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Abstract

Languages of our world are amazingly diverse, consisting of varied and complex sys-

tems of word, phrase, sentence construction, and vocabulary, to name a few. Understanding

these systems is critical not only for language communication, but they also drive the design

and development of language technologies. Creating a language description that illustrates

such salient points of a language is therefore one of the major endeavours undertaken by

language experts, and in fact, forms an indispensable step for language documentation and

preservation e�orts (Himmelmann, 1998; Moline, 2020). Manually creating such detailed de-

scriptions for several languages that are usable by humans and machines can be challenging;

therefore, in this thesis we explore whether we can automate some of the processes involved in

the language description creation and create language descriptions in a format usable by both

humans and machines.

Thanks to advances in natural language processing (NLP) research, we can automate

some local aspects of linguistic analysis, such as identifying the syntactic function of a word

(POS tagging) or identifying grammatical relations (dependency parsing). We take advan-

tage of such advances to extract and explain complex linguistic behaviors, covering aspects

of morphology, syntax, and lexical semantics that apply to language in general. To achieve

this goal, we develop a system AutoLEX
1

which automatically extracts these linguistic in-

sights in a human- and machine-readable format for several languages. In the �rst part of

the thesis, we describe this general framework, which takes as input a text corpus of the

language of interest and a linguistic question that we are interested in exploring. AutoLEX

converts this into an NLP prediction task and produces a concise description which answers

that question. As part of this framework, we develop manual and automatic evaluation

methods to evaluate the resulting descriptions. We further demonstrate the application of

these language descriptions in real-world settings of language analysis and education.

In the second part of the thesis, we describe how to improve the NLP building blocks

that inform AutoLEX, particularly for under-resourced languages. Most state-of-the-art

methods that are involved in the building blocks (e.g. performing local linguistic analysis like

POS tagging) require an abundance of labeled data, which is often not readily available for

many languages. Therefore, we focus on improving these methods for such under-resourced

languages. Speci�cally, we explore: 1) Cross-lingual Transfer Learning (CLTL) (Zoph et al.,

2016), which leverages existing labeled data and models from high-resource languages and,

2) Active Learning (Lewis and Gale, 1994; Settles and Craven, 2008) (AL) which helps train

models by collecting labeled data in the under-resourced language while minimizing human

annotation e�ort. We propose combining both in a uni�ed framework where CLTL helps

improve the performance of the AL learner.

1https://aditi138.github.io/auto-lex-learn/index.html

https://aditi138.github.io/auto-lex-learn/index.html
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For the Reader

Dear reader, if you are interested in exploring AutoLEX
2
, which is the tool we built to

explore the salient properties of di�erent languages, without going into the technical details

of the underlying models, I suggest reading Chapter 2 after the introduction ( Chapter 1).

To understand the technical pieces that led to this tool, I have organized this thesis into two

parts, where Part I describes how each component in AutoLEX was designed and Part II

describes how to improve those individual components for under-resourced languages.

2https://autolex.co

https://autolex.co
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Chapter 1

Introduction

While languages of our world are amazingly diverse, all languages obey a set of principles, also known

as ‘grammar’, that provide a framework for meaningful communication. There are separate principles

which govern the di�erent systems in a language, such as the system of sounds, word formation, phrase

and sentence construction, the system of assigning meanings, and so on. Creating ‘language descrip-

tions’ that describe these systems in as natural a setting as possible (Harris, 1954) is, therefore, of great

value for language understanding and communication. Such descriptions further form an indispensable

component of language documentation which aims to create a lasting multi-purpose record of a language

(Himmelmann, 1998). They, therefore, play a crucial role in the process of language preservation and

revitalization of indigenous languages which are often endangered (Hale et al., 1992; Moseley, 2010). Sav-

ing indigenous languages is important not only for communities to preserve their cultural heritage, but

also for preserving the deep historical knowledge carried by these languages throughout several genera-

tions (Nunn and Reid, 2016). Language descriptions also form the basis for the development of language

technologies, which has also been cited as important for language survival. As noted by Williams (2019)

“languages that miss the opportunity to adopt language technologies will be less and less used”.
1

In this thesis, the term language descriptions refers to a set of concise text descriptions through which

the salient linguistic properties of a language can be explained. For example, for a language, such a

description can provide answers to linguistic questions such as ‘what are the nouns and verbs in that

language’ or ‘how should the nouns be positioned with respect to the verbs’ or ‘which word should be

used for rice in that language’, and so on. Manually creating such descriptions that cover the di�erent

linguistic behaviors in a format that can be consumed by both humans and machines is a challenging

process, as this not only requires considerable human e�ort and time, but also such human experts might

not be readily available. There are more than 7000 languages (Hammarström, 2015) in the world today,

of which several of the languages that are on the verge of extinction often do not have easily accessible

trained linguists or native speakers, making this a challenging task. Therefore, we explore the question

of how natural language processing (NLP) can help automate the process of a language description creation.

The past two decades have seen signi�cant advances in the �elds of deep learning, machine learn-

ing, and natural language processing (NLP), and we can leverage these advances to automate some of the

1
A cautionary point to keep in mind when building resources, descriptions, models for indigenous languages is that we

should not bring in colonial bias but rather respect and consider viewpoints of the native language users while designing

Williams (2019).
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processes involved in creating language descriptions. For example, the popular NLP tasks of POS tag-

ging (Toutanvoa and Manning, 2000), dependency parsing (Kiperwasser and Goldberg, 2016), machine

translation (Koehn, 2020) can essentially provide answers to the questions of ‘what are the nouns and

verbs’ or ‘what are the syntactic relations between words e.g. whether the noun is a subject or object of

a verb’ or ‘which word to use for rice, say, in Marathi’. Interestingly, these same core tasks could also be

leveraged to answer questions at the language level, as we show in this thesis. For example, a linguist

interested in knowing about the typical word order of a language (e.g. whether it is subject-verb-object

or subject-object-verb), require to know a) which word is the verb (i.e. perform POS tagging), b) which

words are the subject and the object (i.e. perform dependency parsing), and c) combine the two pieces

of information e�ectively to extract and explain the salient patterns. Thanks to the advances brought

about by deep learning methods such as neural networks (Goldberg, 2017), which can automatically dis-

cover patterns and features in the underlying data, we have achieved notable gains in the accuracy of

these core tasks (e.g. POS tagging (Ma and Hovy, 2016), dependency parsing (Dyer et al., 2016; Kulmizev

et al., 2019), morphological analysis (Malaviya et al., 2018; Kondratyuk and Straka, 2019)). However, a

major bottleneck in using these deep models is the availability of good quality and quantity of language

resources required for training these models. Because of this, most NLP research has shown these no-

table gains for a subset of high-resourced languages such as English, which have these resources easily

available and thus enable training the large and data hungry models (e.g. BERT (Devlin et al., 2019),

ELMO (Peters et al., 2018)). With the development of multilingual datasets such as Univeral Dependen-

cies (UD) (Nivre et al., 2016), WikiAnn (NER) (Pan et al., 2017), XNLI (Conneau et al., 2018)), models

(mBERT (Devlin et al., 2019)) and benchmarks (XTREME (Hu et al., 2020), Xglue (Liang et al., 2020)),

these advancements are now increasingly being seen even for under-resourced languages, which lack

su�cient resources for the task at hand, by leveraging the commonalities between languages.

1.1 Research Goals and Scope

The aim of this thesis is to help automate the processes involved in the creation of language descriptions

and visualize the extracted descriptions in a human- and machine-readable format. Speci�cally, we pro-

pose the AutoLEX framework which extracts and visualizes the salient language patterns, along with

illustrative examples, from a text corpus of a language of interest. Since we are interested in extracting

these descriptions for all languages of the world, many of which are under-resourced, this thesis also

describes the steps taken for improving the syntactic analysis for such under-resourced languages.

Broadly, language descriptions provide guidelines to produce a grammatically correct and compre-

hensible sentence, for example, in this thesis we will present descriptions that can describe the relative

position of words and phrases (word order), the syntax and semantics of the arguments of a predicate (ar-

gument structure), the patterns of word formation (morphological agreement and in�ection) and the word

meanings (lexical semantics). An example of such a language description extracted for Marathi is shown

in Figure 1.1. This description highlights the salient word order patterns along with the conditions under

which they are typically observed. According to Shieber (2003), the choice of metalanguage in any gram-

mar formalism should be determined by the following criteria: language felicity, the extent to which the

grammar descriptions can explain the linguistic phenomenon as a user wishes to see them, expressiveness,

which informs the kind of phenomena that can be covered, and computational e�ectiveness, which checks
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Figure 1.1: Highlighting the salient subject-verb word order patterns in Marathi language, along with

the conditions which trigger these. The dominant order is SV i.e. subjects come before verbs but there

are a signi�cant number of instances where this order deviates.

Figure 1.2: Teaching a learner which Spanish words to use for the English word wall and when one of

the Spanish words is preferred over the other.
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whether descriptions can be interpreted by machines. Based on this, in AutoLEX, descriptions can take

di�erent forms depending on the target audience. For example, for a linguist exploring a language, the

answers to speci�c questions (e.g. word order) can be presented using a linguistic schema (e.g. UD an-

notation scheme) that contains detailed syntactic information (as shown in Figure 1.1). However, for

a language learner (especially beginner learners), understanding a grammar concept through concrete

examples without drowning them in too many linguistic details would be more bene�cial (Figure 1.2).

Typically, language descriptions, as created by language experts, often span hundreds of pages.
2

Re-

searchers or other stakeholders interested in using these descriptions often require them to manually

parse all information, making it a tedious and time-consuming process not only for content curators,

but also for the users. There have been e�orts to digitize this information, for example, WALS (Dryer

and Haspelmath, 2013) describes the structural properties of di�erent languages as gathered from refer-

ence grammars, all these properties (grammatical, phonological, lexical) are described at a much coarse-

grained level, but most of these properties, in fact, often vary signi�cantly at the phrasal level. For

example, WALS describes Marathi as having word order SOV, however, as we saw in Figure 1.1, there

are cases where this order shows deviation. Furthermore, WALS lacks descriptions of many grammar

aspects (e.g. when does a noun show agreement with the verb and when is that not required). Addi-

tionally, the information in the description itself is often created manually by �eld linguists and native

speakers, and can su�er from human bias. For example, inter-linear glossed text (IGT) is often one of the

�rst resources created by �eld linguists in their analysis process. IGT provides brief linguistic informa-

tion about morphosyntax structure, which is often accompanied by translations which are collectd in

resources such as ODIN (Lewis and Xia, 2008).
3

While a linguist carefully chooses examples to create the

IGT corpus such that they are representative of the linguistic phenomena of interest, insights derived

from IGT may su�er from this bias as the data does not encompass many naturally occurring exam-

ples (details in Chapter 2). Similarly, language learning books typically contain manually created simple

examples which illustrate one grammar concept at a time, but real-life communication often contains

varied linguistic phenomena. Jones and Waller (2015) note that most English textbook writers did not

consult a corpus when writing them, but rather relied on their own intuition or followed other textbooks.

But Long (2000) argues that explaining language only deductively can get overwhelming for learners,

and does not expose learners to real-life usage. Furthermore, language varies considerably across dif-

ferent contexts (e.g. formal vs informal, spoken vs written, news vs social media, etc), and manually

introspecting these di�erences or �nding relevant illustrations, is a challenging task, even for trained

linguists or other curators.

Through AutoLEX, we hope to help ease this process by showing how to extract salient language

patterns from any available text corpus, along with relevant examples which illustrate each pattern. The

goal is not to replace human experts but rather to assist them in their process (e.g. language documen-

tation, language teaching, etc.) by creating automatic tools. Within the di�erent systems covered in a

typical language description, we focus on the systems of morphology, syntax, and semantics, to some

extent. Speci�cally, we select those linguistic phenomena to study that have been widely identi�ed and

studied by linguists and form a core part of language understanding and learning. More concretely, we

2https://linguistic-typology.org/grammarwatch/
3
De�nition adapted from http://linguistics-ontology.org/gold/2010/

InterlinearGlossedText
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outline the research goals as follows:

• A framework to automatically discover and extract language descriptions from a text corpus, to

answer questions about word order, argument structure, morphological agreement and in�ection,

lexical semantics.

• An online interface that allows users to visualize these descriptions along with illustrative exam-

ples, which are available in both human- and machine-readable formats for numerous languages.

The general work�ow of AutoLEX is as follows – (1) Given a linguistic question we want to answer

for a language (e.g. how are subjects arranged with respect to the verbs in Marathi), we �rst formulate

the question as a prediction task (e.g. predict whether the subject is before/after the verb). (2) From the

text corpus of that language, identify and extract the features which we believe govern this phenomenon

(e.g. POS tagging and dependency parsing to identify subjects, verbs, and other syntactic features) to

construct the training data. (3) Learn a prediction model from which human- and machine-readable

descriptions can be extracted. (4) Visualize the extracted description through an online interface. Within

this framework, we also propose methods to perform an automatic evaluation when manual evaluation

is unavailable or infeasible. We envision AutoLEX to be a machine-in-the-loop system, where human

experts can be both end users and input source (Figure 1.3). For example, as described in Chapter 2, some

features (used in step (2)) such as POS tags, dependency parses, have been collected by language experts

for many languages, and can be used directly as input for step (3). Given that these are created by human

experts, for many languages, these annotations are very limited in size and linguistic variety. However,

as we will show in Part II, there are NLP and machine learning innovations which we can leverage to

extract these features for such under-resourced languages. For this, we explore approaches that leverage

both existing data, which relies on commonalities between the languages, and by collecting new data in

the under-resourced language for the task at hand.

1.2 Thesis Outline

In this section, we describe the outline of the thesis:

• Chapter 2 presents an overview of the di�erent features supported inAutoLEX, without going into

the technical details. This chapter also describes relevant prior work which inspired the methods

used in developing AutoLEX.

• Part I describes the technical framework behind AutoLEX including the design, evaluation, and

its real-world applications. We demonstrate the usability of AutoLEX for three target audiences,

linguists, language learners, and language teachers. We �rst explain the AutoLEX design in detail

by extracting language descriptions for one language phenomenon, the morphological agreement

process. Next, we show how to generalize this design to other language phenomena such as word

order, case marking, lexical semantics.

Chapter 3 proposes a method for automatically extracting rules describing the morphological

agreement process across several languages. We describe these rules over syntactic features

and �nd that our framework is able to extract decent �rst-pass agreement rules even for

under-resourced languages by leveraging existing syntactic features from related languages.

We evaluate our extracted rules with the help of language experts and further propose an

5



Figure 1.3: AutoLEX overview: Given a linguistic question and use-case by a user, we highlight the

di�erent steps in the pipeline, where we use automatic methods to extract language descriptions. In this

framework, language users and experts not only bene�t from the extracted descriptions but can also

help annotate and evaluate the intermediate steps involved in the process.
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automated evaluation method which helps verify the rules in absence of language experts.

Chapter 4 builds on the framework used in Chapter 3 and proposes a general framework to

automatically extract rules that describe various linguistic phenomena such as case marking

and word order, in addition to morphological agreement. In addition to automatically eval-

uating the quality of the extracted descriptions, we also conduct a user study with language

experts to evaluate how correct, readable, and novel the descriptions are perceived. Finally,

we apply this framework to an endangered language variety, Hmong Daw, to evaluate how

well the framework extracts descriptions under true zero-resource conditions.

Chapter 5 proposes a method for automatically extracting rules describing �ne-grained se-

mantic distinctions that display di�erent lexical manifestations in a second language. This

has applications in language learning, particularly for second language vocabulary acqui-

sition from a �rst or native language. We evaluate our automatically extracted rules with

human learners and �nd our rules to facilitate both faster and more e�ective learning than

without them.

Chapter 6 combines the approaches described in Chapter 4 and Chapter 5 to semi-automatically

create a curriculum for second language learning. Speci�cally, we explore how much of

the language material extracted by AutoLEX is practically relevant and usable by language

teachers who are actively involved in the teaching of Indian languages of Marathi and Kan-

nada to English speakers. For this, we establish a collaboration with the Kannada Academy

in North America, which aims at teaching Kannada (a Dravidian language), and with two

Marathi schools (Marathi Vidyalay, New Jersey and Marathi Shala, Pittsburgh) who are teach-

ing Marathi (a Indo-Aryan language) primarily to learners outside of India. This collabora-

tive study is conduced to not only evaluate the quality of our extracted descriptions, but

also to understand how these descriptions could assist the teachers in their teaching process.

Overall, the teachers �nd our materials to be interesting as they cover the non-dominant

linguistic behaviors or the exceptions to general rules, which is relevant to their teaching

process. They especially like the illustrative examples shown for each grammar aspect, as a

helpful reference material for their own lesson preparation or even for learner evaluation.

• Part II describes some of the building blocks used in Part I. As shown in Figure 1.3, step (2) entails

feature extraction i.e. identifying and extracting features that govern the linguistic phenomenon of

interest. We present techniques that can leverage both existing and new data to improve feature

extraction for under-resourced languages. Speci�cally, we demonstrate these methods for two

type of feature: syntactic (POS tagging) and semantic (Named Entity Recognition (NER)).

Chapter 7 proposes a method for adapting continuous word representations using linguisti-

cally motivated subword units (phonemes, morphemes, and graphemes). We use this method

for leveraging resources from higher-resourced related languages, thereby improving gen-

eralization to under-resourced languages. The main motivation of this approach is to map

the word representations of the under-resourced and higher-resourced languages in the same

space, which allows the neural models to better leverage the existing resources for improving

task performance on the under-resourced languages.

Chapter 8 proposes a framework for improving entity recognition for under-resourced lan-
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Figure 1.4: Outline of the thesis.

guages. This framework proposes to leverage existing resources from related higher-resourced

languages and collect new resources in the target language from native speakers. Within this

framework, we propose a novel strategy for collecting entity annotations e�ciently which

aims to reduce the annotation e�ort without compromising on the task performance. We

evaluate our framework under both simulated settings, where we simulate data collection

using gold-labeled data and, true human annotation settings where we collect data from na-

tive speakers of the language.

Chapter 9 extends the framework proposed in Chapter 8 for the POS tagging task. Like

before, we leverage both existing data from related languages and also collect new POS an-

notations in the target under-resourced languages. We propose a novel strategy to collect

POS annotations by reducing the confusion between possible POS tags. We show its e�ec-

tiveness in the simulated and true human annotation settings, where we collect POS tags for

an endangered language Griko.

8



1.3 Contributions

In Figure 1.4 we outline the structure of our thesis, along with the expected target audience that

would �nd that piece of work of interest or useful. For example, Chapter 3 and Chapter 4 introduce

the general framework for extracting descriptions regarding morpho-syntax and we show how

both linguists (for language exploration) and NLP researchers (for model evaluation) would bene�t

from these. Chapter 5 and Chapter 6 show applications of the framework for language education

and thus language learners or teachers would �nd this more useful. Chapter 7, Chapter 8, Chapter 9

describes cross-lingual transfer and active learning to improve NLP models for under-resourced

methods. This would probably be more useful for researchers involved in improving NLP models

generally, having applications to newer NLP tasks going beyond the ones covered in these works.
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Chapter 2

AutoLEX: A Tool to Explore Language

Descriptions

In the previous chapter, we brie�y introduced our language explorer tool AutoLEX, which presents

holistic human- and machine-readable descriptions extracted automatically across several languages.

AutoLEX is designed with the motivation to provide NLP researchers, language experts, learners, teach-

ers, or just curious enthusiasts a platform to explore a plethora of languages in a consistent format. In

this chapter, we present a general overview of the language aspects covered by AutoLEX and other

similar e�orts, without going into the technical modeling details. We also discuss similar prior e�orts

undertaken for language documentation, learning, and teaching. The tool can be explored online
1
.

2.1 Background

As mentioned earlier, languages are amazingly diverse with complex systems governing syntax, mor-

phology, semantics, pragmatics, and phonology, to name a few. Understanding these complex systems

is crucial not only for language understanding and communication, but also to drive the design and de-

velopment of several language technologies. This means that there is a need for language descriptions

which are not only human-readable but also machine-readable. Below we present some prior e�orts

undertaken along this direction.

2.1.1 Linguistic Databases and Datasets

Linguists and researchers have undertaken initiatives to collect linguistic properties in a machine-readable

format in several languages, WALS (Dryer and Haspelmath, 2013) being a standing example. WALS is

a database describing structural properties (phonological, grammatical, lexical) of a language as gath-

ered from reference grammars. For instance, it can tell us that English objects occur after verbs, or that

Turkish pronouns have symmetrical case. Currently, WALS contains such properties for over 1000+

languages, however, because WALS presents these properties across many diverse languages, these

properties are necessarily de�ned at a coarse-grained level and cannot capture language-speci�c nu-

ances. WALS does not inform us of any exceptions to its general rules (e.g. the cases when English

1https://aditi138.github.io/auto-lex-learn/index.html
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objects come before verbs), and there are many aspects that are not even covered (e.g. when a Turkish

pronoun takes the accusative marker and when the nominative). In AutoLEX, we aim to cover such

�ne-grained properties, for example, Figure 2.1 is showing the cases where objects come before verbs

in English. In Chapter 4 we present the methodology for extracting such �ne-grained descriptions.

Figure 2.1: Order of object and verb in English as

extracted by AutoLEX.

PHOIBLE (Moran et al., 2014), Ethnologue (Ham-

marström, 2015) and Glottolog (Nordho� and

Hammarström, 2011; Hammarström et al., 2018)

are similar such collection of linguistic proper-

ties in di�erent formats. Although these databases

cover 1000+ languages, many of the properties

are missing or undocumented. Parallel e�orts

(Malaviya et al., 2017; Bjerva et al., 2020) have

looked at methods to predict these missing prop-

erties.

In addition to documenting the coarse-

grained properties, the research community has

also led e�orts to collect �ne-grained properties

such as POS tags, morphological features, dependency parses across several languages – Universal De-

pendencies (UD) is one such community-led project
2

(Nivre et al., 2006; Nivre et al., 2018), covering 200

treebanks over 100 languages. Most of these datasets are annotated by language experts and, therefore,

are limited in size and domain coverage. However, advances in neural networks (Kondratyuk and Straka,

2019; Kulmizev et al., 2019; Nguyen et al., 2021) have made it possible, to some extent, to learn from this

limited data and acquire more data automatically from raw text. In Chapter 7, Chapter 8, Chapter 9, we

present some of these methods in more detail, where we speci�cally look at adapting and improving

existing NLP methods for under-resourced languages.

2.1.2 Grammar Rule Extraction

We are not the �rst to look at answering linguistic questions about language automatically, there have

been several threads of work. For instance, while documenting a language and its grammar, one of the

�rst resources created by linguists is the inter-linear glossed text (IGT). IGT contains information about

the morphosyntax structure such as POS, morphemes, di�erent morphosyntactic features and values.

These are also accompanied with word translations and sometimes with phonetic information as well.
3

ODIN corpus (Lewis and Xia, 2010; Xia et al., 2014) is a collection of IGT data curated from linguistic

annotations in several languages. Prior work (Lewis and Xia, 2008; Hellan, 2010; Bender et al., 2013;

Howell et al., 2017) has proposed methods to map the information present in IGT to existing grammar

formalisms (e.g. head-phrase structure grammar (HPSG) (Pollard and Sag, 1994) or lexical-functional

grammar (LFG) (Kaplan et al., 1981)) such that it is machine-readable. Lewis and Xia (2008) enrich the

IGT data with syntactic structures to determine the canonical word order and case marking observed in

the language. One drawback of using IGT as the starting point is that, while a linguist carefully chooses

examples to create the IGT corpus such that they are representative of the linguistic phenomena of in-

2https://universaldependencies.org/
3http://linguistics-ontology.org/gold/2010/InterlinearGlossedText
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terest, at the same time this may lead to con�rmation bias, as the data may focus on phenomena that

the linguist found particularly interesting and not encompass many of the naturally occurring examples.

Furthermore, given that IGT is manually curated, it is limited in size, domain and the variety of linguis-

tic phenomena covered. Bender et al. (2013) extract major constituent word order and case marking

properties from the IGT for a diverse set of languages. Potentially, grammar rules can also be derived

from existing projects such as the LinGO Grammar Matrix (Bender et al., 2002), ParGram (Butt et al.,

2002; King et al., 2005). These are grammar development tools designed to write and create grammar

speci�cations that support a wide range of languages in a uni�ed format. They focus on mapping simple

descriptions of languages, obtained from existing IGT-annotated data or input from a linguist, to pre-

cision grammar fragments, grounded in a grammar formalism such as HPSG or LFG. Another thread

of work focuses on answering speci�c questions about language from natural text, such as the anal-

ysis of word order (Östling, 2015; Wang and Eisner, 2017). Our work di�ers from prior work in that

we seek to discover and explain the linguistic behaviors of the language in a format understandable by

both humans and machines. Currently, we extract these descriptions using the UD annotation schema

(McDonald et al., 2013) as this schema o�ers a consistent annotation of grammar (POS tags, dependency

parses, and morphological analyses), allowing us to also represent the descriptions in a consistent for-

mat across all languages. Additionally, AutoLEX does not extract rules for an individual sentence in

isolation, as some of the HPSG/LFG-based approaches do, but rather extracts patterns that generalize

across the language as a whole. Most importantly, it discovers these behaviors from naturally occurring

sentences, re�ecting how the language is used in the world. Given that we use the UD formalism as our

underlying schema, it provides us with the �exibility to extract and inspect patterns directly from the

raw text, as UD has a relatively wide coverage of datasets and state-of-the-art models built using the

same schema.

2.1.3 Computer Assisted Tools

Computer-assisted tools have long been used for language documentation, understanding, and learning.

We describe a subset of them.

Annotation Tools The �rst step in any language documentation process is data collection, which

is made more e�cient with annotation tools. For example, ELAN (Sloetjes and Wittenburg, 2008) is a

popular annotation tool for audio and video recordings and has been used under varied contexts such as

for language documentation of endangered languages such as Engdewu (Vaa, 2013), speech transcription

of child bimodal corpora Pichler et al. (2010) and sign language transcription Zahedi et al. (2006). FLEx

(Butler and Van Volkinburg, 2007) is another such tool, which is used for data management and analysis

primarily by �eld linguists for documentation purposes. It has been used for dictionary collection for

indigenous languages such as Choctaw (Anumpa and Himona, 2016) and Matsigenka (Pereira et al.,

2011). BRAT (Stenetorp et al., 2012) and INCEpTION (Klie et al., 2018) have been widely used in the

NLP community to collect both syntactic and semantic annotations. BRAT has also been used for data

visualization in the UD project (Nivre et al., 2016).

Learning Tools In recent years, there has been an increasing interest in learning new languages for

both personal and professional purposes. This has led to an in�ux of language learning toolkits such as
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Rosetta Stone (Stone, 2010), Duolingo
4
, LingQ

5
, LearnALanguage

6
, Omniglot

7
and many more. Most of

these tools curate learning content manually with the help of subject matter experts, which, however,

makes it di�cult to extend them to numerous languages. GrammarTagger (Hagiwara et al., 2021) is an-

other resource developed for language education that identi�es useful grammatical features for learning,

currently supporting English and Chinese. Such computer-assisted language learning (CALL) systems

have been increasingly using NLP techniques to create learning content. We discuss more about CALL

systems in Chapter 5 and Chapter 6.

GrammarDescriptionTools Although the above language learning tools provide grammar resources

for multiple languages, these resources are typically focused on language learning and therefore discuss

only commonly used phrases and constructions. Such resources do not delve deep into grammatical

aspects such as syntax, word order, morphology agreement, sentence construction, etc, which typically

constitute a grammar description. Works aimed at providing grammar descriptions do so mostly at an

individual language level, such as for Sanskrit
8

where a grammar guide is provided based on existing

grammar books, and Russian
9

where a self-study guide including grammar summary tables and vocabu-

lary lessons is provided. To the best of our knowledge, there is no one toolkit that presents the grammar

descriptions for many languages in a uni�ed format. Having descriptions in a uni�ed format allows for

easy comparison between languages and provides easy extensibility to incorporate new languages.

2.2 AutoLEX

AutoLEX is a tool for visualizing language descriptions, where a �rst-pass set of rules is extracted using

an automated framework from raw text in a concise, human-and machine-readable format. As men-

tioned in the Introduction (Chapter 1) we extract descriptions of linguistic phenomena covering aspects

of syntax, morphology, and lexical semantics. Typically, a grammar description starts with describ-

ing di�erent word classes or part-of-speech (POS) in a given language, dedicating separate chapters or

sections for each of them (e.g. in Lhomi (Vesalainen, 2014), North Tanna (Sverredal, 2018), Fuyug (Brad-

shaw, 2007)). Under each word class section, the morphological properties and examples that describe

the function of the word class are described in detail. For example, a section for ‘nouns’ in Marathi would

describe that nouns have three grammatical genders (feminine, masculine, and neuter), three number

properties (singular, plural, dual), and grammatical case (accusative, nominative, dative, genitive, instru-

mental, locative, vocative, ablative). The section would further describe each morphological property in

detail, including any in�ection patterns and/or grammatical agreement observed. Any irregular forms or

exceptions are also included in the same section. They also describe common derivational morphology

patterns which help understand the process of word production. Any speci�c information pertaining to

the given word class are also added as subsections. Next sections describe the sentence structure in de-

tail, which includes the general word order and any exceptions to it. For example, in Hindi the unmarked

4https://www.duolingo.com/
5https://www.lingq.com/en/grammar-resource/
6https://www.learnalanguage.com/
7https://www.omniglot.com/
8https://www.learnsanskrit.org/
9http://www.russianforeveryone.com/
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Figure 2.2: Homepage of AutoLEX which describes the di�erent linguistic phenomena available for

di�erent languages.
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Figure 2.3: Visualize salient information about grammatical gender in Marathi. The top �gure shows the

gender distribution across each POS tag, and the bottom �gure shows some illustrative examples (e.g.

pronouns).
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word order is SOV, however, when both locative and accusative cases are used in the same sentence, the

word order is �exible since both case markers are lexically di�erent, thus marking their role explicitly.

This section is then followed by the phrase and clause structure sections. The noun phrase (NP) chapter,

for instance, describes the constituent order, morphology, and modi�ers accepted by the NPs. Di�er-

ent types of clauses (transitive and intransitive) are described in detail in a separate chapter. After the

phrase and clause structure chapters, di�erent types of sentence constructions are discussed, such as in-

terrogatives, declaratives, yes/no questions, imperatives, negation, wh-questions. Word lists describing

the basic concepts (body parts, verbs, natural phenomenon, etc) are often included in the grammar de-

scriptions. Apart from these universal concepts, they could also include culture-speci�c words. Inspired

by this structure, we design AutoLEX to follow a similar structure and describe the following linguistic

phenomena within these broad �elds:

• Word Order, which describes the relative position of constituents in a sentence (Täckström et al.,

2013) (Chapter 4).

• Morphological Agreement, wherein a word or morpheme selects morphemes in correspondence

with another word or phrase in the sentence (Corbett, 2009) (Chapter 3, Chapter 4).

• Case Marking, which marks syntactic dependents for the type of grammatical relation they bear

to their heads (Blake, 2009) (Chapter 4).

• Morphology In�ection, which describes the process of word formation, where the form of the

lexeme changes based on di�erent grammatical contexts (Lieber, 2009) (Chapter 6).

• Semantic Subdivisions, wherein the �ne-grained semantic distinctions in one language displays

di�erent lexical manifestations in another language (Chapter 5).

An overview of the tool can be seen in Figure 2.2. In order to extract consistent descriptions catering to

many di�erent languages, we use multilingual resources which have data annotated consistently across

the di�erent languages such as UD/SUD project (Nivre et al., 2016; Gerdes et al., 2018, 2019), wherever

possible. We describe the salient features of the AutoLEX interface in the following sections.

2.2.1 General Information

For each language, we present salient information, which describes the di�erent syntactic and morpho-

logical properties observed at a token level. For example, Figure 2.3 informs us whether Marathi exhibits

any grammatical gender, if so, what are the di�erent gender values and which syntactic categories typi-

cally exhibit them. This information is also visualized here.
10

We further extract examples of the tokens

for each POS tag. We organize these examples by their lemmas, also showing other morphological values

marked by the respective examples. As we can see, for some words there are blanks under the di�erent

gender columns. Blanks in some words indicate that a particular noun can be expressed in only a single

gender but for some words they could also denote missing word forms.

2.2.2 Morph-Syntactic Information

We discover and present morpho-syntactic information such as word order, morphological agreement,

in�ection, case marking, for each language (wherever applicable). Speci�cally, we aim to answer a

10https://aditi138.github.io/auto-lex-learn/mr_en/helper/Gender_PRON.html
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Figure 2.4: Gender agreement rules extracted by AutoLEX for Greek.

linguistic question with human-readable explanations, which are accompanied with automatically ex-

tracted illustrative examples.

Morphological Agreement The agreement process typically entails making values of certain mor-

phological attributes (e.g. gender, number) agree or match between the words in the sentence. In Au-

toLEX, we ask the question when is agreement required between a head and its dependent for a morpholog-

ical attributem. We focus on the morphological attributesM = {gender, person, number}, which more

often show agreement than other attributes (Corbett, 2009). Example gender agreement rules learnt for

Greek nouns is shown in Figure 2.4.
11

We include illustrative examples with each rule to show the user

how the rule is applied in natural language. We show both positive examples, which follow the said

rule and the model’s predicted label and, negative examples which show any exceptions to that rule, as

shown in Figure 2.5. The methodology used for automatic extraction is described in Chapter 3.

Word Order Word order describes the relative position of the syntactic elements, and is one of the

major axes of linguistic description appearing in grammar sketches or databases such as WALS. We

consider the following �ve relations: subject-verb, object-verb, adjective-noun, adposition-noun and

numeral-noun. In contrast to WALS, which only provides a single canonical order for the entire language,

we pose the linguistic question as determining when does one word in such a relation appear before or

after the other. Figure 2.1 shows example word order rules extracted for English objects and verbs.
12

The

methodology used is described in Chapter 4.

11https://aditi138.github.io/auto-lex-learn/el_gdt/Agreement/Gender/NOUN/NOUN.
html

12https://aditi138.github.io/auto-lex-learn//en_ewt/WordOrder/object-verb/
object-verb.html
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(a) Positive Examples

(b) Negative Examples

Figure 2.5: Illustrative examples for the rule ‘Gender need not match when Noun is the modi�er in

Greek’ (Figure 2.4). Positive examples denote when examples that follow the rule and model prediction,

whereas the negative examples show any exceptions.

Case Marking Similar to morphological agreement and word order, we extract and visualize rules

for understanding case marking. In our formulation, case marking entails when a given word class (e.g.

nouns) marks a particular case value (e.g. nominative, ergative). We visualize the extracted rules using

a table as shown in Figure 2.6 for Turkish.
13

The methodology used is discussed in Chapter 4.

Morphology In�ection In�ection is an important component of word formation, formally it is the

process of changing the form of the lexemes such that they �t into the grammatical context (Lieber,

2021). Speci�cally, in AutoLEX, we aim to understand these di�erent forms of in�ection and when

should one form be used over the other. In Figure 2.7 we show the rules extracted for two types of

Marathi su�xes.
14

Currently, this feature is supported for only two languages, Marathi and Kannada.

The methodology used for automatic extraction is discussed in Chapter 6.

13https://aditi138.github.io/auto-lex-learn/tr_imst/CaseMarking/NOUN/NOUN.html
14https://aditi138.github.io/auto-lex-learn/mr_en/Suffix/NOUN/NOUN.html

19

https://aditi138.github.io/auto-lex-learn/tr_imst/CaseMarking/NOUN/NOUN.html
https://aditi138.github.io/auto-lex-learn/mr_en/Suffix/NOUN/NOUN.html


Figure 2.6: Rules explaining when the nominative case is used for Turkish nouns.

Figure 2.7: Di�erent types of su�x (in�ections) added for Marathi words. For example, su�x ‘ne’ is

used typically for subjects in accusative case. Another way of explaining the usage is through its English

counterpart, for example, its usage is similar to the usage of ‘by’ in English.

2.2.3 Lexical Semantics

Along with extracting the syntactic descriptions, we also extract descriptions to understand the seman-

tics, speci�cally the vocabulary of a new language. Speci�cally, we focus on explaining those words in

a language of interest (from English) which show di�erent lexical manifestations for a given English

concept. We refer to these as semantic subdivisions, as the same concept in one language (e.g. English)

is subdivided into �ne-grained concepts in another language. An example of one such semantic subdi-

vision in Spanish is shown in Figure 2.8.
15

Currently, we support this feature for explaining Marathi,

Greek, Spanish and Kannada words from English. Additionally, for Marathi and Kannada we also present

de�nitions, examples, synonyms and antonyms for popular nouns and adjectives.
16

2.3 Statement of Limitations

The primary advantage of using data and models from existing multilingual projects such as UD, SUD,

Wikipedia, is that they are available for hundreds of languages and are annotated using a consistent

annotation schema, which allows us to extract consistent descriptions across the di�erent languages.

