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Abstract

Information retrieval algorithms attempt to match a user’sdescription of their information

need with relevant information in a collection of documentsor other data. Applications

include Web search engines, filtering and recommendation systems, computer-assisted lan-

guage tutors, and many others. A key challenge of retrieval algorithms is to perform effec-

tive matching when many factors, such as the user’s true information need, may be highly

uncertain and can only be partially observed via a small number of keywords. This disserta-

tion develops broadly applicable algorithms for measuringand exploiting such uncertainty

in retrieval algorithms to make them more effective and reliable. Our contributions include

new theoretical models, statistical methods, evaluation techniques, and retrieval algorithms.

As an application, we focus on a long-studied approach to improving retrieval matching

that adds related terms to a query – a process known asquery expansion. Query expansion

works well on average, but even state-of-the-art methods are still highly unreliable and

can greatly hurt results for individual queries. We show howsensitivity information for an

expansion algorithm can be obtained and used to improve its reliability without reducing

overall effectiveness.

Our approach proceeds in two steps. First, treating the baseexpansion method as a

‘black box’, we gather information about how the algorithm’s output – a set of expansion

terms – changes with perturbations of the initial query and top-ranked documents. This

step also results in a set of plausible expansion model candidates. We then introduce a

novel risk framework based on convex optimization that prunes and combines these candi-

dates to produce a much more reliable version of the originalbaseline expansion algorithm.

Highlights of our results include:

• A new algorithmic framework for estimating more precise query and document mod-

els, based on treating queries and document sets as random variables instead of single
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observations.

• The first significant application and analysis of convex optimization methods to query

expansion problems in information retrieval.

• A new family of statistical similarity measures we callperturbation kernelsthat are

efficient to compute and give context-sensitive word clustering.

• The introduction of risk-reward analysis to information retrieval, including tradeoff

curves, analysis, and risk measures.

• A new general form of query difficulty measure that reflects clustering in the collec-

tion as well as the relation between a query and the collection.
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Chapter 1

Introduction

The traditional view of an information retrieval algorithmhas been of a static process that

takes some input observation, such as a user’s query, and produces an output, such as a set

of ranked documents from a collection. This thesis represents the first step in a new research

direction: measuring and exploiting thesensitivityof an algorithm – how its output changes

with small changes in inputs or parameters – to improve its performance. Essentially,

we simulate the uncertainty inherent in the difficult matching problem the algorithm was

created to solve.

The goal of this dissertation is to show that we can exploit this insight to develop ro-

bust, general-purpose algorithms for improving query expansion and related model estima-

tion problems in information retrieval. By a robust algorithm, we mean one that not only

produces good results on average, but is also likely to have good worst-case performance

on any individual problem. We make substantial progress toward our goal with a novel

application of two powerful techniques. First, we apply efficient types ofsamplingin new

ways to obtain risk estimates for variables of interest in arbitrary retrieval models, and to

smooth noise across combined language models. These risk estimates are then used to form

aconvex optimizationprogram that solves the robust model estimation problem.

Past research efforts on information retrieval algorithms have focused largely on achiev-

ing good average performance, without much regard for the stability of individual retrieval

results. The result is that current models are not robust andcan still fail in basic ways,

leading to poor results for individual queries. For example, current retrieval models often

fail to retrieve documents that cover all aspects of interest that were implied by the query.

This is reflected in the unpredictable benefits of current query expansion methods, in which

1
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(a) Unstable baseline expansion
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(b) Robust version

Figure 1.1: Example showing state-of-the-art, but unstable, baseline expansion algorithm
(left), compared to our goal of a robust version (right). Both methods achieve the same
average MAP gain (30%), but the robust version does so with greatly reduced downside
risk. Example shows results on the TREC 1&2 corpus.

accuracy can be greatly hurt by the automatic addition of irrelevant terms.

Figure 1.1 shows a concrete example of the instability of a current state-of-the-art query

expansion algorithm (left). The histogram bins queries according to different levels of

MAP gain or loss caused by applying the query expansion algorithm. Clearly, even the

state-of-the-art algorithm still has unsatisfactory downside risk, as shown by the significant

left-hand tail on the left-side histogram: for example, a number of queries at the extreme

left experience 50% or more drop in MAP. Our goal is to eliminate or at least greatly reduce

as much of this downside tail as possible, to obtain arobustversion (right) that has greatly

improved stability, but with average MAP at least as good as the baseline method. The

histogram at left shows the Indri 2.2 expansion algorithm onthe TREC 1&2 topics. (In

fact, the histogram at right shows the actual performance ofthe optimization method we

develop in Chapter 6.)

