: The data used to train the multilingual model consisted of multilingual datasets
provided by Hear2Read and available on Festvox [Bazaj, 2017] as well as the Blizzard
datasets provided by the Deity project from government of India [Baby et al., 2016].
These datasets range from 30 mins to 9 hours per speaker recorded in relatively clean
conditions. We have listed the amount of each speaker’s data in the DTWMCD results
table, Table 4.1.

Table 4.1: DTWMCD results on multi-lingual speaker Indic Datasets (Marathi, Hindi,
English, Gujarati) example wavs.

Language Speaker (Gender) | Hours | Unfactored (DTWMCD) | Factored (DTWMCD)
English AXB (F) 00 : 30 8.20 £ 0.44 8.75 £ 0.64
English SLP (F) 00 : 30 9.05 £ 0.58 9.90 £ 0.43

Gujarati IITM2 (M) 09 : 06 6.54 £+ 0.60 7.03 £0.49
Hindi AXB (F) 01:55 7.51 £0.40 857 +0.91
Hindi IITF (F) 04 :35 7.09 £ 0.40 7.57 £0.65

Hindi IITM (M) 04 : 30 6.62 £ 0.20 7.52 £ 0.25
Marathi AUP (M) 00 : 27 6.38 £ 0.28 7.35 £0.33
Marathi IITM1 (M) 03:03 6.48 +0.21 7.094+0.35
Marathi SLP (F) 00 : 31 9.19 £ 0.40 10.23 £+ 0.40

Table 4.2: A/B Listening test results on multi-lingual speaker Indic Datasets (Marathi,
Hindi, Gujarati), comparing factored vs. unfactored models example wavs.
Language Speaker % Who prefer % Who prefer % Who find
(Gender) Unfactored Factored both same
Hindi IITF (F) 36.07 57.14 6.78
Marathi AUP (M) 47.05 50.59 2.94
Gujarati [ITM2 (M) 42.50 39.17 18.33

Training: First we trained a multi-lingual, multi-speaker model on 7 speakers compris-
ing Hindi, English, Marathi and Gujarati. The model was initialized with weights trained
from the VCTK corpus [Veaux et al., 2017], since we found that this makes the model
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converge faster as opposed to starting each training cycle from scratch. For the unfac-
tored model, each language-speaker pair was treated as a separate embedding, while,
for the factored model, we factored global attributes of speaker identity, gender and
language separately as shown in figure, Fig. 4.1, so it could share similar speaker char-
acteristics across languages, as well as use common language features across speakers.

Evaluation: To evaluate the factored embedding model, we use a 10% held-out dataset
from the original speaker. Table 4.1, lists the DTWMCD values, comparing the synthe-
sized wavefiles to the ground-truth. For three of these speakers, we also ran listening
tests, comparing the factored vs. unfactored models. For the listening tests we used 30
random wavefiles, divided into 3 subsets of 10 files each. There were at least 25 listeners
per subset. These results are reported in Table 4.2.

Results: From the results in Table 4.1 and 4.2, we see that:

e The results of the unfactored model seem to be better in all cases than the factored
model in terms of the DTWMCD values. This is confirmed in most cases with the
listening tests, however, we do find that for the Gujarati speaker, listeners prefer the
factored model. Our hypothesis as to why the unfactored model performs better
than the factored model in most cases is because not factoring the global attributes,
helps the model to over-fit to the data better and this might be a good thing when
synthesizing speech using end-to-end models. The case for Gujarati speaker is
interesting as well, since this is the only speaker in the training data that does not
have multiple speakers for the language, and our hypothesis is that the factored
and unfactored models are thus very similar since they are sharing the same data
per embedding. This can be seen by the marginal difference in DTWMCD, 6.54 vs.
7.03 as well as the fact that 18% people find no difference in between the factored
and unfactored models and among those listeners, the factored model is preferred
more than the unfactored by about 3% only.

e Speaker SLP, a female Marathi speaker has the worst performance in the multi-
lingual model. Now it is surprising that male speaker AUP, who has the same
amount of Marathi data as SLP performs much better. However, there is also an-
other male Marathi speaker in the dataset with about 5 hours of data. So the
question is, is it something about the speaker’s characteristics and speaking style
that make it a good voice for the neural network model to learn or can we improve
the performance of SLP’s Marathi speech by augmenting it with another female
Marathi speaker.

¢ The performance on English speech is very bad for both AXB and SLP. This might
again be because of the paucity of the English data in the dataset. The multilin-
gual dataset has only about 1 hour worth of English data coming from two fe-
male speakers. However, since the model was transferred from a model trained
on VCTK corpus, a multi-speaker English corpus, it begs the question, whether the
neural network works better with similar languages and tends to forget its previ-
ous weights, as shown in [Kirkpatrick et al., 2017] or can the problem be solved
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by adding more data to it. Thus to this end we look at one speaker SLP, and try to
improve her performance on English speech with experiments described in Table
4.5

How does it Scale to a New Language and Many New Speakers

Data and Training: To the model mentioned in Section, 4.1.3 which produced results
in Table 4.1, we added 7 more speakers and one more language, Bengali. The details of
the training data in terms of speaker, gender and hours of data are shown in Table 4.3.
We wanted to see if the results degrade when adding more diverse data, showing the
case for over-fitting to improve results. The details of the data that have been added are
shown in Table 4.3.

Results: We see that the degradation in performance if at all is not much. In fact,
some unfactored model results improve marginally for a few speakers. The results for
most factored models degrade but only very marginally. From the listening tests compar-
ing the old unfactored model vs. the new unfactored model, as shown in Table 4.4 we
see that in case of all of the three speakers of Hindi, Gujarati and Marathi, listeners pre-
fer the new model, showing that even with the addition of new languages and external
speakers, performance of the model tends to improve.

Case Study:Marathi-English speaker SLP

As mentioned in the previous section, we wanted to see if the model improves by adding
additional external data from another speaker of the same language, or is it better to
fine-tune the multilingual model on a single speaker of the target language. To this end,
we present various experiments in Table 4.5 in trying to improve the performance of
speaker SLP’s English as well as Marathi synthesized speech.

Data and Training: To the model described in Table 4.1, we either add more data from
other speakers of the same language and retrain this model, or adapt it on our target
data, which in this case is half hour of speaker SLP’s Marathi speech, and half hour of
the same speaker’s (SLP) English speech. We also further fine-tune the data augmented
model with SLP’s English and/or Marathi speech. To augment the models we use the
4 hours and 20 mins of female Marathi speaker (IITF4) and 6 hours of Indian English
female speaker (IITF).

Results: Table 4.5 agrees with Table 4.3 in that the unfactored model’s performance
is much better than the factored model. Some observations from the results in Table 4.5
are as follows: Adaptation or fine-tuning the model on our target data seems to produce
some improvements in quality of speech as measured by the DTWMCD metric calculated
on a 10% held out test set from speaker SLP. Surprisingly, we did not see as much gain in
adding more data, and in fact find that the DTWMCD metric shows a slight degradation
in quality, when augmenting with additional data from external speakers. In addition,
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Table 4.3: DTWMCD results on multi-lingual speaker Indic Datasets (Marathi, Hindi,
English, Gujarati and Bengali) example wayvs.

Language Speaker (Gender) | Hours | Unfactored (DTWMCD) | Factored (DTWMCD)
Bengali IITF3 (F) 01:34 7.30 £+ 0.39 7.64 £0.39
Bengali IITM3 (M) 08:01 6.79 &+ 0.56 7.28 +0.64
English AXB (F) 00 : 30 8.08 £0.47 8.70 £0.72
English SLP (F) 00 : 30 9.46 + 0.65 9.95+0.54
English IITF (F) 06 :14 7.78 +0.43 9.17+0.42
English IITM (M) 06 : 00 7.93 +0.47 9.00 £+ 0.492
Gujarati AD (M) 00 : 54 6.74 +£0.37 7.71+£0.77
Gujarati DP (F) 00 : 48 7.45 £ 0.58 9.21 £ 0.87
Gujarati IITM2 (M) 09 : 06 6.85 £ 1.02 8.27 £ 0.66
Gujarati IITF2 (F) 05:07 6.79 +0.48 7.52+0.63
Gujarati KT (F) 00: 26 6.44 + 0.39 9.36 =1.44
Hindi AXB (F) 01:55 7.47 £ 0.394 8.65 £+ 0.49
Hindi IITF (F) 04 : 35 6.96 £ 0.380 7.72 £0.58
Hindi IITM (M) 04 : 30 6.48 + 0.22 8.32£0.32
Marathi AUP (M) 00 : 27 6.34 + 0.30 7.68 4+ 0.49
Marathi IITF4 (F) 04:19 7.32+0.44 8.41 £+ 0.40
Marathi IITM1 (M) 03:03 6.38 + 0.20 7.35 £0.54
Marathi SLP (F) 00: 31 9.62 £ 0.55 10.37 £ 0.48

Table 4.4: A/B Listening test results on multi-lingual speaker Indic Datasets (Marathi,
Hindi, Gujarati) comparing the big unfactored model vs. smaller model example wavs.

Language Speaker % Who prefer % Who prefer % Who find

(Gender) Old Model New Model both same
Hindi IITF (F) 37.08 52.50 10.40
Marathi AUP (M) 36.40 43.20 20.40
Gujarati [ITM2 (M) 31.42 57.14 11.42
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Table 4.5: DTWMCD results on Marathi-English speaker SLP example wavs.

Adaptation / Data Unfactored (DTWMCD) Factored (DTWMCD)
Added SLP Marathi | SLP English | SLP Marathi | SLP English
Baseline Multi-lingual Indic Model 9.19+0.40 | 9.05+0.58 | 10.234+0.40 | 9.90 £0.43
Adapting base model on SLP 881+0.43 | 846£0.42 | 9.15+£0.35 | 877£0.37
Adapting base model on SLP Marathi 8.80+0.36 | 8.70+0.38 | 9.28+0.40 | 9.31 +0.42
Adapting base model on SLP English 8.90+0.37 | 842+0.39 | 9.16+0.31 | 8.74+0.34
External Marathi Female 9.36 +0.41 | 9.09+0.49 | 10.494+0.44 | 10.02 £ 0.53
External English Female 9.30£0.43 | 9.13£0.53 | 10.26 +0.36 | 10.08 £ 0.45
External Marathi + English Female 9.42+£040 | 9.294+0.54 | 10.13+£0.44 | 9.88 £0.41
Adapting external Marathi female speech | ¢ o5 49 | 8744033 | 9.17+041 | 9.07+0.37
model on SLP Marathi
Adapting external English and Marathi | o1/ | 49 | 8704037 | 9354040 | 8.84+0.37
female speech model on SLP

we see that fine-tuning the model after augmenting with more data is not as good as just
fine-tuning alone. This again seems to show that over-fitting on our target dataset seems
to be desirable for synthesis. If you consider the model adapted on only English data,
vs. the model adapted on Marathi only data, we see that it is getting confused between
the acoustics of English and Marathi speech. One hypothesis for the failure of the model
to converge is that the model might be getting confused with English and Marathi from
the same speaker. This can be seen from the attention plots in Figure, 4.2 which fail
to produce good alignments, even though the model converges very fast. As such if we
compare results for English speech across all speakers, we see that it finds it difficult to
synthesize English well across all four speakers.

Case Study: [ITF2-Gujarati - How does the Model Perform on a New Language?

The next question we wanted to answer was how much data in a new language is good
enough to adapt the multilingual model to the new target language and speaker. We also
wanted to compare the performance improvements (if any) when we add other external
speakers in the same language and whether similarity of the speakers in terms of gender
matters, if at all. First we looked at how augmenting with data in the same language but
from other speakers effects performance and how much of a role gender of the external
speaker plays in improving results. These are described in Table 4.6.

Effect of External Speakers in the Same Language:
Data: The baseline single speaker model was trained on English audiobook data of
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Figure 4.2: Failed Attention Plots for Model Adapted on SLP’s Marathi Data

23 hours (LJSpeech dataset) [Ito, 2017] and then fine-tuned on our target Gujarati fe-
male speaker IITF2. Our baseline multilingual model which we abbreviate MLMSI-NG
or Multi-lingual, Multi-speaker, Indic model with non Gujarati data includes all of the
subsets from Table 4.3, without the Gujarati speakers. To this model we add an external
Gujarati male (IITM2) dataset of 9 hours which we call (Big) and a smaller male dataset
is that of speaker AD totalling just under 1 hour of data. Similarly the external female
data which is not the target speaker is Gujarati speaker DP, including just less than an
hour (50 mins) of data. Finally, the multi-speaker Gujarati corpus includes 4 other Gu-
jarati speakers, AD, DP, IITM2, and KT apart from the target speaker, totalling about 16
and half hours of total Gujarati data. Table 4.6 presents these results.

Results: We see that augmenting the model with external data at least for the case
of Gujarati, does not give expected gains in synthesis quality, when comparing results
augmenting with a multi-lingual model. We do see gains when going from a single
speaker English model to a multi-speaker, multi-lingual model, however, the presence of
the target language in the training data does not make significant differences in synthe-
sis quality. As expected, there are some gains when augmenting with a speaker of the
same gender, but if we compare the quality of synthesis obtained from adding 9 hours
of external male Gujarati data vs. adding only 1 hour of external male Gujarati data, we
do not see much difference in improvement. One reason for this might be that 5 hours
of target speaker data is enough to train the model and it is not getting any gains from
the other speakers of the same language. Thus, in the next experiment we wanted to see
whether this had any effect if we reduced the size of the training data available for the
target speaker.

Effect of Size of Training data of Target Speaker, and External Data for Augmenta-

tion:
Data and Training: To understand the effect of the amount of data needed to make a
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Table 4.6: DTWMCD results introducing a new speaker with different types of external data
in another language or the same language but from an external speaker example wavs.

Hours-
Guj.
External Data Added DTWMCD
Data
(hh:mm)
Adapt on English model (Baseline) 05:07 | 7.90+0.38
MLMSI-NG 05:07 | 7.96 £0.50
MLMSI-NG + Guj. male (Big) 14:13 | 7.96 £0.53
MLMSI-NG + Guj. male (Small) 06:01 | 7.90£0.55
MLMSI-NG + other Guj. female 05:55 | 6.96 £ 0.69
MLMSI-NG + Multispeaker Gu;j. 16:34 | 7.52+£0.63

model synthesize a new speaker’s voice in a new language, we made 4 subsets of the
female Gujarati (IITF2) data. These included subsets of 100, 250, 500 and 1104 utter-
ances each with durations as mentioned in Table 4.7, going from about half hour of data
to almost five hours, and doubling in size with each subset. We assumed three differ-
ent adaptation/initialization conditions in training these models. In the first case, we
directly adapted the model on the target speaker, by transferring weights from English
audiobook data trained model on LJSpeech. In the second case, we trained a multilin-
gual model with all of the speakers mentioned in Table 4.3 without the other Gujarati
speakers (AD, DP, KT and IITM2). For the last model, we trained with all of the speakers
from 4.3. Table, 4.7 lists these results.

Evaluation: For calculating the DTWMCD, we use a 10% held out test-set from the
original speaker. For the Mean Opinion Score (MOS) listening tests reported in Table
4.8, we asked listeners to rate 30 examples of each subset of 100 and 1000 utterances
on a scale of 1 to 5. The listeners where not asked to directly rate the utterances on a
scale, instead the prompts they were asked were:

e Jt is natural (5)

It is somewhat natural (4)

It is neither natural nor robotic (3)

It is somewhat robotic (2)

It is very robotic (1)

Because of these prompts, we find that the listeners had a propensity to rate it generally
higher than if they would be asked to rate it on a a numerical scale. However, these
numbers still give us an idea of which systems are preferred over other systems, and are
a good complement to the objective results reported in Table 4.7.
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Results: As you can see the DTWMCD numbers don’t paint a very good pattern of
the data being synthesized as compared to the listening test results reported in Table
4.8. From the listening test results, one can clearly see that starting from a multi-lingual
model irrespective of whether it contains Gujarati speech helps to synthesize a better
Gujarati model on target speaker when the subset size is small. In addition, we again
see that we get significant gains by fine-tuning to the training data, and show that we
do not need a lot of data to train an already trained multi-lingual model, irrespective of
whether it contains external Gujarati data or not. Thus, these experiments clearly show
that initialization matters, when it is being initialized from totally different speech data,
and this is especially true when the size of the data is small.

Table 4.7: Performance of the model as calculated by DTWMCD on subsets of a new tar-
get speaker of a new language, when transferring either from a multilingual model or a
monolingual model example wavs.

Data 100 250 500 1104
(00:37:21) | (01:26:40) | (02:52:42) | (05:07:29)
Model adapted from single speaker English | ¢ 10 45 | 9394043 | 8132043 |7.00£0.38
model
Model Adapted from non Gujarati
Multilingual Indic Model 7204076 | 6.97+057 | 6.90+0.54 | 7.96-0.50
Model Adapted from Multilingual Indic | ¢ - (71 | g174 196 |814+084 | 7.5240.63

Model including multiple Gujarati speakers

Table 4.8: MOS Listening test results on different subsets of Gujarati female data adapted

on different models example wavs.

Model used for adaptation

100 utterances

1000 utterances

speakers

Single speaker English Model 3.46 3.92
Multilingual model with no Gujarati Data 4.07 4.13
Multilingual model with external Gujarati 4.03 4.20

Transferrability

One advantage that we get with using factored embeddings is that it allows more control
on the gender, speaker and language. Thus, with this model it is possible to get a speaker
to speak a language for which we do not have any training data. We did some cross-
lingual and cross-gender synthesis. The results can be found at this link. We wanted to
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check what information the different global embeddings capture, and how transferable
they are. Thus we did three sets of experiments for both male (AUP) and female (IITF)
speaker.

e Change of Speaker: In the first experiment we changed only the speaker ID for
scripts of language where there was no training data from the speaker in that lan-
guage. Thus for Gujarati speaker IITM2, Hindi speaker IITM and Bengali speaker
IITM3, we changed the speaker id to that of the Marathi speaker AUP, to see if the
speaker characteristics transfer. Similarly we did the same with female Gujarati and
Marathi speakers, replacing the speaker id with female Hindi speaker IITF. Indeed,
we see that the speaker characteristics transfer well to other languages.

e Change of Gender: We changed the gender for both males to females and vice-
versa and synthesized for all four languages. We see that apart from the Marathi
speaker AUP, the synthesized file still carries the original gender and is not trans-
formed much.

e Change of Language: To see how much information the language embedding
carries, we changed the language ID for speaker AUP from Marathi to Bengali,
Gujarati and Hindi and find that again this does not change the pronunciation very
much.

