
Modeling Intention in Email

Vitor R. Carvalho

CMU-LTI-08-007

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
William W. Cohen, Chair

Tom M. Mitchell
Robert E. Kraut

Lise Getoor, University of Maryland

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Vitor R. Carvalho

Keywords: Machine Learning, Email Management, Ranking

To Sarah

iv

Abstract

Email management has a fundamental role in modern work productivity.
In this thesis we present evidence that email management can be potentially
improved by the effective use of machine learning techniques to model dif-
ferent aspects of user intention. We initially propose a taxonomy of user in-
tentions in terms of Speech Acts applied to email communication, or “email
acts”, and show that email act classification can be largely automated, poten-
tially leading to better email prioritization and management.

We then describe how machine learning can be used to reduce the chances
of costly email addressing errors. One type of costly error is an “email leak”,
i.e., mistakenly sending a message to an unintended recipient — a widespread
problem that can severely harm individuals and corporations. Another type of
addressing error is forgetting to add an intended collaborator as recipient, a
likely source of costly misunderstandings and communication delays that can
be potentially addressed with intelligent recipient recommendation. We pro-
pose several different approaches to address these problems, and show very
positive experimental results in a large email collection. In addition, we de-
scribe a 4-week long user study based on the implementation of some of the
proposed models in a popular email client (Mozilla Thunderbird). More than
15% of the human subjects reported that it prevented real email leaks, and
more than 47% of them utilized recipient recommendations. Overall the study
shows that recipient recommendation and email leak detection can be valuable
additions to real email clients, with more than 80% of the subjects reporting
that they would permanently use these models if a few interface/optimization
changes were implemented.

Finally, we introduce a new robust rank learning algorithm to further im-
prove recipient recommendation predictions. The algorithm is essentially a
non-convex optimization procedure over a sigmoidal loss function, in which
any linear baseline ranking model can be used as starting point. This new
learning method provides substantial rank performance improvements on re-
cipient recommendation tasks, outperforming all previously introduced mod-
els, including well-known state-of-the-art ranking algorithms.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview and Contributions . 2

1.3 Organization . 5

2 Email “Speech Acts” 7

2.1 Introduction . 7

2.2 A Taxonomy of Email Acts . 8

2.3 Corpus .10

2.4 Inter-Annotator Agreement .12

2.5 Classifying Email into Acts .14

2.6 Collective Classification of Email Acts15

2.6.1 Evidence for Sequential Correlation of Email Acts17

2.6.2 Predicting Acts from Surrounding Acts19

2.6.3 Collective Classification Algorithm20

2.6.4 Experiments .22

2.6.5 Discussion .28

2.7 Linguistic Analysis .29

2.7.1 Preprocessing and N-gram Features29

2.7.2 Experiments .33

2.8 Related Work .36

vii

2.8.1 Speech Act Theory .36

2.8.2 Dialog Act Tagging .38

2.8.3 Email Acts and Other Applications39

2.8.4 Segmentation .40

3 Email Information Leaks 43

3.1 Introduction .43

3.2 The Enron Dataset .44

3.3 Generating Synthetic Leaks .47

3.3.1 Leak Criteria .47

3.4 Methods .49

3.4.1 Baselines: Using Textual Content49

3.4.2 Reranking with Social Network Information51

3.5 Finding Real Email Leaks .55

3.5.1 Sampling from Seen and Unseen Recipients57

3.6 Leak Prediction Results .58

3.7 Discussion and Related Work .61

4 Recommending Email Recipients 63

4.1 Introduction .63

4.2 Evidence of Message Addressing Problems63

4.3 Data Preprocessing and Task Definition64

4.4 Models .65

4.4.1 Expert Search Model 1 .66

4.4.2 Expert Search Model 2 .68

4.4.3 TFIDF Classifier .69

4.4.4 K-Nearest Neighbors .69

4.4.5 Other Baselines: Frequency and Recency70

4.4.6 Threading .70

viii

4.5 Results .71

4.5.1 Initial results .71

4.5.2 Rank Aggregation .74

4.5.3 Email Auto-Completion .75

4.6 Discussion and Related Work .76

5 User Study 81

5.1 Introduction .81

5.2 Cut Once: a Mozilla Thunderbird Extension82

5.2.1 Algorithms . 82

5.2.2 Training .84

5.2.3 Prediction .85

5.2.4 Logging .86

5.3 Study Description .88

5.4 Results .90

5.4.1 Adoption .90

5.4.2 Usage and Predictions .91

5.4.3 Baseline Comparison .97

5.5 Discussion .100

5.6 Conclusions and Related Work .101

6 Learning Robust Ranking Models 105

6.1 Introduction .105

6.2 Learning to Rank .106

6.2.1 Pairwise-preference Ranking .106

6.2.2 Outliers in Pairwise Preference Ranking108

6.3 Robust Pairwise Ranking .110

6.3.1 RankSVM .111

6.3.2 Sigmoid Approximation .111

ix

6.3.3 Learning .113

6.4 Ranking Datasets .114

6.4.1 Email Recipient Recommendation114

6.4.2 Other Ranking Datasets .116

6.5 Experiments .117

6.5.1 Performance .117

6.5.2 Learning Curve .121

6.5.3 Sigma Parameter .122

6.6 Discussion and Related Work .123

7 Conclusions 125

7.1 Summary .125

7.2 Future Directions .126

A Email Act Labeling Guidelines 129

A.1 Verbs .129

A.2 Nouns .130

B User Study Supporting Material 133

B.1 Recruiting Message .133

B.2 Initial Questionnaire .134

B.3 Final Questionnaire .134

B.4 User Comments .136

Bibliography 137

x

List of Figures

2.1 Taxonomy of email acts used in most experiments. Shaded nodes are the
ones for which classifiers were constructed.11

2.2 Diagram of a “Conversation for Action” Structure from Winograd & Flo-
res [1986] .16

2.3 Transition Diagram for the four most common specific verbs.18

2.4 Kappa Values on 1F3 using Relational (Context) features and Textual
(Content) features. .20

2.5 Kappa versus iteration on 1F3, using classifiers trained on 3F2.24

2.6 Plot of baseline Kappa (x-axis) versus Kappa (%) after iterative collective
classification was performed. Points above the dotted line represent an
improvement. .25

2.7 Plot of baseline Kappa (x-axis) versus Kappa(%) after iterative collec-
tive classification was performed. Performance improvement by groups
of email acts. Groups were selected based on performance in the prelimi-
nary tests. .26

2.8 Plot of baseline Kappa (x-axis) versus Kappa(%) after iterative collec-
tive classification was performed. Performance improvement for delivery-
related and non-delivery related email acts.27

2.9 Kappa values with and without collective classification, averaged over the
four test sets in the leave-one-team-out experiment.28

2.10 Error Rate on a 5-fold Cross-validation Experiment34

2.11 Precision versus Recall on Request Act Classification36

3.1 Time frames of different email collections.46

xi

3.2 Performance of Real Leak Case Germany-c For Different Probabilitiesα. 58

3.3 Performance of Real Leak Cases Kitchen-l For Different Probabilitiesα. . 59

4.1 Auto-completion performance on the TOCCBCC task for different num-
ber of initial letters. .76

4.2 Auto-completion performance on the CCBCC task for different number of
initial letters. 77

5.1 Thunderbird main window after installing Cut Once82

5.2 The training dialog window .84

5.3 The information leak and recipient recommendation dialog window; dis-
played when Send button is pressed. .86

5.4 The recipient recommendation dialog window87

5.5 Cut Once logging message .88

5.6 (a) Histogram with ranks of the recommendations clicked by the users.(b)
The same data in a boxplot: median of distribution is 2.00, first quartile is
1.00 and 3rd quartile is 7.00. Whiskers mark the most extreme data point
within a distance of 1.5 of the Interquartile range. Empty points indicate
outliers. .94

5.7 Distributions of likert scores (1 to 5) given as answers to questions 1, 2,
4, 5, 6, 7 and 10 in the final user study questionnaire(higher=better).
Complete questionnaire can be found in Appendix B.3.96

5.8 Distributions of ranks of clicked suggestions for both baseline methods. .99

5.9 Distributions of likert scores (1 to 5) given as answers to questions 1, 2, 4,
5, 6, and 7 in the final user study questionnaire(higher=better). 103

6.1 Example of outliers in pairwise ranking. (top) Histogram of pairwise
scores. (bottom) Mean Average Precision on the same test collection when
excluding training instances whose scores were below cutoff.110

6.2 Loss Functions .112

6.3 Sigmoid-based ranking scheme: non-convex optimization procedure is
seeded with the output of a base ranking model.113

xii

6.4 Performance for the recipient recommendation ranking tasks. Whisker
shows baseline + sigmoid. .118

6.5 Performance (MAP) on LETOR Dataset. Whisker shows baseline + sigmoid.120

6.6 Performance (MAP) on Set Expansion Experiments. Whisker shows base-
line + sigmoid. .120

6.7 Learning curve of sigmoid ranker for several baseline algorithms.121

6.8 Relative Improvements in MAP over RankSVM for different sigma (σ)
values. .122

xiii

xiv

List of Tables

2.1 Description of Verbs in Email Act Taxonomy10

2.2 Inter-Annotator Agreement on Team 3F213

2.3 Inter-Annotator Agreement on Team 3F2 for Messages with a Single Act13

2.4 Classification Results in a 5-fold Cross-validation Experiment for Differ-
ent Learners and Acts .15

2.5 Set of Relational Features .19

2.6 Collective Classification Algorithm. .23

2.7 Email acts Classification Performance on 1f3 Dataset23

2.8 Pre-processing Substitution Patterns .30

2.9 Request Act:Top eight N-grams Selected by Information Gain.31

2.10 Top 4-grams features selected by Information Gain for six email acts . . .32

2.11 Kappa Values for Classifying Six Acts Before and After Using Preprocess-
ing and N-grams Features. .33

3.1 Number of Email Messages in the Different Collections.|AB| is the num-
ber of entries in the user’s Address Book.46

3.2 3g-address, an Information Leak Heuristic48

3.3 Email Leak Prediction Results: Prec@1 in 10 trials.52

3.4 Email Leak Prediction Results: Prec@1 in 10 trials. The symbol∗ indi-
cates a statistically significant (p < 0.01) difference when compared to the
results in the previous column. .55

3.5 Performance when Detecting Real Leak Cases. [Prec@1, Average Rank] .56

3.6 Email Leak Prediction Results for Differentα Values 60

xv

4.1 Number of Email Messages in the Different Collections of the 36 selected
Enron users.|AB| is the Address Book size, i.e., the number of different
recipients that were addressed in the messages of thesenttrain collection.
Sent test∗ contains only messages having valid addresses in both TO and
CC fields. .66

4.2 MAP recipient prediction results averaged over 36 users. Statistical sig-
nificance relative to the best model results (in bold) is indicated with the
symbols∗∗ (p < 0.01) and∗ (p < 0.05). 72

4.3 Recipient prediction results for the best model (Knn) averaged over 36 users.73

4.4 MAP values using the Knn baseline for all 36 Enron users.79

4.5 MAP values for model aggregations with Reciprocal Rank. The∗ and∗∗
symbols indicate statistically significant results over the Knn baseline. . .80

4.6 Auto-completion Experiments. Performance values for different models
andV values. Statistical significance relative to the previous column value
is indicated with the symbols∗∗ (p < 0.01) and∗ (p < 0.05). 80

5.1 Set of attributes logged by Cut Once .87

5.2 Percentage of the 26 subjects giving affirmative answers on four questions
of final questionnaire. .97

5.3 Frequent issues and complaints about Cut Once reported by the subjects.
Most frequent one are placed on the top.97

5.4 Comparison of different metrics for the two baseline methods. None of the
observed differences are statistically significant. Unless noted otherwise,
higher mean values are better. .98

6.1 Mean Average Precision values for experiments in all collections. Statisti-
cal significance tests over the values on the previous column are indicated
with ? or ?? (for paired t-test withp < 0.05 or 0.01, respectively) and† or
†† (for the Wilcoxon Matched-Pairs Signed-Ranks test withp < 0.05 or
0.01, respectively). .119

xvi

Chapter 1

Introduction

1.1 Motivation

Everyday, more than half of American adult internet users read or write email messages
at least once. Email is one of the top two activities people pursue online [Madden and
Reinie, 2003], and it is often the reason why people purchase a home computer [Kraut
et al., 2000]. It is so successful that the termemail has been officially added both as a
noun and as a verb to the English language.

There are multiple reasons for this success. Email is a great tool for collaboration,
especially across different locations and time zones. It is very fast, cheap, convenient and
robust. Email can also be easily adapted to manage numerous tasks, store information,
archive documents, maintain contacts, etc. As explained by Whittaker et al. [2005]:

“Various reasons have been put forward for e-mail’s success. Unlike face to
face communication, its affordances free participants from the constraints of
space and time – allowing senders and recipients to communicate at times
and in places that are convenient to each (Clark & Brennan, 1991; Kraut &
Attewell, 1997; Sproull & Kiesler, 1991). Another significant property is its
malleability. Studies of e-mail usage have repeatedly documented the striking
number of different purposes to which it is put: e-mail can support conver-
sations, operate as a task manager, document delivery system, archive, and
contact manager – to name but a few (Bellotti et al., 2003; Mackay, 1988;
Whittaker, Jones, & Terveen, 2002a; Whittaker & Sidner, 1996). And at a
technical level, it operates using a highly simple protocol.”

1

Email adoption has increased consistently. In 2003 fifty-two percent of the total US
population were email users, while projections to 2010 show this percentage growing to
61% [eMarketer.com, 2006]. The Clinton administration left 32 million emails to the Na-
tional Archives, while the Bush administration is expected to leave more than 100 million
in 2009 [Shipley and Schwalbe, 2007]. It is estimated that office workers in the U.S. spend
at least 25% of the day on email, not counting the use of handheld devices [Shipley and
Schwalbe, 2007].

These large volumes of email data have motivated new research in office automation.
Machine learning techniques have been recently applied to several different email-related
tasks. Some of the most well-known applications are adaptive spam filtering [Cormack
and Lynam, 2006], email foldering [Klimt and Yang, 2004, Brutlag and Meek, 2000],
automatic learning of email user’s activities [Surendran et al., 2005, Huang et al., 2004],
and integration of email with search engines [Goodman and Carvalho, 2005] and to-do
lists [Bennett and Carbonell, 2005], to name a few.

On the other hand, this widespread email adoption has serious impacted work pro-
ductivity. Workers receive far more messages than they can possibly handle, making it
increasingly difficult to manage commitments, negotiate shared tasks and keep track of
different requests in a task-oriented working group. It is also linked to the proliferation
of costly errors in email addressing, such as accidentally sending messages to unintended
recipients, as well as forgetting to address desirable recipients in emails. Because of our
increasing dependence on email, it is critical that we address these shortcomings.

1.2 Overview and Contributions

In this thesis we investigated how machine learning techniques can improve different as-
pects of work-related email management. In particular, we focused on a few intentional
aspects of email exchange (as explained below), and provided evidence that machine
learning models can potentially lead to effective prioritization of incoming messages, pre-
vention against disastrous information leaks, better delegation and coordination of shared
tasks, improved tracking of commitments and deadlines, better integration with personal
calendars and to-do lists, among other improvements.

Email Acts

2

We began by proposing the use of a taxonomy of “email acts” as a framework to
model intentions behind work-related email messages. This taxonomy was based on the
ideas of Speech Act Theory [Austin, 1962, Searle, 1969] and other unique characteristics
of electronic mail.Email actsare noun-verb pairs that express typical intentions in email
communication — for instance,a request of information, a commitment to a taskor a
proposal of a meeting. We showed that there is an acceptable level of human agreement
over the categories of this taxonomy, and that machine learning algorithms can learn the
proposed email-act categories reasonably well [Cohen, Carvalho, and Mitchell, 2004].

We then extended this initial model in two different ways. First, we improved predic-
tion accuracy on all email acts by carrying out a careful n-gram analysis along with email
entity preprocessing [Carvalho and Cohen, 2006a]. Second, we studied the structure of
email negotiations by considering the sequential relations among email acts of messages
in the same message thread. Because this task essentially requires relational information,
we developed a new collective classification algorithm based on dependency networks in
which inference is performed in a temperature-driven Gibbs sampling procedure [Carvalho
and Cohen, 2005]. We showed that some of the email act classifiers can benefit from this
collective prediction framework.

Email Leaks

In another intent modeling task, we explored various machine learning methods for a
new effort: detectingemail information leaks, i.e., messages that were accidentally ad-
dressed to unintended recipients. Email information leaks are a widespread problem that
can severely harm individuals and corporations — for instance, a single email leak can
potentially cause expensive law suits, brand reputation damage, negotiation setbacks and
serious financial losses.

We addressed this problem as an outlier detection task, where unintended email recip-
ients were modeled as outliers. Due to the difficulty of obtaining considerable amounts
of real email leaks, we created artificial cases of unintended recipients by simulating real-
istic types of leaks from real-world data, such as misspellings of email addresses, typos,
similar first/last names, etc. Using a combination of textual and non-textual features, we
developed a classification-based reranking model that correctly predicted leak-recipients
in almost 82% of the test messages. Additionally, we tested the effectiveness of our ap-
proach on real information leaks, successfully predicting two actual leaks in the Enron
corpus [Carvalho and Cohen, 2007].

3

Email Recipient Recommendation

We also addressed the related problem of recommending intended recipients for a mes-
sage under composition — a task that can prevent a user from forgetting to add an impor-
tant person (such as a collaborator or manager) as a recipient, potentially avoiding costly
misunderstandings and communication delays. Recommending email recipients can also
be potentially used to identify people in an organization that worked in a similar topic
or project, or to find people with specific expertise or skills. Empirical data from a large
real-world email collection support the claim that forgetting to include message recipients
is a very common error in corporate environments.

We proposed different models for this task, and evaluated their predictive performance
on a large email collection. Experiments showed that a simple model based on the K-
Nearest Neighbors algorithm generally outperformed all other proposed methods, includ-
ing frequency or recency baselines as well as more refined formal models previously pro-
posed for Expert Search [Balog et al., 2006]. We also showed that combining the rankings
from baseline models using data fusion techniques can improve overall ranking perfor-
mance. Furthermore, these techniques can naturally be adapted to improve email address
auto-completion, i.e., suggesting the most likely addresses based on a few initial letters of
the intended contact. Overall we showed that intelligent message addressing techniques
are able to visibly improve email auto-completion, as well as to provide valuable assistance
for users when composing messages [Carvalho and Cohen, 2008].

Human Evaluation

We implemented many of the previously proposed methods for email recipient recom-
mendation and leak prediction inCut Once, an extension to the popular Mozilla Thun-
derbird email client. Cut Once was written in Javascript, thus requiring careful design
decisions to optimize memory and processing resources on client machines.

Based on Cut Once, we designed and evaluated a 4-week long user study that lead
to very positive results. More than 15% of the human subjects reported that Cut Once
prevented real email leaks, and more than 47% of them utilized the provided recipient
recommendations. It left an overall positive impression in the large majority of the users,
and was even able to change the way three of the subjects compose emails — instead

4

of the usual address-then-compose, some users started relying on Cut Once to perform
a compose-then-address procedure. More than 80% of the subjects would permanently
use Cut Once in their email clients in case a few interface/optimization changes are imple-
mented. Overall, the study showed that both leak prediction and recipient recommendation
are welcome additions and can be potentially adopted by a large number of email users
[Balasubramanyan, Carvalho, and Cohen, 2008].

Robust Rank Learning

We previously introduced different ranking models for the email recipient recommen-
dation task, and showed that combining their output using data fusion techniques could
provide performance gains over the baselines methods in isolation. A more principled
way to combine these different sources of information for ranking lies in representing
each possible email address as a bag of features, and using machine learning techniques to
learn weights associated with each of these feature. Learning effective feature-based rank-
ing models has recently become an active area of research [Elsas, Carvalho, and Carbonell,
2008], particularly important for tuning search engine results.

We then introduced a new algorithm capable of learning robust ranking models. The
algorithm is essentially a non-convex optimization procedure over a sigmoidal loss func-
tion, in which any linear baseline ranking model can be used as input. Experimental re-
sults show that this technique provides substantial rank performance improvements on the
email recommendation tasks, outperforming all previously introduced models, including
well-known state-of-the-art ranking algorithms [Carvalho, Elsas, Cohen, and Carbonell,
2008].

1.3 Organization

This thesis is organized as follows. Chapter 2 discusses email speech acts applied to email
communications. Chapter 3 introduces the new task of email leak prediction, describing
different methods to approach the problem and evaluating them on a variety of real-world
collections of emails. Chapter 4 discusses email recipient recommendation and email auto-
completion, and introduces several possible models for these ranking problems. Chapter
5 describes Cut Once, the Mozilla Thunderbird extension for leak prediction and recipient
recommendation, and its associated user study. Chapter 6 introduces a new general frame-

5

work for robust rank learning, and shows that it is able to outperform all other recipient
recommendation models from the previous chapters.

6

Chapter 2

Email “Speech Acts”

2.1 Introduction

One important use of work-related email is negotiating and delegating shared tasks and
subtasks. Email task management could be made more efficient if we were able to auto-
matically detect the intent of an email message — for example, to determine if the email
contains a request, a commitment by the sender to perform some task, or an amendment
to an earlier proposal.

The idea of embedding a shallow semantic layer to email communication has been
advocated before. The Coordinator system [Winograd, 1988] proposed a taxonomy of
action-oriented “intentions” for email exchange, where the appropriate intentions would
be manually selected by the sender on each message. Automating this process, however,
and successfully adding such a semantic layer to email communication is still a challenge
to current email clients.

In this chapter we proposed the use of a taxonomy of “email speech acts” for model-
ing intentions behind work-related email messages. This taxonomy is based on the ideas
of Speech Act Theory [Austin, 1962, Searle, 1969] and other unique characteristics of
electronic mail. Email actsare noun-verb pairs that express typical intentions in email
communication — for instance, torequest for information, to commit to perform a taskor
to propose a meeting.

A method for accurate classification of email into such categories would have many
potential applications. For instance, it could be used to help an email user track the status
of ongoing joint activities. Delegation and coordination of joint tasks is a time-consuming
and error-prone activity, and the cost of errors is high: it is not uncommon that commit-

7

ments are forgotten, deadlines are missed, and opportunities are wasted because of a failure
to properly track, delegate, and prioritize subtasks. We believe such classification methods
could be used to partially automate this sort of email activity tracking in the sender’s email
client as well as in the recipient’s.

Besides improving task management and delegation, another application for email acts
classification could be predicting hierarchy position in structured organizations or email-
centered teams. For instance it has been observed [Carvalho et al., 2007] that leadership
roles in small email-centered workgroups can be predicted by the distribution of email
acts on the messages exchanged among the group members. The same general idea was
suggested by Leusky [2004], with a different taxonomy of email intentions. Predicting the
leadership role is useful for many purposes, such as analysis of group behavior for teams
without an explicitly assigned leader.

2.2 A Taxonomy of Email Acts

In order to model some of the most common intentions associated with email use, we
proposed the taxonomy of “Email Speech Acts” presented in Figure 2.1. Specifically, we
assumed that a single email message may contain multiple intentions or acts, and that each
act is described by a verb-noun pair drawn from this ontology (e.g., “deliver data”).

This taxonomy drew inspiration from Speech Act Theory [Austin, 1962, Searle, 1969],
as well as from a number of act taxonomies proposed in the research areas of dialog sys-
tems, speech recognition and machine translation [Stolcke et al., 2000, Paul et al., 1998,
Levin et al., 2003]. A more detailed discussion on Speech Act Theory and other related
references can be found in Section 2.8.1.

The proposed act taxonomy was also based on the unique characteristics of electronic
mail. In fact, an important guideline in defining the proposed taxonomy was that it should
be tailored to the application in mind, i.e. work related email exchange, and not be intended
to represent any general-purpose act taxonomy1. This explains, for instance, acts such as
Request Dataor Deliver Data in the proposed taxonomy, associated with very common
uses of email: to request or deliver files, links, attachments, tables, etc.

To define the noun and verb ontology in Figure 2.1, we first examined email from
several corpora (including our own inboxes) to find regularities, common usage patterns,
and then performed a more detailed analysis of one corpus. The ontology was further

1This guideline goes along the majority of dialog act taxonomies previously proposed in the literature
(see Section 2.8.2), where taxonomies were commonly designed for a specific application or domain.

8

refined in the process of labeling the corpora described below.

In refining this ontology, we adopted several principles. First, we believe that it is
more important for the ontology to reflect observed linguistic behavior than to reflect any
a priori view of the space of possible speech acts. As a consequence, the taxonomy of
verbs contains concepts that are atomic linguistically, but combine several illocutionary
points. (For example, the linguistic unit “let’s do lunch” is both directive, as it requests
the receiver, and commissive, as it implicitly commits the sender. In our taxonomy this is
a single “propose” act.) Also, acts which are abstractly possible but not observed in our
data were not represented (for instance, declarations).

Second, we believe that the taxonomy must reflect common non-linguistic uses of
email, such as the use of email as a mechanism to deliver files. We have grouped this with
the linguistically similar speech act of delivering information. The definition of the verbs
in Figure 2.1 can be found in Table 2.1.

In grouping linguistically similar acts, we were guided by the multiple characteristics
and purposes of email communication as well as by the fact that the taxonomy granularity
has a direct impact on the human agreement levels over the same taxonomy. In other
words, inter-annotator agreement levels for smaller taxonomies tend to be higher than
the ones observed for larger taxonomies. As a result, after many refinement iterations, the
above-mentioned principles allowed the production of a relatively small taxonomy (Figure
2.1), one that is still sufficiently rich to represent the most common uses of email in the
workplace.

In addition to the verbs described in Table 2.1, we also considered two aggregations
of verbs: the set ofCommissiveacts was defined as the union of Deliver and Commit, and
the set ofDirectiveacts was defined as the union of Request, Propose and Amend.

The nouns in Figure 2.1 constitute possible objects for the email speech act verbs.
The nouns fall into two broad categories.Information or Deliverynouns are associated
with email speech acts described by the verbsDeliver, RemindandAmend, in which the
email explicitly contains information. We also associate information nouns with the verb
Request, where the email contains instead a description of the needed information. (E.g.,
“Please send your Social Security Number” versus “My Social Security Number is” —
the request act is actually for a “deliver information” activity)Information includes data
believed to be fact as well as opinions, and also attached data files.

Activity nouns are generally associated with email speech acts described by the verbs
Propose, Request, Commit, andRefuse. Activities includeMeetings, as well as other on-
going task activities.

Notice every email speech act is itself an activity. The verb-noun pair indicates that any

9

Request A request asks (or orders) the recipient to perform some activity. A question
is also considered a request (for delivery of information).

Propose A propose message proposes a joint activity, i.e., asks the recipient to perform
some activity and commits the sender as well, provided the recipient agrees
to the request. A typical example is an email suggesting a joint meeting.

Commit A commit message commits the sender to some future course of action, or
confirms the senders’ intent to comply with some previously described course
of action.

Deliver A deliver message delivers something, e.g., some information, a PowerPoint
presentation, the URL of a website, the answer to a question, a message sent
“FYI”, or an opinion.

Amend An amend message amends an earlier proposal. Like a proposal, the message
involves both a commitment and a request. However, while a proposal is
associated with a new task, an amendment is a suggested modification of an
already-proposed task.

Refuse A refuse message rejects a meeting/action/task or declines an invita-
tion/proposal.

Greet A greet message thank someone, congratulate, apologize, greet, or welcomes
the recipient(s).

Remind A reminder message reminds recipients of coming deadline(s) or threats to
keep commitment.

Table 2.1: Description of Verbs in Email Act Taxonomy

email speech act can also serve as the noun associated with some other email speech act.
For example, just as (deliver information) is a legitimate speech act, so is (commit (deliver
information)). Automatically constructing such nested speech acts is an interesting and
difficult topic; however, here we considered only the problem of determining top level the
verb for such compositional speech acts. For instance, for a message containing a (commit
(deliver information)) our goal would be to automatically detect the commit verb, but not
the inner (deliver information) compound noun.

2.3 Corpus

TheCSpaceemail corpus contains approximately 15,000 email messages collected from
a management course at Carnegie Mellon University. This corpus originated from work-

10

Figure 2.1: Taxonomy of email acts used in most experiments. Shaded nodes are the ones
for which classifiers were constructed.

ing groups who signed agreements to make certain parts of their email accessible to re-
searchers. In this course, 277 MBA students, organized in approximately 50 teams of four
to six members, ran simulated companies in different market scenarios over a 14-week
period [Kraut et al., In submission].

This corpus tends to be very task-oriented, with many instances of task delegation and
negotiation. Messages were mostly exchanged with members of the same team. Accord-
ingly, we partitioned the corpus into three subsets according to the teams. The 1F3 team
dataset had 351 messages total, while the 2F2 and 3F2 teams had, respectively, 341 and
443 messages.

Another corpus considered was PW CALO, a dataset generated during a four-day exer-
cise conducted at SRI specifically to generate an email corpus. During this time a group of
six people assumed different work roles (e.g. project leader, finance manager, researcher,
administrative assistant, etc.) and performed a number of group activities. There are 222
email messages in this corpus.

11

These corpora are very task-related, and associated with a small working groups, so
it is not surprising that they contain many instances of the email acts described above.
All messages from these corpora were labeled according to the guidelines presented in
Appendix A. The labels were applied at the message level, instead of the sentence or para-
graph level. This was important not only because “intentions” in emails are not always
constrained within sentences or paragraphs, but also because it does not require an au-
tomatic segmentation preprocessing step — which could generate undesirable errors by
itself. Further discussion on the segmentation issues and segmentation issues is presented
in Section 2.8.4.

2.4 Inter-Annotator Agreement

There is a considerable amount of subjectivity involved in tagging email acts. Ideally we
would like to reduce the subjectivity involved, an effort that would lead to higher agree-
ment among human annotators. In the related literature, the agreement between annota-
tors or coders is typically measured in terms of the Kappa statistic [Carletta, 1996, Cohen,
1960]. The Kappa statisticκ is defined as:

κ =
P (A)− P (R)

1− P (R)

where P(A) is the empirical probability of agreement on a category, and P(R) is the proba-
bility of agreement for two annotators that label at random (with the empirically observed
frequency of each class). Henceκ values ranges from -1 to +1 — where -1 indicates com-
plete disagreement between annotators, zero indicates a completely random assignment of
labels, and +1 indicates a complete agreement between annotators.

For email act tagging, because a single email may contain several speech acts, each
message can be annotated with several labels. In order to evaluate inter-annotator agree-
ment, we double-labeled2 all messages from 3F2, the team with the largest number of
exchanged messages, and calculated the Kappa values for each act separately.

Results in Table 2.2 show the Kappa values for most frequent acts on Team 3F2. Kap-
pas ranging between 0.72 and 0.82 were obtained — values generally accepted to indicate
good levels of agreement, as discussed later.

We also took doubly-annotated messages which had only a single verb label and con-
structed the 5-class confusion matrix for the two annotators shown in Table 2.3. Note that
agreements are higher for messages with a single act.

2One of the labelers was the author of this thesis.

12

Act Kappa
Deliver 0.75
Commit 0.72
Request 0.81
Propose 0.72
Amend 0.83

Table 2.2: Inter-Annotator Agreement on Team 3F2

Act Request Propose Amend Commit Deliver Kappa

Request 55 0 0 0 0 0.97
Propose 1 11 0 0 1 0.77
Amend 0 1 15 0 0 0.87
Commit 1 3 1 24 4 0.78
Deliver 1 0 2 3 135 0.91

Table 2.3: Inter-Annotator Agreement on Team 3F2 for Messages with a Single Act

Several possible verbs/nouns were not considered for further automation (such as
Refuse, Greet, andRemind), either because they occurred very infrequently in the cor-
pus, or because they did not appear to be important for task-tracking. The primary reason
for restricting ourselves in this way was our expectation that human annotators would be
slower and less reliable if given a more complex taxonomy.

In fact, reaching a reasonable inter-annotator agreement is not a trivial task and it is
well known that inter-coder agreement can be largely influenced by the choice of dataset,
tagging scheme and coding manual adopted. Generally speaking, taxonomies with fewer
acts tend to have higher inter-coder agreement. Researchers have consistently mentioned
the merging of categories (or the use of smaller ones) in taxonomies as a means to improve
the kappa coefficient of agreement [Lesch et al., 2005, Finke et al., 1998, Kim et al., 2006].