In addition, while state-of-the-art statistical retrieval models have recognized the im-

portance of quantifying uncertainty, the practical implications of treating important entities

such as queries and documents as random variables instead ofsingle observations have

not been fully explored. Thus, a further contribution of this thesis is to show how a ran-

dom variable approach can result in useful new algorithms, including more precise word

similarity measures and natural generalizations of existing query difficulty measures.
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In solving the problem of estimating a good expansion model for a particular query,

there are a number of competing objectives and constraints for the estimation problem:

objectives such as maximizing expected utility of the modelversus the risks of the multiple

sources of evidence that the model is based on; the dependencies between the sources of

evidence themselves; and additional important model constraints such computation cost

and query aspect coverage. However, existing query expansion methods do a poor job of

capturing these tradeoffs and goals in a unified, accessible framework.

To make progress on these problems, we bring together novel applications of two pow-

erful techniques. First, we provide a sampling-based formulation of retrieval scoring and

use this to estimate important quantities such as the mean and covariance of the output of

an arbitrary feedback algorithm. The use of sampling fits well with our goal of general-

purpose methods, because typically we need to assume very little about the functions being

sampled. This allows our methods to handle arbitrarily complex retrieval operations and in

general be applied in a broad family of retrieval scenarios.

Second, we introduce a novel general-purpose risk framework that characterizes query

model estimation as a convex optimization problem. The objectives and constraints of

the convex program are derived using the sampling-based estimates developed in the first

part of the thesis. In this way, we can find query models that are optimal with respect to

the tradeoffs between a number of competing optimization goals, in a way that would be

difficult or impossible to specify with a single formula. Information about the solution can

then be used as part of a retrieval algorithm. For example, a selective query expansion

algorithm will not expand if there is no feasible solution tothe optimization problem.

In the remainder of this chapter, we give some background into the general problem,

describe why our research goal of flexible, robust retrievalalgorithms is important, and de-

scribe the role of risk estimation. We then summarize some key challenges of this research,

and the main methods that we use for achieving our goals. We close by summarizing the

theoretical and practical contributions of this research.

1.1 The information retrieval problem
In a very broad sense, both people and computers often need information when performing

particular tasks. We call the requirements that this information must satisfy theinformation

need, and it might be only loosely defined, as might the tasks themselves. A query is a

particular expression of an information need and may be an incomplete or vague description
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of the information need (which we do not observe directly).

Information retrieval (IR) is a branch of computer science whose main goal is to provide

effective methods for satisfying information needs. It has traditionally been distinguished

from database retrievalby the fact that the representation of information is usually more

loosely structured than the rigid table-based organization of a database, and that the infor-

mation need is often not completely specified. However, the distinction between these two

fields is becoming more blurry as more structure is used in documents. Information that

satisfies an information need is calledrelevant.

The scope of information retrieval is as broad as information itself. Early IR research,

covering a period roughly from the mid 1950s to the late 1970s, focused on text – especially

text of interest to library applications such as books or journals. Today, however, retrieval

algorithms of one kind or another are also applied to video, digital photos, scanned and

on-line handwriting, genetic data, music, audio clips, andhypertext, not to mention the

hundreds of different human languages handled by cross-lingual IR.

There is a general formulation of IR that all of these applications share. A retrieval

algorithm is given aquerygenerated by a user that represents their information need.In

the case of text, this query consists of a series of words, along with possibly a set of relations

between them. We assume that the information to be found resides in acollectionwhich

consists of a set ofdocuments. Here the term document is very general and refers to a basic

unit of information that could be a Web page, image, audio clip, and so on.

Given the query, the retrieval algorithm then scores the documents in the collection,

ranking them according to some measure of how well the query terms and relations are

matched by information in the document. For text, the relations most often used between

terms are co-occurrence or proximity constraints. Traditional relevance also relies on the

frequency with which terms occur in a document, and how unusual the terms are in the

collection.

1.2 Why robust retrieval algorithms are important
In looking at how effective a retrieval algorithm is, it is important to distinguish its accuracy

in the average case from its accuracy on individual queries.An algorithm might have good

average accuracy, but have a large variation in accuracy from query-to-query, so that a few

queries are satisfied with extremely high accuracy, but other queries obtain disasterously

low results. Another algorithm with equally good average accuracy might be much more
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consistent, avoiding the worst-case performance of the former method, while obtaining

slightly worse results than the best-possible case of the more unstable algorithm.

Query expansion, for example, is a widely-used information retrieval technique that

adds new words to a user’s query in hopes of bridging the difference in vocabulary that

might exist between relevant documents and the user’s query. When information is avail-

able from a user about which documents are relevant , we can perform relevance feedback

by expanding the query with terms from the relevant documents. If no relevance judge-

ments are available, we can attempt to invent some, by assuming the topk documents are

relevant: this operation is known aspseudo-relevance feedback, or blind feedback.

State-of-the-art feedback methods usually improve searchaccuracy on average, but can

also significantly hurt performance for specific queries [Carpineto et al. 2001a]. A desir-

able goal is therefore to investigate more robust expansionalgorithms that can reduce the

number and severity of such failures without hurting overall precision. This is an impor-

tant unsolved problem for current information retrieval research, and one significant reason

why Web search engines still make little or no use of pseudo-relevance feedback.