Although, using a consistent and uni�ed format for representing rules helps in easy extensibility of our

approach to hundreds of languages, we concede that there are certain language-speci�c aspects which

cannot be represented universally across all languages. One possible solution is to add speci�c sections

15https://aditi138.github.io/auto-lex-learn/es_gsd/LearnVocab/English/English.
html

16https://aditi138.github.io/auto-lex-learn/mr_en/WordUsage/WordUsage.html
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Figure 2.8: Semantic subdivision for the concept ‘oil’ results in di�erent lexical manifestations in Spanish:

‘petróleo’ for petroleum oil and ‘aceite’ for cooking oil whereas in English both are referred as ‘oil’.

along with the general sections under each language to address some of the aspects. Another limitation

is that the examples we use under each section might not be culturally-sensitive or representative as they

are based on data resources which are available publicly and itself might not be representative enough.
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Part I

Extracting Language Descriptions of

Natural Languages Automatically.
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Chapter 3

Automatically Extracting Linguistic

Descriptions for Agreement

In Chapter 2, we describe the di�erent linguistic phenomena currently supported by AutoLEX. In this

chapter and the subsequent ones, we describe methods to extract language descriptions from raw text

across several languages for each of these phenomena, and show applications in language documenta-

tion, learning, and teaching. We focus on aspects of morphosyntax and semantics which describe the

rules governing the structure and meaning of a sentence in its “own terms” i.e. from the raw text of that

language which is as natural as possible, as is done in the realm of descriptive linguistics (Harris, 1954).

In this chapter, we explain the work�ow in AutoLEX by taking the example of morphological agreement.

Aditi Chaudhary, Antonios Anastasopoulos, Adithya Pratapa, David R. Mortensen, Zaid Sheikh, Yulia

Tsvetkov, Graham Neubig. 2020. Automatic Extraction of Rules Governing Morphological Agreement.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.

3.1 Overview

Morphological agreement is an important aspect of morphosyntax that is prevalent in several languages.

Agreement has been widely studied in documentary linguistics as it forms a core component of lan-

guage production and understanding (Keenan, 1974; Corbett, 1979; Lehmann, 1968). There are multiple

views on de�ning the agreement process, and a prominent de�nition is that agreement is the process

wherein a word or morpheme selects morphemes in correspondence with another word or phrase in the

sentence (Steele, 1978; Corbett, 1979). In this de�nition, the element (e.g. word, phrase) that drives the

agreement is called as controller and the element whose form is determined by this agreement is called

target. Morphological property or feature (e.g. gender) is the grammatical category with respect to which

agreement is occurring. To avoid overloading of the term ‘feature’, we refer to the ‘morphological fea-

tures’ as grammatical categories going forward and the term ‘features’ is used to denote the syntactic or

semantic features which govern the agreement process. This notion of directionality between the con-

troller and the target roles where the former determines the form of the latter, however, can be di�cult

to apply in situations where the controller may be absent (pro-drop) (Barlow and Ferguson, 1988; Pollard

and Sag, 1994). These issues are handled well in the uni�cation theories (Barlow and Ferguson, 1988),
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for example, in agreement, these theories accumulate partial information from both the controller and

the target, ignoring the directionality between them.

Many grammar formalisms including Lexical Functional Gramamr (LFG), Generalized Phrase Struc-

ture Grammae (GPSG), Head-Driven Phrase Structure Grammar (HPSG) fall under Uni�cation Grammar,

where linguistic objects under study are represented by feature structures (Sag et al., 1986). These feature

structures impose ‘constraints’ which could be universal or language speci�c on the grammatical infor-

mation associated with each linguistic object, order-independent. In this work, we follow this and do

not specify features for the controller or the target separately, rather present them as a uni�ed set of fea-

tures. The AutoLEX formalism di�ers from these existing formalisms in that a linguistic phenomenon

(e.g. agreement) is described not just at the individual surface level, rather common patterns that are

generalizable across the language as a whole are derived. Furthermore, along with the common patterns,

AutoLEX aims to identify the deviations in these patterns and explain the conditions that trigger each

one.

Understanding agreement is not only important for syntax and morphology, but has also seen appli-

cation in language acquisition, psycholinguistics (Nichol, 1995; Vigliocco and Nicol, 1998; Vigliocco et al.,

1996; Clahsen and Hansen, 1993). Considering such a widespread interest in understanding this process,

we aim to extract rules describing this process concisely in both human- and machine-readable formats.

Having rules in machine-readable format will further enable NLP applications such as identifying and

mitigating gender stereotypes in morphologically rich languages (Zmigrod et al., 2019), designing met-

rics for evaluating natural language generation tasks (Pratapa et al., 2021a).

Our contributions are summarized as follows:

1. We introduce a framework to automatically extract agreement rules from raw text, and release

these rules for 55 languages as part of the AutoLEX interface
1

which visualizes the rules in detail

along with examples and counter-examples. The interface is described in detail in Chapter 2.

2. We design a human evaluation interface to allow linguists to easily verify the extracted rules and

also devise an automated metric to evaluate our framework for scenarios where human evaluation

is infeasible.

3. We evaluate the quality of extracted rules under real zero-shot conditions (on Breton, Buryat,

Faroese, Tagalog, and Welsh) as well as simulated low-resource conditions by varying the amount

of syntactically analysed data. We �nd that using cross-lingual transfer learning helps bridge the

data availability gap for the under-resourced settings.

3.2 Proposed Approach

As described in Chapter 1 (Figure 1.3), AutoLEX comprises of four steps: formalization, where a linguis-

tic question is formulated into a classi�cation task, feature extraction, where relevant features known to

govern the linguistic phenomenon are extracted and converted into training data, model learning, where

a model conducive to human interpretation is learnt, and rule extraction and visualization wherein the

rules are extracted in a human- and machine-readable format from the learnt model. One assumption we

need to de�ne for this problem is that any linguistic phenomena we want to explain should not be totally

1https://neulab.github.io/autolex/
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Raw Text

λιµάνι                της             Ηγουµενίτσας             συνδέεται        µε        πολλά           λιµάνια             της               Ιταλίας                  και              της                Αλβανίας
port.SG            DET            Igoumenítsa.GEN   connect.SG   with     many           port.PL            DET             Italy.GEN             and            DET             Albania.GEN

 Dependency Parsed Data

λιµάνι                   της                Ηγουµενίτσας     συνδέεται         µε          πολλά             λιµάνια              της                Ιταλίας                  και             της                 Αλβανίας
NOUN;NEUT   DET;FEM      PROPN;FEM    VERB            ADP      ADJ;NEUT    NOUN;NEUT    DET;FEM    PROPN;FEM     CCONJ     DET;FEM     PROPN;FEM

mod

det udep
comp:obj

mod det

mod
mod

det

conj

Training Data Extraction
Training Sample             Agree?
NOUN det  DET               Yes
PROPN det DET              Yes
NOUN mod ADJ              Yes
PROPN mod NOUN        No
PROPN mod PROPN      Yes

Decision Tree Learning

Leaf -1:
relation = det, head-POS = NOUN, PROPN, child-POS = *

Leaf -2: 
relation = mod, head-POS = NOUN, PROPN, child-POS = ADJ,PROPN

Labeling
Leaf-1: 
Required-Agreement

Leaf-2:
Chance-Agreement

Use/Evaluation

Linguist

Figure 3.1: An overview of our method’s work�ow for gender agreement in Greek. The example sen-

tence translates to “The port of Igoumenitsa is connected to many ports in Italy and Albania.” First, we

dependency parse and morphologically analyze raw text to create training data for our binary agreement

classi�cation task. Next, we learn a decision tree to extract the rule set governing gender agreement,

and label the extracted leaves as either representing required or chance agreement. Finally these rules

are presented to a linguist for perusal.

random, i.e. its mechanisms can be derived from some underlying criteria (e.g. syntactic) and therefore

can generalize across most linguistic inputs. For example, syntax is largely driven by the syntactic heads

of grammatical relations and their arguments, and, therefore we can use statistical models to learn some

of the constraints that hold between the heads and their arguments. Manning (1994) describe some such

linguistic phenomena which are sensitive to argument structure. However, there are exceptions to gen-

eral syntax rules, for example, arising from subclasses of words, for which we then require to use lexical

and semantic features.

More concretely, the process of agreement entails matching the value of grammatical categories

(e.g. gender, person, number) between di�erent words/phrases in the sentence. The extent of agree-

ment displayed across these categories varies drastically both within a language and across di�erent

languages. For instance, �nite verbs in Marathi usually agree with their subjects on gender, number, and

person, whereas regular verbs in English agree only on person and number. In this work, we focus on the

agreement observed in the following six grammatical categories, namely: gender, person, number, tense,

mood, and case. which are known to display agreement extensively across multiple languages (Barlow

and Ferguson, 1988; Corbett, 2003). Canonically, agreement is described in the syntactic environment of

a language (Corbett, 2017), however semantic features also govern agreement in some situations (Pul-

lum, 1984). For example, United Nations is, despite United Nations being plural it is treated as singular

for purposes of agreement. Corbett (2003) distinguishes between the agreement governed by syntax as

syntactic agreement and that governed by meaning as semantic agreement. In this work, we describe the

agreement process using syntactic features i.e. the syntactic agreement using features derived from syn-

tactic dependency, head and the dependent (Nichols, 1985) and present a framework that automatically

extracts these rules from raw text (Figure 3.1). We now describe each of the four steps in AutoLEX to

understand the agreement process.
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A.1 Los enigmas son fáciles

DET.PL riddle.PL be.PL easy.PL

�_req__

�

‘The riddles are easy.’

A.2 *Los enigmas es fácil

DET.PL riddle.PL be.SG easy.SG

�wrong

�

B.1 Mi hermano tiene un perro

My brother.SG has.SG ART.SG dog.SG

�_req__

� �_____chance_____

�

‘My brother has a dog.’

B.2 Mi hermano tiene muchos perros

My brother.SG has.SG many.PL dog.PL

�_req__

� �_____correct_____

�

‘My brother has many dogs.’

Figure 3.2: Subject-verb number agreement is required in Spanish, as in example A.1, which renders

example A.2 ungrammatical. Object-verb agreement is not required, so both B.1 and B.2 are grammatical.

The object and the verb in B.1 only agree by chance.

3.2.1 Problem Formulation

In AutoLEX, we �rst determine whether we can formulate a given linguistic phenomenon p as a predic-

tion problem, where given an input set of features Xp = {x1,x2, · · · ,xn} we predict an output label

Yp = y1, y2, · · · , yn that indicates the linguistic phenomena. Next, we determine the set of features

which we believe are known to govern the phenomena represented in the UD schema (McDonald et al.,

2013). Below we describe how we de�ne X,Y formally for agreement.

Agreement Formally, we pose the linguistic question of agreement as under what conditions should

two tokens in a sentence agree on some morphological property and when they need not. The prediction

problem of morphological agreement then becomes predicting whether the value of a morphological

property matches between the head and the dependent token. However, not all observed agreement

can be attributed to an underlying grammatical rule. For example, in Figure 3.2 the Spanish A.1 shows

an example where the subject (enigmas) and the verb (son) need to agree on number property. We will

refer to such rules as required-agreement. Such a required agreement rule dictates that an example like

A.2 is ungrammatical and would not appear in well-formed Spanish sentences, since the subject and the

verb do not have the same number marking. However, not all word pairs that agree do so because of

some underlying rule, and we will refer to such cases as chance-agreement. For example, in Figure 3.2

the object (perro) and the verb (tiene) in B.1 only agree in number by chance, and example B.2 (where

the object of a singular verb is plural) is perfectly acceptable. Therefore, we pose the problem of ex-

tracting agreement rules as identifying for which head-dependent pairs the language displays required-

agreement and for which we will observe at most chance-agreement. We focus on the morphological

attributes M = {gender, person, number, case, tense, aspect}, and train a separate model for each. Al-

though, among these six morphological attributes, gender, person, and number often show agreement

than other attributes (Corbett, 2009). The pair of head-dependent words which both mark the morpho-

logical propertym form the input example xi and the output labels (yi) are binary, denoting if agreement

is observed or not between the pair.
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3.2.2 Feature Extraction

After formulating the linguistic question into a prediction task, we design features to help predict its

answer. We use linguistic knowledge to design features, but the feature extraction process itself is au-

tomatic. For a di�erent question or language, a linguist can begin the process by using these initial

features or even design new features as they deem �t. The chosen criteria and features in the frame-

work can be further honed by using inputs from language experts or by consulting relevant literature.

For example, there are several debates in the literature about what mechanisms govern agreement, is

it fully syntactic, is it restricted to only some grammatical categories, is it de�ned over a local context,

and so on. We design our general framework to allow a user to experiment with di�erent combinations

of features. In this chapter, we make the simplifying assumption that the head and dependent elements

(tokens) are represented by only POS features, as we would like our extracted rules to be concise and

easily interpretable downstream, although this can be extended further by adding more descriptive fea-

tures (check Chapter 4). We refer to the words participating in an input xi as focus words, in this case

the head-dependent word pairs.

3.2.3 Training Data and Model Learning

Training Data To construct training data Dp
train

for the agreement phenomenon p, we start with

the raw text D of the language in question and perform syntactic analysis, producing POS tags, lem-

mas, morphological analysis and dependency trees for each sentence (shown in Figure 3.2). Using this

analysis, we then identify the focus word(s) and extract features, forming the input example (xi =

{x0i , x1i , · · · , xki }). Speci�cally, we convert each dependency relation into a triple 〈wh, wd, r〉, indi-

cating the head token, dependent token, and dependency relation between wh and wd respectively.

For the entire text, we now have input features for each morphological property of our interest m as

Xm
agree = {〈w(1)

h , w
(1)
d , r(1)〉, . . . , 〈w(n)

h , w
(n)
d , r(n)〉} and binary output labels Y = y1, . . . , yn, where if

the head and the dependent token agree on property m (such that wmh = wmd ) we set y = 1, otherwise

y = 0.

Model Learning Given that the learned model must be interpretable to linguists using the system, we

opt to use decision trees (Quinlan, 1986), which split the data into leaves, where each leaf corresponds

to a portion of the input examples following common syntactic patterns. We train decision trees using

the CART algorithm (Breiman et al., 1984). A major advantage of decision trees is that they are easy to

interpret and we can visualize the exact features used by the decision tree to split nodes. The decision

tree induces a distribution of agreement over training samples in each leaf, e.g. 99% observed agreement,

1% not agreeing in Leaf-3 for gender agreement in Spanish (Figure 3.3(a)).

3.2.4 Rule Extraction and Visualization

The above step constructs a decision tree for each morphological property and language, where each

tree leaf corresponds to a salient partition of the possible syntactic structures in the language. The next

step is to identify which of these leaves correspond to a likely agreement rule, i.e. we need to label

these leaves with either required-agreement or chance-agreement label. For this, we apply a threshold on

the ratio of training samples which have matching values within a leaf – if the ratio exceeds a certain
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node 1

Leaf 3: required-agreement

relation = any

head-pos = any

child-pos = aux,adj,verb,pron,

propn,det,num

Leaf 1: chance-agreement

relation = conj, det, comp:obj

head-pos = any

child-pos = noun

child-pos= aux,adj,verb,pron,

propn,det,num

child-pos=

noun

(a) Rule Extraction (b) Rule Labeling (c) Rule Merging

Figure 3.3: Extracting gender agreement rules in Spanish. (a) A decision tree is learned over dependency

link triples, inducing a distribution of agreement over examples in each leaf. However, simple majority

voting leads to false positives: Leaf-1 includes more agreeing data points, but in reality this agreement

is purely by chance. (b) With a statistically-inspired threshold to label the leaves, Leaf-1 gets correctly

labeled as chance-agreement. (c) We merge leaves with the same label to get a concise representation.

Every dependency link triple receives the label of the unique leaf it falls under.

number, the leaf will be judged as required-agreement. We experiment with two types of thresholds, hard

threshold and a statistical threshold.

Hard Threshold In this setting, a leaf having the number of agreeing examples more than 90% of

all examples in that leaf are labeled as required-agreement. We set this threshold based on manually

inspecting some resulting trees to �nd a threshold that limited the number of non-agreeing syntactic

structures being labeled as required-agreement.
2

Statistical Threshold A hard threshold alone is insu�cient to capture probable agreement because

leaves with very few examples may exceed the hard threshold purely by chance. Therefore, we use a

statistical measure to better determine whether the agreements are due to a true pattern of required

agreement. For all leaves displaying an agreement majority, we apply a chi-squared (Oakes, 1998) good-

ness of �t test to compare the observed output distribution with an expected probability distribution

speci�ed by a null hypothesis. Our null hypothesis H0 is that any agreement we observe is due to

chance. If the null hypothesis is rejected, we conclude from the alternative hypothesis H1 that there

exists a grammatical rule that requires agreement for this leaf.

For computing the expected probability distribution, we assume that the morphological properties of

the head and the dependent token are independent and identically distributed discrete random variables

following a categorical distribution if there is no rule requiring agreement. We compute the probability

of chance agreement based on the number of values that the speci�c morphological propertym can take.

Since the category values are not equally probable, we use a probability proportional to the observed

value counts. For a binary number property where 90% of all observed occurrences are singular and

10% are plural, the probability of chance agreement is equal to 0.82=0.9 × 0.9+0.1 × 0.1, which gives

the observed output distribution p = [0.18, 0.82]. Using p we compute the expected frequency count

Ei = npi where n is the total number of samples in the given leaf, i = [0, 1] is the output class of the

2
Initial experiments with a majority voting strategy i.e. setting the threshold to-50% yielded much worse trees and hence

we decided to use 90% as the hard threshold.
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leaf, and pi is the hypothesized proportion of observations for class i. The chi-squared test calculates

the test statistic χ2
as follows:

χ2 =
∑
i∈[0,1]

(Oi − Ei)2

Ei
(3.1)

whereOi is the observed frequency count in the given leaf. The test outputs a p-value, and if this p-value

is smaller than a chosen signi�cance level (we use 0.01) we reject the null hypothesis and label the leaf

as required-agreement.

The chi-squared test especially helps to be cautious with leaves with very few examples. However,

for leaves with larger number of examples, statistical signi�cance alone is insu�cient because there are

a large number of cases where there are small but signi�cant di�erences from the ratio of chance agree-

ment. Therefore, in addition to comparing the p-value we also compute the e�ect size which provides a

quantitative measure on the magnitude of an e�ect (Sullivan and Feinn, 2012). Cramér’s phi φc (Cramér,

1946) is a commonly used method to measure the e�ect size:

φc =
χ2

N(k − 1)
(3.2)

where χ2
is the test statistic computed from the chi-squared test, N is the total number of samples

within a leaf, and k is the degree of freedom (which in this case is 2 since we have two output classes).

Therefore, a leaf is now labeled as required-agreement if the p-value is less than the signi�cance value and

the e�ect size is greater than 0.5.
3

Now Leaf-1 in Figure 3.3(b) is correctly identi�ed as chance-agreement.

One limitation of our formulation is that rules that show agreement sometimes get incorrectly labeled as

chance-agreement or required-agreement. We do consider this in evaluation, although.

To obtain a concise set of rules, we merge sibling leaves with the same label as shown in Figure 3.3(c).

Furthermore, we collapse tree nodes that have all leaves with the same label to reduce the apparent depth

of the tree for easy visualization.

Rule Visualization After the leaves have been labeled and merged, each rule comprises of triples of

head-POS tag, dependent-POS tag, and the dependency relation between them. For each such rule, we

extract illustrative examples from the underlying corpus and visualize them in an interface (Figure 2.5

in Chapter 1). We select such examples that are short and consist of diverse word forms to illustrate the

rule usage in di�erent contexts. Along with examples which follow a rule, we also show examples which

do not follow the rule, giving a softer, more nuanced view of the data. Speci�cally, to not overwhelm

the user, we only present 10 examples for each type.

3.3 Experimental Settings

We evaluate our extracted rules using both an automated evaluation where we measure the accuracy

against a test set and, human evaluation where we present rules to language experts for veri�cation. We

conduct two types of experiments: 1) gold-standard experiments where we use the gold-standard syn-

tactic analyses to evaluate whether our proposed approach extracts linguistically plausible rules across

3
This threshold is selected based on Cohen (2013) who provide rules of thumb to interpret the e�ect size.
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a diverse set of languages (section 3.4) and, 2) under-resourced experiments to evaluate our system in the

absence of gold-standard analyses where we use cross-lingual transfer to obtain noisy parses on the lan-

guages of interest (section 3.5). Experimenting with languages that have been already studied and have

annotated treebanks is crucial for verifying the e�cacy of our approach before applying it to other truly

low- or zero-resource languages. Under this setting, we not only have clean and expert-annotated data,

but we can also quickly compare the e�ect of data size on the system performance as di�erent languages

have treebanks of varying size.

Data and Model We use Surface-Syntactic Universal Dependencies (SUD) treebanks (Gerdes et al.,

2018, 2019) as the gold-standard source of complete syntactic analysis. The SUD treebanks are derived

from Universal Dependencies (UD) (Nivre et al., 2016; Nivre et al., 2018), but unlike the UD treebanks

which favor content words as heads, SUD treebanks express the dependency structure using syntactic

criteria, which is more conducive to our goal of learning syntactic rules. Figure 3.4 presents a comparison

of UD and SUD-style trees for the German sentence, “Ich werde lange Bücher lesen.". The SUD tree has

the function word ‘werde’ as the syntactic head to the content word ‘lesen’. We use the tool Gerdes et al.

(a) (b)

Figure 3.4: Comparing the UD (a) tree with the SUD (b) tree for the German sentence “Ich werde lange

Bücher lesen.".

(2019) to convert UD v.2.5 (Nivre et al., 2020) into SUD covering 55 languages in 91 treebanks, which

are publicly available with annotations for POS tags, lemmas, dependency parses, and morphological

analysis. We use their provided split of train/dev/test and learn the rules only on the training portion of

the treebanks.

We use sklearn’s (Pedregosa et al., 2011) implementation of decision trees and train a separate

model for each morphological property m for each treebank. As mentioned earlier, we experiment with
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Figure 3.5: Annotation interface for evaluating number agreement in English

six grammatical categories (gender, person, number, mood, case, tense) which are also most frequently

present across several languages. We experiment with Statistical Threshold and Hard Threshold and �nd

that the former performs better on manual inspection, especially for under-resourced languages. One

reason why Statistical-Threshold performs better for these languages is because there are more leaves

with fewer samples overall, causing Hard Threshold to have more false positives. Whereas Statistical

Threshold uses e�ect size with the signi�cance test which takes into account the sample size within a

leaf leading to better leaves. Therefore, we chose to use Statistical-Threshold for all our experiments. We

perform a grid search over the following hyperparameters of the decision tree:

• criterion = [gini, entropy]

• max depth = [6,15]

• min impurity decrease = 1e−3

The best parameters are selected based on the performance of the validation set. For treebanks that have

no validation split, we use the default cross-validation provided by sklearn (Buitinck et al., 2013).

The average model runtime for a treebanks is 5-10 mins depending on the size of the treebank.

3.3.1 Human Evaluation

We evaluate our extracted head-relation-dependent triples for agreement with the help of language ex-

perts. Ideally, we want to collect these annotations for all triples in the treebank, but this would require

annotating hundreds of triples across the six grammatical categories and languages, requiring a large

time commitment from linguists evaluating the language. Instead, for a subset of languages (treebanks)

we extract and evaluate the top 20 most frequent triples for the six grammatical categories, amounting

to 120 sets of triples to be annotated.
4

The linguist is then asked to annotate whether there is a rule

in this language governing agreement between the head-dependent pair for this relation. The allowed

labels are: Almost always agree if the construction must almost always exhibit agreement on the given

category; Sometimes agree if the linked arguments sometimes must agree, but sometimes do not have to;

Need not agree if any agreement on the category is random. An example of the annotation interface is

shown in Figure 3.5.

To calculate the accuracy of human annotations, for each annotated triple marking grammatical

category f , we extract the label assigned to it by the learnt decision tree T . We �nd the leaf to which

4
The top 20 most frequent triples covered approximately 95% of the triples where this feature was active on average.
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the given triple t belongs and assign the label of that leaf to the triple, referred to by ltree,f,t. We then

compare this label with lhuman,f,t which is the label assigned to the triple t by the human annotator

and average the accuracy across all annotated triples Tf to get the human evaluation metric (HRM) for

feature f given by:

HRMf =

∑
t∈Tf 1{lhuman,f,t = ltree,f,t}

|Tf |
(3.3)

where 1 denotes an indicator function.

3.3.2 Automated Evaluation

Since it is not always feasible to conduct the human evaluation, we also present an automated evaluation

method which acts as a proxy for the human evaluation. We propose an automated rule metric (ARM)

that evaluates how well the rules extracted from the decision tree T �t to an unseen gold-annotated

test data. For each triple t marking the grammatical category f , we �rst retrieve all the examples from

the test data corresponding to that triple. Next, we calculate the empirical agreement by counting the

fraction of test samples that exhibit agreement, as referred to by qf,t. For a required-agreement leaf, we

expect most test samples satisfying that rule to show agreement.
5

To account for any exceptions to the

rule and/or parsing-related errors, we use a threshold that acts as a proxy for evaluating whether the

given triple denotes required agreement. We use a threshold of 0.95, and if qf,t > 0.95 then assign the

test label ltest,f,t for that triple as required-agreement, and otherwise choose chance-agreement.
6

Similar

to the human evaluation, we compute a score for each triple tmarking the category f and average across

all triples annotated in Tf to obtain the ARM score as shown below.

ARMf =

∑
t∈Tf 1{ltest,f,t = ltree,f,t}

|Tf |
(3.4)

We compare our produced trees with the baseline trees that predict chance-agreement for all triples.

3.4 Gold-Standard Experiments

In this section, we evaluate our extracted rules in the setting where we have access to gold-standard

syntactic analyses. We discuss the results of models trained on the SUD treebanks.

3.4.1 Automated Evaluation Results

We learn the decision trees on the training portion of each treebank and �nd that our extracted rules

outperform the baseline trees by 7.4 ARM points, averaged across all treebanks.
7

In Figure 3.6, we show

improvements over the baseline averaged across language families/genera. In families with extensive and

well-documented agreement systems such as Indo-Aryan, Slavic, Baltic (Comrie, 1984; Crockett, 1976)

our models clearly outperform the baseline discovering correct rules. For mood and tense, the chance-

agreement baseline performs on par with our method. This is not surprising because little agreement

5
There are exceptions: e.g. when the head of dependent is a multiword expression (MWE), in which case dependency

parsers might miss or pick only one of its constituents as head/dependent, or if the MWE is syntactically idiosyncratic.
6
We keep a 5% margin to account for any exceptions or parsing errors based on the feedback given by the annotators.

7
Individual scores for each treebank are in the original paper.
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Figure 3.6: Di�erence in the ARM scores of decision trees over gold-standard syntactic analysis with

baseline trees where all leaves predict chance-agreement.

is observed for these categories, given that only verbs and auxiliary verbs mark these categories. We

�nd that for both tense and mood in the Indo-Aryan family, our model identi�es required-agreement

primarily for conjoined verbs, which must mostly agree only if they share the same subject. However,

subsequent analysis revealed that in the treebanks, nearly 50% of the agreeing verbs do not share the

same subject, but do agree by chance.

We further measure the conciseness of the constructed trees by plotting the correlation between

the number of leaves and the morphological complexity of the languages in Figure 3.7. To compute the

morphological complexity of a language, we use the word entropy measure proposed by Bentz et al.

(2016) which measures the average information content of words and is computed as follows:

H(D) = −
∑
i∈V

p(wi) log p(wi) (3.5)

whereV is the vocabulary,D is the monolingual text extracted from the training portion of the respective

treebank, p(wi) is the word type frequency normalized by the total tokens. Since this entropy does not

account for unseen word types, Bentz et al. (2016) use the James-Stein shrinkage estimator (Hausser and

Strimmer, 2009) to calculate p(wi):

p(wi) = λptarget(wi) + (1− λ)pML(wi) (3.6)

where λ ∈ [0, 1], ptarget
denotes the maximum entropy case given by the uniform distribution

1
V and pML

is the maximum likelihood estimator given by the normalized word type frequency. Languages with a

larger word entropy are considered to be morphologically rich as they pack more information into the

words. In Figure 3.7 we plot the morphological richness with the average number of leaves across all

grammatical categories and �nd them highly correlated.

3.4.2 Human Evaluation Results

Through the above experiments, we automatically evaluated that the extracted rules are predictive (to

some extent) and applicable to the language in general. Now, we conduct a manual evaluation for three
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Figure 3.7: Correlation between size of the decision trees constructed by our framework and morpho-

logical complexity of languages.
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languages: Greek (el), Russian (ru) and Catalan (ca). As described above, we require language experts to

annotate a head-relation-dependent triple with either almost always agree, sometimes agree and need not

agree. For a strict setting, we consider sometimes agree and need not agree as chance-agreement and report

the human evaluation metric (HRM) in Figure 3.8. Overall, our method extracts �rst-pass grammar rules,

achieving 89% accuracy for Greek, 78% for Russian, and 66% for Catalan.

We analyze some of the errors made by our model and �nd that in most error cases, like the person

in Russian, our model produces incorrect required-agreement labels, which we can attribute to skewed

data statistics in the treebanks. In Russian and Greek, for instance, conjoined verbs only need to agree in

person and number if they share the same subject; however, in the treebanks we �nd them to implicitly

agree because they both must agree with the same subject phrase. In treebanks, though, only 15% of the

agreeing verbs do indeed share the same subject, the rest agree by chance. In a reverse example from

Catalan, the overwhelming majority (92%) of 8650 tokens are in the third person, causing our model to

label all leaves as chance agreement despite the fact that person/number agreement is required in such

cases. Similarly for tense in Catalan, our framework predicts chance-agreement for auxiliary verbs with

verbs as their dependent because of the overwhelming majority of disagreement examples. We believe

this is because of both the annotation artifacts and the way past tense is realized. Agreement in TAM

(tense, aspect, and modality) is not that common because frequently only one verb in relation is �nite

and for many languages TAM are optionally marked (Gil, 2021).

Since manual evaluation is not always feasible, we also conduct the automated evaluation whose

results we discussed before. To assess how well automated evaluation correlates with the human eval-

uation protocol, we compute the Pearson’s correlation (r) between ARM and HRM for each language

under four model settings: simulate-50, simulate-100, baseline and gold. simulate-x is a simulated low-

resource setting where the model is trained using syntactically analyzed gold standard data x.
8

The

baseline setting is the one where all leaves predict chance-agrement and under the gold setting we train

using the entire gold-standard data. We compute the ARM and HRM scores for the rules learnt under

each of the four settings and report the Pearson’s correlation, averaged across all categories. Overall,

we observe a moderate correlation for all three languages, with r = 0.59 for Greek, r = 0.41 for Rus-

sian and r = 0.38 for Catalan. The correlations are very strong for some categories such as gender

(rel = 0.97, rru = 0.82, rca = 0.98) and number (rel = 0.97, rru = 0.69, rca = 0.96) where we expect to

see extensive agreement.

3.5 Under-resource Experiments

The experiments on gold-standard syntactic analyses showed that our model extracts decent �rst-pass

agreement rules. However, it is not always the case that we have access to a large quantity of gold-

standard analyses. Therefore, to investigate how the quality of rules is a�ected by the quality of the

analyses, we conduct simulation experiments by varying the amount of gold-standard syntactically an-

alyzed training data. For each language, we sample x fully parsed sentences from the treebank of the

available training sentences L. For the remaining L − x sentences, we use silver syntactic analysis i.e.,

we train a syntactic analysis model on x sentences and use the model predictions for theL−x sentences.

We experiment with Spanish, Greek, Belarusian and Lithuanian. Data statistics and treebank details are

8
More details on the experimental setup in section 3.5.
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Figure 3.9: Comparing the (avg.) ARM score for Number agreement with and without cross-lingual

transfer learning (transfer language in parenthesis). x-axis in log space. The higher the ARM the better.

presented in Table 3.1.

Language Train/Dev/Test Transfer Language

Spanish-GSD 14187 / 1400/ 426 Portuguese-Bosque

Greek-GDT 1662 / 403 / 456 Ancient Greek-PROIEL

Belarusian-HSE 319 / 65/ 253 Ukrainian-IU

Lithuanian-ALKSNIS 2341 / 617 / 684 Latvian-LVTB

Table 3.1: Dataset statistics. Train/Dev/Test denote the number of sentences in the respective treebank

used for the target language.

We train Udify (Kondratyuk and Straka, 2019), a parser that jointly predicts the syntactic analysis

(POS tags, morphological features, and dependency trees) using the x gold-standard sentences as our

training data. We generate model predictions on the remaining L−x sentences. Finally, we concatenate

the x gold data with the L − x automatically parsed data from which we extract the training data for

learning the decision tree. We experiment with x = [50, 100, 500] gold-standard sentences. To account

of sampling randomness, we repeat the process 5 times and report averages across runs. To further im-

prove the quality of the automatically obtained syntactic analysis, we use cross-lingual transfer learning

where we train the Udify model by concatenating x sentences of the target language with the entire

treebank of the related language. We use Portuguese, Ancient Greek, Ukrainian and Latvian treebanks,

respectively, as the transfer languages for Spanish, Greek, Belarusian and Lithuanian. We also conduct

zero-shot experiments in this setting, where we directly use the Udify model trained only on the re-

lated language and get the model predictions on L sentences. As before, we train �ve decision trees for

each x setting and report the average ARM on the test data.

Results In Figure 3.9, we report the results for the number agreement. Similar plots for other languages

and grammatical categories can be found in the original paper. We observe that using cross-lingual
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[Relation, Head, Dependent] correct label gold zero-shot

det, noun, det. almost always required required

mod, noun, adj almost always required required

�at, propn, propn almost always required chance

mod, propn, propn almost always required chance

appos, propn, propn sometimes required chance

comp:aux@pass, aux, verb need not chance required

conj, propn, propn need not required chance

ARM score over the test set: 0.644 0.632

Table 3.2: The Spanish gender rules extracted in a zero-shot setting are generally similar to the ones

extracted from the gold data (93%). We highlight the few mistakes that the zero-shot tree makes.

Language Train / Test

Breton-KEB 30000 / 888

Buryat-BXR 10000 / 908

Faroese-OFT 50000/ 1208

Tagalog-TRG 30000 / 55

Welsh-CCG 30000 / 956

Table 3.3: Dataset statistics. Training data is obtained by parsing the Liepzig corpora Goldhahn et al.

(2012) and test data is obtained from the respective treebank. Each cell denotes the number of sentences

in train/test.

transfer learning (CLTL) already leads to high scores across all languages even in zero-shot settings

where we do not use any data from the gold-standard treebank. For example, Spanish zero-shot trees

produce rules similar to those of the Spanish gold standard trees (Table 3.2), making a few mistakes as also

re�ected in the ARM score. Using CLTL, training with just 50 gold-standard target language sentences is

almost equivalent to training with 100 or 500 gold-standard sentences. This is encouraging for language

documentation of endangered or new languages, as with only 50 expertly-annotated syntactic analysis

our framework can produce decent �rst-pass agreement rules using CLTL. The rules improve as we

increase the number of gold-standard sentences, which is not surprising.

True Zero-shot Results We also evaluate our model in a true zero-shot setting such as for Breton,

Buryat, Faroese, Tagalog, and Welsh which do not have gold-standard syntactic analyses available for

training but have test data available in SUD. In such cases, we can still extract grammar rules with

our framework using zero-shot dependency parsing. For these languages, we collect raw text from the

Leipzig corpora (Goldhahn et al., 2012). Data statistics are listed in Table 3.3.

To enable transfer, we use the Udify model that has been pre-trained on all UD treebanks, as

released by Kondratyuk and Straka (2019), and predict the syntactic analysis on the above corpora. As
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Figure 3.10: In most cases our framework (shaded bars) extracts a good �rst-pass speci�cation for true

zero-shot settings. Solid bars indicate the baseline.

before, we use these automatically parsed syntactic analyses to extract the rules which we evaluate with

ARM over the gold-standard test data of the corresponding SUD treebanks in Figure 3.10. Tagalog and

Buryat are the most distant languages that we test on (no Philippine and Mongolic language is present in

our training data) and yet we observe our method being at par with the baseline and even outperforming

in the case of Tagalog. Breton and Welsh, on the other hand, are an interesting test bed: Celtic languages

are to some degree outliers among Indo-European languages (Borsley and Roberts, 2005), and we suspect

that as a result the parser performs generally worse. Despite that, our approach has an ARM of 0.730 for

Welsh gender agreement, as opposed to the mere 0.615 that the baseline achieves.

3.6 Limitations

While we demonstrate that describing agreement using head-relation-dependent triples achieves decent

performance, a limitation of our approach is that it does not capture more complex phenomena that

require a broader context or operate at the phrase level. For example, in this English example: “John

and Mary love their dog”, under both the UD and SUD formalisms, the coordinating conjunction “and”

is dependent, and hence the verb will not agree with either of the (singular) nouns (“John" or “Mary").