Given a value of Kappa, how can we judge if it represents sufficiently good agreement?
In other words, is there a benchmark for interpreting the obtained values of Kappa? Un-
fortunately, there is no absolute answer and a benchmark of “good agreement” is typically
arbitrary. Because Kappa has been so widely adopted (from social sciences to medical
domain), the accepted “good agreement” benchmark varies considerably. An interesting
compilation of different benchmarks for Kappa is presented by Emam [1999]. An ac-
ceptable level of agreement depends only on the specific target task. Generally speaking,

13

researchers in the natural language processing community agree that Kappa values higher
than 0.8 represent substantial and reliable agreement, while values between 0.67 and 0.8
can still be considered acceptable depending on the particular task.

In addition to inter-annotator agreement, in this thesis we also used Kappa as a metric
for classification tasks. Classification error rate is typically a poor measure of performance
for skewed classes, since low error rates can be obtained by simply guessing the majority
class. Kappa controls for this, since in a highly a skewed class, randomly guessing classes
according to the frequency of each class is very similar to always guessing the majority
class; thusR in the formula will be very close to 1.0. As we show later, empirically Kappa
measurements on our datasets were usually closely correlated to the more widely used
F1-measure.

2.5 Classifying Email into Acts

In this section we addressed the problem of how to automatically classify an email mes-
sage into acts. We began with a cleaning procedure on the original datasets. All messages
were preprocessed by removing quoted material, attachments, and non-subject header in-
formation. This preprocessing was performed manually, but was limited to operations
which can be reliably automated. In addition, signature files and quoted text from previ-
ous messages were removed from all messages using an automated technique described
elsewhere [Carvalho and Cohen, 2004].

After cleaning, we extracted all single tokens as features from the emails and rep-
resented each message as a “bag-of-features”. In our initial experiments, we fixed the
document representation to be unweighted word frequency counts and varied the learning
algorithm. In these experiments, we pooled all the data from the four corpora, a total of
9602 features in the 1357 messages, and since the nouns and verbs are not mutually ex-
clusive, we formulated the task as a set of several binary classification problems, one for
each verb.

The following learning algorithms were considered. VPerceptron is an implementa-
tion of the voted perceptron algorithm [Freund and Schapire, 1999] in averaging mode.
DTree is a simple decision tree learning system, which learns trees of depth at most five.
AdaBoost is an implementation of the confidence-rated boosting method described by
Schapire and Singer [1999], used to boost the DTree algorithm 10 times. SVM is a sup-
port vector machine with a linear kernel3.

3We used the LIBSVM implementation Chang and Lin [2001] with default parameters.

14

Table 2.4 reports the classification error rates and F1 measures for some of the most
common verbs, using a 5-fold cross-validation split over all labeled messages. Here F1 is
the harmonic precision-recall mean, defined asF1 = 2×Precision×Recall

Recall+Precision
.

Act VPerceptron AdaBoost SVM DTree

Request Error 0.25 0.22 0.23 0.20
F1 0.58 0.65 0.64 0.69

Propose Error 0.11 0.12 0.12 0.10
F1 0.19 0.26 0.34 0.13

Deliver Error 0.26 0.28 0.27 0.30
F1 0.80 0.78 0.78 0.76

Commit Error 0.15 0.14 0.17 0.15
F1 0.21 0.44 0.47 0.11

Directive Error 0.25 0.23 0.23 0.19
F1 0.72 0.73 0.73 0.78

Commissive Error 0.23 0.23 0.24 0.22
F1 0.84 0.84 0.83 0.85

Meet Error 0.18 0.17 0.14 0.18
F1 0.57 0.62 0.72 0.60

Table 2.4: Classification Results in a 5-fold Cross-validation Experiment for Different
Learners and Acts

Overall, the SVM learner presented consistently good performance over all acts, and
will be considered as baseline henceforth. One surprise was that DTree (which we had
intended merely as a base learner for AdaBoost) works surprisingly well for some acts —
indicating that some acts may have a few highly discriminative features. For instance, for
Requests, the feature “?” is considerably more discriminative than most other features.

2.6 Collective Classification of Email Acts

Previously we have considered email act classification as a task similar to traditional text
classification — with methods that used features based only on the content of the mes-
sage. However, it seems reasonable that thecontextof a message in a thread can also be
informative.

Specifically, in a sequence of messages, the intent of a reply to a message M will

15

be related to the intent of M: for instance, an email containing aRequestfor a Meeting
might well be answered by an email thatCommitsto aMeeting. More generally, because
negotiations are inherently sequential, one would expect strong sequential correlation in
the email acts associated with a thread of task-related email messages, and one might hope
that exploiting this sequential correlation among email messages in the same thread would
improve email act classification.

The sequential aspects of work-related interactions and negotiations have been investi-
gated by many previous researchers [Murakoshi et al., 2000, Schoop, 2003]. For example,
Winograd and Flores [1986] proposed the highly influential idea ofaction-oriented con-
versationsbased on a particular taxonomy of linguistic acts; an illustration of one of their
structures can be seen in Figure 2.2. However, it is not immediately obvious to what extent
prior models of negotiation apply to email. One problem is that email is non-synchronous,
so multiple acts are often embedded in a single email. Another problem is that email can
be used to actuallyperformcertain acts—notably, acts that require the delivery of files or
information—as well as being a medium for negotiation. In our previous work, we also
noted that certain speech acts that are theoretically possible are either extremely rare or
absent, at least in the corpora we analyzed. In short, it cannot be taken for granted that
prior linguistic theories apply directly to email.

Figure 2.2: Diagram of a “Conversation for Action” Structure from Winograd & Flores
[1986]

In this section we studied the use of the sequential information contained in email
threads, and more specifically, whether it could improve performance for email act clas-
sification. We first showed that sequential correlations do exist; further, that they can be

16

encoded as “relational features”, and used to predict the intent of email messageswithout
using textual features. We then combined these relational features with textual features,
using an iterative collective classification procedure. We showed that this procedure pro-
duces a consistent improvement on some, but not all, email acts.

Dataset Recall that the majority of messages in the CSpace corpus (see Section 2.3)
were exchanged with members of the same team, and accordingly, we partitioned the
corpus into subsets according to the teams for many of the experiments. The 1F3 team
dataset has 351 messages total, while the 2F2 team has 341, and the 3F2 team has 443. In
the experiments below, we considered only the subset of messages that were in threads (as
defined by the reply-To field of the email message), which reduced our actual dataset to
249 emails from 3F2, 170 from 1F3, and 137 from 2F2.

More precisely, all messages in the originalCSpacedatabase of monitored email mes-
sages contained aparentIDfield, indicating the identity of the message to which the cur-
rent one is a reply. Using this information, we generated a list of children messages (or
messages generated in-reply-to this one) to every message. A thread thus consists of a root
message and all descendent messages, and in general has the form of a tree, rather than a
linear sequence. However, the majority of the threads are short, containing 2 or 3 emails,
and most messages have at most one child.

Compared to common datasets used in the relational learning literature, such as IMBd,
WebKB or Cora [Neville and Jensen, 2000], our dataset has a much smaller amount of
linkage. A message is linked only to its children and its parent, and there are no relation-
ships between two different threads, or among messages belonging to different threads.
However, the relatively small amount of linkage simplified one technical issue in perform-
ing experiments with relational learning techniques: ensuring that all test set instances are
unrelated to the training set instances. In most of our experiments, we split messages into
training and testing sets by teams. Since each of the teams worked largely in isolation
from the others, most of their relational information is contained in the same subset.

2.6.1 Evidence for Sequential Correlation of Email Acts

The sequential nature of email acts is illustrated by the regularities that exist between the
acts associated with a message, and the acts associated with its children. The transition
diagram in Figure 2.3 was obtained by computing, for the four most frequent verbs, the
probability of the next message’s email act given the current message’s act over all four
datasets. In other words, an arc from A to B wit h labelp indicates thatp is the probability

17

over all messages M that some child of M has label B, given than M has label A. It is
important to notice that an email message may have one or more email acts associated
with it. A Request, for instance, may be followed by a message that contains aDeliverand
also aCommit. Therefore, the transition diagram in Figure 2.3 is not a probabilistic DFA.

Figure 2.3: Transition Diagram for the four most common specific verbs.

Deliver and Requestare the most frequent acts, and they are also closely coupled.
Perhaps due to the asynchronous nature of email and the relatively high frequency of
Deliver, there is a tendency for almost anything to be followed by aDeliver message;
however,Deliver is especially common afterRequestor anotherDeliver. In contrast, a
Commitis most probable after aProposeor anotherCommit, which agrees with intuitive
and theoretical ideas of a negotiation sequence. (Recall that an email thread may involve
several people in an activity, all of whom may need to commit to a joint action.) APropose
is unlikely to follow anything, as they usually initiate a thread.

Very roughly one can view the graph above as encapsulating three likely types of
verb sequences, which could be described with the regular expressions (Request, De-
liver+),(Propose, Commit+, Deliver+), and (Propose, Deliver+).

18

2.6.2 Predicting Acts from Surrounding Acts

As another test of the degree of sequential correlation in the data, we considered the prob-
lem of predicting email acts using other acts in the same thread as features. We represented
each message with the set ofrelational featuresshown in Table 2.6.2: for instance, the fea-
tureParentRequestis true if the parent of contains a request; the featureChild Directive
is true if the first4 child of a message contains aDirectivespeech act.

Parent Features Child Features

ParentRequest Child Request
ParentDeliver Child Deliver
ParentCommit Child Commit
ParentPropose Child Propose
ParentDirective Child Directive
ParentCommissive Child Commissive
ParentMeeting Child Meeting
ParentdData Child dData

Table 2.5: Set of Relational Features

We performed the following experiment with these features. We trained eight different
maximum entropy [Berger et al., 1996] classifiers5, one for each email act, using only the
features from Table 2.6.2. (The implementation of the Maximum Entropy classifier was
based on the Minorthird toolkit [Cohen, 2004b]; it uses limited-memory quasi-Newton
optimization [Sha and Pereira, 2003] and a Gaussian prior.) The classifiers were then
evaluated on a different dataset. Figure 2.4 illustrates results using 3F2 as training set and
1F3 as test set, measured in terms of the Kappa statistic. Recall that a Kappa value of zero
indicates random agreement, so the results of Figure 4 indicate that there is predictive value
in these features. For comparison, we also show the Kappa value of a maximum-entropy
classifier using only “content” (bag-of-words features).

Notice that in order to compute the features for a message M, and therefore evaluate the
classifiers that predict the email acts, it is necessary to know what email acts are contained
in the surrounding messages. This circularity means that the experiment above does not

4The majority of the messages having children have only child, so instead of using features from all
children messages, we consider only features from the first child. This restriction makes no significant
difference in the results.

5One of the reasons to use maximum entropy classifiers is that they output a measure that can directly
translated into probability confidence estimates.

19

Figure 2.4: Kappa Values on 1F3 using Relational (Context) features and Textual (Con-
tent) features.

suggest a practically useful classification method—although it does help confirm the intu-
ition that there is useful information in the sequence of classes observed in a thread. Also,
it is still possible that the information derivable from the relational features is redundant
with the information available in the text of the message; if so, then adding label-sequence
information may not improve the overall email act classification performance. In the next
section we consider combining the relational and text features in a practically useful clas-
sification scheme.

2.6.3 Collective Classification Algorithm

In order to construct a practically useful classifier that combines the relational “context”
features with the textual “content” features used in traditional bag-of-words text classifi-

20

cation, it is necessary to break the cyclic dependency between the email acts in a message
and the email acts in its parent and children messages. Such a scheme can not classify each
message independently: instead classes must be simultaneously assigned to all messages
in a thread.

Suchcollective classificationmethods, applied to relationally-linked collections of
data, have been an active area of research for several years, and several schemes have been
proposed. For instance, using an iterative procedure on a web page dataset, Chakrabarti
et al. [1998] achieved significant improvements in performance compared a non-relational
baseline. In a dataset of corporate information, Neville and Jensen [2000] used an iterative
classification algorithm that updates the test set inferences based on classifier confidence.
A nice overview on different algorithms for collective classification along with empirical
comparisons can be found in Sen et al. [2008].

The scheme we use is dictated by the characteristics of the problem. Although se-
quential algorithms are known to work well for classification in linear chain structures
[Lafferty et al., 2001, McCallum et al., 2000], these are not appropriate here because they
can only assign a single label to each message in the sequence. In our problem every mes-
sage has multiple binary labels to assign, all of which are potentially interrelated. Further,
although here we consider only parent-child relations implied by the reply-To field, the re-
lational connections between messages are potentially quite rich—for example, it might be
plausible to establish connections between messages based on social network connections
between recipients as well. We thus adopted a fairly powerful model, based on iteratively
re-assigning email act labels through a process of statistical relaxation.

Initially, we train eight maximum entropy classifiers (one for each act) from a training
set. The features used for training are the words on the email body, the words in the email
subject, and the relational features listed in Table 2.6.2. These eight classifiers will be
referred to aslocal classifiers.

The inference procedure used to assign email act label with these classifiers is as fol-
lows. We begin by initializing the eight classes of each message randomly (or according
to some other heuristic, as detailed below). We then perform this step iteratively: for each
message we infer, using the local classifiers, the prediction confidence of each one of the
eight email acts, given the current labeling of the messages in the thread. (Recall that com-
puting the relational features requires knowing the “context” of the message, represented
by the email act labels of its parent and child messages.) If, for a specific act, the con-
fidence is larger than aconfidence thresholdθ, we accept (update) the act with the label
suggested by the local classifier. Otherwise, no updates are made, and the message keeps
its previous act.

21

The confidence thresholdθ decreases linearly with the iteration number. Therefore, in
the first iteration (j = 0),θ will be 100% and no classes will be updated at all, but after
the 50th iteration,θ will be set to 50%, and all messages will be updated. This policy first
updates the acts that can be predicted with high confidence, and delays the low confidence
classifications to the end of the process.

The algorithm is summarized in Table 2.6. The iterative collective classification algo-
rithm proposed is in fact an implementation of a Dependency Network (DN) [Heckerman
et al., 2000]. Dependency networks are probabilistic graphical models in which the full
joint distribution of the network is approximated with a set of conditional distributions
that can be learned independently. The conditional probability distributions in a DN are
calculated for each node given its parent nodes (itsMarkov blanket). In our case, the nodes
are the messages in an email thread, and the Markov blanket is the parent message and the
child messages. The confidence threshold represents a temperature-sensitive, annealing
variant of Gibbs sampling [Geman and Geman, 1984]; after the first 50 iterations, it re-
verts to “pure” Gibbs sampling. In our experiment below, instead of initializing the test set
with random email act classes, we always used a maximum entropy classifier previously
trained only with the bag-of-words from a different dataset, and the number of iterations
T was set to 60, ensuring 10 iterations of pure Gibbs sampling6.

2.6.4 Experiments

Initial Experiments

Initial experiments used for development were performed using 3F2 as the training set
and 1F3 as the test set. Results of these experiments can be found in Table 2.7 in terms of
Kappa (κ) and F1 metrics. The leftmost part of Table 2.7 presents the results for when only
the bag-of-words features are used. The second part of Table 2.7 shows the performance
when training and testing steps use bag-of-words features as well as thetrue labels of
neighboring messages (yellow bars in Figure 2.4). It reflects the maximum gain that could
be granted by using the relational features; therefore, it gives as an “upper bound” of what
we should expect from the iterative algorithm.∆κ indicates relative improvements in
Kappa over the baseline bag-of-words method.

For theDeliver act, this “upper bound” is negative: in other words, the presence of
the relational features degrades the performance of the bag-of-words maximum entropy
classifier, even when one assumes the classes of all other messages in a thread are known.

6Larger values of T did not produce any performance difference in our experiments.

22

Table 2.6: Collective Classification Algorithm.

1. For each of the 8 email acts, build a local classifierLCact from the training set.

2. Initialize the test set with email act classes based on a content-only classifier.

3. For each iteration j=0 to T:

(a) Update Confidence Threshold(%)θ = 100− j;

(b) If (θ < 50), makeθ = 50;

(c) For every email msg in test set:

i. For each email act class:

• obtainconfidence(act, msg) from LCact(msg)
• if (confidence(act,msg) > θ), update email act of msg

(d) Calculate performance on this iteration.

4. Output final inferences and calculate final performance.

train: 3f2 Bag-of-words Bag-of-words + Bag-of-words + Bag-of-words +
test: 1f3 only True Relational Labels Estimated Relational Estimated Relational

(baseline) (Upper Bound) Labels Labels + Iterative
F1 κ F1 κ ∆κ F1 κ ∆κ F1 κ ∆κ

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Request 63.49 43.87 65.00 47.06 7.27 62.29 42.65 -2.78 63.93 45.14 2.89
Deliver 77.08 47.47 74.07 41.67 -12.22 70.65 36.03 -24.10 71.27 35.78 -24.63
Commit 36.66 23.16 44.44 34.37 48.40 41.50 31.25 34.93 44.06 32.42 39.98
Propose 46.87 34.68 46.66 35.25 1.64 40.67 28.26 -18.51 45.61 34.66 -0.06
Directive 73.62 43.63 76.50 49.50 13.45 76.08 48.34 10.80 75.82 48.32 10.75
Commissive 77.47 35.19 81.41 44.58 26.68 80.00 43.47 23.53 82.96 47.83 35.92
Meeting 65.18 42.26 68.57 46.60 10.27 67.64 46.07 9.02 69.11 48.52 14.81
dData 41.66 37.76 41.66 37.76 0.00 41.66 37.76 0.00 43.47 40.04 6.04

Table 2.7: Email acts Classification Performance on 1f3 Dataset

The third part of Table 2.7 presents the performance of the system if the test set used
the estimated labels (instead of the true labels). Equivalently, it represents the performance
of the iterative algorithm on its first iteration. The rightmost part of Table 2.7 shows the
performance obtained at the end of the iterative procedure. For every act, Kappa improves

23

as a result of following the iterative procedure. Relative to the bag-of-words baseline,
Kappa is improved for all but two acts,Deliver (which is again degraded in performance)
and Propose(which is essentially unchanged.) The highest performance gains are for
CommitandCommissive.

Figure 2.5 illustrates the performance of three representative email acts as the iterative
procedure runs. In these curves we can see that two acts (CommissiveandRequest) have
their performance improved considerably as the number of iteration increases. Another
act,Deliver, has a slight deterioration in performance.

Figure 2.5: Kappa versus iteration on 1F3, using classifiers trained on 3F2.

Leave-one-team-out Experiments

In the initial experiments described in the Section 2.6.4, data from team 3F2 was used as
the training set, and 1F3 was used to produce test data. As an additional test, data was
labeled for a fourth team, 4F4, which had 403 total messages and 165 threaded messages.
We then performed four additional experiments in which data from three teams was used
in training, and data from the fourth team was used for testing.

24

It should be emphasized that the choice to test on email from a team not seen in training
makes the prediction problem more difficult, as the different teams tend to adopt slightly
different styles of negotiation: for instance, proposals are more frequently used by some
groups than others. Higher levels of performance would be expected if we trained and
tested on an equivalent quantity of email generated by a single team.

Figure 2.6 shows a scatter plot, in which each point represents an email act, plotted so
that its Kappa value for the bag-of-words baseline is the x-axis position, and the Kappa for
the iterative procedure is the y-axis position. Thus points above the line y=x (the dotted
line in the figure) represent an improvement over the baseline. There are four points for
each email act: one for each test team in this “leave one team out” experiment.

As in the preliminary experiments, performance is usually improved. Importantly,
performance is improved for six of the eight email acts for the team 4F4, the data for
which was collectedafter all algorithm development was complete. Thus performance on
4F4 is a prospective test of the method.

Figure 2.6: Plot of baseline Kappa (x-axis) versus Kappa (%) after iterative collective
classification was performed. Points above the dotted line represent an improvement.

Further analysis suggests that the variations in performance of the iterative scheme are
determined largely by the specific email act involved.Commissive, Commit, andMeet

25

were improved most in the preliminary experiments, andProposalandDeliver were im-
proved least. The graph of Figure 2.7 shows that theCommissive, Commit, andMeetare
consistently improved by collective classification methods in the prospective tests as well.
However, performance on the remaining classes is sometimes degraded.

Finally, Figure 2.8 shows the same results, with the speech acts broken into two classes:
Deliver anddData, and all other classes. We note thatDeliver is a quite different type of
“speech act” from those normally considered in the literature, as it represents use of email
as a data-distribution tool, rather than as a medium for negotiation and communication.
Figure 2.3 also shows thatDeliver has a fairly high probability of occurring after any
speech act, unlike the other verbs. Based on these observations it is reasonable to conjec-
ture that sequential correlations might be different for delivery-related email acts than for
other email acts. Figure 2.8 shows that the collective classification method obtains a more
consistent improvement for non-delivery email acts.

Figure 2.7: Plot of baseline Kappa (x-axis) versus Kappa(%) after iterative collective clas-
sification was performed. Performance improvement by groups of email acts. Groups
were selected based on performance in the preliminary tests.

As a final summary of performance, Figure 2.9 shows, for each of the eight email acts,

26

Figure 2.8: Plot of baseline Kappa (x-axis) versus Kappa(%) after iterative collective clas-
sification was performed. Performance improvement for delivery-related and non-delivery
related email acts.

the Kappa value for each method, averaged across the four separate test sets. Consistent
with the more detailed analysis above, there is an average improvement in average Kappa
values for all the non-delivery related acts, but an average loss forDeliver anddData.

The improvement in average Kappa is statistically significant for the non-delivery re-
lated email acts (p=0.01on a two-tailed t-test); however, the improvement across all email
acts is not statistically significant (p=0.18).

The preceding T-test considers significance of the improvement treating the data of
Figure 2.9 as draws from a population of email act classification problems. One could
also take each act separately, and consider the four test values as draws from a popula-
tion of working teams. This allows one to test the significance of the improvement for a
particular email act—but unfortunately, one has only four samples with which to estimate
significance. With this test, the improvement in Commissive is significant with a two-
tailed test (p=0.01), and the improvement in Meeting is significant with a one-tailed test
(p=0.04). The improvement in Commit are not significant (p=0.06 on a one-tailed test).
In no case is a loss in performance statistically significant.

27

Figure 2.9: Kappa values with and without collective classification, averaged over the four
test sets in the leave-one-team-out experiment.

2.6.5 Discussion

The experiments above demonstrate that a collectively classifying email messages in a
thread can improve performance. The method showed improvements in performance for
some, but not all email act classes. On a four-fold cross validation test, performance
was statistically significantly improved forCommissiveacts, which includeCommitand
Deliver, and performance is very likely improved forMeetandCommit.

The consistent improvement ofMeet is encouraging, since in addition to recognizing
intention, it is also important to recognize the specific task to which an email “verb” is
relevant. Meeting arrangement is an easily-recognized task shared by all the teams in our
study, and hence theMeetemail “noun” served as a proxy for this sort of task-classification
problem.

28

Performance is not improved for two of the eight classes,DeliveranddData. It should
be noted that many emailRequestscould plausibly be followed by aCommit(e.g., “I’ll
have the budget ready by Friday”) or aDeliver (e.g., “I’m attaching the budget you asked
for”), and context clues do not predict which type of response will be forthcoming; this
may be why context is more useful for predictingCommissiveacts than the narrower class
Deliver. We also note that while the email act Deliver and its associated objectdDatado
model a frequent use of email, they are not suggested by prior theoretical models of nego-
tiation of speech acts. The performance improvement obtained by collective classification
is consistent, and statistically significant, across all “non-delivery” acts—i.e., across all
acts suggested by prior theory.

2.7 Linguistic Analysis

A more careful analysis of the feature set revealed that very important linguistic aspects
for speech act inference was linked to the sequence or textual context of the words. For
instance, the specific sequence of tokens “Can you give me” can be more informative to
detect aRequestact than the words “can”, “you”, “give” and “me” separately. Similarly,
the word sequence “I will call you” may be a much stronger indication of aCommitact
than the four words separately. More generally, because so many specific sequences of
words (or n-grams) are inherently associated with the intent of an email message, one
would expect that exploiting this linguistic aspect of the messages would improve email
act classification.

2.7.1 Preprocessing and N-gram Features

Before extracting the above mentioned n-gram features, a sequence of preprocessing steps
was applied to all email messages in order to emphasize the linguistic aspects of the prob-
lem. Some types of punctuation marks (“,;:.)(][”) were removed, as were extra spaces and
extra page breaks. We then perform some basic substitutions such as: from “’m” to “ am”,
from “’re” to “ are”, from “ ’ll ” to “ will ”, from “won’t” to “ will not”, from “doesn’t” to
“does not” and from “’d” to “ would”.

Any sequence of one or more numbers was replaced by the symbol “[number]”. The
pattern “[number]:[number]” was replaced with “[hour]”. The expressions “pm or am”
were replaced by “[pm]”. “ [wwhh]” denoted the words “why, where, who, whator when”.
The words “I, we, you, he, sheor they” were replaced by “[person]”. Days of the week
(“Monday, Tuesday, ...,Sunday”) and their short versions (i.e., “Mon, Tue, Wed, ...,Sun”)

29

were replaced by “[day]”. The words “after, beforeorduring” were replaced by “[aaafter]”.
The pronouns “me, her, him, usor them” were substituted by “[me]”. The typical filename
types “.doc, .xls, .txt, .pdf, .rtfand .ppt” were replaced by “.[filetype]”. A list with the
substitution patterns is illustrated in Table 2.8.

Symbol Pattern
[number] any sequence of numbers
[hour] [number]:[number]
[wwhh] “why, where, who, what, or when”
[day] the strings “Monday, Tuesday, ..., or Sunday”
[day] the strings “Mon, Tue, Wed, ..., or Sun”
[pm] the strings “P.M., PM, A.M. or AM”
[me] the pronouns “me, her, him, us or them”
[person] the pronouns “I, we, you, he, she or they”
[aaafter] the strings “after, before or during”
[filetype] the strings “.doc, .pdf, .ppt, .txt, or .xls”

Table 2.8: Pre-processing Substitution Patterns

For theCommitact only, references to the first person were removed from the symbol
[person] — i.e., [person] was used to replace “he, she or they”. The rationale is that n-
grams containing the pronoun “I” are typically among the most meaningful for this act, as
shall be detailed in the next paragraphs.

After preprocessing the 1716 email messages from the CSpace corpus, n-gram se-
quence features were extracted. Here n-gram features are all possible sequences of length
1 (unigrams or 1-gram), 2 (bigram or 2-gram), 3 (trigram or 3-gram), 4 (4-gram) and 5 (5-
gram) terms. After extracting all n-grams, the new dataset had more than 347,500 different
features.

It would be interesting to know which of these n-grams are the “most meaningful”
for each one of email speech acts. One possible way to accomplish this is using some
feature selection method. By computing the Information Gain scores [Forman, 2003, Yang
and Pedersen, 1997] of all features, we were able to rank the most “meaningful” n-gram
sequence for each speech act. The final rankings are illustrated in Tables 2.9 and 2.10.

Table 2.9 shows the most meaningful n-grams for theRequestact. The top features
clearly agree with the linguistic intuition behind the idea of aRequestemail act. This
agreement is present not only in the frequent 1-gram features, but also in the 2-grams,
3-grams, 4-grams and 5-grams. For instance, sentences such as “What do you think ?” or

30

“let me know what you ...” can be instantiations of the top two 5-grams, and are typically
used indicating a request in email communication.

Table 2.10 illustrates the top fifteen 4-grams for all email speech acts selected by In-
formation Gain. TheCommitact reflects the general idea of agreeing to do some task, or
to participate in some meeting. As we can see, the list with the top 4-grams reflects the
intuition of commitment very well. When accepting or committing to a task, it is usual
to write emails using “Tomorrow is good for me” or “I will put the document under your
door” or “I think I can finish this task by 7” or even “I will try to bring this tomorrow”. The
list even has some other interesting 4-grams that can be easily associated to very specific
commitment situations, such as “I will bring copies” and “I will be there”.

Another act in Table 2.10 that visibly agrees with its linguistic intuition isMeeting.
The 4-grams listed are usual constructions associated with either negotiating a meeting
time/location (“[day] at [hour] [pm]”) , agreeing to meet (“is good for[me]”) or describing
the goals of the meeting (“to go over the”).

1-gram 2-gram 3-gram

? do [person] [person] need to
please ? [person] [wwhh] do [person]
[wwhh] could[person] let [me] know
could [person] please would [person]
do ? thanks do [person] think
can are[person] are[person] meeting
of can[person] could[person] please
[me] need to do [person] need

4-gram 5-gram

[wwhh] do [person] think [wwhh] do [person] think ?
do [person] need to let [me] know [wwhh] [person]
and let[me] know a call[number]-[number]
call [number]-[number] give [me] a call[number]
would be able to please give give[me] a call
[person] think [person] need [person] would be able to
let [me] know [wwhh] take a look at it
do [person] think ? [person] think [person] need to

Table 2.9: Request Act:Top eight N-grams Selected by Information Gain.

The top features associated with thedDataact in Table 2.10 are also closely related to
its general intuition. Here the idea is delivering or requesting some data: a table inside the

31

Request Commit Meeting
[wwhh] do [person] think is good for[me] [day] at [hour] [pm]

do [person] need to is fine with[me] on [day] at [hour]
and let[me] know i will see [person] [person] can meet at

call [number]-[number] i think i can [person] meet at[hour]
would be able to i will put the will be in the

[person] think [person] need i will try to is good for[me]
let [me] know [wwhh] i will be there to meet at[hour]

do [person] think ? will look for [person] at [hour] in the
[person] need to get $[number] per person [person] will see[person]
? [person] need to am done with the meet at[hour] in

a copy of our at [hour] i will [number] at [hour] [pm]
do [person] have any [day] is fine with to go over the
[person] get a chance each of us will [person] will be in
[me] know [wwhh] i will bring copies let’s plan to meet
that would be great i will do the meet at[hour] [pm]

dData Propose Deliver
– forwarded message begins [person] would like to forwarded message begins here

forwarded message begins here would like to meet [number] [number] [number] [number]
is in my public please let[me] know is good for[me]

in my public directory to meet with[person] if [person] have any
[person] have placed the [person] meet at[hour] if fine with me

please take a look would [person] like to in my public directory
[day] [hour] [number] [number] [person] can meet tomorrow [person] will try to
[number] [day] [number] [hour] an hour or so is in my public

[date] [day] [number] [day] meet at[hour] in will be able to
in our game directory like to get together just wanted to let
in the etc directory [hour] [pm] in the [pm] in the lobby

the file name is [after] [hour] or [after] [person] will be able
is in our game [person] will be available please take a look

fyi – forwarded message think [person] can meet can meet in the
just put the file was hoping[person] could [day] at [hour] is

my public directory under do [person] want to in the commons at

Table 2.10: Top 4-grams features selected by Information Gain for six email acts

message, an attachment, a document, a report, a link to a file, a url, etc. And indeed, it
seems to be exactly the case in Table 2.10: some of the top 4-grams indicate the presence of
an attachment (e.g., “forwarded message begins here”), some features suggest the address
or link where a file can be found (e.g., “in my public directory” or “in the etc directory”),
some features request an action to access/read the data (e.g., “please take a look”) and
some features indicate the presence of data inside the email message, possibly formatted
as a table (e.g., “[date] [hour] [number] [number]” or “ [date] [day] [number] [day]”).

32

From Table 2.10, theProposeact seems closely related to theMeetingact. In fact, by
checking the labeled dataset, most of theProposals were associated withMeetings. Some
of the features that are not necessarily associated withMeetingare “ [person] would like
to”, “please let me know” and “was hoping[person] could”.

TheDeliver email speech act is associated with two large sets of actions: delivery of
data and delivery of information in general. Because of this generality, is not straight-
forward to list the most meaningful n-grams associated with this act. Table 2.10 shows a
variety of features that can be associated with aDeliver act. As we shall see in Section
2.7.2, theDeliver act has the highest error rate in the classification task.

In summary, selecting the top n-gram features via Information Gain showed a clear
agreement with the linguistic intuition behind the different email speech acts.

2.7.2 Experiments

Here we describe how the classification experiments on the email speech acts dataset were
carried out. Using all n-gram features, we performed 5-fold cross-validation tests over the
1716 email messages. Linear SVM was used as classifier. The results are illustrated in
Figure 2.10.

1g 1g+2g+3g ∆(Kappa)
+Preprocess %

Request 0.522 0.597 14.37
Commit 0.445 0.528 18.65
Deliver 0.442 0.540 22.17
Propose 0.325 0.325 0.00
Meeting 0.653 0.658 0.77
dData 0.627 0.716 14.19

Table 2.11: Kappa Values for Classifying Six Acts Before and After Using Preprocessing
and N-grams Features.

Figure 2.10 shows the test error rate of four different experiments (bars) for all email
acts. The first bar denotes the error rate obtained in a 5-fold crossvalidation experiment
with linear SVM as learning algorithm. This dataset had 1354 email messages, and only
1-gram features were extracted.