Thus, we see that most of the information is carried in the speaker ID and it is hard to
factorize out the gender from it. The language embedding by themselves also have no
effect. They need the right sequence of characters to synthesize the target language and
thus do not transfer well.

Performance on Noisy Datasets

We also wanted to see how robust the model is to noisy conditions, especially given the
fact that the attention mechanism of this end-to-end model, is notorious for being brittle
in noisy conditions or even failing on utterances that have excessive silences [Taigman
et al., 2018]. Thus, we tested our multilingual model on two sets of noisy datasets as
described below.

Data: We used two sets of noisy datasets in two languages. The first was a multi-
speaker Bengali dataset provided by DARPA as part of the Babel IARPA program [Harper,
2011]. It was collected via the telephone, and included 308 conversations in very noisy
conditions totalling about 11.30 hours of data from which we had about 7 minutes of
maximum data for the majority speaker. The second set that we used was a Gujarati ASR
corpus collected in clean conditions by SpeechOcean.com and distributed by Microsoft
as part of the Low Resource ASR Challenge for Indian Languages at Interspeech 2018.
However, it did not include any speaker information, so the number of speakers in un-
known. We used a 5000 utterance subset of this data which was approximately about 8
hours of speech totally.

Training: For the Bengali data since we had speaker ID information, we trained a fac-
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tored as well as an unfactored model. In case of the Gujarati corpus, since we did not
have any speaker-ID information, we trained a single speaker model with the multi-
speaker dataset. Both models were either initialized with wieghts from an English multi-
speaker model trained on VCTK or a multi-lingual model trained on cleaner data includ-
ing Bengali and Gujarati.

Evaluation: We used 10% of the utterances as held-out test set to calculate DTWMCD
values as reported in Table 4.9. For the listening test results, we used 30 utterances di-
vided over 3 subsets and required at least 15 listeners per subset. For each language we
ran two A/B tests. The first compared a multilingual model to the CLUSTERGEN model
and the second compared the multilingual model to a model initialized with a trained
multi-speaker English dataset (VCTK).

Results: For the Bengali data we see that we get significant performance gains over
our baseline CLUSTERGEN model. In addition, we again see that the unfactored model
produces much better results than the factored model and it produces almost intelligible
speech, a huge improvement over the traditional HMM based system. For the Gujarati
speech we find that even though we treat the data as a single speaker, it ends up learning
a multi-speaker model. In addition, we find that when synthesizing from this model,
it randomly samples a speaker per utterance and the speaker remains consistent over
the entire utterance, when synthesizing on random text utterances. On the other hand,
if we synthesize from a held-out test set with similar context as what the speaker was
talking, we see that it synthesizes an utterance with a speaker ID very similar to the
original speaker. This results again shows how powerful these models are at learning
super-sentential context. Thus, we see that even in the absence of speaker ID informa-
tion, these models are good at picking up and modelling speaker information as a global
attribute over multiple sentences. The listening test results reported in Table 4.10 also
corroborate our findings that the Neural model is significantly better than the multi-
lingual model and it does help to initialize with a multi-lingual model as compared to a
multi-speaker English model in terms of perceptual quality.

4.1.4 Summary

In this section, we explore convolution attention based models for multi-speaker, multi-
lingual speech synthesis of Indian languages. We explored these models withe respect to
mainly four criteria:

e Factored Embeddings: With respect to factoring global attributes across speaker,
language and gender, we show that the factoring does not improve performance
over the unfactored model, where each language-speaker pair is represented by
a separate embedding. We see that this degradation in performance is greater if
there are more speakers of the same language, showing us that the unfactored
model allows it to over-fit to speaker characteristics and thus is better for our case
of speech synthesis.
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Table 4.9: DTWMCD results on noisy datasets for Bengali and Gujarati (with missing
labels) example wavs.
Dataset Speaker Model Unfactored Factored
Baseline CLUSTERGEN 9.56 + 3.98 -
. | Average
Babel Bengali (AlD Adapted from VCTK 6.01 +£2.13 | 7.33 £2.64
Adapted from Multilingual Model | 6.52 +2.15 | 7.35 4+ 2.64
Baseline CLUSTERGEN 7.63 £1.22 -
MSR Gujarati | Avg (All) Adapted from VCTK 6.65 £ 1.67 -
Adapted from Multilingual Model | 6.60 4 1.65 -

Table 4.10: A/B Listening test results on noisy multi-lingual datasets comparing CLUSTER-

GEN, English and multi-lingual models example wavs.

Laneuage Model % Who prefer % Who prefer % Who find
guas CLUSTERGEN/VCTK | Multi-lingual both same
Bengali CLUSTERGEN 11.50 73.00 15.50
VCTK 23.71 51.14 25.14
Gujarati CLUSTERGEN 13.68 81.58 4.73
VCTK 40.00 52.86 7.14
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e Scalability and Effect of External Speakers: We also explore how well these mod-
els scale when we add many more new speakers and languages. We see that the
performance generally improves in terms of both subjective and objective metrics.
We also show that initialization of the model makes a difference when we compare
initialization with an English model vs. a multi-lingual model. However, we find
that it does not make much of a difference whether this multi-lingual model con-
tains other external speakers of the target language. We find that as long as we
initialize with similar multi-lingual languages and fine-tune on our target data we
get good performance as shown both through objective as well as subjective scores.

e Transferrability: We also show an analysis of what these embeddings learn in
terms of speaker, gender and language. We see that when we change speaker ID
for data that the model has never seen a speaker speaking that transferred lan-
guage, it generally transfers well, and we can make a speaker speak an unknown
language. However, when we try to transfer gender or language, we see that these
two attributes do not transfer well, and generally the source gender/language re-
mains unchanged. Thus, we see that it is hard to factorize out gender and language
from the speaker embedding, and the speaker embedding carries most of the infor-
mation about the speaker.

e Robustness to Noise: We see that the neural models are very robust to noise and
perform significantly better than the CLUSTERGEN models. We even show that
with as little as 7 minutes of noisy speech, they can synthesize understandable
speech for most utterances. In addition, we show that even with missing speaker
labels, these models intrinsically learn a sense of global attributes such as speaker
ID and end up learning super-sentential context on their own.

Thus, in this section we saw what these convolutional models are good at and cases
where they fail for multi-lingual data. In the next section we will explore these models on
a single language (English), but with a variety of found data spanning multiple speaking
styles to see how robust they are to style transfer and domain adaptation.

4.2 Multi-speaker data augmentation for Found data in
English speech

So far we have looked at relatively clean multilingual data. However, as mentioned
in Chapter 2, found data is not always clean and can contain many styles, such as au-
diobooks (read, acted), public speeches (rehearsed, conversational), telephone speech
(conversational), etc. Thus, the goal in this section is to explore if we can adapt the
multi-lingual model from the previous section into a multi-style model, so that we can
build better end-to-end neural multi-speaker models for found data. The goal is to be
able to synthesize a target speaker’s voice given only 20 minutes of speech. We will thus
explore various types of data with different styles and noise levels including Telephone
speech (CallHome), Public Speeches (TED), Audiobooks (Librivox), and Clean Speech
(ARCTIC) and explore if it is possible to take really degraded data such as either public
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speeches or telephone conversations and be able to synthesize them as relatively cleaner
speech, while still retaining the speaker characteristics. In the the next section we briefly
describe previous work that has been done in the domain of style transfer in speech
synthesis and in the subsequent section, Section 4.2.2, we will briefly describe the exper-
iments and results obtained on clean, phonetically balanced datasets and various noisy
datasets spanning various speaking styles and experiments with style transfer.

4.2.1 Related Work

Style transfer work in speech synthesis has mainly involved transferring speaker charac-
teristics either using parallel training data from two speakers, where the model learns to
map explicitly from speaker A to speaker B [Toda et al., 2007], [Desai et al., 2010],[Mo-
hammadi and Kain, 2016], or as multi-speaker voice conversion, with non-parallel data
[He et al., 2012], [Song et al., 2013], [Hsu et al., 2016],[Nakashika et al., 2016]. There
has also been some work from Microsoft Research [Qian et al., 2011], [He et al., 2012]
in using frame replacement techniques to transfer accent characteristics. However, we
are not aware of work that has explicitly looked at transferring style across datasets, this
is more so since most of these voice conversion datasets have been explicitly recorded
for the purposes of speech synthesis. Only in recent times has there been some effort in
being able to synthesize from less than 5 minutes of data and using found data for speech
synthesis [Mehri et al., 2017], [Taigman et al., 2018]. However, we are not aware of any
work that explicitly tries to transfer across various speaking styles. In the next section
we explore sequence-to-sequence based models for speech synthesis with noisy datasets
and explore style transfer across various speaking styles.

4.2.2 Experiments

We first look at multi-speaker models of clean speech and then show results on noisy
datasets.

Character vs. Phone based multi-speaker model:

First we looked at multi-speaker experiments with 11 ARCTIC voices [Kominek and
Black, 2004], 7 Female, and 4 Male. Each speaker was identified by a unique speaker
embedding. First we wanted to understand what would be a good input representation
of text for multi-speaker models on clean data. Thus, we compared phone vs. character
based models.

Results: We see that in all cases, the phone based models do better than the char-
acter based models.
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Table 4.11: DTWMCD results on multi-speaker clean ARCTIC Datasets using speaker de-
pendent character and phone based models example wavs.

Speaker | Gender (Nationality) | Char-Based (DTWMCD) | Phone-Based (DTWMCD)
AEW Male (American) 6.686 £ 0.327 6.569 4+ 0.349
AXB Female (Indian) 8.622 + 0.737 8.486 + 0.742
AWB Male (Scottish) 6.323 + 0.265 6.239 + 0.296
BDL Male (American) 7.301 £0.376 7.268 £ 0.421
CLB Female (American) 7.817 £ 0.402 7.635 £ 0.359
EEY Female (American) 7.343 £+ 0.662 7.008 £ 0.588
LIM Female (American) 7.355 + 0.574 7.100 4+ 0.628
LNH Female (American) 8.651 £+ 1.690 8.513 £ 1.298
RMS Male (American) 7.033 + 0.344 7.041 +0.324
SLP Female (Indian) 8.699 + 0.729 8.380 + 0.717
SLT Female (American) 7.002 4 0.368 6.897 + 0.410

Case Study: American English Speaker AEW

From the multi-speaker results on the clean speech, we found that the quality of the syn-
thesized speech for speakers particularly with low FO was not of the best quality. So, we
tried various adaptations, by switching the higher FO speakers with lower FO speakers as
well as training an all male model. Results of these various adaptations with different
subsets of training data with an overall FO made to get closer to that of the target speaker
in order to improve the speech synthesized for speaker AEW are described in Table 4.12.

Data and Training: We use a relatively cleanly recorded, phonetically balanced dataset.

We start with an initial model trained with 23 hours of female audiobook data from
speaker LJSpeech [Ito, 2017]. This data has a relatively high FO. Thus, we then decrease
the overall average FO of the training data, by introducing more male ARCTIC speakers
[Kominek and Black, 2004]. Each arctic dataset has been collected to be phonetically
balanced and contains ARCTIC set A and B for some speakers, or only ARCTIC set A for
a few speakers. Thus, overall, there are about 1000 or 500 utterances per speaker. The
speakers have varying accents. The goal here is to see how the average FO of the training
data affects the quality of synthesized speech and if we can manipulate the training data
in order to improve synthesis on data that is not well represented in the dataset. We
report results with adaptation, i.e., after training the entire model, we do an additional
fine-tuning of the model only on the target speaker’s voice as well as without the adap-
tation.

Results: We see that changing the overall FO of the training data has little effect on
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Table 4.12: DTWMCD results on AEW (FO: 117.0 4+ 31) with various adaptations example

wavs.
Num. of
Model Males- Mean( §Z§td FO | \o adaptation | With Adaptation
Females
Model adapted from
' : : : 5.05 + 1.83
LJSpeech Baseline OM 1F 200.0 £ 56.0
P e AM 7TF 160.0 & 52.0 6.57+0.35 | 4.5741.39
Model
Multlspe.ak.er Model with oM 9F 0L 370 S e
majority males
Multispeaker Model with 1M OF 190,04 20,0 A T
all males

the quality of synthesis when we have multiple speakers. Adapting on the LJSpeech
model does produce lower quality synthesis. We find that starting from a different style
(audiobook) and gender has some effect on the final results, however, as long as we have
a multi-speaker model, it does not matter what the average FO of the training set is as
long as we have the target speaker in the training data, we seem to get similar results.
However, we see that fine-tuning on our target data gives us huge gains in quality for all
models. Thus, given that adding similar training data to that of our target speaker does
not seem to improve quality, this then begs the question of whether there are certain
speaker characteristics that are better to model by these networks. This would be an
interesting future direction of research to pursue.

Multi-Speaker Experiments with Noisy Found Data

We also wanted to see how robust these models are to noisy multi-speaker datasets. In
this regard, we present results on various speaking styles of noisy English multi-speaker
speech datasets.

Data: We used various subsets of 4 noisy English speech datasets collected in varying
conditions and with different speaking styles. To get a wide coverage of speaking styles
and accents, we looked at mainly 4 subsets of data. For each subset we have indicated
the style, the number of speakers and the total time of the dataset. To evaluate, we
used the maximum speaker per dataset one male and one female. The maximum data
per speaker varied from a maximum of 20 mins to as little as 4 minutes for telephone
speech. We also ran listening tests for each speaker, as reported in Table 4.14. Here we
compare the neural model with the CLUSTERGEN model per subset. We have combined
the rating over the majority male and female speaker per subset to report the A/B test
numbers in Table 4.14.
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Training: We trained a factored as well as an unfactored multi-style, multi-speaker
model. For each target speaker, we ran a fine-tuning run to fine-tune to the target
speaker. We also trained single speaker models for each target speaker, which was not
augmented with any other data. However, we did transfer the weights from a previously
trained ARCTIC multi-speaker model for faster convergence.

Results: Table 4.13, lists the DTWMCD results on various noisy datasets spanning mul-
tiple speaking styles. We have reported results for the majority male and female speaker
for each dataset. We see that the the neural model performs significantly better in al-
most all cases as compared to the CLUSTERGEN models. The listening test results in
Table 4.14, further corroborate the fact that the neural model significantly outperforms
the CLUSTERGEN model across all speaking styles. However, in comparing the single
model with the factored and unfactored multi-speaker models, we see no advantage in
augmenting with multiple speaking styles and in case of the noisier datasets, with cleaner
data. Neither do we see any advantage in factoring the embeddings. It seems like these
end-to-end neural models are pretty good at over-fitting to training data, however noisy
very fast. If one listens to the sample wavfiles, it is clear that these models also end up
picking up the channel noise present in these datasets. Thus, in the next experiment
we explore if we can remove this noise, by retaining speaker characteristics, but doing a
style transfer to a more clean speaking style like either read news or clean speech such
as ARCTIC.

Style Embeddings and Experiments with Style Transfer

Our goals for experimenting with style transfer were two-fold. First we wanted to see if
we can synthesize really noisy data such as telephone speech into a much cleaner format
such as clean speech, while maintaining speaker characteristics. Second, we wanted to
see whether we can induce a more conversational tone into a clean speaker’s speaking
style by changing the style from say a monotonic single utterance read style to one that
is more conversational.

Data and Training: Thus, we trained a single factored multi-speaker model with clean
data comprising 6 ARCTIC speakers, (3 Males and 3 Females), along with all of the
speakers and styles mentioned in Table 4.13. There were a total of 308 speakers across 5
speaking styles, Clean (ARCTIC), Audiobook (LibriVox), Public Speeches (TED Talks) and
Telephone Conversations (CallHome). Three global attributes were used, style, speaker-
ID and gender.

Results: The sample waves can be found at this link.

e Transfer from Clean to other Styles: We find that transferring from the clean
speaking style to other speaking styles does not have an effect on the speaking
style. Instead, what we see is that the style embedding is instead learning the
channel characteristics. This is especially apparent with the telephone speech style
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Table 4.13: MCD results on different Styles of Found English Speech. Times for each subset
are indicated as [hh:mm:ss] example wavs.

Dataset Speaker Model Single Model | Unfactored Factored
(Style)
S1 (Male) Baseline CLUSTERGEN | 8324048 | 7.71 =+ 0.44 -
00:21:56
WSJ (Read [ I | Neural End-to-End TTS | 545+1.31 | 541+1.31 | 6.32+1.70
News)
[08:45:34] | g5 (Female) | Baseline CLUSTERGEN | 9.03+0.53 | 8.60 % 0.48 i
(20 speakers) 00:24:07
[00:24:07] Neural End-to-End TTS | 5.63+1.10 | 5.63 4 1.10 | 6.44 + 1.44
S1 (Male) Baseline CLUSTERGEN | 6.95+0.67 | 7.80 + 0.22 -
00:22:58
LibriVox [ I' | Neural End-to-End TTS | 9.03+3.65 | 8294 4.144 | 9.03 + 3.66
(Audiobook)
[06:21:101 | g5 (Female) | Baseline CLUSTERGEN | 8.24+0.36 | 9.10 = 0.64 i
(17 speakers) 00:22:14
[00:22:14] Neural End-to-End TTS | 9.67 +3.765 | 9.722 +3.73 | 9.83 4 3.64
S1 (Male) Baseline CLUSTERGEN | 8.04+0.56 | 7.95+ 0.44 -
TED Talks [00:27:04] | Neural End-to-End TTS | 7.25+3.32 | 7.14+3.31 | 8.12 + 3.35
(Public
Speeches)
[04:59:31] S2 (Female) | Baseline CLUSTERGEN | 7.47+0.75 | 8.07 4 0.86 -
(32 speakers) | [00:18:05] Neural End-to-End TTS | 5.14+245 | 5.134+244 | 5.61 +2.70
S1 (Male) Baseline CLUSTERGEN | 8.71+0.34 | 9.24 + 0.50 -
CallHome [00:04:27] | Neural End-to-End TTS | 4.60 £2.15 | 4.72+2.26 | 4.62 +2.18
(Telephone)
[04:40:08] | g5 (Female) | Baseline CLUSTERGEN | 9.06+0.70 | 9.04 + 0.55 i
(80 speakers) 00:06:41
[00:06:41] Neural End-to-End TTS | 5.83+2.07 | 5.7442.05 | 5.71 + 2.06

where one can hear the channel noise as well as the reverberation in the public
speeches style.
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Table 4.14: A/B Listening test results on English multi-speaker datasets with different
speaking styles, comparing CLUSTERGEN and neural models example wavs.