Furthermore, as mentioned in the introduction, certain types of agreement are driven semantics, and

therefore the feature set needs to be expanded accordingly. Handling such phenomena requires incor-

porating more descriptive features in the model which, however, could make the tree more complex to

comprehend and visualize. Also, in discussing with linguists, we �nd that annotating triples with exclu-

sively one label is tricky because often there are sub-rules governing the agreement for the same triple

speci�cation. For example, for proper nouns in Russian the gender agreement also depends on phono-

tactics: Пьер Морал here the �rst name would be declined, but not the second, which means only the

�rst name would have the morphological feature explicitly marked. This is an issue with the UD/SUD

annotation scheme, which usually annotates morphological features for tokens with in�ections in the

form. Additionally, we can only capture agreement for tokens which have the morphological property

annotated, this could result in ignoring tokens which although exhibit agreement, but under the UD

scheme, have not been annotated.

40



3.7 Conclusion

In this chapter, we presented a framework for extracting and evaluating a �rst-pass set of language

patterns from the raw text directly. We showed that the framework extracts decent descriptions under

the gold setup where the syntactic analyses are of high quality and, in the under-resourced setting, how

using cross-lingual transfer learning can help bridge the gap in performance when such high quality or

quantity of data is not available.

41



42



Chapter 4

A General Framework for Extracting

Linguistic Descriptions

In the previous Chapter 3, we described the general framework of AutoLEX, where we showed how

language patterns for the morphological agreement process can be extracted automatically from the

raw text directly. While we demonstrated the e�cacy of our method in extracting a decent �rst-pass set

of rules, we �nd that our underlying syntactic features are unable to capture more complex phenom-

ena, including the semantic agreement process. One reason for this limitation is our restricted feature

set, which is derived from only the syntactic dependency relation, head and dependent. Such restricted

feature sets would similarly be insu�cient to explain other complex linguistic phenomena such as case

marking, and argument structure, which are governed by both syntactic and semantic features. Fur-

thermore, since each linguistic phenomenon will be de�ned on a subset of features known to govern,

that particular phenomenon, having separate frameworks can get challenging to maintain or extend.

We want researchers or linguists to be able to quickly add new features to improve existing models or

even add new linguistic phenomena across numerous languages, wherever applicable. Therefore, in this

chapter, we show how AutoLEX can answer other linguistic questions such as word order and case

marking, in addition to morphological agreement.

Aditi Chaudhary, Zaid Sheikh, David R. Mortensen, Antonios Anastasopoulos, Graham Neubig. 2022.

AUTOLEX: An Automatic Framework for Linguistic Exploration. On arxiv.

4.1 Overview

As mentioned in Chapter 2, most of the grammar description focuses on aspects of syntax and morphol-

ogy, of which case, word order, and morphological agreement are the most important.

Case is formally de�ned as the ‘system of marking dependents by the type of relation they bear to

their syntactic heads’, for example, the nominative marking on the noun could inform that the noun is

the grammatical subject of the verb (Blake, 1994, 2001). One reason to understand case assignment is

for understanding the grammatical functions of words in a sentence (VanPatten and Smith, 2019). For

example, in English the constituent order is �xed, i.e., typically subjects come before verbs, which in

turn come before objects, while in many languages this order need not be �xed. For example, in Hindi,
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Figure 4.1: An overview of the AutoLEX framework being applied for understanding word order, with

Adj-N order in Spanish as an example. The example sentence translates to Four books were bought by

the small girl. First, we formulate a linguistic question (e.g. regarding Adj-N order) as a binary classi�-

cation task (e.g. “whether the Adj comes before/after the N’). Next, we perform syntactic analysis on the

raw text, from which we extract syntactic, lexical, and semantic features to construct the training data.

Finally, we learn an interpretable model from which we extract concise rules.

the subject and object phrases are free to move around, and in order for humans to understand which

phrase is the subject and which the object, the grammatical function is encoded in terms of case mark-

ing (Figure 4.2).
1

Linguists have long debated on what exactly de�nes a case. In the literature, there

are multiple viewpoints, but we focus on the viewpoint that there are two types of cases: abstract case

and morphological case (Chomsky, 1993; Halle et al., 1993; Legate, 2008). Abstract case is a universal

property, and the morphological case is the overt realization, which triggers under certain conditions

and varies cross-linguistically. This morphological realization can occur through word order (English),

in�ection (Malayalam) or adpositions (Hindi, Marathi, Spanish) and are triggered by syntactic and/or

semantic conditions. In AutoLEX, we are more interested in understanding abstract case i.e. extracting

the syntactic and/or semantic conditions which govern when some categories of words take the nomi-

native case versus when they take the accusative case. In Chapter 6, we look at some examples of the

morphological case where we focus on understanding the in�ection, i.e. which su�x to use under what

conditions.

WordOrder describes the relative position of the syntactic elements (e.g. subject with respect to verbs,

object with respect to verbs, etc) (Dryer., 2007), and is one of the major axes of linguistic description

appearing in grammar sketches or databases such as WALS. In languages such as English, which have a

relatively �xed word order, the position of the element conveys the grammatical role and helps reduce

sentence ambiguity (e.g. in ‘Tom likes Anna’ it is clear that ‘Tom’ is the subject that likes ‘Anna’ the

object, if the order of these elements is swapped then the meaning conveyed also changes.) While in

Figure 4.2, we see how the order between elements in Hindi is not �xed and how case marking helps

reduce the sentence ambiguity. Therefore, understanding the patterns of word order and when one

1
Example and explanations inspired from https://www.ling.upenn.edu/courses/Spring_2001/

ling150/ch5.html
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A.1 Meera ko Ram ne bachaya

Meera Ram by saved

ACC ERG

‘Meera was saved by Ram’

A.2 Ram ne Meera ko bachaya

Ram by Meera saved

ERG ACC

‘Meera was saved by Ram’

Figure 4.2: Illustrating the free word order in Hindi and how the grammatical role of subjects and objects

is expressed through the post-position (-ne for ergative, -ko for accusative).

pattern is observed over another is important for language understanding. Patterns of word order have

been widely studied in NLP, for example, Wang and Eisner (2017); Östling (2015) perform statistical

analyses on a corpus to �nd di�erent word order patterns for subjects, verbs, and objects, and conduct a

cross-lingual comparison. In AutoLEX, we are interested not only in extracting these patterns, but also

in extracting the conditions under which one pattern is typically observed.

Case, word order, and agreement have their own linguistic purpose, but they often overlap and cor-

relate. For example, word order conveys information about the structure of the sentence and can also

be used to disambiguate subjects from objects, similar to case, and how the case manifests re�ects in

the morphology in�ection leading to agreement (Malchukov, 2018).
2
. In the previous chapter, we saw

how to use NLP methods to derive linguistic insights about complex processes such as morphological

agreement. For that, we followed a multi-step process of formalization, feature extraction, model learning,

and rule extraction and visualization. In this chapter, we show how to adapt these steps to the linguis-

tic questions of case marking and word order, an example of word order is shown in Figure 4.1. Like

before, we experiment with several languages for which we design an automated evaluation protocol

that informs us how successful our framework is in discovering valid grammar rules (subsection 4.4.1).

We also conduct a user study with linguists to evaluate how correct, readable, and novel the rules are

perceived to be (subsection 4.4.2). Finally, we apply this framework to a threatened language variety,

Hmong Daw (mww), and evaluate how well our framework extracts rules under zero-resource condi-

tions (section 4.5).

4.2 Proposed Approach

Similar to section 3.2, we formally de�ne the problem formulation for each linguistic question.

4.2.1 Problem Formulation

We formulate a linguistic phenomenon p as a prediction problem, where given an input set of features

Xp = {x1,x2, · · · ,xn} we predict an output label Yp = y1, y2, · · · , yn indicating the linguistic phe-

nomena. Next, we determine the set of features which we believe are known to govern the phenomena.

For example, in previous Chapter 3 the prediction problem of morphological agreement was to predict

whether the values of a morphological property m match between the head (wh) and the dependent

2http://serious-science.org/grammatical-case-morphology-syntax-and-word-order-9354
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token (wd). Below, we describe how we de�ne Y formally for the other two phenomena of case marking

and word order, and discuss how to construct X in the following section.

Case Marking Earlier, we discussed how there are two types of case (abstract and morphological),

and in this work we consider modeling the abstract case. Since the abstract case or case is considered a

universal property present inherently for all word classes, we formulate the explanation of case marking

determining when a word class (e.g. nouns) marks a particular case (e.g. nominative, etc.). We note that this

is a simplifying assumption, as some linguists believe that case assignment is a relation between the head

and its dependent, for example, a nominal has nominative case with respect to the verb (Chomsky, 2000).

On the other hand, the Dependent Case Theory (DCT) proposes that case assignment is a function of a

relation between two determiner phrases (DP’s) and not via a syntactic head (Marantz, 2000; Baker and

Vinokurova, 2010), but Puškar and Müller (2018) argue for a unifying approach where case assignment

can happen through agreement also. Therefore, to not completely abandon the role of the head in case

assignment, we include syntactic features derived from the syntactic head, including agreement (details

are discussed in the next subsection 4.2.2). Formally, for each POS tag t we learn a separate model,

where the input examples xi are the words that have the POS tag t with the case feature marked (e.g.

Case=Nominative). The model is trained to predict an output label (yi ∈ Y ), where Y is the label set of

all observed case values for that language.

WordOrder For word order, consider the following �ve WALS (Dryer and Haspelmath, 2013) relations

R: subject-verb (82A), object-verb (83A), adjective-noun (87A), adposition-noun (85A) and, numeral-

noun (89A), which are most popularly studied in literature. In contrast to WALS, which provides only

a single canonical order for the entire language, we pose the linguistic question as determining when

does one word in such a relation appear before or after the other. Formally, the pair of words involved

in the syntactic relation 〈wai , wbi 〉 ∈ r form the input example xi and the output label yi ∈ Y where

Y = {before, after}.

4.2.2 Feature Extraction

After formulating each linguistic question into a prediction task, we design features to help predict each

question’s answer. In step-2 of Figure 4.1, we demonstrate example features extracted from a Spanish

sentence to train the adjective-noun word order model. We refer to the words that participate in an input

xi as focus words. These include the words describing the relation itself (e.g. the adjective cuatro and

its noun libros) and also their respective heads and dependents.

Syntactic Features Prior work (Blake, 2009; Kittilä et al., 2011; Corbett, 2003) has discussed the role

of syntax and morphology being important in determining the case and agreement. Case is traditionally

dependent-marking i.e. the grammatical markers of morphology and case are on the dependents, but

these markers can also be found on the heads as well as some languages are head-marking or via agree-

ment. Therefore, we derive features from both the dependents and the heads. In Figure 4.1, we show

a subset of features extracted for some of the focus words. For example, for the adjective, we derive

features from its POS tag (e.g. “is-adj”), all its morphological tags (e.g. “is-ordinal”) and the dependency

relation in which it is involved in (e.g. “deprel-is-mod”). We extract similar features for the adjective’s
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Οι διατάξεις αυτές αντιστοιχούν σ τα πρότυ

the.DET provision.N.Nom these.PRON.Nom correspond.V ADP DET standards.N.Acc

ROOT

DET

SUBJ

UDEP OBJ

Figure 4.3: Examples of case variation in Greek nouns. For the above sentence – “these provisions

correspond to the standards”, the underlined noun takes the nominative case because it is the subject

of the main verb. The pronoun also takes the nominative case because its the determiner of the noun

which is the subject. A noun takes the accusative case when it is the object.

head, which is libros (e.g. “head-is-noun”). In Chapter 3, our set of features for agreement comprised of

three features, POS tag of the head, dependent and, the dependency relation between them. Now, we

also include these additional features. As motivated in the previous section, agreement itself can govern

some phenomenon such as case marking; therefore, we construct a feature “is-agree” which checks if

the a morphological property of interest (e.g. case) for a dependent token is having the same value as

the syntactic head. Consider the Greek example in Figure 4.3, which shows a type of agreement feature

used for case marking. In Greek, typically nouns are in the nominative case when they are subjects and

in the accusative case when they are objects. In the same example, we can see that the pronoun is in

the nominative case. This is because the noun that the pronoun is modifying is the subject of the main

verb, and we know from before that subjects take the nominative case. Therefore, the pronoun will get a

feature (“is-agree”) denoting this agreement, which will help capture the rule that – ‘pronouns take the

same case as their modifying noun’.

Lexical Features An in�uential family of linguistic theories such as lexical functional grammar (Ka-

plan et al., 1981), head-driven phrase structure grammar (Pollard and Sag, 1994), places most of the

explanatory weight for morphosyntax in the lexicon: the properties of the head word (and other words)

drive the realization of the rest of the phrase or sentence. Therefore, we add the lemma for the focus

words (e.g. “dep-lemma-is-cuatro, head-lemma-is-libro”) as features.

Semantic Features There is a strong interaction between semantics and sentence structure. Some

well-known examples are of animacy or semantic class of a word that determines the case marking (Dahl

and Fraurud, 1996) and word order (Thuilier et al., 2021) for some languages. Animacy (Yamamoto, 1999)

is the grammatical and semantic property that informs how salient or volitional the referent of a noun

is. Grammatical animacy is still annotated as part of syntactic analysis in some languages such as Tamil,

however, of the many languages that display semantic animacy, only a few high-resourced languages

have publicly available datasets such as English (Zaenen et al., 2004; Moore et al., 2013). Annotation

initiatives have also begun to enrich existing UD treebanks with animacy categories such as for Hindi

(Jena et al., 2013), Swedish (Nivre et al., 2006). There are also e�orts to build automatic animacy classi-

�ers such as for Norwegian (Øvrelid, 2006), Dutch (Bloem and Bouma, 2013), Swedish (Øvrelid, 2009),

Japanese (Baker and Brew, 2010). However, we cannot directly use the available annotations or models

to automatically annotate the remaining languages because the categories of animacy are not consistent

across di�erent languages, and some languages even have abstract nouns and objects that are animate
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(Aissen, 1997; Quinn, 2001).

Massive e�ort from the community, as undertaken by researchers and linguists, to create Universal

Dependencies (Nivre et al., 2016) for syntactic analysis is also required to annotate the animacy for the

di�erent languages. Until such a comprehensive resource is available, we use NLP tools to simulate

animacy annotations automatically in several languages. Instead of annotating binary animacy labels

(animate vs inanimate), we choose to categorize words using �ne-grained labels (humans, machines,

vehicles, etc.) as done by Zaenen et al. (2004). Therefore, we can formulate the problem of animacy as

identifying and categorizing words into semantic classes.

Continuous word vectors provide an unsupervised way to achieve this, as these vectors (Mikolov

et al., 2013c; Bojanowski et al., 2016) have been used to capture semantic (and syntactic) similarity

across words. However, most vectors are high-dimensional and not easily interpretable, i.e. what seman-

tic/syntactic property each individual vector value represents is not obvious. Since our primary goal is

to extract comprehensible descriptions of linguistic phenomena, we �rst generate sparse non-negative

vectors using Subramanian et al. (2018), such that each dimension has a higher level of interpretabil-

ity. For each dimension, we extract the top-k words having a high positive value, resulting in features

like dim-1={radio,nuclear}, dim-2={hotel,restaurante}. This helps us to interpret what properties each di-

mension is capturing; for example, dim-1 refers to words about nuclear technology, while dim-2 refers to

accommodations. Now that we can interpret what each feature (dimension) corresponds to, we directly

add these vector as features. In Figure 4.1, a semantic feature (e.g. “dep-word-is-like={ochenta,sesenta}”
3
)

extracted for cuatro informs us that the adjective denotes a numeric quantity.

4.2.3 Training Data and Model Learning

TrainingData Similar to subsection 3.2.3, we construct the training dataDp
train

for each task p from the

raw textD of the language by performing the complete syntactic analysis, producing POS tags, lemmas,

morphological analysis, and dependency trees for each sentence. And, as we show in Chapter 3, such an

analysis can also be automatically acquired using state-of-the-art parsers (Kondratyuk and Straka, 2019;

Nguyen et al., 2021). Using this analysis, we then identify the focus word(s) and extract the di�erent

types of features, forming the input example (xi = {x0i , x1i , · · · , xki }).

Model Training We use decision trees (Quinlan, 1986), like subsection 3.2.3, which are human-interpretable

and split the data into leaves, where each leaf corresponds to a portion of the input examples following

common syntactic/semantic/lexical patterns.

4.2.4 Rule Extraction and Visualization

As we saw in Chapter 3, each leaf in the decision tree is assigned a label based on the distribution of ex-

amples within that leaf. However, a majority-based threshold alone is insu�cient, as it does not account

for leaves with very few examples, which may be based on spurious correlations or nonsensical feature

divisions, as found in Chapter 3. Instead, we use the statistical threshold for leaf labeling, as outlined in

subsection 3.2.4, performing a chi-squared test to �rst determine which leaves di�er signi�cantly from

the base distribution. For this, we �rst de�ne the nullH0 and testH1 hypotheses, and in subsection 3.2.4

3
This translates to {eight, sixty}
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Figure 4.4: A rule extracted for Spanish adjective-noun word order.

we have already described how we designed such hypotheses for agreement. For word order we de�ne

a leaf:

H0 : takes either before/after label

H1 : takes the label dominant under that leaf

We design such H0 as the words participating in the relation can either be before or after the other. For

case marking, we follow a similar approach to that explained for word order. We can design H0 as word

order, because in the abstract case viewpoint, case is a universal property for each word. We then apply

the chi-squared test and compute the p-value. Leaves which are not statistically signi�cant are assigned

the label of cannot decide, which informs the user that the model is uncertain about the label. Leaves

that pass this test are then assigned the majority label and correspond to a rule that will be shown to

linguists, where the “rule” is described by the syntactic/semantic/lexical features on the branch that lead

to that leaf. After the leaf labeling step, we merge the sibling leaves to get a concise tree, as done in

subsection 3.2.4.

Rule Visualization For each rule, we extract illustrative examples from the underlying corpus and

visualize them in an interface (Figure 4.4) Since we only show a small set of examples (10 positive and 10

negative, subsection 3.2.4), we select these examples to be concise and representative. We �rst group the

examples under the rule with the lemmatized forms of the focus words. For example, under the Type-1

rule (Table 4.1) extracted for Spanish adjective-noun word order, the focus words are adjective (wa) and

noun (wb). We group these examples by the lemmatized forms of the adjective and noun 〈la, lb〉. The

examples grouped under a lemmatized pair 〈la, lb〉 are then sorted by their lengths. For each lemmatized

pair 〈la, lb〉, we select the top-k shortest examples. Finally, all selected examples are shu�ed, and we

randomly select 10 examples.

4.3 Experimental Settings

Similar to our experimental setup in section 3.3, we �rst experiment with gold-standard syntactic analy-

sis (subsection 4.4.1) and then manually verify a subset of these extracted rules (subsection 4.4.2). There-
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fore, we evaluate our extracted rules using both an automated evaluation where we measure accuracy

against a test set and, human evaluation where we present rules to language experts for veri�cation.

Data and Model Like Chapter 3, we use Syntactic Universal Dependencies v2.5 (SUD) (Gerdes et al.,

2019) treebanks and experiment with treebanks for 61 languages, which are publicly available with an-

notations for POS tags, lemmas, dependency parses, and morphological analysis. Syntactic and lexical

features are extracted directly from these gold syntactic analyses. Semantic features are derived from

continuous word vectors: we start with 300-dim pre-trained fasttext word vectors (Bojanowski et al.,

2017) which are transformed into sparse vectors using Subramanian et al. (2018)
4
. Last, we use the

XGBoost (Chen and Guestrin, 2016) library to learn the decision tree. For each language, the running

time of the model is approximately 2-5 mins. We perform a grid search over a set of hyperparameters and

select the best-performing model based on the validation set performance. Here are the hyperparameters

we use:

• criterion: {gini, entropy}

• max-depth: {3, 4, 5, 6, 7, 8, 9, 10, 15, 20}

• n-estimators: 1

• learning-rate: 0.1

• objective: multi:softprob

4.3.1 Automated Evaluation

We describe the automatic evaluation process for the linguistic phenomenon of word order and case

marking. For agreement, we follow the same protocol as subsection 3.3.2 and compare the new model

with the previous model, which used simple syntactic features such as POS of the head, the dependent,

and the dependency relation between them.

CaseMarking As noted earlier, we use the UD scheme to derive the training data. Under this scheme,

not every word is labeled with case, restricting our training and evaluation to only such labeled examples.

For simplicity, we consider case to be a universal property i.e. each word marks a particular case value

and, we evaluate whether our model can correctly predict that value. Thus, we measure the accuracy

on a test example 〈xi, yi〉 ∈ Dt
test, comparing the models prediction ŷi with the observed case value yi.

We compare our model against a frequency-based baseline which assigns the most frequent case value

in the training data to all input examples.

Word Order Similarly, we assume that every input example has a word order value, for example sub-

jects will occur either before or after the verbs. Therefore, for an input example, we consider the observed

order to be the ground truth and compute the accuracy by comparing it with the model’s prediction. We

compare against a frequency-baseline where the most frequent word order value is assigned to all input

examples.

4https://github.com/harsh19/SPINE
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Figure 4.5: Rule evaluation form presented to the language expert.

Comparing the model’s prediction with the observed order is reasonable for languages which have

a dominant word order. There is a considerable set of languages which have a freer order. WALS labels

such relations as “no dominant order” (e.g. subject-verb order for Modern Greek). For such cases, con-

sidering accuracy alone might be insu�cient as there is no ground truth. Therefore, we also report the

entropy over the predicted distribution:

Hr
wo = −

∑
k=before, after

pk log pk

pk =

∑
〈xr

i ,yi〉∈D
r
test

1

{
1 ŷi = k

0 otherwise

|Dr
test|

For languages with no dominant order, the model should be uncertain about the predicted order and we

expect the model’s entropy to be high. The accuracy computed against the observed order is still useful,

as despite there being “no dominant order”, speakers tend to prefer one order over the other. A high

accuracy would entail that the model was successful in capturing this “preferred order.”

4.3.2 Human Evaluation

In Chapter 3, we had veri�ed the rules extracted for correctness with the help of language experts. We

are also interested in checking if the rules are of assistance to the linguists and for that we evaluate prior

knowledge and feature correctness. Before starting with the actual evaluation, we �rst ask the expert

to provide answers regarding the linguistic questions we are evaluating. For example, we ask ques-

tions such as “when are subjects after verbs in Greek”, and they are required to provide a brief answer

(e.g. “for questions or when giving emphasis to a subject”). We then direct them to our interface where

we show the extracted features and a few examples for each rule, then ask questions regarding each of
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Type Rule Features Examples Label

Type-1

Adj is a Ordinal

También se utilizaba en las primeras grabaciones y arreglos jazzísticos.

Before
It was also used in early jazz recordings and arrangements.

(valid)
Las primeras 24 horas son cruciales.

The �rst 24 hours are crucial.

Type-2 Adj belongs to group:
Matisyahu piensa editar pronto un nuevo disco grabado en estudio.

Before
Matisyahu plans to release a new studio-recorded album soon.

(valid, not informative)
con,como,no,más,lo Es una experiencia nueva estar desempleado.

It’s a new experience being unemployed

Type-3

Adj is NOT Ordinal

Además de una gran variedad de aplicaciones

After
In addition to a great variety of applications.

(valid, too general)
Una unión solemnizada en un país extranjero

An union solemnized in a foreign country

Type-4

Adj’s lemma is numeroso

En África hay numerosas lenguas tonales

Before
In Africa there are numerous tonal languages

(valid, too speci�c)
Ellas poseen varios libros

They own several books

Type-5

Adj’s head noun is a conjunct

Las consecuencias de cualquier (colapso) de divisa e in�ación masiva .

After
The consequences expected from any currency collapse and massive in�ation.

(invalid)
(Realizan) trabajos de alta calidad , muy buenos profesionales

They do high quality work, very good professionals

Table 4.1: Types of rules discovered by the model for Spanish adjective-noun word order. Adjectives

are highlighted and the nouns they modify are underlined. Illustrative examples under each rule are also

shown with their English translation in italics. Label denotes the predicted order.

the three parameters (Figure 4.5). Each rule consists of the features identi�ed by the model and the set

of illustrative examples.

Regarding correctness, the expert is asked to annotate whether the illustrative examples, shown for

that rule, are governed by some underlying grammar rule. If so, they are then required to judge how

precise it is. Consider some rules extracted for Spanish adjective-noun order in Table 4.1. Looking at

the examples and features for the Type-1 rule, it is evident that this rule precisely de�nes the linguistic

distinction.
5

Some rules, although valid, may be too general (Type-3) or too speci�c (Type-4). The Type-3

rule is clearly too general, as there are considerable number of adjectives which come before nouns even

when they are not ordinals. The Type-4 rule is too speci�c because although it is correct, it does not

generalize to other similar examples. Finally, a rule may not correspond to any underlying grammar rule,

like Type-5 where the model simply discovered a spurious correlation in the data. For prior knowledge,

if an extracted rule was indeed a valid grammar rule, then we ask the expert if they were aware of such

a rule. This will inform us how useful our framework is in discovering rules which a) align with the

expert’s prior knowledge and, b) are novel i.e. rules which the expert were not aware of apriori. Finally,

for feature correctness, we ask whether the features selected by the model accurately describe said rule.

For the Type-1 rule, the answer would be yes. But for rules like Type-2, the features are not informative

even though the corresponding examples do follow a common pattern.

4.4 Gold-Standard Experiments

We discuss the results of models trained on the SUD treebanks.

5https://www.thoughtco.com/ordinal-numbers-in-spanish-3079591

52

https://www.thoughtco.com/ordinal-numbers-in-spanish-3079591


Linguistic Phenomena Model Gain

Word Order adjective-noun 2.61

subject-verb 6.95

object-verb 10.78

numeral-noun 9.88

noun-adposition 2.31

Agreement Gender 4.02

Person 1.08

Number 4.95

Case Marking NOUN 30.03

PRON 32.66

DET 47.33

PROPN 29.77

ADJ 35.59

VERB 18.76

ADP 15.4

NUM 25.81

Table 4.2: Breakdown of the performance gain (over the baseline) for each linguistic question. The

performance of the agreement models is compared with the models trained over simple syntactic features

in Chapter 3.

4.4.1 Automated Evaluation Results

We train models using syntactic features for all languages covered by SUD, wherever the linguistic ques-

tion is applicable. We �nd that our models outperform the respective baselines by an (avg.) accuracy of

+7.3 for word order, +28.1 for case marking, and +4.0 for agreement. We also experimented with Random

forests and found decision trees to be slightly underperforming ((avg.) -0.12 acc). However, given that

it is straightforward to extract interpretable rules from the latter, which is our primary goal, we use the

decision trees for all experiments.

We also report the result breakdown under three resource settings, low, mid, and high, where low-

resource refers to the treebanks with < 500 sentences, mid-resource has 500 − 5000 sentences and

high-resource has > 5000 sentences. Across all three linguistic phenomena, the (avg.) model gains over

the baseline are +3.19 for the low-resource, +10.7 for the mid-resource and +12.8 for the high-resource.

The larger the treebank size, the larger the improvement of our model’s performance over the baseline.

Even in low-resource settings, a gain over the baseline suggests that our approach is extracting valid

rules, which is encouraging for language documentation e�orts. We present the result breakdown of

individual relations in Table 4.2.

As motivated in subsection 4.2.2, the conditions which govern a linguistic phenomenon vary con-

siderably across languages, which is also re�ected in our model’s performance. For example, the model

trained on syntactic features alone is su�cient to reach a high accuracy (avg.94.2%) for predicting the

adjective-noun order in Germanic languages. But for Romance languages, using only syntactic features

leads to much lower performance (avg.74.6%). We experiment with di�erent features and report results

for a subset of languages in Figure 4.6(a). Observe that for Spanish adjective-noun order adding lexical
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Figure 4.6: (left) Comparing the e�ect of di�erent features on the word order and case marking. (right)

Comparing the accuracy of the model across di�erent treebanks of fr-gsd.

features improves the performance signi�cantly (+11.57) over syntactic features, and semantic features

provide an additional gain of +4.48. Studying the languages marked as having “no dominant order” in

WALS, we �nd that our model shows a higher entropy. SUD contains 8 such languages for subject-verb

order, and our model produces an (avg.) entropy of 1.09, as opposed to (avg.) 0.75 entropy for all other

languages. For the noun case marking in Greek, syntactic features already bring the model performance

to 94%. For Turkish, the addition of semantic features raises the model performance by +9.38. The model

now precisely captures that nouns for locations like ev, oda, kapı, dünya
6

typically take the locative case.

This is in line with Bamyacı and von Heusinger (2016) which outlines the importance of animacy in

Turkish di�erential case marking.

To con�rm that these discovered conditions generalize to the language as a whole and not the speci�c

dataset on which it was trained, we train a model on one treebank of a language and apply the trained

model directly on the test portions of other treebanks of the same language. There are 30 languages

in the SUD which �t this requirement. Figure 4.6(b) demonstrates one of those settings to understand

word order patterns in di�erent French corpora, where the models have been trained on the largest

treebank (fr-gsd). For subject-verb order, all treebanks except fr-fqb show similar high test per-

formance ( >90% acc.). Interestingly, the model severely underperforms (28% acc.) on fr-fqb which

is a question-bank corpus comprising of only questions, and questions in French can have varying word

order patterns.
7

The model fails to correctly predict the word order because in the training treebank

only 1.7% of examples are questions making it challenging for the model to learn word order rules for

di�erent question types.

Through this tool, a linguist can potentially inspect and derive insights on how the patterns discov-

ered for a linguistic question vary across di�erent settings, both within a language and across di�erent

languages as well.

4.4.2 Human Evaluation Results

Through the above experiments, we automatically evaluated that the extracted rules are predictive (to

some extent) and applicable to the language in general. Before applying this framework on an endan-

6
house, room, door, world

7
In questions such as Que signi�e l’ acronyme NASA? ("What does the acronym NASA mean?"), the verb comes before its

subject, but for questions such as Qui produit le logiciel ? ("Who produces the software?") the subject is before the verb.

54



CaseMarking WordOrder Agreement

0.2

0.4

0.6

0.8

P
e
r
c
e
n
t
a
g
e
o
f
r
u
l
e
s

� precise � too-speci�c

� too-general � not-a-rule

CaseMarking WordOrder Agreement

0.2

0.4

0.6

0.8

� yes-precisely � yes-somewhat

� no-but-aware � no-not-aware

English

CaseMarking WordOrder Agreement

0.2

0.4

0.6

0.8

� yes � no

� partially-correct

CaseMarking WordOrder Agreement

0.2

0.4

0.6

0.8

CaseMarking WordOrder Agreement

0.2

0.4

0.6

0.8

Greek

CaseMarking WordOrder Agreement

0.2

0.4

0.6

0.8

Figure 4.7: Evaluating rule correctness (left), prior knowledge (middle) and feature correctness (right).

Top plot shows the results for English while the bottom plot shows for Greek.

Linguistic Phenomena Rule Examples Label

Number dependent’s head is a NOUN Kids fun games are added to the building. Not-required-agreement

Agreement Nationalist groups are coming to the conference.

Object Pronoun is a oblique Because Large Fries give you FOUR PIECES ! Accusative

Case Marking Give him a call tommorow

Table 4.3: Some example of rules for agreement and case marking, which the expert annotator was

not aware of. The focus word is highlighted, for agreement we also underline the head with which

the dependent’s agreement is checked. The examples under number agreement demonstrate that when

dependent’s head is a noun the dependent need not agree with its head. We show one example where

the �rst example shows the dependent matches the number of the head, and the second example shows

that it didn’t not match.

gered language we �rst perform a manual evaluation ourselves for English and Greek. We select these

languages based on the availability of human annotators, using one expert each for English and Greek.

First, we note that the total number of rules for English (29) are much less than that for Greek (161), the

latter being more morphologically rich.

We �nd that 80% of the rules (across all phenomena) are valid grammar rules for both languages. A

signi�cant portion (40%) of the valid rules are either too speci�c or too general, which highlights that

there is scope of improvement in the feature and/or model design. Interestingly, even for English, there

were 7 rules which the expert was not aware of, as shown in Table 4.3. For example, the following rule for

adjective-noun order – “when the nominal is a word like something,nothing,anything, the adjective can

come after the noun.“. For Greek, almost all valid rules were known to the expert, except for one Gender

agreement rule which was, “proper-nouns modi�ers do not need to necessarily agree with their head

nouns”. Regarding feature correctness, the Greek expert found 69% of the valid rules to be readable and

informative, while the English expert found 58% of such rules. We show individual results in Figure 4.7.

These insights may have utility even for languages that already have automatic NLP tools for POS
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tagging or dependency parsing, or even a treebank, as existing annotations do not exhaustively describe

�ne-grained or complex linguistic behaviors on a holistic level (e.g. deviation in word order patterns

or explaining the process of agreement). From the user-study above, we do �nd that the approach dis-

covered �ne-grained behaviors for English and Greek, which the language experts were not aware of or

could not think of readily. In addition, even if language documentation does exist for a language, this

does not mean that it is readily available in a standardized machine-readable format, whereas the output

of our method is.

4.5 Hmong Daw Study

To test the applicability of AutoLEX in a language documentation situation, we experiment with Hmong

Daw (mww), a threatened language variety, spoken by roughly 1M people across US, China, Laos, Viet-

nam and Thailand. This variety can be categorized as a low-resourced language with respect to computa-

tional resources and accessible and detailed machine-readable grammatical descriptions. Furthermore,

this study presents a realistic setting for language analysis, as there is no expert-annotated syntactic

analysis available.

One of co-authors of this work is a Hmong linguist who is in close collaboration and consulta-

tion with the community and is the expert who provided us with the Hmong data and helped evaluate

the extracted grammar rules. We had access to 445k Hmong sentences, which were collected from the

soc.culture.hmong Usenet group (Mortensen et al., forthcoming). Since the data was scraped

from the Web, it was noisy and intermixed with English. Therefore, �rst we automatically clean the

corpus using a character-level language model trained on English. This automatically �ltered 61k sen-

tences. Next, we automatically obtain syntactic analyses using Udify (Kondratyuk and Straka, 2019).

We use training data from Vietnamese, Chinese and English treebanks and apply the resulting model to

the Hmong text. We randomly split the parsed data into a train and test set (80:20) and apply our general

framework to extract rules.

Results Hmong has no in�ectional morphology, so we only train the model to answer word order

questions. We conduct the expert evaluation on four relations where our model outperforms the baseline,

albeit slightly (+4.08 for Adj-N, +0.12 for Subj-V, +0.52 for Adp-N, +0.72 for Num-N). For Obj-V relation,

our model is on par with the baseline which could indicate that there were not many examples whose

word order deviated from the dominant order or the model needs improvement. First, we ask the expert,

a linguist who studies Hmong, to describe the rules (if any) for each relation. Compared to the rules

provided by the expert, we �nd that the model is successful in discovering the dominant pattern for all

relations. However, of the 30 rules (across all relations) presented to the expert for annotation, only 5

rules (1 rule for subject-verb, 4 rules for numeral-noun) were found to precisely describe the linguistic

distinction. For instance, according to the expert, numerals cannot occur immediately before nouns,

rather they occur before classi�ers which then occur before nouns (“1 clf-1 noun-1”). Interestingly, one

rule captured examples where the numerals occurred immediately before nouns without the classi�ers

(e.g. “1 noun-1, 2 noun-2”), which the expert was not aware of. On the one hand, this is promising as the

model, despite being trained on noisy sentences and syntactic analyses, was able to discover instances of

interesting linguistic behavior. However, the expert noted that a large portion of the rules were di�cult
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to evaluate, as these referred to examples which were incorrectly parsed, some of which even described

the English portion of code-mixed data.

Despite showing the promise of automatically obtaining detailed descriptions on languages with

good syntactic analyzers, we can see that it is still challenging to apply methods to such under-resourced

languages. This poses a new challenge for zero-shot parsing; even the relatively strong model of (Kon-

dratyuk and Straka, 2019) resulted in a high enough error rate that it impacted the e�ectiveness of our

method, and methods with higher accuracy may further improve the results of end-to-end grammar

descriptions generation.

4.6 Other Applications

Along with helping linguists and researchers in language exploration e�orts, these machine-readable

rules can also be used in NLP applications, such as to evaluate natural language generation (NLG) out-

puts. Speci�cally, Pratapa et al. (2021a) propose the L‘AMBRE metric to evaluate the morphosyntactic

well-formedness of text by applying such automatically extracted grammar rules on machine outputs.

As we saw in this and the previous chapter, such grammar rules can be extracted for many languages,

which makes L‘AMBRE multilingually applicable, also, thus providing a referenceless metric for advanc-

ing NLG in multiple languages. Natural language text from the machine output is �rst run through a

parser to identify the syntactic/semantic/lexical information for each sentence. The rules are applied to

each parsed sentence to check whether that sentence follows the rule. The metric can be explored here.