Instability in retrieval is not desirable for a number of reasons. First, it leads to dissat-

isfied users, who typically prefer results that are reasonably good and predictable to results

that are sometimes very good but completely unpredictable.Second, worst-case perfor-

mance may be critical in retrieval applications that strongly emphasize precision over re-

call and thus have a low tolerance for noise. For example, given a student-oriented learning

goal, a software language tutor might need to retrieve an appropriate example from a col-

lection, or choose an alternative strategy if a high-quality example cannot be found, instead

of showing the student a poor example.

We now give a short explanation for how the concept of risk is important to our goal of

robust retrieval algorithms, and how uncertainty can be estimated and exploited to accom-

plish our research goals.

1.3 Estimating and exploiting risk in information retrieval
Current instability of retrieval algorithms is a result of aninevitable feature of information

retrieval: uncertainty. First, a retrieval algorithm cannot know the queries that will be

presented to it ahead of time, and even if it did, the user’s information need may be vague or

incompletely specified by these queries. Even if the query isperfectly specified, language

in the collection documents is inherently complex and ambiguous and matching this against
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the query is a formidable problem by itself.

The result is that many important quantities calculated by the retrieval system, whether

a relevance score for a document, or a weight for a query expansion term, should not be

seen as fixed values, but rather as random variables whose true value is uncertain but where

the uncertainty about the true value may be quantified by replacing the fixed value with

a probability distribution over possible values. It seems evident that any algorithm that

hopes to be robust would do well to include estimates of uncertainty, such as probability

distributions, as one factor in its internal calculations,so that it can quantify the risk or

uncertainty associated with its output. For example, a query expansion algorithm should

be able to control the trade-off between using a group of reliable, but possibly less effective

expansion terms compared to a number of more unusual high risk, high reward terms.

1.3.1 Estimating risk and reward

The tradeoff between risk and reward is a familiar dilemma from everyday life. When

we need to make an important decision, we often don’t know allthe facts with certainty.

Instead, we must first understand how uncertain we are about the facts, and then based

on how the facts might vary, estimate a range of possible outcomes, including best- and

worst-case scenarios1.

Similar ideas – in a more mathematically rigorous way – can beapplied to the problem

of searching for information. The decision by an algorithm to return a document to a user

is typically taken under great uncertainty about the true nature of the user’s needs, the

language of the document, how well the query matches a document, and so on.

In order to consider factors such as risk and reward, a retrieval algorithm must have

ways to quantify them somehow. Existing retrieval algorithms have focused almost exclu-

sively on the ‘reward’ aspect of retrieval, which is typically quantified in statistical models

by the probability of relevance given a document and query. Far less research has examined

the critical additional aspects of ‘risk’ in a systematic way.

One reason having estimates of risk is important is that, as we show in this thesis, such

estimates allow us to improve the robustness, or worst-caseperformance, of our algorithms.

For example, when a query expansion algorithm detects a situation where its proposed

query model is highly uncertain, it can scale back to a more conservative strategy that

gives the original safe query terms much more weight. As we show later in Chapter 6, this

1Here we use the wordrisk in an informal sense without any specific mathematical definition assumed.
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behavior, known asselective query expansion, is less effective when estimates of term risk

are ignored.

One practical way to quantify uncertainty in a variable is toestimate a probability dis-

tribution for that variable. We can then make assumptions that certain properties of that

distribution, such as thevariance(or covariance in several variables) are an acceptable

proxy for our uncertainty about the variable. If this can be applied to estimate uncertainty

in the input to an algorithm, then that algorithm may be able to quantify the uncertainty

in its output by somehow propagating the input’s statistical properties through the com-

plex system. From this new information, the algorithm can obtain confidence intervals on

likely outcomes, which we show can be used for improved decision making, algorithm

calibration, and model combination.

1.3.2 Exploiting information about risk

We now give a simple hypothetical example of how adding information about risk, in the

form of covariance, can improve model estimation.

Suppose the task is to estimate the words that are likely to occur in relevant documents,

based on a query string observed from the user: "parkinson’s disease". A baseline algo-

rithm estimates that some related words (with their estimated probabilities of relevance) are

"disorders" 0.06, "syndrome" 0.05, and "brain" 0.04. Looking at just these relevance scores

alone, an algorithm has no information about the meaning of the words – for example, that

"disorders" and "syndrome" express similar concepts – or how the words co-vary, or how

confident we are in these individual scores. Therefore, if a query expansion algorithm had

to pick the two "best" related words simply on the basis of relevance scores, it would pick

"disorders" and "syndrome". More generally, if the algorithm had 100 words, it might pick

thek highest-scoring words, or employ some threshold. This is largely how current query

expansion methods operate.