Style (Dataset) % Who prefer % Who prefer % Who find
y CLUSTERGEN Neural both same
Read News (WSJ) 13.07 83.84 3.07
Audiobook (Librivox) 26.31 66.31 7.37
Public Speeches
(TED) 23.12 66.56 10.31
Telephone
Conversations 17.14 65.35 17.50
(CallHome)

e Transfer from Noisy to Clean style: First we change the style embedding to be
clean across all speaking styles. This is compared to the baseline speech synthesized
with original style tags. We see that there is significant improvement in the under-
standability of the synthesized voice with clean style as compared to the baseline.
However, we see that in some cases, there is a slight loss of speaker characteristics.

Thus, we see that in many cases the style transferred wavefile to clean style is much better
sounding in terms of understandability. This increase in understandability is especially
significant in the case of CallHome data. However, we do see that we lose some speaker
characteristics. Going in the other direction, of trying to make the clean data sound
more natural, we see that the style embeddings do not end up learning speaking style,
and instead pick up on channel characteristics. The telephone style is in most cases not
understandable and we can hear reverberation in the clean speech transferred to style of
public speeches.

4.2.3 Summary

In this section, we showed experiments with clean multi-speaker English datasets as well
as multi-style training with noisy English found speech spanning various speaking styles.
We basically looked explored two aspects:

e Domain Adaptation: First we show experiments with 11 clean ARCTIC voices.
We see that for certain speakers with a low FO, the synthesized speech is of lower
quality. Thus, we try to improve on this by adapting the domain of the training
data by shifting its composition with respect to gender and FO. However, our results
show that shifting the composition of the training data has little effect in improving
the quality of synthesized speech. However, we find significant gains when we fine-
tune the model on the target speaker’s data, irrespective of the composition of the
training data.
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e Multi-Style Training and Style Transfer: We also show results with multiple
datasets of found speech spanning various speaking styles. We see that the neural
models are much better than the CLUSTREGEN models in both objective and sub-
jective metrics. We also compare a single model, an unfactored and factored model
and show that in most cases, the single model and unfactored models perform al-
most similarly and are much better than the factored model, further strengthening
our thesis that these models over-fit to speaker’s characteristics and this is a good
thing for our application of speech synthesis. With respect to experiments of style
transfer we see that we can transfer from noisy to clean style and obtain much more
understandable speech, however, going in the opposite direction, it is not possible
to transfer a more conversational style to the clean speech, since it only transfer
the channel characteristics.

In the next section we will explore the case when we do not have any transcribed data or
language resource and consider a zero-resource setting, where we only have audio data
available.

4.3 Unsupervised Acoustic Unit Discovery

The previous section explored cross-lingual augmentation assuming transcribed text.
However, when we have untranscribed data, the question is how can we use this un-
transcribed data. For higher resource languages, where ASR models exists, we could
use an ASR decoded transcript. However, for many low-resource languages, such ASR
systems and ASR resources might not exist. Thus, in this section, we will consider a zero-
resource scenario, where such an ASR system does not exist. The question then arises of
how to build an ASR system in an unsupervised fashion. In the literature, this problem
of building an unsupervised ASR can be broken down into two parts:

¢ Find good phonetic or sub-word units.

e Unsupervised word discovery and lexicon building given these phonetic or sub-
word units.
In this thesis, we will consider only the first problem of finding a good inventory of
acoustic units given only the audio data, and how we can use cross lingual resources to
help find these acoustic units in a zero-resource scenario. We will show these methods
on one example of a South African Bantu language called Xitsonga.

The main goal of this work is to find the basic units in language in an unsupervised
fashion directly from the acoustics. These smaller units could either be sub-word units,
phonemes or even sub-phonetic units. The goal is to find this auditory unit inventory
such that the different auditory units are good enough to build TTS systems, i.e., they
are discriminable enough to be used as the building blocks to generate speech from. In
this section we build on previous work done in deriving these phonetically motivated
representations of speech [Metze and Waibel, 2002] that we refer to as “Articulatory
Features” (AFs). AFs, which can be derived from arbitrary streams of recorded speech,
and represent IPA-like phonetic features. These Articulatory features have been used
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beyond speech recognition in representing expressive speech [Black et al., 2012] and
cross-lingual voice conversion [Bollepalli et al., 2012]. Note our articulatory features
might sometimes be called by others as Phonetic Features, and are not directly related
to what we would call articulatory position features as might be discovered from an
Electro-magnetic Articulograph. Our AFs are directly derived from speech in a language
independent way, using standard software algorithms without any specialized hardware.

Finding a frame based AF representation is only the first part of our task. We then
discover a segmental representation of the signal, that is phoneme-like derived from
the AFs that is at least sufficient to reconstruct the signal using statistical parametric
synthesis techniques.

The method used to derive these higher order segmental features uses the methods
proposed in [Sitaram et al., 2013b] and [Sitaram et al., 2013a] and further developed in
[Muthukumar and Black, 2014]. In [Sitaram et al., 2013b] and [Sitaram et al., 2013a],
the authors built a text to speech system for languages without a writing system, which
used cross-lingual phonetic decoding to come up with a phoneme-based written form for
building TTS systems. However these techniques are still dependent on an originally
seeded (cross-lingual) phonetic system. Since it inherently makes assumptions about the
phoneme distribution in the original cross-lingually trained phonetic models. The more
recent work that was proposed by Muthukumar et.al [Muthukumar and Black, 2014]
derives segment-based “inferred phones” (IPs) using acoustically derived frame-based
"articulatory features” (AFs) as illustrated in Fig. 4.3.

4.3.1 Relation to prior work

Most methods in this domain have looked at variety of methods related to either unsuper-
vised pattern discovery or unsupervised acoustic modeling. The first set of methods treat
it as a pattern recognition problem, by first finding repetitive patterns in the database
and then using these patterns to build word based models [Jansen and Church, 2011]
[Jansen et al., 2013] . In [Jansen and Van Durme, 2011] they use a hashing scheme to
convert the raw input features to a binarized fixed length form and then do a cluster-
ing of these fixed length vectors, with the main goal of improving feature based term
discovery.

The second set of methods include unsupervised acoustic modeling based approaches,
wherein the speech is first segmented, then a clustering of these segments is done based
on minimizing a certain objective measure and finally a re-training of the acoustic model
is done. This process is repeated until convergence. In [Badino et al., 2014], the authors
take a similar approach to subword modelling wherein, they train an auto-encoder to
give encoder posteriors which are then binarised and clustered to a maximum of 64
units. These 64 units are then used to obtain a transcription of speech and based on this
transcription the acoustic model is retrained and this process of segmentation, clustering
and re-training continues until the model converges. In most systems these three sub-
tasks of segmentation, clustering and re-training are carried out as independent tasks to
one another.
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Black, 2014]
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However, the authors in [Varadarajan et al., 2008] combine the segmentation step
along with the clustering step by first starting out with a single HMM state to represent
the entire dataset and then iteratively splitting these HMM states based on some objective
measure. The authors in [Lee and Glass, 2012] go a step further, by jointly training
an acoustic model using a nonparametric Bayesian model namely the Dirichlet Process
mixture model. However, most of these methods approach the task of unsupervised unit
discovery from an ASR perspective, with the objective of increasing the classification or
discrimination ability of each unit, such that it is maximally distinguishable in an ABX
test [Schatz et al., 2014][Schatz et al., 2013]. The ABX task measures how discriminable
two different phones are when the occur in the same context, either spoken by the same
speaker (within speaker) and spoken by different speaker (across speaker).

In our work, we approach the problem from a synthesis viewpoint and so are inter-
ested in finding the basic units in speech that are discriminable enough to be used to
generate speech rather than classify between different phonetic or sub-word units. Thus
the units our synthesis pipeline discovers are designed to be invertible and robust to
speaker variation.

4.3.2 Experimental Methodology
Data and resources

The data that we used for our experiments was data provided as part of the Zero Speech
challenge in English and Xitsonga. The English Buckeye database consists of 9 hours of
data spoken by 12 speakers, with multiple speakers in the same audio file. Since the size
of each audio file was many minutes long, we split the files into 10 second long files for
some of our tasks and then recombined them during evaluation. For Xitsonga, we used
the NCHLT Xitsonga Speech corpus [De Vries et al., 2014], which consists of 4.5 hours
of speech by 24 speakers.

In addition, we used two other databases. The first was a combined database of
the RMS and SLT ARCTIC data [Kominek and Black, 2004], which is around 2 hours of
US English speech data and from one male and one female speaker. The second was a
combined Hindi database with recordings from a local female speaker and the Blizzard
challenge 2015 data [Black and Tokuda, 2005], consisting of recordings of one male
speaker, giving a total of around 2.5 hours of data.

For all our experiments, we used the (US English) WSJ acoustic model distributed
with the CMU Sphinx toolkit [Placeway et al., 1997] for cross-lingual phonetic decod-
ing. We used a trigram German phonetic language model for decoding and performed
multiple iterations of decoding and building targeted acoustic models from the decoded
transcripts and the speech, as described in [Sitaram et al., 2013b].

We built all our models in the context of the Festival Speech Synthesis Engine [Tay-
lor et al., 1998] and the Festvox voice building tools [Black and Lenzo, 2003], using
CLUSTERGEN [Black, 2006] to build the Statistical Parametric Synthesis voices.
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Feature Description

¢ Baselines: We used the MFCC features derived using the SPTK toolkit [Imai et al.,
2017] and are 50 dimensional vectors (25 dimensions + A) which are used in
synthesis and hence designed to be invertible.

e Z-model Mceps: The z-model Mceps are speaker normalized Mceps. Each speaker’s
Mceps are mean and variance normalized to match the average across all speakers
in the database.

e Cross-lingual phonetic decoding: We decoded the speech from all the databases
cross- lingually using the WSJ model and obtained phonetic transcripts. This pro-
cess is done iteratively, with a targeted acoustic model being created at each itera-
tion that is used to decode speech at the next iteration. Typically, we build voices
at each iteration and measure the MCD of the voices. This iterative process is car-
ried out till the MCD converges and stops improving. The iteration that produces
the lowest MCD is selected as the best iteration. From our previous work we have
found that the best labels are obtained in around iteration 3, so we chose the labels
of iteration 3 for all our databases. The choice of labels is not critical here, since
we only use the timestamps of these labels for the inferred phonemes.

e Raw Articulatory Features: We trained a neural network on a large corpus of
multi-speaker English speech [Paul and Baker, 1992]. This predicts a 26 coefficient
vector of 0-1 values for phonetic features, such as voicing, nasality, place of articula-
tion, etc, trained from the labeling derived by forced aligned models of the original
WSJ data. This produces a frame-based labeling (from Mel-cepstrum features).

¢ Inferred Phonemes: Using these AF’s, the next stage is to find similar varying
length segments in our acoustics which we do with a cross-lingual phonetic recog-
nizer. Then we take these segmentations and re-cluster them into similar segments
based on their frame-level AFs. Thus a cross-lingual phonetic recognizer may label
all /k/ like sounds together, this post recognition re-clustering may separate out dif-
ferent types of /k/ (e.g. aspirated and unaspirated) into different segment-types.
We can control the number of segment-types to find the number of symbols that can
best re-construct the signal using statistical parametric text to speech techniques.
We refer to these segment-types as ”inferred phones” (IPs).

Evaluation Metrics

In order to make our method comparable to other systems we use the ABX measure
for evaluation (in cases where we use frame based features such as Mceps and AFs), in
addition to using MCD as a metric. The ABX metric measures the discriminative power
of the sub-word units within and across speakers. For measuring the discriminability of
an acoustic unit across speakers, if we select an ABX triplet to be such that, A and B
are triphones from the same speaker, having the same context, but varying in the middle
phone, like put and pat, while X is the same as A except from a different speaker. The goal
then is to find linguistic units, such that A and X are much closer than B and X. Similarly
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in the within speaker task, the goal remains the same, except that X is another instance
of A from the same speaker. The Mel Cepstral Distortion (MCD) is a weighted distance
measure used to measure the quality of speech synthesizers as described in section 2.
To calculate the MCD, we hold out 10% of the data and build a synthetic voice using
the rest of the data. Then, we re-synthesize the held-out data and compare the Mceps
of the synthesized speech to the Mceps of the original speech. Furthermore, for the
voice built using the inferred phones, we also did a word based comparison, to see how
distinguishable words were.

Results

Table 4.15: ABX on Mceps and AFs (% Error rate)

Method Data | Within Speaker | Across Speaker

Mceps Buckeye 16.69 29.50

Z-model Mceps Buckeye 16.98 28.01
Raw AFs Buckeye 18.35 29.84
Mceps | RMS+SLT 7.56 18.45

Z-model Mceps | RMS+SLT 7.54 17.62
Raw AFs | RMS+SLT 7.53 15.02
Mceps | Xitsonga 19.69 33.93

Z-model Mceps | Xitsonga 19.74 30.69
Raw AFs | Xitsonga 18.12 29.73
Mceps Hindi 8.89 28.13

Z-model Mceps Hindi 9.11 27.22
Raw AFs Hindi 8.33 24.91

From Table 4.15 we see that the articulatory features perform much better than the
z-model Mceps across all databases. This indicates that the AFs are doing speaker nor-
malization implicitly, and are more robust to speaker variation. We also see that the
within-speaker error rate for the z-models is slightly higher than the Mceps, which is
expected, given that the z-models are doing speaker normalization.

Next, we used the raw AFs to create IPs as described earlier. Instead of using the raw
AFs for each utterance as we had done before, we replace the IPs for the utterance with
the vector of average value of the phoneme’s AFs, calculated across the entire database.
Since the ABX task was set up to be a frame based evaluation, we replicated this average
value for each frame that the IP spanned.

Table 4.16 shows the ABX results on IPs of different sizes. The stop value was used
to control the number of IPs that were inferred. Stop value of 1200, 1000 and 800 were
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experimented with. For the same stop value, the exact numbers of IPs varied across
databases as can be seen in Table 4.16. As we see, none of the IPs were able to do

Table 4.16: ABX on IPs of different sizes (% Error rate)

No. of IPs Data | Within Speaker | Across Speaker
81 | RMS+SLT 14.30 19.06
65 | RMS+SLT 14.64 19.41
55 | RMS+SLT 14.92 19.57
71 Xitsonga 42.84 46.03
57 | Xitsonga 44.09 46.43
82 Hindi 20.83 29.62
55 Hindi 20.05 28.91

better than the AFs or the Mcep baseline. We hypothesize that the major difference in
the performance of the IPs on the Xitsonga database as compared to its AF’s is because of
the nature of the Xitsonga database which contains a higher variability of speakers, has
been recorded over the telephone and consists of short utterances, a combination of all of
which does not allow us the benefit of having clean data to train the cross-lingual model
to give suitable IP representations. The AF’s do perform better because, they firstly are
frame based features and secondly, because they implicitly do speaker normalization.

Since our work focuses in finding phoneme-like segments in untranscribed data, we
would like to test these IPs within the ABX test framework used above. But that frame-
work is not very appropriate for a sub-word segmental model. As it is tested against some
phonetic-like truth, the segment size will be similar and thus our deduced segments will
be about the same size (given some reasonable assumption about finding appropriate
boundaries). Thus scores will be a simple O or 1, depending on whether it fits the frame
exactly or not. Thus we also present some other measures that might better show our
own contribution.

The main issue is measuring phoneme sized units against phoneme sized units when
the boundaries are one of the key variances in such a model, thus it would be better
to extend the size of the comparison units to something more like words (specifically
multiple phoneme-like segments long).

We analyzed our data (for which we have true transcriptions) and looked for multi-
syllable words that appear more than once. We then used these words as our test words.
We then compare these words with each other within and across speakers using different
measures. In the cases where we are comparing the same word the measure should be
lower, and when they are different words the measure should be larger. We can do this
with simple frame based parameterization (as done above) but as the words are longer
we can also do this in the inferred phone domain too. Uniquely additionally we can also
do this using synthesis, as we can generate an acoustic stream from the symbolic inferred
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Table 4.17: Word-based scores-Within Speaker (DTW cost)

Method Data Keyword | Not Keyword
Mceps | RMS-SLT | 2.55 £1.89 | 4.44 +0.04
Average AFs | RMS-SLT | 0.59 +0.55 | 0.92 £ 0.02
Synthesis | RMS-SLT | 3.30 +5.05 | 3.67 +0.11
Mceps Hindi | 7.27 £9.11 | 8.78 0.22
Average AFs Hindi | 0.93 +£1.49 | 0.97 £0.05
Synthesis Hindi | 3.79 £3.95 | 3.84 £0.08

Table 4.18: Word-based scores-Across Speaker (DTW cost)

Method Data Keyword | Not Keyword
Mceps | RMS-SLT | 2.224+1.46 | 4.58 £ 0.04
Average AFs | RMS-SLT | 0.41+£0.35| 0.94£0.02
Synthesis | RMS-SLT | 1.59 +3.67 | 3.68 +0.11
Mceps Hindi | 10.08 +8.93 | 12.44 + 0.30
Average AFs Hindi | 0.88+1.53 | 1.10+0.05
Synthesis Hindi | 4454483 | 5.27+0.14

phone stream. Table 4.17 column 1 lists the average DTW cost across all instances of the
same speaker saying the same keyword, i.e., we are finding an average cost of matching
the keyword in one sentence to all other instances of it and calculating an average of this
cost as compared to column 2 which represents the average of the cost when matched to
other words apart from the keyword the same speaker said in the corpus.