4.7 Conclusion

In this chapter, we presented our general framework, which allows a linguist to ask questions about

di�erent linguistic behaviors. Each linguistic question is formulated as a prediction task from which we

then extract and visualize concise human- and machine-readable rules. While the framework extracts

decent quality rules for languages with high-quality syntactic analysis, we do �nd that for true under-

resourced languages such as Hmong, the quality of rules depends on the quality of the underlying parses.
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Chapter 5

L2 Semantic Subdivisions

In addition to understanding the syntax and morphology of a language, as we did in Chapter 3 and Chap-

ter 4, the semantics of a language also forms a key component in language understanding and learning.

In this chapter, we focus on one aspect of semantics – lexical semantics which addresses meaning at the

level of words, and we explore it in the context of second-language acquisition (SLA) (Settles et al., 2018).

SLA or L2 (language 2) acquisition refers to the process of learning a new language. A popular pedagog-

ical technique for SLA is using associations with the learner language, also referred as L1 (language 1)

(Hulstijn et al., 1996; Watanabe, 1997). However, di�erent languages carve their semantic space di�er-

ently, for instance, ‘wall’ in English is called as ‘pared’ in Spanish when referring to an indoor wall and

‘muro’ when referring to an outdoor wall. Learning the usage of such �ne-grained lexical distinctions

might be challenging for L2 learners, more importantly, because these distinctions do not exist in the

learner language (L1). Therefore, to aid L2 learners in their learning process, we follow the AutoLEX

framework to automatically identify such distinctions and extract human- and machine-readable rules

to explain them.

Aditi Chaudhary, Kayo Yin, Antonios Anastasopoulos, Graham Neubig. 2021. When is Wall a Pared

and when a Muro?: Extracting Rules Governing Lexical Selection. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing.

5.1 Overview

With increasing globalization there is a widespread prevalence and need for creating good materials and

tools to help people learn new languages. A recent report
1

by Duolingo
2
, a popular language learning

application, shows that people are learning new languages for a variety of reasons, including help with

school curriculum, professional work, tourism, culture and so on. In addition to individual motivations,

communities and governments are taking initiatives to teach indigenous languages (Moline, 2020) for

preserving cultural heritage and knowledge (e.g. Ullrich et al. (2020) for Owóksape; Longenecker et al.

(2019) for Kala, Yotsumoto (2020) for Ainu). Furthermore, the demand for digital and online learning

applications has seen a substantial increase due to the COVID-19 pandemic, which forced several peo-

1https://blog.duolingo.com/global-language-report-2020/
2https://www.duolingo.com/
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Es: muro

En: wall

Es: pared

Figure 5.1: Semantic subdivision for the concept ‘wall’ results in di�erent lexical manifestations in Span-

ish: ‘muro’ for outside wall and ‘pared’ for inside wall whereas in English both are referred as ‘wall’.

ple to be in lockdown across the world (Li and Lalani, 2020). Curating such learning content manually

can be time-consuming and expensive, but more importantly having access to such language experts

can become challenging, especially for languages where the experts are remote and inaccessible. There-

fore, in this chapter, we present a method for content creation for learning words in a new language

automatically.

Vocabulary acquisition, the process of learning new words, is a key step in language acquisition. As

mentioned above, a popular approach to L2 acquisition is by associating words or forms with a language

familiar to the learner, typically referred to as L1 (Watanabe, 1997; Jiang, 2002). In fact, Jiang (2002)

suggest that learners map L2 lexical forms to L1 semantic space instead of mapping them to their own

new semantic speci�cations. However, semantic structures vary across languages leading to semantic

subdivisions where lexical distinctions made in one language are not present in the second (Bowerman

and Choi, 2001). An example of this can be seen in Figure 5.1 where “wall” in English manifests itself as

“pared” and “muro” depending on the location of the wall. Learning such �ne-grained lexical distinctions

might not be obvious to a learner, and having a skilled teacher or a comprehensive learning resource

may be able to provide explanations to aid in L2 learning.

Some early examples of such resources are: GLOSSER (Nerbonne et al., 1998) which helps Dutch

speakers learn French by describing morphology, word usage in context; CAVOCA (Groot, 2000) where

a learner is taken through di�erent phases of the vocabulary acquisition process, including word de�ni-

tions, examples of word usage, etc. More recently, Revita (Katinskaia et al., 2017) supports endangered

language learning using exercises for grammar and vocabulary practice. Similarly, SMILLE (Zilio et al.,

2017) is a reading assistant that helps users understand linguistic structures while reading text in a tar-

get language. Robertson (2020) present word-de�nitions in context to Finnish learners while browsing

Finnish text on the web. Duolingo, Rosetta Stone (Stone, 2010) are some popular language learning ap-

plications that are available online. However, most of the above listed works rely on language content
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curated manually by language experts, which makes it di�cult to scale to numerous languages.

In this work, we propose a method to automatically discover learning content explaining �ne-grained

lexical distinctions and present L2 learners with concise explanations in an interactive framework. Re-

search in L2 vocabulary acquisition (Groot, 2000; Ortega, 2015; Godwin-Jones, 2018) has shown that it is

e�ective to combine strategies using explicit de�nitions and examples in context. Therefore, we present

these concise rules to learners along with illustrative examples of the word in context. Like previous

chapters, we follow the four steps of AutoLEX i.e. formalization, feature extraction, model learning,

rule extraction and visualization. In Chapter 3 and Chapter 4 we used monolingual data of the target

language as our starting point, in this case, we i) use a parallel corpus to identify words in L1 which

show di�erent lexical manifestations owing to a semantic subdivision in L2, and ii) create human- and

machine-readable rules by training a prediction model that distinguishes between the lexical choices,

which allow for easier interpretation of each lexical distinction. These rules can be used as-is (as done

by us in this chapter), or could be used a starting point for further curation by educators (discussed in

next Chapter 6).

Since the primary motivation of this work is to help with language learning, we con�rm the quality of

the extracted rules by conducting an interactive study in which we use the rules to teach Spanish words

and Greek words from English, focusing on the words arising from semantic subdivisions. We make this

study interactive by presenting the learning content in the form of cloze tests (Taylor, 1953) where the

lexical distinctions in Spanish or Greek to be taught are presented to the learner in an English context

together with concise rules. Concretely, the learner is presented with an English sentence containing

the word (e.g. “wall”) which shows di�erent lexical distinctions in the target language and is required

to select the most appropriate lexical choice ( e.g. “pared” vs “muro” for Spanish) from the given set. We

conduct a parallel study with a control group where we do not show learners the extracted rules and

instead they are required to learn distinctions and answer using only the English context. Like before, we

also con�rm the quality of the model through automated evaluation before proceeding with the human

evaluation. Our contributions are summarized below:

1. We present an automatic framework to identify semantic subdivisions in L2 from L1. Our approach

is able to identify 407 such words in Spanish and 707 words in Greek, across di�erent word classes.

2. We create an interactive learning exercise and experiments with 7 Spanish learners and 9 Greek

learners show that they learn faster when given access to the rules; for example they achieve an

(avg.) accuracy of 81% in roughly 20 questions as opposed to 40 questions required by control-

group learners to achieve the same accuracy.

5.2 Proposed Approach

We formally de�ne the problem of lexical choice selection and describe the procedure for rule extraction.

5.2.1 Problem Formulation

In the context of this work, we de�ne cross-lingual lexical selection (Lefever and Hoste, 2010) or sub-

stitution (Mihalcea et al., 2010) as the task of selecting contextually appropriate words in one language

given a word in context in another language.
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Formally, given a sentence in the source language (SL) x = x1, x2, . . . , x|x|, trans(xi) ⊆ Vy denotes

the set of “possible” target translations for the source word xi, i.e. words in the target language (TL) to

which the focus word xi could be translated (concrete methods to de�ne this set are explained later).

We denote y = y1, y2, . . . , y|y| as the translation of x in the target language (TL) and Vx and Vy are the

source and target vocabulary, respectively. The task of cross-lingual lexical selection involves choosing

the most appropriate translation yi ∈ trans(xi), which can be performed by machines or humans.
3

In

this work, we focus on machine-learned methods to help humans learn lexical selection, extracting lexical

selection models that are not only usable by machines but also interpretable by humans in order to aid

the process of learning a new language.

In the next paragraph, we �rst present a method to identify L1 words that show semantic subdivisions

in L2 using a parallel corpus. Next, we train a lexical selection model which allows extraction of human-

and machine-readable rules (subsection 5.2.3). Finally, we present our evaluation framework where we

help to teach L2 learners these words using our extracted rules (section 5.3).

Identifying Semantic Subdivisions In this section, we describe in detail the steps to identify L1

words that show di�erent lexical manifestations in L2 owing to the semantic subdivision. Going forward,

we refer to the L1 word in question as focus word and the corresponding L2 distinctions as lexical choices.

We extract these focus word-lexical choice pairs from a parallel corpusD = {(x1,y1), · · · , (x|D|,y|D|)}
where (xm,ym) denotes the source and target sentence pairs. As a preliminary step, we automatically

extract word alignments using a word aligner that produces sets of pairs of source and target words

Am = {〈xi, yj〉 : xi ∈ xm, yj ∈ ym}. Since our aim is to discover semantic subdivisions as opposed to

morphological variations, we normalize the parallel corpus by lemmatizing all words. Thus, Vx and Vy
refer to the lemmatized vocabulary of the source and target language. All references to words refer to

their respective lemmatized forms going forward. Furthermore, we perform automatic part-of-speech

(POS) tagging, dependency parsing, and word sense disambiguation (WSD) on the source side data,

resulting in a POS tag and word sense associated with each source word, tag(xi) ∈ Tx and sense(xi) ∈
Sx where Tx is the set of POS tags in the source language and Sx is the word sense vocabulary in

the source language. Using the automatic analysis described above, we extract the L1 word types that

display distinct L2 lexical choices. We use the POS information to further �lter the L1 word types, giving

us tuples of the form 〈vx, tx〉. This ensures that we do not con�ate meanings across POS tags, because in

many languages the semantics of a word can vary widely across its di�erent POS tags.
4

We now describe

the steps to extract semantic subdivisions which result in L1 word-POS tuples with their corresponding

L2 lexical choices.

1. Extract translations: For each aligned word pair 〈xi, yj〉, we compute the number of times the

lemmatized source word type (vx = lemma(xi)) along with its POS tag (tx = tag(xi)) is aligned

to the lemmatized target word type (vy = lemma(yj)) across the whole corpus in c(vx, tx, vy).

Also, store the number of times the word sense of xi (sx = sense(xi)) appears with the source

word type, source POS tag and the translation word type in g(vx, tx, sx, vy).

2. Filter on frequency: Extract tuples of source types and POS tags 〈vx, tx〉 that have been aligned

to at least two target words at least 50 times ({vy : |c(vx, tx, vy) ≥ 50}| ≥ 2), to account for

3
The notation here refers to single-word translations which are the focus of this work.

4
“Brown” as a verb (as in “brown the meat”) is treated di�erently from the adjective sense (as in “brown hair”).
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alignment errors. To avoid ambiguity on the target side, translations aligned to words other than

the word vx in question (at least 3 times) are excluded.

3. Filter on entropy: Remove source tuples that have an entropy H(vx, tx) less than a pre-selected

threshold. The entropy is computed using the conditional probability of a target translation given

the source type and POS tag:

p := p(vy|vx, tx) =
c(vx, tx, vy)

c(vx, tx)
(5.1)

H(vx, tx) =
∑

vy∈trans(vx,tx)

−p loge p (5.2)

where trans(vx, tx) is the set of target translations for the source tuple 〈vx, tx〉 and p(vy|vx, tx) is

the conditional probability of the target translation for the source word type vx and its POS tag

tx. A high entropy suggests that the word is ambiguous, with �ne-grained distinctions that likely

require context to resolve, and thus this word is one that we can focus on.
5

4. Filter on word sense: Remove source word-POS tuples whose target translations have distinct

source word senses. For some words, the di�erences between target translations can be straight-

forwardly explained by the di�erent source word senses. For example, banco in Spanish refers to

the �nancial institution, given by the WordNet (Miller, 1995) sense ‘bank.n.02’ while orilla refers

to the edge of a river, outright matched to ‘bank.n.01’. For this study, we are interested in �nding

those focus words where the word sense information alone is insu�cient to distinguish between

the lexical choices and are hence likely to be hard for human learners. For a source tuple, use the

highest occurring word sense for a given target translation vy computed as:

Q(vy) = argmax
sx∈Sx

g(vx, tx, sx, vy) (5.3)

Finally, retain the source word-POS tuples whose target translations all have the same sense.

Wambig = {〈vx, tx〉;Q(vy0) = · · · = Q(vy|trans(vx,tx)|
)} (5.4)

5.2.2 Feature Extraction

The linguistic question, therefore, becomes ‘given an L1 word in context and a set of L2 lexical choices,

which L2 choice is the most appropriate’. Therefore, the input to the model is the source sentences

containing the focus L1 word x〈vx,tx〉 ∈ D〈vx,tx〉 and the model is trained to predict the contextually

correct target translation vy from a set of possible k choices L(vx, tx) = vy1 , vy2 , · · · , vyk . For designing

features, we take inspiration from prior work which uses extracted contextual information to improve

cross-lingual sense disambiguation in machine translation systems (Garcia-Varea et al., 2001; Carpuat

and Wu, 2007b,a). We focus on features extracted only from the current source sentence, although the

framework can be easily extended to include features from the target sentence as well. From each source

sentence, we extract the following three kinds of features:

5
To handle lemmatization errors, edit-distance based post-processing is used to group separate lexical choices into a single

choice. Hence, an additional �ltration step is used to remove source tuples where one choice accounts for 90% of all cases. A

heavily imbalanced dataset is undesirable since it might prevent the lexical selection model from extracting informative rules

for the minority classes.
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Lexical Choice feature −→ 〈 rule name 〉 〈 feature value〉

muro Bigram −→ Short phrases: (’climb’, ’wall’), (’city’, ’wall’), (’brick’, ’wall’)

Lemma −→Words: break, climb

WSD −→ Concepts: ‘city’ as in a large and densely populated urban area (city.n.01)

pared Bigram −→ Short phrases: (’face’, ’wall’), (’hang’, ’wall’), (’picture’, ’wall’)

Lemma −→Words: ear, hang, room

Table 5.1: Human-readable rules extracted for the ambiguous word wall (top-6 rules per lexical choice).

• Lemma: lemma of all words within a �xed window of the focus word.

• WSD: word sense of all words within a �xed window of the focus word.

• Bigrams: bigrams constructed from lemmatized words present within a �xed window of the focus

word. We exclude punctuation and stop words from within this window.

5.2.3 Training Data and Model Learning

After extracting the L1-L2 tuples, and the features, we train a linear prediction model which allows

us to extract human and machine readable rules to explain the selection of lexical choices. We train a

prediction model parameterized by θ〈vx,tx〉 for each focus word 〈vx, tx〉. As rules, we extract the features

which govern the lexical selection for each choice vy ∈ L(vx, tx). These rules are de�ned over a set of

lexical and semantic features extracted from the source sentences in D〈vx,tx〉, as shown above.

Model Learning To allow the extraction of interpretable rules, we use a model that is conducive to

interpretation: the linear SVM (LinearSVM; Cortes and Vapnik, 1995), which gives us feature weights

θ〈vx,tx〉 that can be easily interpreted as the importance of each feature in making the decision.
6

Since

there can be n-ary lexical choices for a given focus word, we train using the one-vs-rest (OvR) method

which trains one model per each lexical choice vyk , where data from vyk are treated as positive examples

and data from all other choices as negative, allowing us to extract feature weights for each decision.

5.2.4 Rule Extraction and Visualization

We get one model per each choice vyk from which we can then extract the top-N features having the

highest weight coe�cients for each choice. To present these rules in a human-readable form, we create

concise rule templates as shown in Table 5.1 for the word “wall”. The bigram features are represented as

‘Short phrases’, lemmas are represented as ‘Words’ and the WSD senses form the ‘Concepts’.

6
We also examined other interpretable models such as gradient boosted decision trees (Friedman, 2001), which gave less

intuitive results. Further, we could use state-of-the-art neural translation models and model interpretation techniques, but we

leave this as an interesting challenge for future work.
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5.3 Experimental Settings

We present two approaches to evaluate our framework: 1) automated evaluation, a preliminary vali-

dation where we evaluate how well our interpretable model performs in cross-lingual lexical selection

(subsection 5.3.1), and 2) human evaluation, which answers our main question of whether it can teach

human learners the usage of L2 words (subsection 5.3.2).

Data We experiment with two L2 languages: Spanish and Greek. These languages were chosen be-

cause of (1) the availability of parallel corpora with which to train models and (2) the availability of

linguists and annotators to verify and analyze the data used in our experimental setting. For Spanish

we use 10 million English-Spanish parallel sentences from OpenSubtitles (Lison and Tiedemann, 2016),

Tatoeba, TED (Tiedemann, 2012), and Europarl (Koehn, 2005).
7

For Greek, we use 31 million English-

Greek parallel sentences extracted from OpenSubtitles. For word alignment we use the AWESOME

aligner (Dou and Neubig, 2021), for lemmatization we use spaCy (Honnibal et al., 2020), for POS tagging

and dependency parsing we use Stanza (Qi et al., 2020), and for English WSD we use EWISER (Bevilacqua

and Navigli, 2020).
8

Model We implement the LinearSVM model using sklearn (Pedregosa et al., 2011). We train one

model per each focus word and divide the extracted parallel sentences for that word into a balanced

train/test split with 80-20 ratio per lexical choice. We perform 5-fold cross-validation to select the best

model hyperparameters from which we then extract the top-20 features for each lexical choice to form

our rule set. We clean the data to remove punctuation and extract features within a 3-word window of the

focus word. We perform a grid search over the following hyperparameters for training the LinearSVM

model. The hyperparameters are: C:[0.001, 0.01], class weight:[’balanced’, None].

5.3.1 Automated Evaluation

We verify whether our interpretable lexical selection model is able to learn cross-lingual lexical selection

at all by measuring its performance compared to selecting the most frequently occurring translation in

the corpus for a given focus word (“Frequency”). We also compare with another alternative interpretable

model, decision trees (DTree) trained using the same features as LinearSVM, to validate the choice of

SVMs as an interpretable model over other alternatives. Further, we check how our interpretable linear

SVM model compares with a “performance skyline”; a less interpretable BERT-based neural model (De-

vlin et al., 2019) that extracts representations of the source sentence from BERT and trains a classi�er

to predict the correct lexical choice. We train all models for each identi�ed focus word and measure the

accuracy on respective portion of the data reserved for evaluation.

Using our automatic pipeline, we identify 407 English words that show distinct lexical manifestations

in Spanish, and 707 such words for Greek, the distribution of which is shown in Figure 5.2. A manual

inspection by a Greek-English bilingual speaker revealed that most of the automatically created lexical

choices (> 90% of 100 words) were correct. In just a couple of cases, lemmatizer errors lead to two

7
We use only 1 million sentences from Europarl because we found sentences from Europarl to contain fewer semantic

subdivisions owing to the very speci�c domain of the dataset.
8
POS tagging, dependency parsing and WSD is required only for the source language, here English.
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Figure 5.2: Distribution of the number of lexical choices for each POS tag.

choices corresponding to the same actual lemma (which were manually corrected for user studies). We

can see that, along with the nouns that account for a major portion of the data, in other words, the

classes also display ≥ 2 lexical choices. Prior e�orts such as ContraWSD (Rios et al., 2018), SemEval

tasks (Lefever and Hoste, 2013) have released datasets for cross-lingual lexical selection; however, they

use manual word curation with the help of language experts, which only covers a small subset of nouns.

Results Table 5.2 shows the test accuracy averaged across all focus words for both Spanish and Greek.

We �rst �nd that LinearSVM signi�cantly outperforms both Frequency and DTree by a signi�cant mar-

gin, indicating that it is both learning to perform lexical selection to a signi�cant degree, and outper-

forming other reasonable alternatives for interpretable models. This gives us con�dence in using it in

our following human learning experiments. Interestingly, our interpretable LinearSVM model is within

97% relative accuracy of the skyline BERT model (just 2.09 percentage points behind). The fact that

the more complicated but less inherently interpretable BERT model is overall better paves the way for

future work to apply model interpretation techniques (Abnar and Zuidema, 2020, inter alia) to extract

human-interpretable rules for lexical selection, although this is beyond the scope of the current paper.
9

We �nd that lexical selection accuracy varies by part of speech; all models perform poorly on adverbs

with (avg.) gain of only +0.97 points over the baseline (c.f. with gains of +8.04 for nouns, +5.16 for verbs,

+6.24 for adjectives).

5.3.2 Human Evaluation

Our preliminary automatic evaluation shows that our interpretable lexical model performs decently

on cross-lingual lexical selection. Therefore, we conduct our main evaluation where we examine how

e�ective are the extracted rules in helping human learners understand distinctions in L2 words.

9
Overall accuracy is low, with even BERT getting 70%, possibly due to lack of su�cient source-side context. OpenSubtitles

comprises of movie dialogues where the su�cient context could span more than a single sentence.
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Lang. Model

Test Accuracy

All nouns verbs adj. adv.

Spanish

Frequency (Baseline) 59.43 59.36 60.17 60.67 53.03

DTree 62.40 62.45 61.57 65.22 54.82

LinearSVM 66.87 67.41 65.34 66.91 56.29

BERT 70.72 71.75 69.04 67.31 54.07

Greek

Baseline 58.56 59.48 53.04 60.48 61.82

DTree 63.79 64.49 59.74 65.39 61.13

LinearSVM 66.46 67.09 63.30 67.51 64.98

BERT 71.74 70.91 78.14 68.86 62.76

Table 5.2: Among interpretable models, LinearSVM wins and is almost on par with a BERT, which is not

that interpretable skyline.

Figure 5.3: Learning interface used by Spanish learners. A learner is required to select the appropriate

choice using the provided English context and mark how con�dent they are in their answer.

We take inspiration from existing research on second language acquisition (SLA) to design our eval-

uation. For example, Groot (2000) highlights the di�erent learning strategies based on the generally

accepted language acquisition theories (Nation, 2005; Richards et al., 1999), suggesting that the learner

must go through di�erent levels of language processing to e�ectively learn vocabulary. In particular,

Groot (2000) empirically show that some of these levels can be accelerated with appropriate design of

language tasks by combining strategies that use both examples in context and de�nitions.

We conduct an interactive learning exercise in the form of a cloze test where we present the human

learner with the English focus word in context along with the set of possible L2 lexical choices. Our cloze-

style tasks are essentially examples in context showing word usage in a given context, and the extracted

rules are a proxy for human-provided de�nitions. The learner then selects the most appropriate L2

translation and mark how con�dent (“Not at all”, “Slightly”, “Somewhat”, “Quite” or “Very”) they are in

their answer. After selecting the answer to each question, the correct answer is immediately told. For

each focus word, we ask the learner to answer up to N multiple choice questions in sequence, which

contain roughly the same number of questions for each lexical choice. We perform this study in two
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Figure 5.4: Learning Interface. Descriptions of rules (extracted from the lexical selection model) are

provided to the learner before the start of the exercise.

setups, the baseline setup without the rules and the use of the proposed system with rules.

Baseline Setup In the control setup, the learner has no access to any rules and immediately starts

answering the questions. As mentioned above, the learner is shown the correct answer immediately

after attempting the question. We expect learners to begin with a chance accuracy (50% for two choices),

but as they are provided feedback, they may be able to grasp the patterns under which one particular

translation or another is used and gradually rise above chance accuracy. The interface to answer the

questions is shown in Figure 5.3.

Proposed Setup In the proposed setup, before starting the task, the learner is shown brief descrip-

tions or “rules” as we will call them going forward, on when to use each possible lexical choice vyk ∈
trans(vx, tx), constructed from the rule-set R〈vx,tx,vyk 〉. They take as much time as they want to review

these rules and then move to answering the questions (Figure 5.4). The interface to answer the questions

is the same as the baseline (Figure 5.3). When selecting a choice, the learner is shown the correct answer

accompanied by its corresponding human-readable rules of only the correct answer. Furthermore, we

highlight the individual rules that helped decide the correct answer (Figure 5.5) for the convenience of

the learner. By highlighting it in the two bottom panes, we hope to draw the learner’s attention to these

hints and thus strengthen the understanding of the underlying concept. In this setting, we expect the

learners to start with a non-chance accuracy and improve as they attempt more questions. The accu-

racy will likely further increase as they practice and become familiar with actual examples and how the

extracted features apply to them.

Experimental Settings

We select 7 Spanish learners and 9 Greek learners for the study.
10

Each learner is presented with the

same set of words, half of which are to be annotated in the baseline setup and the other half in the

10
We allow participants who know languages other than the target language or any other language that belongs to the

language family to which Spanish or Greek belongs.
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Figure 5.5: Learning Interface. Rules for the correct answer are displayed to the learner after each ques-

tion. Individual rules that apply to the given example are highlighted for the convenience of the learner.

proposed setup. To ensure an unbiased setup, we randomize whether each focus word uses rules or

not, while ensuring that at least half the annotators see the proposed setup and the other half perform

the same task in the baseline setup for each word. We further shu�e the order in which the words are

presented. For each English word, we select up to 40 examples each for the respective lexical choices.

As an incentive, we end the exercise for a word early if the learner gets 10 correct answers in a row for

each lexical choice. Below, we describe the selection criteria of the words presented to the learners.

Word Selection Ideally, we would like to conduct this study for all identi�ed words in our automatic

pipeline, however, this would require a large time commitment and cost. Instead, we shortlist a handful

of words using the following automated procedure: First, for a given L2 study, we sort all focus words by

the number of available data points (D〈vx,tx〉). Next, from the trained lexical selection model θ〈vx,tx〉 we

compute an F1-score for each lexical choice and �lter focus words where the model gets an F1 > 0.5 for

each lexical choice. Finally, we select upto 10 focus words with the most data points that �t the above

condition. For each word (〈vx, tx〉), we then select 40 representative examples for each lexical choice (see

paragraph below). Details on the shortlisted words can be found in Table 5.3.

Representative Example Selection Not all sentences in the parallel corpus contain su�cient context

to select the appropriate lexical choice. For instance, the OpenSubtitles parallel corpus used in this study

contains movie dialogues such as “this is the wall” which requires context spanning across multiple

previous dialogues. Since in this study we extract features from context comprising of single sentences,

in order to facilitate an e�ective learning process, we present examples to the learner that have the

su�cient source-side context contained within a single sentence, required for correctly identifying the

target-side lexical choice. To get such meaningful examples, we present bilingual English-Spanish and

English-Greek speakers with the English sentence containing the focus word and the set of possible
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Spanish Greek

(en) word (es) lexical choices (en) word (el) lexical choices

wall.N
muralla/muro/muros: 33, pared/paredón: 60

bill.N
χαρτονόµισµα: 40, λογαριασµός: 40, νόµος/νοµοσχέδιο: 40

(chartonómisma, logariasmós, nómos/nomoschédio)

farmer.N
agricultor: 29, granjero: 48

tour.N
ϑητεία:23, περιοδεία: 29, ξενάγηση: 33

(thitía, periodeía, xenágisi)

�gure.N
cifra/cifras: 87, �gura: 85

break.JJ
σπάω: 40, ράγοµαι: 40, ξεσπάω: 40, διαρρηγνύω: 40

(spáo, rágomai, ksespáo, diarrignío)

vote.N
votemos/voto: 77, votación: 75

turn.JJ
στρίβω: 40, χαµηλώνω: 40, απορρίπτω: 40, ϰαταδίδω: 40, σβήνω: 34

(strívo,chamilòno, aporrípto,katadído, svíno)

oil.N
aceite: 81, óleo/petróleo/petrolera/petrolero: 74

roof.N
ταράτσα: 40,οροφή: 40, στέγη: 39

(tarátsa, orofí, stégi)

wave.N
onda: 55, ola: 40, oleado: 0

wheel.N
τροχός: 40, ρόδα: 40, τιµόν: 40

(trohós, róda, timóni)

pill.N
pastilla: 41, somnífero: 27, píldora: 3

old.JJ
αρχαίος: 40, ϰλασιϰ: 21, έτος: 40, ηλιϰιωµένος: 40, παραδοσιαϰός: 36

(archaios, klasikos, etos, elikiomenos,paradosiakos)

language.N
idioma: 52, lenguaje: 68

turn.JJ
στρίβω: 40, χαµηλώνω: 40, απορρίπτω: 40, ϰαταδίδω: 40, σβήνω: 34

(strívo, chamilóno, aporrípto, katadído,svíno)

ticket.N
multa: 24, boleto: 23, pasaje: 0

e�ect.N
παρενέργεια: 40, επίδραση: 40, εφέ: 40

(parenírgeia, epídrasi, efé)

servant.N

sirvienta/sirviente: 39, servidor/servidora: 8, siervo/siervos: 10
bone.N

µυελός: 40, οστό: 40, Μπόουν: 40

(myelós, ostó, bone)

Table 5.3: Example tasks with their lexical choices selected for Spanish and Greek learning setup. Words/-

choices marked in red are discarded from the language learning setup as they have≤ 10 �ltered examples

from the represenative example selection step.

lexical choices in Spanish and Greek, respectively. They then select the word which best suits the given

context and mark their con�dence in the selection. The interface for the selection of examples is the

same as in Figure 5.3. We collect these annotations from multiple native speakers and only keep those

sentences on which all native speakers agree. We enlist 3 Spanish native speakers who each annotate

roughly 200 examples each for 10 English focus words. The inter-annotator agreement for Spanish,

computed using Fleiss’ kappa is 0.77. For Greek, we use 2 native speakers to annotate 10 English words.

For 7 out of 10 words we did not always have access to 2 native speakers so we relied on a single expert

annotator. The (avg.) inter-annotator agreement for the remaining 3 words (tour, tie, bill) between the

two annotators is 0.83. Of the 10 selected words, we discard words/lexical choices which have < 10

examples on which all native speakers agree, giving us 9 English words for the Spanish study and 10

English for the Greek study.

Results and Discussion

We report results centered around answering the following questions:

Do rules result in increased learning accuracy and con�dence? We calculate the learning accu-

racy for all learners and tasks (words) for each language. If learners achieve higher accuracy with fewer

attempted examples when having access to the rules, then the extracted rules could be considered e�ec-

tive in the learning process. However, in a human-based study we cannot directly use the accuracy as

computed from comparison with the gold label. This is because there are other sources of variability such

as (a) underlying learner ability, as some learners may be more pro�cient than others, (b) underlying task
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Figure 5.6: Learner accuracy and con�dence in correct answers with and without access to rules against

the number of attempted examples (x-axis ). Learners achieve higher accuracy with increasing con�-

dence with fewer examples when they have access to rules.

di�culty, as some words may be harder to disambiguate than others, or (c) word ordering, as learners

may become pro�cient as they do more tasks. Therefore, we use a mixed-e�ects model (McLean et al.,

1991), which models random e�ects and �xed e�ects to account for such random variability. Random

e�ects are variables responsible for random variation such as task-identity, task-order and the learner,

while �xed e�ects such as the presence of explanation are the variables of interest for determining the

response variable, i.e. learner accuracy. A linear mixed-e�ect model (LME) is de�ned as follows:

y = Xβ + Zu + ε (5.5)

where y is the learner accuracy, β and u are the �xed-e�ect and random-e�ect regression coe�cients

with X and Z being the respective design matrices, and ε denoting noise.

We �t LME models to our data by varying the number of attempted examplesn = [5, 10, 20, 30, 40, 50, all].

Each �tted LME model gives us an intercept (Zu + ε) which informs us of the learner accuracy in the

absence of explanations, and the �xed-e�ect coe�cient β which informs us of the gain with explana-

tion. As shown in Figure 5.6, it is clear that learners who have access to our automatically extracted

rules achieve higher accuracy with fewer examples compared to without. As expected, with increasing

number of attempted examples, the gap between the two settings reduces.

We �t similar LME models to estimate the e�ect of the presence of rules on learner con�dence and

�nd that the con�dence in the correct answer increases more when rules are provided (Figure 5.6). This

suggests that with our rules, learners require fewer examples to infer the patterns governing each lexical

choice and get more con�dent in their understanding. This is encouraging as in true settings, the learning
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Figure 5.7: Rules help more for words where learners do worse. x-axis is the (avg.) learner accuracy

(without rules) for �rst 20 examples.

exercise would be conducted for every focus word that the learner is attempting to learn, and because

this process will have to be repeated many times, making it more e�cient is of signi�cant value. In

Table 5.4 we report the p-value for the �tted LME models, which shows that the positive gains from the

presence of rules are most signi�cant for ≤20 examples for Spanish and for all examples for Greek.

Number Fixed-e�ect coe�cient (β) Spanish p-value Greek p-value

5 0.118 0.013** 4.50e−09***

10 0.112 0.009*** 1.64e−07***

20 0.056 0.070* 1.32e−06***

30 0.039 0.131 4.23e−05***

40 0.017 0.462 7.22e−05***

50 0.007 0.718 0.00015***

All 0.006 0.739 0.00173**

Table 5.4: p-value tests show that the �xed-e�ect of presence of rules for predicting learner accuracy

is statistical signi�cant up to �rst 20 attempted examples for Spanish and up to all examples for Greek.

Signi�cance codes: ‘***’: 0.01, ‘**’: 0.05, ‘*’: 0.1.

Overall, we �nd that our extracted rules help Spanish and Greek learners in their learning process.

We note that the results on Greek are promising as it does not enjoy the same luxuries as Spanish in

having a high-quality lemmatizer or word aligner. This is encouraging especially for researchers involved

in the revival e�orts of endangered languages.

Do the extracted rules help some wordsmore over others? Since the words vary on their di�cult

levels, we check if our extracted rules are more e�ective for some words over others. So, we �t a LME

model on each focus word and compute theβ coe�cient to measure the e�ect of rules on learner accuracy

after 20 attempted examples.
11

We plot the β coe�cient with the accuracy (averaged across all learners)

for each focus word when they did not have access to the rules in Figure 5.7 and �nd that words on which

the learners performed the worst such as wall, oil, farmer, and vote, bene�t most by our explanations.

Some of these words, in fact, indeed have �ner semantic subdivisions than the rest. For instance, the

choices for farmer : agricultor refers exclusively to the one who works the land, harvests, sows, etc.,

11
Because analysis revealed that rules are more e�ective earlier in the learning process.
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Figure 5.8: Rules help more for words where model performs well. x-axis is model accuracy per word.

while granjero is less formal, referring to the one who manages a farm or works or lives on it. Similar

observations are seen for Greek where learners are bene�ted more for words (break, wheel, tour, old, roof )

on which they performed the worst. Some of these words, in fact, indeed have �ner semantic subdivisions

than the rest. This analysis shows that, encouragingly, our explanations are especially helping learners

with more di�cult words. We also plot the β coe�cient with the lexical model accuracy (Figure 5.8) and

�nd a positive correlation, meaning that explanations help more for words where the model performs

well. This suggests that if we can develop more accurate models with an equal level of interpretability,

the learning e�ect might become even stronger.

5.4 Other Applications

In addition to helping with the language learning process, these semantic subdivisions have also been

used to evaluate machine translation (MT) models. Because the semantic subdivisions we extract ex-

hibit �ne-grained distinctions, Yin et al. (2021) use them to evaluate whether the contextual MT models

are indeed leveraging the required context for translation. In particular, they focus on English-French

translation, where semantic subdivisions are �rst identi�ed using the procedure outlined in section 5.2. A

human study is then conducted to identify which context words (in both the source and target languages)

are useful for disambiguating these semantic divisions. For a given focus word in English, human trans-

lators are required to select the correct lexical choice and additionally mark which words in the source

and target context helped them in their decision. Next, the MT model’s attention is compared with the

human-attention to evaluate how well the attention distribution of the model is similar to the human

translations. This reveals that the overall model’s source-side attention is similar to human attention,

but has poor alignment with the target-side context. Therefore, Yin et al. (2021) uses human attention

to better guide the model’s attention by regularizing the model attention to human attention. We direct

the reader to the respective paper for more details.

5.5 Conclusion

Through automated and human learning experiments, we demonstrated the e�ectiveness of our pro-

posed approach in aiding the L2 learning process. In this process, we also collect sentence pairs au-

tomatically that show �ne-grained semantic subdivisions and could potentially be used for evaluating

cross-lingual word sense disambiguation models.
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Chapter 6

Assist-A-Teacher: Teacher Perception

of Automatically Extracted Grammar

Concepts for Language Learning

Up until now, we saw how to adapt the AutoLEX framework for extracting language descriptions for

individual questions about a language’s morpho-syntax (word order, agreement, case marking) and vo-

cabulary (L2 semantic subdivisions), which were evaluated based on their intrinsic properties. In this

chapter, we combine all these approaches to extract teaching material for two Indian languages, Marathi

and Kannada. In addition to the linguistic questions covered in Chapter 3, Chapter 4 and Chapter 5, we

apply AutoLEX to also explain morphology in�ection, speci�cally su�x usage. To evaluate how usable

the extracted material is, we conduct a user study with in-service teachers who teach these languages

in North America.