Now suppose we have new information: we know that "disorders"and "syndrome"

are likely to be highly correlated with each other in documents. However, we are still

aware that "brain" has almost as high a relevance weight as theother two, meaning it is

still likely to be a distinctive term in some relevant documents. In this case, the best two

related words to choose may no longer be "disorders" and "syndrome", because we gain

little advantage from choosing features that select the same feature in relevant documents

twice: essentially, a redundant bet. The pair "syndrome" and"brain" may be a better choice
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because each is correlated with a different query term, and there is also some relation of

each to both terms: informally, they "cover" the meaning of the query better than two

disease-related terms. Thus, in some cases it makes sensenot to choose the term with the

highest relevance weight. This example is simplistic but shows how information about how

terms in a relevance model co-vary can strongly affect how a model is estimated2.

1.3.3 Using sampling to estimate risk

There are several challenges in attempting to quantify risk. Important random variables,

such as a set of query expansion term weights, may be the output from complex non-linear

functions that are difficult to approximate. It is also not clear how accurate our estimates

need to be for them to be useful. Finally, if we need to ask the retrieval system for additional

information, this requires extra computation, which should be minimized for the algorithm

to remain practical.

In this dissertation the main tool we use to tackle these issues issampling. This includes

novel applications of some powerful sampling techniques from other fields, such as the

unscented transform developed for particle filtering.

We adapt a Bayesian inference framework in which pluggable modules can work to-

gether using the shared mechanism of probability. Bayesianinference also gives principled

ways to include prior knowledge about a given problem, to adjust a model in response to

new evidence, and to combine evidence from multiple hypotheses.

In a Bayesian formulation of retrieval, the user’s query represents evidence about rel-

evance, and is used to update the parameters of a model that describes what relevant doc-

uments look like, or perhaps how they differ from non-relevant documents. To calculate a

document score (for example) based on our retrieval model that uses uncertain parameters,

the correct formulation in Bayesian statistics is to calculate the expected outcome of the

model over all possible values of the parameters ([Duda et al. 2001], p. 487). This means

that when we account for uncertainty, formulas such as document scores becomeintegrals

over the space of parameters in the model. Unfortunately, such integrals are usually very

expensive to compute, which makes their direct use impractical for real-world IR systems.

There are, however, numerical techniques for efficiently approximating these integrals by

evaluating the function at different points in the parameter domain and then combining the

2 In fact, in Chapter 6 we show how an optimization approach produces exactly this type of term selection
behavior, using the sameparkinson’s diseasequery in Figure 6.5 as an example.
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resulting function values.

One such method isMonte Carlo integrationwhich uses sampling to evaluate the in-

tegrand in regions where it is likely to take on large values or to vary rapidly. The use

of sampling allows us to use a rich set of potential document and term scoring functions,

because almost no assumptions are made about the nature of the the integrand, which is

treated like a ‘black box’. Monte Carlo sampling also provides a way to address robust-

ness, because instead of calculating one estimate of how relevant a document is, we can

sample several different estimates (using the right choice of sampling distributions) and

combine the results. In statistical terms, using multiple samples and sampling methods can

reduce the variance of our estimate of the true value. For efficiency, we tend to emphasize

deterministicsampling methods that use a small number of samples.

In a different setting, the idea of taking a representative sample will also prove to be a

powerful idea for getting an accurate estimate of the sensitivity of a feedback algorithm,

and for smoothing out the performance of an unstable feedback algorithm usingbootstrap

sampling, which is described further in Chapter 3.

1.3.4 Applying risk estimates to finding optimal models

In an optimization approach to model estimation, instead oftrying to solve a model estima-

tion problem by finding an explicit formula for the parameters, we take a more flexible path:

we specify objective and constraint functions that the ideal solution should satisfy, and then

the actual work of searching the parameter space for the optimal solution is performed by

a general-purposesolverroutine.

Using the "parkinson’s disease" example of Section 1.3.2 above, we can create an op-

timization model that instructs the solver to search for sets of terms satisfying two simul-

taneous criteria. First, it should prefer sets of terms thathave high relevance weights; this

is the "reward" criterion to maximize. Second, the solver should prefer sets of terms that

are minimally "redundant": this is a "risk" criterion to be minimized. The result will be

a method of model estimation in which the tradeoff can be easily adjusted. As we show

in Chapter 6, such risk constraints help stabilize the performance of model estimators.

Typically, our optimization will embody a basic tradeoff between wanting to use evidence

that has strong expected relevance, such as highly-ranked documents, or highly-weighted

expansion terms, and the risk or confidence in using that evidence.

If the solver’s search of the model parameter space were not efficient, there would be
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little incentive to apply this approach to the time-critical task of retrieving documents from

a large collection. However, recent advances in the speed ofboth hardware and interior-

point solver algorithms are making convex optimization a readily applicable technology

that can quickly handle problems having hundreds or thousands of variables. Part of our

aim in this dissertation, therefore, is to introduce the benefits of this important tool to

information retrieval problems that might otherwise have been too complex or difficult to

solve until now. In Chapter 6 we give an in-depth treatment of the convex optimization

approach and its other advantages.