The second bar illustrates the error rate obtained using only 1-gram features with ad-

33

Figure 2.10: Error Rate on a 5-fold Cross-validation Experiment

ditional data. In this case, we used 1716 email messages. The third bar is the same as the
second bar (1-gram features with 1716 messages), with the difference that the emails went
through the preprocessing procedure previously described.

The fourth bar shows the error rate when all 1-gram, 2-gram and 3-gram features are
used and the 1716 messages go through the preprocessing procedure. The last bar illus-
trates the error rate when all n-gram features (i.e., 1g+2g+3g+4g+5g) are used in addition
to preprocessing in all 1716 messages.

In all acts, a consistent improvement in 1-gram performance is observed when more
data is added, i.e., a drop in error rate from the first to the second bar. A comparison
between the second and third bars reveals the extent to which preprocessing seems to help
classification based on 1-grams only. As we can see, no significant performance difference
can be observed: for most acts the relative difference is very small, and in one or maybe
two acts some small improvement can be noticed.

A much larger performance improvement can be seen between the fourth and third
bars. This reflects the power of the contextual features: using all 1-grams, 2-grams and
3-grams is considerably more powerful than using only 1-gram features. This significant

34

difference can be observed in all acts. Compared to the initial values from Section 2.5, we
observed a relative error rate drop of 24.7% in theRequestact, 33.3% in theCommitact,
23.7% for theDeliver act, 38.3% for theProposeact, 9.2% forMeetingand 29.1% in the
dDataact. In average, a relative improvement of 26.4% in error rate.

We also considered adding the 4-gram and 5-gram features to the best system. As pic-
tured in the last bar of Figure 2.10, this addition did not seem to improve the performance
and, in some cases, even a small increase in error rate was observed. We believe this was
caused by the insufficient amount of labeled data in these tests; and the 4-gram and 5-gram
features are likely to improve the performance of this system if more labeled data becomes
available.

Similar conclusions can be reached based other metrics. Table 2.11 shows Kappa
values for the same 5-fold crossvalidation experiments. Using all 1716 messages, Table
2.11 compares performance for two feature sets: the1g feature set with no preprocessing
and the1g+2g+3g+Preprocessfeature set (i.e., 1g, 2g and 3g features and preprocessing
step). Results show large improvements in performance for most acts, with an average
gain of 11.69% in Kappa values, although in some cases there was small or no gains in
Kappa associated with n-grams and preprocessing steps.

Precision versus recall curves of theRequestact classification task are illustrated
in Figure 2.11. The curve on the top shows theRequestact performance when the
1g+2g+3g+Preprocessfeature set is applied. For the bottom curve, only1g features
were used. These two curves correspond to the second bar (bottom curve) and forth bar
(top curve) in Figure 2.10. Figure 2.11 clearly shows that both recall and precision are
improved by using the contextual features for this act.

To summarize, these results confirm the intuition that contextual information (n-grams)
can be very effective in the task of email speech act classification. Using this n-gram based
representation in classification experiments, we obtained a relative average drop of 26.4%
in error rate when compared to the unigrams only. Also, ranking the most “meaning-
ful” n-grams based on Information Gain scores revealed a noticeable agreement with the
linguistic intuition behind the email speech acts.

35

Figure 2.11: Precision versus Recall on Request Act Classification

2.8 Related Work

2.8.1 Speech Act Theory

Interest in Speech Acts originated from the works of the philosopher J. L. Austin, in par-
ticular from his seminal bookHow To Do Things With Words[Austin, 1962]. Later other
important developments in Speech Act theory were introduced by Searle [1969, 1975].

The key idea in this theory is that an utterance in a dialog is a kind of action performed
by the utterance’s speaker. The intuition that an utterance is a kind of action becomes clear
with the following example. The utterance “I name this ship Queen Elizabeth”, uttered by
the right person, has the power to perform the action of naming a ship asQueen Elizabeth
— thus changing the state of world. In fact, verbs likenamein the example above are
typical examples ofperformativespeech actions.

According to Austin [1962], there are three different types of actions (or acts) that

36

an utterance can perform in a dialog in general:locutionaryacts,illocutionary acts and
perlocutionaryacts. Locutionary acts are related to the production and realization of utter-
ances (or locutions) – which are supposed to be recognized by someone who has knowl-
edge of grammar, lexicon, semantics and phonology of the utterance’s language. Illocu-
tionary acts are related to the purpose or intention of an utterance — for instance, the act
of asking for something, the act of answering, promising, refusing, confirming, etc. Per-
locutionary acts are related to the consequence of the hearer recognizing the locution and
the illocutionary point of the utterance.

Different types of acts usually co-exist in the same utterance. For instance, a single
utterance might have an illocutionary act of apologizing and at the same time a different
perlocutionary act (pleasing the hearer, for instance). In the shallow discourse literature,
the term speech act is typically used to describe illocutionary acts or illocutionary inten-
tions rather than either of the other two types of acts.

Another classification taxonomy of speech acts was later advocated by John R. Searle,
who suggested that all speech acts can be classified into one of these five categories [Searle,
1975]:

• Commissives: The speaker commits to a future course of action. For instance,
promising, planning, opposing, vowing, betting, etc.

• Assertives: committing the speaker to somethings being the case or expressing the
belief of the speaker in something. For instance, suggesting, putting forward, swear-
ing, boasting, concluding, etc.

• Directives: the speaker attempts to get the addressee to do something. For instance,
requesting, inviting, advising, asking, begging, etc.

• Expressives: expressing the speaker’s attitude or psychological state about a state of
affairs. For instance, apologizing, welcoming, thanking, etc.

• Declarations: the speaker brings about a different state of the world. For instance,
naming a ship, resigning to a position, etc.

The original ideas from Act Theory are still the most important influence on recent
work to automate shallow discourse parsing. Recent works have attempted to improve the
definition/understanding of acts or extending the notion of acts to fit specific applications
or to better model other conversational phenomena.

37

2.8.2 Dialog Act Tagging

Dialogue-based systems have become increasingly popular in recent years. Typically as-
sociated to some speech recognition system, these systems are used in answering questions
on weather or sports, assisting travelers with scheduling and maps, customer support, tu-
toring systems, etc.

Dialog act tagging has also been proposed to assist or improve other tasks. For in-
stance, some researchers have attempted to use the prediction of the next utterance’s act
to improve speech recognition performance [Stolcke et al., 2000, Paul et al., 1998]; other
have tried to use dialog act information to improve spoken translation systems [Levin et al.,
2003].

In most cases, the design of dialogue act taxonomies (or tagging schemes) is largely
influenced by the application or domain it is supposed to be used. For example, the
Verbmobil project was a very large research effort that ran over multiple years involv-
ing a large consortium of academic and industrial partners from different continents. The
Verbmobil system supported speech-to-speech translation among German, English, and
Japanese in three limited domains [Wahlster, 2000]. In one of its applications, for exam-
ple, [Buschbeck-Wolf et al., 1998] uses a relatively small set of approximately 30 tags
tailored to a specific application: machine translation of domain-limited telephone negoti-
ations.

As part of the Clarity project [Finke et al., 1998], Levin et al. [Levin et al., 1998]
proposed a 3-level taxonomy of discourse analysis to investigate discourse structures of
Spanish spoken language. The three levels were the Speech Act level, the dialogue game
level and the activity level defined within the topic units. The Speech Act level had eight
categories, and approximately 60 subcategories. In another example, Levin et al. [2003]
attempted to learn domain acts and speech acts from domain specific dialogues in the
NESPOLE project. The proposed approach used approximately 1000 domain actions and
70 speech acts.

Even though most taxonomies are inspired on the specific application, there has been
a few attempts to construct general-purpose tagging schemes. One of the most influential
one was the DAMSL (Dialog Act Markup in Several Layers) annotation scheme [Core
and Allen, 1997]. This scheme uses, for a single utterance, multiple layers to describe the
function of an utterance, which is called multidimensional dialog act tagging. Some of
the layers relating to functions are the Forward Communicative Function, the Backward
Communicative Functions and the Utterance Features.

DAMSL was developed as an annotation guideline for application-oriented conversa-

38

tions in general. DAMSL can also be extended to include application specific tags. Using
the Switchboard SWBD-DAMSL coding scheme, an extension of the DAMSL scheme,
Stolcke et al. [2000], Jurafsky et al. [1997] demonstrated that 42 tags can be automatically
recognized with reasonable accuracy.

A common observation in most tagging efforts is thatstatementsare typically the most
common dialog act in a real corpus7. Another important point is that, the larger the
taxonomy, the more likely it is to face sparsity in the tagged data. In other words,
when using very large taxonomies to tag a reasonably small amount of data, it is
expected that some acts will occur only a few times, or perhaps not occur at all.
The sparsity problem is a serious issue and should be taken into consideration when
designing a new dialogue taxonomy. In a more general framework, Traum [Traum,
2000] discusses several issues that are important to be addressed when creating a new
taxonomy of dialog acts.

2.8.3 Email Acts and Other Applications

Traditionally, the areas of Speech Recognition and Machine Translation have been respon-
sible for most of the applied research of tagging acts in dialogues. With the widespread
growth of the World Wide Web, dialogues in new types of media such as email are become
increasingly popular and bringing the attention of researchers into this new domain. The
attention is well justified. Email is the most popular communication application on the
internet — widely adopted for both work and personal communications.

Email exchange can indeed be seen as a dialogue, but there are some differences with
the traditional conversational dialogue. One particular difference is that there is no inter-
ruption in email. A message receiver can never interfere with (or interrupt) the message
composed by the sender. Another difference is that, in principle, email can be used with
no words at all — for instance, in messages carrying only an attached picture or file. Ad-
ditionally, unless email contents are segmented, the dialog act unit is not the same here as
in conversational dialogs. One single email message may contain many dialog acts, and
each one of these acts may be referring to different previous messages in the conversation
thread.

The use of Speech Acts in email has been proposed mostly for office automation.
Leusky [2004] used an SVM learner to predict 8 different speech acts in a collection of 500
messages. The goal was to use this information to automatically infer user’s roles based
solely on email patterns. Goldstein and Sabin [2006] attempted to learn another set of

7Indeed,Deliver was the most frequent act observed in the labeled email act datasets in Section 2.3.

39

email act categories and, in addition, to identify different genres in email communication.
Still for the domain of email communication, Lampert et al. [2006] propose a general set
of acts based on the VRM (Verbal Response Modes) taxonomy of speech acts.

Other applications have used ideas related to email acts. Khoussainov and Kushmerick
[2005] proposed an iterative algorithm that uses email speech act predictions to identify
tasks and uses task identification inference to improve the prediction of email speech acts.
In a closely related task, some researchers attempted to automatically detect action-items
from the contents of email messages [Corston-Oliver et al., 2004, Bennett and Carbonell,
2005].

By conducting an organizational survey, Dabbish et al. [2005] studied several factors
that can influence the user’s response to a particular incoming email message. One of
the variables considered was the message type (reminder, action request, social, etc.), a
concept closely related to email speech acts. Dredze et al. [2006] investigated two different
approaches to the problem of email activity classification, based on the contents of the
messages and on the people involved in a particular ongoing activity.

More recently, researchers have started to apply Dialog Act tagging to explore new
applications in the areas of Instant Messaging, Online Web Discussion Groups and Ques-
tion Answering. Feng et al. [2006] proposed a method to learn the “conversation focus” of
online threaded discussions using manually annotated speech acts. In this work conversa-
tional focus was defined as “the most informative or important message in a sequence for
the purpose of answering the initial question” and the authors claim that could potentially
be used in Question Answering systems. In a related paper, Kim et al. [2006] also used
speech act analysis in online discussions to infer participant specific roles that instructors
and students play.

Ivanovic [2005b] used Dialog Act tagging techniques on instant messaging dialogs.
Using 12 tags from the 42 used by Stolcke et al. [2000] and allowing more than one act
per message (i.e., a message may contain more than one utterance), he used a Naive Bayes
classifier to predict dialog acts with relatively good accuracy. Still using the same data
and taxonomy, Ivanovic attempted to automatically find utterance boundaries in IM (i.e.,
IM segmentation) for dialog act tagging [Ivanovic, 2005a] using two different methods, a
Hidden Markov Model and a parse-tree based method.

2.8.4 Segmentation

The tagging of utterances in terms of acts presupposes utterance segmentation, i.e., the
precise identification of the utterance boundaries. However, the utterance segmentation

40

task is a challenging task in itself and the solutions to this problem are not trivial. In
fact, a considerable body of work has been devoted to segmentation of utterances in the
speech community [Stevenson and Gaizauskas, 2000, Traum and Heeman, 1996] as well
as in other communities such as Natural Language Processing [Palmer and Hearst, 1994,
Mikheev, 2000, Reynar and Ratnaparkhi, 1997] and Machine Translation [Walker et al.,
2001, Lavie et al., 1996].

A common workaround is to use data previously segmented by human annotators.
Some researchers argue that it is the best way to isolate the segmentation problem from
the tagging problem, preventing errors from segmentation to propagate to the tagging task
[Stolcke et al., 2000, Lesch et al., 2005]. This solution is somewhat unrealistic since
perfectly pre-segmented utterances are not available in real world dialog systems. Some
few approaches try to integrate segmentation and tagging in the same model [Finke et al.,
1998].

Segmentation is a very important issue for email act tagging. For this domain there are
two major approaches: segment either at the sentence/paragraph level or at the message
level. An example of segmentation in the message level can be found in the work of Leusky
[2004], where the entire message is taken as a dialog unit, and therefore a single message
may contain multiple email acts. In sentence/paragraph level taggers the segmentation
occurs in the sentence/paragraph level, i.e., one act per sentence/paragraph [Bennett and
Carbonell, 2005, Corston-Oliver et al., 2004, Lampert et al., 2006]. These taggers typ-
ically require a segmentation preprocessing step to automatic detect sentence/paragraph
boundaries.

41

42

Chapter 3

Email Information Leaks

3.1 Introduction

On July 6th 2001, the news agency Bloomberg.com published an interesting article enti-
tled California Power-Buying Data Disclosed in Misdirected E-Mail1. An excerpt is
reproduced below:

“California Governor Gray Davis’s office released data on the state’s purchases in the
spot electricity market — information Davis has been trying to keep secret — through a
misdirected e-mail. The e-mail, containing data on California’s power purchases yester-
day, was intended for members of the governor’s staff, said Davis spokesman Steve Mav-
iglio. It was accidentally sent to some reporters on the office’s press list, he said. Davis is
fighting disclosure of state power purchases, saying it would compromise negotiations for
future contracts”.

This was a famous case of information leak via email, where a message was acciden-
tally sent to unintended recipients. This episode, however, was by no means an isolated
case. In fact, most regular email users have received such misdirected email messages,
often due to email clients that are overly aggressive at completing partial email addresses.

With the widespread use of email, it is reasonable to expect that an increasing number
of email users will experience similar situations — as a sender of an information leak or,
more frequently, as a recipient.

As the California Power-Buying example above indicates, unintentional email leaks

1In March 2008, the entire article could be found athttp://www.freerepublic.com/forum/
a3b4611e82dc0.htm

43

http://www.freerepublic.com/forum/a3b4611e82dc0.htm
http://www.freerepublic.com/forum/a3b4611e82dc0.htm

can be disastrous. They can lead to major negotiation setbacks, losses in market share and
financial burdens. Furthermore, when related to personal or corporate privacy policies,
an email leak can potentially be the cause of expensive lawsuits and irreparable brand
reputation damage. Even though it is not easy to estimate the amount of loss caused
by information leaks, one thing is for certain: such incidents should be avoided at all
costs. Here we present a new technique to prevent sending email messages to unintended
recipients. To the best of our knowledge, this is the first attempt to solve this critical
problem.

Here we approach this problem by casting it as anoutlier detectionproblem: i.e., we
model the messages sent to past recipients, and consider a (message,recipient) pair to be
a potential leak if the message is sufficiently different from past messages sent to that
recipient. This approach has the advantage that it can be easily implemented in an email
client—it does not use any information that is available to the server only.

To evaluate different approaches of this type, data is required. Since we do not have
access to a considerable number of real cases of unintentional email leaks, we created
artificial cases of unintended recipients in real-world email data. More specifically, we
simulated email leaks in the Enron Email corpus [Cohen, 2004a] using different plausi-
ble criteria. These criteria imitate realistic types of leaks, such as misspellings of email
addresses, typos, similar first/last names, etc.

On this benchmark data, we evaluated a number of leak-detection methods using as
features both textual and social network information from the messages, and then used
supervised learning techniques to predict email leaks. Evaluations show that our best
techniques can correctly identify the (synthetically-introduced) “leak recipient” in almost
82% of the messages. We also show that a variation of our method could successfully
handle two independent real cases of email leaks (unintended message recipients) in the
Enron corpus. This result shows that the proposed technique is effective, and has the
potential to prevent actual email leaks in realistic scenarios.

3.2 The Enron Dataset

Although email is ubiquitous, large, public and realistic email corpora are not easy to find.
The limited availability is largely due to privacy issues. For instance, in most US academic
institutions, a email collection can only be distributed to researchers if all senders of the
collection also provided explicit written consent.

In the experiments of this chapter we used the Enron Email Corpus, a large collection

44

of real email messages from managers and employees of the Enron Corporation. This col-
lection was originally made public by the Federal Energy Regulatory Commission during
the investigation of the Enron accounting fraud. We used the Enron collection to create a
number of simulated user email accounts and address books, as described below, on which
we conducted our experiments.

As expected, real email data have several inconsistencies. To help mitigate some of
these problems, we used the Enron dataset version compiled by Shetty and Adibi [Shetty
and Adibi, 2004], in which a large number of repeated messages were removed. This
version contains 252,759 messages from 151 employees distributed in approximately 3000
folders.

Another particularly important type of inconsistency in the corpus is the fact that a
single user may have multiple email addresses. We addressed part of these inconsisten-
cies by mapping between 32 original email address and the normalized email address for
some email users. This mapping (author-normalized-author.txt) was produced by Andres
Corrada-Emmanuel, and is currently available from the Enron Email webpage [Cohen,
2004a].

For each Enron user, we considered two distinct sets of messages: messages sent by the
user (thesent collection) and messages received by the user (thereceived collection). The
received collection contains all messages in which the user’s email address was included
in theTO, CC or BCCfields. The sent collection was sorted chronologically and then split
into two parts,senttrain andsenttest. Senttrain contains 90% of the messages sent by
the user, corresponding to the oldest ones. The most recent messages, 10% of the total
sent collection, were placed insenttest. The message counts for 20 target Enron users is
illustrated in Table 3.1.

This 90%/10% split was used to simulate a typical scenario in a user’s desktop —
where the user already has several sent and received messages, and the goal is to predict if
the next sent message will be an information leak. In order to make the received collection
consistent with this, we removed from it all messages that were more recent than the most
recent message insenttrain. The general time frames of the different email collections is
pictured in Figure 3.1.

We also simulated each user’s address book: for each Enron useru, we build an address
book setAB(u), which is a list with all email addresses that can be found in thereceived
andsenttrain collections of this user. More precisely, the list was constructed using in-
formation from both senttrain and received collections, but sent and received messages
are used in different ways. From the senttrain collection, we consider all email addresses
that were recipients of at least one message. From the received collection, only the email

45

Enron received sent train sent test
user
rapp 408 146 17
hernandez 792 1326 15
pereira 737 179 20
dickson 1263 198 22
lavorato 1930 361 41
hyatt 1797 566 63
germany 466 729 82
white 922 441 50
whitt 836 414 46
zufferli 324 314 35
campbell 1383 531 60
geaccone 889 396 44
hyvl 1246 650 73
giron 667 999 111
horton 964 426 48
derrick 1283 686 77
kaminski 1042 1097 122
hayslett 1590 706 79
corman 2274 686 77
kitchen 5681 876 98

Table 3.1: Number of Email Messages in the Different Collections.|AB| is the number of
entries in the user’s Address Book.

Figure 3.1: Time frames of different email collections.

address of the message senders is considered to be part of the address bookAB(u). I.e.,
the message recipients are not added toAB(u) because a received message is a com-
munication between its sender and all its recipients, and not among recipients—that is, a

46

particular recipient does not necessarily know the other recipients.

In all our experiments we represented the content of the messages with a “bag of
words”, where the counts of all tokens in a message were extracted and taken as fea-
ture weights. In this process, a small set of stop words2 was removed from the email body.
In addition, self-addressed messages with no other recipients were disregarded.

Only the first six Enron users (rapp, hernandez,. . . ,hyatt) were used during the devel-
opment of our methods. After all development and tuning were complete, the remaining
14 Enron users were added to the test collection as an evaluation set. As we will see,
performance is quite similar on the two collections of users.

3.3 Generating Synthetic Leaks

3.3.1 Leak Criteria

Accidental email leaks can happen in various situations. A typical case is when the mes-
sage is a reply to a previous message but not all previous recipients should be included.
Another common situation is when one of the intended recipients has a similar first name
(or surname, or email address) to another entry in the user’s contact list. The latter scenario
is particularly frequent when the email client uses aggressive auto-completion of addresses
and/or contact names.

To simulate the latter situation, we developed the following procedure to create leak-
recipients (or outliers)—i.e., the email addresses that are unintentionally included as a re-
cipient. We will assume that for the senttest messages, the recorded list of recipients were
all intended recipients, and that no other recipients were intended; thus leak-recipients
can be generated by simply adding some other recipient to the message. However, we
elected to simulate a certain plausible process for generating email leaks; specifically, we
elected to simulate the actions of an email client that provides the recipient in response to
an incompletely-specified email address. The procedure we used is illustrated in Table 3.2
and we refer to it as3g-addresshenceforth.

For a given message withn recipient addresses (i.e., the set of recipient addresses
A = {a1..an}), we randomly select one of the addressesai. We then consider the ad-
dressesAB(u) in the address book of the user, discard addresses inA, and search for

2about, all, am, an, and, are, as, at, be, been, but, by, can, cannot, did, do, does, doing, done, for, from,
had, has, have, having, if, in, is, it, its, of, on, that, the, they, these, this, those, to, too, want, wants, was,
what, which, will, with, would

47

other addresses that start with the same three three initial characters asai. For instance,
if ai=marina.carvalho@enron.com, we would return all email addresses in [AB(u) − A]
starting with the sequence of characters “mar”3. If the returned list is not empty, we ran-
domly select one of the addresses as the leak-recipient and finish the procedure; otherwise,
we find all addresses inAB(u) that cannot be found inA and start with the same two ini-
tial characters asai (i.e., the characters “ma”4). If this list is not empty, we randomly
choose one of the entries as the leak-recipient and end the procedure; otherwise, we find
all addresses inAB(u) that and cannot be found inA and start exactly the same initial
character ofai (i.e., the character “m”5). If this list is not empty, we randomly select one
of the entries as leak-recipient and finish the procedure; otherwise, we randomly select any
address fromAB(u) (that cannot be found inA) and return it.

Table 3.2: 3g-address, an Information Leak Heuristic

1. Input: Useru and set of user’s messagesM = {m1..mj}

2. Build user’s address book setAB(u)

3. For each messagemj in M :

(a) Randomly selectai from set of recipients addressesA in mj .

(b) Find setL3 (i.e., all addresses inAB(u)−A with the same three initial characters of
ai)

(c) If L3 6= ∅, randomly select leak-recipient fromL3

(d) Else

• Find setL2 (same asL3 but using the two first characters instead)

• If L2 6= ∅, randomly select leak-recipient fromL2
• Else

– Find setL1 (same asL1 but using only the first character only)

– If L1 6= ∅, randomly select leak-recipient fromL1
– Else, randomly select leak-recipient fromAB(u)−A

(e) Return the selected leak recipient

Even though the3g-addressis a reasonable criterion to simulate email information

3For instance,mary...,marco...,margaret...,marcia..., etc.
4For instance,matthew...,may...,manuel...,madaleine..., etc.
5For instance,melyssa...,michael...,monika...,morgan..., etc.

48

leaks, several other leak criteria could have been used. For instance, we could use a sim-
ilar 3g-address criterion for first names and/or last names; or even some string distance
similarity metric [Cohen et al., 2003]. Unfortunately the Enron dataset does not include
contact information (or address books) for most users; thus only a small percentage of the
email addresses could have the first and last names extracted. Because of this limitation,
we initially decided to apply only the 3g-address criterion when evaluating leaks in the
Enron dataset. Later we will consider a variation of this process as well.

Using a particular leak criterion, we are able to simulate artificial leaks on real data.
The idea is, for each message, to add a single leak-recipient to the list of recipients already
specified in the message. With large quantities of email messages having simulated email
leaks, the problem now becomes finding the most effective way to predict these unintended
(simulated) recipients.

3.4 Methods

3.4.1 Baselines: Using Textual Content

In this section we developed different techniques for the leak prediction problem based on
the textual contents of the messages. The main idea was to model the “recipient-message”
pairs, and then to predict the least likely pair as a leak-recipient. Predicting exactly one
pair to be a leak is a reasonable choice, since in our simulated data, each message contains
exactly one leak-recipient; however, all of the methods we describe actually produce a
ranking of all message recipients. We start by using only the previously sent messages
(senttrain collection) as training set.

Cosine Similarity

The first method was based on cosine similarity between two vector-based representa-
tions of email messages. Given a messageq from useru to a set of recipientsA ={
a1, a2...a|A|

}
, we derived the message’s TFIDF (Term Frequency Inverse Document Fre-

quency) vector representation
→

tfidf (q) from its textual contents and then normalized the
vector to length 1.0.

We also built a user model
→

M(ai) for each userai ∈ A. These models are produced
from the concatenation of all previous messages sent from useru to a particular recipient
ai. Specifically, we concatenated all previous messages sent fromu to ai and considered

49

it to be one single large document. Then
→

M(ai) is obtained by deriving a TFIDF vector
representation for this concatenated document, and normalizing this vector to 1.

We then computed the cosine similarities between the current message vector
→

tfidf (q)
and each one of the|A| concatenated user models. The recipient associated with smallest
similarity value is then predicted as leak-recipient, i.e.,

leak(q, A) = argmin
ai

cosine(
→

tfidf (q),
→

M(ai)). (3.1)

We refer to this method asCosine.

K Nearest Neighbors

The second baseline method was based on the K-Nearest Neighbors algorithm described
by Yang and Liu [1999]. Given a messageq from useru addressed to a set of recipients
A =

{
a1, a2...a|A|

}
, we findN(q): its K most similar messages (neighbors) in the training

set. The notion of similarity here is also defined as the cosine distance between the text of
two normalized TFIDF vectors.

With the topK most similar messages selected from the training set, we then computed
the weight of each recipientai according to the sum of similarity scores of the neighboring
messages in whichai was one of the recipients. After ranking all|A| recipients in the given
message according to this method, we selected the one with lowest score as the predicted
leak-recipient. I.e.,

leak(q, A) = argmin
ai

∑
doc∈N(q)

isRec(doc, ai) cos

(
→

tfidf (q),
→

tfidf (doc)

)
(3.2)

where theisRec function returns 1 ifai is a recipient of messagedoc, and zero otherwise.

Preliminary tests revealed that values ofK = 30 typically presented better perfor-
mance values. We refer to this method asKnn-30 (sent).

Baseline Results

Both methods above can handle received messages using a very simple modification: to
treat received messages as sent messages with a single recipient — the sender. In fact, this
is consistent with what we did to extract the address booksAB(u) in Section 3.3.1, where
we only added to the address book the message senders from the received collection. We

50

use the symbols(sent)or (sent+rcvd)to identify, respectively, the smaller (senttrain) and
the larger(senttrain + received) training sets.

The overall results in this section are shown in Table 3.3. This Table shows the experi-
mental results for each Enron user. The results are expressed in terms of Precision at rank 1
(or Prec@1), i.e., the average number of times (in N trials) that the predicted leak-recipient
is the actual leak-recipient. We usedN = 10 trials. On each trial, a completely new set of
leak-recipients is generated for the training and test sets, and the experiment is repeated.
The Randomcolumn shows the Prec@1 values when the leak is chosen randomly from
the recipient list.

From Table 3.3 we observe that, in average, the Cosine method had approximately the
same level of performance as the Knn-30 method. Another interesting point is that, com-
pared to the baseline Random, the gain obtained by using textual information is obvious,
but relatively modest. In two-tailed paired t-test, results from all methods are statistically
significant to theRandom. The difference between the Cosine method and Knn-30 is not
statistically significant. As we shall see in Section 3.4.2, much larger improvements in
performance can be obtained by using social network features. Also from Table 3.3, it
does not seem to make a lot of difference to add the received messages to the training set,
since the average performance barely changed.

3.4.2 Reranking with Social Network Information

So far we have considered only the textual contents of emails in the task of leak prediction.
Yet, it is reasonable to consider social network features for this problem, such as the num-
ber of received messages, number of sent messages, number of times two recipients were
copied in the same message, etc. In this section we describe how these network features
can be exploited to considerably improve performance on this problem.

In order to combine textual and social network features, we used a classification-based
scheme. The idea is to perform the leak prediction in two steps. In the first step we
calculate the textual similarity scores using a cross-validation procedure in the training
set. In the second step, we extract the network features and then we learn a function that
combines those with textual scores.

The textual scores are calculated in the following way. We split the training set (re-
ceived + senttrain collections) into 10 parts. Using a 10-fold cross-validation procedure,
we compute the Knn-30 scores on 10% of the messages using as training data the remain-
ing 90% of the data. In the end of this process, each training set examples will have,
associated with it, a list of email addresses (from the top 30 messages selected by Knn-30)

51

Enron Random Cosine Knn-30
user (sent) (sent) (s+r)
rapp 0.236 0.470 0.547 0.459
hernandez 0.349 0.226 0.247 0.353
pereira 0.459 0.490 0.450 0.465
dickson 0.462 0.627 0.641 0.659
lavorato 0.463 0.697 0.668 0.637
hyatt 0.400 0.488 0.533 0.586
germany 0.352 0.570 0.620 0.588
white 0.389 0.648 0.626 0.616
whitt 0.426 0.478 0.522 0.563
zufferli 0.479 0.628 0.654 0.697
campbell 0.385 0.454 0.422 0.451
geaccone 0.367 0.413 0.423 0.420
hyvl 0.455 0.523 0.467 0.436
giron 0.444 0.551 0.588 0.616
horton 0.460 0.646 0.604 0.615
derrick 0.454 0.784 0.758 0.668
kaminski 0.471 0.711 0.753 0.739
hayslett 0.304 0.547 0.561 0.551
corman 0.466 0.782 0.728 0.695
kitchen 0.300 0.424 0.379 0.415
Average 0.406 0.558 0.560 0.561

Table 3.3: Email Leak Prediction Results: Prec@1 in 10 trials.

and their predicted scores. Now we have an “outlier score” associated with each message
recipient in the training set. These scores will be used as features in the second step of the
classification procedure.

In addition to the textual scores, we used three different sets of social network features.
The first set is based on the relative frequency of a recipient’s email address in the training
set. For each recipient we extracted the normalized sent frequency (i.e., the number of
messages sent to this recipient divided by the total number of messages sent by this par-
ticular Enron user) and the normalized received frequency (i.e., the number of messages
received from this recipient divided by the total number of messages received by this par-
ticular Enron user). In addition, we used two binary features to indicate if no messages
were sent to a particular user, and if no messages were received from a particular user. We
refer to these features asFrequencyfeatures.

52

The second set of social network information is based on co-occurrence of recipients
on other messages in the training set. The intuition behind this feature is that we expect
leak-recipients to co-occur less frequently with the other recipients. Given a message
with three recipientsa1, a2 anda3, let the frequency of co-occurrence between recipients
a1 anda2 be F (a1, a2) (i.e., the number of messages in the training set that hada1 as
well asa2 as recipients). Then the relative co-occurrence frequency of usersa1, a2 and
a3 will be proportional to, respectively,F (a1, a2) + F (a1, a3), F (a2, a3) + F (a2, a1)
andF (a3, a1) + F (a3, a2): i.e., the relative co-occurrence frequency of each recipient
ai =

∑
j 6=i F (ai, aj). These values are then divided by their sum and normalized to one.

In case of two recipients only, the value of this feature is obviously 0.5 for each. No
features will be extracted if the message has only one recipient. We refer to this feature as
Coocurr features.

We will call the third set of network features theMax3g features. To explain this
feature set, we need to refer to Table 3.2 in the Leak Criteria Section. For each recipientaj

in a message, we return theL3 set. And from theL3 set we select the candidateam with
the highest score (score from the cross-validation procedure). We then use this highest
score minus the score ofaj as a feature. Since the scores are between 0 and 1, the final
value of this feature can be normalized asscore(aj)−score(am)+1

2
. The intuition behind it is

that leak-recipients are likely to have lower values for this feature, since their own scores
are likely to be lower than theirL3 highest score. Obviously, ifL3 is empty, theL2 set is
used; and if the latter is empty,L1 is used.