Table 4.18 column 1 compares the cost of measuring the keyword said by speaker 1
to all instances of the same keyword said by speaker 2 in the database , vs., column 2
which lists the average cost of comparing keywords said by speaker 1 to all non keyword
instances spoken by speaker 2. These measures within and across have been done as
overall cost measures for Festival Mcep (baseline), Average AF’s (the vector representa-
tion of the IP) and synthesized Mceps after rebuilding the voice from the unsupervised IP
units obtained. We see that the IP as a feature for doing keyword spotting is successful,
since in both cases across and within speaker it is able to give a lower cost on a simple
DTW euclidean distance metric. One interesting point to note from this result is that the
variance is lower for AF’s as compared to those of the Mceps and is again indicative of
the speaker normalization that is happening implicitly in deriving this representation.

The motivation behind using the speech synthesis pipeline was to find a set of lin-
guistic units which are good at representing the speaker agnostic, invertible sub-units in
the speech corpus. The measure of how good these units are in generating speech can be
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measured with the MCD. Since the MCD is a distance based metric, lower is better, and
it is database-specific, so it cannot be compared across the different databases. Thus in
addition to reporting the MCD scores for the voice built from our best IP, we have also re-
ported scores from cross-lingual phonetic decoding from WSJ acoustic model. Since the
MCD is database specific, we also give ground truth (Full TTS baseline) when transcripts
were available for comparison. Table 4.19 lists the MCD of voices built with transcripts
from cross-lingual phonetic decoding, our best IPs and the full knowledge-based speech
synthesizer (Full TTS-groundtruth) — for comparison. An increase of 0.08 is found to
be perceptually significant, while an increase of 0.12 is equivalent to doubling the data
[Kominek et al., 2008].

Table 4.19: MCDs of voices built with different transcripts

Data Transcript | MCD
RMS-SLT Full TTS | 4.97
RMS-SLT | Phonetic Decoding | 5.51
RMS-SLT IPs | 5.86

Hindi Full TTS | 4.94
Hindi | Phonetic Decoding | 6.60
Hindi IPs | 5.94

Here, we see that for English, the phonetic decoding MCD is better than the IP MCD.
Although this may seem surprising, we must note that we used the WSJ acoustic model
to decode the RMS-SLT voice, so this is not being done cross-lingually. So, the phones in
the phonetic voice are appropriate for this voice, which results in a higher MCD. Both the
MCDs are higher than the knowledge-based MCD, which is to be expected. For Hindi,
the IP-based voice has a lower MCD than the cross lingual phonetic voice which indicates
that the IPs are a better representation of the speech for Hindi.

4.3.3 Conclusions

In this work we present an alternative unsupervised linguistic unit discovery method to
find speaker agnostic, invertible speech units which are optimized for speech synthesis.
We have investigated these features as an alternative to unsupervised acoustic modeling
and in the context of performing well on the ABX task.

However, since our proposed features do not fit well into the ABX framework, which
requires the discovery of units which can fit within its framework of phoneme-sized
ground truth, we have also reported MCD scores which measure how good the synthesis
of the Inferred Phoneme (IP) based voices is, which in turn measures the discriminability
of the IP representation.

Although our inferred phonemes give a good symbolic representation of the speech
they are still not the most ideal representation. As the number of segments in an utter-
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ance are initially derived from a cross-lingual phonetic recognizer, they most probably
represent phoneme-sized units. It may be better to allow them to be split into multi-
ple subsegments (the IP-based text to speech synthesizer does automatically model sub-
phonetic segments).

We find that on clean datasets, with less number of speakers, our proposed method
works well. However, on noisy datasets like the Xitsonga dataset, which consists of many
speakers and short utterances recorded via a telephone, we find that our model fails to
perform as well, which we conjecture is due to the lack of good data to adapt the baseline
model to.

The work presented here is still preliminary, a more elaborate speaker specific adap-
tation technique may help — though we have found that AFs are typically a better speaker
independent representation. However, when synthesizing templates for matching, adapt-
ing the acoustics toward the target speaker in the utterance will improve performance.

Also IPs alone probably do not give all the information useful for word level matching.
We know in IP-based text to speech that addition of word boundary information helps
synthesis and thus finding super segmental information about syllable and word (like)
boundaries will probably help higher level matching too (and certainly the generation
of synthesized acoustics for later matching). In the future, we would like to explore
multiple subsegment IP based voices and further this work by also augmenting it with
word and lexicon discovery.

4.4 Summary

In this chapter, we looked at various methods of augmenting our training data for the
target speaker with external data either in the same language or another higher-resource
language, for both transcribed as well as untranscribed speech.

In the first section, we looked at data augmentation techniques for transcribed speech.
We looked at both multi-lingual and multi-style training of attention based neural style
speech synthesis models. For both multi-lingual and multi-style models, we find that the
factored-embedding model seems to perform worse than either a single model trained
on a single style or language or an unfactored model, where we do not factor the em-
beddings across various global attributes. We hypothesize that the reason for this is that
over-fitting to a particular speaker’s characteristics is good for our case of speech syn-
thesis, and factoring the embeddings makes it more general and degrades performance
as measured by the DTWMCD. However, the factored model, for both multi-style and
multi-lingual synthesis, affords us more control in terms of achieving cross lingual syn-
thesis and style transfer.

In terms of transferrability of these embeddings, we see that the model is very good at
modelling speaker characteristics and the speaker-ID tends to dominate. Just changing
the gender does not have much effect and cross-gender transfer is still difficult, with the
gender of speaker-ID dominating. This shows us that it is difficult to factor out gender
from the speaker characteristics. In case of the style transfer experiments, we see that
the style embeddings are transferable when going from noisy speech to clean, and are
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most noticeable for telephone or public speeches, however, going from clean to noisy
transfers only the channel noise and not the speaking style.

We also show multiple experiments in augmenting both English multi-speaker and
multi-lingual models with data similar to the target speaker, as well as transferring model
weights from models trained on various datasets. We find that for the multi-lingual mod-
els, augmenting with similar languages improves performance significantly as compared
to using a single speaker model from English and this is especially true for smaller subsets
of 100 and 250 utterances. In case of the multi-speaker experiments however, we see
no improvements in terms of DTWMCD, when we shift the domain of the training data
closer to that of the speaker, as we did with speaker AEW’s FO. We see that we can gener-
ate speech from 100 long utterances of a new language and new speaker without much
loss when transferring from a multilingual, multi-speaker trained on closely related lan-
guages, though the effect of adding additional external speakers in the same language
had no effect. This is a promising result for low resource languages, especially if we
can only afford to record data for 30 minutes in a new language. We also show experi-
ments with respect to robustness of these models in modelling noisy data across various
languages. We see that these models are not as bad as the CART based CLUSTERGEN
models in modelling extremely noisy data such as the Bengali Babel data. Furthermore,
they are pretty good at modelling the much cleaner Gujarati ASR corpus and we show
that even without providing speaker IDs one can sample random speakers consistently
across a sentence when synthesizing from a model trained on a multi-speaker dataset
with missing speaker-ID labels. We also show that in the absence of speaker labels,
the model can quite accurately synthesize with the original speaker’s identity on a held
out set of utterances. This is further evidence that these models are good at capturing
super-sentential context, even when trained utterance-wise.

In the second section, we explore data augmentation techniques in a zero resource
setting where we only have un-transcribed data and do not have access to an ASR de-
coder for decoding. In this section, we only address the first issue of finding good acous-
tic units, which will at least allow one to obtain a phonetic transcript, with which one
can build TTS systems. We build on top of the work proposed by Muthukumar et. al
[Muthukumar and Black, 2014] and find features that are maximally distinguishable to
be used as phonetic units. We find that the articulatory features are speaker agnostic and
perform the best in ABX test across speakers. The cross-lingual inferred phone (IP) based
voices do better than phone based voices, and our proposed features do well on relatively
clean datasets with few speakers, but fail on noisy datasets with multiple speakers.

Thus, in this chapter we show that it is difficult to train attention based neural se-
quence models on very noisy multi-speaker data. However, we have shown that end-
to-end neural models provide a promising direction for grapheme based synthesis of
low resource languages, if one has access to a relatively small (about 30 minutes) clean
dataset of recordings from a single speaker. One form of high quality, clean audio data
that we can find online without the need to explicitly record a speaker is audiobooks and
podcasts. Thus, in the next two chapters we will look at modelling this relatively clean
form of found data, and explore better methods of modelling their long-form prosody
using neural models.
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Chapter 5

Frame Based Speech Synthesis Models
for Long-Form Audio

5.1 Introduction

A large portion of speech data that is freely available online is in the form of audiobooks
and podcasts, which are long-form, sometimes acted or conversational datasets often
with rich varying prosody. Current speech synthesis systems are not entirely suited to
model long paragraphs and large prosody variations, since many of them have been
optimized on training data sets involving monotonous, short read utterances [Kominek
and Black, 2004]. Thus, in this chapter we address some issues in modelling long form
audio as well as looking at different ways of learning a better prosodic labelling.

Speech synthesis has progressed to a stage where the best examples are comparable
to pre-recorded speech. All of the best performing techniques (unit-selection [Hunt and
Black, 1996], statistical parametric synthesis [Zen et al., 2009], [Zen et al., 2013] and
the latest neural deep learning techniques [Oord et al., 2016]) require corpora of natural
speech to train from. The training stage in a statistical parametric speech synthesis
system involves mapping text to natural speech via a complex labeling of the acoustic
data. One common method, pioneered by the Festival Speech Synthesis System [Black
et al., 2014], is to construct utterance structures from which labels are derived in order
to train a mapping from phonetic context and the audio signal. However current systems
do not often care enough about the quality of these labels, and in order to improve any
corpus based machine learning technique we must care about the accuracy of the given
labels.

One might argue that recent end-to-end speech synthesis models circumvent the ne-
cessity to label datasets with linguistic features. The advantage of this approach is that
the quality of synthesized speech and its prosodic variations can be learned directly from
data. However, letting the black-box neural network do all the learning, gives us less
control on the “knobs” one can turn to control prosody.

Thus, in this chapter we first look at traditional frame-based methods of modelling
long form audio with default prosodic labels. We then try to improve on these labels
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using iterative approaches that try to match the labelling to the actual acoustics of the
data. In the next chapter we will explore neural methods of improving prosody and
adding in the prosody “knobs” for more control.

5.2 Modelling Long Form Audio using Linguistic Features

In this section we describe some of the traditional techniques of modelling long form
audio using linguistic features derived from utterance structures. Concretely, we look at
traditional RNN based methods which have shown good performance on other sequence
tasks such as machine translation and music sequence modelling. Specifically, we look at
three RNN based architectures, the Clockwork RNN (Cw-RNN), the quasi RNN (QRNN),
and the recurrent highway network (RHN) as well as the baseline bidirectional LSTM
model. We show results on the Blizzard dataset of children’s audiobooks.

5.2.1 Data

For this set of experiments we use a set of recordings of readings of Children’s audio-
books recorded by a native British female speaker. The data was produced by Usborne
Publishing and distributed as part of the Blizzard Challenge 2017 and 2018 [Black and
Tokuda, 2005]. It consists of about 6 hours of data, out of which about 4 hours is actual
speech data. All of the data was segmented by line, and the front-end was Festival [Black
et al., 2014].

5.2.2 Model Description

First we investigated various existing recurrent architectures for the task of modelling
long form audio. The main motivation for using these recurrent architectures was be-
cause the audiobooks have very long term structure, and the realization of a particular
prosodic delivery depends on a long term context spanning multiple sentences. Learning
these long-term contexts is difficult in a vanilla RNN because of the vanishing gradient
problem [Pascanu et al., 2013]. So we wondered if using one of the RNN models pro-
posed in the literature specifically designed to handle longer sequences would do well
on this task of speech synthesis of audiobooks. We will first briefly describe these models
and the architecture that we used for each.

Clockwork RNN

The Clockwork RNN as described in [Koutnik et al., 2014], partitions the hidden layer
of a RNN network into N partitions, with each partition tuned to a certain period of the
input sequence. Thus it allows different parts of the RNN’s hidden layer to be tuned to
different times in the history and the hope is that this will allow it to capture both local
and global effects, by tuning to different periods in the input feature spaces and thus
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better model the harmonic structure in speech. More concretely, it modifies the vanilla
RNN as follows. If the vanilla RNN is described as:

yr = Wy xypy + Wi x 2

The clockwork RNN converts the 1}, and WW; matrices into,

Wi W;
W, — th W, — V[./m
Whr Wir

such that at each time step, only the weights for ¢t mod 7" = 0 are executed. In our
model, we experimented with various time periods, the details of which are described in
the experiments section.

Recurrent Highway Network

Recurrent Highway Networks [Zilly et al., 2017], extend highway network [Srivastava
et al., 2015] to the recurrent networks, by basically adding a highway layer within the
recurrent transition, to solve the vanishing gradient problem in recurrent neural net-
works. A highway layer extends the feed-forward layer by gating how much of the input
is added to the non-linear transformation from the hidden layer. Thus, a feed-forward
highway network can be written as:

y=T-h+C-x,

where x is the input, y the output and h the non-linear transformation from the hidden
layer. The gating functions, T and C are referred to as the transform and carry gates
respectively and are learned by the model. The carry gate controls the amount of input
that is propagated to the next layer, while the transform gate does the same for the
hidden activation. Thus, it can be thought of as a gated skip connection with partial
input.

For a recurrent highway network, let us denote the output of the recurrent layer at time
t at an intermediate recurrent depth d as sj. Then the output at a recurrent dept d at
time ¢ is,

sa=Ta hg+Cq-sgy,
where,
hY = tanh(Wuxq + Rist_; + bu),
T4 = o(Wrx, + Rs_; + br),
CY = o(Wex, + Rash ; +be).

Thus, a RHN with recurrent depth 1 is just a gated variant of a recurrent network like an
LSTM or GRU.
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Quasi RNN

The Quasi RNN (QRNN) was proposed by Bradbury et al [Bradbury et al., 2017] to ad-
dress the problem that LSTMs cannot generalize to long sequences and to address the
inherent assumptions of time invariance that the the max-pooling and average-pooling
operations in CNNs assume, which cannot take advantage of the full time sequence.
It has shown good results on character level machine translation, document level sen-
timent classification and language modelling. Just like the CNN, the QRNN has two
components. The convolutional component performs 1D causal convolutions in the time
domain, mapping an n dimensional, length 7" sequence X in R" to a m dimensional
length T sequence Z in R™ thus accounting for the sequential nature which is suitable
for our application of speech synthesis. The 1D convolution or the masked convolution
is also used to compute the gating functions for the forget and output gates, F and O
respectively, which are used in the second component. Specifically, the equations for the
output from the convolutional layer, Z and gating functions F and O are as follows:

Z = tanh(W, x X),

F = 0(W¢ % X),
O =0(W, xX),
The second component is a pooling layer which does a dynamic average pooling, where
it gates the output from the convolutional layer and additively combines it with a gated
portion of the previous state. More concretely the dynamic average pooling at time ¢ is
defined as:
he = fixhig+ (1 — fi) x 2

where f; is the gating function representing the forget gate and z; is the output from the
convolutional layers at time t. One can optionally also have and extra output gate o; and
then the above equations become:

Ct:ft*htfl_‘_(l_ft)*zt

ht:Ct'Ot

The advantage of the QRNN is that it can be easily parallelized, given the entire sequence
during training, while also allowing to take into account sequence information through
causal convolutions and gated mechanisms.

5.2.3 Model Architectures
Clockwork RNN (CwRNN)

We experimented with different time-periods. The longest time period we went upto
was 512 timesteps, with a decrease of half upto 8. However, from our experiments
we found that an architecture consisting of 4 alternating layers of LSTM and clockwork
RNN’s followed by a linear layer at the output did the best. The first clockwork RNN

66



had time-periods of 32 and 16 and the second one 8 and 4. It would be expected that
the longer timesteps would do better, however, our hypothesis is that there were too
many model parameters and too less data to train such a big model for the longer time
clockwork RNN’s. More experiments with a 20 hour dataset would give us a better idea
if this hypothesis is true. The clockwork RNN was by far the worst of the three recurrent
models.

Recurrent Highway Network (RHN)

For the Recurrent Highway Network (RHN), we tried 2, 4 and 6 variants with alternating
LSTM layers. We found the system with 6 RHN recurrence depth to be the best. This
was also CMU’s submitted system to the Blizzard Machine Learning Challege 2017, the
results of which are described in Section 5.2.5.

Quasi RNN (QRNN)

For the QRNN we tried different stride lengths starting from 5 in steps of 5 upto 30.
We also alternated with multiple QRNN layers increasing stride length and decreasing
stride length. Specifically we used 3 QRNN layer with 5, 15 and 30 but didn’t find much
difference in using different stride lengths. Moreover, the performance of the QRNN
model overall was not as good as the RHN.

Multiple layer combination

We also tried a combination of various layers as described below.
1. CWRNN-RHN-LSTM-Linear: In this model, the Clockwork RNN (CwRNN) had a
time-period of 512, The RHN had a recurrence depth of 4, followed by an LSTM of
128 hidden units feeding into a linear layer at the output.

2. RHN-LSTM-RHN-CNN-RNN-Linear: In this model each RHN layer had a recurrence
depth 4. The CNN had a stride length of 3. The penultimate layer had 64 units in
the hidden layer as compared to all of the other layers which were 128 dimensional.
We did not find much of a difference as compared to the 6 layer RHN.