Aditi Chaudhary, Arun Sampath, Ashwin Sheshadri, Antonios Anastasopoulos, Graham Neubig. 2022.

Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning . On arxiv.

6.1 Overview

Similar to how grammar descriptions form a crucial component of language documentation, teachers

often summarize the di�erent systems of syntax, semantics, and phonology in a meaningful way for

the consumption of language learners. Creating good quality pedagogical resources that explain and

illustrate these complex concepts is the key to e�ective learning. As we also discussed in Chapter 5,

computer-assisted language learning (CALL) systems have broadened the outreach of language educa-

tion by enabling both self-learning (e.g. Duolingo) and online-learning (e.g. Rosetta Stone which also

provided online instruction), especially in the COVID-19 pandemic when in-person instruction was not

possible, leading to the need for user-friendly and easily accessible applications for teachers and learners

(Li and Lalani, 2020). Even for people learning in traditional classroom settings, the use of CALL systems

in tandem has shown to be e�ective in the learning process (Macaruso and Rodman, 2009; Barrow et al.,

2009) And as we discussed in Chapter 5, indigenous language communities are increasingly taking sim-
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ilar initiatives to create learning resources as part of their language preservation e�orts (Moline, 2020).

Typically, these materials must be carefully designed and customized to address the needs of the com-

munity; for example, Network (2001) note that language educators must make e�ective use of locally

relevant expertise and materials when designing the curriculum, as they embody the cultural heritage

of the region. Because these materials are curated manually by subject experts, this, however, makes the

curriculum design process a challenging and time-consuming process, especially for languages where

subject experts or relevant resources are not easily accessible.

A good curriculum design requires signi�cant human time and e�ort, as this process entails many

steps, from designing material for di�erent learning levels, covering di�erent vocabulary and grammar

aspects, �nding relevant examples for each grammar concept, and even creating exercises for evaluat-

ing learners, to name a few. Additionally, for second language (L2) learning, it is not straightforward

to reuse an existing curriculum even in the same language, as the background and requirements of L2

learners could be vastly di�erent from the traditional L1 setting (Munby, 1981). With higher processing

power and speed, modern corpus-based methods or corpus technology (Yoon, 2005) can analyze large text

corpora in seconds and �nd language patterns that can accelerate some of these steps. Corpora tech-

nology has been widely advocated for language teaching (Bennett, 2010; Flowerdew, 2011; Farr, 2010;

Reppen, 2010; Davies, 2008), as it exposes learners to “real” language usage, which is important for inte-

grating learners with the community. Because such corpora comprise “natural text” i.e. text collected in

natural settings with minimal experimental interference, corpus-based methods have been widely used

for language learning; for example, they have helped students learn vocabulary (Ackerley, 2017; Lee

and Liou, 2003), collocations (Chan and Liou, 2005; Du et al., 2022; Kanglong and Afzaal, 2020), gram-

mar (Lin and Lee, 2015), L2 writing (Yoon and Jo, 2014; Crosthwaite, 2020). Research has shown the

e�ectiveness of incorporating corpus-based methods or data-driven learning (DDL; John (1991)) in lan-

guage teaching: Boontam and Phoocharoensil (2016) taught English prepositions to Thai learners using

concordance lines which are “lists of all contexts in which the given word occurs in a particular text”

(Lindquist, 2018). Similar positive results are also shown by Celik and Elkatmis (2013) in teaching the us-

age of Turkish punctuation. Mukherjee (2004) further revealed that few language instructors are aware

of corpus technology, but after conducting a workshop demonstrating the utility of such technology,

these instructors realized its potential in teaching. Language instructors can use corpus-derived materi-

als (Bennett, 2010; Leńko-Szymańska, 2017; Ma et al., 2022) to present pre-prepared concordance lines to

learners or provide direct access to learners to explore themselves (Chambers, 2010) or to mainly search

common word patterns, keywords, in popular corpora (e.g. Davies (2008), Cobb (2002), SketchEngine,

Skell) to supplement their teaching. But most of these corpus-based methods use the text corpora in the

form of ‘Key-Word-In-Context’ (KWIC) concordance (O’kee�e et al., 2007), where the contexts with the

searched ‘keyword’ are displayed, with the hope that it can enhance the learner’s lexical and grammar

knowledge from the relevant context. Now, with advances in natural language processing (NLP) meth-

ods, we can extract instructional material for more complex linguistic use cases (e.g. word order), as

shown in previous chapters.

Inspired by our �ndings in previous chapters, we use AutoLEX to aid in language instruction by

automatically extracting learning material for “teachable grammar points” covering di�erent aspects of

grammar, directly from the text corpora of the language of interest. We de�ne teachable grammar points

as individual syntactic or semantic concepts that can be taught to a learner. For instance, with respect
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Grammar Aspect Teachable Grammar Points

General Information What Gender types are in Marathi? (e.g. masculine, feminine, neuter)

Which type of words show Gender? (e.g. nouns, verbs)

What are some example words and how are they used in real-world?

Vocabulary What words to use for popular categories ( e.g. food, animals, etc.)

What are some adjectives, their synonyms and antonyms?

Which word to use when?

Word Order Are subjects before or after verbs in Marathi?

If both, when is subject before and when is it after the verb?

Su�x Usage What are the common su�xes for Marathi nouns?

When should a particular su�x (e.g. -‘laa’) be used?

Agreement Do some words need to agree on Gender with each other?

If so, when should they necessarily agree and when they need not?

Table 6.1: Example teachable grammar points covered in our language material.

to the grammatical aspect of word order, a “teachable grammar point” could be to understand “how

adjectives are positioned with respect to nouns in this language”. In addition to syntactic points, we also

include concepts covering lexical semantics in our materials, as vocabulary forms a crucial component

of language learning. This learning material comprises human-readable explanations of the di�erent

linguistic behaviors for each concept (e.g. “most objects occur after the verbs except for interrogatives),

along with illustrative examples. To our knowledge, the use of such linguistic insights has not yet been

investigated for L2 language teaching. In particular, we test this framework for teaching the two Indian

languages of Kannada and Marathi, to English speakers who reside outside India. We particularly select

these languages for our study as these languages ful�lled certain desiderata i.e. i) these languages have

far fewer pedagogical resources as well as NLP resources than English making them under-resourced

and, ii) access to in-service Kannada and Marathi teachers, allowing us to evaluate �rst-hand how in-

service instructors �nd our automatically extracted language learning material useful for their teaching

process. Speci�cally, we aim to answer the following research questions:

• How can we most e�ectively extract “teachable grammar points” and the corresponding learning

material?

• How many of these extracted grammar points are relevant to the language-learning curriculum?

• How many of these extracted grammar points are practically usable for language educators to

further develop or improve their existing curriculum and if so, in what ways?
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6.2 Proposed Approach

6.2.1 Why Marathi and Kannada?

To investigate the utility of automatically derived corpus-based language material in teaching, we work

with in-service teachers of both Marathi and Kannada, speci�cally those involved in teaching these

languages outside of India. Although Marathi and Kannada are spoken primarily in India, a small but

signi�cant populace has emigrated outside of India for personal and/or professional reasons. Therefore,

the primary objective of these teachers is to provide instruction for spoken and written forms of the

language to a) preserve and promote the language and culture, and b) help non-native speakers to com-

municate with their elders and community. Because of these speci�c objectives, existing Kannada or

Marathi textbooks from Indian schools cannot be used as is, as they are based on more traditional L1

teaching approach (Selvi and Shehadeh, 2018), where the language is taught from the ground up, from

introducing the alphabet, to its pronunciation, to other subsequent vocabulary and grammar aspects.

Teachers have instead adapted the existing material and continue to design new material to suit their

requirements. Therefore, this setting provides a good test bed to evaluate our extracted learning materi-

als, as our primary objective is not to replace teachers but rather to assist them in their teaching process.

By providing �rst-pass learning material, teachers could use it as is or supplement it with their existing

material. Additionally, in comparison to English, these languages have far fewer CALL systems or re-

sources that are freely or easily available. For example, the survey results (subsection 6.4.2) revealed that

currently teachers refer to online resources like YouTube videos for reference materials, or some online

dictionaries (e.g. Shabdakosh
1
), while for languages like English there are a plethora of online resources

and tools (e.g. Rosetta Stone (Stone, 2010), Duolingo
2
, Cambridge learning

3
, ESL

4
, etc.), but for most of

the world’s 7000+ languages, it is a struggle to �nd even a su�ciently large and good quality text corpus

(Kreutzer et al., 2021), let alone teaching material. Currently, both Kannada and Marathi are not part

of any popular learning applications (e.g. Duolingo or Rosetta Stone). For Marathi, there is an online

learning tool Barakhadi
5
, however it is not free of cost. Therefore, these languages are under-resourced

with respect to such online resources, and will likely bene�t from this exercise.

6.2.2 Teachable Grammar Points

Although, language education has been widely studied in literature, there is no one ‘right’ method of

teaching a language. Several teaching methods have been proposed and implemented, and we take

inspiration from these existing methods to design the content of the materials. For example, Doggett

(1986) discuss eight popular teaching methods, some of which, such as theGrammar-Translation method,

require learners to translate grammar rules between their L1 and L2 languages, while methods such as

Direct Method, Suggestopedia, Community Language Learning encourage learning in the L2 language

itself. In Communicative Approach, learning through functions (e.g. self-introduction, identi�cation of

relationships, things, etc.) over grammar forms is given more importance. Jeyasala (2014) also note

1https://www.shabdkosh.com/
2https://www.duolingo.com/
3https://www.cambridgeenglish.org/learning-english/
4http://a4esl.org/
5https://barakhadi.com/
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that exposing learners to more in-language input in di�erent communicative contexts will improve L2

communication. We build our materials around these principles.

To extract learning material, we choose AutoLEX because it addresses the requirements quite well,

that is, a) to discover the salient language patterns from authentic natural text in the required language

and b) to provide means to present and explain the extracted patterns in a human-understandable format.

Importantly, for each pattern, illustrative examples and examples of exceptions are extracted from the

underlying corpora. We apply this framework to Kannada and Marathi and extend it to extract learning

material for di�erent grammar concepts. The �rst step in applying AutoLEX is to identify a large text

corpus in language of interest. Next, we make a list of “teachable grammar points”, which, as we de�ned

earlier, are individual points that can be taught to a learner and are typically included in a curriculum.

AutoLEX already covers aspects of word order and agreement. In addition to those, we include more

grammar points based on the material shared by the Kannada experts. We inspected three out of the eight

Kannada textbooks shared by the experts and identi�ed common grammar points such as identi�cation

of syntax categories (e.g. nouns, verbs, etc.), vocabulary, and su�x usage. In Table 6.1, we show examples

of grammar points that we ask. Next, we formulate each linguistic question into an NLP classi�cation

task and then construct training data from the underlying corpus. Finally, from the learned model, we

extract concise explanations. We brie�y describe the procedure for each concept and the motivation for

choosing it.

Word Order and Agreement Both Marathi and Kannada predominantly follow an SOV word order,

i.e. subject-object-verb, but because syntactic roles are often expressed through morphology rather than

word order alone, there are often signi�cant deviations from this dominant order. Because of richer

morphology, these languages are highly in�ected for gender, person, number, and morphological agree-

ment between words is also frequently observed. Therefore, L2 learners must understand both the rules

of word order and agreement to produce grammatically correct language. We follow the same problem

formulation as AutoLEX for the word order and agreement questions, as described in detail in Chapter 4.

Su�xUsage Along with understanding sentence structure, it is equally important to understand how

in�ection works at word level, given that these languages are highly in�ected. We �rst identify the

common su�xes for each word type (e.g. nouns) and then ask ‘which su�x to use when’.
6

Similarly

to word order and agreement, we identify the POS tags and morphological analysis for each word in a

sentence. To identify the su�x, we then train a model that takes as input a word with its morphological

analysis (e.g. ‘deshaala,N,Acc,Masc,Sing’) and outputs the decomposition (e.g. ‘desh + laa’). Next, a

classi�cation model is trained for each such su�x (e.g. ‘-laa’) to extract the conditions under which one

su�x is typically used over the other. An example of Marathi su�xes was shown earlier in Chapter 2

(Figure 2.7).

Vocabulary Vocabulary is probably one of the most important components of language learning (Na-

tion, 2021). There are several debates on which is the best strategy to teach vocabulary; speci�cally, we

organize vocabulary material around three questions, as shown in Table 6.1. To extract vocabulary which

shows �ne-grained distinctions, along with explanations on when to use one word over the other, we

6
We focus only on su�xes as typically both these languages show in�ections via su�xes.
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Figure 6.1: Marathi words organized by basic categories. Each word contains a link to illustrative exam-

ples with their English translations.

follow the procedure described in Chapter 5 and use parallel data between English and L2 language as

a starting point. Similarly to AutoLEX, explanations are then extracted to understand the L2 usage. As

we saw before, Communicative Approach (Johnson and Brum�t, 1979) focuses on teaching through func-

tions over grammar forms, therefore, we also organize vocabulary around popular semantic categories

(e.g. words for food, relationships, etc.). We run a word-sense disambiguation (WSD) model (Pasini et al.,

2021) on English sentences, which helps us to identify the word sense for each word in context (e.g. the

word sense ‘bank.n.02’ refers to a �nancial institution while ‘bank.n.01’ refers to a river edge). Since the

word senses are hierarchical in nature, we can traverse the ancestors of each word sense to �nd whether

it belongs to any of the pre-de�ned categories (e.g. food items, relationships, animals, fruits, colors, time,

action verbs, body parts, vehicle, elements, furniture, clothing). An example of such words extracted for

Marathi is shown in Figure 6.1. In addition to basic words, we also identify popular adjectives, their

synonyms and antonyms, and present them in a similar format to the users, as shown in Figure 6.2. To

identify adjectives, we use the POS tags (‘ADJ’) that were automatically extracted from the complete

syntactic analysis of the underlying corpus. De�nitions, synonyms, and antonyms are automatically

identi�ed �rst in English using the WordNet (Miller, 1995) resource, and the respective L2 translations

are obtained from word alignments. For each word, we also present the accompanying examples that

illustrate its usage in context, along with its English translations. For the bene�t of users who are not

familiar with the script of the L2 languages, we automatically transliterate into Roman script using Bhat

et al. (2015).
7

7https://github.com/libindic/indic-trans

80

https://github.com/libindic/indic-trans


Figure 6.2: Marathi adjectives extracted by AutoLEX.

General Information In addition to these speci�c morpho-syntax and semantic patterns, we also

present salient morphology properties at the language level. Speci�cally, from the syntactically parsed

corpus of the target language, we answer basic questions such as ‘what morphological properties (e.g.

gender, person, number, tense, case) does this language have’, ‘for a given property (e.g. gender) what are

the types of values (e.g. masculine, feminine, neuter) and which words typically show which value’ and

so on. These questions were inspired from Kannada textbooks shared by experts, where the textbooks

introduce a learner to basic syntax and morphology such as identifying action verbs, adjectives, pronoun

types across gender, person, number, and so on. For each question, we organize the information by

frequency, as frequency acts as a proxy for popularity, for example, textbooks for language teaching

comprise of common and frequently used examples (Dash, 2008).

In addition to content, the format in which the material is presented is equally important. Smith Jr

(1981) outline four fundamental steps involved in language teaching: presentation of material to learners,

explanation of material, repetition of material until it is learned, and transfer of materials in di�erent

contexts, together called PERT. They further mention that there is no �xed order of these steps. For

example, some teachers prefer presentation of content (e.g. reading material, examples in context etc)

�rst followed by explanation (e.g. grammar rules), while Smith Jr (1981) argue that for above-average

learners, explanation followed by presentation works better. In AutoLEX, we provide both (i.e. rules

and examples) without any speci�c ordering, with the purpose that educators can decide based on their

experience and objectives. By providing illustrative examples from the underlying text at each step, we

hope to address the transfer step, where learners are exposed to real situations of language use.

6.2.3 Evaluating Learning Materials

Before presenting the content to volunteer teachers, we �rst conduct a limited study to evaluate the

sanity of the material presented.

Quality Study In Chapter 3 and Chapter 4, we had conducted a quality study with language experts in

multiple languages (English, Greek, Russian, Catalan) that revealed that the rules extracted are decent.
8

Therefore, to ensure that we are also achieving a minimal level of quality in this work, we conducted

8
80% rules extracted for agreement, word order, and case marking were deemed valid for English and Greek, for Russian

and Catalan only agreement was evaluated and were deemed 78% and 66% valid respectively.
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Type Question Answer Choices

Relevance 1. What percentage of the materials presented 0-100%

in the tool cover

existing curriculum requirements?

Utility 2. How likely are you personally inclined to use 3: Highly likely

this tool in your lesson planning or teaching? 2: Likely

1: Not likely

2.1. If likely, for what purpose do you foresee a. For lesson preparation, knowledge

this being used? b. For evaluating students

(multiple answers can be selected): c. Present this to the students for self-exploration

d. Other (please specify the reason)

2.2. If likely, what aspects would you use: a. The general concept introduced by the material

b. The rules which are described in the table

(multiple answers can be selected): c. Illustrative examples that accompany the rule

d. Other (please specify the reason)

2.3. if NOT likely, why? a. material outside the scope of current curriculum

b. material was unclear and needs improvement

(multiple answers can be selected): c. material is already covered by existing curriculum

d. Other (please specify the reason)

Presentation 3. How did you �nd the tool? 3. Very easy to use and navigate

2. Somewhat easy to use, but took some time to get used to

1. Di�cult to use

Feedback 4.1 What did you like about the tool or the learning materials?

4.2 What did you not like about the tool?

4.3 What would you like to improve in the tool?

Table 6.2: Perception study: Questions posed to the in-service teachers for evaluating the learning ma-

terials on relevance, utility and presentation. This set of questions is asked for each grammar concept.

a similar study only for some Kannada materials with two experts. We ask the experts to evaluate the

materials for word order, word usage and su�x usage. Speci�cally, for word order and su�x usage,

we ask two questions namely 1) whether the rules along with accompanying examples demonstrate the

shown concept correctly, and 2) if so, whether this material is already covered in their existing material.

For word usage, we present them with the extract word pairs between English and Kannada and ask

them how many of the extracted word pairs are correct. In Chapter 5, we have already evaluated the

e�cacy of the rules extracted in a true learning setup for Greek and Spanish, and therefore we focus

only on the evaluation of word pairs.

Perception Study To check whether the materials are practically usable and, if so, in what aspects,

we conduct a broader set of teachers’ perception of the presented materials, with Kannada and Marathi

teachers. Through this study, speci�cally, we hope to understand 1) relevance of the curriculum materi-

als, 2) utility of the teaching materials, and 3) presentation of the materials, with the help of in-service

teachers. This study was conducted in three parts; this involved a 30–60 minute introductory meeting

with teachers, in which we introduced the tool, all types of grammar concepts covered by the tool, and

how to navigate the online interface. This introductory meeting was held via video call due to pandemic
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restrictions. In the next part of the study, teachers were given one week to explore the materials. Finally,

teachers received a questionnaire that required them to assess the relevance, utility, and presentation of

the tool. We ask this set of questions for each grammar concept (i.e. general information, vocabulary,

su�x usage, word order, and agreement), as shown in Table 6.2. In addition to evaluating the materials,

we also ask for their general feedback on the materials, which is more open-ended.

6.3 Experimental Setting

In this section, we describe the details of the data and models used to extract the learning materials.

Data Since our goal is to create teaching material for learners, most of whom are based outside In-

dia and have English as L1, we use the parallel corpus of Kannada-English and Marathi-English from

Samanantar dataset (Ramesh et al., 2022). This consists of 4 million Kannada sentences and 4 million

Marathi sentences with their respective English translations, and covers text from a variety of domains

such as news, Wikipedia, talks, religious text, movies. Of these genres the underlying corpus has a

particularly large amount of newspapers and legal proceedings, and thus consists of more formal and

traditional language than typically appears in textbooks.

Model As mentioned in subsection 6.2.2, the �rst step in extracting materials for the di�erent gram-

mar concepts is to parse sentences for POS tags, morphological analysis, and dependency parsing. To

obtain this analysis for our corpus, we use an automatic parser Udify (Kondratyuk and Straka, 2019). To

train a parser for Marathi and Kannada, we used the training data collected by IIIT-Hyderabad
9
, which is

annotated in the Paninian Grammar Framework (Bhat et al., 2017). However, the Udify model requires

training data in the Universal Dependencies annotation scheme (McDonald et al., 2013), so we followed

Tandon et al. (2016) to convert between the two formats to obtain POS tags, lemmatization, and mor-

phological analysis. Another challenge in using this converted data is that it did not have dependency

information. To obtain dependency data, we �rst train the Udify model in a related language (Hindi) and

apply it directly to the converted data above, giving us dependency parses for Marathi and Kannada.
10

We then train a new model on this converted data and augment it with the Hindi training data as well,

and apply the resulting model on the 4 million Marathi and Kannada raw sentences. The performance of

the resulting parser is seen in Table 6.3. Similar to previous chapters, we use the SUD annotation format

to represent the syntactic information and follow the same modeling setup as Chapter 4 and Chapter 5

to extract the patterns, explanations and accompanying examples. For su�x usage, we additionally train

a morphology decomposition model which break a word into its lemma and a�xes, for which we use

the model from Ruzsics et al. (2021).

Participants For Kannada, we work with teachers from the Kannada Academy
11

(KA), which is one

of the largest organizations of free Kannada teaching schools in the world, with more than 70 learning

9https://ltrc.iiit.ac.in/showfile.php?filename=downloads/kolhi/
10

The data is publicly released https://github.com/Aditi138/auto-lex-learn/tree/master/
data

11https://www.kannadaacademy.com/
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Language POS Morphological Analysis Lemmatization Dependency Parse (UAS)

Marathi (PAN) 85.9 70.1 82.2 -

Marathi (UD) 63.3 22.1 50.5 60.4

Kannada (PAN) 90.3 79.3 90.6 -

Table 6.3: Parser performance on the respective test sets. PAN refers to the Paninian treebanks and UD

refers to the test set from the UD treebank, which is available only for Marathi.

centers in the United States, Europe, Australia and Asia. The initial quality study of the Kannada learning

material was carried out by two teachers who are on the academy board. We chose these teachers, whom

we also refer to as Kannada experts, for the quality study, as they are actively involved in training other

teachers of the academy and designing the lesson material. To answer the primary research questions

about the teachers’ perception of the materials, we conduct a wider-range study by recruiting volunteer

teachers. KA has 800 volunteer teachers, of which 12 participated in this study. For Marathi, there is

no one central organization as for Kannada, rather there are many independent schools in the North

America. We reached out to two such schools, namely, the Marathi Vidyalay
12

, a school in New Jersey,

USA, which was established 40 years ago and teaches Marathi to learners in the age group of 6-15, and

Marathi Shala in Pittsburgh, USA
13

. Marathi Vidyalay is a small school consisting of 7 volunteer teachers,

of whom 4 agreed to participate in the study, while the Marathi Shala only has one teacher. All of the

participants are volunteer teachers; i.e. teaching is not their primary profession, rather they perform

teaching as a volunteer service.

6.4 Results

In this section, we present the results of the quality and perception study. In addition to human evalu-

ation, in Chapter 4 we outlined a strategy to automatically evaluate the quality of extracted materials.

Speci�cally, the learnt model is applied on a held-out set of sentences and the accuracy metric on that

held-out set is compared with a baseline. We apply the same evaluation protocol for word order, su�x

usage, agreement, and vocabulary, and report the results in Table 6.4. We can see that in most cases

(except for Marathi agreement), the rules extracted by the model outperform the respective baselines,

which suggests that the model is able to extract decent �rst-pass rules with 98% prediction accuracy

for Kannada word order, 48% for agreement, 85% for su�x usage, 68% for vocabulary, 98% for Marathi

word order, 61% for agreement, 85% for su�x usage and 70% for vocabulary. For Marathi, the model

for agreement does not outperform the baseline because the overwhelming majority of head-dependent

pairs show agreement for gender, which causes the statistical threshold, used for deciding the ground

truth label (subsection 3.3.2), to not be exceeded.

12https://marathivishwa.org/marathi-shala/
13https://www.mmpgh.org/MarathiShala.shtml
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Kannada Marathi

Grammar Concept Type AutoLEX baseline AutoLEX baseline

Word Order subject-verb 97.02 96.97 97.8 97.7

object-verb 99.11 99.06 97.89 96.78

numeral-noun 98.63 98.36 99.54 99.54

adjective-noun 99.92 99.92 - -

noun-adposition 99.14 99.14 - -

Agreement Gender 71.87 65.69 61.11* 81.44*

Person 24.73 25.16 - -

Su�x Usage NST 91.58 50 90.44 93.77

NUM 85.2 82.63 85.91 93.61

NOUN 78.61 39 70.23 67.8

PRON 87.13 58.03 75.66 65.07

PART 94.73 89.35 90.58 76.77

ADJ 87.74 66.82 87.55 83.83

VERB 63.19 30.52 78.44 65.87

PROPN 74.57 46.68 65.6 71.19

SCONJ 96.85 64.6 97.59 86.9

DET 99.53 61.83 83.91 81.71

AUX 76.92 38.46 92.8 81.57

ADV 75.19 37.27 86.84 65.89

ADP 93.55 76.43 97.12 67.63

Vocabulary Semantic Subdivisions 68.68 58.48 70.58 56.26

Table 6.4: Automated evaluation results for learning materials extracted for each grammar concept. *

denotes that the model was learnt on a subset of data (200k sentences) because of computational issues.

6.4.1 Quality Study Results

We �rst conduct a limited study in Kannada for a sanity check, asking them to evaluate the materials for

the order of subject-verb and object-verb words, the usage of noun and verb su�xes and the vocabulary

words under word usage. We present the results of that study below:

Vocabulary A total of 385 semantic subdivisions were identi�ed for Kannada, of which we presented

both experts with 100 word pairs for evaluation.
14

These translations were extracted so that they show

�ne-grained semantic di�erences in their usage. In general, both experts found 80% of the word pairs

to be valid, that is, the set of translations for a given English word showed interesting and di�erent us-

ages. For example, for ‘doctor’, the model discovered four unique translations, namely ‘vaidya, vaidyaro,

daktor, vaidyaru’ in Kannada which the expert found interesting for teaching as they demonstrated �ne-

grained distinctions, both semantically and syntactically. For instance, ‘vadiya’ is the direct translation

14
A total of 285 such word pairs for extracted for Marathi.
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of ‘doctor’, whereas ‘daktor’ is the English word used as-is, ‘vaidyaro’ is the plural form of doctors and

‘vaidayaru’ is also a formal way of saying a doctor. Regarding usability, the experts mentioned that cur-

rently in their curriculum there is no good way of handling synonyms or such �ne-grained distinctions,

speci�cally, they said –

“Given that these word pairs have been extracted from natural text, its interesting to see that

there are certain word senses which are so frequently used in the real world which currently we

haven’t covered in our lesson but are we are now thinking of adding them. For example, words

like ‘igaagale’ which means ‘already’, is such a simple word that we have missed and should

have been added. Often teachers struggle to come up with di�erent examples to illustrate word

usages, so the accompanying examples you presented are extremely useful.”

Word Order We follow the same evaluation protocol as outlined in subsection 4.3.2 (Figure 4.5). For

subject-verb, 6 grammar rules explaining the di�erent word order patterns were extracted (4 explaining

when the subject can occur both before and after the verb, 2 rules informing when subjects occur after

the verb, and 1 showing the default order before). Of the six rules presented, experts found three valid

linguistic patterns, of which 2 were too speci�c and 1 precisely captured the distinction. For object-verb,

the model also identi�ed six rules (4 explaining the �exible word order patterns and 2 showing the non-

dominant pattern that objects come after the verb). Of these 6 rules, 2 rules precisely captured the word

order patterns and 1 rule was too speci�c. Interestingly, all these rules which were deemed valid were the

ones which showed non-dominant patterns. The experts also note that this existing material for subject-

verb is not covered in any textbook they use, as their school’s primary focus is on beginner learners, but

they did mention that this is suitable for textbooks for advanced learners, speci�cally the textbook-3

and 4 in their curriculum. Along with the rules, the material also presents illustrative examples that

demonstrate these rules in real-world contexts, and the experts found this to be the most bene�cial. In

the words of the expert –

“the examples could become exercise material to evaluate learners. They could also be used as

inspiration to create simpler examples, as some examples involved pro-drop, where some words

are omitted for brevity”.

Some of the invalid rules incorrectly identi�ed the subjects in the sentence. Such syntactic errors are

expected given that there is not su�cient quantity and quality of expertly annotated Kannada syntactic

analysis available to train a high-quality parser. As we note in Chapter 4, the quality of the extracted

patterns is highly dependent on the quality of the syntactic parser, and improvements in the underlying

parser will improve the quality of the extracted rules. For both the subject-verb and the object-verb,

the model slightly outperformed the baseline (+0.05). Another challenge that experts pointed out is

that most volunteer teachers are not trained in formal linguists, meaning that some might not use such

terminology of ‘subject, object’ in classroom teaching. Despite these issues, experts did mention that the

material could be bene�cial for teachers to know more about the structure of Kannada. As some of these

non-dominant word order usages are interesting and often learners do ask questions in the classroom

about such exceptions.

Su�x Usage We extract the di�erent su�xes used for each word type (e.g. nouns, verbs, adjectives,

etc.) but in the interest of time ask the experts to evaluate only the su�xes extracted for nouns and verbs.
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Grammar Concept Relevance Utility Presentation

% of relevant % of teachers % of teachers % of teachers

curriculum covered likely to use that would use for found this to navigate

General Information 62.1% highly likely: 8.3% lesson prep: 81.8% very easy: 33.3%

likely: 83.3% student exploration: 54.5% somewhat easy: 58.3%

not likely: 8.3% student evaluation: 10% di�cult: 8.3%

Vocabulary 67.5% highly likely: 33.3% lesson prep: 72.7% very easy: 36.3%

likely: 58.3% student exploration: 72.7% somewhat easy: 58.3%

not likely: 8.3% student evaluation: 45.5% di�cult: 8.3%

Su�x Usage 52.5% highly likely: 9.1% lesson prep: 77.8% very easy: 36.4%

likely: 72.7% student exploration: 55.6% somewhat easy: 63.6%

not likely: 18.2% student evaluation: 33.3% di�cult: 0%

Word Order 66% highly likely: 10% lesson prep: 88.9% very easy: 27.3%

likely: 70% student exploration: 44.2% somewhat easy: 72.7%

not likely: 20% student evaluation: 22.2% di�cult: 0%

Agreement 53.75% highly likely: 20% lesson prep: 77.8% very easy: 36.4%

likely: 60% student exploration: 44.4% somewhat easy: 45.5%

not likely: 20% student evaluation: 22.4% di�cult: 18.2%

Table 6.5: Perception study results for Kannada. 12 teachers participated in this study

Of the 18 noun su�xes, 7 were marked as valid, 2 su�xes were not su�xes in traditional terms but arise

due to ‘sandhi’ i.e. transformation in the characters when two words are joined together. Similarly, for

verb su�xes, 53% (7/13) were marked as valid. The experts mentioned that understanding su�x usage

is particularly important in Kannada as it is an agglutinative language with di�erent a�xes for di�erent

grammar categories. They identi�ed that some su�xes (e.g. –ga.Lu, –i.su) although are covered by their

existing textbooks 1 and 3, but the examples shown in the materials will still be helpful in the teaching

process. They mentioned that –

“All variations of the su�x cannot be easily understood by students, given that Kannada is

highly in�ected, for instance the model captured the one variation of the su�x -i.su, but this

su�x additionally changes based on gender, person, number. If a large corpus of material is

available, these complicated usages can be picked up as an example”.

6.4.2 Perception Study Results

After the quality study, we conduct the wider-range study with Marathi and Kannada teachers to assess

their perception of the extracted materials, and below we present the results of that study for both

languages.

Kannada Results and Discussion

12 teachers having varying levels of teaching experience, participated in this study, of which 9 identi�ed

themselves as female and 3 as male. Three teachers have less than three years of experience, four teachers

have between 3-10 years, and the remaining four have 10+ years of experience. Three teachers teach

only beginners, while others have experience teaching higher levels as well. All teachers have used some

online tools, but mostly for creating assignments and quizzes for the learners (e.g. Google Classroom,
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Kahoot
15

, Quizlet
16

), or conducting classes (e.g. Zoom). Some teachers have also referred to YouTube

videos and online dictionaries such as Shabdkosh
17

as reference materials. However, they have not used

online tools such as AutoLEX, which in addition to vocabulary explains the concepts of syntax and

morphology with illustrative examples. As described in subsection 6.2.3, we ask questions centered on

the utility, relevance and presentation of the tool, for each grammar point covered by the tool. We report

individual results in Table 6.5.

Relevance In general, we see that teachers, on average, �nd 45–60% of material presented as relevant

to their existing curriculum, which is notable given that the underlying text corpus is not speci�cally

curated for language teaching. In fact, the underlying corpus has been extracted from mostly newspapers

and legal proceedings and thus consists of more formal and traditional Kannada. The teachers note that

especially for beginners they prefer starting with simpler and more conversational language style, but

for advanced learners this would be very helpful, in their own words–

“The examples are well written, however, for the beginners and intermediates, this might be

too detailed information. The corpus could be from a wider data source. The use of legal and

court related terms are less commonly used in day-to-day life. Advanced learners will certainly

bene�t from this.”

Utility We �nd that for all grammar concepts, most teachers expressed that they were likely to use

the materials for lesson preparation. Some teachers also mentioned that they could present the material

to students for self-exploration, and about 70% teachers voted that it would be especially helpful for

vocabulary learning. When asked what aspects of the presented material would they consider using, all

teachers said that they would in particular use the illustrative examples for all sections except for the

word order and agreement sections. For agreement and word order sections, although they liked the

general concepts presented in the material (for example, the non-dominant patterns shown under each

section), 88% of the teachers felt that the material covered advanced topics outside the current scope.

Although quality evaluation of the rules was not part of this study, teachers did note that if the accuracy

of the rules, particularly for su�x usage, could be improved further, they could foresee this tool being

used in classroom teaching, as su�xes are essential in Kannada.

Presentation In terms of presentation of the materials, we can see from the Table 6.5, all teachers

found them easy to navigate through, although it took some getting used to. This is expected given

that the teachers spent only a few hours (5-6) over the course of one week to explore all the materials.

Additionally, the meta-language used to describe the materials consisted of formal linguistic jargon (for

example, most teachers were unfamiliar with the term ‘lemma’) and some teachers noted that:

“Tool is great and provides clues and ideas for teaching. This is a very vast material; unless you

know what exactly you want to look up to, it is a maze where you can easily get lost. The idea

of pattern recognition is a very natural way of learning for children who relate to audio and

visual patterns to grasp concepts. So this tool helps a lot.”

15https://kahoot.com/
16https://quizlet.com/
17https://www.shabdkosh.com/dictionary/english-kannada/
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Grammar Concept Relevance Utility Presentation

% of relevant % of teachers % of teachers % of teachers

curriculum covered likely to use that would use for found this to navigate

General Information 15% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 80%

not likely: 60% student evaluation: - di�cult: 20%

Vocabulary 16% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 100%

not likely: 60% student evaluation: 50% di�cult: -

Su�x Usage 9% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 100%

not likely: 60% student evaluation: - di�cult: -

Word Order 8% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 80%

not likely: 60% student evaluation: - di�cult: 20%

Agreement 5% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 80%

not likely: 60% student evaluation: - di�cult: 20%

Table 6.6: Perception study results for Marathi. 4 teachers participated in this study

Marathi Results and Discussion

Compared to the Kannada study, only 5 teachers participated for the Marathi study, all of whom identi�ed

themselves as female. These teachers volunteer at small schools that teach mainly at the beginner level

with a few intermediate learners. We report the individual results in Table 6.7.

Relevance We see that teachers �nd only 10–15% of the presented materials are relevant to their ex-

isting curriculum. This is much less than what the Kannada teachers reported, probably because the

Marathi schools’ primary focus is teaching beginners. For beginners, teachers begin with introducing

alphabets, simple vocabulary and sentences. In our tool, currently we do not curate the material accord-

ing to learner age/experience and we have extracted the learning materials from a publicly available text

corpus which comprises of news articles, that are not beginner-oriented, as the teachers quote –

“We focus on varnamala i.e. letters, need to �gure out how to use material for 6-7 years old

students as the basics are there, but many of the words that are here are from core Marathi

newspaper based language, which is very di�cult for kids to grasp. They need simpler words

and sentences to e�ectively understand the words and build vocabulary. Also if possible there

should be some age and language skill based approach to this learning.”