After the three sets of features are extracted, their values were discretized according
to the following thresholds: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005,
0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005 and 0.000001. The feature value is
then represented by all thresholds that are smaller than it. For example, if a feature B had
a value 0.0003, its representation after being discretized would be “B-0001, B-00005, B-
00001, B-000005, B-000001”. If the value of B were smaller than 0.000001 then an extra
feature would be generated (B-000001L). This discretization process was used to increase
the robustness of the learning algorithm.

We used the Voted Perceptron in averaging mode [Freund and Schapire, 1999, Car-
valho and Cohen, 2006b] as learning algorithm, as an example of a learning method which
is robust and effective, but efficient enough to be plausibly embedded in an email client.
It was trained using five passes through the same training data, and training examples
for each user’s leak-detection method were generated from the entire training collection
(senttrain + received) for the user. The learning proceeded in the following way. For each
message withJ recipients (where one of them is the leak-recipient), we createdJ exam-
ples: 1 negative example with the features associated with the leak-recipient andJ − 1

53

positive examples associated with the true recipients. The leak-recipient detection thus
becomes a binary classification problem.

Experimental results using textual and network features are illustrated in Table 3.4. For
comparison, the second column is the best text-only method from Table 3.3, i.e., Knn-30
using both sent and received messages. The third column shows the Prec@1 values of our
method using the cross-validation score in addition to the Frequency features. As we can
see, results are surprisingly good, with very large performance improvements. On average,
more than 80% of the test messages had their leak-recipients correctly predicted.

The fourth column reveals the performance of the cross-validation score in addition to
the Cooccur features. Again, a general improvement compared to the textual-only meth-
ods can be observed, and for some users results were even better than the “+Frequency”
column. However, in average results were not as good as using only the first set of network
features.

The fifth column shows results associated to the Max3g features. Compared to the two
previous feature sets, this is the least effective one, but still performing better than the best
textual-only baseline.

The sixth column illustrates the performance results when all three feature sets are
used in addition to the cross-validation scores. Again we observe very good results, better
on average than all other feature sets taken in isolation and obviously considerably better
than the best textual-only method. In average, this technique was able to detect the leak-
recipients in almost 82% of the messages — a very good result in itself. The last column
shows the relative gain in performance between the “All” column and the Knn-30 column.
Gains for all users were observed, include all of the 14 evaluation-set users. (Recall that
the method was fully developed and debugged on the first 6 users.) On average, the relative
gain was nearly 49%.

Compared to Knn-30 results, all variations of reranking presented statistically signif-
icant difference (p < 0.01) on a paired t-test. Additionally, all columns presented results
that are statistically significant (p < 0.01) when compared to the results in the previous
column, as indicated by the symbol∗ in Table 3.4. Results in the “+All” column are not
statistically significant to the ones in the “+Frequency” column.

Overall, Table 3.4 is a clear indication that the proposed method is very effective and
robust in detecting email leaks, significantly outperforming all baselines for 20 different
Enron users.

54

Enron Knn-30 CV-Scores ∆(%)
user (s+r) +Frequency +Cooccur +Max3g +All (to Knn-30)

rapp 0.459 0.706 0.747 0.635 0.788 71.796
hernandez 0.353 0.693 0.746 0.653 0.720 103.793
pereira 0.465 0.795 0.780 0.740 0.850 82.796
dickson 0.659 0.814 0.791 0.773 0.786 19.317
lavorato 0.637 0.898 0.773 0.754 0.910 42.922
hyatt 0.586 0.827 0.822 0.763 0.824 40.652
germany 0.588 0.659 0.621 0.594 0.665 13.240
white 0.616 0.832 0.776 0.672 0.812 31.823
whitt 0.563 0.867 0.782 0.741 0.889 57.922
zufferli 0.697 0.806 0.771 0.797 0.809 15.980
campbell 0.451 0.703 0.768 0.746 0.739 63.909
geaccone 0.420 0.782 0.609 0.661 0.789 87.583
hyvl 0.436 0.826 0.820 0.768 0.822 88.682
giron 0.616 0.831 0.744 0.673 0.858 39.176
horton 0.615 0.840 0.752 0.748 0.856 39.333
derrick 0.668 0.942 0.866 0.821 0.934 39.880
kaminski 0.739 0.902 0.921 0.938 0.902 22.068
hayslett 0.551 0.778 0.566 0.556 0.747 35.634
corman 0.695 0.910 0.779 0.788 0.912 31.203
kitchen 0.415 0.680 0.517 0.546 0.662 59.451
Average 0.561 0.804∗ 0.748∗ 0.718∗ 0.814∗ 49.358

Table 3.4: Email Leak Prediction Results: Prec@1 in 10 trials. The symbol∗ indicates a
statistically significant (p < 0.01) difference when compared to the results in the previous
column.

3.5 Finding Real Email Leaks

In previous sections we have presented promising results for the task of leak detection, but
they were all based on artificially constructed data. It is not clear if the technique will in
fact work for a real case of an email information leak.

To test this, we needed to find real leak cases and, as expected, this is not a trivial task.
We approached the problem by performing selecting messages containing the termssorry,
accidentor mistake6, and then manually screening the results. Messages containing these

6We were looking for sentences similar to “Sorry. Sent this to you by mistake. Please disregard.”, “I

55

terms tend to occur in the emails following a leak (typically in the same message thread),
after someone realized the mistake.

This strategy allowed us to discover several cases of real email leak in the corpus.
Unfortunately, most of these cases were originated by non-Enron email addresses or by an
Enron email address that is not one of the 151 Enron users whose messages were collected
— two situations in which our technique would not work, since it requires the collection
of sent and received messages of the sending user. Eventually, we were able to find two
distinct email leaks associated with two different users in the original 151 Enron user set.

The first case happened in message germany-c/sent/930, later confirmed by message
germany-c/alldocuments/1489. In this case, the email leak contains 20 recipients and the
leak corresponds to the address alex.perkins@enron.com. The second case is located in the
message kitchen-l/sentitems/497, and message kitchen-l/sentitems/495 can confirm it.
Message kitchen-l/sentitems/497 contains 44 recipients, and in this case the leak address
is rita.wynne@enron.com.

In order to detect these two leaks, we prepared the datasets in the same way as de-
scribed in Section 3.2. We assured that these two email leak messages were placed in
the senttest collection of the two users and then we applied the best classification-based
method on them. For this test, simulated leak-recipients were added to the training set,
but not to the two test messages. In the two test messages, we obviously considered,
respectively, alex.perkins@enron.com and rita.wynne@enron.com as the leak-recipients.
The training method is non-deterministic, since it includes cross-validation to compute the
textual similarity, so we ran 100 trails and report the average performance.

The results are indicated in second column (Original) of Table 3.5. In addition to
Prec@1, we also report Average Rank (AvgRank) as an evaluation metric. AvgRank is
defined as the average value of the rank in which the true leak-recipient was listed. The
minimum value of AvgRank is 1.0 (when all predictions are correctly ranked in position
1). Larger values of AvgRank indicate worse predictions.

Leak Classification-based Classification-based
case (Original) (Variation α = 0.2)
Germany-c [0.0, 3.7] [0.89, 1.11]
Kitchen-l [0.0, 10.9] [0.25, 2.50]

Table 3.5: Performance when Detecting Real Leak Cases. [Prec@1, Average Rank]

Performance was rather disappointing. Not only were the average ranks far from what

accidentally send you this reminder”, etc.

56

we would hope for in a practical system, and also the Precisions@1 were 0.0 in both cases.
In other words, the algorithm could not predict leaks correctly even once in 100 attempts.

This disappointing performance, when analyzed in detail, has a very simple explana-
tion. In both cases, the two real leaks (alex.perkins@enron.com and rita.wynne@enron.com)
were to recipients that had never been encountered in the previous messages, either in the
senttrain collection nor in the received collection. In contrast, recall that the simulated
leak-recipients in the training set are selected from the procedure in Table 3.2, i.e., only
email addresses from the Address Book can be selected as leak-recipients. Since email
addresses that were never observed before will never be selected as leak-recipients, it is
not surprising that the learning method cannot detect them. Clearly these email leaks did
not occur as a result of incorrect selection of an address-book value from an abbreviation,
as we assumed in our synthetic-data experiments.

Therefore, even though we believe the classification-based method proposed in Section
3.4.2 works well for predicting leaks associated with the plausible leak criteria explained
in Section 3.3.1, it is not suited to predict leaks of the sort illustrated by germany-c and
kitchen-l—i.e., leaks to email addresses not in a user’s address book. However, as we
describe below, a variation in the leak criteria can make the classification-based method
considerably robust to these types of leaks.

3.5.1 Sampling from Seen and Unseen Recipients

In order to make the classification-based algorithm handle unseen leak-recipients, we ap-
plied a very simple modification to the process of selecting artificial leak-recipients.

The idea can be stated in the following way: with probability1− α, the leak-recipient
will be selected according to the3g-addressleak criteria in Table 3.2; while with proba-
bility α it will be randomly selected from a distribution of random email addresses not in
the Address Book (i.e., sampling randomly from unseen email addresses).

With this small change, we created a variation of the original classification-based
algorithm that should be able to learn patterns associated with seen and unseen leak-
recipients. Larger values ofα are expected to predict unseen leak-recipients more fre-
quently, whereas smaller values ofα have the opposite effect (whenα = 0, we have the
original classification-based algorithm).

This effect can be observed in Figure 3.2. There, Precision@1 and average rank curves
are illustrated as a function ofα for the Germany-c leak case. Values ofα around 10%
indicate Precision@1 around 50%. Whenα = 0, we return to the original performance
values (first column of Table 3.5). Asα increases, the performance is consistently im-

57

Figure 3.2: Performance of Real Leak Case Germany-c For Different Probabilitiesα.

proved — for instance, Prec@1 is around 90% and Average Rank is about 1.11 forα close
to 20%.

The Kitchen-l curves in Figure 3.3 present a similar behavior — weaker performance
numbers for smallα values and better performance for larger values ofα. It is interesting
to notice that the maximum value of Precision@1 here is 0.25 and the maximum value of
Average Rank is 2.5. This happened because this particular message has 4 different unseen
email addresses (out of 44 recipients) and only one of these is the true leak. Therefore, the
best possible result for an algorithm which relies only on past email is to choose randomly
among the the four unseen addresses, i.e., to classify them as leaks with the same confi-
dence. This is exactly what happens case whenα ≥ 0.1, where the precision at 1 reaches
25%. For comparison, performance results of theα = 0.2 variation are also illustrated in
Table 3.5.

3.6 Leak Prediction Results

From Table 3.5 and Figures 3.2 and 3.3, it is clear that the proposed variation of the
classification-based method can handle unseen leak-recipients much better than the origi-
nal algorithm. However, it is not obvious how this modification affects the overall perfor-

58

Figure 3.3: Performance of Real Leak Cases Kitchen-l For Different Probabilitiesα.

mance for the task, i.e., the overall leak prediction performance in all 20 enron users.

We compare the original classification-based method (α = 0.0) to two of its variations
(α = 0.1 andα = 0.2) in Table 3.6. Generally speaking, the original method presents
better overall performance than its variations. As expected, it is easier to make leak pre-
dictions when unseen recipients are never considered leak-recipients. Also, asα values
increases, performance slightly deteriorates. Notice, however, that even the results of the

59

α = 0.2 variation are still better than all other baselines from Table 3.3. In Table 3.6,
differences in Precision@1 between any of the differentα values is statistically significant
in a paired t-test (p < 0.01). For average rank, the difference betweenα = 0.0 anα = 0.1
is statistically significant, but it is not significant forα = 0.1 anα = 0.2.

Enron α = 0.0 α = 0.1 α = 0.2
User Prec@1 AvgRank Prec@1 AvgRank Prec@1 AvgRank
rapp 0.788 1.471 0.753 1.458 0.747 1.459
hernandez 0.720 1.900 0.653 2.053 0.613 2.407
Pereira 0.850 1.235 0.790 1.430 0.765 1.360
dickson 0.786 1.214 0.700 1.300 0.718 1.282
lavorato 0.910 1.220 0.861 1.253 0.861 1.202
hyatt 0.824 1.202 0.792 1.244 0.770 1.265
germany 0.665 1.601 0.679 1.598 0.669 1.542
white 0.812 1.274 0.790 1.310 0.758 1.354
whitt 0.889 1.124 0.872 1.145 0.822 1.200
zufferli 0.809 1.194 0.797 1.211 0.769 1.249
campbell 0.739 1.385 0.678 1.549 0.671 1.536
geaccone 0.789 1.411 0.755 1.525 0.755 1.509
hyvl 0.822 1.196 0.795 1.223 0.773 1.245
giron 0.858 1.188 0.806 1.254 0.782 1.313
horton 0.856 1.265 0.785 1.456 0.767 1.565
derrick 0.934 1.074 0.921 1.112 0.896 1.170
kaminski 0.902 1.129 0.880 1.160 0.886 1.152
hayslett 0.747 1.794 0.719 1.832 0.725 1.834
corman 0.912 1.095 0.866 1.146 0.839 1.177
kitchen 0.662 3.156 0.584 3.305 0.621 2.911
Average 0.814 1.406 0.774 1.478 0.760 1.487

Table 3.6: Email Leak Prediction Results for Differentα Values

The proposed technique showed promising results in various tests so far. In reality, of
course, most messages do not contain leaks. Thus in a real email client implementation, it
would be necessary to extend our method to also determine if messages do or do not con-
tain leaks. For instance, we could use the prediction confidence of the learning algorithm
to decide whether or not the user should be warned of a potential leak, or use a secondary
classifier to decide whether or a message contains a leak. We have not yet explored this is-
sue. We note that user studies will probably be necessary to determine what level of “false
positive” predictions users will tolerate. Also, from a user’s point of view, the number of

60

false positive predictions might also be reduced not by machine learning methods, but by
applying additional heuristics to estimate the severity of a possible leak—e.g., in corporate
settings, the potential consequences might be worse for an email sent outside the company
than an email sent within the company.

3.7 Discussion and Related Work

We introduced the new problem of information leak prediction in email communication,
in which the goal is predicting unintended message recipients. With the widespread use
of email, the accidental inclusion of unintended recipients in emails has become increas-
ingly common. In many cases these mistakes can reveal sensitive or private information
— which in turn can potentially lead to terrible consequences such as financial losses,
brand damage and expensive law suits. In spite of its critical importance, this problem has
received very limited attention from the research community.

We addressed this critical problem as an outlier detection task, where the unintended
email addresses considered the outliers. Using simulated leak-recipients in combination
with real world email data (the Enron Email corpus), we were able to create large amounts
of labeled data — which in turn was used to learn typical outlier patterns. The simulated
leak-recipients were created by imitating typical cases of mistakes such as misspellings of
email addresses, typos, similar first/last names, etc. Using a combination of textual and
social network features, the model correctly predicted leak-recipients in almost 82% of the
test messages, a very promissing result. Additionally, we tested the effectiveness of our
approach in real cases of information leak — where a variation of the proposed method
was successful in predicting real information leaks from the Enron corpus.

The literature concerning privacy and email is very limited. Boufaden et al. [2005a]
proposed a privacy enforcement system in which information extraction techniques and
domain knowledge were combined to monitor specific privacy breaches via email in a
university environment. They were particularly concerned with the following types of
entity breaches: student names, student grades and student IDs. Using 205 manually
labeled emails and tailored ontologies, they were able to correctly predict leaks with an
F-score of 69.3%. Similar techniques could be used in conjunction with the methods
described here to detect email leaks that are particularly harmful from a privacy point of
view.

Lieberman and Miller [2007] introduced Facemail, an extension to a webmail system
that tries to prevent information leaks by automatically displaying pictures of the selected
recipients in a peripheral display while the message is under composition. Several alter-

61

natives for displaying these pictures were considered, and preliminary results from a user
study suggested that showing faces could “significantly improve users’ ability to detect
misdirected emails with only a brief glance”[Lieberman and Miller, 2007].

An attempt to detect email leaks in financial institutions was recently proposed [Kalyan
and Chandrasekaran, 2007]. Using mostly non-textual features such as the time in which
the message was sent, the type of attachment files (i.e., doc, pdf, etc.), size of the message,
presence of company or personal addresses in the CC field, etc., the authors claimed to
have correctly predicted 92% of the email leaks in a dataset with 554 messages and 70
leaks. Unfortunately, details on the dataset such as how the leaks were found, what exactly
was considered to be a leak or who labeled it, were not provided.

62

Chapter 4

Recommending Email Recipients

4.1 Introduction

The widespread adoption of email in the workplace is responsible for new issues affecting
work management and productivity. One of these problems is that email senders often
forget to address one or more intended recipients in their messages. This problem is usu-
ally more noticeable in large corporations, where workers interact with peers from various
divisions and departments.

To address this problem, in this chapter we proposed several methods ofrecipient
recommendation, i.e., the task of recommending persons who are potential recipients for a
message under composition given its current contents, its previously-specified recipients,
or a few initial letters of the intended recipient contact.

This task can be a valuable addition to email clients, particularly in large corporations,
where negotiations are frequently handled via email and the cost of errors in task man-
agement can be high. These intelligent message addressing techniques can prevent a user
from forgetting to add an important collaborator or manager as recipient, thus preventing
costly misunderstandings, communication delays and missed opportunities.

4.2 Evidence of Message Addressing Problems

In order to provide quantitative evidence, using a very large corpus, of how frequently
email users are subject to this type of message addressing problem, we focused on the
Enron Email collection [Cohen, 2004a] — a large, public and realistic email corpora with

63

approximately half a million messages from 150 Enron employees’ inboxes, as previously
explained in Section 3.2.

By sampling the Enron collection, one can easily find messages containing sen-
tences such as “Oops, I forgot to send it to Vince. I cc:ed him on this now, though”,
“Sorry....missed your name on the cc: list!!” or “Sorry, I should have copied you on this”.
These messages provided strong evidence that, in a previous message, the sender intended
to address someone but forgot to include this person as a recipient.

We conducted a thorough search over the entire Enron corpus, looking for messages
containing the termssorry, forgot or accident, and then manually filtered the results in
which apologetic messages revealed users forgetting to address intended recipients. We
found that at least 9.27% of the 150 Enron users have forgotten to add a desired email re-
cipient in at least one sent message, while at least 20.52% of these users were not included
as recipients (even though they were intended recipients) in at least one received message.

These numbers are certainly a lower bound on the real number of messages not going to
the intended recipients, since not all errors would be noticed by users and not all apologetic
emails would be found by our search. These surprisingly high numbers clearly suggest
that such problems can be very common in large organizations, and that email users can
benefit from an intelligent message addressing assistant that provides meaningful recipient
recommendation.

4.3 Data Preprocessing and Task Definition

We used the Enron Dataset corpus [Cohen, 2004a] to test and validate our methods, and
applied the same preprocessing steps described in Section 3.2.

We then utilized two possible settings for the recipient prediction task. The first setting
is called theTO+CC+BCCor primary prediction, where we attempt to predict all recipi-
ents of an email given its message contents. It relates to a scenario where the message is
composed, but no recipients have been added to the recipient list. The second setting is
calledCC+BCC or secondary prediction, in which message contents as well as the TO-
addresses were previously specified, and the task is to rank additional addresses for the
CC and BCC fields of the message. This setting relates to the scenario where the message
was composed and one or more recipients were already specified, but other recipients can
still be added to the recipient list.

We selected the 36 Enron users with the largest number of sent messages, and for
each user we chronologically sorted theirsent collection(i.e., all messages sent by this

64

particular user) and then split the collection in two parts: the oldest messages were placed
into senttrain and most recent ones intosenttest. Message counts statistics for the 36
Enron users are shown in Table 4.1. In addition,senttestcollection was selected to contain
at least 20 “valid-CC” messages, i.e., at least 20 messages with valid email addresses
in both TO and CC (or both TO and BCC) fields. This particular subset ofsenttest,
with approximately 20 “valid-CC” messages, is calledsenttest∗. The main idea is that
TO+CC+BCC prediction will be tested onsenttest, and the CC+BCC prediction will be
tested on thesenttest∗ collection (a subset ofsenttestin which all messages have a valid
CC or BCC address).

This chronological split was necessary to guarantee a minimum number of test mes-
sages for the secondary prediction task and to simulate a typical scenario in a user’s desk-
top — where the user already has several sent messages, and the goal is to predict the
recipients of the next sent messages. We also constructed, for each user, an address book
setAB which is the set of all recipient addresses in the user’ssenttrain collection, as
described above.

4.4 Models

In this section we described models and baselines for recipient prediction. For all models,
we used the following terminology. The symbolca refers tocandidate email address
and t refers toterms in documents or queries. The symboldoc refers todocumentsin
the training set, i.e., email messages previously sent by the same Enron user. Aqueryq
refers to a message in the test set, i.e., the message under composition. Both documents
and queries are modeled as distributions over (lowercased) terms found in the “body” and
subject of the respective email messages.

We also defined other useful functions. The number of times a termt occurs in a query
q or a documentdoc is, respectively,n(t, q) orn(t, doc). Therecipient functionRecip(doc)
returns the set of all recipients of messagedoc. Theassociation functiona(doc, ca) returns
1 if and only if ca is one of the recipients (TO, CC or BCC) of messagedoc, otherwise it
returns zero.D(ca) is defined as the set of training documents in whichca is a recipient,
i.e,D(ca) = {doc|a(doc, ca) = 1}.

65

|AB| sent train sent test sent test∗

campbell-l 386 505 86 21
derrick-j 179 539 224 21
dickson-s 36 99 121 20
geaccone-t 147 281 159 21
germany-c 520 3585 101 21
giron-d 179 591 519 20
grigsby-m 176 758 157 21
hayslett-r 342 759 26 20
horton-s 242 341 133 20
hyatt-k 218 520 109 21
hyvl-d 241 615 108 21
kaminski-v 311 1066 153 20
kitchen-l 599 1457 47 20
lavorato-j 106 223 179 20
lokay-m 135 568 76 20
rapp-b 58 105 58 21
ward-k 220 803 146 21
bass-e 164 1233 406 21
beck-s 1262 1479 112 20
blair-l 330 1062 37 20
cash-m 407 1138 73 20
clair-c 316 1775 52 20
farmer-d 178 587 390 21
fossum-d 320 1001 35 20
haedicke-m 496 1049 70 20
jones-t 869 4371 66 21
kean-s 546 2203 75 21
love-p 447 1490 83 21
perlingiere-d 509 2405 144 21
presto-k 344 996 83 21
sager-e 343 1434 90 20
sanders-r 663 1825 173 20
scott-s 720 1413 409 20
shackleton-s 742 4730 67 21
taylor-m 752 2345 176 20
tycholiz-b 93 250 259 20
Mean 377.67 1266.69 144.50 20.50
StDev 263.24 1099.05 116.79 0.69
Median 325 1025 109 20
Max 1262 4730 519 23
Min 36 99 26 19

Table 4.1: Number of Email Messages in the Different Collections of the 36 selected Enron
users. |AB| is the Address Book size, i.e., the number of different recipients that were
addressed in the messages of thesenttrain collection.Sent test∗ contains only messages
having valid addresses in both TO and CC fields.

4.4.1 Expert Search Model 1

Predicting recipients (candidates) of an email message under composition (query) is a very
similar task toExpert Search, the task of predicting experts (candidates) on a particular
topic (query) [Balog et al., 2006, Fang and Zhai, 2007, Macdonald, 2006]. The analogy

66

works so well that we can easily adapt many recently proposed Expert Search formal
models to the task of recipient prediction.

The first recipient prediction model considered here is theModel 1proposed for Expert
Search by Balog et al. [2006]. In this model, the final candidate ranking for each queryq is
given by the probability of this query being generated by a smoothed candidate language
modelθca. More specifically, each message term fromq is assumed to be independently
generated, thus:

p(q|θca) =
∏
t∈q

p(t|θca)
n(t,q) (4.1)

wherep(t|θca), the probability of termt being generated by a smoothed candidate lan-
guage modelθca. The distributionθca can be estimated from the empirical probability
p(t|ca) smoothed by the background term probabilities from the entire collectionp(t)
(i.e., maximum likelihood estimates of the terms in thesenttrain collection):

p(t|θca) = (1− λ)p(t|ca) + λp(t) (4.2)

whereλ is the Jelinek-Mercer smoothing parameter. The probability of a term given a
candidatep(t|ca) can be estimated as:

p(t|ca) =
∑
doc′

p(t|doc′)p(doc′|ca) (4.3)

wherep(t|doc) is the maximum likelihood estimate of the term in the documentdoc.

Therefore, the following final model for the probability of a queryq given a candidate
ca can be estimated as:

p(q|θca) =
∏
t∈q

{
(1− λ)

(∑
doc′

p(t|doc′)f(doc′, ca)

)
+ λp(t)

}n(t,q)

(4.4)

As a variation of the method above, one can use Bayes’ Rulep(doc|ca) =
p(ca|doc)p(doc)

p(ca)
∝ p(ca|doc)p(doc) to estimate Equation 4.3 asp(t|ca) ∝

∑
doc′ p(t|doc′)p(ca|doc′).

Denotingf(doc, ca) as eitherp(doc|ca) or p(ca|doc), we can then express the following
final model for the probability of a queryq given a candidateca:

p(q|θca) ∝
∏
t∈q

{
(1− λ)

(∑
doc′

p(t|doc′)f(doc′, ca)

)
+ λp(t)

}n(t,q)

(4.5)

67

where factorf(doc, ca) is the document-candidate association function which can be
estimated in two different ways [Balog et al., 2006]:

f(doc, ca) =

{
p(doc|ca) = a(doc,ca)P

doc′ a(doc′,ca)
, in document centric(DC) mode;

p(ca|doc) = a(doc,ca)P
ca′ a(doc,ca′)

, in user centric(UC) mode.
(4.6)

This model directly creates a candidate model for each candidate in a user’s address
book. This model is based on the term information contained on all previous messages
sent to the recipients. After representing each candidate as smoothed language models,
the recipientsca for a messageq under composition are recommended based on their
p(q|θca) probabilities.

4.4.2 Expert Search Model 2

The second recipient prediction model considered is theModel 2proposed by Balog et al.
[2006]. The basic difference toModel 1 is that candidates are not directly modeled. In-
stead, previous email messages (documents) act as hidden variables between candidates
and queries.

By summing over all document, one can express the probability of the query given the
candidate in two ways:

p(q|ca) =
∑
doc′

p(q|doc′)p(doc′|ca) (4.7)

in document-centric mode, or in candidate-centric mode as below:

p(q|ca) ∝
∑
doc′

p(q|doc′)p(ca|doc′) (4.8)

The probabilityp(q|doc) can be estimated via a smoothed document modelp(q|θdoc).
More specifically,

p(q|θd) =
∏
t∈q

p(t|θd)
n(t,q) (4.9)

where the probability of the termt given the document modelθdoc can be estimated as:

p(t|θdoc) = (1− λ)p(t|doc) + λp(t) (4.10)

68

whereλ, p(t|doc) andp(t) are defined in the same way as in Section 4.4.1. We can then
express the final candidate ranking for each queryq is given by the expression:

p(q|ca) =
∑
doc

{∏
t∈q

[(1− λ)p(t|doc) + λp(t)]n(t,q)

}
f(doc, ca) (4.11)

Similar toModel 1, the two possible views of the document-candidate functionf(doc, ca)
are defined according to equation 4.6.

Instead of creating user models, Model 2 directly creates a document model for each
message previously sent by the user. After representing document as smoothed language
models, the recipientsca for a messageq under composition are recommended based on
theirp(q|ca) estimates from equation 4.11.

4.4.3 TFIDF Classifier

The recipient recommendation problem can naturally be framed as a multi-class classifica-
tion problem, with each candidate addressca representing a class ranked by classification
confidence. Here we propose using the Rocchio algorithm with TFIDF [Joachims, 1997,
Salton and Buckley, 1988] weights as a baseline. For each candidate, a centroid vector-
based representation is created:

→
centroid(ca)=

α

|D(ca)|
∑

doc∈D(ca)

→
tfidf(doc) +

β

|sent train| − |D(ca)|
∑

doc/∈D(ca)

→
tfidf(doc)

(4.12)

where
→

tfidf(doc) is the TFIDF vector representation of messagedoc. More specifically, for
each termt in messagedoc, the valuetfidf(t) = log(n(t, doc) + 1)log(|sent train|

DF (t)
), where

DF (t) is the document frequency oft.

The final ranking score for each candidateca is produced by computing the cosine
similarity between the centroid vector and the TFIDF representation of the query, i.e.,

score(ca, q) = cosine

(
→

tfidf(q),
→

centroid(ca)

)
.

4.4.4 K-Nearest Neighbors

We also adapted another multi-class classification algorithm, K-Nearest Neighbors as de-
scribed by Yang & Liu [Yang and Liu, 1999], to the recipient prediction problem. Given

69

a queryq, the algorithm finds the setN(q), i.e., theK most similar messages (or neigh-
bors) in the training set. The notion of similarity here is also defined as the cosine distance

between the TF-IDF query vector
→

tfidf(q) and the TFIDF document vector
→

tfidf(doc).

The final ranking is computed as the weighted sum of the query-document similarities
(in which ca was a recipient):

score(ca, q) =
∑

doc∈N(q)

a(doc, ca)cosine

(
→

tfidf(q),
→

tfidf(doc)

)
(4.13)

4.4.5 Other Baselines: Frequency and Recency

For comparison, we also implemented two even simpler baseline models: one based on
the frequency of the candidates in the training set, and another based on recently sent
messages in the training set. The first method ranks candidates according to the number of
messages in the training set in which they were a recipient: in other words, for any query
q theFrequencymodel will present the following ranking of candidates:

frequency(ca) =
∑
doc

a(doc, ca) (4.14)

Compared toFrequency, the Recencymodel ranks candidates in a similar way, but
attributes more weight to recent messages according to an exponential decay function. In
other words, for any queryq theRecencymodel will present the following ranking:

recency(ca) =
∑
doc

a(ca, doc)e(
−timeRank(doc)

τ) (4.15)

wheretimeRank(doc) is the rank ofdoc in a chronologically sorted list of messages in
senttrain1. In the experiments below the parameterτ in Equation 4.15 was set to100,
thus emphasizing the 100 most recent messages.

4.4.6 Threading

Threading information is expected to be a very important piece of evidence for recipient
prediction tasks, but unfortunately it cannot be directly exploited here because the Enron

1The most recent message has rank 1, the second most recent message has rank 2, and so on.

70

dataset does not provide it explicitly. To approximately reconstruct message threads, we
used a simple heuristic based on the approach adopted by Klimt and Yang [2004].

For each test messageq, we construct a set with all messages on the same thread asq
(henceforthMTS(q), Message Thread Set) by searching for all messages satisfying two
conditions. First, the message is among the lastP messages sent previous toq. Second,
the message must have the same “subject” information2 asq. While small values ofP
may not be enough to find all previous messages on the same thread, larger values are
expected to introduce more noise in the thread reconstruction process. In preliminary
experiments, however, we observed that on average larger values ofP did not degrade
prediction performance, so only the second condition was imposed on the construction of
MTS(q).

In order to exploit thread information in all previously proposed models, we used the
following backoff-driven procedure:

threaded modeli(q) =

{
MTS model(q) if ‖MTS(q)‖ ≥ 1;
modeli(q) otherwise.

where

MTS model(q) =

{
1.0 , if ca ∈

⋃
d∈MTS(q) Recip(d);

0.0 , otherwise.

That is, ifq has no previous messages in its thread, predictions from the threaded version
of modeli will be made based on the original modelmodeli (for instance, Frequency, Knn,
TFIDF, Expert Model 1, etc.). Otherwise, if the thread ofq contains at least one message
(‖MTS(q)‖ ≥ 1), predictions are dictated byMTS model(q) — a model that assigns
weight 1.0 to all recipients found in the messages inMTS(q) and weight 0.0 to all other
candidates3.

4.5 Results

4.5.1 Initial results

In this section we present recipient prediction experiments using the models introduced
in Section 4.4. All those models can be naturally applied to both primary and secondary
recipient prediction tasks: the only difference is that, for obvious reasons, in the secondary

2Or subjects differing only in terms of reply-to (RE:) or forward (FWD:) markers.
3In all models, candidates with the same scores were ranked randomly.

71

prediction task, a post-processing step removes all TO-addresses from the final rank, and
the test set contains only messages having at least one CC or BCC address.