Other Experimentation

e Zoneout: Zoneout is similar to dropout, except that instead of making random
activations zero, it propagates the previous state of the RNN. It was shown to be
a good regularizer [Chung et al., 2017]. However, we found minimal differences
with zoneout applied to an LSTM and preferred the LSTM without zoneout. Thus,
in all subsequent models we decided not to use zoneout.

e Overlap and add: We also tried predicting the context (future and past frames)
around the current frame in a multi-stream setting, and then using an overlap and
add method to get the final sequence. However, we found that the advantages of
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this model were minimal compared to the time it took to train the model. We tried
windows of 3 frames and 5 frames. We believe that since we were already using a
bidirectional RNN with 300 BPTT size, this did not make much of a difference.

e Weighted Loss: We weighted the loss according to the Mel scale, given that hu-
mans are perceptually more sensitive to lower frequencies than higher frequencies.
However, we found that this did slightly worse than giving all of the frequency
bands the same weight. One hypothesis for this is that, as such the neural net-
works do worse in modelling higher frequencies and giving it lesser weight makes
the performance worse.

5.2.4 Observations

From all of our experiments these are our observations:
¢ Gated skip connections, make a difference, given that the RHN was the best system
followed by the QRNN.
e BPTT size made a big difference, especially going from 20 BPTT steps to 300 BPTT
steps.
¢ Bi-directionality improves performance slightly as compared to the unidirectional
models.

e Surprisingly we did not find the advantages of zoneout that other works have
found.

e Weighting the cost function made the results worse.

e We did not find much advantage in predicting the context around the current frame
and synthesizing with overlap add.

5.2.5 Results

Objective Results

In terms of the final Mean Cepstral Distortion (MCD) from the neural networks and
informal listening tests that we performed, the network with 1 LSTM embedding layer
feeding a recurrent highway network with a recurrence depth of 6, followed by a linear
output layer performed the best. Like all of the networks it was used with the Adam
optimizer, 12 weight regularization and Glorot weight initialization. The network was
implemented in Keras [Chollet, 2015] with a Theano backend [Team et al., 2016]. The
results comparing the different models with MCD scores are reported in Table, 5.1.

Blizzard 2017 Listening Test Results

Apart from natural speech which was system A, 3 baselines were used. Systems X and
Y were DNN based benchmarks predicting vocoder parameters, while system Z was a
Wavenet style benchmark predicting waveforms directly. Ours was system H.
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Table 5.1: MCD results on Blizzard Dataset with Traditional frame-based RNN Models
example wavs.

Experiment Model MCD
Baseline CLUSTERGEN 5.60 +2.13
Clockwork RNN 5.76 + 0.46
RNN Models Quasi - RNN 5.60 £ 0.45
LSTM 5.45 +0.45
Recurrent Highway Network | 5.43 + 0.44
Combined Models CwRNN-RHN-LSTM 5.48 +0.38
LSTM-RHN-CNN-RNN 5.44 +0.55
LSTM with Weighted Loss 5.54 £ 0.52
Other System LSTM with Zoneout 5.43 + 0.47

Combinations

LSTM with Overlap Add 5.42 £+ 0.44

Evaluation Methodology: The listening test evaluations for frame based and waveform
based tasks were combined into one listening test. 50 paid listeners who are native
speakers of English were used for evaluation. System orderings were varied by using a
Latin Square design and listeners heard one system in each part of each section. There
were a total of 11 sections 5 measuring naturalness (MOS), 4 measuring intelligibly
(SUS) and 2 measuring speaker similarity (SIM). Thus, totally, there were 250 judgments
per system for measuring naturalness, 100 judgments per system for measuring speaker
similarity and 200 sentences per system for measuring intelligibility. The results of the
listening test are as follows:

e Naturalness: In each part listeners listened to one sample and chose a score which
represented how natural or unnatural the sentence sounded on a scale of 1 (Com-
pletely Unnatural) to 5 (Completely Natural) which is reported as the MOS score
in Fig. 5.1a. As can be seen our system performs significantly worse than the other
participating teams and is only significantly better than system Z in naturalness.

e Similarity to original speaker: In each part listeners could play 4 reference sam-
ples of the original speaker and one synthetic sample. They chose a response that
represented how similar the synthetic voice sounded to the voice in the reference
samples on a scale from 1 (sounds like a totally different person) to 5 (sounds like
exactly the same person). As can be seen from Fig. 5.1 b, our system does signifi-
cantly worse than the 2 other participating teams, but is comparable to baselines.

¢ Intelligibility: Listeners heard one utterance in each part and typed in what they
heard. Semantically unpredictable sentences (SUS) designed to test speech syn-
thesis intelligibility was used. Listeners were allowed to listen to each sentence
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(b) Speaker Similarity Listening Test

Figure 5.1: Naturalness and Speaker Similarity.
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Word Error Rate - paid listeners in Edinburgh lab (SUS data)

198 200 a3 200 178 195

Figure 5.2: Intelligibility: Word Error Rate SUS.

only once. The results are reported as the Word Error Rate (WER). As can be seen
in Fig. 5.2, our system does slightly (but not significantly) better than the other
participating teams.

5.2.6 Summary and Conclusions

In this section, we showed a comparison of the performance of audiobook datasets on
various recurrent model architectures built to model long sequences which have pre-
viously shown good results on sequential data. We find that these models are quite
intelligible, however, they suffer in terms of naturalness. However, we see that though
our model is as intelligible as the other benchmarks, it does not do very well in natu-
ralness and speaker similarity compared to the other teams. One way of improving this
might be to look at improving the front-end labelling of prosody. In the next section, we
will look at one iterative approach of improving the prosody labelling, namely the phrase
breaks and linguistic stress assignment and adding extra features that can explicitly cap-
ture this inherent prosodic structure in some way. In addition, given the trend in recent
literature to get rid of recurrent models [Vaswani et al., 2017], [Gehring et al., 2017],
in the next chapter we show results on the same dataset obtained using attention based
sequence-to-sequence models with causal dilated convolutions.
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5.3 Hierarchical Prosody Labeling using an Iterative Ap-
proach

In the previous section we showed results with traditional RNN based models on various
datasets. We saw that the synthesized speech samples using traditional linguistic features
was intelligible, however, the prosody wasn’t always the best. The main problem with
the current labeling techniques is that they do not rely on acoustics of the training data
to predict prosodic events. They are good at finding phoneme mismatches in quality,
however, the alignment of intonation events comprised of phrase breaks and prominence
is still predicted directly from text and does not match the actual delivery of the utterance
or the speaker’s characteristics, which can be obtained from the training data.

In Festival for instance, if we consider the same utterance spoken by two different
speakers, the assignment of phrase breaks and prominence remains the same in both
cases irrespective of how the acoustics might differ. Fig. 5.3, illustrates for a short
sentence arctic.a0015 ”It’s the Aurora Borealis.” , the intensity and pitch contours along
with the waveform for two male speakers having very different accents. On top one can
see the intonational labeling assigned to both sentences. Vertical lines (|) indicate phrase
breaks, colon (:) indicates pauses and brackets indicate syllables. The stressed syllables
are shown in a bold dark colour while the unstressed syllables are shown in a lighter
colour. As can be seen from the FO contour the stress is assigned wrongly for the Indian
Male speaker (ksp), since the last word is mostly said in a monotonous voice, with no
break after r and Borealis is unstressed in this case which is not reflected in the labeling.
The Scottish male (awb) on the other hand has a short break after the ax of aurora,
which is not reflected in the assignment of prosody in this case. Moreover, until recently
most corpora for speech synthesis [Kominek and Black, 2004] were designed to be short
neutral utterances which did not have much intonational complexity. However, as the
demand for prosodically richer speech corpora increases we need to find better methods
of labeling prosody which is derived from acoustics and closely matches acoustics present
in the training data.

In this section, we look at a new incremental method of finding a better prosodic la-
beling which matches the acoustics of the training data more closely. We propose to use
the ideas from metrical structure, and intonational theory [Liberman, 1975; Liberman
and Prince, 1977; Pierrehumbert, 1980; Ladd, 2008] to provide a more detailed label-
ing of natural speech, and use feedback from acoustic data to incrementally improve
the accuracy of the labeling. We are following the work of Anumanchipalli et. al [Anu-
manchipalli et al., 2011, 2013; Anumanchipalli, 2013], in his Statistical Phrase Accent
Models, where he hypothesized many different labeling of intonational phrases within
larger prosodic phrases and chose the segmentation that allowed for the best intona-
tional phrase model. In this work, we propose taking such work further and finding the
best intonational phrases, and the best metrical tree structure (a binary-branching tree
structure labeled with weak/strong) for an utterance [Ladd, 2008]. We will define “best”
structures as those that allow the best improvements in synthesis of acoustics, duration
and FO parameters.
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It’s the aurora borealis
(ihts ) : (dh ax) (er ) (a0 ) (rax ) (bao ) (riy ) (ae ) ( L ax s ) |
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(a) Indian Male (ksp)
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00:01

(b) Scottish Male (awb)

Figure 5.3: Waveform, FO (light green) and Intensity (dark green) plots for 2 males (ksp
and awb) speaking the same utterance from the ARCTIC corpus, plotted using the Prosody
Tagger [Dominguez and Wanner, 2016]

We are building on top of existing synthesis structures, assuming prosodic phrases
are bracketed by short acoustic silences. But we go further and appeal to the theories of
intonation, and metrical foot structure to define sub-phrases that need not be rendered
with acoustic silences, but still affect FO contours, duration, and acoustic-phonetic real-
ization. But as such intonational theories do not yet have well-defined automatic parsers,
we will derive these labels incrementally changing basic labeling to find which labels lead
to the best prediction models. Having obtained the best labeling using the incremental
approach, we will then use the trained parser to be able to predict the metrical parses
for unseen text.

Although English intonation modelling may already be at a plateau that will be hard
to beat for simple declarative sentences, we wish to apply this labeling and modelling
technique to less well modeled texts. For English we wish to consider audio-books which
have more interesting intonational structures. We believe that providing an accurate
hierarchical intonation structure labeling automatically on large natural speech corpora
that models the true delivery of the speech will aid all types of corpus-based synthesis
from unit-selection to end-to-end waveform generation systems like WaveNet.

Data driven approaches for hierarchical prosodic labeling has been explored before.
Ostendorf and Veillieux [Ostendorf and Veilleux, 1994] show the effectiveness of a hier-
archical phrase model, but derive it from hand-labelled data, and stop short of defining
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a deeper metrical structure within intonation phrases. Badino [Badino et al., 2012] im-
proves upon Festivals pitch accent predictor by adding in more syntactic and semantic
features. However, the subjective evaluation results showed little difference between the
proposed system and the baseline Festival system, which was attributed to over-flattening
the complex hierarchical structure of prosodic prominence. This result reaffirms the fact
that the hierarchical prosodic structure [Ladd, 2008] is indeed very informative and there
is information in the structure that is lost when the tree is flattened. Anumanchipalli
[Anumanchipalli et al., 2013] takes a first step in finding this hierarchical structure im-
plicitly by first using a data driven approach to grouping syllables into accent groups and
then re-estimating the tilt parameters which can be thought of as implicitly learning the
hierarchical structure between the different accent groups. He showed about 80 % im-
provement overall in preference scores. His method optimizes for FO (not duration and
acoustic-phonetics) and does not address metrical structures within intonational phrases.
More recently Lenzo in his thesis [Lenzo, 2017] uses a twiddling approach to incremen-
tally twiddle utterances to find the best labeling. He shows results on the ARCTIC set
which is prosodically neutral. In this work, the goal is to improve upon the model pro-
posed in [Anumanchipalli, 2013] and the incremental approach taken by Lenzo [Lenzo,
2017] and explore better seeding techniques using a different twiddling approach than
[Lenzo, 2017] to converge to the best hierarchical intonation structure as determined by
the scoring function. We explore various scoring functions which depend on FO, acoustics
as well as duration. Furthermore, our method makes no assumptions about the language
and thus allows us to apply it to other languages and datasets that have no prosodic la-
beling. In the next section, we will briefly describe the theory behind Metrical Phonology
and in the subsequent section explain our iterative approach.

5.3.1 Metrical Phonology

The theory of Metrical Phonology was put forward in the Liberman’s thesis [Liberman,
1975] as a theory to describe tunes. He wanted to describe a universal way of annotating
different prosodic realizations of the same sentence which might give rise to different
meanings. In his thesis he argues that there are three independent phenomena, the
stress, the tune and the phrasing of the utterance that work together to produce a certain
prosodic realization of the same string of characters that can convey different messages.

e Differences in Stress: The primary stress on a segment of text can be determined
by rules based on the context and part of speech of the words in the sentence.
Differences in primary stress can lead to different meanings of the same utterance.
Take for example, the sentence An English Teacher. The meaning of the sentence
changes depending on which word the primary stress is attached to. If the primary
stress is on the word English, it means the teacher who teaches English, while if it
is on the word teacher, it means a teacher who is English [Liberman, 1975].

e Differences in Tune: In his thesis, he considers the tune as different from the
stress. The same sentence with same primary stress, such as an English Teacher
with the primary stress on teacher can be realized in four different ways by varying
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the tune and lead to differences in meaning. These four different variations are
depicted in Fig. 5.4, taken from [Liberman, 1975]. The first contour is a neutral
realization. The second is a question and shows the pitch contour rising at the end.
The third is an incredulous statement and shows a very high rise and fall on the
word English. The final realization is one where the speaker is stating a fact that is
very obvious. Thus, we see that even when we fix the primary stress on a sentence,
by varying the tune, one can convey a different message or emotion.

¢ Differences in Phrasing: Finally, the phrasing or the breaks, as depicted by com-
mas and pauses in sentences also yield different meanings. For example, consider
the sentences, Mary finds joy in cooking her family and her dog, vs. the sentence
Mary finds joy in cooking, her family, and her dog. The first one implies Mary likes
cooking her family and dog, while the latter implies she really loves her family and
dog.
Thus, Liberman wanted to put forward a theory of how the tune relates to text and how
this tune is changed given some lexical stress and phrase breaks, and how exactly can
this be integrated into the linguistic structure. This theory of metrical phonology as a
described in [Liberman, 1975] is a theory of relative hierarchical prominence between
tonal segments, where each tonal segment is built up from its children in a hierarchical
fashion. Since the tune, lexical stress as well as phrasing together define the FO contour,
in this theory, the tonal segments are built up starting with syllables annotated with
lexical stress and built upto the phrase level. Each node of this binary tree has a strong
or weak label denoting the relative prominence between its two children. Figure 5.5
denotes the metrical trees for the same prosody contours depicted in Fig. 5.4. The leaves
here denoted in green are dark for the syllables having lexical stress 1 and light green
for syllables having stress 0. The primary stress here is on the first syllable of the word
teacher, denoted by a red bounding box. Thus, given that a tree of relative prominences
is built up starting with an initial labelling of lexical stress over syllables, and ends at
the phrase level, we need these markings of relative prominence and phrase breaks to be
accurate in order to learn a good metrical tree relation that matches the acoustics. Thus,
our goal is to improve this labelling and in doing so improve the metrical trees learned,
with the goal of improving the final TTS quality. In the next section, we describe our
nomenclature for various terms and our base assumptions from which we work.

5.3.2 Method
Nomenclature

e Phrase: Utterances are made up of phrases, which are chunks of the utterance sur-
rounded by silences. These big phrases are denoted as BB by Festival. An utterance
might have one or more of these phrases.

¢ Intonational Phrase (IP): Each of these phrases is further divided into one or more
intonational phrases, which we assume is not separated by a silence. These need
to be discovered through the algorithm. We assume that the intonational phrase
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Figure 5.4: Four different variations of the sentence “An English Teacher”, depicting differ-

ences in tune, taken from [Liberman, 1975]
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Figure 5.5: Metrical Trees for the sentence ‘An English Teacher”, depicting differences in
tune.
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boundary can only occur on the end syllable of a word.

Hierarchical Intonation Structure: We assume that similar to the metrical struc-
ture, our proposed hierarchical structure is binary, rooted at the IP and with sylla-
bles at the leaves. Furthermore, we assume each node in this structure is labelled
with a strong (S) or weak (W) label.

Steps

The steps followed to obtain this hierarchical intonation model is illustrated in Fig. 5.6
and is as follows:

Initialize: First initialize the phrase breaks and prominence on syllables using a
labeling either obtained from Festival or Prosody tagger [Dominguez and Wanner,
2016] as explained in Section 5.3.4 under initial seed labelling.

Train an Initial Grammar: Given these S-expressions of utterances represented
as a sequence of strong/weak syllables, train a metrical grammar using an SCFG
parser. We start with an initial grammar, with equal probability given to each
production.

Train and Synthesize with Metrical Tree: Use this metrical grammar obtained
from the SCFG parser to parse data, flatten the trees and add them as additional
features. Retrain the acoustic and duration models and synthesize and calculate
utterance-wise scores using a scoring metric as described in Section, 5.3.4 under
scoring function.

Twiddle breaks: Twiddle the breaks, by randomly moving breaks in a range of 3
syllables before or after from the current syllable and retrain the grammar.

Train and Synthesize with new breaks: Given the new twiddled breaks, retrain
the grammar and using the new parsed utterance structures, retrain the acoustic
and duration model.

Re-score and Retain: Obtain utterance-wise scores and only retain those utter-
ances whose score has improved.

Twiddle Prominence: Now twiddle the stress on each syllable with a probability
of 0.5 that it will change from its current value.

Train and Synthesize with new prominence: Given these new twiddled stress
values on syllables, retrain grammar, parse utterances with the new grammar and
retrain acoustic and duration models.

Re-score and Retain: Score each utterance on the new model and only retain
sentences that have improved.

5.3.3 Data

The experiments were carried out on primarily two corpora of audiobooks and one cor-
pus of ARCTIC sentences [Kominek and Black, 2004]. The first corpus is a 6 hour 45

78



1. Initialize model with initial Use labelling to train model use
START seed labelling of stress values 4——> steps depicted in RETRAIN box

on syllables and breaks on and get utterancewise scores
2. Twiddle breaks, by shifting Use labelling to train model use
. them randomly by n syllables, —" steps depicted in R_ETRAIN box

where n is in range [+3, -3]. and get utterancewise scores

3. For each utterance if RETRAIN

performance improved using

scoring function, retain A. Train SCFG Grammar using initial

utterances. metrical productions with equal
probability
B. Using trained metrical grammar,
parse utterances, to get metrical trees.
C. Use Flattened metrical trees as
prosodic features to retrain acoustic and
duration models.
D. Resynthesize and rescore utterances
using scoring function.