1.4 Challenges to be addressed
In attempting to create improved models and algorithms for information retrieval, the fol-

lowing challenges must be addressed along the way and will shape the solutions we choose.

Because IR typically involves human language, some of thesechallenges are inherited from

the general problem of attempting to capture meaning and interaction in language.

High dimensionality. Information retrieval models typically involve query and doc-

ument representations having thousands of dimensions. It is therefore important that the

mathematical techniques we use can scale well, both in termsof accuracy and efficiency, to

a large number of dimensions and a potentially large number of parameters.

Run-time efficiency. Since a search system must respond to a user within a few sec-

onds, algorithms for analyzing a query, or scoring documents against a query, must be

extremely efficient. Our ability to use more sophisticated models of language for IR is

thus restricted to some extent by our ability to compute withthem efficiently. Thus, if

simple closed-form solutions are not available, methods for fast approximations or pre-

computation become very important.

General-purpose methods.A well-designed retrieval system is modular: the imple-

mentations of different subcomponents of the retrieval process, such as term weighting,

query expansion, and document/query matching functions may be replaced or modified.

Some of this flexibility may even be available to the user, viaa more advanced query

language for example. When we need to analyze the performanceof a particular subcom-

ponent (such as the sensitivity of a document score or a term’s relevance weight), we would

like to use methods that treat the subcomponent as a ‘black box’ and make as few assump-

tions about the nature of the implementation as possible. Inthis way, we ensure that our

model estimation methods can be applied in as broad a range ofscenarios as possible.
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Use of training data. One relatively recent development for information retrieval is

the availability of large datasets for training and analysis. This includes document col-

lections (particularly the Web), query logs from Web searchengines and standardized test

collections, such as from TREC. We would like to take advantage of these resources to help

train our statistical models, by using empirical Bayes methods to estimate effective prior

probability distributions. In query expansion scenarios,on the other hand, human-labeled

data is typically not available, or extremely limited. It istherefore also important that we

understand how sensitive our models are to having only a small amount of training data

from which to learn.

1.5 The problem of query drift

Central to the problem of unstable query expansion algorithms is the problem ofquery drift.

Query drift is the change in focus of a search topic away from the original intent of the

user, typically because of incorrect or incomplete query expansion or feedback methods.

The nature and causes of query drift have been examined in a number of studies [Mitra

et al. 1998] [Harman & Buckley 2004], and form an important basis for development of

solutions later in this thesis. The main causes of query drift can be categorized as follows.

Poor initial retrieval. A key assumption of feedback methods is that at least some of

the top-ranked documents are relevant, on average. Therefore, one of the most common

scenarios causing query drift is a lack of relevant documents in the top-retrieved documents.

One attempt to reduce query drift has focused on improving the precision of the top-

retrieved documents. Mitra, Singhal, and Buckley [Mitra etal. 1998] perform re-ranking

by finding relevance indicators that enforce conditions such as boolean term combinations

and term proximity, while also rewarding concept diversity. Crouchet al. [Crouch et al.

2002] perform a similar type of reranking but focus on matching unstemmed query terms

in documents using heuristics such as sums of query term weights.

Another method for improving the chance of finding at least some relevant documents is

to extend the initial retrieval to use multiple alternate query hypotheses. Our use of query

variants in Chapter 3 and the AbraQ algorithm [Crabtree et al. 2007] are two examples

of this approach. Kurland, Lee, and Domshlak [Kurland et al.2005] also employ multi-

ple query hypotheses in the form of pseudo-queries: "Starting from the original query,

our methods repeatedly seek potentially good renderers of acurrent set of pseudo-queries,
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guided by the hypothesis that documents that are the best renderers of a pseudo-query may

be good alternate renditions of it." Critically, they use a re-anchoring strategy at each iter-

ation to interpolate the original query score with new relevance scores. Kurlandet al. also

usedocument clusteringto find related documents to those in the initial set(s).

Poor coverage of query aspects. No matter how many or few relevant documents are

found in the initial retrieval, recent studies [Harman & Buckley 2004] [Collins-Thompson

& Callan 2005] have recognized that weakaspect coveragein the resulting feedback model

or final expansion model is something algorithms must detectand remedy to avoid query

drift. Here we use an informal definition ofaspectto mean a topic of interest implied by

all or part of the query. For example, a query such aseconomic impact of recycling tires

would have as possible aspects the concept areas ofrecycling, economy, andtires. A more

specific aspect might beeconomic impact.