Similarly to Balog et al. [2006], in our experiments both Expert Model 1 and 2 used a
smoothing parameterλ = 0.5. The TFIDF Classifier model hadβ = 0, creating a centroid
of positive examples for each candidateca. We setK = 30 in the Knn Model andτ = 100
in the Recency model, the values that delivered the best results in preliminary tests for six
users.

Table 4.2 shows Mean Average Precision (MAP) [Baeza-Yates and Ribeiro-Neto,
1999] results for all models presented in Section 4.4.T-only refers toThread Only— the
prediction based only on detecting threads, i.e., if no thread is detected, candidates are
chosen randomly.Freq refers to the Frequency model, whileRecrefers to the Recency
model. The symbolTFIDF refers to the TFIDF Classifier model. Expert models one and
two are referred asM1 andM2, with the candidate-document association indicated by-uc
(user centric) or-dc (document centric).Threadrefers to models with thread processing
(Section 4.4.6). Two-tailed paired t-test were used for statistical significance tests.

TOCBCC CCBCC TOCCBCC CCBCC
(thread) (thread)

T-only 0.221** 0.261** N/A N/A
Freq 0.203** 0.228** 0.331** 0.379**
Rec 0.260** 0.309 0.363** 0.424*
M1-dc 0.279** 0.262** 0.393** 0.402**
M1-uc 0.275** 0.272** 0.385** 0.407**
M2-dc 0.279** 0.236** 0.384** 0.391**
M2-uc 0.313** 0.278** 0.408** 0.425**
TFIDF 0.365 0.301* 0.44 0.429*
Knn 0.361 0.332 0.441 0.459

Table 4.2: MAP recipient prediction results averaged over 36 users. Statistical significance
relative to the best model results (in bold) is indicated with the symbols∗∗ (p < 0.01) and
∗ (p < 0.05).

Results in Table 4.2 clearly indicate that the best recipient prediction performance is
typically reached by the Knn model, followed by TFIDF. It also reveals that Recency is
typically a stronger baseline for this task than the Frequency model. Overall, the expert
models M1 and M2 presented inferior results when compared to Knn, and the difference
was statistically significant. It is also interesting that the best Expert Search-based model
was consistently M2-uc, the same behavior observed by Balog et al. [2006] on the TREC-

72

2005 Expert Search task.

The use of thread information clearly provided considerable performance gains for
all models and tasks. These gains are somewhat expected because, in many cases, email
users are simply using the “reply-to” or “reply-all” buttons to select recipients. These im-
provements are consequently a strong indication that the thread reconstruction algorithm
is working reasonably well in this dataset and also the fact that a large proportion of the
test messages was found to have a non-empty Message Thread SetMTS(q). In fact, 29%
of the test messages in the primary prediction task had non-emptyMTS(q), while the
same number for secondary predictions was 35%.

To give a complete picture of the best results, Table 4.3 shows the Knn performance
metrics in terms of other common ranking metrics, such as Mean Reciprocal Rank (MRR),
R-Precision (R-Prec), and Precision at Rank 5 and 10 (P@5 and P@10) [Baeza-Yates and
Ribeiro-Neto, 1999]. Overall, the average performance over the 36 Enron users had MRR
of more than 0.5, a very good result for such a large prediction task (5202 queries from
36 different users). A closer look in the numbers revealed a much larger variation in
performance over different users than over different models, as attested by Table 4.4. For
the primary prediction (threaded), over the 36 users sample, the maximum MAP was 0.76,
the minimum was 0.186, with a standard deviation of 0.101.

MAP MRR R-Prec P@5 P@10
TOCCBCC 0.361 0.440 0.294 0.182 0.135
CCBCC 0.332 0.405 0.266 0.177 0.126
TOCCBCC (threaded) 0.441 0.516 0.398 0.225 0.157
CCBCC (threaded) 0.459 0.540 0.425 0.239 0.156

Table 4.3: Recipient prediction results for the best model (Knn) averaged over 36 users.

Based on this variability, we measured the Pearson’s correlation coefficientR (quotient
of the covariance of the two variables by the product of their standard deviations) between
variables that might influence performance. First, the correlation between training set size
(|sent train|) and the number of classes or ranked entities (address book size) is 0.636 —
a clear indication that users who send more messages tend to have larger address books.
More surprising, perhaps, was the fact that the Pearson’s correlation between performance
and training set size, as well as the one between performance and Address Book size, was
smaller than 0.2 in absolute values — suggesting there is no apparent strong correlation
between these variables4. One possible explanation is that these two variables contribute
inversely to the performance (while recipient prediction is certainly easier with smaller

4Similar results were observed for different models on both for primary and secondary predictions.

73

Address Book sizes, it is certainly harder with less training data) and the overall effect is
hence weak.

4.5.2 Rank Aggregation

Ranking results can be potentially improved by combining the results of two or more
rankings to produce a better one. One set of the techniques commonly applied to rank
combination isData Fusion[Aslam and Montague, 2001].These methods have been suc-
cessfully applied in many areas, including Expert Search [Macdonald, 2006] and Known
Item Search [Ogilvie and Callan, 2003].

Because not all ranking scores of the proposed methods in Section 4.4 are normal-
ized, it is not reasonable to use score-based fusion techniques such asCombSUMand
CombMNZ[Macdonald, 2006]. Instead, we utilizedReciprocal Rank[Macdonald, 2006]
(or RR), a rank-based fusion techniques in which the aggregated score of a document is
the sum of inverse ranks of this document in the rankings, i.e., the sum of one over the
rank of the document across all rankings.

Table 4.5 shows experimental results on aggregating recipient recommendation tech-
niques with rank-based Fusion methods. The symbol� represents the aggregation op-
eration over different models (all threaded). For instance, in the TOCCBCC task, the
aggregation of Knn and Freq (Knn� Freq) rankings produced a final ranking with MAP
of 0.417. On each line, the best performing model (in bold face) is selected to be part of
the base aggregation in the following line. For instance, the second line displays aggrega-
tion results when Knn is combined with the best model in the previous line (TFIDF) and
all other three remaining methods. The initial baseline model is threaded Knn.

Results clearly show noticeable performance improvements over the baseline. MAP
gains up to 0.042 in the secondary prediction task, and close to 0.03 on primary predic-
tions. In most cases, the gains over the Knn baseline are statistically significant5.

In a second set of experiments, we used a weighted version of RR, where the weights
for each base ranking were determined by the performance obtained by the respective
model in a development set. More specifically, this development set was constructed using
the 20% most recent messages insenttrain, and used as test after training the models in
the remaining 80%. Overall, results were statistically significantly better than the Knn
baseline, but not statistically significantly better than the unweighted results in Table 4.5.

5We also experimented with the Borda Fuse [Macdonald, 2006] aggregation method, but it presented
consistently worse results when compared to RR. A similar observation can be drawn from other rank ag-
gregation tasks [Macdonald, 2006, Ogilvie and Callan, 2003]

74

4.5.3 Email Auto-Completion

Email address auto-completion is the feature in email clients that provides a list of email
addresses after the user typed a few initial letters of the intended contact address. Typically
email clients allow users the option to turn on or off the auto-completion feature, but rarely
are users allowed pick how the suggested addresses should be ranked. In this section we
analyze different strategies for email auto-completion ranking.

Email auto-completion is essentially an email recipient recommendation task in which
the user provides the initial characters (or some key characters) of the recipient’s name or
address. Therefore, the same ranking models and strategies previously utilized in Section
4.4 can naturally be adapted to email auto-completion.

In order to test different strategies and models for email auto-completion, we used the
following experimental procedure. For each query messageq, we extracted all its recipient
Recip(q), and for each recipient inRecip(q), we extract itsV initial letters6. Then these
V initial letters are used to filter out candidates ranked by the recommendation model.

Table 4.6 presents performance values in terms of MRR* for different values ofV and
different recommendation models. Notice that for each queryq, |Recip(q)| different auto-
completion rankings are created, one for each member ofRecip(q) (each ranking contains
a single relevant recipient and all other recipients in the Address Book who share the same
initial letters). MRR* is the mean value of MRR over these rankings.

WhenV = 0, no initial letter of the email contact is known, and the task is the same
as the original recipient recommendation from Sections 4.5.1 and 4.5.2. AsV increases,
more is known about the intended recipient and consequently prediction performance be-
comes better. In addition to the threaded versions ofKnn, Recency(Rec) andFrequency
(Freq), Table 4.6 shows results for when recipients are presented in alphabetical order
(Alpha). It also contains a model calledAll-Fusion (Fus), displaying results with the
aggregated rankings from all models in Table 4.5 (i.e., using rankings produced by the
combinations indicated in the 4th and 8th lines of that Table).

In general, Table 4.6 indicates that Knn performs slightly better than Recency, which
in turn performs better than Frequency. This difference is more noticeable for small val-
ues ofV — exactly where most email users will benefit the most from auto-completion.
WhenV = 2 or V = 3 the different between Knn and Recency is not statistically signif-
icant. TheAll-Fusionmodel shows the best auto-completion results overall, significantly

6In a general case, initial letters from the contact’s email address, last name, first name and nickname
can be used. We used only email addresses because those were the only contact information consistently
available in the Enron corpus; but results can be extended for the general case.

75

outperforming all other models for all values ofV . Table 4.6 also displays the relative per-
formance gains between Knn and Recency, All-Fusion and Recency as well as All-Fusion
and Knn. Auto-completion performance numbers for larger values ofV are illustrated in
Figures 4.1 and 4.2.

Compared to any of the other models, auto-completion based only on the alphabetical
order presents a rather low performance on both primary and secondary prediction tasks.
All other methods provided significant gains in performance when compared to it.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

M
R

R
*

Number of Initial Letters (V)

TOCCBCC Prediction

All-Fusion
Knn

Recency
Frequency

Alphabetical Order

Figure 4.1: Auto-completion performance on the TOCCBCC task for different number of
initial letters.

4.6 Discussion and Related Work

We addressed the problem of recommending recipients for messages under composition.
Evidence from a very large work-related real email corpus revealed that at least 9% of the
users forgot to address an intended recipient at least once, while more than 20% of the

76

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

M
R

R
*

Number of Initial Letters (V)

CCBCC Prediction

All-Fusion
Knn

Recency
Frequency

Alphabetical Order

Figure 4.2: Auto-completion performance on the CCBCC task for different number of
initial letters.

users have been accidentally “forgotten” as intended recipients. We proposed several pos-
sible models for this task, and evaluated their predictive performance on 36 different users
from the Enron corpus. Experiments showed that a simple model based on the K-Nearest
Neighbors algorithm generally outperformed all other methods, including frequency or
recency based models, and more refined formal models previously proposed for Expert
Search.

We also investigated how to combine the rankings of different models using rank-based
data fusion techniques, such as sum of Reciprocal Ranks. Experiments clearly indicated
that aggregated models generally outperform all base models, both on primary and sec-
ondary recipient prediction tasks.

Intelligent message addressing techniques can also be naturally adapted to improve
email address auto-completion, i.e., suggesting the most likely addresses based on a few
initial letters of the intended contact. Email auto-completion is an extremely useful and
popular feature, but in spite of it, little is publicly known on how addresses are ranked

77

in the most popular email clients, and we are not aware of any study comparing different
techniques on this particular message addressing problem. We evaluated several ranking
baselines for this problem — including alphabetical, frequency and recency ordering — in
a large collection of users. Results clearly indicate that the proposed intelligent addressing
models outperform all baselines for email auto-completion. Overall we show that intelli-
gent message addressing techniques are able to visibly improve email auto-completion, as
well as to provide valuable assistance for users when composing messages.

The email recipient prediction problem is related to theexpert searchtask. In the
former, the task is to retrieve the most likely recipients of a message under composition,
while in the latter the task is to retrieve the most likely experts on a topic specified by
a textual query. In fact, it is easy to find similarities between recipient prediction and
early expert search work using enterprise email data [Dom et al., 2003, Campbell et al.,
2003, Sihn and Heeren, 2001]. Recently, interesting models for Expert Search have been
motivated by the TREC Enterprise Search, where different types of documents are taken as
evidence in the process of finding experts. Because of the similarity between these tasks,
many of the presented ideas were motivated by recently proposed expert search models
[Balog et al., 2006, Fang and Zhai, 2007, Macdonald, 2006].

Though relatively similar, expert search and email recipient prediction have some fun-
damental differences. First, the latter is focused on a single email user, while the former
is typically focused in an organization or group. The former is explicitly trying to find
expertise in narrow areas of knowledge (queries with a small number of words), while the
latter is not necessarily trying to find expertise — instead, it is trying to recommend users
related to a message “query” that may have up to a few hundred words.

In a related work, Pal and McCallum [2006] described what they called the CC Pre-
diction problem. In their short paper, two machine learning models were used to predict
email recipients in the personal collection of a single user. However their modeling as-
sumptions is substantively different from ours: they assume that all recipients but one are
given and the task is to predict the final missing recipient. Performance was evaluated in
terms of the probability of having “recall at rank 5” larger than zero, i.e., the probability of
having at least one correct guess in the top 5 entries of the rank. They report performance
values around 44% for this metric on a single private email collection. For comparison,
our best system achieves 64.8% and 70.6% on the same metric for primary and secondary
predictions, respectively, averaged over the 36 different Enron users. Only two of the En-
ron users presented values smaller than 44% in this metric for primary predictions, and
only one Enron user on secondary predictions.

78

Enron user TOCCBCC CCBCC TOCC(threaded) CCBCC(threaded)

campbel 0.263 0.319 0.336 0.444
derrick 0.228 0.515 0.379 0.503
dickson 0.390 0.348 0.463 0.476
geaccone 0.549 0.244 0.533 0.351
germany 0.362 0.587 0.349 0.578
giron 0.403 0.112 0.488 0.254
grigsby 0.377 0.372 0.523 0.728
hayslett 0.291 0.138 0.419 0.307
horton 0.293 0.103 0.334 0.151
hyatt 0.462 0.506 0.508 0.639
hyvl 0.444 0.314 0.459 0.329
kaminski 0.765 0.692 0.759 0.703
kitchen 0.366 0.149 0.523 0.581
lavorato 0.356 0.258 0.347 0.246
lokay 0.450 0.770 0.523 0.812
rapp 0.300 0.140 0.425 0.377
ward 0.356 0.561 0.433 0.695
bass 0.468 0.581 0.507 0.616
beck 0.295 0.196 0.357 0.297
blair 0.457 0.437 0.513 0.499
cash 0.301 0.165 0.357 0.226
clair 0.352 0.325 0.404 0.332
farmer 0.442 0.362 0.512 0.417
fossum 0.063 0.067 0.186 0.198
haedicke 0.273 0.237 0.387 0.433
jones 0.370 0.276 0.419 0.314
kean 0.287 0.383 0.397 0.526
love 0.398 0.431 0.511 0.674
perlingiere 0.335 0.235 0.433 0.552
presto 0.419 0.296 0.574 0.530
sager 0.227 0.16 0.286 0.314
sanders 0.286 0.248 0.332 0.416
scott 0.484 0.483 0.558 0.553
shackleton 0.261 0.290 0.445 0.507
taylor 0.287 0.369 0.418 0.424
tycholiz 0.352 0.298 0.490 0.516
Mean 0.361 0.332 0.441 0.459

Table 4.4: MAP values using the Knn baseline for all 36 Enron users.

79

Task Freq Recency TFIDF M2-uc

TOCCBCC Knn� 0.417** 0.432 0.457** 0.444
Knn� TFIDF� 0.455** 0.464** — 0.461**

Baseline: Knn Knn� TFIDF� Rec� 0.451** — — 0.470**
MAP = 0.441 Knn� TFIDF� Rec� M2-uc� 0.464** — — —

CCBCC Knn� 0.455 0.470 0.462 0.474*
Knn� M2-uc� 0.476** 0.491** 0.482** —

Baseline: Knn Knn� M2-uc� Rec� 0.491** — 0.494** —
MAP = 0.458 Knn� M2-uc� Rec� TFIDF� 0.501** — — —

Table 4.5: MAP values for model aggregations with Reciprocal Rank. The∗ and ∗∗
symbols indicate statistically significant results over the Knn baseline.

Primary Prediction (TOCCBCC)
V Alpha Freq Rec Knn Fus ∆(Knn-Rec) ∆(Fus-Rec) ∆(Fus-Knn)
0 0.022 0.274** 0.300** 0.377** 0.394** 25.542% 31.124% 4.447%
1 0.250 0.620** 0.653** 0.690** 0.731** 5.753% 11.893% 5.806%
2 0.557 0.846** 0.857 0.858 0.895** 0.078% 4.412% 4.331%
3 0.737 0.911** 0.923* 0.917 0.942** -0.683% 2.001% 2.702%

Secondary Prediction(CCBCC)
0 0.025 0.329** 0.364** 0.398* 0.436** 9.526% 19.927% 9.496%
1 0.265 0.668** 0.718** 0.717 0.777** -0.125% 8.289% 8.424%
2 0.549 0.858** 0.875 0.865 0.910** -1.189% 3.928% 5.178%
3 0.729 0.915** 0.929 0.915 0.946** -1.558% 1.811% 3.423%

Table 4.6: Auto-completion Experiments. Performance values for different models andV
values. Statistical significance relative to the previous column value is indicated with the
symbols∗∗ (p < 0.01) and∗ (p < 0.05).

80

Chapter 5

User Study

5.1 Introduction

In Chapters 3 and 4 we introduced new methods to address very common message ad-
dressing problems, namely email recipient recommendation and email leak prediction.
Although the proposed methods showed promising results in batch experiments on very
large email collections, many questions were still unanswered. How can these methods be
incorporated in an integrated interface? Can users notice any difference in quality between
rankings provided by different baseline algorithms? Can these methods really catch email
leaks? Can we estimate how often email leaks occur? Can these techniques be adopted
and benefit a large number of email users?

In this Chapter we described a user study designed to address these questions. In order
to run this study, first we had to incorporate some of the aforementioned prediction models
into an email client.

Selecting an email client in which the recipient recommendation and leak detection
algorithms could be implemented depended on several factors such as the popularity of
email client, whether or not the client is open source, operating system interoperability,
the ease with which it could be modified to incorporate new features, and how easily these
modifications can be distributed to users. The options considered wereMozilla Thun-
derbird, GMail, or a new standalone email client which we would have to develop from
scratch. Developing a new email client had the disadvantage that it would take a long time
for it to be used widely, if at all. Moreover, considerable effort would have to be put into
engineering efforts which were peripheral to the issue at hand. GMail has the advantage
of being widely used especially in the academic community, however the API offered by

81

GMail was inadequate for our needs. Mozilla Thunderbird, on the other hand, is very
popular1, has a well established mechanism to add extensions, and is open source, which
makes it an excellent platform to incorporate new features.

5.2 Cut Once: a Mozilla Thunderbird Extension

Cut Onceis a new extension to Mozilla Thunderbird that implements methods from the
previous chapters to perform recipient recommendation (Chapter 4) as well as email leak
prediction (Chapter 3). The extension is primarily written in Javascript, and the user inter-
faces are specified using a Mozilla specific XML-based file format called XUL.

Similar to all other Thunderbird extensions, Cut Once is distributed as an.xpi pack-
age, which can be easily installed in any Mozilla Thunderbird client using Thunderbird’s
Extension Manager. A screenshot of Thunderbird’s main window after installating Cut
Once is displayed in Figure 5.1. Currently Cut Once can be downloaded from its website:
http://www.cs.cmu.edu/˜vitor/cutonce/cutOnce.html .

Figure 5.1: Thunderbird main window after installing Cut Once

5.2.1 Algorithms

The algorithms chosen for implementation in the Mozilla Thunderbird extension needed to
be computationally inexpensive, since Javascript is a slow interpreted language. Expensive

1It is estimated that Mozilla Thunderbird has between 5 and 10 million active users.

82

http://www.cs.cmu.edu/~vitor/cutonce/cutOnce.html

operations in Javascript tend to bog down the email client and make it virtually unusable.

TFIDF baseline The first baseline method implemented in Cut Once was the TFIDF
multi-class classification method (a.k.a. Rocchio algorithm) described in Section 4.4.3.
The centroids for each recipient, represented as a TFIDF vector over terms, are first com-
puted by iterating through the user’sSentfolder in the email client.

Recency and Frequency baselinesAs described in Section 4.4.5, frequency and re-
cency information can be used as baselines for email prediction tasks. The frequency
method ranks candidates according to the number of messages in the training set in which
they were a recipient (see Equation 4.14).

The recency method ranks candidates in a similar way, but attributes more weight
to recent messages according to an exponential decay function (see Equation 4.15). As
before, the parameterτ in Equation 4.15 was set to100 in CutOnce, highlighting the
importance of the 100 most recent messages.

Aggregating Baseline Methods with Data Fusion The ranks obtained by the recency,
frequency and TFIDF methods can be combined using data fusion techniques based on
the Mean Reciprocal Ranks (MRR) of the baseline rankings [Aslam and Montague, 2001,
Craig Macdonald, 2006, Ogilvie and Callan, 2003]. Results from Section 4.5.2 showed
that using MRR to combine different baselines can provide better performance than one
single baseline in isolation.

In Cut Once we implemented an MRR-based ranking method combining the TFIDF,
Frequency and Recency baselines described above. The MRR combination can be ex-
pressed as:

MRR(ca) =
α

recency rank(ca)
+

β

frequency rank(ca)
+

γ

tfidf rank(ca)
(5.1)

, i.e., the final aggregated ranking of a recipient candidateca is a function of the ranking of
the same recipient obtained by the base methods (TFIDF, frequency and recency). Based
on preliminary tests, we set bothα andβ to 1.0, andγ to 2.0 by default.

Two baseline methods One of the main questions we would like to answer is whether
the differences in overall ranking performance observed in Section 4.5.2 are noticeable to
email users.

83

To investigate this, we designed Cut Once with a controlled variable affecting the rank-
ing method used by a particular user. That is, the extension uses the TFIDF baseline for
roughly half the users (chosen randomly at installation time), and the MRR baseline (as
described by Equation 5.1) for the other half of the users.

5.2.2 Training

Figure 5.2: The training dialog window

Since the algorithms are implemented in Javascript, scalability and computation time
are significant factors. The memory available to the extension is also limited since com-
putation occurs on client machines. Keeping this in mind, steps were taken to keep the
training time in check to limit the impact on user experience. Firstly, all words with a doc-
ument frequency lower than a fixed threshold (set at 5) were eliminated from the TFIDF
representation. Secondly centroids for recipients to whom the number of messages sent
was below a threshold (set at 5), were not calculated. After the model is trained, the para-
meter values are stored in a text file on the user’s computer. When the client is restarted,

84

this model file is read thus preventing the need to retrain the system each time the client is
started.

Cut Once needs to be trained before it is able to make recipient predictions. From
the user’s perspective, training is achieved by clicking on a “Sent” folder and hitting the
“Train” button on Thunderbird’s toolbar. The time taken for training depends on the num-
ber of messages in the sent folder, the speed of the processor, among other factors. A
rough estimate is 150 messages per minute. Once the training procedure is completed, a
model file calledthunderbirdinfoleakmodel.datis created in the user’s home directory.
The model file is then read in by Cut Once each time Thunderbird starts up. A weekly
reminder encourages users to retrain on a regular basis. A screenshot with the window
displayed to the user during training can be seen in Figure 5.2.

The model filethunderbirdinfoleakmodel.datcreated by the training process stores
the following pieces of information about the user’s Sent folder.

• Centroids: A centroid for each email address to which a message was sent to is
computed by calculating a mean vector over all the messages addressed to the email
address. Each email is represented by a TFIDF vector over the words in the subject
and body.

• Document frequencies: A table of words and its corresponding document fre-
quency, which is the number of messages in which the word occurred. This is
necessary to compute TFIDF vectors for messages during runtime.

• Recency and Frequency Ranks: Candidate email addresses in the Sent folder are
ranked by recency and frequency to establish a baseline ranking. The ranks assigned
to each email address are saved in the model file to enable Cut Once to display a
baseline ranking during runtime.

5.2.3 Prediction

After training is completed, Cut Once is ready to make predictions. The runtime predic-
tions of CutOnce are triggered via two possible mechanisms.

The first one happens when a user hits the “Send” button for a message under com-
position. In this case, a dialog box pops up, highlighting possible email leaks, and also
listing other recommended recipients for the particular message just composed. Clicking
on any of the predicted leak addresses will remove the address from the recipient list of the
original message. Analogously, clicking on a recommended address will add this address

85

to the recipient list. This dialog box has a countdown timer that sends the message after
10 seconds if the user does not take any action — thus ensuring that no additional action
is needed to send a message. A screenshot of this dialog box can be seen in Figure 5.3.

Figure 5.3: The information leak and recipient recommendation dialog window; displayed
when Send button is pressed.

The second one is triggered by the “Recommend Recipients” button on the toolbar in
the Compose window. This pops up a window with a list of recommended recipients for
the message being composed. Recipients can be added to the message by clicking on the
suggested recipients. A screenshot of this window can be seen in Figure 5.4.

5.2.4 Logging

CutOnce logs information about many aspects of the extension usage. This includes infor-
mation such as the rank of an address that the user clicks on, the time taken by the user to
click on that address, and the rank and prediction score of the address clicked by the user.
The complete list of attributes logged by Cut Once are shown in Table 5.1.

86

Figure 5.4: The recipient recommendation dialog window

1 whether the use used the explicit Send button or let the timer expire
2 whether the user deleted a recipient (possibly due to a potential leak)
3 rank of the deleted recipient in the potential leak list
4 confidence score of the recipient deleted
5 time elapsed before the recipient was deleted
6 rank of the added recipient in the recommendation list
7 time elapsed before recipient was added
8 confidence score of recipient added
9 number of messages in the user’s Sent folder
10 number of recipients addressed in the Sent folder messages
11 Cut Once software version
12 baseline ranking method (TFIDF or MRR)

Table 5.1: Set of attributes logged by Cut Once

Every week the user is reminded to send the logged information via email to the user
study researchers. If the user acquiesces, a new email compose window is opened up with
the log information prefilled in the content section. The logging message does not contain
any personal or private information from the user (such as email content or recipients), nor
from any of the user’s contacts. Users are also encouraged to send in comments in a des-
ignated area in this email. A screenshot with the email containing the logging information
is displayed in Figure 5.5.

In addition to the weekly reminders, at any time the user can also send this logging
message by clicking on the “Mail Statistics” button (Einstein button) of the main Thun-

87

Figure 5.5: Cut Once logging message

derbird window (see Figure 5.1).

5.3 Study Description

Several human subjects, mostly from the Pittsburgh area, were recruited using web forums
and newsgroups messages for a four-week long user study. These participants were told
that the goal was to study how to improve the way people address email messages based
on intelligent addressing techniques [Carvalho and Cohen, 2007, 2008].

Participants were required to be Thunderbird users, to write email using Thunderbird
on a daily basis, and to be at least 18 years-old. The recruitment message also indicated
that the task would be simple, with minimum or no interruptions at all. The recruiting
message can be found in Appendix B.1.

After contacting the study researchers indicating their interest, participants were in-
structed on how to install and train Cut Once. After successfully installing and training

88

the extension using the procedures described at Cut Once’s website2, participants received
a message explaining exactly what Cut Once could do. They were also instructed to keep
on using Thunderbird as usual, and that in one week Thunderbird would request them to
send an initial logging message to the user study researchers.

After this logging message was received and analyzed, qualified participants were par-
tially compensated (20% of total compensation) and invited to participate in the second
phase of this user study. Qualification was based on frequency of email use during this
first week, number of addresses in the Sent folder, and the number of message previously
sent using Thunderbird. The main purpose of this procedure was to avoid selecting users
who rarely used Thunderbird, or users who used Thunderbird to email a few people only
— for obvious reasons, these cases would not add value to our experiments.

In the second phase of the study, participants were compensated with the remaining
80% of the total compensation after three more weeks using Cut Once3. They also had to
complete an initial questionnaire with general questions, as well as a final questionnaire
exclusively about Cut Once.

The final questionnaire was about the general Cut Once experience, quality of predic-
tions, interface issues, and usability, as well as suggestions for improvement. The complete
set of questions in both questionnaires can be found in Appendix B.2 and B.3.

To summarize, this user study adopted the following procedure:

1. After advertising the user study, subjects contacted the researchers through email,
expressing interest to participate.

2. Subjects received detailed information on the goals, methods, compensation and
conditions of the study.

3. After successfully installing and training the extension in their personal computers,
subjects were asked to use Cut Once for one week.

4. By the end of this first week, subjects had to send logging messages to the re-
searchers. Based on these messages, some qualified subjects were invited to con-
tinue using Cut Once for three more weeks — sending logging messages weekly.
Qualified subjects were immediately eligible to receive 20% of the total compensa-
tion.

2http://www.cs.cmu.edu/˜vitor/cutonce/cutOnce.html .
3Due to scheduling conflicts to arrange the final questionnaire interview, many participants ended up

using Cut Once for more than than 3 weeks.

89

http://www.cs.cmu.edu/~vitor/cutonce/cutOnce.html

5. After three extra weeks, subjects were invited to an interview where they would have
to answer two questionnaires.

6. After completing the questionnaires, subjects were thanked and received 80% of the
total compensation.

5.4 Results

5.4.1 Adoption

A total number of 26 subjects completed the user study: 4 female and 22 male. Ages
ranged from 18 to 49 years-old, with an average of 31.7 and median of 28.5 years. From
the 26 subjects, 13 were graduate students, mostly from Carnegie Mellon University or
from the University of Pittsburgh. Other reported occupations were software engineers,
system administrators, undergraduate students, one staff member and one faculty.

Subjects used Thunderbird on a daily basis, composing messages largely in English.
During the user study, subjects composed 2315 messages using Mozilla Thunderbird, with
an average of 11 messages sent per week. According to statistics collected from Sent
directories, on average, subjects had written 2399 messages to 113 different recipients
before the beginning of the user study. An average of 2.4 devices (computer, cell phone,
etc.) per person were used to compose emails.

Another 17 users started but did not finish the study. They installed and successfully
trained Cut Once, sent out at least one logging message, but stopped sending these mes-
sages not long after that. Either these users did not qualify to the second phase of the study,
or voluntarily stopped sending logging messages.

In addition to these, 11 users showed initial interest and contacted the researchers, but
were never able to send a single logging message. In these cases it is hard to know exactly
the reasons for the discontinuation. Perhaps these users found Cut Once uninteresting or
annoying after installation, or became unmotivated by the low compensation and lengthy
nature of the study. We speculate that one of the main reasons is the slow training process.

Installation of Cut Once was smooth for all participants, but training frequently was
not. Many users complained that training took too long or got “stuck” in a few messages.
It was indeed a problem — Javascript is a slow interpreted language, not suited to large
amounts of textual data processing. As expected, this issue affected more severely users
with large number of messages, or users having a few very large messages.

90

Mozilla provides a portal for developers and practitioners of their open source
softwares. We submitted Cut Once to Mozilla Thunderbird Sandbox, and it is cur-
rently available at https://addons.mozilla.org/en-US/thunderbird/
statistics/addon/6392 . According to their statistics, there has been 49 down-
loads of Cut Once from their site so far. Mozilla may have helped advertise the extension
and the associated user study. Three of the 26 user subjects were not from Pittsburgh, and
many of the requests for participation came from all over the world: California, Maryland,
Canada, Holand, Spain, among others.

5.4.2 Usage and Predictions

As previously explained, Cut Once provided an interface in which the predicted email
leaks could be automatically removed from the addressee list with a click. Eighteen out
of the 26 subjects used it at least once. Overall, these 18 subjects used the leak deletion
functionality in approximately 2.75% of their sent messages.

The final interviews revealed two main reasons why subjects utilized the leak deletion
interface. First, some subjects clicked on these suggested leaks to play with the extension,
particularly right after installation and training. Other subjects, as revealed in their final
interviews, utilized the leak deletion button to “clean up” the addressee list — to remove
unwanted people after hitting the reply-all button, or to remove themselves as recipients
(some clients are configured to automatically include the sender as a CC’ed recipient).

Unfortunately, none of the subjects reported using the delete leak functionality to ac-
tually remove a real case of email leak. However, it does not mean that they did not occur
among the 2315 messages sent throughout the user study. In fact, four different subjects
reported that Cut Once correctly caught real email leaks. After noticing the mistake, all
four subjects rushed to click on the cancel button, immediately closing Cut Once’s dialog
window and consequently not reporting the real leak case in next logging message. Instead
of deleting the leaks using Cut Once’s interface, the reasons why these users canceled the
dialog window were because subjects were uncomfortable or unfamiliar with the inter-
face features, or because subjects were feeling under pressure due to 10-second timer, or
a combination of both.