4

4. Twiddle stress, by changing Use labelling to train model use

current value of stress with a —> steps depicted in RETRAIN box

probability of 0.5 and get utterancewise scores

—— ——

5. For each utterance if
performance improved, retain
utterances.

Yes

.. sToR)

6. If iter < Num
lterations

Figure 5.6: Flowchart of steps followed in iterative process to obtain better prominence and
phrase break labelling
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mins corpus of a US male speaker reading the The Adventures of Tom Sawyer (TATS),
distributed as part of Blizzard Challenge 2012 phase 1. The third audiobook corpus is a
larger 16.36 hour corpus of a US English female provided by Lessac Technologies as part
of Blizzard Challenge in 2011, which we call the Nancy corpus. The final corpus is a one
hour corpus of an American male speaker (RMS) recording a set of phonetically balanced
utterances distributed as part of the ARCTIC corpus. All of the data was segmented into
utterance level chunks, which are still much longer than the average utterances in the
ARCTIC corpus. The front-end was Festival [Black et al., 2014].

5.3.4 Experiments and Results
Initial Seed Labeling:

We explored various seed labeling strategies to seed the iterative procedure of twiddling
breaks and stress. These included:

e Default (D): This was the default assignment of stress and breaks as given by front
end.

e Single-syllable Closed Class stress modified (C): This included converting all
closed class single syllables to be unstressed, which were originally assigned a
strong stress by the front-end. This was inspired by the finding in [Lenzo, 2017]
where only twiddling the stress values on function words yielded some improve-
ments in performance.

e Prosody Tagger (PT): Prosody Tagger [Dominguez and Wanner, 2016] includes
an automatic way of finding the prominence and breaks in a utterance using raw
speech. It does this by extracting features from the raw audio waveform includ-
ing pitch, duration and intensity peaks and valleys, which are then used to predict
prominence and breaks. We used these predicted features as the stress and break
values is Festival. The stress values in this case tend to be mostly unstressed except
for the prominent points.

e Default stress with Prosody Tagger breaks (DPT): Since the breaks in the front-
end are assigned based on pauses and Prosody Tagger does the break prediction
using only acoustics of the raw waveform, in this formulation, we combined the
default stress assignments from the front-end with the breaks obtained based on
acoustics directly from Prosody Tagger.

The results with initial seed labeling are shown in Fig. 5.7. We show MCD, RMSE of FO
and duration on the three voices with different seed initialization. Here B denotes the
baseline results without adding metrical tree features. We see that Prosody Tagger does
better than all the other techniques in case of FO. We cannot derive much insight from
MCD, since the changes in MCD are not very significant and neither in case of duration,
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since it is not consistent across the three voices.
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Figure 5.7: Initialization results for RMS (coll), TATS (col2) and NANCY (col3), for MCD,
FO and Duration. B denotes Baseline and the rest are as described in Sec. 5.3.4

Scoring Function:

Since it is difficult to know what factors determine prosody, we explored various scoring
functions that would determine if an utterance with a new labeling is retained. Since
prosody can broadly be said to be influenced by acoustics, duration and the fundamental
frequency, we looked at Mean Cepstral distance (MCD) of acoustic features (MCEPS)
and root mean squared error (RMSE) of FO and Duration as cost functions as well as a
combination of them.

Figure, 5.8 illustrates the MCD and FO scores obtained on a held out test set on the
TATS corpus over 5 iterations, when using different scoring functions. We found that
RMSE of z-scored state level duration as a cost measure seems to converge fastest within
couple of iterations. However, we found the performance on a held out test set in terms
of MCD and FO scores, did not change much with different scoring functions and the
performance over iterations also was not very different either. In addition, we noticed
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that when we used MCD as a scoring function, the MCD and FO scores for the same
iteration have the opposite trend-wise direction. This also points to the fact that MCD
might not be a suitable objective measure for this task.

5.3.5 Conclusions

In this section we explored an incremental method of learning a metrical tree grammar
to learn a hierarchical intonation model of prosody to better match the actual delivery
of the acoustics. We show that using raw acoustics to influence initial labeling improves
FO prediction, but does not have the same effect in terms of MCD and duration. In terms
of cost function, we see that RMSE of duration converges fastest and we also show that
the trends in iterative MCD and FO scores when using MCD as a cost function move in
opposite directions, which might imply that MCD might not be the best measure for this
task and we need to look into better objective metrics which can capture the subtleties
in the FO and intensity contour as well as take into account duration. One possibility
would be working in an embedding space of FO contour combined with a RMSE over
duration, or using reinforcement learning techniques or human in the loop to train a
prosody model instead of using MCD or some aggregate mean statistic as a measure of
the goodness of a time varying quantity.

5.4 Summary

In this chapter we looked at frame-based methods for learning better prosody models
on long form audio such as audiobooks and podcasts. In the first section we explored
traditional frame-based RNN based models on the Blizzard dataset. We found that even
though these models are good at understandability, they fall short of modelling prosody
well in terms of naturalness. We hypothesized that one reason this models might not
be doing so well was because of the poor labelling of lexical stress and prosodic phrase
breaks which are agnostic to the actual delivery of the utterance. Thus in section 2 of
this chapter, we try to improve upon this labelling using an iterative technique, at each
time “twiddling” the assigned labelling in order to learn a latent metrical tree over the
utterance which we use as features in synthesis and optimize it using a a scoring function
over the acoustics. We explored various methods of initialization and scoring functions
using these iterative methods. We found that we get some improvement in using the
breaks provided by the prosody tagger in terms of FO, however, in terms of duration and
MCD, we do not see much change with a change in labelling. Moreover, we find that
MCD and FO go in opposite directions after each iteration. The problem is that we need
to find a better metric of measuring prosody, some metric that can take into account the
time varying nature of “relative prominence”. Thus, in the next section, we will explore
attention based methods of modelling prosody and inducing a notion of “prominence
attention” into the model.
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Chapter 6

Sequence-to-Sequence Models for Long
form Audio

So far we have shown results using traditional linguistic features with mainly frame-
based models as well as explored a method of improving the linguistic feature labelling of
phrase breaks and prominence using an iterative approach. However, most of these frame
based methods assume we have a good front-end that exists for the language and has
been trained to produce accurate labelling. However, as we saw from the results in the
previous chapter, using hand-engineered features produces speech that is intelligible, but
it does not necessarily produce speech which is natural sounding, especially for training
data consisting of audiobooks with rich prosody. In addition, our efforts to use iterative
approaches to improve upon this labelling also did not yield improvements. Thus, in this
chapter we will replace the hand engineered linguistic features with a neural network
and allow the neural network to learn good feature representations as well as where and
what to focus on, to produce better prosody.

The recent success of sequence to sequence models with attention [Sotelo et al.,
2017], [Taigman et al., 2018], [Wang et al., 2017], [Tachibana et al., 2018], [Arik et al.,
2017] for generating good audio directly from characters or phones has been promising.
However, many of these attention mechanisms do not generalize well to long utterances
and in addition, they have not been designed to capture prominence as part of the at-
tention mechanism. Thus, the goal in this chapter is to look at various methods of aug-
menting or modifying sequence-to-sequence attention based models for better prosody
prediction and control. First, we compare existing attention based models for prosody
prediction with different input feature representations. We then look at one method of
augmenting these end-to-end models with utterance level prosody embeddings guided
by metrical theory. Third we propose a novel multi-scale, multi-headed, multi-hop atten-
tion (3M attention) to capture a set of local and global prosody related attention weights.
Finally, we look at using the error signal obtained as an extra set of prominence weights,
since, it would be expected that a model might have larger errors where there are larger
variations in prosody.

In the next section, we will first lay the foundation of common terminology to be
used and then in the subsequent sections describe the model, the prosody embedding
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mechanism and proposed extensions to the attention mechanism for long-form audio.

6.1 Attention Mechanisms

Various attention mechanisms have been developed. In this section, I will briefly describe
some of these attention mechanisms and the common definition of some terms. Broadly,
the attention mechanism can be defined as :

TCTLC

Cli) = Z F(Query(i), Key(j)).Value(j)

where, C(1) is the context vector at time i € [0..T}..]. The function F is called the compat-
ibility function and calculated using some function of the Query and Key. It determines
by how much to weight the Values.The Query(i) is some function of the decoder state
and the Key(j) and Value(j) are some functions of the encoder inputs or outputs or
a combination of the two and j € [0..7,,.]. Thus different attention mechanisms differ
depending on what is used for the Query, Key and Value and the compatibility function.
In section 6.1.1, we will briefly describe some of the most common mechanisms.

6.1.1 Terminology

In all of the equations we will use the following notation:

h; is the encoder output for j € [0..1,,.],

s; is the state at the last layer of the decoder, and

¢; the context vector for time-step 4, for i € [0..Tye.],

a;; = F(Query(i), Key(j)) are the weights i.e., the normalized outputs of the compati-
bility function and

e;; are the un-normalized weights before the application of the softmax, i.e,

_ exp(e;;)
Zke:n(; exp(eix)

In addition, if not mentioned, in most cases we will assume that the final context vector
is,

Ozij

Tenc

C;, = E Oéijhj
=0

i.e., we assume the default Value to be the encoder output.
e Additive Attention: Additive Attention also sometimes referred to as Bahdanau at-
tention was first proposed in [Bahdanau et al., 2014]. It is called additive, because
the compatibility function is additive in nature. Specifically, it is described as:

eij = vl tanh(W,s;_1 + U,hj),

where W,, U, and v, are all learnable parameters.
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e Dot-product Attention: Instead of using the additive attention, one can combine
the key and query using a dot product. This attention is described as:

eij = ¢(si—1)-Y(hy),

where ¢ and ¢ are some functions, and in many cases identity. Many times this
dot product is scaled by the square-root of the dimensionality of the key vector to
reduce variance and then it is called scaled dot-product attention.

e Content based, Location based and Hybrid Attention: In the speech recognition
literature, [Ren et al., 2015],[Chan et al., 2016], they make a distinction in terms
of whether one takes into account the current location information or not, by using
a recurrence in the attention. Thus, broadly one could define the compatibility
function in each case as:

= Content based: This is the original version of attention. However in case of
speech, we also want to take into account the current location since speech
has many more similar repeating units in terms of phones.

o; = F(Si_l, h)

* Hybrid Attention: Thus by adding in location information, by also giving it
information about the previous attention vector, we can tell it where exactly it
is in the sequence. Thus, this attention can be described as,

oy = F(Szel, a1, h)

* Location based Attention: If we ignore the keys and only use the previous
attention vector and decoder state to predict the next attention vector, it be-
comes location based attention.

;= F<Sz’—17 ai—l)

e GMM-Attention: This is another form of the location based attention, originally
proposed by Graves [Graves, 2013] in the context of sequence modelling with bias.
In this type of attention, the attention weights are estimated as a Gaussian Mixture
Model (GMM), where the GMM parameters are some function of the Query vector.
It is called location based attention, because for each Gaussian component one pre-
dicts the length of the window (the variance), the location of the window (mean)
and the importance of that window (mixture weights). This type of attention was
also used in [Sotelo et al., 2017],[Taigman et al., 2018] with some modifications
from the original paper.

e Self Attention: Also called intra-attention involves attending to the same sequence.
Thus in this case the key, query and value all come from the previous timesteps of
the same sequence being predicted.
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e Multi-step or Multi-hop Attention: Multi-step or Multi-hop attention was pro-
posed in [Gehring et al., 2017]. It involves allowing each layer in the decoder to
have its own attention mechanism. In some variations of this, the first layer gets
the original query vector which is the decoder target and then each subsequent
layer uses the output of the previous decoder’s layer as the query vector.

e Multi-headed Attention: Multi-headed attention was introduced in [Vaswani et al.,
2017], projects the same key, query and value vector into H different projections
using a feed-forward layer, to yield H different context vectors. These different
heads are expected to capture different aspects of the encoded signal.

In this chapter, we only be using soft attention in all cases, since using hard monotonic
attention, i.e., assigning the context vector, ¢; at time ¢ to some h; is difficult because of
sampling. One can use a soft attention to approximate hard alignment in expectation as
is done in [Raffel et al., 2017], however, for all of our experiments we will only consider
soft-attention.

6.1.2 Related Work

So far, most end-to-end TTS models have used a variety of attention mechanisms. Deep-
Voice3 [Ping et al., 2018] and the DC-TTS model [Tachibana et al., 2018] both are
convolutional based architectures and borrow heavily from the [Gehring et al., 2017]
and [Vaswani et al., 2017] architectures and thus use dot product attention. Tacotron
[Wang et al., 2017] and its newer version Tacotron2 [Shen et al., 2018], VoiceLoop
[Taigman et al., 2018] and Char2Wav [Sotelo et al., 2017] use location based attention.
Tacotron and Tacotron2 uses the hybrid or recurrent additive attention which is location
sensitive, while Char2Wav and Voiceloop both use Graves location based GMM attention
[Graves, 2013]. Char2Wav has a recurrent encoder and decoder while Tacotron has a
composite unit called the CBHG a unit consisting of Convolution, Bidirectional Layers
of Highway and Gated Recurrent Units and residual connections, while the Voice loop
uses the notion of a buffer with three MLP’s to encode attention, output and the buffer
update vector. Tacotron 2 has a simplified architecture consisting of vanilla LSTM and
convolution layers instead of the CBHG stack.

Thus, given the diversity of model architectures and attention mechanisms, we will
concentrate on the DeepVoice3 and its related DC-TTS architecture and use these con-
volution based architectures to test various attention mechanisms. One common trend
however that emerges from the literature on end-to-end sequence models for TTS is that
windowing or using more local attention as opposed to using the entire sequence, is one
mechanism for enforcing some form of monotonicity and is helpful in making the model
converge faster and produce better quality output, in addition to making the training
more stable and robust to attention failures on long sequences. In the next section, we
will briefly describe the baseline model that we will be using and our proposed extension
to this model with multi-hop, mutli-scale, multi-headed attention and error feeding.
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6.2 Attention based End-to-End models for Prosody

6.2.1 Model Descriptions

e DeepVoice3: The DeepVoice3 [Ping et al., 2018] as described in Section 4.1.2,
is a fully convolutional attention based model similar to the model described in
[Gehring et al., 2017]. It consists of a fully convolutional encoder and decoder
with dilated gated causal convolution layers, while the post-net is non-causal with
dilated gated convolutions. It uses a dot-product attention along with position
embeddings for text and Mel-spectral frames. The details of number of layers as
well as other hyper-parameters can be found in Appendix A.

¢ Dilated Convolution TTS Model: The Dilated Convolution TTS model (DC-TTS)
[Tachibana et al., 2018], uses an architecture similar to that of Tacotron [Wang
et al., 2017], except that it is a fully convolutional based architecture without the
RNN. They use a combination of highway layers and dilated convolution layers.
They also do a time-upsampling via the convolution layers in the postnet. They
use an extra binary divergence loss along with a guided attention loss. The binary
divergence loss is used to stabilize the gradients for very deep networks and the
guided attention loss helps make the attention almost monotonic and both of these
losses help make the model converge faster.

In Table 6.1 we compare these two models for different text input representations on
the Blizzard dataset. We see that the DeepVoice3 model seems to be better than the DC-

Table 6.1: DTWMCD results on Blizzard dataset using various input text representations
on two attention based convolution end-to-end models example wavs..

Input-Type Deep Voice DC-TTS
Character 5.12+£2.69 | 5.29 £ 2.85
Phone 5.124+2.69 | 5.28+2.84

Phone with word breaks | 5.10 +2.67 | 5.27 +2.83
Phone with syllable breaks | 5.10 £ 2.67 | 5.28 + 2.833

TTS model, and the phone with word breaks seems to be the best input representation
in terms of DTWMCD. However, if one listens to the sample linked wavefiles, it seems
like the models with lower MCD also tend to be the less prosodically rich models and it
is not really clear whether a lower MCD actually means a better quality of synthesis in
terms of prosody. However, in the absence of any other metric, we will use the model
with the lowest MCD, the DeepVoice3 model with word breaks as the baseline for further
experiments. In addition, we use the combined loss function used in the DC-TTS paper
for faster convergence and is described in the next section.
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6.2.2 Guided Attention and Loss Function

In our experiments we found that it was hard to make the model converge fast on long
utterances and utterances with diverse prosodic variations. We found that the attention
collapses in the middle of training and needed to be restarted each time. Thus, to control
errors in attention, and be able to generalize to longer sequences, we use a windowed
attention mechanism, that uses a very small window of attention vectors to enforce al-
most monotonic alignments. Thus in our default model, we use a window length of 4,
1 vector backward and 3 vectors forward, thus ensuring that at each time we get almost
monotonic alignments and faster convergence. In addition, in [Tachibana et al., 2018],
they found that adding a small amount of binary divergence loss also helped to stabilize
gradients, so we apply that to our loss function as well.

Thus, the entire loss function is :

LTotal = LMel + LLinear + LAttention

where: Ly, X stands for either Mel or Linear Loss and is defined as:

Lx = L1+ Lpaiw + Lpone

where, £, is the L1 loss, Lz, is the binary divergence loss first proposed in [Tachibana
et al., 2018] and defined as the cross entropy loss between true Mel spectral features Sy,
and predicted Mel spectral features )y, and defined as:

Lpaiv = Ep[—Spilog Yy — (1 = Spe) log(1l — V)]

The done loss is just a binary cross entropy loss per predicted frame whether it is the end
of the sequence or not. The attention loss is defined as:

£Attention - ]Ent [Ant ®] Wnt

where A, is the attention matrix and W, are the guided attention weights to constrain
it to be almost monotonic and is defined as:

2
Wmlexp(ﬁ>

where, n is the current text position, N is length of input text sequence, ¢ is the current
frame position and 7 is the length of the Mel spectral sequence, g is a standard deviation
and which determines how wide you would like to penalize the attention weights outside
the window, and in our case is 0.2.