Certainly, poor initial retrieval is likely to lead to poor aspect coverage. Yet excellent

initial retrieval may also suffer from unbalanced aspect coverage in current feedback algo-

rithms. In a summary of the results from the 2003 Reliable Information Access Workshop,

Buckley writes, "...relationships between aspects of a topic are not especially important

for state-of-the-art systems; the systems are failing at a much more basic level where the

top-retrieved documents are not reflecting some aspect at all. " [Buckley 2004]

In ad-hoc retrieval, the approach of Mitraet al. includes a document re-ranking function

that rewards multipleindependentconcepts based on word co-occurrence in the top 1000

documents. Their heuristic formula downweighting the contribution of correlated terms

obtained consistent improvement compared to not using wordassociation.

Also related to aspect coverage in feedback models is the problem ofsubtopic retrieval

in which the criterion for selecting the top documents looksbeyond the assumption of

independent relevance of documents, to select a set of documents that together cover a set

of aspects or subtopics [Zhai et al. 2003]. Here, the emphasis is on the results presented to

the user, rather than the features learned for a feedback model.

Detecting poor or uncertain aspect coverage is closely connected with algorithms for

estimating query difficulty, which we discuss in more detail in Section 4.6.5.

Noise terms in feedback model. Selecting feedback terms is typically done in a two-step

process. First, a score is assigned to each term. This score often has the form of a two-part

scheme that combines some measure of the term’s rarity with its likelihood of being in the



1.6. SUMMARY OF ORIGINAL CONTRIBUTIONS 13

top-ranked documents. In essence, a score should reflect high probability of being in a

relevant document, while also being a good discriminator against non-relevant documents.

The widely-usedtf.idf scheme is one example of a scoring formula that combines these two

factors. In the second step, a greedy selection method takesthe topk terms using either a

rank threshold (top 10) or a score threshold (all terms with score>= S).

Ideally, a term will achieve a highS because bothtf and idf components have high

values. This corresponds to a rare term occurring very frequently in the top-ranked docu-

ments. In many situations, however, one artifact of atf.idf method is that a term can still

achieve a high score when only one component, such astf, is very high. This is the case

with stopwords, and in fact this scoring behavior becomes evident when the use of a sto-

plist is turned off – even with feedback algorithms found in more sophisticatedretrieval

systems, such as the Indri search engine [Strohman et al. 2004] used in this thesis.

We explore this phenomenon further in Section 3.4.10 and show that techniques like

baggingcan help reduce the noise from unstable feedback term weighting schemes by

finding the terms that have more consistent scores under multiple related hypotheses.

The value in improving feedback algorithms is not restricted to applications using either

explicit user input or completely automatic methods. To accomplish personalization of

search results, data can be providedimplicitly in a relevance feedback framework by using

user data. The resulting feedback model is then used to re-rank documents with a bias

toward user interest. This approach is introduced by [Teevan et al. 2005]. In essence, the

main goal is estimating a more accurate model of relevance, and so feedback methods can

be seen as more than just an add-on component of a system, but an integral part of the

scoring procedure itself.

1.6 Summary of original contributions

This dissertation introduces new theoretical models, new statistical methods, and new re-

trieval algorithms that are enabled by these models and methods. Our main contribution

is the development of robust model estimation methods in information retrieval. The key

property of these algorithms is that they have significantlybetter worst-case performance

than current methods, with no reduction – and in many cases, significant improvement –

in average-case performance. The following three subsections summarize the theoretical,

statistical, and algorithmic contributions in more detail.
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1.6.1 Risk estimation for information retrieval

A principled risk framework for query model estimation. We frame the problem of

estimating an optimal query model as a convex optimization problem. Traditional methods

for estimating query models have made fairly restrictive assumptions in order to simplify

the problem. For example, many traditional methods for feedback, such as Rocchio, esti-

mate each term parameter independently of the others. Such methods fail to capture impor-

tant constraints involving theentire setof terms, such as the totality of query aspects being

covered. By formulating the problem in terms of convex optimization problems we can ex-

tend our search space beyond a greedy threshold approach, tofind optimal subsets of terms

with respect to such set-based conditions. Our framework isquite general in that it can

support any situation in which there are multiple sources ofinformation about relevance.

A sampling-based view for multi-strategy retrieval. We extend existing approaches

to statistical retrieval with a theoretical framework thatproposes a novel view of docu-

ment scoring as the combination of multiple sampling distributions of the score integral.

Each sampling distribution corresponds to a different retrieval strategy. Existing meth-

ods from Monte Carlo integration are then used to perform model combination for these

multiple complementary strategies. Essentially, sampling is used as a way to create re-

lated retrieval problems whose results may then be comparedand merged. This formu-

lation also gives new insights into existing document scoring formulas. For example, we

show that the document-based scoring formula in the Relevance Model [Lavrenko 2004]

is actually a special case of a Monte Carlo integration heuristic called multiple importance

sampling [Veach 1997]. This in turn suggests useful new generalizations of the Relevance

Model scoring methods.