The first of these subjects was a network administrator at Carnegie Mellon’s Comput-
ing Services, who addresses several users everyday by their aliases (user IDs). He reported
that he confused two students with very similar alias, and Cut Once alerted him to the mis-
take. A similar case happened to a systems administrator of the University of Pittsburgh,
who frequently uses auto-completion to select recipients. He reported that in two or three

91

https://addons.mozilla.org/en-US/thunderbird/statistics/addon/6392
https://addons.mozilla.org/en-US/thunderbird/statistics/addon/6392

different messages, one of the addresses selected by auto-completion was wrong, and that
Cut Once correctly warned him of the potential email leak. A Carnegie Mellon undergrad-
uate student reported that he confused the email addresses of two acquaintances with very
similar names, and Cut Once helped prevent that email leak. A graduate student of this
same university reported that he used the reply-all button when he should not have, and
Cut Once caught one of the unintended addresses as a leak.

Since one of the subjects reported Cut Once catching leaks in “two or three” different
messages, henceforth we assume that five leaks were caught by the extension during the
user study. This is a likely lower bound on the real number of leaks for that population,
given that in some cases users do not even realize their addressing mistakes. Three out
of these five real leaks came from subjects using the TFIDF baseline ranking method,
and the remaining two leaks had subjects using the MRR baseline. Data from these four
subjects did not reveal any strong correlation with the number of sent messages, nor with
the number of observed leak deletions using Cut Once. Likewise, no correlation was
observed with the number of entries in the subject’s address book.

Overall there were five real email leaks in 2315 sent messages. A sample average of
approximately 0.00215982 email leaks per sent message, or one email leak occurrence per
463 sent messages. Assuming email leak occurrences follow a binomial distribution with
probability of successp = 5

2315
, it would be necessary at least 321 messages for having a

50% chance to experience at least one email leak, and 1066 messages for a 90% chance.

Three out of the five leaks caught by Cut Once came from subjects whose occupations
require a lot of email message handling (a systems administrator and a network adminis-
trator), even though only 5 out of the 26 subjects had professions demanding substantial
email handling. A binomial test on this data indicates that, with approximately 95% confi-
dence, users whose professions require lots of message handling have a higher probability
of generating leaks than other professions. Indeed, this agrees with subject’s final ques-
tionnaire answers, where it was reported that the most likely users to benefit from the
functionalities provided by Cut Once are persons who work with many different people,
send a lot of messages or manage several different projects (e.g., secretaries, administra-
tors, executives).

The other functionality provided by Cut Once was recipient recommendation. With
a click on the suggested addresses, users could add recipients to messages under compo-
sition. A total of seventeen of the subjects used the functionality at least once. Overall,
these 17 subjects utilized the email suggestions functionality in approximately 5.28% of
their sent messages.

Considering all subjects in the study, there were 95 accepted suggestions in 2315 sent

92

messages. A sample average of approximately 0.041036 accepted suggestions per sent
message, or one accepted suggestion occurrence per 24.37 sent messages. There are a few
reasons behind these low numbers. Some users did not seem interested in the functionality,
others claimed that they simply “did not need it”, while others did not even know that
recipients could be added by clicking on the suggested email addresses. Another issue was
the fact that the pop-up window with recommendations was triggered on all sent messages,
regardless whether it was a new composition or a reply, and many subjects claimed that
the proposed functionalities were not necessary in case of replies, particularly to a single
recipient only4. Another consequence of triggering predictions on all sent messages is that
the leak detection false positive rate (or false alarm rate) was high:2315−5

2315
= 0.99784.

Ideally Cut Once should only provide predictions if models are reasonably confident
of a leak or a missing recipient. However, learning a user-based confidence threshold can
be challenging, particularly for users with a small number of messages. Also, if it adopted
a fixed arbitrary threshold, not all real leaks would be displayed to the user, potentially
causing the number of reported leaks (a very rare event) to be even lower. Because of
these issues, we left the implementation of confidence-based triggered predictions as fu-
ture work.

Cut Once presented recipient recommendations in a scrollable window that could fit
up to 9 addresses in a ranked list. The distribution of the ranks of the accepted recom-
mendations (or clicked ranks) can be found in Figure 5.6. Figure Figure 5.6(a) shows the
data in a histogram, Figure 5.6(b) displays the same data in a boxplot. The median clicked
rank was 2, and first and third quartiles were, respectively, 1 and 7. This plot indicates that
users typically clicked on the first 7 recommended addresses, and only rarely had to scroll
down to higher positions of the ranked list.

Figure 5.6 can be seen as an indication of the reasonably good quality of Cut Once’s
suggestions. In fact, one of the questions in the final questionnaire is exactly about the
quality of the suggested rank (see question 5 in Appendix B.3). Results were reported in
a likert scale (5(excellent) 4(good) 3 (neutral) 2(bad) 1(very bad)), and a boxplot repre-
senting the distribution of results can be found in Figure 5.7. The reported mean of this
distribution was 3.46.

Figure 5.7 also shows distributions of likert scores from the answers to the other ques-
tions in the final questionnaire. Question 10 is about the interface of Cut Once, question 7
is about how annoying the extension was, question 6 measures how helpful the extension
was, question 5 shows the distribution related to the quality of suggested rank, question
4 measures how often the user used the suggestions, question 2 reflects the overall expe-

4Unfortunately Cut Once could not distinguish between a reply and a compose action.

93

Clicked Ranks

Rank

F
re

qu
en

cy

0 10 20 30 40

0

10

20

30

40

(a)

● ●● ●

0 10 20 30 40

Rank

(b)
Figure 5.6:(a) Histogram with ranks of the recommendations clicked by the users.(b)
The same data in a boxplot: median of distribution is 2.00, first quartile is 1.00 and 3rd
quartile is 7.00. Whiskers mark the most extreme data point within a distance of 1.5 of the
Interquartile range. Empty points indicate outliers.

rience of the user, and question 1 asked the user’s general impression of Cut Once. All
questions were supposed to be answered in a likert scale, although some subjects insisted
in providing non-integer scores. Higher values reflect better impressions of Cut Once for
all questions. The precise description of these questions can be found in Appendix B.3.

94

Overall, subjects were not annoyed by Cut Once interruptions — mean value was 4.18,
between “never” and “rarely” annoying, and all reported scores were positive. Figure 5.7
also indicates that Cut Once’s interface was also well received, with mean value of 3.63
and median of 4.

Responses to questions 4, “How often did you use the suggestions”, were largely neg-
ative, with a median of 2 and mean of 1.75 (between “never” and “rarely”). This reflects
the fact that most of the time users were replying to messages, and not composing new
messages. As previously noted, users accepted Cut Once’s suggestions in approximately
6.17% of their sent messages. This fact is also linked to slightly negative responses on
question 6 (“Were the suggestions helpful?”), with median of 3 and mean 2.5 (between
“kind of” and “marginally” helpful). The overall impression of the extension was posi-
tive — with median value of 4 and mean value of 3.6 (between “good” and “neutral”).
A slightly positive judgment was seen on the overall experience using the extension, or
question 2 — with a mean value of 3.36 and median of 3 (between “good” and “neutral”).

Results from the other questions in the final questionnaire are summarized in Table
5.2. The 15.38% affirmative answers to question 3 are exactly the four cases of successful
leak detection described above.

Three subjects reported changing the way they compose emails, as in question 8 of the
questionnaire. They reported sometimes performing acompose-then-addressprocedure to
send messages (i.e., writing the text of the message first, and then selecting recipients),
instead of the traditionaladdress-then-compose. In other words, these subjects became
used to the the extension to a point that they were often relying on Cut Once to suggest the
right recipients for the message they just composed. In fact, because clicking is faster than
using auto-completion or typing complete addresses, users reported that this procedure
was typically faster than the usual compose-then-address.

Also supporting the overall positive impression of the extension, question 11 revealed
that 50% of the subjects would recommend Cut Once to their friends. The second part of
question 11 was “who do you think would consider this extension helpful?”. The most
frequent answers were: people who work with many different persons, people who send a
lot of messages or people who manage several different projects. Typical examples were
secretaries, managers, executives and lawyers. Subjects also stressed that Cut Once should
be much more helpful in the workplace than in handling personal messages.

Question 9 of final questionnaire asked if subjects would continue using the extension
after the user study. Approximately 42% of them responded affirmatively. After this
question, subjects were asked about problems, annoyances, software bugs, and how Cut
Once could be improved. A summary with the most frequent limitations reported by the

95

●

Overall
 impression

Overall
 experience

How often use
 suggestions?

Rank Quality

Suggestions
 Helpful

Suggestions
 Annoying

Interface

1 2 3 4 5

Figure 5.7: Distributions of likert scores (1 to 5) given as answers to questions 1, 2, 4, 5,
6, 7 and 10 in the final user study questionnaire(higher=better). Complete questionnaire
can be found in Appendix B.3.

user subjects can be seen in Table 5.3.

After collecting user’s complaints and ideas for improvement, Question 14 then asked
“if your suggestions and ideas were implemented, would you consider using Cut Once
permanently?”. More than 80% of the subjects reported that they would — a clear indica-
tion that recipient prediction and leak detection were considered welcome additions to the
subject’s email clients, in spite of Cut Once’s specific limitations5.

5Please refer to Appendix B.4 for a list with some of the subject’s most interesting comments on Cut

96

Question Description Affirmative
Number response

Q. 3 “Did Cut Once catch any leak?” 15.38% (4 users)
Q. 8 “Did Cut Once change the way you compose emails?”11.53% (3 users)
Q. 9 “Would you keep on using Cut Once after this study?”42.30% (11 users)
Q. 11 “Would you recommend Cut Once to your friends?”50.00% (13 users)
Q. 14 “If your suggestions and ideas were implemented,80.77% (21 users)

would you consider using Cut Once permanently?”

Table 5.2: Percentage of the 26 subjects giving affirmative answers on four questions of
final questionnaire.

Slow training procedure
It needs incremental training (instead of batch training)
The reminder to retrain every week was annoying
Cannot use (train) multiple email accounts
Too many interruptions: dialog box pops up even when message is being replied
It should prompt a leak only if highly confident
Place suggestions on the side, not in a separate pop-up
It needs more configuration parameters
Timer countdown made people nervous. Remove it.
Unclear indications of what happens if we click here or there
Confusing confidence scores
Interface is too busy, with too much information, should have 2 or 3 suggestions only
Interface is too big, not intuitive, not fancy, too basic.

Table 5.3: Frequent issues and complaints about Cut Once reported by the subjects. Most
frequent one are placed on the top.

5.4.3 Baseline Comparison

In Section 5.2 we described Cut Once as having a mechanism to randomly assign a dif-
ferent ranking baseline (either MRR or TFIDF) to different users. From the 26 subjects,
sixteen were assigned TFIDF ranking, while the remaining ten used TFIDF-based ranking.

Table 5.4 compares results from these two populations. Average values and standard
variations of several metrics are compared, and larger values are indicated in bold. The

Once.

97

METRIC Mean St.Dev.
TFIDF MRR TFIDF MRR

Num. Clicked Suggestions per Sent Message0.089 0.037 0.142 0.066
Num. Clicked Leaks per Sent Message 0.033 0.033 0.035 0.044
Average Rank Clicked by User (lower=better)4.928 4.505 5.289 4.587

Overall Impression (1 to 5) 3.468 3.850 0.531 0.579
Overall Experience (1 to 5) 3.406 3.350 0.612 0.818
How Often Used Suggestions (1 to 5) 1.843 1.600 0.569 0.699
Rank Quality (1 to 5) 3.437 3.510 0.928 0.966
Suggestions Helpful (1 to 5) 2.437 2.600 1.014 1.074
Suggestions Annoying (1 to 5) 4.031 4.430 0.784 0.748
Interface (1 to 5) 3.718 3.500 0.657 1.054

Table 5.4: Comparison of different metrics for the two baseline methods. None of the
observed differences are statistically significant. Unless noted otherwise, higher mean
values are better.

first three variables were extracted from the logging messages: the user-averaged number
of clicked address suggestion per sent message, the user averaged number of removed
leaks per message, and the average rank clicked by the user. The other variables in Table
5.4 were extracted from the final questionnaire. A box plot with illustrating the distribution
of these variables is illustrated in Figure 5.9.

A non-paired t-test applied to these populations indicated that none of the metric dif-
ferences observed in Table 5.4 are statistically significant. The same observation was
confirmed by a non-parametric Mann-Whitney U Test as well as by a Heckman Sample
Selection test6, indicating that there was no perceived difference between the two baseline
ranking methods.

A closer look in the ranks of clicked suggestions can be seen in Figure 5.8. This figure
shows two boxplots with distributions of the ranks of the suggestions accepted (clicked)
by the study subjects. On the top it shows the distribution of clicked ranks for subjects
having MRR as baseline method, while in the bottom for subjects having TFIDF as base-
line method. After removing outliers, the average ranks are 3.69 and 3.147 for, respec-
tively, TFIDF and MRR. Although MRR shows better average ranking than the TFIDF
baseline, the difference is not a statistically significant (p-value=0.394 in a non-parametric
Mann-Whitney U Test). Assuming the same means, and that the difference between these

6A test that takes into consideration the sample bias derived from subject users that started, but did not
finish the user study.

98

clicked ranks approximately follows a normal distribution, then it is possible to differen-
tiate these mean ranks with 95% confidence when approximately 522 clicks are logged.
Given that Cut Once logged on average 1 suggested click for every 24.37 messages, than
12721 sent messages would be necessary — a factor of12721

2315
= 5.495 from the total num-

ber of messages sent in the user study. That is, as a rough estimate, it would be necessary
26∗5.495 ≈ 143 subjects during the same period of time (or alternatively having the same
26 users in a 5.495 times longer study) in order to differentiate between the average ranks
of the two baseline methods with 95% confidence.

● ●●

●

TFIDF

MRR

0 10 20 30 40

Figure 5.8: Distributions of ranks of clicked suggestions for both baseline methods.

The observation that these two baseline ranking methods did not produce statistically
significant differences, although somewhat limited because of the small number of subjects

99

in the study, was not entirely surprising. There have been a few studies in the Information
Retrieval (IR) literature also suggesting that users often cannot perceive much difference
in the results provided by retrieval systems having different performance levels. For in-
stance, Turpin and Scholer [2006] described a web search task in which controlled levels
of MAP (from 55% to 95%) were presented to subjects. They found that different MAP
levels had no significant correlation with a precision-based user performance metric, while
there was a weak correlation with a recall-based user performance metric. In a small user
study for Japanese web retrieval, Takaku et al. [2007] also found that traditional IR perfor-
mance evaluation metrics (e.g., MRR, Prec@10, etc.) did not necessarily correlate with
results from user’s performance and subjective evaluations. More recently, Scholer et al.
[2008] investigated how web search clickthrough data was related to the quality of search
results. Their experiments showed that user click behavior did not vary significantly for
different levels of MAP in displayed results, although there was a significant variation
among different users.

However, email recommendation and web search are fairly different tasks, and further
investigation will be necessary to adequately address to which extent traditional IR perfor-
mance metrics correlate with user evaluation on the proposed email-based tasks. Another
interesting question for future research is how to derive new automated evaluation metrics
that can closely approximate user satisfaction.

5.5 Discussion

Ideally this study would have benefited from a larger pool of user subjects, but unfor-
tunately recruiting more people was not possible. As explained in Section 5.4.1, many
subjects showed initial interest but discontinued using Cut Once in a short period of time.
Among the reasons for this discontinuation, one can list the slow training process, the rel-
atively small compensation (25 dollars) for a 4-week long study and the annoyance of the
interruptions.

However, in case Cut Once’s functionalities are implemented in a real large-scale email
server (such as Gmail or Hotmail), adoption would be primarily decided by two factors:
the cost of the interruptions versus the benefit of the provided predictions. In princi-
ple, interruption costs can be lowered with carefully designed interfaces and well-tuned
confidence-based decisions, and prediction models can be made more accurate as more
data is collected. As long as users perceive the system as having a good cost/benefit,
widespread adoption of these functionalities can be reached.

To help design these functionalities in large systems, below we present a few guidelines

100

based on the results of this user study and final questionnaires:

• Ideally, training should not be noticeable by the user. Training should also be incre-
mental, that is, prediction models should be immediately updated as new messages
are sent.

• Leak detection and recipient recommendation should be independent functionalities,
potentially with independent models and interfaces.

• Interfaces should be as unobtrusive as possible. If possible, interfaces should pro-
vide leak detection alarms and recipient recommendations in the same window in
which messages are composed.

• Interruptions should be triggered by confidence-based decisions.

• Ideally, predictions should be available anytime during the message composition
process, and not only after the user hits the “send” button. Predictions could be
provided, for instance, at the end of each composed sentence.

• Prediction models should account for different user “send” actions (reply, reply-all
or compose).

• Users should be allowed to control a few parameters, such as timer period, number
of suggested addresses displayed to the user, interruption confidence threshold, etc.

5.6 Conclusions and Related Work

In this chapter we introduced CutOnce, a new Mozilla Thunderbird extension that im-
plements several of the previously proposed algorithms for email recipient recommenda-
tion and leak prediction, including Recency and Frequency baselines, a Rocchio TFIDF
method and a rank-based data fusion technique. Cut Once was written in Javascript, thus
requiring careful design decisions to optimize memory and processing resources on client
machines.

Based on Cut Once, we designed and evaluated a 4-week long user study that leaded to
very encouraging results. Cut Once prevented five real cases of email leaks, and provided
predictions with reasonable rank quality and little user annoyance. It was able to change
the way three subjects send email, and left an overall positive impression in the large
majority of the users. More than 80% of the subjects would permanently use Cut Once in
their email clients if a few improvements are implemented.

101

The most likely users to benefit from these functionalities, according to the subjects,
are persons who work with many different people, send a lot of messages or manage
several different projects (e.g., secretaries, managers, executives). In fact, three out of the
five leaks caught by Cut Once came from subjects whose occupations require a lot of email
message handling (a systems administrator and a network administrator).

Results also indicated no statistically significant difference in any performance metric
between the two baseline ranking methods implemented in Cut Once. This indicates that
the small improvements in MAP predicted in Section 4.5.2 may not be noticeable to the
end user. We believe, however, that other studies are necessary to further explore these
issues. Overall, this study showed that leak prediction and recipient recommendation can
potentially be adopted by a large number of email users.

The most related reference to this study is Facemail, an extension to a webmail system
developed to prevent misdirected email by showing faces of recipients in a peripheral
display while the message is under composition [Lieberman and Miller, 2007]. Several
alternatives for displaying these pictures were considered, and preliminary results from a
user study suggested that showing faces could significantly improve users’ ability to detect
misdirected emails with only a brief glance. In principle, many of the ideas in Facemail
can be combined with the algorithms provided by Cut Once, potentially leading to a much
better leak detection mail system.

Boufaden et al. [2005a,b] proposed a privacy enforcement system in which information
extraction techniques and domain knowledge were combined to monitor specific privacy
breaches via email. They were particularly concerned with entity breaches in a university
environment, such as student names, student grades or student IDs. Using 266 manually
labeled emails, they were able to correctly predict leaks with precision of 77%. Although
closely related to what we defined as leak detection, this system has a different goal and can
only be applied to the situations in which domain knowledge is available. Also, evaluation
was based on a semi-automatic process, and not a user study.

Other interesting email-based user studies have been reported in areas somewhat re-
lated to email leaks. Kumaraguru et al. [2007] described the design and evaluation of
an embedded training email system targeted to teach email users aboutphishing(mali-
cious attacks in which ordinary users are deceived by fraudulent emails and websites),
and compared different fishing training systems in a user study with 30 subjects. Other
researchers have focused on improving user’s decisions in potentially insecure situations,
such as opening a potentially dangerous email attachment or following links in a fish-
ing message. Brustoloni and Villamarı́n-Saloḿon [2007], for instance, modified Mozilla
Thunderbird and compared different warning display techniques in a user study with 20
participants.

102

●MRR

TFIDF

1 2 3 4 5

Overall impression

MRR

TFIDF

1 2 3 4 5

Overall experience

●

MRR

TFIDF

1 2 3 4 5

How often use suggestions?

●

MRR

TFIDF

1 2 3 4 5

Rank quality

MRR

TFIDF

1 2 3 4 5

Suggestions helpful

MRR

TFIDF

1 2 3 4 5

Suggestions annoying

Figure 5.9: Distributions of likert scores (1 to 5) given as answers to questions 1, 2, 4, 5,
6, and 7 in the final user study questionnaire(higher=better).

103

104

Chapter 6

Learning Robust Ranking Models

6.1 Introduction

In Chapter 4 we introduced different ranking models for the email recipient recommenda-
tion tasks. Some of these models were built exclusively upon textual information extracted
from previous email messages, while others were based entirely on non-textual informa-
tion, such as recency or frequency.

Adequately combining different types of evidence or features is not straightforward —
in the previous chapter we utilized an ad-hoc, though effective, unsupervised rank aggre-
gation scheme to combine the outputs of different models. In this chapter we combine
features of different natures in a more principled way. Each entity to be ranked (e.g.,
an email address, or a document) is represented as a bag of features, and machine learn-
ing techniques are used to learn weights associated with each feature. Learning effective
feature-based ranking models has recently become an active area of research [Elsas, Car-
valho, and Carbonell, 2008][Cao et al., 2006][Burges et al., 2005], particularly important
for tuning document ranking and search engine results.

Utilization of machine learning techniques for ranking (or re-ranking) has long been
seen in different areas, such as machine translation [Shen and Joshi, 2005], named-entity
extraction [Collins, 2001] and relationship identification for social network analysis [Diehl
et al., 2007]. In all of these tasks, objects (documents, named entity labels, target-language
translations, social network relationships) are ranked in response to some “query” (key-
words, text span, source-language sentences, node in social network). In this thesis we
are particularly interested in ranking email addresses (“objects”) in response of an email
message under composition (“query”).

105

One popular approach to learning ranking functions is to learn apreference function
over pairs of documents given a query. This preference function indicates to which degree
one document is expected to be more relevant than another with respect to the query. When
these preference functions are transitive, as is typically the case, the document collection
can be ranked in descending order of preference.

There are also many practical advantages in adopting a pairwise preference approach
for automatic learning of feature-based ranking functions. First, most classification meth-
ods can be easily adapted to this formulation of the ranking problem. Second, this frame-
work can be generalized to any graded relevance levels (e.g. definitely relevant, somewhat
relevant, non-relevant). Third, in many scenarios it is very easy to obtain large amounts of
labeled pairwise preference data [Joachims, 2002].

Using pairwise preferences, however, does pose some risks. In the presence of labeling
errors or other “noise” in the document relevance information, creating a training set by
pairing documents causes a quadratic increase in the number of noisy outlier observations.
These errors can have a strong negative impact on the quality and robustness of the learned
ranking model.

In this chapter we proposed a two-stage optimization strategy for learning ranking
functions that is robust to outliers and applicable to any method that learns a linear ranking
model. This new algorithm is computationally economical and, although developed for
recipient recommendation, it generalizes across many ranking tasks. Experimental results
show consistent and significant improvements for email recipient recommendation tasks,
outperforming state-of-the-art rankers as well as all models introduced in Chapter 4.

6.2 Learning to Rank

6.2.1 Pairwise-preference Ranking

Many of the recently proposed approaches to learn feature-based ranking functions take a
pairwise preference approach [Burges et al., 2005, Cao et al., 2006, Joachims, 2002, Elsas
et al., 2008, Yue et al., 2007]. In the pairwise framework, instead of taking documents
in isolation, document pairs are taken as instances in the learning process. The goal in
this setting is to learn apreference functionover document pairs, where the output of the
learned function indicates the degree to which one document is preferred over another for
a given query.

This approach is appealing for several reasons. First, learning a preference function

106

on pairs of documents reduces the ranking problem to a binary classification problem:
a correct (or incorrect) classification corresponds to correctly (or incorrectly) ordering a
document pair. Many classification algorithms have been adapted to this task, including
support vector machines [Joachims, 2002] and perceptron algorithms [Elsas, Carvalho,
and Carbonell, 2008].

Second, this approach imposes very few assumptions on the structure of the training
data — only that preferences among documents are somehow expressed. For instance, in
web search, click-through data has often been used by assuming that a clicked-on doc-
ument expresses a preference for that document over documents occurring higher in the
document ranking [Joachims, 2002]. Traditional absolute relevance judgments (binary or
graded relevance) can be easily converted to a pairwise preference training set by tak-
ing all pairs of document with differing relevance levels. Explicit document preferences
assessment can also clearly be used with this learning approach [Carterette et al., 2008].

We represent our learning setting as follow: a ranking dataset consists of a set of
queriesq ∈ Q, and a set of documents for each querydi ∈ Dq with some associated rele-
vance judgementyqi of documentd for queryq. Our training set for a single query is then
Sq = {(dq1, yq1) , (dq2, yq2) , ...}. The relevance judgementsy are discrete and ordered,
with values such as{Probably Relevant, Possibly Relevant, Not Relevant}, and a total or-
dering. exists between relevance levels, e.g.Probably Relevant. Possibly Relevant. Not
Relevant.

Documents are represented by a vector with query-dependent feature weightsfk. For
instance, documentdi given queryq is represented as:

dqi = [f0(di, q), f1(di, q), ..., fm(di, q)] (6.1)

where each feature scoring functionsfk usually represents some measure of similarity be-
tween the document and query. These can be derived from low-level features typically
used in information retrieval systems (such as query term frequency or inverse document
frequency), higher-level features such as the score assigned by a baseline ranking algo-
rithm for documentdi on queryq (such as BM25), or even query independent document
quality measurements (such as PageRank).

The goal of the learning procedure in the pairwise framework is to induce a document
score functions(•) such that

yqi . yqj ⇐⇒ s(dqi) > s(dqj) (6.2)

i.e., whenever documentdqi is preferred over (.) dqj, the scoring functions will return
a larger value fordqi than fordqj. This formulation makes clear the connection between

107

pairwise-preference learning and binary classification: given the preference relationship
on the left in Equation 6.2 a correct (or incorrect) classification corresponds to maintaining
(or violating) the inequality on the right.

It is often useful to explicitly model this task as binary classification. In this view,
one can build a new “paired” datasetS ′ for each queryq by creating document pairs from
documents with different relevant levels(dqi, dqj)l and associated preference labelszl.
That is,S ′

q = {((dqi, dqj)l, zql) |yqi 6= yqj,∀i, j} and

zql =

{
+1 if yqi . yqj;
−1 if yqi / yqj.

Analogously, we can write Equation 6.2 with this notation, lettingPl be thepairwise score
of document pair(dqi, dqj)l

Pl = zql × (s(diq)− s(djq)) > 0. (6.3)

Minimizing the number ofmisranks, i.e. incorrectly ordered document pairs, is in
principle a good criterion for rank optimization. It has been shown that minimizing the
number of misranks is equivalent to maximizing a lowerbound on various information
retrieval performance metrics, such as average precision and reciprocal rank [Elsas et al.,
2008]. However, the direct optimization of the number of misranks is an NP-hard problem
[Joachims, 2002], thus approximations are necessary. In the next Sections we describe
several approximations to this problem.

Here we are concerned with linear score functionss(•) that can be parameterized by
a single weight vectorw = [w1, w2, ..., wm]. Thus the learning algorithms output scoring
functions can be expressed ass(dqi) = 〈dqi, w〉, where〈•, •〉 is the inner product operation.
After learning this score function, the final document rankings can be derived by ranking
in descending order according to their score1.

6.2.2 Outliers in Pairwise Preference Ranking

Creating pairwise training data from absolute judgements may have some undesirable con-
sequences. Specifically, mis-labeling of a single document’s absolute judgement will lead
to many mis-labeled document pair preferences. When using graded relevance levels,
confusion or inconsistencies between different relevance levels may make mis-labeling
a common problem. If we consider each mis-labeled document a noisy observation or

1Notice that the score functions(•) takes a single document as argument, and not the document pair.

108

outlier, the process of pairing each document with all others of differing relevance levels
yields a quadratic increase in the number of outliers in the training data. This increase can
have a serious detrimental effect on performance.

To illustrate the effect of outliers on rank learning, we trained a RankSVM model (see
Section 6.3.1) on SEAL-1, a subset of the Set Expansion ranking dataset described in
Section 6.4.2. Given the model learnedw, we calculated the pairwise decision scoresPl

(Equation 6.3) for all training data instances and constructed a histogram, as shown in the
top of Figure 6.1. Most pairwise instances had positive scoresPl (top right in the figure),
showing that the learned ranking model correctly ordered most of the training instances.
Some instances, however, had negative scores and the few having the most negative scores
may be considered outliers (top left, Figure 6.1).

In order to measure the effect of these outliers, we then retrained our model on a
smaller training set after removing increasing numbers of outlier instances. That is, we
trained the same RankSVM model excluding from the training data a few instances whose
scores were below a cutoff value,P ′

l , and then evaluated the learned model on the same
test set. The bottom of Figure 6.1 shows test MAP results when training is performed
excluding outliers with pairwise scores below a threshold from the training data. In this
figure, the dashed horizontal line shows performance when all instances are used for train-
ing. The leftmost point shows the performance when instances with scores below−15
were removed from training. As the removal cuttoff increases up to−4, performance
goes up, indicating that the removal of outliers improves the ranker’s performance. For
larger cutoffs, this effect is curtailed by the larger numbers of instances being discarded
and performance drops.

Empirical evidence from several other prior studies also suggests that performance
of pairwise learning algorithms can be improved by removing or down-weighting these
outliers. In perceptron-based learning algorithms, outliers were identified as document
pairs that were consistently mis-ranked in several iterations through the training data, and
removal of these document-pairs improved the performance and stability of the learned
ranking function [Elsas et al., 2008, Gao et al., 2005]. This technique, known as theα-
bound [Khardon and Wachman, 2007], limits the influence of potential outlier observations
on the final learned hypothesis.

Although theα-bound is reported to work well with perceptron-based learners, it is
unclear if it generalizes to other learning algorithms. In this chapter we develop a general
mechanism to down-weight the influence of these outliers in pairwise preference learning
and apply this technique to a variety of learning algorithms. Results show significantly
improved performance of learned ranking functions across a variety of ranking tasks.

109

●

●

●

●
●

●
●
●●●●

●

●
●
●●

●

●

●●

●

●●

●●
●
●

●

●

●
●
●

●
●●

●●
●●

●●

●

●●●●
●
●
●
●
●●●

●●
●●

●
●●●

●●●●
●●

●●
●●

●
●
●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●
●

●●●
●●●
●●
●
●

●

●

●
●
●●

●

●
●

●

●
●●
●●●
●●
●●
●
●
●
●
●●●●
●
●●
●
●

●

●

●

●

●

1
10

10
0

10
00

F
re

qu
en

cy

−15 −10 −5 0 10 20
Pairwise Score Pl

correctly rankedincorrectly ranked

●
●

●

●

●

●

●

●

●

0.
86

16
0.

86
22

0.
86

28

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

−15 −10 −8 −6 −4 −2

Cutoff on Pairwise Score Pl′′

Figure 6.1: Example of outliers in pairwise ranking. (top) Histogram of pairwise scores.
(bottom) Mean Average Precision on the same test collection when excluding training
instances whose scores were below cutoff.

6.3 Robust Pairwise Ranking

In this section we propose a new learning algorithm to counteract the effect of outliers
in pairwise rank learning. The algorithm takes as input the linear model learned by any
linear ranker (a base model), and uses a non-convex optimization procedure to output a
more robust and effective final linear ranking model. To help explain the algorithm, we
start with a brief explanation of RankSVM.

110

6.3.1 RankSVM

One of the most successful algorithms for classification, Support Vector Machine (SVM),
has recently been successfully adapted to ranking using the pairwise framework [Joachims,
2002]. Given a binary paired datasetS ′ from a set of queries, an SVM classifier can
be naturally adapted to model this problem. The SVM model will attempt to solve the
following quadratic optimization problem:

min
w

1

2
‖w‖2 + C

∑
q,l

ξql (6.4)

subject to
ξql > 0, zql 〈w, dqi − dqj〉 ≥ 1− ξql ∀q, l

where non-negative slack variablesξql were introduced, and the tradeoff between margin
size and training error [Joachims, 2002] is controlled by the parameterC.

The optimization problem in equation 6.4 is equivalent to:

min
w

λ ‖w‖2 +
∑
q,l

[1− zql 〈w, dqi − dqj〉]+ (6.5)

whereλ = 1
2C

and[]+ is hingeoperator:

[x]+ =

{
x if x > 0

0 otherwise.
(6.6)

The first term in Equation 6.5 is a regularization term, and the second is frequently
referred to as thehinge loss. The hinge loss is a convex function that works as a good
approximation to the empirical 0/1 loss (exactly minimizing all misranks). In fact, mini-
mization of the hinge loss places an upper bound on the number of misranks in the paired
dataset [Joachims, 2002]. An illustration of the hinge loss function can be seen in Figure
6.2 as the dashed line.