Utility Similar to the Kannada �ndings, all teachers noted that they would likely use the materials

for lesson preparation. Some teachers also said that they could provide the materials to the advanced

students for their self-exploration, to encourage them to explore the materials on their own and ask

questions. Similar to the Kannada study, the teachers found the illustrative examples to be of the most

utility as they demonstrate a variety of usage. However, they did note that they because the underlying

corpus was too restricted in genre, they would bene�t more from applying this tool to their curated set

of stories, which are written in age-appropriate language as sometimes the example sentences felt a little
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Grammar Concept Relevance Utility Presentation

% of relevant % of teachers % of teachers % of teachers

curriculum covered likely to use that would use for found this to navigate

General Information 15% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 80%

not likely: 60% student evaluation: - di�cult: 20%

Vocabulary 16% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 100%

not likely: 60% student evaluation: 50% di�cult: -

Su�x Usage 9% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 100%

not likely: 60% student evaluation: - di�cult: -

Word Order 8% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 80%

not likely: 60% student evaluation: - di�cult: 20%

Agreement 5% highly likely: - lesson prep: 100% very easy: -

likely: 40% student exploration: 50% somewhat easy: 80%

not likely: 60% student evaluation: - di�cult: 20%

Table 6.7: Perception study results for Marathi. 4 teachers participated in this study

too long and di�cult to grasp for students.

Presentation All teachers found the materials somewhat easy to navigate and similar to the Kannada

teachers they mentioned that it did require some time to understand the format. Some teachers gave a

feedback that currently the material is too content heavy and not visually engaging, if the presentation

could be improved along those aspects it would make the tool more inviting. Another common feedback

about the presentation was regarding organization of the content – the teachers felt it would be more

helpful if the content could be broken into sub-sections with not all technical details added in a single

layer. For instance, they said –

“There is a lot of technical details with various parts of speech, subject, object in one go. Perhaps

it could be broken down into sub-sections for someone new to the language, for example, it would

be helpful to have more clarity on the rules in simpler way followed by simpler examples. ”

In general, we can see from the above discussion that both the Marathi and Kannada �ndings have

some common themes, such as teachers �nding the selected grammar concepts relevant to their teaching,

but all note that in the current state of the tool, the presented content is more suitable for advanced learn-

ers. Among the di�erent features, teachers �nd the illustrative examples to be most useful, especially

for understanding the non-dominant linguistic behaviors or the exceptions to general rules. Currently,

a major limitation of the tool, as noted by the teachers, is that the underlying corpus is not curated for

learning, and therefore the rules or examples derived from them are not oriented towards di�erent learn-

ing levels. However, teachers �nd this overall e�ort promising, as this tool can be applied to a corpus of

their choice, which is more suited for the learning experience or requirements. Teachers typically base

the lessons on interesting stories that are not only engaging, but also have a simpler language. And,

especially for beginner learners, the language properties are built through these stories with little use of

formal grammar terms. The tool design is promising in that it is corpus-agnostic i.e. each component of
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the tool can be directly applied to a teacher-selected text corpus to extract relevant material

6.5 Conclusion

In this chapter, we demonstrated howAutoLEX can be applied for the real-world application of language

education, by collaborating with Marathi and Kannada language teachers. Overall, teachers note that the

grammar points covered by the tool are interesting, as they also cover non-dominant linguistic patterns

or exceptions to general rules, which are important for learners to know. Teachers especially liked the

illustrative examples shown under each section, as a helpful reference material for their own lesson

preparation or even for learner evaluation. They also note that in the tool’s current state, it is more

suited for the advanced learners’ requirement, but we know that it can be easily adapted to another level

(e.g. beginners) by applying the tool on a learner-appropriate text corpora, as selected by the teachers.

A next step would be to involve teachers in this extraction process to organize the content by each level,

taking the learner incrementally through the complexities of language.
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Part II

Leveraging Existing and New Data for

Improving NLP for Under-resourced

Languages.
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Chapter 7

Adapting Word Representations to New

Languages using

Linguistically-Motivated Information

In Chapter 3, Chapter 4, Chapter 5, we demonstrated how, using NLP methods we could extract decent

�rst-pass answers to di�erent linguistic questions for multiple languages. As we discussed earlier in

Chapter 2, labeled data for some languages and tasks has been created by human experts (e.g. UD/-

SUD treebanks (Nivre et al., 2006; Nivre et al., 2018; Gerdes et al., 2018)) and can be used directly for

extracting language descriptions, as we did in Chapter 3 and Chapter 4. But, often these annotations

are limited in size and variety and we can instead learn automatic models (e.g. syntactic parsers) to get

such annotations automatically for a larger variety of data and languages, as we did in Chapter 6. These

state-of-the-art automatic methods (e.g. Udify (Kondratyuk and Straka, 2019) for syntactic parsing or

AWESOME (Dou and Neubig, 2021) for acquiring word alignments), although have shown signi�cant

performance improvements across many languages and have even allowed their application to languages

which have no labeled data, do not generalize well on many under-resourced languages. And as we mo-

tivated earlier, the primary goal of this thesis is to automatically create language descriptions for all

languages, many of which are under-resourced with respect to the quality and quantity of resources

required to train high quality models. We also saw earlier how the quality of these extracted language

descriptions is directly dependent on the underlying quality of the parsers, translations, etc, and how

that directly re�ects in the utility of these descriptions (Chapter 6). Due to lack of su�cient labeled data

in the under-resourced languages, the state-of-the-art tools, which are mostly neural network-based,

require good quality and quantity of labeled data and thus do not perform equally well on all languages.

Therefore, in the next few chapters, we will look at how to quickly add support for a new language

to train high-quality models, by leveraging commonalities between languages, as well as by collecting

labeled data e�ciently.

Speci�cally, in this chapter, we explore methods to adapt existing models that are trained on high-

resource languages onto the under-resourced languages via continuous word representations. Word

representations help capture properties of the language, which have led to signi�cant performance im-

provements in several NLP tasks, such as named entity recognition (NER; Ma and Hovy (2016)), machine
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reading (Tan et al., 2017), sentiment analysis (Tang et al., 2016; Yu et al., 2018), etc. These vector repre-

sentations have especially been instrumental in improving performance in under-resourced languages

through cross-lingual transfer learning that allow models to bene�t from related languages that have

higher resources (Mikolov et al., 2013b; Xing et al., 2015; Devlin et al., 2019). Although learning these

word representations requires no supervised data, the quality of the representations is highly contin-

gent upon the availability of the unlabeled data in the required languages. Therefore, in this chapter,

we present two approaches to learn better cross-lingual word representations for under-resourced lan-

guages by leveraging linguistically-inspired units such as morphemes, graphemes and phonemes.

Aditi Chaudhary, Chunting Zhou, Lori Levin, Graham Neubig, David R. Mortensen, Jaime G. Carbonell.

2018. Adapting Word Embeddings to New Languages with Morphological and Phonological Subword

Representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-

cessing.

7.1 Overview

Despite there being more than 7000 languages (Hammarström, 2015) in our world, languages are often

related to each other, sometimes because of geographical proximity to the place where they are spo-

ken or even because of the common parentage where they are descendants of the same language (Rowe

and Levine, 2018). This relatedness can be used to transfer the knowledge learned by the model in one

language to a related language through transfer learning. Transfer learning (Bozinovski and Fulgosi,

1976) is a family of machine learning methods in which a model learned on one task can be used as

a starting point to learn a model on a second task (Tan et al., 2018). These methods can be adapted

to leverage the relatedness between languages and are commonly referred to as cross-lingual transfer

learning methods. This relatedness can manifest itself in terms of vocabulary overlap or even overlap

between grammar properties of languages (e.g. syntax, morphology, phonology, etc.), which in turn can

help neural network models learn from related languages that have large training data and generalize to

those that do not (Mikolov et al., 2013b; Xing et al., 2015; Devlin et al., 2019; Cotterell and Heigold, 2017).

Word representations or embeddings (Mikolov et al., 2013a; Bojanowski et al., 2016; Pennington et al.,

2014a) have shown great potential for cross-lingual transfer learning (CLTL) which has thus enabled

NLP models to leverage data and resources from higher-resourced languages to improve performance

on the under-resourced languages (Ammar et al., 2016b; Bharadwaj et al., 2016; Gouws and Søgaard,

2015; Ruder et al., 2019). Recent work (Peters et al., 2018; Devlin et al., 2019) have proposed using con-

textual word representations instead, in which a given word has di�erent representations based on the

context in which they occur. In this chapter, we focus on improving non-contextual word representa-

tions for under-resourced languages. This work is still relevant to the present day since non-contextual

representations are easy and computationally fast to learn, allowing them to more accessible across re-

search communities, especially communities with computational constraints. Additionally, as we saw in

Chapter 4, non-contextual word embeddings can be easily transformed to derive interpretable semantic

features paving way for models trained on these features to also be interpretable, and in turn providing

a way to get human-readable language descriptions.

Popular approaches to learn these cross-lingual word embeddings either perform joint training on
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graphemes     मू�त र्तियाँ
phonemes     /muːrtijãː/
morphemes   /muːrti-jãː/
lemma+tag    muːrti + Noun + Nom + Fem + 3PL
gloss              ‘statues’

Figure 7.1: Subword units of a word in Hindi

the concatenated corpora (Zhang et al., 2017; Conneau et al., 2017; Devlin et al., 2019) or extend mono-

lingual objective functions to align monolingual pre-trained representations in the same space (Mikolov

et al., 2013b; Faruqui and Dyer, 2014; Ammar et al., 2016b). Such alignment objectives often require some

form of parallel data which is typically of limited quantity and quality. Another dimention on which the

existing approaches vary is the lexical unit used during the training. Mikolov et al. (2013b) use entire

word as the lexical unit while Bojanowski et al. (2016) propose using subword units in the form of char-

acter n-grams to train word embeddings. Several works (Ling et al., 2015; Sennrich et al., 2016), including

more recent work (Devlin et al., 2019), have demonstrated the e�ectiveness of modeling subword units

in better cross-lingual learning.

In this chapter, we propose two approaches for enabling CLTL on under-resourced languages by

training word representations to e�ectively leverage resources from higher-resourced language. Both

approaches are aimed at mapping the representations of the transfer language and the under-resourced

language in the same space. We use linguistically-motivated subword information which cover aspects of

word structure (graphemes), in�ection (morphemes) and phonological (phonemes) properties, as shown

for a Hindi word in Figure 7.1. The key hypothesis of both approaches is that languages are related

to each other along multiple dimentions, such as phonology and morphology, which enables e�ective

transfer. We evaluate our approach empirically on the downstream task of NER, because word vectors

have a direct impact on the NER model performance— as suggested by Ruder et al. (2019) and also

observed by us in Table 7.3, where the model without any pre-trained embeddings scores an average of

18 F1 points less. It thus provides a transparent way to measure the e�ectiveness of di�erent subword

units. Our contributions are summarized below:

1. We show that embeddings trained on subword representations yield better performance on the

task than those trained only on whole words, especially in the cross-lingual transfer setting. We

further show that embeddings trained on morphological representations often outperform those

trained only on whole words.

2. We demonstrate that training embeddings on character-based phonemic representations presents

substantial performance advantages over training on orthographic characters in some transfer

settings, e.g. when there are script di�erences across languages.

3. We produce and release continuous representations for each subword unit, giving researchers the

ability to use them in their own tasks as they see �t.
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7.2 Background

In this section, we provide a brief background on the skip-gram objective function, a popular objective

used for training word embeddings in subsection 7.2.1 and, the di�erent subword units we explore in

Section subsection 7.2.2.

7.2.1 Skip-Gram Objective

Mikolov et al. (2013c) proposed two objective functions: skip-gram and continuous bag of words (CBOW),

to learn word embeddings from a monolingual corpus. Both objectives aim to exploit the dependence of

words on the surrounding context in which they occur (Harris, 1954). While CBOW predicts the word

given its context, skip-gram predicts the surrounding context given the word. We use the skip-gram

objective function in our approach as it is known to give a better representation for infrequent words
1
,

which is crucial for the low resource setting.

We �rst present the skip-gram objective formulation. More formally, given a sequence of T words

w1, · · · , wT , the skip-gram model maximizes the following log-likelihood:

p(v|wi) =
es(v,wi)∑W
j=1 e

s(wi,j)

obj =

T∑
i=1

∑
v∈Ci

loge p(v|wi)
(7.1)

where Ci are the context tokens within a speci�ed window of the focus word wi and p(v|wi) is the

probability of observing context word v given the focus word wi. s is a scoring function mapping the

context word and focus word to R. The summation in the denominator is over the entire vocabulary

V which makes this formulation computationally ine�cient, as the cost of computing the gradient is

proportional to V which is quite large (∼ 105). Mikolov et al. (2013c) employ negative sampling in order

to make this computation tractable resulting in the following log-likelihood:

T∑
i=1

 ∑
wc∈Ci

l(s(wi, wc)) +
∑
wn∈Ni

l(−s(wi, wn))

 (7.2)

where Ni are the negative words sampled randomly from vocabulary and l is the log-sigmoid function.

The scoring function s is a dot product similarity function given by s(wi, wc) = u
>
wivwc where uwi

and vwc are the embeddings of the focus word and its context word respectively. We use this modi�ed

objective function in our approach.

7.2.2 Subword Units

A major limitation of Mikolov et al. (2013c) is that they use whole words as their lexical unit which

means that these approaches fail to represent new words e�ectively. Bojanowski et al. (2016) thus pro-

posed to represent individual words using character-level information which helps alleviate the problem

1
https://code.google.com/archive/p/word2vec/
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English Hindi  Bengali 

Pratibha             प्र�तभा   prathibha প্রিতভা      pər্ətib̤a

first      प्रथम     prətʰmə প্রথম        pər্ətʰəm

India      भारत     b̤aːrtə ভারত       b̤arətə

born      जन्मी     d͡ʒənmiː জন্মগ্রহণ   d͡ʒənəm্əɡərəɦənə 

fly      उड़ने      uɽne  উেড়        uɽe

Figure 7.2: Similarity between Hindi and Bengali words becomes more apparent as phonemes are able

to capture the relatedness between similar languages, despite their orthographic di�erences.

of representing out-of-vocabulary words. Character-level modeling helps capture information about the

internal structure of the word which allows words such as ‘run’ and ‘running’ to be closer in the rep-

resentation space. Given a su�ciently large monolingual corpus, we expect most or all morphological

forms of a lexeme (of which there may be many) to have similar vector representations, however the

amount of available data in most languages appears to be the bottleneck. This becomes even more prob-

lematic for morphological rich languages such as Hindi, Turkish, Russian where words have several

morphologically forms.

We thus explore using three types of linguistically-inspired subword units for training word repre-

sentations: 1) Orthographic units, 2) Morphological units, and, 3) Phonological units.

Orthographic units essentially capture the internal structure of a word by leveraging character-level

information. For instance, Bojanowski et al. (2016) represent the focus word wi as a set of its character

n-grams, denoted by uwi = 1
|G|
∑

g∈G xg , where G is the set of character ngrams and xg is the vector

representation of ngram g. Such representations capture morphological information in a brute-force but

principled fashion—words that share the same morpheme are more likely to share the same character

n-grams than words that do not.

Morphological Units capture relationships between words more directly. This information is carried

in both lemmas (stems or citation forms) and morphological properties (the sets of which are sometimes

called “tags”). Lemmas capture information about the lexical identity of a word and are closely cor-

related with the semantics of a word; tags capture information about the syntactic context of a word.

Prior work (Botha and Blunsom, 2014; Cotterell and Schütze, 2015) have learnt embeddings on mor-

phological representations as well for improving downstream tasks on morphologically rich languages.

Avraham and Goldberg (2017) extend Bojanowski et al. (2016) to show the relationship between seman-

tics and morphology by explicitly modeling the lemma and morphological tags. They found these to

boost performance in di�erent tasks, with lemmas contributing most to lexical similarity tasks and tags

contributing most to morphological similarity tasks.

Phonological units capture the phonemic similarity between languages. These are especially useful

when closely-related languages share no orthography in which chase the above subword units other than

morphological tags will likely be of no use. In Figure 7.2, we can see that for the related languages Hindi

and Bengali, the similarity between these languages becomes quite obvious when words are represented

in their phonemic form. One popular approach to get phonemes is to convert text from its surface (or-
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thographic) form into a phonemic representation, stated in terms of the International Phonetic Alphabet

(IPA), and train embeddings on this representation. This means that, roughly speaking, morphemes that

sound the same will be represented in the same way. Tsvetkov and Dyer (2016); Bharadwaj et al. (2016)

have demonstrated the e�ectiveness of projecting words from orthographic space to phonemic space on

downstream tasks (NER, MT).

7.3 Proposed Approach

Our proposed approach comprises of: 1) a word embedding training objective function which leverages

subword information, and, 2) a training regimen to enable cross-lingual transfer learning.

7.3.1 Objective Function

We base our approach on the skip-gram objective function. More formally, let Pw be the set of linguistic

properties of a word consisting of the phoneme n-grams, lemma and individual morphological tags. The

focus word is then represented as the average sum of its linguistically motivated subword units:

vwc =
1

|Pwc |
∑
p∈Pwc

xp (7.3)

where xp is the vector representation of subword unit p of word wc. For instance, the Hindi word in

Figure 7.1 is represented using its phoneme n-grams, lemma and morphological tags as follows:

x<mu + xmur + xmurti + ...+ xmurtijã >

xmurti + xNoun + xNom + xFem + x3PL
(7.4)

The average operation is important to remove any bias towards words having too many or too few

subword units. Our objective function di�ers from Avraham and Goldberg (2017) in that they encode

the di�erent morphological in�ections as one tag, so that Noun+Nom+Fem+3PL would be encoded as

xNoun+Nom+Fem+3PL instead of encoding each tag separately as proposed by us. We encode each

property in a tag separately to avoid data sparsity issues and empirically �nd this approach to perform

better.

7.3.2 Training Regimes for Cross-Lingual Transfer Learning

To learn cross-lingual word embeddings, we present two training regimes namely CT-Joint and CT-

FineTune to map representations from the languages into the same space. We hypothesize that having

word representations of both languages lying in a similar space will aid the under-resourced language in

leveraging resources from the higher resourced language, including annotations for a downstream task.

In the CT-Joint setting, we learn word representations by applying the above proposed objective

function on the concatenated corpora of the higher-resourced and under-resourced language. By virtue

of the shared subword units between the languages, the model captures the morphological and phono-

logical similarity between them. Duong et al. (2016) and Gouws et al. (2015) have previously shown the

advantages of joint training and we observe that to be true in our case as well.
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While CT-Joint explicitly maps the word representations into the same space through joint training,

CT-FineTune achieves this implicitly. In this setting, the model takes the learned continuous representa-

tions of the high resource subword units, and uses them to initialize the model for the under-resourced

language. First, the model is trained using the proposed objective function on the higher-resourced

language. Next, the learned representations are then used for initializing the subword units for the

under-resourced language. This idea of transferring parameters from high resource language has been

previously explored by Zoph et al. (2016) and showed considerable improvement for low resource neural

machine translation.

7.4 Experimental Settings

We evaluate our word embeddings primarily on the NER task and also show some results on the MT

task. We conduct two types of experiments for each task: 1) cross-lingual transfer experiments on the

low-resource languages—Uyghur and Bengali—using Turkish and Hindi as the high-resource languages

respectively, and, 2) monolingual experiments on all four languages: Uyghur, Turkish, Bengali and Hindi.

In this section, we �rst describe the experimental setup and data used for training the word embeddings.

These language pairs were chosen partly out of convenience—the data were available to us as part of

the DARPA LORELEI program—and partly because they satis�ed certain deeper desiderata. Turkish and

Uyghur are fairly closely related to one another, as are Hindi and Bengali. Despite this relationship,

the members of both pairs are written in di�erent scripts (Roman and Perso-Arabic; Devanagari and

Bengali). Finally, all four languages are morphologically rich, especially Turkish and Uyghur. These

qualities allow us to showcase the value of embeddings with subword units.

Data We use data, comprised of unlabeled corpora, English bilingual dictionaries, annotations, from

the Linguistic Data Consortium (LDC) language packs—Turkish and Hindi
2
, Bengali

3
, from which we

generate train-dev-test splits. Uyghur data was released as part of LoReHLT16 task, organized by NIST

4
under the aegis of DARPA, and training annotations were acquired using native speakers as part of the

task. For Uyghur we evaluate on an unsequestered set consisting of 199 annotated evaluation documents,

released by NIST. For Turkish, Hindi and Bengali, we create our own train-dev-test splits (Table 7.1).

The Uyghur corpus has 27 million tokens and the Turkish corpus has about 40 million tokens. Although

Bengali is widely-spoken and the unlabeled corpus contains more than 140 million tokens, there are

very few named entity annotations available, making it a low-resource language for the purposes of this

exercise. To have a fair experimental setup across language pairs, we sub-sample the Bengali and Hindi

corpora to have comparable corpus sizes with Uyghur and Turkish respectively. We also up-sample the

low-resource data for both unlabeled corpora and NER annotations, so the model doesn’t become biased

towards the high-resource language.

Training Objective Setup We base the implementation of our training objective function on the C++

implementation of fasttext
5

(Bojanowski et al., 2016). For each word in the training corpus, we retrieve

2
LDC2014E115,LDC2017E62,http://www.cfilt.iitb.ac.in/iitb_parallel/

3
LDC2017E60, LDC2015E13

4https://www.nist.gov/
5
https://github.com/facebookresearch/fastText/
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Lang. Train Dev Test

Turkish 3376 1126 1126

Uyghur 1822 240 2448*

Hindi 3974 497 497

Bengali 1908 53 7012

Table 7.1: Sentences in train/dev/test set for NER. (*Unsequestered set)

its phonemes using Epitran (Mortensen et al., 2018) which represents a word using IPA. We consider

phoneme and grapheme n-grams ranging from 3-grams to 6-grams and append a special start symbol<

and end symbol > to the word. The lemmas and morphological tags for a word in context are obtained

using a rule-based morphological analyzer in such a fashion as to produce tags similar to the high re-

source language. For Turkish we use the morphological disambiguator developed by Shen et al. (2016),

while for Uyghur, Hindi and Bengali, we developed our own analyzers using a stemmer-like framework
6

over a span of few weeks (2-3).

Hyperparameters For training the word embeddings, we consider context tokens within a window

size 3 of the focus word and we sample 5 negative examples from the vocabulary. Subword units are

initialized with uniform samples from
[ −1
dim ,

1
dim

]
where dim = 100. We use the same training regime

as Bojanowski et al. (2016). For CT-FineTune, instead of uniform samples we initialize the subword units

of the low resource language with the representations learnt on a related high resource language.

Baselines We compare our cross-lingual word embeddings with two baselines:

• We compare with MultiCCA (Ammar et al., 2016b) which trains multilingual embeddings by pro-

jecting multiple languages in the same shared space of one language (English) using canonical

correlation analysis (CCA). These projections are learnt using bilingual lexicons. For a fair com-

parison, we run MultiCCA on embeddings learnt �rst learnt on monolingual data trained with

di�erent subword units.

• We also compare with Bharadwaj et al. (2016) and Mayhew et al. (2017) both of which report

results on the same NER datasets. While Bharadwaj et al. (2016) use a neural attention model

over phonological features and report the best performance for Turkish using transfer from Uzbek

and Uyghur, Mayhew et al. (2017) use some cheap translation methods such as edit distance with

related language and report best NER results for Uyghur.

For our monolingual experiments, we compare our proposed approach with models using subword

representations—Bojanowski et al. (2016) and Avraham and Goldberg (2017).

6https://github.com/dmort27/mstem
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Model subword units Uyghur Bengali

CT-Joint phoneme-ngrams + lemma + morph 55.00 60.33

phoneme-ngrams + lemma 56.20 59.63

phoneme-ngrams 54.90 58.50

phoneme 51.30 53.75

char-ngrams + lemma + morph 50.20 55.10

char-ngrams + lemma 48.20 53.83

char-ngrams 49.60 52.77

word 51.80 53.69

CT-FineTune phoneme-ngrams + lemma + morph 48.60 56.19

lemma + morph 52.80 57.72

phoneme-ngrams + lemma 51.00 56.83

phoneme-ngrams 50.50 57.69

phoneme 49.20 59.86

MultiCCA char-ngrams + lemma + morph 41.00 50.63

(Baseline) char-ngrams + lemma 43.10 50.63

char-ngrams 45.80 38.06

word 42.70 45.86

Table 7.2: Transfer experiments on NER. Metric F1 (out of 100%). Uyghur transfer is from Turkish;

Bengali transfer is from Hindi. For CT-FineTune, subword units refers to the subword units used for

pre-training on the high resource language which were then used to initialize the respective subword

representations for the low resource language.

7.5 Experiments

Our main experiments are focused on improving named entity recognition (NER) on under-resourced

languages. NER is the task of identifying named entities such as persons, locations, organizations, geo-

political entities from raw text (Nadeau and Sekine, 2007). We use a hierarchical neural conditional

random �eld (CRF) model proposed by Ma and Hovy (2016) as the base model.

NER Model Setup For the cross-lingual transfer experiments we combine the training data from the

related languages and train a model over the concatenated training data. We use 100-dimensional word

embeddings, pre-trained using the proposed strategies, and use hidden dimension of size 100 for each

direction of the BiLSTM. SGD is used as optimizer with a learning rate of 0.015. Dropout of 0.5 is used

in the LSTM layer to prevent over-�tting. Uyghur and Turkish were trained for 100 epochs, Bengali and

Hindi converged after 70 epochs.

7.5.1 Main Results

Cross-Lingual Experiment Results Table 7.2 shows the results of the cross-lingual transfer experi-

ments. We experiment with embeddings learnt using di�erent combinations of subword units and �nd
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Model subword units Turkish Uyghur Hindi Bengali

Ours char-ngrams + lemma + morph 68.06 52.50 73.15 52.77

char-ngrams + lemma 68.61 52.40 73.37 52.09

char-ngrams + morph 67.97 47.80 73.46 52.06

prop2vec word + lemma 66.52 46.00 71.82 50.03

word + morph 64.45 46.00 71.52 49.27

word + lemma + morph 68.46 47.70 70.51 48.16

fastText char-ngrams 66.81 50.80 72.67 52.10

word2vec word 62.85 46.80 72.04 49.83

Random No embedding 58.94 31.30 59.89 21.25

Table 7.3: NER results for monolingual experiments. Metric F1 (out of 100%)

Model Uyghur* (unseq.) Uyghur* Turkish Bengali

Ours 56.20 56.00 68.61 60.33

Bharadwaj et al. (2016) – 51.2 66.47 –

Mayhew et al. (2017) 51.32 55.6 53.44 45.70

Table 7.4: Comparison with previous work using data released by DARPA LORELEI. Metric F1 (out of

100%) *O�cial NIST scores.

that the use of both morphological and phonological properties perform the best among all. Our pro-

posed approaches outperform the baseline MultiCCA by a signi�cant margin probably because of the

latter strongly depends on bilingual dictionaries which in our low resource setting are not of high qual-

ity. Within the proposed approaches, we �nd CT-Joint to be consistently better performing than CT-

FineTune. Interestingly, the performance of CT-FineTune model converges to the monolingual per-

formance (Table 7.3). We hypothesize that the model forgets the pre-trained subword units as training

progresses, also known as catastrophic forgetting (Kirkpatrick et al., 2017), a phenomenon common in

neural network models.

Monolingual Experiment Results Table 7.3 shows the results of the monolingual experiments. Sim-

ilar to above, we experiment with di�erent combinations of subword units with the combination of

character-ngrams, lemma and morphological properties giving the best performance for Uyghur and

Bengali. For Turkish, lemma performs better than lemma+morph, perhaps because the morphological

analyzer outputs so many redundant properties which reduce the distance between words that are not

particularly similar. In contrast, morph helps and lemma hurts in Hindi, perhaps because the morph

analyzer outputs only a small number of highly informative properties, but is a poor general-purpose

lemmatizer. In Table 7.4, we compare our NER performance (o�cial NIST scores) with the then best

results reports by prior work on the same unseen Uyghur test data and �nd our models outperform

existing work.
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Model subword units Uyghur Bengali

Ours char-ngrams + lemma + morph 23.59 7.96

char-ngrams + lemma 23.91 7.77

char-ngrams + morph 23.27 7.88

fastText Char-ngrams 23.24 7.91

word2vec Word 23.31 6.64

Random No embedding 23.51 6.23

Table 7.5: MT results for monolingual experiments. Metric: BLEU

7.5.2 Auxiliary Results

An advantage of our approach is that it can directly be used as-is on any downstream task without

requiring task-speci�c modi�cations. In this section, we present auxiliary results on a separate task of

machine translation (MT) where we apply the (select) learnt embeddings directly to translate text from

the low-resource language to English. We use the XNMT toolkit (Neubig et al., 2018) for this purpose.

In Table 7.5 we report the results of the monolingual experiments where we use the embeddings

trained using our method for the low-resource language. We observe that the combination of character-

ngrams and lemma performs the best for Uyghur and the combination of character-ngrams+ lemma+

morph gives the best performance for Bengali over the word baseline. This demonstrates the importance

of subword units for low-resource MT as well. One likely reason that the combination of character-

ngrams and lemmas consistently show the best performance is that, together, they capture lexical simi-

larity, which is more important to translation than the syntactic information captured by morphological

in�ection (morph). However, cross-lingual transfer experiments do not follow the same trend as that

of NER probably because the MT models were trained on a training set that did not have translation

pairs from the high resource language. As Qi et al. (2018) note, when training MT systems on a single

language pair, it is less necessary for the embeddings to be coordinated across the languages.

7.6 Conclusion

Empirically experiments show that linguistically-inspired subword-level modeling helps train better

word representations overall. Incorporating phonemes and morphemes help bridge the gap between

languages in a cross-lingual transfer setting, especially when related languages do not share any or-

thography. Though our proposed approaches require morphological analyzers, we �nd that even a

morphological analyzer built in 2-3 weeks can boost performance and is a worthwhile investment of

resources. Although we do not investigate the utility of such linguistic properties in methods which

rely on contextual representations (e.g. Peters et al. (2018); Devlin et al. (2019)), but recent works (Leong

and Whitenack, 2022; Nzeyimana and Niyongabo Rubungo, 2022) which do, have also shown the bene-

�ts of leveraging morphological and phonological properties in contextual models for under-resourced

languages.
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Chapter 8

Bootstrapping Active Learning with

Cross-Lingual Transfer Learning

In the previous chapter, we explored methods for leveraging existing data from related high-resource

languages in order to adapt state-of-the-art NLP methods for under-resourced languages. These set of

methods are particularly useful when we do not have access to language experts or native speakers who

can annotate datasets in the under-resourced language of interest. In situations where we have access

to such language experts or native speakers, it is crucial to have methods to collect high quality data

in the language of interest for training high-performing NLP models on the task at hand. However,

collecting such high quality labeled data across multiple languages requires human e�ort which is both

time-consuming and costly, even more so when the human annotators are not native speakers of the

language in question. Therefore, in this chapter we explore methods to collect labeled data in the lan-

guage of interest requiring minimal annotation e�ort and time. For this, we use active learning (Lewis

and Gale, 1994) which uses a data selection algorithm to select useful training samples while minimizing

annotation cost. To further improve the model performance on under-resourced languages, we combine

bene�ts of cross-lingual transfer learning with active learning in a single uni�ed framework. In this

chapter and next, we present our proposed uni�ed framework on two sequence-labeling tasks: named

entity recognition (NER) and part-of-speech (POS) tagging ( Chapter 9), and propose novel active learn-

ing strategies in the process.

Aditi Chaudhary, Jiateng Xie, Zaid Sheikh, Graham Neubig, Jaime Carbonell. 2019. A Little Annotation

does a Lot of Good: A Study in Bootstrapping Low-resource Named Entity Recognizers. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing.

8.1 Overview

Supervised learning systems often require hundreds or thousands of training samples to perform well

depending on the task and language at hand. In most cases, acquiring such labeled training samples

is time-consuming and/or expensive, even more so for some languages where native speakers are not

easily accessible. Active learning (AL) (Lewis and Gale, 1994; Lewis, 1995; Settles and Craven, 2008) is

a sub-�eld of machine learning which aims to train e�ective models with less human e�ort and cost by
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selecting such a subset of data that maximizes the end model performance. The key idea being that not

all training samples are necessary to train a good model as some samples may o�er more information

than others for the end model to perform su�ciently well.

In this chapter, we attempt to answer the question how can we e�ciently bootstrap a high-quality

named entity recognizer for an under-resourced language with only a small amount of human e�ort? We

leverage advances in data-e�cient learning for under-resourced languages, proposing the following

“recipe” for bootstrapping: First, we use cross-lingual transfer learning (CLTL) (Yarowsky et al., 2001;

Ammar et al., 2016a) trained on related higher-resourced languages to provide a good preliminary model.

Next, on this transferred model we employ AL which helps improve annotation e�ciency by using model

predictions to select informative, rather than random, data for human annotators. Finally, the model is

�ne-tuned on data obtained using AL to improve accuracy in the target language. Within this recipe,

the choice of the speci�c method or strategy for choosing and annotating data within AL is highly im-

portant to minimize human e�ort. Furthermore, this strategy needs to carefully designed according to

the task at hand. For instance, in POS tagging each token in a sequence is assigned a POS tag whereas

in the case of NER only a single entity within the sentence may be of interest, it can still be tedious

and wasteful to annotate full sequences when only a small portion of the sentence is of interest (Neubig

et al., 2011; Sperber et al., 2014). Therefore, for the NER task we propose an entity-targeted AL strategy

considering the fact that named entities are both important and sparse and select uncertain subspans

of tokens within a sequence that are most likely named entities. This way, the annotators only need to

assign types to the chosen subspans without having to read and annotate the full sequence.

We evaluate our proposed methods in both a simulated experimental setup and in a human-annotation

setup which presents a more practical setting. Experiments across multiple languages: Spanish, Indone-

sian, Hindi, show that under all settings our proposed strategies outperform existing AL strategies. Our

contributions are summarized below:

1. We present a bootstrapping recipe combining AL with cross-lingual transfer learning for improv-

ing NER on under-resourced languages. We �nd that cross-lingual transfer is a powerful tool, out-

performing the un-transferred systems with just one-tenth tokens annotated. The code is made

publicly available here.
1

2. We empirically demonstrate the e�cacy of our approach across multiple languages through sim-

ulation experiments. Human annotation experiments show that annotators are more accurate in

annotating entities when using the proposed entity-targeted strategy as opposed to full sequence

annotation. Moreover, this strategy minimizes annotator e�ort by requiring them to label fewer

tokens than the full-sequence annotation.

8.2 Background

An AL system consists of a learning algorithmwhich poses queries in the form of unlabeled data instances

to an oracle who performs the data labeling. A learning algorithm or a learner is a machine learning

model which applies di�erent query strategies to select the unlabeled instances for labeling by an oracle

which is usually the human annotator. AL is typically an iterative process where the labeled data is then

used to update the learning algorithm which poses new queries to the learner and this cycle continues

1https://github.com/Aditi138/EntityTargetedActiveLearning
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until either all unlabeled instances are labeled or a stopping criterion is reached. This stopping criterion is

usually decided by an evaluation metric such as accuracy of the end model on the given task i.e.. if the end

model achieves an acceptable level of accuracy on the task then the AL process is stopped. This process is

illustrated in Figure 8.1.

Learning 
Algorithm 

Unlabeled 
Data

Oracle

Labeled 
Data

Pose 
queries

Learn 
model

Select 
queries

Label 
queries

Figure 8.1: An overview of the Active Learning pro-

cess.

In the classical setting, a single unlabeled in-

stance is selected by the learning algorithm and

presented to the learner for labeling. This setting

is usually applied in situations where unlabeled

instances are available to the learning algorithm

as a continuous stream one instance at a time and

the learner decides whether to query this instance

or discard it. This setting is commonly referred

to as stream-based AL (Atlas et al., 1990). Stream-

based AL has been applied to several NLP tasks

such as POS tagging (Argamon-Engelson and Da-

gan, 1999), information retrieval from databases

(Yu, 2005), classi�cation (Žliobaitė et al., 2011).

In this work, we assume that there is a large

pool of unlabeled data available from which instances are then selected by the learning algorithm, re-

ferred as pool-based AL. This setting has also been applied to several applications such as text classi�-

cation (Lewis and Gale, 1994; McCallumzy and Nigamy, 1998), information extraction (Thompson et al.,

1999; Settles and Craven, 2008), image retrieval and classi�cation (Tong and Chang, 2001; Sener and

Savarese, 2018). Most prior works select a batch of examples to be labeled in a single iteration instead of

the single instance labeling as in the classical setting, since most learning algorithms train over a batch

of examples for reducing training overhead. Going forward, all discussion pertaining to AL refers to the

pool-based AL setting implemented in a batched fashion unless otherwise mentioned.