New IR evaluation methods. We introduce a new family of measures, calledR-Loss

measures, that quantify expansion algorithm risk/variance. With these measures, we then

construct new types of risk-reward curves to compare query expansion algorithms. Using

a novel analogy between information retrieval and computational finance, we also obtain

useful new summary statistics such as themidpoint risk tradeoff, and find counterparts

to the importanttwo-fund theoremfrom finance to derive a new heuristic for finding an

optimal query interpolation parameter.
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1.6.2 General purpose statistical methods

Data perturbation kernels. To solve the problem of finding effective query-specific sim-

ilarity measures, we introduce a general family of kernels calleddata perturbation kernels

that efficiently learn a metric over the input domain based on a small number of carefully

chosen perturbations of the training set. We apply this to information retrieval by treat-

ing the query as a very small training set, and create a small number of auxiliary queries

with different relative term weights compared to the original query.In this way, two input

points, such as words, are considered similar if their probabilities have similar sensitivity

to the same perturbations of the term weights in the originalquery.

Sensitivity analysis for retrieval algorithms. We describe a new technique for comput-

ing the sensitivity of arbitrary retrieval functions, suchas document scoring functions. The

method uses a novel application of theunscented transformfrom particle filtering to give

an accurate approximation of the first and second moments of arbitrary non-linear scor-

ing and other retrieval functions. Instead of trying to approximate the potentially complex

retrieval function, the unscented transform gives an algorithm for selecting deterministic

representative samples in the input space. We assume a general parametric family for the

input distribution: the logistic normal, which can approximate the Dirichlet as a special

case. We generalize theclarity measure of query difficulty to add a clustering factor for the

collection based on estimating the sensitivity of feedbackmodels to perturbations of the

query.

1.6.3 Robust model estimation algorithms

Stable pseudo-relevance feedback models.We employ a novel use of sampling to sta-

bilize the language model estimated for pseudo-relevance feedback using a baseline algo-

rithm. Inspired by traditional bagging, we use replacementsampling of the input data to

obtain multiple predictors for the feedback model. The output, however, is a set of multi-

dimensional vectors instead of single-valued numeric or class predictors. Thus, instead of

simple averaging, we fit a latent Dirichlet distribution andfind approximate maximum like-

lihood model parameters using fast quasi-Newton methods. The resulting feedback model

is much less noisy than any of the individual input models, because it rewards terms that

have consistently good weights across multiple samples, even if they are not the highest-

weighted terms in any given individual input model. Using the combined feedback model



16 CHAPTER 1. INTRODUCTION

Risk/reward

evaluation

methods

Convex optimization

(QE as graph labeling)

Sampling

strategies

Constrained

graph

labeling

Perturbation

kernelsMethods
for

evaluating
integrals

Robust (selective)

query expansion

Generalized

query

difficulty

Query and document models

as random variables

Model

fitting &

combination

methods

Figure 1.2: Overview of thesis components, with gravity showing dependencies.

results in small but consistent improvements in precision.In addition, it makes the use

of a stopword list much less critical – unlike with current feedback algorithms – because

stopwords and noise terms tend to be high-variance featuresin the combined model which

are then automatically removed. Since our method treats thebaseline model estimator as a

black box it is very general and can be applied to improve arbitrary feedback algorithms.

Robust selective query expansion. We present a new algorithmic framework for robust

query expansion that treats queries and top-ranked document sets as random variables and

‘wraps’ a baseline expansion algorithm. Starting with a small number of query variants,

we learn stable individual feedback models and a perturbation kernel, and perform model

combination using either a heuristic approach (Chap. 3) or a convex optimization approach

(Chap. 6). Both methods result in improved robustness, whilethe latter method also ex-

pands selectively for risky queries in a principled way, andis highly resistant to noise in

the baseline feedback algorithm.

1.7 Overview of thesis organization
A graphical view of the thesis components and dependencies between them (in the style

of [Karger 1994]) is shown in Figure 1.2. The first two chapters summarize our research

and introduce basic problems and concepts. Chapter 2 begins with a short review of some

probability theory and Bayesian decision theory, which arethe foundation of statistical
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methods in this thesis. It then goes on to describe two more basic concepts: sampling

and Monte Carlo integration. As an application to information retrieval, the Relevance

Model is discussed and formulated in terms of Monte Carlo integration. In Chapter 3,

we describe a framework for pseudo-relevance feedback and specific implementations of

robust query and document model estimators that are based onsampling. We also describe

risk-reward curves, a new evaluation method for feedback algorithms. Data perturbation

kernels are introduced in Chapter 4 to learn query-specific similarity measures. We also

use these kernels to generalize a class of query difficulty measures. Chapters 5 and 6 bring

together the estimation methods from previous chapters within a novel risk framework

based on convex optimization to solve the problem of finding robust query models. We

review basics of convex optimization in Chapter 5 and then in Chapter 6 describe and

evaluate objective functions and constraints that are useful for query model estimation.

This includes the ability to constrain solutions by aspect coverage or computation cost.