6.3.2 Sigmoid Approximation

One of the disadvantages of the hinge loss function is its sensitivity to outliers. Outlier
points produce large negative scores (the far left of the score range in Figure 6.2). Because
the hinge loss linearly increases with larger negative scores, these outliers have a large

111

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

Score

Lo
ss

Hinge Loss

Sigmoid Losses

Figure 6.2: Loss Functions

contribution to the global loss. This large loss contribution in turn gives these outliers an
important role in determining the final learned hypothesis.

To address this problem, we propose to better approximate the number of misranks (the
empirical 0/1 loss) using a non-linear sigmoidal function. This function can be expressed
asg(σ, Pl) = 1 − sigmoid(σ, Pl), wherePl is the pairwise score (Equation 6.3), andσ is
a parameter that determines the steepness of the sigmoid function. The sigmoid function
is defined as:

sigmoid(σ, x) =
1

1 + e−σx
.

The sigmoid loss with several values ofσ is illustrated as the solid lines in Figure 6.2.

There are at least two advantages in using this particular loss function. First, this
non-linear penalty suppresses the effect of outliers, i.e., not giving larger loss values to
instances with very large negative pairwise scores. Second, this penalty can arbitrarily
approximate the empirical 0/1 loss by increasing theσ parameter.

Similar to equation 6.5, the optimization problem with the sigmoid-based loss function
can then be expressed as:

min
w

L(w) = λ ‖w‖2 +
∑
q,l

[1− sigmoid(σ, zql 〈w, dqi − dqj〉)] . (6.7)

112

Base Ranker

eg. Perceptron,
RankSVM,
ListNet, etc.

Sigmoid
Meta Ranker

Non−Convex
Optimization

Input Data Seed Model Final Model

Figure 6.3: Sigmoid-based ranking scheme: non-convex optimization procedure is seeded
with the output of a base ranking model.

The sigmoid loss function is not convex, thus the learning procedure is only guaranteed
to reach a local maximum. To avoid learning poor locally optimal solutions, the sigmoid
ranker is used as a second optimization step, refining the hypothesis produced by another
ranker. Specifically, sigmoid-based optimization is seeded with the hypothesis learned
from a base ranker, such as RankSVM, and then it converges to a local optimum close to
the (presumably good) seed hypothesis. The complete meta learning scheme is illustrated
in Figure 6.3.

6.3.3 Learning

We utilized a gradient descent technique to learn the final ranking modelw. Specifically,
we can differentiate the sigmoid-based loss function (Equation 6.7) with respect to the
parameter vectorw to obtain:

∂L(w)

∂w
= 2wλ−

∑
q,l

σF (σ, q, l) [1− F (σ, q, l)] (6.8)

whereF (σ, q, l) = sigmoid(σ, zql 〈w, dqi − dqj〉).

113

The gradient descent algorithm can then be written as:

w(k+1) = w(k) − ηk
∂L(w(k))

∂w
(6.9)

where, the indexk defines the number of iterations (epochs) and the step sizeηk in princi-
ple can be chosen based on a line search along the descent direction, i.e.,

ηk = argmin
η≥0

L(w(k) − η
∂L(w(k))

∂w
).

In practice, however, we used a step-size-halving heuristic forη, initially settingη = 0.05.
Wheneverη was too large to yield a decrease in the loss function,η was set toη/2, and
learning stops when the relative decrease in loss was less than10−8.

6.4 Ranking Datasets

6.4.1 Email Recipient Recommendation

Two ranking datasets were collected from theRecipient Recommendationtask described
in Chapter 4. As previously described, the goal is to find persons who are potential re-
cipients of an email message under composition given its current textual contents and its
previously-specified recipients. This is a ranking task: compared to traditional document
retrieval, the email under composition is the analogous to a query, and the email addresses
in the address book are the analogs of documents.

For the feature extraction process, the training set (senttrain) was chronologically
ordered and split in two subsets. We constructed a feature-based representation for the
subset with more recent messages, and used the subset with older messages to calculate
the feature values.

The first feature used was the K-Nearest-Neighbor textual score of the candidate email
address, as detailed in Section 4.4.4. The second feature was its TFIDF textual score, as
explained in Section 4.4.3.

We also used a frequency-based and a recency-based feature. The frequency one is the
relative frequency of a recipient’s email address in the training set. For each recipient we
extracted thenormalized sent frequencyas feature, i.e., the number of messages sent to
this recipient divided by the total number of messages sent to all other recipients in this
user’s training set. Based on Equation 4.14, thenormalized sent frequencyvalue of an

114

email addressca can be expressed asfrequency(ca)P
ca frequency(ca)

. Similarly, thenormalized recency
score of a recipient’s email addressca was used as feature. Based on Equation 4.15, this
feature value can be calculated asrecency(ca)P

ca recency(ca)
.

The TOCCBCC prediction subtask aims at predicting all recipients of a message being
composed, while the CCBCC subtask ranks all recipients inserted in the CC or BCC fields
of the message under composition. Thus the CCBCC task can use, in addition to text,
information extracted from the recipients already specified in the TO field of the email,
which can be exploited to improve recipient prediction the CC+BCC prediction task. A
last set of features was defined in terms of the co-occurrence between TO-addresses and
CC(and BCC)-addresses in the training set. The intuition behind this feature is that we
expect related CC-recipients to co-occur more frequently with the recipients already ad-
dressed in the TO field of the email message. For instance, given a message with three
TO-recipientsto1, to2 andto3, and a given CC candidate addresscci, let the frequency of
co-occurrence between recipientscci andtoj beF (toj, cci) (i.e., the number of messages
in the training set that hadtoj as well ascci as recipients). Then, for a given message, the
Relative CC Frequency(or RCCF) ofcci with the TO-recipients will be:

RCCF (cci) =

∑
j F (toj, cci)

frequency(cci)

wherefrequency(cci) is the number of messages sent to addresscci in the training set, as
defined in Equation 4.14.

The second type of co-occurrence-based feature is calledRelative Joint Recipient Fre-
quency(or RJRF). For a given message withJ TO-recipients,RJRF (cci) is defined as
the percentage from these TO-recipients that ever co-occurred in the training set withcci.
In other words, the percentage of these TO-recipients that were at least once addressed
in the same message ascci. Obviously both RJRF and RCCF features are used only
when the number of addresses in the TO field (i.e.,J) is two or more. In addition to
these two co-occurrence-based features, we also utilized a binary feature triggered when
RJRF (cci) = 1.

To summarize, the TOCCBCC ranking dataset contains four different features for rank-
ing, derived from frequency, recency and summarized textual scores. The CCBCC ranking
dataset contains seven features: the features from the TOCCBCC task, and three additional
co-occurrence features.

The final ranking dataset contains more than 22000 queries from 36 different users,
where an average of 633 queries per user are used for training. For testing, the TOCCBCC
tasks use an average of 144 queries per user, while 20 queries per user are used for CCBCC
testing. The number of documents (email addresses) to be ranked averages 377 per user.

115

6.4.2 Other Ranking Datasets

In order to show that the proposed technique is a general-purpose feature-based ranking
algorithm algorithm, we also experimented with six other datasets. The first three addi-
tional ranking datasets are part of the Learning to Rank (LETOR) Benchmark dataset [Liu
et al., 2007]. This dataset attempts to provide a standard set of document-query features
over several test collections. These features were extracted from all the query-document
pairs in the OHSUMED collection and the .GOV test collection using the queries and judg-
ments from the TREC 2003 and 2004 web track topic distillation tasks [Craswell et al.,
2003, Craswell and Hawking, 2004]. The relevance judgments in the TREC collections are
binary and in the OHSUMED collection are graded in three levels: “definitely relevant”,
“possibly relevant” and “not relevant”. The LETOR dataset also contains standardized
train/validation/test splits for 5-fold cross validation. The OHSUMED collection contains
106 queries and 25 features, TREC 2003 has 50 documents and 44 features, and there are
75 queries and 44 features in the TREC 2004 collection. Please refer to the original ref-
erence [Liu et al., 2007] for a detailed explanation of the feature sets. In our experiments,
the query-document feature values were normalized on a per query basis to the[0, 1] in-
terval using the linear scaling suggested by the producers of the LETOR dataset and no
additional feature selection or processing was done.

The last three ranking datasets were derived from SEAL, a Set Expander for Any Lan-
guage system [Wang and Cohen, 2007]. Set Expansion is the task of expanding an initial
set of objects into a larger and more complete set2 of objects of the same type. More specif-
ically, SEAL expands textual seeds (such as “California”, “Colorado” and “Florida”) by
automatically finding semi-structured web pages having lists of items, and then aggregat-
ing these lists and ranking the “most promising” items higher. The ranking then considers
different set of features such as the ones derived from proximity metrics, suffixes and pre-
fixes extracted from wrappers, and similarity scores calculated from random walks in an
entity graph [Wang and Cohen, 2007]. Our sample dataset from SEAL contains queries
in three different languages. Each language contained approximately 60 queries, and each
document (entity) was represented with 18 features. Experiments were carried out with a
3-fold cross-validation split with two of the languages used for training, and the remaining
language used for testing.

2Google Sets is a well-known example of a set expansion system on the web.

116

6.5 Experiments

6.5.1 Performance

In this section we describe experiments conducted with the sigmoid ranker using three
baseline rankers: RankSVM, the averaged ranking perceptron [Elsas et al., 2008] and
ListNet [Cao et al., 2007].

The averaged perceptron ranking algorithm [Elsas et al., 2008] is a simple and fast on-
line ranking algorithm that scales linearly with the number of training examples. Although
recent results suggested that this algorithm may require thousands of iterations to produce
reasonable performance [Elsas et al., 2008], here we trained it with five iterations only. By
“crippling” the algorithm we produced a low quality input model to the meta ranker, and
investigated how the meta ranker responds to a weak initialization.

ListNet is a recent feature-based ranking algorithm [Cao et al., 2007] that, instead
of learning by minimizing a document pair loss functions, it minimizes a probabilistic
listwise loss function. That is, it utilizes document lists, instead of document pairs, as
instances in the learning procedure. Although it is not a pairwise ranking algorithm, List-
Net outputs a linear ranking model that can be used as input in the sigmoid optimization.
Hence, not only can we investigate how ListNet compares with other pairwise baseline
learners, but also study if the sigmoid meta ranker can improve a non-pairwise base rank-
ing model.

Unless otherwise noted, in all experiments the sigmoid parameterσ was set to 1.0,
and the regularization parameter C for RankSVM was selected from a search within the
discrete setC ∈ {10−5, 10−4, .., 101} using a holdout set.

We start with experimental results from the largest ranking collection, the two recip-
ient recommendation tasks. Performance results for these ranking tasks are illustrated in
Figures 6.4, showing AUC (Area Under the ROC Curve), R-Precision and Mean Average
Precision results for both TOCCBCC and CCBCC ranking tasks.

It is noticeable from these figures the large performance gains that the sigmoid opti-
mization achieves with the perceptron algorithm baseline. On both tasks, the meta ranker
produced significantly better results than the perceptron ranker. There are also visible
performance gains for sigmoid ranker applied to RankSVM, although more modest. The
sigmoid optimization applied after ListNet did not seem to improve performance on the
TOCCBCC tasks, even though it boosted results for the CCBCC task.

These performance numbers are also significantly better than all models presented in
Chapter 4. They outperformed the best models in isolation (as in Table 4.2) as well as the

117

TOCCBCC CCBCC

A
re

a
U

nd
er

 th
e

R
O

C
 C

ur
ve

0.
6

0.
7

0.
8

0.
9

1.
0

TOCCBCC CCBCC

R
−

P
re

ci
si

on

0.
30

0.
35

0.
40

0.
45

0.
50

Perceptron
RankSVM
Listnet

TOCCBCC CCBCC

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

0.
40

0.
44

0.
48

0.
52

Figure 6.4: Performance for the recipient recommendation ranking tasks. Whisker shows
baseline + sigmoid.

best results obtained by rank aggregation techniques (as in Table 4.5).

Performance on the LETOR collections are illustrated in Figure 6.5, showing MAP
for each test collection and base learner. Mean average precision results are shown for
each one of the LETOR collections (TREC-04, TREC-03 and OHSUMED) and for each
ranker. In all tasks, the sigmoid optimization significantly improved results for the av-
eraged perceptron ranker. For RankSVM, the sigmoid ranker produced improvements in
all collections, with the largest gain for TREC-03. The ListNet + sigmoid ranker, on the
other hand, experienced its largest performance improvement on the TREC-04 collection,
although a small gain was also observed in TREC-03 as well.

Experimental results on the Set Expansion ranking collections are pictured in Figure
6.6. Again, visible MAP improvements in all three datasets can be observed for the sig-
moid ranker on the top of the averaged perceptron. More surprising perhaps are the even
larger performance gains obtained on the top of ListNet for all three datasets. Although
smaller in magnitude, the sigmoid ranker also produced visible performance gains for all
three SEAL datasets when applied to RankSVM.

Full results for Mean Average Precision are given in Table 6.1. Statistical significance
tests of the “+sigmoid” columns over the values in the previous columns are indicated with
? or ?? (for paired t-test withp < 0.05 or 0.01, respectively) and† or †† (for the Wilcoxon
Matched-Pairs Signed-Ranks test withp < 0.05 or 0.01, respectively).

Improvements provided by the sigmoid ranker were statistically significant for all base
learners on all three SEAL ranking datasets. The sigmoid optimization also increases
average perceptron in all ranking problems. MAP values obtained by ListNet+Sigmoid
were also significantly better for the TREC-04 and CCBCC ranking tasks. Additionally,
the meta ranker significantly improved RankSVM on the TOCCBCC ranking task.

It is interesting to note how significantly the perceptron ranker can be improved by

118

the meta ranker. Its final performance numbers were comparable, and sometimes slightly
better, than those obtained using the sigmoid optimization on top of the stronger base
rankers. Although the sigmoid meta-ranker is only guaranteed to find a local optima, this
local optima is sometimes better when the learner is seeded with a relatively weak ranking
model. This may be an indication that initially using a method that is sensitive to outliers
can lead the learner astray, yielding a seed model that is too strongly influenced by those
outliers. The perceptron learner, however, was intentionally crippled, only making a small
number of passes through the data. This training process doesn’t allow the outliers to have
such a strong influence on the seed model, potentially yielding a better final model.

Overall, the sigmoid meta ranker significantly improved ranking performances for
most test cases in Table 6.1. In the LETOR datasets, however, this was not the case —
although the meta ranker improved performance on average, these improvements were not
statistically significant. Because the LETOR collections have a relatively larger number
of features and a smaller number of queries, we speculate that these ranking models are
overfitting the training data. In fact, we observed that very small changes in the RankSVM
regularization parameterC produced very different ranking performance on these three
collections.

These results also highlight that the sigmoid ranker is in fact a general purpose linear
meta ranker. Not only can it improve pairwise ranking functions, but also fine-tune any
linear ranking model — as attested by the ListNet + sigmoid performance.

Collection Perceptron +Sigmoid RankSVM +Sigmoid ListNet +Sigmoid
TOCCBCC 0.425 0.479??†† 0.472 0.480??†† 0.480 0.479
CCBCC 0.463 0.524??†† 0.516 0.521 0.513 0.524??††

OHSUMED 0.318 0.451??†† 0.447 0.448 0.450 0.449
TREC-03 0.067 0.254??†† 0.203 0.244 0.235 0.248
TREC-04 0.324 0.385?† 0.385 0.393 0.312 0.377??††

SEAL-1 0.851 0.866??†† 0.862 0.866†† 0.843 0.866??††

SEAL-2 0.869 0.893??†† 0.890 0.894†† 0.864 0.893??††

SEAL-3 0.906 0.924??†† 0.916 0.920?† 0.901 0.923??††

Table 6.1: Mean Average Precision values for experiments in all collections. Statistical
significance tests over the values on the previous column are indicated with? or ?? (for
paired t-test withp < 0.05 or 0.01, respectively) and† or †† (for the Wilcoxon Matched-
Pairs Signed-Ranks test withp < 0.05 or 0.01, respectively).

119

OHSUMED TREC−03 TREC−04

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

0.
0

0.
1

0.
2

0.
3

0.
4 Perceptron

RankSVM
ListNet

Figure 6.5: Performance (MAP) on LETOR Dataset. Whisker shows baseline + sigmoid.

SEAL−1 SEAL−2 SEAL−3

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

0.
80

0.
84

0.
88

0.
92

Perceptron
RankSVM
ListNet

Figure 6.6: Performance (MAP) on Set Expansion Experiments. Whisker shows baseline
+ sigmoid.

120

0 5 10 15 20 25 30 35

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

Epoch (gradient descent iteration)

A
U

C
 (

tr
ai

n)

●

● ●

●

Baseline Learners

Perceptron
RankSVM
ListNet
Random Initialization

Figure 6.7: Learning curve of sigmoid ranker for several baseline algorithms.

6.5.2 Learning Curve

Typical sigmoid ranker learning curves can be seen in Figure 6.7. This curve illustrates
training set AUC (i.e., performance on the training set in terms of Area Under the ROC
Curve) versus the number of sigmoid gradient descent iterations for a representative
CCBCC prediction task3.

The initial points (epoch=0) in Figure 6.7 show the AUC values obtained by the base
rankers. This is the starting point of the sigmoid rank optimization. In this particular
example, RankSVM provides a higher initial AUC than ListNet, which in turn outperforms
the averaged perceptron.

The RankSVM+Sigmoid optimization then proceeds smoothly, with performance val-
ues reaching a plateau around 13 gradient descent iterations. ListNet+Sigmoid and Per-
ceptron+Sigmoid start from different hypotheses, but are able to reach relatively high per-
formance levels in less than three gradient descent iterations, and then converge to ap-
proximately the same plateau in less than 17 iterations. For comparison, one more curve
was included in Figure 6.7: a sigmoid ranker with a random initial model. As expected, it
takes considerably longer to reach reasonable AUC values, and converges to plateau levels

3The training set AUC was shown here because it corresponds directly to minimizing the number of
misranks in the training set [Yue et al., 2007].

121

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

sigma (σσ)

R
el

at
iv

e
Im

pr
ov

em
en

t o
ve

r
R

an
kS

V
M

 (
%

)

0.1 1.0 2.0 5.0 7.0 10.0

●

●

●

●

●

●

● TOCCBCC
Linear (R2=0.95)

CCBCC
Linear (R2=0.61)

Figure 6.8: Relative Improvements in MAP over RankSVM for different sigma (σ) values.

in less than 30 iterations.

Figure 6.7 illustrates two reasons why the sigmoid meta ranker can provide robust
pairwise ranking with a small extra computational cost. First, the number of iterations
necessary for convergence in the sigmoid ranker was usually small, since the starting point
(the output of base learner) was already a well-tuned model. Second, the first few gradient
steps were usually responsible for most of the performance gains observed.

6.5.3 Sigma Parameter

The steepness of the sigmoid function is controlled by the parameterσ. In principle, one
can arbitrarily approximate the true 0/1 empirical loss function by increasing the values
for this parameter. Experiments below showed, however, that increasing values ofσ do
not correspond to better overall ranking performance.

Figure 6.8 shows, for both recipient prediction tasks, the relative improvements in
MAP over RankSVM obtained by the sigmoid optimization, versus different values for the
σ parameter in the sigmoid function. The values ofσ considered were{0.1, 1, 2, 5, 7, 10}.
Figure 6.8 clearly shows a trend that smaller values ofσ produce better ranking perfor-
mance for both ranking tasks.

Arbitrarily increasing theσ parameter generates steeper loss curves whose gradient

122

information is largely concentrated around the decision region. We speculate that, for large
σ values, this reduction of gradient information from other regions of the loss function is
responsible for the observed lower performance.

6.6 Discussion and Related Work

In this chapter we introduced a new general meta-learning ranking algorithm able to sup-
press the undesirable effects linked to outliers in pairwise rank learning. The algorithm is
essentially a non-convex optimization procedure using a sigmoid loss, in which any linear
baseline ranking function can be used as input. Experiments on several different ranking
datasets showed that this meta ranker produced statistically significant performance gains
over various state-of-the-art baseline rankers. Furthermore, it significantly outperformed
all email recipient prediction models introduced in Chapter 4.

The idea of controlling or downplaying outliers in order to produce more robust models
has been previously advocated for classification. For instance, Xu et al. [2006] discusses
how the soft margin in SVM can be susceptible to outliers, and proposes methods for
outlier suppression in classification problems.

In contrast, the algorithm proposed in this chapter is a meta-ranker — not a classi-
fication algorithm — and to the best of our knowledge, it is the first pairwise ranking
algorithm to explicitly make use of a second stage non-convex optimization procedure.
There are various reasons to use a non-convex loss, as explained by Yang and Hu [2008]:

“On the one hand, although convex loss functions are viewed as highly prefer-
able because of their computational advantages (unique optima, ease-of-use,
ability to be efficiently optimized by convex optimization tools, etc.) as well
as their amenability to theoretical analysis (generalization error bounds can
be easily produced based on convex risk minimization [31][2][17]), they are
poor approximations to the 0-1 loss and lack of robustness to outliers due to
their boundlessness [13]. On the other hand, non-convex loss functions pro-
vides better approximations to the 0-1 loss and hence can achieve substantially
higher generalization accuracy [28] and earn scalability and robustness ad-
vantages [7], however, they are generally bound to suffer from computational
difficulties, e.g., existence of local minima (leads to suboptimal performance),
having to be optimized by highly complex tools such as concave-convex pro-
cedure, etc.”

123

One of the main reasons why the proposed sigmoid ranker performed well experi-
mentally for pairwise preference learning was because the process of pairing up training
instances is likely to produce a larger number of outlier points, a situation in which non-
convex losses are expected to be more robust than convex ones. In fact, in all the ex-
periments reported in Table 6.1 the SVMRank+Sigmoid algorithm performed better than
RankSVM, with statistically significant differences in half of the ranking datasets. Gener-
ally speaking, it is expected that in datasets with relatively limited number of outliers the
difference between SVMRank and the SVMRank+Sigmoid will not be significant. Be-
cause the Sigmoid learner optimizes a closer approximation to the 0-1 loss function, it can
potentially learn ranking models with better generalization power; thus, when seeded with
RankSVM’s output, it is not expected to significantly underperform RankSVM.

Related to the proposed meta-ranking algorithm, different classification schemes have
attempted to optimize non-convex loss functions in order to trade convexity for other desir-
able learning characteristics, such as scalability and robustness. For instance, Perez-Cruz
et al. [2003] presented different loss functions to be applied for classification tasks after
being seeded by a traditional SVM classifier model. Their main goal was to better ap-
proximate the empirical classification loss (number of classification mistakes). Collobert
et al. [2006] explained how concave-convex programming can be applied optimize a non-
convex loss function and produce more scalable classification models. Yang and Hu [2008]
proposed a new stagewise least square loss function for classification that entails several
benefits over a convex loss.

In another related reference, Tsai et al. [2007] also found that substituting RankNet’s
asymptotically linear cross-entropy loss [Burges et al., 2005] for a non-convex “fidelity-
based” loss function improved ranking performance. In this regard, their algorithm,
FRank, bears some similarity to the sigmoid meta-ranker proposed here. Although these
two algorithms share a similar motivation, the algorithm presented here acts as a general-
purpose meta-ranker for any linear seed ranker and provides added flexibility of theσ
parameter, controlling the steepness of the loss. Also, the proposed sigmoid-based ranker
is optimized through gradient descent, whereas the FRank algorithm uses a boosting
framework for optimization, which typically tends to have slower convergence properties.
Additionally, considering that FRank’s optimization uses a query normalization factor, it
is not clear whether most of its reported performance gain is due to the non-convex loss
or to the query normalization procedure. Finally, because of the non-convex nature of
the loss functions, both rankers are subject to local minima, but the sigmoid-based meta
ranker can be seeded by any linear ranking model, including FRank itself, potentially
leading to better final hypotheses.

124

Chapter 7

Conclusions

7.1 Summary

In this thesis we proposed new tasks and developed new machine learning techniques to
improve email management. In particular, we focused on two aspects of email commu-
nication related to user intention. First, intentions expressed in the textual contents of the
messages. Second, intentions behind to whom a particular message should or should not
be addressed.

We started by introducing a taxonomy ofemail acts, a shallow semantic layer summa-
rizing the intentions behind the textual contents of email messages. Inspired by Speech
Act theory, the formulation of this taxonomy was an attempt to categorize the most com-
mon uses of email in the workplace, instead of all possible speech acts in the English
language. A labeling procedure confirmed that the taxonomy presented relatively good
levels of inter-annotator agreement. Several experiments showed that machine learning
techniques were able to learn effective patterns for email act classification, particularly
after careful message preprocessing and feature generation.

Then we focused on automated methods for message addressing, with the goal of
helping prevent high-cost errors associated with email exchange. We started by proposing
a new task,email leakdetection, i.e., detecting when a message is accidentally addressed
to unintended recipients. We provided examples of common scenarios for this kind of
mistake, and proposed several methods to accomplish leak detection. In order to learn
leak detection methods, artificial email leaks were carefully simulated in a large real-world
email corpus. Results indicated that close to 82% of the simulated leaks could be detected
by the proposed techniques. Furthermore, a variation of the proposed method was able to

125

correctly identify two real email leaks from the Enron corpus.

In a second message addressing task, we focused onrecommending recipientsfor mes-
sages under composition. This is particularly useful to prevent users from forgetting to
address intended recipients in their messages, an issue that may lead to communication
delays, misunderstandings and missed opportunities. We proposed several ranking models
for this task, including Information Retrieval baselines as well as reranking-based ap-
proaches. Overall, tests on a large email collection revealed the combination of base rank-
ings using rank aggregation methods provided the best overall ranking performance. Using
the same techniques, we also addressed the related problem of email auto-completion and
showed that the proposed methods can significantly improve auto-completion ranking on
a large collection of email users.

We then implemented leak detection and recipient recommendation models in a pop-
ular email client. We designed and developedCut Once, a new extension to the Mozilla
Thunderbird email client. Cut Once was written mostly in Javascript, thus demanding
careful memory and processing optimization in order to deliver usable leak detection and
recipient recommendation models. Based on Cut Once, we conducted a 4-week long user
study with 26 subjects. Results were positive: more than 15% of the subjects reported that
Cut Once prevented real email leaks, and more than 47% of them utilized the provided
recipient recommendations. Although there was no signicant difference reported between
different baseline ranking methods, the study clearly showed that both leak prediction and
recipient recommendation are welcome additions and can be potentially adopted by a large
number of email users — more than 80% of the subjects would permanently use Cut Once
in their email clients if a few interface/optimization changes were implemented.

Finally, we introduced a new general purpose ranking algorithm capable of learning
robust ranking models. The algorithm is a feature-based meta-ranker, and can be seeded
with any linear baseline ranking model. It performs a non-convex optimization proce-
dure over a sigmoidal loss function, thus improving robustness by preventing the effects
of outlier points. Experimental results confirmed that this technique provides rank perfor-
mance gains not only on the email recommendation tasks but also on other ranking tasks,
outperforming all previously introduced methods.

7.2 Future Directions

This thesis opened several avenues for future investigation. One clear avenue lies in im-
proving Cut Once, and many of these possible improvements have already been listed by
the user study subject’s feedback in Table 5.3 and Appendix B.4. Overall, we believe there

126

are at least four clear directions for future work on Cut Once.

The first one is related to efficiency. Ideally we would like to provide state-of-the-art
rankings in Cut Once, but memory, processing and privacy limitations pose serious re-
strictions on what algorithm can be efficiently implemented on the client machine. Such
restrictions can be largely overcome if leak detection and recipient recommendation al-
gorithms were implemented on email servers, instead of email clients. This would allow
using more effective ranking algorithms (such as the ones presented in Chapter 6) as well
as more elaborate features, without suffering the long training times reported by the users
in Chapter 5.

The second one is optimizing the interruption level for displaying leaks. Because we
needed to produce reliable estimates of how often leaks occurred, Cut Once displayed leak
alarms for all sent messages. In principle, however, users should only be subject to these
alarms when the system is reasonably confident on the occurrence of a real leak. Questions
on how to optimize and personalize the display of leak alarms were left for future research.

The third one is improving the user interface, a key factor on the adoption and success
of systems like Cut Once. The interface design should be unobtrusive, self explanatory,
and look as familiar as possible to the user. Departing from Thunderbird should allow
a more careful user interface design, particularly if a server-based web mail system is
utilized. Another important improvement is to allow the user to configure different para-
meters of the system, such as the timer interval, conditions and confidence level to display
interruption, etc.

Fourth, the study described in Chapter 5 did not have enough user subjects to allow
a more comprehensive analysis of the methods involved. An obvious direction of future
research lies in conducting a user study in which more users were taken as subjects and
most of the aforementioned improvements were incorporated to the final system.

Another avenue for future research is to model these different intentional layers not
from a single user’s standpoint, but instead from the perspective of anetwork of email
users— that is to say, shifting the research focus from the email client to the email server
side. It is reasonable to assume that tasks such as leak detection and recipient sugges-
tion can greatly benefit from traffic-based information collected from other users in the
network, available only on the email server. A network-centric approach to modeling in-
tention could be very valuable to an organization, but raises many research issues — for
instance, one long-term research challenge would be obtaining the benefits of a network
approach without an undo loss of privacy for the users. This shift in research focus also
poses great opportunities for the development of new machine learning techniques and
evaluation approaches.

127

As discussed in Chapter 3, there are several possible reasons for an email to be uninten-
tionally sent to the wrong recipients: aggressive auto-completion of email clients, hitting
the reply-all button instead of the reply button, the inherent ambiguity in email addresses
caused by similar first and last names as well as by similar email address aliases and do-
mains, keyboard issues, not name a few. One particular topic not extensively explored in
this thesis, which that definitely points to a promising direction of future work, is how
to carefully model all these different causes for email leaks, and how to incorporate such
models in a working email system.

In Chapter 6 we presented evidence that outlier points can be generated by the process
of creating a pairwise preference learning training dataset, and that these outliers may
affect the robustness of the final ranking models. A promising direction for future investi-
gation lies in carefully modeling the generation of pairwise outliers, as well as the different
types of errors that assessors make when labeling a large ranking collection. We believe
that this can contribute to a better understanding of the pairwise preference learning prob-
lem, and potentially lead to the development of better ranking models.

128

Appendix A

Email Act Labeling Guidelines

The taxonomy of email acts proposed here was initially inspired by ideas from Speech
Act theory [Searle, 1969, 1975] and applications from the Speech Recognition and Dialog
Systems communities [Stolcke et al., 2000, Levin et al., 2003]. These ideas were increas-
ingly refined over nine iterations in order to account for specific characteristics of email
exchange.

The email act labeling process was based on the following guidelines. After reading
an email message, the accessors should tag the message with one or more noun-verb pairs
from the list below. Examples of such pairs are “propose-meeting” and “request delivered-
Data”. The nouns and verbs allowed to be used are described below.

A.1 Verbs

• request(Req): ask someone else to an action/task/delivery, ask for info or favor, to
question, to interrogate, to query, an order/command here is interpreted as a request
for action/task, a question or query is a request for information.

• deliver(Dlv): act of sending something/information, express an opinion is delivering
of opinion (see the email Noun dInfo.dOpinion), to inform, “fyi”. It can have three
special subtypes:

– announceProgress(Dlv.AProg): announce status of action/task.

– announceFailure(Dlv.AFail): announce failure to do action/task/delivery

129

– announceCompletion(Dlv.Cmp): announce completion of action/task/delivery

• commit(Cmt): commit self to an action/task/delivery or meeting. Examples are “Ill
have it ready by noon”, “Ill be there at midnight” or “I can attend this meeting at
3pm”. Also a confirmation or agreement (“I agree”) on final decision.

• propose(Prop): commit self, request others. Offers are considered proposals. To
volunteer is considered an offer. This act is usually associated with a starting ac-
tion/task. Note that counterproposals are under the amend act.

• remind(Rem): reminders of deadline or threats to keep commitment.

• amend(Amd): modify parameters and/or counter-propose or suggest changes
on already ongoing action/task/meeting/etc. Its never an act that initializes a
task/action/meeting. Negotiate (counterpropose) the schedule of a meeting.

• refuse(Ref): refuse to perform an action/task/delivery, decline, reject a meet-
ing/action/task. It has a special subtype:

– refuseAndReassign(Ref.Rsgn): refuse and forward an action/task/delivery to
someone else. Very subtle difference to the request act.