8.3 Query Strategies

In order to decide what queries should be presented to an oracle, a learning algorithm implements a

query strategy on the unlabeled pool of data. As mentioned earlier, not all labeled samples are equally

important for training, some samples o�er more information, which is su�cient to train a model which is

competent with a model having access to all training data. There are two schools of thought that inspire

the di�erent query strategies: 1)informativeness and 2)representativeness. Informativeness represents the

ability of the selected data to reduce the model uncertainty on its predictions. Example strategies are:

query-by-committee (Dagan and Engelson, 1995; Seung et al., 1992) and uncertainty-sampling (Lewis and

Gale, 1994; Balcan et al., 2007; Tong and Chang, 2001; Fang and Cohn, 2017). A major drawback is that

informativeness-only approaches could focus easily on a small subset of samples such as outliers leading

to sample bias. Representativeness measures how well the selected data represent the entire unlabeled

data. Example strategies explore clustering of unlabeled data (Dasgupta and Hsu, 2008; Nguyen and

Smeulders, 2004), however, the performance of these methods heavily depend on the quality of clustering
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algorithms. Several approaches have thus attempted to combine the bene�ts of both informativeness

and representativeness in a single criteria (Donmez et al., 2007; Xu et al., 2003; Fang and Cohn, 2017).

While some approaches such as Donmez et al. (2007) dynamically weigh the mixture of uncertainty-

sampling and density-sampling, approaches such as Fang and Cohn (2017) combine these two criteria

more seamlessly. For instance Fang and Cohn (2017) attempt to include the representativeness criterion

by combining uncertainty sampling with a bias towards high frequency instances for POS tagging. We

now present some of the popular query strategies, also used as baselines in this chapter. First, we formally

de�ne the problem.

8.3.1 Problem Formulation

Given an unlabeled pool of text sequencesD = {x1,x2, · · · ,xn} in a given language having vocabulary

V and a learner θ, an AL query strategy selects a batch b of unlabeled instances from D to be annotated

by an annotator giving labeled data L = {y1,y2, · · · ,yn}.
A sequence-labeling task takes an input sequencexi = {xi,0, xi,1, · · · , xi,|x|} and produces an output

label sequence yi = {yi,0, yi,1, · · · , yi,|x|} where each token in the input xi,t receives as output label yi,t
from a set of possible labelsJ . In the below sections, we describe the di�erent query strategies as applied

to sequence-labeling tasks.

Depending on the query strategy and the task at hand, an unlabeled instance can be either the entire

sequence x or subspans or single tokens within the sequence x. In the following sections, we use S(·)
to denote a scoring function used by the di�erent query strategies to score each unlabeled instance on

the basis of which the learner then selects the unlabeled instances Xlabel to annotate.

8.3.2 Uncertainty-Sampling (UNS)

Uncertainty-based sampling strategies (Lewis and Gale, 1994) are the most popular and commonly used

query strategies in the AL framework. The key hypothesis is that a learner selects those unlabeled

instances about which it is most uncertain. Here we assume that a learner is a probabilistic model and

has access to the posterior probabilities to enable calculation of an uncertainty measure.

A simple uncertainty-measure is computed by selecting unlabeled instances about which the model

is least con�dent given by:

Slc(xi) = 1− Pθ(ŷi|xi) (8.1)

where ŷi = argmaxy Pθ(yi|xi) is the prediction of the model, for example xi having the highest

posterior probability Pθ(ŷi|xi) under the model θ. Culotta and McCallum (2005) and Settles and Craven

(2008) employ this strategy for a variety of tasks including information extraction tasks and sequence la-

beling tasks (NER). One problem with the least-con�dent method is that it ignores the label distribution

and focuses only on the most probable output class. To remedy this, prior work has proposed using en-

tropy (Shannon, 2001) which measures the amount of information or uncertainty encoded in a variable’s

possible outcomes where a high entropy suggests a high uncertainty. It is computed as follows:

Sent(xi) = −
∑
yi∈Yi

Pθ(yi|xi) loge Pθ(yi|xi) (8.2)
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where Yi refers to all possible label sequences for xi. For a full-sequence annotation, this could get

computationally expensive to compute since the number of label sequences might grow exponentially

with increasing sequence length ofx. Similar is the case for a span-level annotation strategy, however we

provide a computationally tractable approach to compute the entropy in subsection 8.4.2. This strategy

is relatively easy to implement for a token-level annotation strategy. Fang and Cohn (2017) employ

this entropy-based strategy for the POS tagging task where they perform token-level annotations. They

calculate the token entropy H(xi,t; θ) for each unlabeled sequence xi under model θ, de�ned as

H(xi,t; θ) = −
∑
j∈J

Pθ(yi,t = j | xi) loge Pθ(yi,t = j | xi) (8.3)

where Pθ(yi,t = j | xi) is the posterior probability of the output class j for token xi,t in input sequence

xi. This entropy is aggregated across all token occurrencesD to get the uncertainty score for each word

type v ∈ V :

Sagg-ent(v) =
∑
xi∈D

∑
xi,t=v

H(xi,t; θ) (8.4)

8.3.3 Query-by-committee (QBC)

Following the theoretical work on the QBC paradigm (Seung et al., 1992; Freund et al., 1997), Dagan

and Engelson (1995) propose a committee-based selection strategy where a learner selects the tokens

having the highest disagreement between a committee of models C = {θ1, θ2, θ3, · · · }. For a token-

level annotation strategy disagreement scores are de�ned as:

Sdis(xi,t) = |C| −max
∑

y∈[ŷθ1i,t,ŷ
θ2
i,t,··· ,ŷ

θc
i,t]

L(y), (8.5)

where L(y) is number of “votes” received for the token label y. ŷθci,t is the prediction with the highest

score according to model θc for the token xi,t. These disagreement scores are then aggregated over word

types:

Sagg-qbc(v) =
∑
xi∈D

∑
xi,t=v

Sqbc(xi,t) (8.6)

Dagan and Engelson (1995) and Settles and Craven (2008) apply this strategy to a full-sequence

annotation scenario on information extraction tasks.

Finally, regardless of whether we use an uncertainty-based or a QBC-based score, the top b word

types with the highest score are then selected as the to-label set

Xlabel = b- argmax
v

S(v), (8.7)

where b- argmax selects top b instances having the highest score S(v), v refers to the annotation unit

which can be full sequences, subspans or single tokens/types.

8.4 Active Learning for NER

We apply AL to collect labeled data to improve NER in under-resourced languages. To further improve

both the active learner and the underlying NER model, we use cross-lingual transfer learning.
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Figure 8.2: Our proposed recipe: cross-lingual transfer is used for projecting annotations from an English

labeled dataset to the target language. Entity-targeted active learning is then used to select informative

sub-spans which are likely entities for humans to annotate. Finally, the NER model is �ne-tuned on this

partially-labeled dataset.

8.4.1 Task Description

Named entity recognition (NER) is the task of detecting and classifying named entities in text into a �xed

set of pre-de�ned categories such as person, location, organization, etc. We follow the BIO2 labeling

scheme (Tjong Kim Sang and Veenstra, 1999) where beginning of an entity is marked with the pre�x

‘B-’, middle of an entity by ‘I-’ and not an entity is denoted by ‘O’.

8.4.2 Proposed Approach

As mentioned in the introduction, our bootstrapping recipe consists of three components (1) cross-

lingual transfer learning, (2) AL to select relevant parts of the data to annotate, and (3) �ne-tuning of the

model on these annotated segments. The overview of the system is shown in Figure 8.2.

Cross-Lingual Transfer Learning Cross-lingual transfer learning (CLTL) is a popular method used

for training models for under-resourced languages. In the previous chapter, we had leveraged word

embeddings for CLTL. In this case, CLTL projects annotations from a high-resource language (English)

into the target language. For this, we follow the approach of Xie et al. (2018) as detailed below.

To begin with, we assume access to two sets of pretrained monolingual word embeddings in the

source and target languages, X and Z , one small bilingual lexicon, either provided or obtained in an

unsupervised manner (Artetxe et al., 2017; Conneau et al., 2017), and labeled training data in the source

language. Using these resources, we train bilingual word embeddings (BWE) to create a word-to-word

translation dictionary, and �nally use this dictionary to translate the source training data into the target

language, which we use to train an NER model. To learn BWE, we �rst obtain a linear mapping W by

solving the following objective:

W ∗ = argmin
W

|WXD − ZD|F s.t. WW> = I, (8.8)

where XD and ZD correspond to the aligned word embeddings from the bilingual lexicon. F denotes

the Frobenius norm. We can �rst compute the singular value decomposition ZTDXD = U
∑
V >, and
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solve the objective by taking W ∗ = UV >. We obtain BWE by linearly transforming the source and

target monolingual word embeddings with U and V , namely XU and ZV .

After obtaining the BWE, we �nd the nearest neighbor target word for every source word in the

BWE space using the cross-domain similarity local scaling (CSLS) metric (Conneau et al., 2017), which

produces a word-to-word translation dictionary. We use this dictionary to translate the source training

data into the target language, and simply copy the label for each word, which yields transferred training

data in the target language. We train an NER model on this transferred data as our preliminary model.

Going forward, in this section we refer to the use of cross-lingual transferred data as CT.

Entity-TargetedActive Learning Using the above obtained projected annotations, we train an initial

NER model θ on the target language, which we use as the active learner to select queries for manual

annotation. One relatively standard method used in previous work on NER is to select full sequences

based on a criterion for the uncertainty of the entities recognized therein (Culotta and McCallum, 2005).

However, as it is often the case that entities are sparse i.e. only a single entity within the sentence may be

of interest, it can still be tedious and wasteful to annotate full sequences when only a small portion of the

sentence is of interest (Neubig et al., 2011; Sperber et al., 2014). Inspired by this �nding and considering

the fact that named entities are both important and sparse, we propose an entity-targeted strategy to

save annotator e�ort. Speci�cally, we select uncertain subspans of tokens within a sequence that are

most likely named entities. This way, the annotators only need to assign types to the chosen subspans

without having to read and annotate the full sequence. To cope with the resulting partial annotation of

sequences, we apply a constrained version of conditional random �elds (CRFs) during training that only

learn from the annotated subspans (Tsuboi et al., 2008; Wanvarie et al., 2011).

Therefore, after training a model using CLTL, we start the AL process based on this model’s outputs.

We begin by training a NER model θ using the above model’s outputs as training data. Using this trained

model, our proposed entity-targeted AL strategy, referred as ETAL, then selects the most informative

spans from a corpus D of unlabeled sequences. Given an unlabeled sequence xi ∈ D, ETAL �rst selects

a span of tokens xi,(a,b) = xi,a · · ·xi,b such that xi,(a,b) is a likely named entity in sequence xi, where

a, b ∈ [0, |xi|]. Then, in order to obtain highly informative spans across the unlabeled pool D, ETAL

computes the entropyH for each occurrence of the span xi,(a,b) and then aggregates them over the entire

corpus D, given by:

SETAL(v) =
∑
xi∈D

∑
xi,(a,b)=v

H(xi,(a,b); θ) (8.9)

where v here denotes a unique span of tokens in D.

We now describe the procedure for calculating H(xi,(a,b)), which is the entropy of a span xi,(a,b)
being a likely entity. Given the unlabeled sequence xi, the trained NER model θ is used for computing

the marginal probabilities Pθ(yi,t = j | xi) for each token xi,t across all possible labels j ∈ J using the

forward-backward algorithm (Rabiner, 1989), where J is the set of all labels. Using these marginals we

calculate the entropy of a given span xi,(a,b) being an entity as shown in Alg. 1.

Let B denote the set of labels indicating beginning of an entity, I the set of labels indicating inside

of an entity and O denoting outside of an entity. First, we compute the probability of a span xi,(a,b)
being an entity, starting with the token xi,a, by marginalizing Pθ(yi,a|xi) over all labels in B, denoted

as p
(a,b)
span . Since an entity can span multiple tokens, for each subsequent token xi,b being part of that
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Algorithm 1: Entity-Targeted Active Learning

1 B← label-set denoting beginning of an entity

2 I ← label-set denoting inside of an entity

3 O← outside of an entity span

4 pi,t,j := Pθ(yi,t = j | xi)← marginal probability of token xi,t taking output label j

5 for a← 1...|xi|, b = 1 do

6 p
(a,b)
span =

∑
j∈B pi,a,j

7 for b← a+ 1...|xi| do
8 p

(a,b)
entity ← p

(a,b)
span ∗ pi,b,O

9 H = −p(a,b)entity loge p
(a,b)
entity

10 if H > threshold then

11 v ← xi,(a,b)
12 SETAL(v)← SETAL(v) +H

13 end

14 p
(a,b)
span ← p

(a,b)
span ∗

∑
j∈I pi,b,j

15 end

16 end

entity, we marginalize Pθ(yi,b|xi) over all labels in I and combine it with p
(a,b)
span . Finally, we compute

pentity by multiplying p
(a,b)
span with Pθ(yi,b = O|xi), which denotes end of a likely entity. Since we use the

marginal probability for computing pentity, it already factors in the transition probability between tags.

Thus, any invalid sequences such as BPERIORG have low scores. Further, since contiguous spans have

overlapping tokens, we use dynamic programming (DP) to compute p
(a,b)
span which avoids an exponential

computation when considering all possible spans and labels in a sequence. Using pentity, we compute

the entropyH and only consider the spans havingH higher than a pre-de�ned threshold threshold. The

reason for this thresholding is purely for computational purposes as it allows us to discard all spans that

have a very low probability of being an entity, keeping the number of spans actually stored in memory

low. As mentioned above, we aggregate the entropy of spans SETAL over the entire unlabeled set, thus

combining uncertainty sampling with a bias towards high frequency entities, following Fang and Cohn

(2017). Using this strategy, we select subspans in each sequence for annotation. The annotator only

needs to assign named entity types to the chosen subspans, adjust the span boundary if needed, and

ignore the rest of the sequence, saving much e�ort.

Training Model and Regimen With the newly obtained training data from AL, we attempt to im-

prove the original transferred model. In this section, we �rst describe our model architecture, and try to

address: 1) how to train the NER model e�ectively with partially annotated sequences? 2) what training

scheme is best suited to improve the transferred model?

Our NER model is a BiLSTM-CNN conditional random �eld (CRF) model based on Ma and Hovy

(2016) consisting of: a character-level CNN, that allows the model to capture subword information; a

word-level BiLSTM, that consumes word embeddings and produces context sensitive hidden represen-
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tations; and a linear-chain CRF layer that models the dependency between labels for inference. We use

the above model for training the initial NER model on the transferred data as well as for re-training the

model on the data acquired from AL.

AL with span-based strategies such as ETAL, produces a training dataset of partially labeled se-

quences. To train the NER model on these partially labeled sequences, we take inspiration from Bellare

and McCallum (2007); Tsuboi et al. (2008) and use a constrained CRF decoder. Normally, CRF computes

the likelihood of a label sequence y given a sequence x as follows:

pθ(y|x) =

∏T
t=1 ψi(yt−1, yt,x, t)

Z(x)
(8.10)

Z(x) =
∑

y∈Y(T )

T∏
t=1

ψi(yt−1, yt,x, t) (8.11)

where T is the length of the sequence, Y(T ) denotes the set of all possible label sequences with length

T , and ψi(yt−1, yt,x) = exp(WT
yt−1,ytxi + byt−1,yt) is the energy function. To compute the likelihood

of a sequence where some labels are unknown, we use a constrained CRF which marginalizes out the

un-annotated tokens. Speci�cally, let YL denote the set of all possible sequences that include the partial

annotations (for unannotated tokens, all labels are possible), and we compute the likelihood as:

pθ(YL|x) =
∑
y∈YL

pθ(y|x) (8.12)

We refer to the use of a constrained CRF as partial-crf.

To improve our model with the newly labeled data, we directly �ne-tune the initial model, trained on

the transferred data, on the data acquired through active learning, referred as FineTune. Each token-level

run produces more labeled data, for which this training procedure is repeated again. We also compare

the NER performance using two other training schemes: CorpusAug, where we train the model on the

concatenated corpus of transferred data and the newly acquired data, and CorpusAug+FineTune, where

we additionally �ne-tune the model trained using CorpusAug on just the newly acquired data.

8.5 Experimental Settings

We evaluate our proposed strategy in both simulated and human-annotation experiments.

Data The �rst evaluation set includes the benchmark CoNLL 2002 and 2003 NER datasets (Tjong

Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003) for Spanish (from the Romance family), Dutch

and German (like English, from the Germanic family). We use the standard corpus splits for train/de-

v/test. The second evaluation set is for the low-resource setting where we use the Indonesian (from the

Austronesian family), Hindi (from the Indo-Aryan family) and Spanish datasets released by the Linguis-

tic Data Consortium (LDC).
2

We generate the train/dev/test split by random sampling. Details of the

corpus statistics are in Table 8.1.

For extracting the English-transferred Data, we use the same experimental settings and resources as

described in Xie et al. (2018) to get the translations of the English training data for each target language.

2
LDC2017E62,LDC2016E97,LDC2017E66
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Source Dataset Train / Dev / Test Total Tokens

# Sentences in Train

LDC Hindi 2570 / 809 / 1592 48604

Indonesian 3181 / 1001 / 1991 55270

Spanish 1398 / 465 / 928 31799

CoNLL Dutch 13274 / 2307 / 4227 200059

German 12067 / 2849 / 2984 206846

Spanish 8357 / 1915 / 1517 264715

Table 8.1: Corpus Statistics.

Active Learning Setup As described in subsection 8.4.2, a DP-based algorithm is employed to select

the uncertain entity spans which runs for all n-grams having length≤ 5. This length was approximated

by computing the 90th percentile on the length of entities in the English training data. We set the entropy

threshold for �ltering individual spans to 1e−8.

Model Setup For each language, we train the model with 100d pre-trained GloVe (Pennington et al.,

2014b) word embeddings trained on Wikipedia and the monolingual text extracted from the train set. We

use hidden size of 200 for each direction of the LSTM and a dropout of 0.5. SGD is used as the optimizer

with a learning rate of 0.015. During �ne-tuning, the NER model is �rst trained on the transferred data

with the above settings. For the �rst token-level run, the model is �ne-tuned on the target language with

a lower learning rate of 1e−5 and for each subsequent run, this rate is increased to 0.015.

Baselines We use cross-lingual transfer (CT) to train our initial NER model and test on the target

language. This is the same setting as Xie et al. (2018) and serves as our baseline. We also use existing AL

strategies to select data for manual annotation using this trained NER model. We compare our proposed

ETAL strategy with the following baseline strategies:

• SAL Select whole sequences for which the model has least con�dence in the most likely labeling

(Culotta and McCallum, 2005). Refer to the Slc calculation in section 8.3 for more details.

• CFEAL Select least con�dent spans within a sequence using the con�dence �eld estimation method

(Culotta and McCallum, 2004). They propose a computationally tractable approach to measure the

con�dence of subspans within a sequence which we use as an uncertainty-measure.

• RAND Select spans randomly from the unlabeled set for annotation.

8.6 Simulation Experiments

In the simulated experimental setting, we simulate manual annotation by using gold labels for the data

selected by token-level. At each subsequent run, we annotate 200 tokens and �ne-tune the NER model

on all the data acquired so far, which is then used to select data for the next run of annotation.
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Figure 8.3: Comparison of the NER performance trained with the FineTune scheme, across six datasets.

Solid lines compare the di�erent token-level strategies. Dashed lines show the ablation experiments.

The x-axis denotes the total number of tokens annotated and the y-axis denotes the F1 score.
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Results Figure 8.3 summarizes the results for all datasets across the di�erent experimental settings.

Each data-point on the x-axis corresponds to the NER performance after annotating 200 additional to-

kens. CT denotes using cross-lingual transferred data to train the initial NER model for both kick-starting

the token-level process and also for �ne-tuning the NER model on the newly-acquired data. Partial-

CRF/Full-CRF denote the type of CRF decoder used in the NER model. Throughout this section, we

report results averaged across all token-level runs unless otherwise noted. Individual scores can be

found in the original paper (Chaudhary et al., 2019).

As can be seen in the �gure, our proposed approach, denoted by ETAL+Partial-CRF+CT, outper-

forms the previous token-level baselines for all the datasets. Holding the other two components of

CT and Partial-CRF constant, we conduct experiments to compare the di�erent token-level strategies,

which are denoted by the solid lines in Figure 8.3. We see that ETAL outperforms the other strategies by

a signi�cant margin for both the CoNLL datasets and the LDC datasets at the end of all runs. Although

CFEAL also selects informative spans, ETAL outperforms it because ETAL is optimized to select likely

entities, causing more entities to be annotated for almost all datasets. Despite fully labeled data being

adding in SAL, ETAL outperforms it because SAL selects longer sentences with fewer entities. Further-

more, we �nd that even with just one-tenth annotated tokens, the proposed recipe is only (avg.) -5.2 F1

behind the model trained using all labeled data, denoted by Supervised All.

We observe that the transferred data from English provides a good start to the NER model. As

expected, cross-lingual transfer helps more for the languages closely related to English which are Dutch,

German, Spanish. In our �rst ablation study, we train a ETAL+Partial-CRF where no transferred data

is used. We observe that as more in-domain data is acquired, the un-transferred setting soon approaches

the transferred setting ETAL+Partial-CRF+CT suggesting that an e�cient annotation strategy can help

close the gap between these two systems with as few as ∼1000 tokens (avg.).

In our second ablation study, we study the e�ect of using the original CRF (Full-CRF) instead of

the Partial-CRF for training with partially labeled data. Since the former requires fully labeled se-

quences, the un-annotated tokens in a sequence are labeled with the model predictions. We see from

Figure 8.3 that the Full-CRF performs worse (avg. -4.1 F1) than when Partial-CRF is used because

Full-CRF signi�cantly hurts the recall for all datasets. We also experiment with di�erent NER training

regimes (described in section 8.4) for ETAL and observe that, generally, �ne-tuning not only speeds up

the training but also gives better performance than the other strategies. Therefore, for human annotation

experiments, we use the FineTune strategy.

8.7 Human Annotation Experiments

We conduct human annotation experiments for Hindi, Indonesian and Spanish to understand whether

ETAL helps reduce the annotation e�ort and improve annotation quality in practical settings. We com-

pare ETAL with the full sequence strategy (SAL).

Setup We use six native speakers, two for each language, with di�erent levels of familiarity with the

NER task. Each annotator was provided with practice sessions to gain familiarity with the annotation

guidelines and the user interface. The annotators annotated for 20 mins time for each strategy. For

ETAL, the annotator was required to annotate single spans i.e. each sequence contained one span of
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Annotator Test Performance (# annotated tokens)

Performance

ETAL SAL ETAL SAL SAL-Full

HI-1 78.8 63.7 50.4 (326) 44.2 (326) 53.3 (1894)

HI-2 82.7 72.2 49.1 (234) 45.9 (234) 55.6 (2242)

ID-1 66.1 77.8 50.4 (425) 45.8 (425) 51.3 (3232)

ID-2 73.0 79.5 51.2 (251) 46.5 (251) 54.0 (2874)

ES-1 79.7 75.0 63.7 (204) 62.2 (204) 64.6 (2134)

ES-2 83.1 70.4 63.8 (199) 62.2 (199) 62.6 (2134)

Table 8.2: Annotator performance measures F1 of each annotator with respect to the oracle annotator

which is the gold data. Test Performance measures the NER F1 scores using the annotations as training

data. The number in the brackets denote the number of annotated tokens used for training the NER

model. ES:Spanish, HI:Hindi, ID: Indonesian.

tokens. This involved assigning the correct label and adjusting the span boundary if required. For SAL,

the annotator was required to annotate all possible entities in the sequence. We randomized the order in

which the annotators had to annotate using the ETAL and SAL strategy. Figure 8.6 illustrates the human

annotation process for the ETAL strategy in the annotation interface.

Results Table 8.2 records the results of human annotation experiments. On comparing each annota-

tor’s annotation quality with respect to the oracle, denoted by Annotator Performance, we �nd that both

Hindi and Spanish annotators have higher annotation quality using ETAL. We believe this is because

by selecting possible entity spans, ETAL not only saves e�ort on searching the entities in a sequence

but also allows the annotators to read less overall and concentrate more on the things that they do read,

as seen in Figure 8.4. However, for SAL we see that the annotator missed a likely entity because they

focused on the other more salient entities in the sequence.
3

On comparing the Test Performance of the NER models trained on these annotations in Table 8.2,

we �nd that for the same number of tokens annotated (denoted by the number mentioned in brackets)

ETAL outperforms SAL similar to the simulation results. SAL-Full denotes the results of the strategy

when trained on all the annotations acquired in the stipulated time. We do observe that SAL-Full has a

larger number of annotated tokens than ETAL. Upon analysis, we �nd that most sequences selected by

SAL-Full did not have any entities. Since “not-an-entity" is the default label in the annotation interface,

no operation is required for annotating these, allowing for more tokens to be annotated per unit times.

When we count the number of entities present in the data selected by the two strategies, we see in

Figure 8.5 that data selected by ETAL has a signi�cantly larger number of entities than SAL, across all the

human annotation experiments. We note that when we consider all the annotated tokens, SAL-Full has

slightly better results. However, despite having six times fewer annotated tokens, the di�erence between

ETAL and SAL-Full is (avg.) 2.1 F1. This suggests that ETAL can achieve competitive performance with

3
For Indonesian, we see an opposite trend due to several inconsistencies in the gold labels.
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Sentence:   !कूल     और  (श*क+          क,   कमी     पर         [स2ुीम             कोट5]    ने        मांगा     जवाब   
         School   and     teachers        ‘s    lack      of           Supreme      Court              asks      answer             
      Gold:                                          BORG              IORG      
 Human:                                                                                             BORG              IORG    
 
 

Sentence:   ?वराट  [कोहलA]    को      आईसीसी       क,    टे!ट      टAम    मD       जगह     नहA ं 
          Virat     Kohli       has       ICC                 ‘s      Test      Team    in        place     no 
       Gold:   BPER       IPER     
   Human:      BPER       IPER      
 
 

Sentence:  [(मE     के   21    ईसाइय+      बंधक+       का  IS        ने       Iकया   (सर  कलम] 
         Egypt   ‘s 21    Christian    brothers  ‘s       IS                  made  head  lines 
       Gold:  BGPE      O    O     BORG             O              O      BORG    O           O        O    O                                  
   Human:    BGPE      O    O     O                 O              O      BORG     O           O        O    O                                  

 
 
 
 
 

ET
AL

 
SA

L 

Figure 8.4: Examples from Hindi human annotation experiments for both ETAL and SAL. Square brackets

denote the spans (for ETAL) or the entire sequence (for SAL) selected by the AL strategy.

fewer annotations.

8.8 Conclusion

We propose a bootstrapping recipe for improving entity recognition in under-resourced languages using

a combination of both cross-lingual transfer learning and active learning. From both the simulation and

human experiments, we show that a targeted annotation strategy such as ETAL achieves competitive

performance with less manual e�ort while maintaining high annotation quality. Given that ETAL can

help �nd twice as many entities as SAL, a potential application of ETAL can also be for creating a high-

quality entity gazetteer under a short time budget.
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Figure 8.5: Comparing the number of entities in the data selected by ETAL and SAL, as annotated by

oracle.
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(a) Selected spans using ETAL strategy are highlighted for the human annotator to annotate.

(b) Human annotator correcting the span boundary and assigning the correct entity type.

(c) Human annotator assigning the correct entity type only since selected span boundary is correct.

(d) Partially-annotated sequences after being annotated by the human annotator.

Figure 8.6: Example of the human annotation process for Hindi.
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Chapter 9

Confusion Reducing Active Learning

In the previous chapter, we presented a uni�ed framework which combines the bene�ts of cross-lingual

transfer learning with active learning for improving entity recognition in under-resourced languages. In

this chapter, we apply this uni�ed framework on POS tagging, a core task in language documentation

and understanding. As we also saw in Chapter 3, Chapter 4 and Chapter 5, POS tagging is one of the

�rst steps for syntactic parsing, from which we then derive language descriptions. In applying Active

Learning (AL) to the POS tagging task, we �nd a surprising result that even in an oracle scenario where

we know the true uncertainty of the predictions, these current query strategies are far from optimal.

Based on this analysis, we pose the problem of AL for POS tagging as selecting instances which maxi-

mally reduce the confusion between particular pairs of output tags.

Aditi Chaudhary, Antonios Anastasopoulos, Zaid Sheikh, Graham Neubig. 2020. Reducing Confusion

in Active Learning for Part-Of-Speech Tagging.. In Transactions of the Association for Computational

Linguistic 2020.

9.1 Overview

Part-Of-Speeach (POS) tagging is an important component of NLP systems such as named entity recog-

nition (NER;Ankita and Nazeer (2018), machine translation (MT; Feng et al. (2019)), question answering

(QA; Wang et al. (2018)). It is also one of the �rst steps used by linguists who try to answer linguistic

questions or document under-resourced languages (Anastasopoulos et al., 2018). The development of

high-quality POS taggers (Huang et al., 2015; Bohnet et al., 2018) often requires large amounts of labeled

data that are not readily available for most languages. Therefore, to collect high-quality labeled data

from human experts while minimizing annotation e�ort and cost, we use the AL framework described

in detail in Chapter 8.

While many query strategies have been proposed in the past (Dagan and Engelson, 1995; Settles and

Craven, 2008; Marcheggiani and Artières, 2014; Fang and Cohn, 2017), in this work we �nd that within

the same task setup (POS tagging) these strategies perform inconsistently across di�erent languages. We

believe this inconsistent performance is because existing methods consider only uncertainty in predic-

tions without considering the direction of the uncertainty with respect to the output labels. For instance,

in Figure 9.1 we consider the German token “die,” which may be either a pronoun (PRO) or determiner
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Figure 9.1: Illustration of selecting representative token-tag combinations to reduce confusion between

the output tags on the German token ‘die’ in an idealized scenario where we know true model confusion.

(DET). According to the initial model (iteration 0), “die” was labeled as PRO majority of the time, but a

signi�cant amount of probability mass was also assigned to other output tags (OTHER) for many exam-

ples. Based on this, existing AL algorithms that select uncertain tokens will likely select “die” because it

is frequent and its predictions are not certain, but they may select an instance of “die” with either a gold

label of PRO or DET. Intuitively, because we would like to correct errors where tokens with true labels

of DET are mis-labeled by the model as PRO, asking the human annotator to tag an instance with a true

label of PRO, even if it is uncertain, is not likely to be of much bene�t.

To remedy this problem, we pose the problem of AL for POS tagging as selecting tokens which

maximally reduce the confusion between the output tags. For instance, in the above example we would

attempt to pick a token-tag pair “die/DET” to reduce potential errors of the model over-predicting PRO.

The task of POS tagging is likely to bene�t more from addressing this issue because of the syncretism

phenomenon observed in several languages. Syncretism is a linguistic phenomenon where distinctions

required by syntax are not realized by morphology, meaning a word type can have multiple POS tags

based on the context in which the word occurs. We evaluate our proposed AL strategy by running sim-

ulation experiments on six diverse languages namely German, Swedish, Galician, North Sami, Persian,

and Ukrainian followed by human annotation experiments on Griko, an endangered language that truly

lacks signi�cant resources. Following the setup used in the previous chapter for NER, we bootstrap the

AL strategy with cross-lingual transfer learning (CLTL) by transferring a POS tagger learnt on a set of re-

lated languages (Cotterell and Heigold, 2017) on the target language. Our contributions are summarized

as follows:

1. We empirically demonstrate the shortcomings of existing AL methods under conventional as well

as “oracle” settings where the true model confusions are known as in Figure 9.1. Extensive analysis

across six diverse languages shows that the selected data using our proposed AL method closely

matches the oracle (gold) data distribution. The code is publicly released here.
1
.

2. We further present auxiliary results demonstrating the importance of model calibration, the accuracy

of the model’s probability estimates themselves (Nixon et al., 2019), and show that cross-view training

(Clark et al., 2018) is an e�ective way to improve calibration.

3. Finally, through the human annotation experiments on an endangered language, Griko, we collect

300 new token-level annotations which will help further Griko NLP systems.

1https://github.com/Aditi138/CRAL
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QBC-ORACLE UNS-ORACLE

iteration-1 PART=1 ADP=1

iteration-2 PART=1,ADP=1 ADP=2

iteration-3 ADV=1,PART=1,ADP=1 ADP=2

iteration-4 ADV=1,PART=1,ADP=2 ADP=3

Table 9.1: Each cell is the tag selected

for German token ‘zu’ at each iteration.

Gold output tag distribution for ‘zu’ is

ADP=194, PART=103, ADV=5, PROPN=5, ADJ=1.
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Table 9.2: Illustrating the inconsistent

performance of UNS-ORACLE and QBC-

ORACLE methods. y-axis is di�erence in

the (avg.) POS accuracy for these two

methods across 20 iterations.

9.2 Background: Failings of Query Strategies

Most existing AL query strategies proposed for sequence-labeling tasks such as NER, POS tagging, use

some form of uncertainty-measure to select the informative data for labelling (Marcheggiani and Ar-

tières, 2014; Settles, 2009; Ringger et al., 2007; Fang and Cohn, 2017). They experiment with di�erent

variants of the entropy measure across both token- and sequence-level annotation schemes for sequence-

labeling tasks. However, to the best of our knowledge, none of the existing works are targeted at reducing

confusion within the output classes. Some of the most widely used query strategies are the uncertainty-

sampling (UNS) (subsection 8.3.2) and the query-by-committee (QBC) (subsection 8.3.3) methods. While

UNS selects the most uncertain word types in the unlabeled corpus for annotation, QBC selects the to-

kens having the highest disagreement between a committee of models. Similar to Chapter 8, we adopt a

token-level annotation scheme as opposed to a full-sequence annotation which is time-consuming and

requires more e�ort. We refer the reader to the equations of UNS in Equation 8.3, Equation 8.4 and, for

QBC in Equation 8.5, Equation 8.6, both of which produce aggregated scores Sagg-ent(v) and Sagg-qbc(v)

respectively for each word type v.

In a preliminary empirical study, we �nd these existing methods are less-than optimal, and fail to

bring consistent gains across multiple settings (languages). Ideally, having a single strategy that performs

consistently across diverse languages is desirable for easy extensibility to new languages. Furthermore,

to test the e�ectiveness of an AL strategy, it is often advisable to conduct multiple AL iterations. How-

ever, experimenting with di�erent strategies across multiple iterations with human annotation is costly

and thus having a single strategy known a-priori will reduce both time and human annotation e�ort.

Speci�cally, we demonstrate this problem of inconsistency through a set of oracle experiments, where

the data selection algorithm has access to the true labels. More details on the setup are in section 9.5.

These experiments hope to serve as an upper-bound for their non-oracle counterparts, so if existing

methods do not achieve gains even in this case, they will certainly be even less promising when true

labels are not available at data selection time, as is the case in standard AL. Concretely, as an oracle un-

certainty sampling method UNS-ORACLE, we select word types with the highest negative log likelihood

of their true label. As an oracle query-by-committee method QBC-ORACLE, we select word types having

the largest number of incorrect predictions. We �nd two key observations:

125



1. Between the oracle methods (Table 9.2), no method consistently performs the best across all six

languages.

2. Simply relying on an uncertainty measure without considering the output class distribution leads

to unbalanced selection of the resulting tags. This is demonstrated in Table 9.1 where the output

tags selected for the German token ‘zu’ are shown across multiple iterations. While UNS-ORACLE

selects the most frequent output tag, it fails to select tokens from other output tags. Interestingly,

QBC-ORACLE selects tokens across multiple tags, however the distribution is not in proportion

with the true tag distribution.

Our hypothesis is that this inconsistent performance occurs because none of the methods consider

the confusion between output tags while selecting data. As mentioned earlier, this is especially important

for POS tagging because we �nd that the existing methods tend to select highly syncretic word types.
2

9.3 Proposed Approach

In order to address the above limitations, we propose a novel AL query strategy which aims at reducing

confusion between the output tags, hereby referred as CRAL. We follow a similar bootstrapping approach

as done for NER (in Chapter 8) where cross-lingual transfer learning (CLTL) seeds the active learner. We

�rst present our proposed active learning strategy followed by the model and training regimen.

9.3.1 Query Strategy: CRAL

To recap, given an unlabeled pool of input text sequences D = {x1,x2, · · · ,xn} in a given language

having vocabulary V and a learner θ, an active learning query strategy selects a batch b of unlabeled

instances fromD to be annotated by an annotator giving labeled data L = {y1,y2, · · · ,yn}. An output

label sequence is denoted by yi = {yi,0, yi,1, · · · , yi,|x|} where each token in the input xi,t receives as

output label yi,t from a set of possible labels J , in this case POS tags. Our proposed algorithm consists

of two main steps. First, we select the word types about which the model is most confused, and second,

we �nd the most representative token instance for each selected type to be presented to the annotator.

Selecting the most confusing word types.