6.2.3 Multi-scale, Multi-hop, Multi-headed attention (3M)

Since we would like to capture prosody at different scales, a local scale for pitch ac-
cents as well as a larger scale for phrase breaks, we wondered if we could do this with
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Figure 6.1: Multi-scale, Multi-hop, Multi-headed Attention, showing a model with 4 heads,
2 hops and scales per head of 5, 48, 160 and 320 respectively.

multi-headed attention, each attending to different lengths of the input. We call this
multi-scale, multi-headed attention. And since we have this multi-scale, multi-headed
attention at each decoder layer, with the output of the first decoder layer serving as the
query for the next layer, we also have multiple hops. Thus, we call this attention multi-
scale, multi-headed, multi-hop attention.

Results: We see that by adding multiple scales we do not see much improvement
in prosody as compared to the baseline in terms of DTWMCD. One reason for this maybe
that using the guided attention loss makes using multiple scales useless. So we also
trained 3M attention models for 2 and 5 hops without guided attention. However, in
terms of DTWMCD it still does not seem to make much of a difference. An interest-
ing observation note however from the synthesized wavefiles is that even though the
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Table 6.2: DTWMCD results on Blizzard dataset using Multi-scale, Multi-head, Multi-hop
(3M) Attention example wavs.

No. Hops | No. Heads | Scales of each head [forward, backward] DTWMCD
1-first-layer 1 3,1] 5.15 £ 2.72
1-last-layer 1 3,1] 5.12 + 2.68
2 (Baseline) 1 3, 1] 5.12 +2.70

2 4 [4,1][16, 4][32, 8][64, 16] 5.15 +2.72
2 4 [4,1][32, 16], [128, 32], [256, 64] 5.13 +2.70
3 4 [4,1][16, 4][32, 8][64, 16] 5.15 + 2.72
3 4 [4,1][32, 16], [128, 32], [256, 64] 5.16 £ 2.70
5 4 [4,1][16, 4][32, 8][64, 16] 5.14 +2.72
5 4 [4,1][32, 16], [128, 32], [256, 64] 5.15 +2.71

DTWMCD for single hop, single head attention at first and last layer is comparable, the
quality isn’t as great. Especially when using attention directly at the last layer, we see
that the quality of the synthesized wavefiles is the worst. The same can be said about the
synthesized wavefiles with a single hop and multiple scales at the last layer. However,
do notice that adding in multiple scales improves the phasiness slightly. Using shorter
windows also has a problem in terms of making the model stop at the appropriate time.
We see that using 2 hops with multiple scales gives us some improvements in synthesis
quality, however, going beyond hops does not give us any benefits.

6.2.4 Prosody Control with Error Feeding

In the previous section we saw that using just two attention heads gives us good results
and there are no gains in adding multiple attention heads over many scales. One reason
for this might be the fact that the first attention heads ends up learning an almost mono-
tonic attention and the gains with multiple attention heads over multiple other scales
has no effect. Thus, in this section we look at another method of introducing prominence
attention by essentially using the errors at the output of the decoder as an additional
feature stream. Our hypothesis is that the errors are larger at the points in the output
acoustic sequence where there are maximum deviations in prosody, i.e., the errors are
highest where the prosody is most different. Thus, we could think of the error stream
as features of how much to importance to give each Mel frame in the output sequence
at the decoder in order to improve its prosody. We call this error sequence the prosody
control sequence, and it is calculated as a mean of the squared errors per frame. Dur-
ing test time, we can feed a sequence of floating point numbers to realize the prosody
we want. It seems reasonable since greater deviations in prosody from the mean would
cause higher errors if the models are good at predicting the mean statistics.
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Figure 6.2: Error Feeding Mechanism.

Training: We can either give the Mel outputs as the input sequence to the postnet

Table 6.3: DTWMCD results on Blizzard dataset using Error Feeding example wavs

Output type Added Decoder Outputs to Error | Constant Value | DTWMCD
Decoder Output Yes 0 5.00 &+ 2.59
Decoder Output No 1 5.41 £ 2.92

Decoder State Yes 1 521 +£2.77
Decoder State No 0.5 5.15+2.71

or give it the predicted Mel Targets. In addition, to calculate the errors, we can either
give the error stream directly or add the decoder targets to it and use those as the promi-
nence weights to weight the input to the postnet. Table 6.3, lists all four combinations
of these weighted inputs.
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Results:We see that the error feeding mechanism of using the Mel outputs, with de-
coder outputs added to the error stream gives us a 0.1 DTWMCD improvement. Since
during test time we need to feed it some control sequence, we gave it a vector of some
constant value as indicated in the results table, in order to be able to calculate DTWMCD.
In addition, we also experimented by controlling the prosody by giving it simple control
vectors such as a sine wave of a particular frequency, an increasing and decreasing con-
trol vector, a square wave, etc, and in most cases, we could perceive differences in volume
but not prosody according to the simple manipulations. Further exploration in transfer-
ring audio from another audio waveform to our target, by first decoupling FO seems like
a promising future direction to pursue.

6.2.5 Summary

Thus, in this section we explored two methods of making the neural network learn to
focus on more prosodically motivated attention weights. In the first method we used
a multi-scale, multi-hop, multi-headed attention mechanism, which assumes that the
inherent prosodic structure we are trying to model is a hierarchical model of relative
prominence. However, we find that the model does not do any better than the baseline
which does not use a multi-scale architecture. In the second scenario, we use an error
feeding mechanism where we treat the errors in the predicted Mel output sequence as
attention weights. We find that this improves results a little and also produces waves with
simple manipulations in volume during synthesis. It will be interesting to investigate this
further while also adding some sort of additional attention mechanism at the output of
the decoder and as input to the postnet.

6.3 Prosody Embeddings for Speech Synthesis

In the previous section we explored one method of capturing the prominence and prosody
in an unsupervised fashion within a neural network pipeline via various attention mech-
anisms. In this section, we explore another method of representing the prosody and ex-
plicitly augmenting the model with these utterance-level prosody embeddings. Since it is
difficult to label data with prominence values, and there do not exist many large datasets
with this labelling, we will instead try to learn this prominence via a metrical structure.
The metrical structure as described in 5.3.1 is a binary tree rooted at the phrase and
going till the syllables, having each child marked as either weak (W) or strong (S). The
goal in this section is to be able to learn this binary tree structure in a bottom-up fashion,
starting with syllables in an unsupervised fashion in order to improve the downstream
quality of speech synthesis. Furthermore, the trees learned by the prosody embedding
might make the model more interpretable, i.e., we might be able to manipulate different
intonations by manipulating the metrical structure. In addition, the prosody embeddings
can serve to help style transfer and other emotional TTS applications.

This embedding would be in addition to the attention mechanism, and as such would
give us utterance level prosody embeddings. Previous work in learning utterance level
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prosody embeddings in a neural network setting has been explored in [Skerry-Ryan et al.,
2018] and [Watts et al., 2015]. In [Skerry-Ryan et al., 2018] and [Watts et al., 2015],
they learn these utterance level prosody embeddings in an unsupervised manner. In
[Skerry-Ryan et al., 2018], they learn this as a 1 of K style tokens which are then aggre-
gated through a separate Style Attention and given to the decoder, while in [Watts et al.,
2015], they encode each utterance as a 1 of K encoding and then are able to control
the style by traversing this 2-D embedding space. With our architecture, we would like
to go one step further by assuming a more theoretically grounded method of inducing
prosodic structure via the metrical tree. In the next section we will briefly describe the
Tree-LSTM structure and then explain our input feature representation.

6.3.1 Model Description

To obtain utterance level prosody embeddings guided by metrical theory, we use Tree-
LSTM as an additional prosody encoder and use the embeddings from this model as extra
global embeddings at each layer in the decoder. In this section we will briefly describe
the Tree-LSTM and features used.

Tree-LSTM Composition Function

COMPOSED PARENT

Figure 6.3: Composition function of the Tree-LSTM illustrating the gating .

RNN’s are good at capturing sequential context. However, given that we want to
capture a more hierarchical representation of relative prominence we need a structure
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that can not only take into account the sequential context, but also have the ability to
take into account hierarchical information and build up a representation by applying a
function to some number of child nodes. One such architecture proposed in recent liter-
ature is the Tree-LSTM [Tai et al., 2015]. The tree-structure LSTMs incrementally build
up a representation of an utterance by combining nodes pairwise at each time-step until
only one representation is left. In our implementation of a Metrical Tree representation,
we need to build up a binary tree given lexical stress values on syllables, and where the
child nodes are ordered. Thus, we use the Binary tree LSTMs a special case of the N-ary
Tree-LSTMs proposed in [Tai et al., 2015]. The binary Tree LSTM’s composition function
is defined as follows:

i o
fl g
hy
fr = g (Wcomp + bCOHlp)
h,
g
g tanh

¢, =fi0c+f0c, +i0g
h, = o ® tanhc,

Where, © is the element wise product of elements, c, and h, represent the hidden
and cell state of the composed parent. i, o, g are the LSTM cell input, output and gating
functions and f; and f,. and c; and c, are the forget and cell states of left and right
child respectively. This implementation of the Tree-LSTM is similar to the SPINN model
described in [Bowman et al., 2016], without the tracking LSTM. We instead use the
implementation used in [Choi et al., 2018], with the RNN leaf transformation. Figure,
6.3, illustrates this composition function.

Unsupervised Tree-LSTM Grammar Induction

The SPINN model that was proposed in [Bowman et al., 2016] requires labelled trees
for training the network. However, since in our particular case we do not have such
training data, we need to look at methods that use this model in an unsupervised fash-
ion. There have been some examples of the SPINN model being used in an unsupervised
fashion. Examples include a version of the model proposed by Yogatama et. al in [Yo-
gatama et al., 2017], that uses the REINFORCE [Williams, 1992] algorithm to find latent
tree structures given only the text and optimizes it for a down stream task of sentiment
classification. This work is further extended by Maillard et.al in [Maillard et al., 2017],
where they first generate O(NN?) nodes for the tree over N words and then select the best
node combinations to join as a tree using a gating mechanism. Along similar lines, an-
other unsupervised version of the SPINN model uses a categorical distribution to sample
nodes to be composed at each step. Thus, instead of building partial trees, this model
uses a categorical distribution to select only one node to be composed at each time-step.
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In an analysis of the trees learned from these models, as was done in [Williams et al.,
2018], they found that only the categorical distribution model using the ST Gumbel
distribution yielded results that were better than a simple Tree RNN baseline and sim-
ple LSTM baseline. Moreover they found that the RL-SPINN model mainly yielded left
branching trees for sentences greater than 7 words. Thus, for our application we chose
to go with the ST-Gumbel model. The ST Gumbel model builds up a tree over N words
by selecting one node to compose at each time using a learned scoring function. Thus
it goes through N — 1 compositions to obtain the embedding of the sentence. In this
model, the node to be composed at each time-step is sampled using a straight-through
Gumbel (ST-Gumbel) estimator to sample from a probability distribution over nodes to
be composed. This scoring function is optimized with respect to a downstream task, in
our case improving the combined loss as mentioned in Section 6.2.2.

6.3.2 Feature Representation

Input: We explored three input representations annotated with linguistic features de-
rived using the Festival front-end at the syllable level, as well as the character, phone
and phone based sequences with breaks at the word and syllable level. However, since
the leaves of the metrical tree are syllables, we wanted to find a good representation
of syllables that would work with this model. Thus we chose to experiment with three
syllable sets. These were as follows:
e Full-set: The first we call the full-set which contains all the features dumped at the
Syllable level that are annotated by Festival. A list of these features can be found
in Appendix B.

e Small-set:The second set is a reduced subset of these features, which have been
used previously in [Ronanki et al., 2014]. These included the lexical stress, accent,
word initial or final, phrase initial or final as well as onset, coda and part-of-speech
tag.

e Tiny-set: The final subset is a reduced subset without the part-of-speech tag as
used in [Anumanchipalli et al., 2013], but including coda and onset features.

6.3.3 Results

Th results with these three feature sets as well as character and phone sequences is
shown in Table, 6.4. We see that adding in an additional prosody embeddings guided by
metrical structure does not make very much difference in the output prosody in terms
of the DTWMCD measure.When we listen to the wavefiles, if you take for example the
last wavefile which is the sentence, “So, the elephants go on a log journey to find food and
water”. In this sentence, there are is small pause after “So” and the long is elongated. We
see in most cases it gets the first pause right, while it is not able to get the elongation on
long very well. The best one seems to be the one with syllable breaks, which seems to get
the prosody right on all three sentences, however it ends up sounding a little phasey for
the last sentence. From these results it seems that trying to improve the prosody further
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Table 6.4: DTWMCD results on Blizzard dataset using Tree-LSTM derived prosody embed-
dings example wavs

Input-Type DTWMCD
Char-Phone (Baseline) 5.12 +2.69
Character 5.13 £ 2.70
Phone 514 +£2.71

Phone with word breaks | 5.12 4+ 2.70
Phone with syllable breaks | 5.11 +2.70

Syllable Tiny-Set 5.11 £ 2.70
Syllable Small-Set 5.14 +2.72
Syllable Full-Set 512+ 2.70

using the tree-lstm encodings does not yield much benefit. In the future we would like
to try using only the Tree-LSTM as a sole encoder and use the prosody embeddings on
an utterance directly for synthesis to see if it actually captures anything relevant. In
addition, we would like to investigate adding an additional FO multi-task loss to the
Tree-LSTM encoder to guide it better and optimize it specifically for learning a better FO
contour.

Analysis

Fig. 6.4, plots a 2-dimensional, multi-dimensional scaling visualization for the tree em-
beddings learned using different inputs. Here we have shown all quoted utterances in
the test set as blue and the narrated utterances as red. It is interesting to see that the
first row, which has syllables or some knowledge of syllable units as input, provides some
distinction between narrated sentences (shown in red) vs. quoted utterances, shown in
blue. The first two figures, are using syllable based features, and even though they have
overlapping clusters, one can see a clustering of blue and red points, showing us that the
the tree-LSTM does learn some notion of prosody. The sub-figure (c) has phone inputs
demarcated by syllable breaks, and it also shows some kind of clustering between quoted
and narrated texts. While, the last three plots (d)-(f), show totally overlapping clusters.
Thus, it seems like the prosody embeddings learned by the Tree-LSTM, differ depending
on the input and seem to learn some notion of syllables with respect to the prosody of the
utterances, since quoted utterances which are various character voices are prosodically
different from the the narrated utterances.
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Figure 6.4: Visualization of Prosody Embeddings learned with different Inputs.
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6.4 Summary and Discussion

In this chapter we looked at various ways of inducing more knowledge of prosody into
the end-to end neural systems. First, we looked at two methods of learning a hierar-
chical set of prominence weights, one using multi-scale , multi-hop, multi-head attention
and the other using error feeding. We find that even though DTWMCD does not cap-
ture the subtleties in the delivery of the utterances, on listening to the examples of 3M
attention, we find that adding multiple scales improves performs slightly over a single
head. In addition, we find that when using only a single hop, it is better to give it to
the first layer, rather than the last layer, since the output from the last layer for both
single and multiple heads sounds noisier and less smooth. In case of the error feeding
mechanism, we find it gives us some benefit in terms of manipulating the output wave-
file and is worth investigating further, especially in transferring acoustics from another
sentence on a target sentence. We also look at learning utterance level embeddings of
prosody, guided by metrical structure. We show the even though these embeddings cap-
ture some meaningful prosodic information for syllable level inputs, in terms of quoted
vs. unquoted utterances, they do not improve DTWMCD. In the future we would like to
use these learned prosody embedding for style transfer across utterances.
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Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis we have taken the first holistic approach to building speech synthesis sys-
tems from Found Data, with a goal of building such systems for low resource languages.
We approached this problem from three different aspects:
e Data Selection: Selecting good data for synthesis

e Data Augmentation: Integrating external resources to augment training data.

e Models for Long form audio: Building models for data having long form prosody
structure.
In the next section we briefly describe our contributions for each of these three aspects
and lay out future promising directions to pursue.

7.2 Contributions of this Thesis

7.2.1 Data selection

In this thesis we explored data selection strategies for found data with a variety of speak-
ing styles. We showed experiments with an iterative strategy of selecting the best subset
for synthesis, given a noisy corpus of data. For selection, we basically looked at two
criteria:
1. Selection of a seed dataset: We looked at both only acoustic measures such as
MCD to select a seed dataset, or only text based measures such as phone frequency
to select a seed dataset. We found that optimizing for phone frequency gave us a
slight advantage in improving the MCD.

2. Selection of a suitable ranking metric to select good utterances: We explored
various metrics spanning spectral, text, correlation and duration based measures to
rank data based on its suitability for building better speech synthesis systems. We
showed results on an artificially degraded dataset containing mis-alignment errors
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and channel noise. We found MCD, followed by duration to be the best metrics for

ranking utterances, based on their suitability for synthesis.
In terms of model building, we also looked at the effect of re-clustering vs. re-alignment
and found that only iteratively re-clustering, using noisy labels obtained by force-aligning
the entire dataset was faster and gave us good enough results. We show these results
using MCD as the metric on three corpora, one an artificially degraded corpus of clean
speech, as well as two corpora of found data, one a single speaker corpus of public
speeches and the other a multi-speaker corpus of telephone conversations.

Our main finding was that the MCD and duration calculated at the utterance level are

good at finding suitable utterances for synthesis. We also showed that we can generally
improve performance on noisy datasets by getting rid of the worst 10% of the data.

7.2.2 Data Augmentation

We explored data augmentation techniques for both transcribed and un-transcribed data.
e Transcribed Data: For the case of transcribed data we explored multi-lingual as
well as multi-style training of end-to-end neural models.