• greet (Grt): thank someone, congratulate, apologize, greet, welcome, farewell,
“you’re welcome”.

• other(Otr) : flames, jokes, anything not well described by previous verbs.

A.2 Nouns

• deliveredInformation(dInfo): send responses, information, etc. It has three special
subtypes:

– deliveredData(dInfo.dData): send file, ptr to file, document with file, attach-
ments, etc.

– deliveredOpinion(dinfo.dOpinion): opinions, “I vote for that”, “I be-
lieve/think/suspect/bet/...”, speculation, complaint.

– meetingInfo(dInfo.meet): when its not a Request, a Propose or a Commit to a
meeting. Instead it just adds information about the meeting, as in “the meeting
will be in room A” or “I’ll be late to the meeting”.

130

• action(actn): something that can be done quickly; atomic task; short timespan.

• meeting(meet): action that happens at a certain time (and place, possibly).

• task(task): something that takes a while, sequence of actions with long timespan.

• no-tag(no-tag): cannot be determined. not sufficient info.

Obs 1 : sentences like “please let me know you have questions” or “please let me
know if I can help” in the end of an email message are, most of the times, polite sentences.
Rarely Requests or Proposes.

131

132

Appendix B

User Study Supporting Material

This Appendix contains supporting material associated with the Cut Once user study.

B.1 Recruiting Message

Recruitment for the user study was carried out in two distinct ways. A web site detailing
the study was created, and recruiting posters were placed in many locations of Carnegie
Mellon University and in the University of Pittsburgh. In addition, broadcast emails were
sent to several mailing lists, also with links to the user study website. The recruiting email
message is displayed below:

From: email.research.cmu@gmail.com
Subject: Mozilla Thunderbird users needed for User Study

Student and Staff participants are sought for a research study using a Mozilla
Thunderbird extension developed in CMU (called Cut Once). The goal is to
study how to improve the way people compose and address email messages.

The task is pretty simple: install the extension and use it for a small period
of time. No appointments or time commitments necessary. Just keep on using
Thunderbird, with minimum or no interruptions at all.

Requirements:
Must send email using Mozilla Thunderbird on a daily basis.
Must be at least 18 years-old.

133

For download and installation details, please check:
http://www.cs.cmu.edu/˜vitor/cutonce/cutOnce.html

Compensation will be provided ($25) for qualified users upon completion
of the study (when a small questionnaire will be applied). For further
details, please contact Vitor Carvalho and Ramnath Balasubramanyan at
email.research.cmu gmail.com

B.2 Initial Questionnaire

An initial questionnaire was applied to all user subjects. The goal was to collect general
user information and to estimate general email patterns. The questions are listed below.

- Age?

- Gender?

- Occupation?

- How often do you use Mozilla Thunderbird?

- What other means or other clients do you use for email? (Webmail, Gmail,
etc.)

- How many computers or devices do you use to answer emails?

- How many non-spam messages do you receive in a week (approximately)?

- How many non-spam messages do you send in a week (approximately)?

- Approximately, how many people do you have in your address book?

- Whats the percentage of work versus personal email?

- In what other languages do you compose emails?

B.3 Final Questionnaire

After finishing using Cut Once for the necessary number of weeks, subjects were compen-
sated after filling a final questionnaire. The questionnaire contained questions about the
user’s general experience using the extension, the quality of predictions, usage patterns,

134

interface issues, suggestions for improvement, among other topics. The final questionnaire
is detailed below.

1. What is your general impression of the extension (likert 5(excellent)
4(good) 3 (neutral) 2(bad) 1(very bad))?

2. How would you grade your overall experience (likert 5(excellent)
4(good) 3 (neutral) 2(bad) 1(very bad))?

3. Did the extension catch any email leak? (yes or no) If so, please tell us
about it.

4. How often did you use the suggestions? (5(always) 4(frequently)
3(sometimes) 2(rarely) 1(never))?

5. In your opinion, what was the quality of the suggested rank? (likert
5(excellent) 4(good) 3 (neutral) 2(bad) 1(very bad))?

6. Were the suggestions helpful? (likert 5(very helpful) 4(helpful) 3 (”kind
of”) 2(marginally) 1(not at all))?

7. Were the suggestions annoying? (1(always) 2(frequently) 3(sometimes)
4(rarely) 5(never))?

8. Did the extension change the way you compose messages? (yes or no)
If so, please tell us about it.

9. Would you keep on using this extension after this study? (yes or no)
Why?

10. What do you think about the interface? Give a score (1(very bad) to
5(excellent)) to the interface.

11. Who do you think would consider this extension helpful? (what kind of
people) Would you recommend it (to your friends, etc.)? (yes or no)

12. What did you like and dislike about it? What did you like and dislike the
most? (open question)

13. Where could it be improved? (open question)

14. Suggestions or comments? (open question)

15. If your suggestions and ideas were implemented, would you consider
using it permanently? (yes or no). Why?

135

B.4 User Comments

The user study subjects had a chance to provide feedback on their experience during the
final questionnaire. In addition, they could also provide feedback using the “Einstein”
button. This functionality was available not only to the user subjects, but also to any Cut
Once user around the world.

Below we list some of the most interesting comments received about Cut Once.

• “it encouraged me to copy more people (increased visibility)”

• “I really don’t make any mistakes on choosing a recipient.”

• “I love the prediction function! It correctly predicted the missing recipient.”

• “In the ’Suggested recipients’ section, the top one or two matches are often very
good suggestions based on the content of the email.”

• “I think it is working fine”

• “saved me time sometimes”

• “you guys did a good job”

• “when I’m writing an e-mail, it gives me another chance to check that I’m sending
to correct people, so it gives me more confidence.”

• “no international support?!?!”

• “I would use it with the right interface”

• “(it should) make suggestions during the email composition, not after”

• “The color scheme is helpful”

• “I would eliminate the timeout on send and just require a button click. I was reading
the email lists and the timer expired.”

• “the countdown makes me nervous. Remove it.”

136

Bibliography

J. A. Aslam and M. Montague. Models for metasearch. InProceedings of ACM SIGIR,
pages 276–284, 2001. 4.5.2, 5.2.1

J. L. Austin.How to Do Things with Words. Clarendon Press, Oxford, 1962. 1.2, 2.1, 2.2,
2.8.1

R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison-Wesley,
1999. URLhttp://sunsite.dcc.uchile.cl/irbook . 4.5.1, 4.5.1

R. Balasubramanyan, V. R. Carvalho, and W. W. Cohen. Cut once: Recipient recommen-
dation and leak detection in action. InCEAS’08: Conference on Email and Anti-Spam,
2008. 1.2

K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding in enterprise
corpora. InSIGIR 2006, 2006. 1.2, 4.4.1, 4.4.1, 4.4.2, 4.5.1, 4.5.1, 4.6

P. N. Bennett and J. Carbonell. Detecting action-items in e-mail. InSIGIR ’05: Proceed-
ings of the 28th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 585–586, 2005. ISBN 1-59593-034-5. 1.1, 2.8.3,
2.8.4

A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra. A maximum entropy approach to natural
language processing.Computational Linguistics, 22(1):39–71, 1996. 2.6.2

N. Boufaden, W. Elazmeh, Y. Ma, S. Matwin, N. El-Kadri, and N. Japkowicz. Peep— an
information extraction base approach for privacy protection in email. InConference on
Email and Anti-Spam (CEAS’2005), 2005a. 3.7, 5.6

N. Boufaden, W. Elazmeh, Y. Ma, S. Matwin, N. El-Kadri, and N. Japkowicz. Privacy
enforcement in email project. InProc. Of the Privacy, Security and Trust Conference,
2005b. 5.6

137

http://sunsite.dcc.uchile.cl/irbook

J. C. Brustoloni and R. Villamarı́n-Saloḿon. Improving security decisions with polymor-
phic and audited dialogs. InProceedings of the 3rd Symposium on Usable Privacy and
Security, SOUPS 2007, Pittsburgh, Pennsylvania, USA, July 18-20, 2007. ACM, 2007.
5.6

J. D. Brutlag and C. Meek. Challenges of the email domain for text classification. InProc.
17th International Conf. on Machine Learning, pages 103–110, 2000. 1.1

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to rank using gradient descent. InICML ’05: Proceedings of the 22nd inter-
national conference on Machine learning, pages 89–96, New York, NY, USA, 2005.
ACM Press. ISBN 1-59593-180-5. doi: http://doi.acm.org/10.1145/1102351.1102363.
6.1, 6.2.1, 6.6

Buschbeck-Wolf, T. Fujinami, M. Kipp, S. Koch, E. Maier, N. Reithinger, B. Schmitz,
, and M. Siegel. Dialogue acts in verbmobil-2. Technical Report Second Edition.
Verbmobil-Report 226, 1998. 2.8.2

C. S. Campbell, P. P. Maglio, A. Cozzi, and B. Dom. Expertise identification using email
communications. InCIKM, 2003. 4.6

Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking svm to
document retrieval. InSIGIR, pages 186–193, New York, NY, USA, 2006. 6.1, 6.2.1

Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise approach
to listwise approach. InICML. ACM, 2007. 6.5.1

J. Carletta. Assessing agreement in classification tasks: the kappa statistic.Computational
Linguistics, 22(2):249–254, 1996. 2.4

B. Carterette, P. N. Bennett, D. M. Chickering, and S. T. Dumais. Here or there: Preference
judgments for relevance. InEuropean Conference on Information Retrieval, 2008. 6.2.1

V. R. Carvalho and W. W. Cohen. On the collective classification of email ”speech acts”.
In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 345–352, 2005. ISBN
1-59593-034-5. 1.2

V. R. Carvalho and W. W. Cohen. Improving email speech act analysis via n-gram se-
lection. InProceedings of the HLT/NAACL 2006 (Human Language Technology con-
ference - North American chapter of the Association for Computational Linguistics) -
ACTS Workshop, New York City, NY, 2006a. 1.2

138

V. R. Carvalho and W. W. Cohen. Learning to extract signature and reply lines from email.
In Proceedings of the Conference on Email and Anti-Spam, Palo Alto, CA, 2004. 2.5

V. R. Carvalho and W. W. Cohen. Single-pass online learning: Performance, voting
schemes and online feature selection. InProceedings of KDD-2006, Philadelphia, PA,
2006b. 3.4.2

V. R. Carvalho and W. W. Cohen. Preventing information leaks in email. InProceedings
of SIAM International Conference on Data Mining (SDM-07), Minneapolis, MN, 2007.
1.2, 5.3

V. R. Carvalho and W. W. Cohen. Ranking users for intelligent message addressing. In
European Conference on Information Retrieval, 2008. 1.2, 5.3

V. R. Carvalho, W. Wu, and W. W. Cohen. Discovering leadership roles in email work-
groups. InConference on Email and Anti-Spam, 2007. 2.1

V. R. Carvalho, J. Elsas, W. W. Cohen, and J. G. Carbonell. A meta-learning approach
for robust rank learning. InSIGIR 2008 Workshop on Learning to Rank for Information
Retrieval, 2008. 1.2

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks.
In Proceedings of the 1998 ACM SIGMOD, pages 307–318, 1998. 2.6.3

C.-C. Chang and C.-J. Lin.LIBSVM: a library for support vector machines, 2001. Soft-
ware available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm. 3

J. Cohen. A coefficient of agreement for nominal scales.Educational and Psychological
Measurement, 20:37–46, 1960. 2.4

W. W. Cohen.Enron Email Dataset Webpage, 2004a. http://www.cs.cmu.edu/ enron/. 3.1,
3.2, 4.2, 4.3

W. W. Cohen. Minorthird: Methods for Identifying Names and Ontological Rela-
tions in Text using Heuristics for Inducing Regularities from Data, 2004b. http:
//minorthird.sourceforge.net . 2.6.2

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. InIIWeb, pages 73—78, 2003. 3.3.1

W. W. Cohen, V. R. Carvalho, and T. M. Mitchell. Learning to classify email into “speech
acts”. InProceedings of EMNLP 2004, pages 309–316, Barcelona, Spain, July 2004.
1.2

139

http://minorthird.sourceforge.net
http://minorthird.sourceforge.net

M. Collins. Ranking algorithms for named-entity extraction: boosting and the voted per-
ceptron. InACL ’02: Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 489–496, Morristown, NJ, USA, 2001. Association for
Computational Linguistics. doi: http://dx.doi.org/10.3115/1073083.1073165. 6.1

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability. InICML
’06: Proceedings of the 23rd international conference on Machine learning, pages 201–
208. ACM, 2006. 6.6

M. Core and J. Allen. Coding dialogs with the damsl annotation scheme, 1997. 2.8.2

G. Cormack and T. Lynam. On-line supervised spam filter evaluation.ACM Transactions
on Information Systems, 2006. 1.1

S. Corston-Oliver, E. Ringger, M. Gamon, and R. Campbell. Task-focused summarization
of email. InIn Proceedings of Text Summarization Branches Out Workshop, ACL 2004,
2004. 2.8.3, 2.8.4

I. O. Craig Macdonald. Voting for candidates: Adapting data fusion techniques for an
expert search task. InCIKM, Arlington, USA, 2006. 5.2.1

N. Craswell and D. Hawking. Overview of the trec 2004 web track. In13th Text REtrieval
Conference (TREC 2004), November 2004. 6.4.2

N. Craswell, D. Hawking, R. Wilkinson, and M. Wu. Overview of the trec 2003 web track.
In 12th Text REtrieval Conference (TREC 2003), November 2003. 6.4.2

L. A. Dabbish, R. E. Kraut, S. Fussell, and S. Kiesler. Understanding email use: predicting
action on a message. InCHI ’05: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 691–700, 2005. ISBN 1-58113-998-5. 2.8.3

C. P. Diehl, G. Namata, and L. Getoor. Relationship identification for social network
discovery. InAAAI, pages 546–552, 2007. ISBN 978-1-57735-323-2. 6.1

B. Dom, I. Eiron, A. Cozzi, and Y. Zhang. Graph-based ranking algorithms for e-mail
expertise analysis. InData Mining and Knowledge Discovery Workshop(DMKD2003)
in ACM SIGMOD, 2003. 4.6

M. Dredze, T. Lau, and N. Kushmerick. Automatically classifying emails into activities. In
IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces,
pages 70–77, 2006. ISBN 1-59593-287-9. 2.8.3

140

J. Elsas, V. R. Carvalho, and J. G. Carbonell. Fast learning of document ranking functions
with the committee perceptron. InACM International Conference on Web Search and
Data Mining, 2008. 1.2, 6.1, 6.2.1, 6.2.1, 6.2.2, 6.5.1

K. E. Emam. Benchmarking kappa: Interrater agreement in software process assessments.
Empirical Softw. Engg., 4(2):113–133, 1999. 2.4

eMarketer.com. Us e-mail users as a percent of internet users and total us population,
2003-2010. Technical Report 075274, eMarketer, 2006. 1.1

H. Fang and C. Zhai. Probabilistic models for expert finding. InECIR, pages 418–430,
2007. 4.4.1, 4.6

D. Feng, E. Shaw, J. Kim, and E. Hovy. Learning to detect conversation focus of threaded
discussions. InProceedings of the HLT/NAACL 2006 (Human Language Technology
Conference North American chapter of the Association for Computational Linguistics),
New York City, NY, 2006. 2.8.3

M. Finke, M. Lapata, A. Lavie, L. Levin, L. M.-T. sand T. Polzin, K. Ries, A. Waibel, and
K. Zechner. Clarity: Inferring discourse structure from speech, 1998. 2.4, 2.8.2, 2.8.4

G. Forman. An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research, 3:1289–1305, 2003. ISSN 1533-7928. 2.7.1

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296, 1999. 2.5, 3.4.2

J. Gao, H. Qi, X. Xia, and J.-Y. Nie. Linear discriminant model for information retrieval. In
SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 290–297, New York, NY, USA,
2005. ACM Press. ISBN 1-59593-034-5. doi: http://doi.acm.org/10.1145/1076034.
1076085. 6.2.2

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6(6):721–741, 1984. 2.6.3

J. Goldstein and R. E. Sabin. Using speech acts to categorize email and identify email
genres. Proceedings of the 39th Annual Hawaii International Conference on System
sSciences (HICSS’06), 3, 2006. 2.8.3

141

J. Goodman and V. R. Carvalho. Implicit queries for email. InProceedings of the CEAS
2005, Stanford, CA, 2005. 1.1

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency
networks for inference, collaborative filtering, and data visualization.Journal of Ma-
chine Learning Research, 1:49–75, 2000. 2.6.3

Y. Huang, D. Govindaraju, T. M. Mitchell, V. R. Carvalho, and W. W. Cohen. Inferring
ongoing activities of workstation users by clustering email. InCEAS 2004 - First Con-
ference on Email and Anti-Spam, Mountain View, CA, 2004. 1.1

E. Ivanovic. Automatic utterance segmentation in instant messaging dialogue. InPro-
ceedings of the Australasian Language Technology Workshop, pages 241–249, Sydney,
NSW, Australia, December 2005a. 2.8.3

E. Ivanovic. Dialogue act tagging for instant messaging chat sessions. InProceedings of
the ACL Student Research Workshop, pages 79–84, Ann Arbor, Michigan, June 2005b.
Association for Computational Linguistics. 2.8.3

T. Joachims. Optimizing search engines using clickthrough data. InKDD ’02: Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 133–142, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-
567-X. doi: http://doi.acm.org/10.1145/775047.775067. 6.1, 6.2.1, 6.2.1, 6.3.1, 6.3.1,
6.3.1

T. Joachims. A probabilistic analysis of the rocchio algorithm with TFIDF for text cate-
gorization. InProceedings of the ICML-97, 1997. 4.4.3

D. Jurafsky, E. Shriberg, and D. Biasca. Switchboard swbd-damsl shallow-discourse-
function annotation coders manual. Technical Report University of Colorado, Boulder.
Institute of Cognitive Science, Technical Report 97-02, 1997. 2.8.2

C. Kalyan and K. Chandrasekaran. Information leak detection in financial e-mails us-
ing mail pattern analysis under partial information. InAIC’07: Proceedings of the 7th
Conference on 7th WSEAS International Conference on Applied Informatics and Com-
munications, pages 104–109, 2007. 3.7

R. Khardon and G. Wachman. Noise tolerant variants of the perceptron algorithm.Journal
of Machine Learning Research, 8:227–248, 2007. 6.2.2

R. Khoussainov and N. Kushmerick. Email task management: An iterative relational
learning approach. InConference on Email and Anti-Spam (CEAS’2005), 2005. 2.8.3

142

J. Kim, G. Chern, D. Feng, E. Shaw, and E. Hovy. Mining and assessing discussions on the
web through speech act analysis. InProceedings of ISWC’06 Workshop on Web Content
Mining with Human Language sTechnologies (WebConMine2006)., Athens, GA, 2006.
2.4, 2.8.3

B. Klimt and Y. Yang. The enron corpus: A new dataset for email classification research.
In ECML, 2004. 1.1, 4.4.6

R. Kraut, T. Mukhopadhyay, J. Szczypula, S. Kiesler, and B. Scherlis. Information and
communication: Alternative uses of the internet in households.Information Systems
Research, 10:287–303, 2000. 1.1

R. Kraut, S. Fussell, F. Lerch, and A. Espinosa. Coordination in teams: Evidence from a
simulated management game. To appear in the Journal of Organizational Behavior, In
submission. 2.3

P. Kumaraguru, Y. Rhee, A. Acquisti, L. F. Cranor, J. I. Hong, and E. Nunge. Protecting
people from phishing: the design and evaluation of an embedded training email system.
In Proceedings of the 2007 Conference on Human Factors in Computing Systems, CHI
2007, San Jose, California, USA, April 28 - May 3, 2007, pages 905–914, 2007. 5.6

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. InProc. 18th International Conf. on
Machine Learning, pages 282–289, 2001. 2.6.3

A. Lampert, R. Dale, and C. Paris. Classifying speech acts using verbal response modes.
In Proceedings of the Australasian Language Technology Workshop, Sydney, Australia,
2006. 2.8.3, 2.8.4

A. Lavie, D. Gates, N. Coccaro, and L. S. Levin. Input segmentation of spontaneous
speech in JANUS: A speech-to-speech stranslation system. InECAI Workshop on Dia-
logue Processing in Spoken Language Systems, pages 86–99, 1996. 2.8.4

S. Lesch, T. Kleinbauer, and J. Alexandersson. Towards a decent recognition rate for
the automatic classification of a smultidimensional dialogue act tagset. In4th IJCAI
Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Edinburgh,
2005. 2.4, 2.8.4

A. Leusky. Email is a stage: Discovering people roles from email archives. InACM
Conference on Research and Development in Information Retrieval (SIGIR), 2004. 2.1,
2.8.3, 2.8.4

143

L. Levin, A. Thyme-Gobbel, K. Ries, A. Lavie, and K. Zechner. A discourse coding
scheme for conversational spanish. InProceedings of ICSLP-1998, Sydney, Australia,
1998. 2.8.2

L. Levin, C. Langley, A. Lavie, D. Gates, D. Wallace, and K. sPeterson. Domain specific
speech acts for spoken language translation. InProceedings of 4th SIGdial Workshop
on Discourse and Dialogue (SIGDIAL-2003), Sapporo, Japan, 2003. 2.2, 2.8.2, A

E. Lieberman and R. C. Miller. Facemail: Showing faces of recipients to prevent misdi-
rected email, 2007. 3.7, 5.6

T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research on
learning to rank for information retrieval. InSIGIR ’07: Proceedings of the Learning to
Rank Workshop, 2007. 6.4.2

I. Macdonald, M.;Ounis. Voting for candidates: Adapting data fusion techniques for an
expert search task. InCIKM, Arlington, USA; November 6-11, 2006, 2006. 4.4.1, 4.5.2,
4.5.2, 5, 4.6

M. Madden and L. Reinie. America’s online pursuits: The changing picture of who’s on-
line and what they do. Technical report, Pew Internet & American Life Project Surveys,
Washington, DC, 2003. URLhttp://www.pewinternet.org . 1.1

A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for infor-
mation extraction and segmentation. InProc. 17th International Conf. on Machine
Learning, pages 591–598, 2000. 2.6.3

A. Mikheev. Tagging sentence boundaries. InANLP, pages 264–271, 2000. 2.8.4

H. Murakoshi, A. Shimazu, and K. Ochimizu. Construction of deliberation structure in
e-mail communication.Computational Intelligence, 16(4):570–577, 2000. 2.6

J. Neville and D. Jensen. Iterative classification in relational data. InIn Proc. AAAI-2000
Workshop on Learning Statistical Models from Relational Data, pages pages 13–20,
2000. 2.6, 2.6.3

P. Ogilvie and J. P. Callan. Combining document representation for known item search. In
ACM SIGIR, 2003. 4.5.2, 5, 5.2.1

C. Pal and A. McCallum. Cc prediction with graphical models. InCEAS, 2006. 4.6

144

http://www.pewinternet.org

D. D. Palmer and M. A. Hearst. Adaptive sentence boundary disambiguation. InProceed-
ings of the Fourth ACL Conference on Applied Natural Language Processing, pages
78–83, Stuttgart, 1994. Morgan Kaufmann. 2.8.4

T. Paul, S. King, S. Isard, and H. Wright. Intonation and dialogue context as constraints
for speech recognition.Language and Speech, 41(3-4):489508, 1998. 2.2, 2.8.2

F. Perez-Cruz, A. Navia-Vazquez, A. R. Figueiras-Vidal, and A. Artes-Rodriguez. Em-
pirical risk minimization for support vector classifiers.IEEE Transactions on Neural
Networks, 14:296–303, Mar 2003. 6.6

J. Reynar and A. Ratnaparkhi. A maximum entropy approach to identifying sentence
boundaries. InFifth Conference on Applied Natural Language Processing, pages 16–
19, 1997. 2.8.4

G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.Infor-
mation Processing and Management, 24(5):513–523, 1988. 4.4.3

R. E. Schapire and Y. Singer. Improved boosting using confidence-rated predictions.Ma-
chine Learning, 37(3):297–336, 1999. 2.5

F. Scholer, M. Shokouhi, B. Billerbeck, and A. Turpin. Using clicks as implicit judgments:
Expectations versus observations. InAdvances in Information Retrieval, 30th European
Conference on IR Research, ECIR 2008, Glasgow, UK, pages 28–39, 2008. 5.4.3

M. Schoop. A language-action approach to electronic negotiations. InProc. of the Eighth
Annual Working Conference on Language-Action Perspective on Communication Mod-
elling, 2003. 2.6

J. R. Searle.Speech Acts. Cambridge University Press, London, 1969. 1.2, 2.1, 2.2, 2.8.1,
A

J. R. Searle.A taxonomy of illocutionary acts. In K. Gunderson (Ed.), Language, Mind
and Knowledge. Minneapolis: University sof Minnesota Press, 1975. 2.8.1, A

P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective
classification in network data. Technical Report CS-TR-4905, University of Maryland,
College Park, 2008. 2.6.3

F. Sha and F. C. N. Pereira. Shallow parsing with conditional random fields. InHLT-
NAACL, 2003. 2.6.2

145

L. Shen and A. K. Joshi. Ranking and reranking with perceptron.Mach. Learn., 60(1-3):
73–96, 2005. ISSN 0885-6125. doi: http://dx.doi.org/10.1007/s10994-005-0918-9. 6.1

J. Shetty and J. Adibi. Enron email dataset. Technical report, USC Information Sciences
Institute, 2004. Available from http://www.isi.edu/ adibi/Enron/Enron.htm. 3.2

D. Shipley and W. Schwalbe.Send: The Essential Guide to Email for Office and Home.
Knopf, 2007. 1.1

W. Sihn and F. Heeren. Expert finding within specified subject areas through analysis of
e-mail communication. InProceedings of the Euromedia 2001, 2001. 4.6

M. Stevenson and R. Gaizauskas. Experiments on sentence boundary detection. InPro-
ceedings of the sixth conference on Applied natural language processing, pages 84–89,
San Francisco, CA, 2000. 2.8.4

A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. sJurafsky, P. Taylor, R. Martin,
C. Van Ess-Dykema, and M. Meteer. Dialogue act modeling for automatic tagging
and recognition of conversational sspeech.COMPUTATIONAL LINGUISTICS, 26:339,
2000. 2.2, 2.8.2, 2.8.3, 2.8.4, A

A. C. Surendran, J. C. Platt, and E. Renshaw. Automatic discovery of personal topics to
organize email. InConference on Email and Anti-Spam (CEAS’2005), 2005. 1.1

M. Takaku, Y. Egusa, H. Saito, and H. Terai. Comparing system evaluation with user
experiments for japanese web navigational retrieval. InSIGIR 2007 WISI Workshop -
Web Information-Seeking and Interaction, 2007. 5.4.3

D. Traum. 20 questions for dialogue act taxonomies.Journal of Semantics, 17(1):7–30,
2000. 2.8.2

D. R. Traum and P. A. Heeman. Utterance units in spoken dialogue. InECAI Workshop
on Dialogue Processing in Spoken Language Systems, pages 125–140, 1996. 2.8.4

M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. FRank: a ranking method
with fidelity loss. In SIGIR ’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
383–390, New York, NY, USA, 2007. ACM Press. ISBN 9781595935977. doi:
10.1145/1277741.1277808. URLhttp://portal.acm.org/citation.cfm?
id=1277741.1277808 . 6.6

146

http://portal.acm.org/citation.cfm?id=1277741.1277808
http://portal.acm.org/citation.cfm?id=1277741.1277808

A. Turpin and F. Scholer. User performance versus precision measures for simple search
tasks. InSIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 11–18. ACM,
2006. 5.4.3

W. Wahlster.Verbmobil: Foundations of speech-to-speech translations. Springer Verlag,
Berlin, 2000. 2.8.2

D. J. Walker, D. E. Clements, M. Darwin, and J. W. Amtrup. Amtrup: Sentence bound-
ary detection: A comparison of paradigms for improving smt quality. InMT Summit,
September 2001. 2.8.4

R. C. Wang and W. W. Cohen. Language-independent set expansion of named entities
using the web. InIEEE International Conference on Data Mining (ICDM), 2007. 6.4.2

S. Whittaker, V. Bellotti, and P. Moody. Introduction to this special issue on revisiting and
reinventing E-mail.Human-Computer Interaction, 20(1/2):1–9, 2005. 1.1

T. Winograd. A language/action perspective on the design of cooperative work.Human-
Computer Interaction, 3(1):3–30, 1988. 2.1

T. Winograd and F. Flores.Understanding Computers and Cognition. Addison-Wesley,
Reading, MA, 1986. 2.6

L. Xu, K. Crammer, and D. Schuurmans. Robust support vector machine training via
convex outlier ablation. InTwenty-First National Conference on Artificial Intelligence
(AAAI), 2006. 6.6

S.-H. Yang and B.-G. Hu. A stagewise least square loss function for classification. InSiam
Data Mining, pages 120–131, 2008. 6.6

Y. Yang and X. Liu. A re-examination of text categorization methods. In22nd Annual
International SIGIR, pages 42–49, August 1999. 3.4.1, 4.4.4

Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categorization.
In ICML, pages 412–420, 1997. 2.7.1

Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing
average precision. InSIGIR ’07: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 271–
278, New York, NY, USA, 2007. ACM Press. ISBN 978-1-59593-597-7. doi: http:
//doi.acm.org/10.1145/1277741.1277790. 6.2.1, 3

147

	1 Introduction
	1.1 Motivation
	1.2 Overview and Contributions
	1.3 Organization

	2 Email ``Speech Acts''
	2.1 Introduction
	2.2 A Taxonomy of Email Acts
	2.3 Corpus
	2.4 Inter-Annotator Agreement
	2.5 Classifying Email into Acts
	2.6 Collective Classification of Email Acts
	2.6.1 Evidence for Sequential Correlation of Email Acts
	2.6.2 Predicting Acts from Surrounding Acts
	2.6.3 Collective Classification Algorithm
	2.6.4 Experiments
	2.6.5 Discussion

	2.7 Linguistic Analysis
	2.7.1 Preprocessing and N-gram Features
	2.7.2 Experiments

	2.8 Related Work
	2.8.1 Speech Act Theory
	2.8.2 Dialog Act Tagging
	2.8.3 Email Acts and Other Applications
	2.8.4 Segmentation

	3 Email Information Leaks
	3.1 Introduction
	3.2 The Enron Dataset
	3.3 Generating Synthetic Leaks
	3.3.1 Leak Criteria

	3.4 Methods
	3.4.1 Baselines: Using Textual Content
	3.4.2 Reranking with Social Network Information

	3.5 Finding Real Email Leaks
	3.5.1 Sampling from Seen and Unseen Recipients

	3.6 Leak Prediction Results
	3.7 Discussion and Related Work

	4 Recommending Email Recipients
	4.1 Introduction
	4.2 Evidence of Message Addressing Problems
	4.3 Data Preprocessing and Task Definition
	4.4 Models
	4.4.1 Expert Search Model 1
	4.4.2 Expert Search Model 2
	4.4.3 TFIDF Classifier
	4.4.4 K-Nearest Neighbors
	4.4.5 Other Baselines: Frequency and Recency
	4.4.6 Threading

	4.5 Results
	4.5.1 Initial results
	4.5.2 Rank Aggregation
	4.5.3 Email Auto-Completion

	4.6 Discussion and Related Work

	5 User Study
	5.1 Introduction
	5.2 Cut Once: a Mozilla Thunderbird Extension
	5.2.1 Algorithms
	5.2.2 Training
	5.2.3 Prediction
	5.2.4 Logging

	5.3 Study Description
	5.4 Results
	5.4.1 Adoption
	5.4.2 Usage and Predictions
	5.4.3 Baseline Comparison

	5.5 Discussion
	5.6 Conclusions and Related Work

	6 Learning Robust Ranking Models
	6.1 Introduction
	6.2 Learning to Rank
	6.2.1 Pairwise-preference Ranking
	6.2.2 Outliers in Pairwise Preference Ranking

	6.3 Robust Pairwise Ranking
	6.3.1 RankSVM
	6.3.2 Sigmoid Approximation
	6.3.3 Learning

	6.4 Ranking Datasets
	6.4.1 Email Recipient Recommendation
	6.4.2 Other Ranking Datasets

	6.5 Experiments
	6.5.1 Performance
	6.5.2 Learning Curve
	6.5.3 Sigma Parameter

	6.6 Discussion and Related Work

	7 Conclusions
	7.1 Summary
	7.2 Future Directions

	A Email Act Labeling Guidelines
	A.1 Verbs
	A.2 Nouns

	B User Study Supporting Material
	B.1 Recruiting Message
	B.2 Initial Questionnaire
	B.3 Final Questionnaire
	B.4 User Comments

	Bibliography