The goal of this step is to �nd b word types which would maximally reduce the model confusion within

the output tags. For each token xi,t in the unlabeled sequence xi ∈ D, we �rst de�ne the confusion as

the sum of posterior probability Pθ(yi,t = j | xi) of all output tags J other than the highest probability

output tag ŷi,t:

Sconf(xi,t) = 1− Pθ(yi,t = ŷi,t | xi), (9.1)

SCRAL(v) =
∑
xi∈D

∑
xi,t=v

Sconf(xi,t). (9.2)

A high Sconf(xi,t) indicates that the model is less con�dent on the most probable tag and thus more

confused between the output tags. The model confusion is further aggregated over all token occurrences

to get the type-level confusion score Scral(v). Next, we select the top b word types having the highest

2
Details can be found in Table 9.4.
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Algorithm 2: Confusion-Reducing Active Learning

1 D← unlabeled set of sequences

2 V ← vocabulary

3 J ← output tag-set

4 b← active learning batch size

5 Pθ(yi,t = j | xi)← marginal probability

6 pi,t,j := Pθ(yi,t = j | xi)

7 for xi ∈ D do

8 for (xi,t) ∈ xi do

9 v ← xi,t
10 SCRAL(v)← SCRAL(v) + (1− pi,t,ŷi,t)
11 ĵ ← argmaxj∈J\{ŷi,t} pi,t,j

12 OCRAL(v, ĵ)← OCRAL(v, ĵ) + 1

13 end

14 end

15 Xinit ← b- argmaxv∈V SCRAL(v)

16 for vk ∈ Xinit do

17 jk ← argmaxj∈J OCRAL(vk, j)

18 for xi,t ∈ D s.t. xi,t = vk do

19 cxi,t ← enc(xi,t)

20 Wxi,t = pi,t,jk ∗ cxi,t
21 end

22 Xlabel(vk) = centroid{Wxi,t=vk}
23 end

aggregated confusion score (given by b- argmax) which gives us the most confusing word types. For

each token, we also store the output tag that is the second most probable tag (i.e. the tag with the second

highest posterior probability) which we refer to as the “most confusing output tag” for a particular xi,t
in O(xi,t, j):

O(xi,t, j) =

{
1 if j = argmaxj∈J\{ŷi,t} pi,t,j

0 otherwise.

(9.3)

For each word type v, we aggregate the frequency of the most confusing output tag across all token

occurrences and compute the output tag with the highest frequency as the most confusing output tag for

type v. Finally, for each of the top b most confusing word types, we retrieve its most confusing output

tag resulting in type-tag pairs given byXinit = {〈v1, j1〉, · · · 〈vb, jb〉}. This process is illustrated in steps

7–14 in Alg. 2.

Select the most representative token instances.

Now that we have the most confusing type-tag pairs Xinit, our �nal step is selecting the most rep-

resentative token instances for annotation. For each type-tag tuple 〈vk, jk〉 ∈ Xinit, we �rst retrieve
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contextualized representations for all token occurrences (xi,t = vk) of the word-type vk from the en-

coder of the POS model. We express this in shorthand as ci,t := enc(xi,t). Since the true labels are

unknown, there is no certain way of knowing which tokens have the “most confusing output tag” as the

true label. Therefore, each token representation ci,t is weighted with the model con�dence of the most

confusing tag jk given by step 19–20 in Alg. 2. Finally, the token instance that is closest to the centroid

of this weighted token set becomes the most representative instance for annotation. Going forward, we

also refer to the most representative token instance as the centroid for simplicity. This process is re-

peated for each of the word-types vk resulting in the to-label set Xlabel. We take inspiration from Sener

and Savarese (2018) in selecting the centroid as a good approximation of representativeness. They pose

AL as a core-set selection problem where a core set is the subset of data on which the model if trained

closely matches the performance of the model trained on the entire dataset. They show that �nding the

core set is equivalent to choosing b center points such that the largest distance between a data point and

its nearest center is minimized.

Similar to Fang and Cohn (2017) and Chaudhary et al. (2019), the selected representative tokens are

presented in context for manual annotation.

9.3.2 Training Model and Regimen

In this section, we present the POS model architecture and the training algorithm. As mentioned before,

we use cross-lingual transfer learning to improve the POS model on under-resourced languages.

Model Architecture

The POS model is a hierarchical neural conditional random �eld (CRF) tagger (Ma and Hovy, 2016;

Lample et al., 2016; Yang et al., 2017) where each token (x, t) from the input sequence x is �rst passed

through a character-level BiLSTM, followed by a self-attention layer (Vaswani et al., 2017a). On top of

the self-attention layer, another BiLSTM is used to capture information about subword structure of the

words. Finally, these character-level representations are fed into a token-level BiLSTM in order to create

contextual representations ct =
−→
ht :
←−
ht, where

−→
ht and

←−
ht are the representations from the forward and

backward LSTMs, and “:” denotes the concatenation operation. The encoded representations are then

used by the CRF decoder to produce the output sequence.

Similar to the entity-targeted active learning ETAL strategy proposed in our previous chapter (sub-

section 8.4.2), we collect token-level annotations and thus cannot directly use the traditional CRF which

expects a fully labeled sequence. Instead, we use a constrained CRF (Bellare and McCallum, 2007) which

computes the loss only for annotated tokens by marginalizing the un-annotated tokens.

Cross-View Training Regimen

In order to further improve the above model, we apply cross-view training (CVT), a semi-supervised

learning method (Clark et al., 2018). The key hypothesis of CVT is that it leverages both unlabeled

and labeled data for training a robust model. On unlabeled examples, CVT uses a self-training algorithm

(Yarowsky, 1995) where it trains auxiliary prediction modules. These auxiliary modules look at restricted

“views” of the input sequence and attempt to match the prediction from the full view. By forcing the

auxiliary modules to match the full-view module, CVT improves the model’s representation learning.
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Not only does it help in improving the downstream performance under low-resource conditions, but

also improves the model calibration overall (details in section 9.5). Having a well-calibrated model is

quite useful for AL, as a well-calibrated model tends to assign lower probabilities to “true” incorrect

predictions which allows the AL measure to select these incorrect tokens for annotation.

CVT is comprised of four auxiliary prediction modules, namely: the forward module θfwd which

makes predictions without looking at the right of the current token, the backward module θbwd which

makes predictions without looking at the left of the current token, the future module θfut which does

not look at either the right context or the current token and, the past module θpst which does not look

at either the left context or the current token. The token representations ct for each module can be seen

as follows:

cfwd
t =

−→
ht, cbwd

t =
←−
ht, cfullt =

−→
ht :
←−
ht, cfutt =

−−→
ht−1, cpstt =

←−−
ht+1 (9.4)

For an unlabeled input sequence x, the full-view model θfull �rst produces soft targets pθ(y|x) upon

inference and then CVT matches the soft predictions from M auxiliary modules by minimizing their

KL-divergence. Although CRF produces a probability distribution over all possible output sequences,

for computational feasibility we compute the token-level KL-divergence using the posterior probability

distribution Pθ(yt|x) over all output tags J . The CVT loss function is given as:

lcvt=
1

|D|
∑
xi∈D

∑
xi,t∈xi

M∑
m=1

KL(pfullθ ||pmθ ) (9.5)

where pfullθ := P fullθ (yi,t = j | xi) and pvθ := P vθ (yi,t = j | xi). |D| is the total unlabeled examples in

D. The loss obtained from CVT above is then interpolated with the supervised loss function.

Cross-Lingual Transfer Learning

As mentioned in the introduction, we use cross-lingual transfer learning (CLTL) to bootstrap the active

learning model. In the previous chapter (Chapter 8), we used annotation projection (Xie et al., 2018; May-

hew et al., 2017) to transfer annotations from English onto the target under-resourced language using

bilingual dictionaries. In this work our primary focus is on designing an active learning method, so we

simply pre-train a POS model on a group of related high-resource languages (Cotterell and Heigold, 2017)

which is a computationally cheap solution, a crucial requirement for running multiple AL iterations.

Therefore, using the architecture described above, for any given target language we �rst train a

POS model on a group of related high-resource languages and then �ne-tune this pre-trained model

on the newly acquired annotations. In order to select a set of related higher-resourced languages, we

�rst run the automated tool provided by Lin et al. (2019), which leverages features such as phylogenetic

similarity, typology, lexical overlap, and size of available data, in order to predict a list of optimal transfer

languages. This list is then re�ned using the experimenter’s intuition. Finally, a POS model is trained

on the concatenated corpora of the related languages.

9.4 Experimental Settings

We evaluate our proposed approach using both simulation experiments, where we use the gold labels

to simulate an annotator, and human annotation experiments where we ask linguists to perform the
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target language transfer languages (treebank)

German (de-gsd) English (en-ewt) + Dutch (nl-alpino)

Swedish (sv-lines) Norwegian (no-nynorsk) + Danish (da-ddt)

North Sami (sme-giella) Finnish (�-ftb)

Persian (fa-seraji) Urdu (ur-udtb) + Russian (ru-gsd)

Galician (gl-treegal) Spanish (es-gsd) + Portuguese (pt-gsd)

Ukrainian (uk-iu) Russian (ru-gsd)

Griko Greek (el-gdt) + Italian (it-postwita)

Table 9.3: Dataset details describing the group of related languages over which the model was pre-trained

for a given target language.

manual annotation.

Data For the simulation experiments, we evaluate on six diverse languages: German, Swedish, North

Sami, Persian, Ukrainian and Galician. We use data from the Universal Dependencies (UD) v2.3 (Nivre

et al., 2016; Nivre et al., 2018; Kirov et al., 2018) project with the same train/dev/test split as proposed in

McCarthy et al. (2018).
3

For each target language, the set of related languages used for pre-training is

listed in Table 9.3. Persian and Urdu datasets being in the Perso-Arabic script, there is no orthography

overlap along the transfer and the target languages. Therefore, we use uroman,
4

a publicly available tool

for romanization. Details on the Griko data are discussed in section 9.6.

Model Setup We use a hidden size of 25 for the character BiLSTM, 100 for the modeling layer and

200 for the token-level BiLSTM. Character embeddings are 30-dimensional and are randomly initialized.

We apply a dropout of 0.3 to the character embeddings before inputting to the BiLSTM. A further 0.5

dropout is applied to the output vectors of all BiLSTMs. The model is trained using the SGD optimizer

with learning rate of 0.015. The model is trained till convergence over a validation set.

Active Learning Setup For all AL methods, we acquire annotations in batches of 50 and run multiple

iterations for each method. We pre-train the model using the above parameters and after acquiring

annotations, we �ne-tune it with a learning rate proportional to the number of sentences in the labeled

data lr = 2.5e−5|Xlabel|.

Baselines We compare our proposed method (CRAL) with the following baselines:

• UNS Select word types about which the model is most uncertain by aggregating entropy scores

across all token occurrences for a given type.

• QBC Select word types on which a committee of models most disagree on their predictions. For

each word type, the disagreement scores are aggregated across all token occurrences. We use the

3https://github.com/sigmorphon/2019/tree/master/task2
4https://www.isi.edu/~ulf/uroman.html
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Figure 9.2: Comparing the di�erence in POS performance across the AL methods with BRNN/MLP ar-

chitecture, averaged across 20 iterations.

following committee of models C = {θfwd, θbwd, θfull}, where θi are the CVT views (section 9.3).

We do not include the θfut and θpst as they are much weaker in comparison to the other views.
5

• RAND Selects tokens randomly from the unlabeled data D.

For CRAL, UNS and RAND, we use the full model view.

9.5 Simulation Experiments

In this setting, we simulate the manual annotation by using gold labels for the data selected by AL. We

conduct 20 AL iterations for each method in batches of 50, resulting in 1000 annotated tokens for each

language.

9.5.1 Results

Figure 9.3 compares our proposed CRAL strategy with the existing baselines. Y-axis represents the di�er-

ence in POS tagging performance between two AL methods and is measured by accuracy. The accuracy

is averaged across 20 iterations. Across all six languages, we �nd that our proposed method CRAL shows

signi�cant performance gains over the other methods. In order to check how the performance of the

AL methods is a�ected by the underlying POS tagger architecture, we conduct additional experiments

with a di�erent architecture. We replace the CRF layer with a linear layer and use token level softmax

to predict the tags, keeping the encoder as before. We present the results for four (North Sami, Swedish,

German, Galician) of the six languages in Figure 9.2. Our proposed method CRAL still always outper-

forms QBC. We observe that only for North Sami, UNS outperforms CRAL, which is similar to the results

obtained from BRNN/CRF architecture where the CRAL performs at par with UNS. Next, we perform

intrinsic evaluation to compare the quality of the selected data on two aspects:

How similar are the selected and the true data distributions? To measure this similarity, we

compare the output tag distribution for each word type in the selected data with the tag distribution

5
We chose CVT views for QBC over the ensemble for computational reasons. Training 3 models independently would

require three times the computation. Given that for each language we run 20 experiments amounting to a total of 120 experi-

ments, reducing the computational burden was preferred.
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Figure 9.3: Our method (CRAL) outperforms existing AL methods for all six languages. Y-axis is the

di�erence in POS accuracy between CRAL and other AL methods, averaged across 20 iterations with

batch size 50.

target language UNS QBC CRAL

German 74 % 76 % 82%

Swedish 56 % 54 % 62 %

North-Sami 10 % 12 % 14 %

Persian 50 % 46 % 46 %

Galician 40 % 42 % 44 %

Ukrainian 38 % 48 % 48 %

Table 9.4: Percentage of syncretic word

types in the �rst iteration of active learn-

ing (consisting of 50 types).

target language CRAL UNS QBC

German 0.0465 0.0801 0.0849

Swedish 0.0811 0.1196 0.1013

North Sami 0.0270 0.0328 0.0346

Persian 0.0384 0.0583 0.0444

Galician 0.0722 0.0953 0.0674

Ukrainian 0.0770 0.1067 0.0665

Table 9.5: Wasserstein distance between the output

tag distributions of the selected data and the gold

data, lower the better. The above results are after

200 annotated tokens.

in the gold data. This evaluation is necessary because there are signi�cant number of syncretic word

types in the selected data as seen in Table 9.4. To recap, syncretic word types are word types that can

have multiple POS tags based on context. We compute the Wasserstein distance (a metric to compute

distance between two probability distributions) between the annotated tag distribution and the true tag

distribution for each word type v.

WD(v) =
∑
j∈Jv

pALj (v)− p∗j (v), (9.6)

where Jv is the set of output tags for a word type v in the selected active learning data. pALj (v) denotes

the proportion of tokens annotated with tag j in the selected data and p∗j is the proportion of tokens

having tag j in the entire gold data. Lower Wasserstein distance suggests high similarity between the

selected tag distribution and output tag distribution. Given that each iteration selects unique tokens, this

distance is computed after n = 4 iterations. Table 9.5 shows that our proposed strategy CRAL selects

data which closely matches the gold data distribution for four out of the six languages.

How e�ective is the AL method in reducing confusion across iterations? Across iterations, as

more data is acquired we expect the incorrect predictions from the previous iterations to be recti�ed in

the subsequent iterations, ideally without damaging the accuracy of existing predictions. However, as
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Figure 9.4: Confusion score measures the percentage of correct predictions in the �rst iteration which

were incorrectly predicted in the second iterations. Lower values suggest that the selected annotations

in the subsequent iterations cause less damage on the model trained on the existing annotations.

seen in Table 9.4, the AL methods have a tendency to select syncretic word types, suggesting that across

multiple iterations the same word types could get selected albeit under a di�erent context. This could

lead to more confusion thereby damaging the existing accuracy if the selected type is not a good repre-

sentative of its annotated tag. Therefore, we calculate the number of existing correct predictions which

were incorrectly predicted in the subsequent iteration, and present the results in Figure 9.4. A lower

value suggests that the AL method was e�ective in improving overall accuracy without damaging the

accuracy from existing annotations, and thereby was successful in reducing confusion. From Figure 9.4,

the proposed strategy CRAL is clearly more e�ective than the others in most cases in reducing confusion

across iterations.

Oracle Results As mentioned in the introduction, we compare the AL methods under “oracle” settings

as well, where we have access to the gold labels during data selection. This comparison is importance

because if the AL methods perform inconsistently even with access to true labels then they are likely

to perform inconsistently in practical settings as well where they don’t have access to the true labels.

The oracle versions of existing methods UNS-ORACLE and QBC-ORACLE are already described in sec-

tion 9.2. For our proposed method CRAL, we construct the oracle version as follows: Select the word

types having the highest number of incorrect predictions. Within each type, select that output tag which

is the most incorrectly predicted. This gives the most confusing output tag for a given word type. From

the tokens having the most confusing output tag, select the token representative by taking the centroid

of their respective contextualized representations.

Figure 9.5 compares the performance gain of the POS model trained using CRAL-ORACLE over

UNS-ORACLE and QBC-ORACLE (Figure 9.5.a, Figure 9.5.b). We �nd that our proposed method per-

forms consistently better across all languages, except Ukrainian, unlike the existing methods as seen in

Table 9.2. We hypothesize that this inconsistency is due to noisy annotations in Ukrainian. On analysis

we found that the oracle method predicts numerals as NUM but in the gold data some of them are an-

notated as ADJ. We also �nd several tokens to have punctuations and numbers mixed with the letters.
6

Further, we �nd that CRAL closely matches the performance of its corresponding oracle CRAL-ORACLE

(Figure 9.5.c) which suggests that the proposed method is close to an optimal AL method.

In order to verify whether CRAL is accurately selecting data at near-oracle levels, we analyze the

6
This is also noted in the UD page: https://universaldependencies.org/treebanks/uk_iu/

index.html
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Figure 9.5: In the oracle setting, our method (CRAL-ORACLE) outperforms UNS-ORACLE and QBC-

ORACLE in most cases, while the non-oracle CRAL matches the performance of its oracle counterpart.

y-axis measures the di�erence in average accuracy across 20 iterations.

intermediate steps leading to the data selection. For each selected word type z ∈ Xlabel, we analyze

how well our proposed method of weighting encoder representations with the model con�dence of the

most confused tag and taking the centroid actually succeeds at “representative” token selection. If this

is indeed the case, tokens in the vicinity of the centroid should also have the same “most confused tag”

as their predicted label and thereby be mis-class�ed instances. To verify this hypothesis we compare

how many of the 100 tokens closest to the centroid (in the representation space) (Xnn(z)) are truly

mis-classi�ed. This score is given by p(z) for each selected word-type z:

Xnn(z) = b- argmin
xi,t=z∈D

|ci,t − cz|

p(z) =
|ŷi,t 6= y∗i,t|
|Xnn(z)|

where b = 100. cz is the contextualized representation of the representative instance for the word-type

z i.e. the centroid and ci,t is the contextualized representation of z’s token instance xi,t. y
∗
i,t and ŷi,t

are the true and predicted labels of xi,t. We report the average and median of p across all the selected

tokens of the �rst AL iteration in Figure 9.6. We see that for all languages the median is high (i.e. > 0.8)

which suggests that the majority of the token-tag pairs satisfy this criteria, thus supporting the step of

weighting the token representations and choosing the centroid for annotation.

We also compare the percent of token-tag overlap between the data selected from CRAL with its

oracle counterpart: CRAL-ORACLE. For the �rst AL iteration, the proposed method CRAL has more

than 50% overlap with the oracle method for all languages, providing some evidence as to why CRAL is

matching the oracle performance.

9.5.2 Auxiliary Results

In this section, we present auxiliary results which show that cross-view training (CVT) not only helps

improve our POS model overall but also helps in model calibration which can be important for active

learning. A model is well-calibrated when a model’s predicted probabilities over the outcomes re�ects

the true probabilities over these outcomes (Nixon et al., 2019). We use Static Calibration Error (SCE), a

metric proposed by Nixon et al. (2019) to measure the model calibration. SCE bins the model predictions

separately for each output tag probability and computes the calibration error within each bin which is

averaged across all the bins to produce a single score. For each output tag, bins are created by sorting the
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Figure 9.6: We report the mean and median of p over all the 50 token-tag pairs selected by the �rst AL

iteration of CRAL. We see that across all languages majority of the token-tag pairs satisfy the criteria of

using weighted representations with centroid for token selection.

experiment setting cvt sce accuracy

EN + NO→ EN
- 0.0190 95.53

+ 0.0174 95.58

EN + NO + DE-200→ DE
- 0.1658 69.90

+ 0.1391 74.61

Table 9.6: Evaluating the e�ect of CVT across two settings. EN: English, NO: Norwegian, DE-200: 200

German annotations. Left of ‘→’ are the pre-training languages and the on the right is the language on

which this model is evaluated. Accuracy measures the POS model performance (higher is better) and

SCE measures the model calibration (lower is better).

predictions based on the output class probability. Hence, the �rst 10% are placed in bin 1, the next 10%

in bin 2, and so on. We conduct two ablation experiments to measure the e�ect of CVT. First, we train

a joint POS model on English and Norwegian datasets using all available training data, and evaluate

on the English test set. Second, we use this pre-trained model and �ne-tune on 200 randomly sampled

German data and evaluate on German test data. We train models with and without CVT, denoted by

+/- in Table 9.6. We �nd that with CVT results both in higher accuracy as well as lower calibration

error (SCE). This e�ect of CVT is much more pronounced in the second experiment, which presents a

low-resource scenario and is common in an active learning framework.

9.6 Human Annotation Experiments

We conduct human annotation experiments for Griko, an endangered language, spoken by around 20

thousand people in southern Italy, in the Grecìa Salentina area southeast of Lecce. The only available

online Griko corpus, referred to as UoI (Lekakou, Marika and Baldissera, Valeria and Anastasopoulos,
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AL iteration-0 iteration-1 iteration-2 iteration-3 IA Agr. WD

Linguist-1

CRAL 52.93 63.42 (10) 69.07 (10) 65.16 (16) 0.58 0.281

QBC 52.93 55.82 (15) 62.03 (17) 66.51 (15) 0.68 0.243

UNS 52.93 56.14 (15) 57.04 (15) 65.73 (11) 0.58 0.379

Linguist-2

CRAL 52.93 61.24 (15) 67.24 (20) 67.05 (18) 0.70 0.346

QBC 52.93 56.52 (20) 65.96 (20) 66.71 (17) 0.72 0.245

UNS 52.93 55.45 (17) 58.80 (17) 65.73 (20) 0.70 0.363

Linguist-3
CRAL 52.93 65.63 69.17 68.09 - 0.159

(Expert)
QBC 52.93 60.50 65.69 56.20 - 0.170

UNS 52.93 58.51 64.26 65.93 - 0.125

Table 9.7: POS accuracy on Griko test set after each AL iteration, which consists of 50 token-level anno-

tations. Number in the parentheses denotes the time in minutes required for annotation. IA Agr. reports

the inter-annotator agreement against the expert linguist for the �rst iteration. WD is the Wasserstein

distance between the selected tokens and the test distribution.

Antonios, 2013),
7

consists of 330 utterances by nine native speakers having POS annotations. Addition-

ally, Anastasopoulos et al. (2018) collected, processed and released 114 stories, of which only the �rst 10

stories were annotated by experts and have gold-standard annotations.
8

We conduct human annotation

experiments on the remaining un-annotated stories in order to compare the di�erent AL methods.

9.6.1 Setup

We use two linguists, familiar with Modern Greek and somewhat with Griko. Using the same interface

as Chapter 8, tokens that need to be annotated are highlighted and presented with their surrounding

context. The linguist then simply selects the appropriate POS tag for each highlighted token. Since we

do not have gold annotations for these experiments, we obtain annotations from a third linguist who is

more familiar with Griko. To familiarize the linguists with the annotation interface, a practice session

was conducted in Modern Greek. We compare with UNS and QBC by conducting three AL iterations,

where each iteration selects roughly 50 tokens for annotation. We use Modern Greek and Italian as the

two related languages to train our initial POS model.
9

To further improve the model, we �ne-tune on

the UoI corpus which consists of 360 labeled sentences. We evaluate the AL performance on the 10 gold-

labelled stories from UoI, of which the �rst two stories, comprising of 143 labeled sentences, are used as

the validation set and the remaining 800 labeled sentences form the test set.

9.6.2 Results

Table 9.7 records the result of the human annotation experiments. We �nd that our proposed method

CRAL outperforms other methods in most cases. For Linguist-1, we observe a decrease in performance

in Iteration-3 which we attribute to their poor annotation quality. This is also re�ected in their low

7http://griko.project.uoi.gr
8https://bitbucket.org/antonis/grikoresource/src/master/
9
With Italian being the dominant language in the region, code switching phenomena appear in the Griko corpora.
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inter-annotator agreement scores (IA Agr) calculated against the expert annotator i.e. Linguist-3. We

observe a slight decrease for other linguists which we hypothesize is due to domain mismatch between

the annotated data and the test data. In fact, the test set stories and the unlabeled ones originate from

di�erent time periods spanning a century, which can lead to slight di�erences in orthography and usage.

For instance, after three AL iterations, the token ‘i’ had been annotated as CONJ twice and DET once,

whereas in the test data all instances of ‘i’ are annotated as DET.

We also compute the inter-annotator agreement at Iteration-1 with the expert (Linguist-3) (Table 9.7).

We �nd that the agreement scores are lower than one would expect (c.f. the annotation test run on

Modern Greek, for which we have gold annotations, yielded much higher inter-annotator agreement

scores over 90%). The justi�cation probably lies with our annotators having limited knowledge of Griko

grammar, while our AL methods require annotations for ambiguous and “hard” tokens. However, this

is a common scenario in language documentation where often linguists are required to annotate in a

language they are not very familiar with, which makes this task even more challenging. We also recorded

the annotation time needed by each linguist for each iteration in Table 9.7. Compared to the UNSmethod,

the linguists annotated (avg.) 2.5 minutes faster using our proposed method which suggests that UNS

tends to select harder data instances for annotation.

9.7 Conclusion

Extensive experimentation across six languages demonstrate the importance of considering confusion

between the output tags for active learning. We test our approach under a true setting where we ask

linguists to document POS information for an endangered language, Griko. Despite being unfamiliar

with the language, our proposed method achieves performance gains over the other methods, in most

iterations.
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Chapter 10

Conclusion and Future Directions

In this thesis, we have looked at automated methods for extracting and visualizing di�erent levels of

language descriptions, from word-level insights such as POS tags and word usage, to language-level in-

sights such as word order, agreement, and case marking. We designed these language descriptions in

both human- and machine-readable formats and showed how they can be used for both human- and

machine-centric applications. Since we want these language descriptions to answer questions about

di�erent languages, most of which are under-resourced, this thesis also discussed methods on how the

language description extraction can be improved for such under-resourced languages. Below we sum-

marize our main contributions.

10.1 Summary of Contributions

AutoLEX This thesis presents AutoLEX, an automatic framework that describes the process of ex-

tracting and visualizing language descriptions. Speci�cally, within this thesis, these language descrip-

tions are intended to answer speci�c linguistic questions. In Chapter 2, we show the di�erent linguistic

questions covered in this thesis, with their �rst-pass answers. Each linguistic question is posed as a

classi�cation task for which training data is constructed from the raw text of the language of interest. In

Chapter 3, Chapter 4, and Chapter 5, we show how to adapt this framework to answer di�erent questions

about word order, agreement, case marking, and word usage. Where possible, we verify the extracted

descriptions with the help of language experts, but since manual veri�cation is not always possible, as

part of the framework, we provide automated methods for evaluation. Potentially, for a new question

or language, a user can follow the above framework to similarly extract, visualize, and evaluate the

�rst-pass answers. The descriptions we extract are hosted on https://autolex.co.

AutoLEX Applications The primary motivation behind AutoLEX is to provide an interface to ex-

plore a language. To understand how practically usable such an interface is in the real world, in Chapter 5

and Chapter 6 we apply AutoLEX to language education. We �nd that, for both learners and teachers,

AutoLEX is of utility. Similarly, in Chapter 4 we �nd that even language experts �nd AutoLEX useful, as

it is able to identify interesting linguistic behaviors which the experts were not aware of. Given that the

same language often varies considerably across di�erent settings (e.g. formality, regions, communities,

etc.), we can potentially apply AutoLEX to text collected from these di�erent settings and compare how
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Figure 10.1: Summary of the di�erent approaches to support a new language. Inspired from Graham

Neubig’s course CS 11-747 slides.

the salient grammar properties vary. In addition to such human-centric applications, we extract lan-

guage descriptions in a machine-readable format, which have been used by researchers (Pratapa et al.,

2021b; Yin et al., 2021) to evaluate and inform natural language generation systems in various languages.

NLP for under-resourced languages Despite the many applications of language descriptions, we

do note that the quality of the extracted descriptions depends highly on the underlying NLP tools (e.g.

parsers, word aligners, translators, etc.) used in the process. In Chapter 7, Chapter 8, Chapter 9, we

discuss methods to improve the quality of such NLP tools, with a special focus on under-resourced lan-

guages, which do not have su�cient labeled data for training these models. Figure 10.1 outlines the

di�erent approaches that can be taken to add support for a new language. For example, if we have some

labeled data in the required language and are not limited by computational resources, in that case we can

use supervised learning with cross-lingual transfer learning, where we leverage resources from related

high-resource languages. In Chapter 7, we presented one such approach that leverages word embeddings

to learn from related high-resource languages, and found that using linguistically-motivated word em-

beddings can even help models to learn from languages which do not share orthography. Furthermore,

if our focus is on a speci�c language, in that case, this approach is recommended, as research (Conneau

and Lample, 2019; Siddhant et al., 2020) has found that adding multiple languages during training is of

little help, compared to adding only a few selected related languages. However, if we are computation-

ally limited and do not want to train one model for each language, training one model for all languages

o�ers many advantages. Along with computational bene�ts, multilingual models can enable applying a

model on a new language previously unseen by the model and can produce decent outputs in lieu of the

fact that languages are related and can often bene�t from each other. In Chapter 3, Chapter 4, we have

therefore used a multilingual parser as a starting point for even zero-resource settings, where we do not

have any labeled data. But what if we have access to some native speakers of the required language? In

that case, we could request them to label a subset of data to train a high-quality model. However, labeling

data manually is not only time-consuming but also requires e�ort, but more importantly, as we discussed
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in the previous chapters, for many tasks and languages, �nding such experts itself might be challenging.

Therefore, we explore e�cient data labeling techniques (active learning) which help us to automatically

select such a subset of data for manual annotation that can result in the best model performance with that

limited data. Speci�cally, we propose to combine cross-lingual approaches with active learning to make

use of existing resources (both in the required language and related languages) as well as by collecting

new data in the required language wherever possible, as shown in Chapter 8 and Chapter 9. In Chapter 8,

we found how the addition of linguistic properties (e.g. graphemes, phonemes, morphemes) was e�ec-

tive in learning better cross-lingual word representations which in turn led to an improved downstream

performance on the under-resourced languages. Although, these �ndings were shown over models that

use simpler architectures (e.g. LSTMs (Hochreiter and Schmidhuber, 1997)), we believe these insights

are also relevant in the current context which has seen more complex architectures such as transformers

(Vaswani et al., 2017b) that are capable of modeling and discovering even long-term and more complex

patterns from the data and have shown tremendous performance gains across several downstream tasks

(Devlin et al., 2019; Conneau and Lample, 2019; Shoeybi et al., 2019; Hu et al., 2020; Siddhant et al., 2020).

In fact, recent e�orts have shown the bene�ts of using such explicit linguistic signals, even in these

modern architectures, for improving performance on under-resourced languages – for example, Leong

and Whitenack (2022) convert both text and audio input for a language into a single phonetic represen-

tation, and train a model over this common representation. This allows them to leverage resources from

di�erent modalities (e.g. text, speech) which is especially useful for languages which do not have either

resource in large quantities. Similarly, Nzeyimana and Niyongabo Rubungo (2022) explicitly incorporate

morphological signals by training a language model on meaningful subword units. Typically, language

models use statistical tokenization techniques (e.g. BPE (Sennrich et al., 2016; Provilkov et al., 2020),

WordPiece (Schuster and Nakajima, 2012), etc.) to segment text into smaller units which are meaningful

in capturing both semantics and syntactic information, even across languages. However, works (Klein

and Tsarfaty, 2020; Wang et al., 2021) have shown that often such statistical approaches often lead to

incorrect text segmentation, especially for under-resourced languages, leading to poor downstream per-

formance. Nzeyimana and Niyongabo Rubungo (2022) use a morphological analyzer to segment words

into its stem and a�xes, which is used to learn morphologically-aware contextual representations. They

�nd, doing so, leads to an improved downstream performance for NER and news classi�cation tasks for

Kinyarwanda language, which is under-resourced. Such e�orts highlight the importance of leveraging

morphological and phonological properties even in more recent models, especially for under-resourced

languages. Similarly, the active learning strategies we developed in Chapter 8 and Chapter 9 are also

relevant today, as these are e�cient data selection strategies which are not dependent on underlying

model architecture. As we saw in Chapter 9, even when we changed the underlying POS tagger, the

proposed query selection strategy outperformed the existing baseline strategies, suggesting the utility

of proposed strategies beyond the model architectures studied in this thesis.

10.2 Future Directions

NLP for Under-resourced languages In Chapter 4 and Chapter 5, we brie�y discussed how ex-

tracting the language descriptions in machine-readable formats can help with the model evaluation and

design. Similarly, these language descriptions could also be used to create synthetic training data, espe-
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cially to help with the under-resourced languages. Recently Wang et al. (2022) demonstrated the utility

of word dictionaries or bilingual lexicons to create synthetic training data which resulted in performance

gains for several under-resourced languages. Prior works (Upadhyay et al., 2016; Chaudhary et al., 2020;

Dufter, 2021) have also shown how even naively using the lexicons, i.e. by substituting a word in a sen-

tence with its cross-lingual lexicon entry, to create synthetic code-mixed sentences can similarly help in

a performance improvements. However, these works do note that although such a substitution provides

useful signals to the models, the generated synthetic data often is ungrammatical as it could violate the

substituted languages’ word order or that the substituted word may not be appropriately in�ected and

so on. A next step would be to use our generated grammar descriptions to better inform this substitution

by producing grammatically correct synthetic data, which will more likely produce even more gains for

the under-resourced languages. This is even relevant to the mid-to-high resource settings, such as the

code-mixing setting (Bokamba, 1989; Muysken et al., 2000) wherein people jump from one language to

another. Code-mixing is interesting not just from a research perspective but also has practical impor-

tance given its high prevalence in the society (Ndebele, 2012; Kachru, 1978; Derrick, 2015). What makes

it interesting is that there are several debates surrounding the grammar underlying code-mixing, for

example, is there a speci�c ordering on how the languages can combine (Poplack, 2001; Johns et al.,

2019). Possibly by automatically extracting the grammar patterns of code-mixed data observed in dif-

ferent contexts (e.g. social-media, movies, etc.), it can help us understand how code-mixing works and

subsequently improve the NLP models.

Interactive Environment In addition to improving the underlying NLP tools, which will improve the

extraction of language descriptions for potentially *all* languages, a possible next step would be to make

AutoLEX interactive. This will allow language experts to make edits to the rules, both for correcting

any incorrect parses, and also to �ll-in gaps in the descriptions. For example, a popular feedback from

several teachers involved in the user study presented in Chapter 6 was that some examples were too

advanced for their learners, instead they would prefer the examples to be presented in an incremental

fashion, where �rst the sentence is introduced with its basic elements (e.g. subject, verb, object) and

then step-by-step the learner is introduced to additional elements in the same example (e.g. addition of

a prepositional phrase, adjectives, and so on). If a teacher is provided with an edit access, they could

modify the examples accordingly. Additionally, we can leverage active learning principles, where the

expert assisted by an automatic model can improve the underlying model (e.g. syntactic parsing), where

based on the experts’ input the model is re-trained to extract rules using the improved analyzes.

Cultural Inclusivity In Chapter 5, we saw how there are semantic divergences between di�erent

languages. Capturing these divergences is critical to building language technologies which are inclusive,

for example, if we consider the application of machine translation, we want the machine to translate

culturally appropriate, sensitive, and inclusive translations. Leaving a handful of languages such as

English where there are several datasets/benchmarks available for training/evaluating NLP models that

have been curated manually, which cover a variety of domains, most languages do not enjoy such luxury.

Many datasets have, in fact, simply been translated from their English counterparts (e.g. XNLI Conneau

et al. (2018)), and does not cover language-speci�c or cultural-speci�c nuances. However, more recent

initiatives such as MaRVL (Liu et al., 2021) have taken a di�erent approach, in which native speakers are
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encouraged to drive the data curation process, with the goal of capturing more languages and cultures.

Liu et al. (2021)’s design of such annotation is heavily in�uenced by existing ethnographic studies, which

highlight the need to combine knowledge from �elds such as linguistics, anthropology, and cognitive

science. Similarly, we can take advantage of some of the approaches we presented in this thesis to

predict linguistic insights to bring to surface culturally relevant phenomena. For example, in Chapter 5

we automatically identi�ed concepts that do not have exact one-to-one equivalence across languages.

We would also want to identify things that do not exist in another culture or society, e.g. ‘ushta’ in

Marathi refers to a thing that has been sipped/eaten/used/touched by another person with their mouth,

in English there is no equivalent concept. In order to build models which cater to all people of the world,

we need to include a) more languages, b) di�erent viewpoints, and c) culture-inclusive topics. This is

important to ensure that the tools, which are often based on such datasets/models, are also inclusive

of the di�erent cultures and languages. Hershcovich et al. (2022) have concretely outlined the di�erent

cultural dimensions that NLP researchers must keep in mind when designing technologies. Inclusion of

these cultural aspects is equally important for language education as preserving and promoting culture

is often one of its primary objectives. A next step in that direction would be applying AutoLEX on a

corpus carefully selected by the educators themselves to ensure that the derived linguistic insights are

culturally appropriate, representative and unbiased towards any minorities.
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