(A) Multi-Lingual models: We explored attention based multi-speaker, multi-
lingual systems for speech synthesis across many Indic languages. For these
multilingual models we were interested in exploring mainly the following four
criteria:

(i) Factored Embeddings: We compared using factored embeddings, where
the global attributes such as gender, language and speaker where used
as separate embeddings to the model, so as to enable it to share similar
data across languages and speakers vs. an unfactored model, where each
language-speaker pair is given a unique ID. From our results we find that
factoring embeddings across global attributes does not improve perfor-
mance and found that using a single model or an unfactored model is in
fact better. We also find that there is not much difference between the
performance of factored model vs. an unfactored model if there is a single
speaker of a single language, further strengthening our case that training
the model as an unfactored model allows it to over-fit to speaker and lan-
guage characteristics better, which is advantageous to our case of speech
synthesis.

(ii) Scalability and Effect of External Speakers: We also looked at how these
models scale on a new language and speaker and what kind of external
data helps. First, we show that by scaling it to many more languages and
speakers, the performance generally improves both in terms of objective
and subjective listening scores. In terms of how external data effects the
model, we showed that adding multi-lingual external data helps improve
synthesis results as opposed to starting from a model trained with English
speech and these gains are prominent for smaller subsets of 100 and 250
utterances as shown using Gujarati female data on different subsets. We
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(iii)

(iv)

also find significant gains in fine-tuning the model on the target data and
show that augmenting with similar languages, helps, however, we find
that adding external speakers of the same target language does not make
any difference in the performance.

Transferrability: In an analysis of what these embeddings capture, we
showed that we can generally transfer speaker characteristics across lan-
guages. However, we find that the embeddings for language and gender
cannot be easily factored from the speaker and as such are not robustly
transferable.

Robustness to Noise: We also show experiments with two multi-lingual
corpora of noisy data. For the Babel Bengali data, which was originally
collected for the purposes of keyword spotting, we found that neural un-
factored attention models adapted from multi-lingual data improve sig-
nificantly upon results obtained from CLUSTERGEN. Even though, one
might not be able to use these models for high-quality synthesis, using
these models for synthesis of short phrases as in for communication in
a disaster scenario or using it for keyword recognition from synthesized
utterances is possible. Using the synthesized speech for keyword recogni-
tion as opposed to the raw speech, might give more consistent results and
is worth exploring further.

With respect to the much cleaner multi-speaker ASR Gujarati corpus, we
find very interesting results. We show that even in the absence of speaker
labels, the model ends up learning super-sentential context, and is reliably
able to sample the same speaker when giving it in domain held-out test
set. On an out of domain held-out test set, it samples random speakers,
and maintains the speaker characteristics consistently over the utterance.
Thus, the model learns to model global utterance level attributes even
without speaker ID information, unlike the CLUSTERGEN model, which
generates an average speaker voice, when trained with a multi-speaker
dataset in single-speaker mode.

(B) Multi-Style models

@)

(i)

Domain Adaptation: For multi-speaker English data we were interested
to see the effect of changing the composition of the training data so as
to make it closer to the domain of the target speaker. We explore this
in terms of accent, gender and pitch and found that changing the com-
position of the training data had little effect on the performance as mea-
sured by DTWMCD, while fine-tuning the data on the target speaker alone
yielded performance improvements.

Style Transfer: We also explored multi-style training of attention based
neural models on found data spanning various noise levels and speak-
ing styles. We found that the style embedding ends up picking up chan-
nel characteristics as style. Especially in the case of noisy datasets such
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as CallHome and TED corpora. We find that it picks up characteristics
of telephone line for CallHome and reverberation in case of TED corpus
instead of the actual speaking style. Thus transferring style from clean
speech to other speaking styles does not really help transform it to sound
more conversational and rather makes it noisy and not very understand-
able. On the other hand, transferring style from noisy speech to clean
style improves intelligibility, and this is especially true when transferring
from very noisy corpora such as Call[Home. We see that in most cases, it
is possible to synthesize data even with very noisy speech such as Call-
Home and from as little as 7 minutes of very noisy speech per speaker. In
addition, in comparison to CLUSTERGEN based models, these models are
significantly better in terms of quality, as shown by the listening tests as
well as DTWMCD metrics.

e Un-transcribed Data: In the second part of Chapter 4, we consider a zero-resource
setting, wherein we only have audio data and no other language resources. In this
scenario, we show results using cross-lingual adaptation techniques in finding a
good phonetic inventory to be able to build a decoder and obtain a transcript with
which one can do synthesis. We consider two zero-resource scenario, one a clean
multi-speaker setting with a Hindi corpus, and the other a noisy, limited data setting
with Xitsonga. We find that our method of using cross-lingual phonetic decoding
outperforms phonetic decoding for clean speech, however, it does not do very well
on the very noisy corpus of Xitsonga.

7.2.3 Prosody Models for Long-form Audio

In this thesis, we also explored methods to better model the prosody using traditional
frame-based models as well as neural attention models.
1. Frame-based Prosody Models for Audiobook TTS:

e RNN Models for Long-form Audio: We explored various RNN based models
for modelling long-form audio. Specifically we explored quasi-RNN, recurrent
highway networks and clockwork RNNs, in an attempt to improve long-form
prosody modelling. We found the recurrent highway network to be the best
among all of the RNN based models we explored. From subjective listening
tests we find that these models are good at intelligibility, however, they still
fall short on naturalness.

e Iterative Prosody Labelling Strategy Inspired by Metrical Phonology. In
this thesis we also looked at improving the labelling strategy of stress and
break values, with the goal of learning a Metrical Grammar and using the
metrical structure as additional features in synthesis. Since, we do not have
training data we explored an iterative method of learning a metrical grammar
and using its features for synthesis. For these iterative methods, we explored
various initialization and scoring functions. For the initialization methods,
we found prosodic breaks and stress values predicted using duration, FO and
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acoustics to perform the best and it gave the lowest RMSE on all three audio-
book datasets. For the scoring function, we explored various metrics spanning
spectral, duration and FO based measures and found that duration was the
best. In addition, we found that optimizing prosody models with MCD is not
the best strategy and we need to find alternate metrics that actually capture
time-varying “relative prominence” at different scales in some way.

2. Neural Attention models for Prosody Modelling

e Prominence weights: In this thesis, we looked at two methods of inducing a
sense of “prominence weights”. One was the multi-scale, multi-head, multi-
hop (3M) attention, and another was an error feeding mechanism. For
the 3M attention, we find some improvements in increasing number of scales
from 1 to 4 when using only 1 hop. In addition we find that if we directly use
attention only on the last decoder layer, the performance is worse as compared
to when we use it on the first decoder layer, with and without multiple scales.
Increasing the hops from 1 to 5, we see that after 2 hops, we do not get much
gain in improvement in quality of synthesis. In addition, we see that quality is
slightly better without guided attention, when using 3M attention, however it
is not significantly different.

The error feeding mechanism, using decoder outputs gave promising initial
results with a 0.1 DTWMCD improvement. We also found that using simple
manipulations such as feeding a sine wave of certain frequency or a square
wave, we could only control the volume of the final rendition of the waveform
produced, but not control its prosody. However, we believe this is a promis-
ing direction for future research to allow one to control and manipulate the
prosody during synthesis in end-to-end neural models.

e Prosody Embeddings: In this thesis, we also explored one unsupervised
method of learning prosody embeddings in an end-to-end neural framework
guided by metrical theory, using Tree-LSTMs. We show that even though these
prosody embeddings learn relevant prosodic information, in terms of clus-
tering character voices vs. narration mode, for syllable level inputs, we see
that they still do not improve the synthesis performance as measured by the
DTWMCD. However, given that these prosody embeddings capture character
voices, it would be interesting to see how they perform when used for style
transfer as well as prosody control vectors.

7.3 Future Directions

¢ Semi-supervised and generative models for multi-lingual synthesis: In this the-
sis, we showed that it is possible to build multi-speaker, multi-lingual models with
neural attention based models for synthesis. However, we found that the model
gets confused when we have two very different languages from the same speaker,
as was the case with English and Marathi. We believe that adding in a generative
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decoder output layer might help mitigate this by learning a multi-modal distribu-
tion over acoustics seems like a promising next step. Thus, in the future we would
like to use a generative decoder output layer to share data across speakers and lan-
guages. Exploring variational and other normalizing flow based models to learn a
distribution over similar acoustics.

Joint Training of ASR and TTS Models: One issue that we did not look at in this
thesis is the degradation in end-to-end models with using ASR transcripts in cases
of found data where only audio is present. In addition along similar lines as work
done in [Tjandra et al., 2017] and [Taigman et al., 2018], we would like to explore
methods where we can integrate the ASR into the end-to-end TTS model so as to
train the ASR with the TTS objective of MCD.

Code-switching using end-to-end pipeline: We find that the model shows promis-
ing results with code-switching. However, the code-switched examples that we
have shown were in the same transcript as the target language. It would be in-
teresting to explore training end-to-end speech synthesis models with code-mixed
text as input, jointly optimizing the grapheme-to-phoneme (g2p) along with the
TTS model.

Style Transfer and Speaker Characteristics: In this thesis we found that the
model does well on some speakers and not so well on others, even when using
the same training utterances and recording conditions. This begs the question of
whether there are certain speaker characteristics or speaking styles that is partic-
ularly suited for modelling with these models, since speakers like RMS and AEW,
which perform well on traditional CLUSTERGEN based models, do not seem to
perform as well with these models, while speakers like AWB and LJM sound much
better than their CLUSTERGEN voices. Thus, exploring what speaking style and
speaker characteristics are suitable for attention based neural models would be an
interesting future direction to explore.

Prosody Control in Attention based Models: We saw that using the error feeding
strategy gave us some promising results in terms of controlling prosody in these
attention based models. In the future, we would like to look at better ways of
transferring style across utterances, and various other attention mechanisms that
can be used specifically to learn a prosody control vectors from other utterances.

Prosody Style Transfer and prosody embeddings: The Tree-LSTM derived prosody
embeddings seem to learn some notion of prosody, as evidenced by their clustering
of quoted vs. narrated text, for syllable level inputs. However, these embeddings
do not improve downstream synthesis. Thus, it might be interesting to use these
for further experiments with prosody control and prosody style transfer in atten-
tion based models. In addition, with respect to improving prosody of synthesized
utterances, in the future we would like to take a look at better methods of captur-
ing prosody guided by FO and duration objective metrics. Specifically, we would
like to explore hierarchical FO and duration based generative models for prosody
modelling.
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¢ Node Embeddings for Metrical Tree: In this thesis, we only explored “twiddling”
the phrase breaks and the stress values on syllables. In the future we would like
to look at twiddling the inner structure at intermediate nodes and also look into
methods that can better take into account the tree structure rather than just one
sentence level encoding.

e Better Metric for Prosody: One main issue that we had in training prosody models
is the lack of a clear objective that can give us indication of how well we are doing
on prosody. Because rich prosody has large deviations in durations, FO and acous-
tics, optimizing a mean statistic does not translate well to a good prosody metric.
Looking at alternate human-in-loop or reinforcement learning techniques might be
other future directions that are worth looking into.

This thesis has barely scratched the surface of using found data for speech synthesis.
We have shown that it is possible to synthesize speech with about 10 mins of very noisy
data. However, we find that such systems trained with this data also learn to mimic the
noisy channel characteristics. What we would ideally like for these models to do is to be
able to factorize the channel noise out allowing us to only use the clean speech parts.
Some promising results in this direction have recently been shown with the Global Style
Tokens [Wang et al., 2018], which have shown some promising results in being able to
factorize out channel noise, speaker characteristics as well as the style from speech for
found data involving TED talks and artificially degraded data. However, to be able to
build a high quality speech synthesis system from found data what we would really need
is to be able to mimic human language learning, where given few instances of audio in
an unknown language one can build a limited domain speech synthesis system, which
might be useful in a disaster relief scenario. What we would like is a system which when
given few instances of noisy speech in an unknown language, can imitate those phrases
as well as use similar words in a related domain while ignoring the channel and noise
present in the data, to be able to synthesize high quality speech. To be able to do this we
need to understand the processes involved in human learning and imitation of language
and our ability as humans to reproduce and generalize sounds from only a few examples.
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Appendix A

Neural Network Model Details

A.1 DeepVoice3 Model

The model architecture is described in detail in the paper [Ping et al., 2018]. For this
model, these were the hyper-parameters we used:

¢ General:
» global embedding dim: 16
* freq hop size: 256
= sample rate: 22050
» downsample size: 4
= dropout: 0.05
* batch size: 16
» optimizer: adam(betal:0.5, beta2:0.9, eps:1e-06)
= initial learning rate: 0.0005
e Encoder:
» text embed dim : 256
» encoder layers: 10
» encoder channels: 512
« dilation factors: 1, 3,9, 27,1, 3,9, 27,1, 3
* kernel size: 3
e Attention:
» attention window: (forward: 3, backward:1)
 guided attention std deviation: 0.2
e Decoder:
* mel dim: 80

* pre-attention layers: 2
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 pre-attention dilation factors: 1, 3

» decoder layers: 5

* decoder channels: 256

» dilation factors: 1, 3,9, 27, 1

* kernel size: 3

« attention hops: 2, first and last decoder layer
¢ Postnet:

= fft size: 1024

* time-upsampling: 4

* postnet channels: 256

» dilation factors per block: 1, 3

* kernel sizes per block: 1, 3

A.2 DC-TTS Model

The model architecture is described in detail in the paper [Tachibana et al., 2018]. For
this model, these were the hyper-parameters we used:

e General:
« global embedding dim: 16
= freq hop size: 256
» sample rate: 22050
» downsample size: 4
= dropout: 0.05
* batch size: 16
= optimizer: adam(betal:0.5, beta2:0.9, eps:1e-06)
* initial learning rate: 0.0005
e Encoder:
* text embed dim : 128
= encoder channels: 256
» kernel size: 3
e Attention:
» attention window: (forward: 3, backward:1)
» guided attention std deviation: 0.2
e Decoder:
* mel dim: 80
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» decoder channels: 256
* kernel size: 3
e Postnet:
« fft size: 1024
* time-upsampling: 4
* postnet channels: 256
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Appendix B

Syllable Feature Sets

B.1 All-Set

All Features which are part of Festival till the Syllable level.

e Nk W=

N NN R R R PR B B2 =B 932 932
N P O VOV 00NV~ WDN - O

R:SylStructure.parent.R:Word.p.gpos
R:SylStructure.parent.R:Word.gpos
R:SylStructure.parent.R:Word.n.gpos
R:SylStructure.parent.R:Word.content words_out
R:SylStructure.parent.R:Word.content_words_in
R:SylStructure.parent.R:Word.pbreak
R:SylStructure.parent.R:Word.blevel
R:SylStructure.parent.R:Word.word _break
R:SylStructure.parent.R:Word.word _duration
R:SylStructure.parent.R:Word.word _numsyls

. R:SylStructure.parent.R:Word.word start
. R:SylStructure.parent.R:Word.word _end
. p.accented

accented

. n.accented
. pp.stress

. p.stress

. stress

. n.stress

. nn.stress

. asyl.in

. asyl out
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23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

lisp_get rhyme _length

syllable_start

syllable_duration

syl_vowel start

syl_startpitch

syl_pc_unvox

syl_out

syl _onsetsize

syl _onset_type

syl numphones

syl_midpitch

syl_in

syl_endpitch

syl_codasize

syl_coda_type

syl_break

sub_phrases

ssyl_in

ssyl_out

position_type

pos_in_word

syl_vowel

lisp_cg break

n.lisp_cg break

n.n.lisp_cg_break

p.p.lisp_cg break

p.lisp_cg_break

R:SylStructure.lisp_length to_last seg
R:SylStructure.parent.R:Phrase.parent.lisp_cg_find_phrase number
R:SylStructure.parent.R:Phrase.parent.p.lisp_num syls_in_phrase
R:SylStructure.parent.R:Phrase.parent.lisp_num_syls_in_phrase
R:SylStructure.parent.R:Phrase.parent.n.lisp_num_syls_in_phrase
R:SylStructure.daughter1.R:Segment.p.lisp_is_pau
R:SylStructure.daughtern.R:Segment.n.lisp_is_pau
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B.2 Small-Set

All features including accentedness, stress, break level coda, onset, part-of-speech tag.
R:SylStructure.parent.R:Word.gpos
R:SylStructure.parent.R:Word.word_numsyls
R:SylStructure.parent.R:Word.pbreak

R:SylStructure.parent.R:Word.blevel

p.accented

accented

n.accented

pp.stress

0 X N o s W=

p.stress

—_
e

stress

—
p—

. n.stress

—
N

. nn.stress

[
W

. syllable_duration

—_
o

syl_onsetsize

—_
ul

. syl_onset_type

—
(o))

. syl_codasize
. syl_coda_type
. syl_.numphones

[
O 00 J

. sylin

N
o

. syl_out

N
—_

. p.syl break

N
N

. syl_break

N
w

. n.syl_break

N
+

p.syl_accent

N
9]

. syl_accent

\®)
(o))

. n.syl_accent

N
~J

. sub_phrases

N
[00]

. ssyl.in

N
\O

. ssyl_out

w
o

. position_type

W
—_

. pos_in_word

w
N

. syl_vowel
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33. syl pc_unvox

34. lisp_cg_break

35. n.lisp_cg break

36. n.n.lisp_cg break

37. p.p.lisp_cg break

38. p.lisp_cg_break

39. R:SylStructure.daughter1l.R:Segment.p.lisp_is_pau
40. R:SylStructure.daughtern.R:Segment.n.lisp_is_pau

B.3 Tiny-Set

Features include only stress, accentedness, coda and onset features.
1. p.accented

accented
n.accented
pp.stress
p.stress
stress
n.stress

nn.stress

0 X Nk WD

syllable_duration

—_
e

syl_onsetsize

—
—

. syl_onset_type

—
N

syl_codasize
. syl_coda_type
syl numphones

T
S NI

. syl_break

—
o))

. position_type

—
~

. syl_vowel

—
[0}

. syl_pc_unvox

[
\O

. R:SylStructure.daughter1.R:Segment.p.lisp_is_pau

N
o

. R:SylStructure.daughtern.R:Segment.n.lisp_is_pau
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