Chapter 7 summarizes our contributions in detail and discusses new research directions

enabled by this work.

1.8 Summary
This chapter explained and motivated the goal of this research, which is to create robust,

general-purpose algorithms for model estimation in information retrieval. We described

a number of problems with current model estimation methods,such as their instability

for individual queries and their inability to capture the tradeoffs between a wide range of

possible objectives in a principled way.

To achieve our goal with these challenges in mind, we apply the union of two powerful

techniques. First, we apply sampling to obtain more robust estimates for important quan-

tities in information retrieval models such as the feedbackmodel from initial top-retrieved

documents. Our methods make few assumptions about the details of the baseline retrieval

method. This sampling-based formulation leads to new insights and algorithms for re-

trieval, including novel ways to estimate good query variants and more precise language

models for pseudo-relevance feedback.

Second, we apply the new information gained from sampling, such as covariance matri-

ces, to create effective additional constraints on traditional retrieval algorithms that improve

their robustness. To do this, we introduce a novel risk framework that treats model estima-

tion as a convex optimization problem. One result of this is anew, principled algorithm
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for selective query expansion that is sensitive to the risk of individual query scenarios: if

there is no feasible solution to the optimization problem, we do not attempt to expand the

original query. Useful additional model constraints such as robustness, aspect coverage,

and sparsity can be expressed within this framework to give avery flexible general-purpose

approach to finding optimal query models in a variety of useful retrieval scenarios.

We believe this is the first significant exploration of sampling methods for estimating

information retrieval models, and the first general query expansion framework based on

convex optimization for information retrieval problems ofany kind.



Chapter 2

Sampling Methods for Information

Retrieval

In this chapter we introduce some basic statistical and sampling techniques and terminology

used throughout the rest of this dissertation. We then focuson sampling-based methods for

calculating expectations and other integrals, and explainsuch methods help us achieve our

goal of flexible, robust information retrieval algorithms.As an example application, we

describe the Generative Relevance Model [Lavrenko 2004] (GRM) and show how a Monte

Carlo-like formulation of score estimation in the generative relevance model leads to new

insights into document scoring. We show that document-based ranking in the GRM may

be seen as a special case of Monte Carlo integration using a sampling technique known

as the balance heuristic. This in turn suggests new algorithms for robust query expansion.

We next discuss the general issue of uncertainty in information retrieval and give some

background on sampling and its use for retrieval problems.

2.1 Uncertainty and Risk in Information Retrieval

As we discussed in Chapter 1, uncertainty is an inherent feature of information retrieval.

To achieve our goal of robust retrieval algorithms, we need ways of quantifying uncertainty

so that retrieval algorithms can include it as a factor in their calculations.

We take the view that many of the quantities that appear in retrieval models, such as

the term weights assigned for query expansion, the final query-document score, and the

ranking of top-retrieved documents, are more properly treated asrandom variablesinstead

19
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of single observations. For example, in the case of a query from the user, we treat the

observed sequence of wordsq as a noisy version of a hidden ‘true’ information needq′

through a perturbation or translation processp(q|q′). In this view, the scoring function

∆(q, d) comparing a documentd againstq is theoretically not a single-point comparison of

q andd, but anexpectationover a densityp(q′) derived fromq.

∆(q, d) =
∫

d(d, q′)p(q′|q)dq′ (2.1)

This by itself is not a new theoretical idea. Recent statistical frameworks for retrieval, such

as the language modeling approach [Ponte & Croft 1998], the Relevance Model [Lavrenko

2004] and the risk minimization framework [Lafferty & Zhai 2001] have recognized the

importance of quantifying uncertainty in retrieval models. Typically, this is done through

the use of a probabilistic approach, and in particular a Bayesian methodology that provides

a principled way to estimate the posterior distributions ofimportant quantities, given some

observed evidence such a query from the user.

In practice, however, even state-of-the-art algorithms have only begun to explore the

power and generality of such Bayesian frameworks. There areseveral reasons for this.

First, these formulations are relatively recent and simpleapproximations have been the

most productive to explore first. Second, more advanced applications of the models are

more computationally demanding to calculate. For example,in theory we must integrate

complex integrals over large-dimensional parameter spaces. Part of our work in this thesis

will explore ways to mitigate this expense, using efficient sampling methods. We give

further details on how a sampling approach can lend insight into Bayesian retrieval models

using the Relevance Model as an example in Section 2.4.1. First, we give some background

on basic statistical methods.

2.2 Background on Sampling

An essential tool that we will use to accomplish our goals of both flexibility and robustness

is sampling. Sampling is the process of generating observations of a random variable using

the probability density defined for that variable. In our work, the random variables are

typically parameters. These parameters usually occur as part of a retrieval method, such as

the document weights used for pseudo-relevance feedback, or define generative models of

text, such as language models for queries and documents.
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Sampling is an effective, flexible approach for several reasons. First, the use of sam-

pling allows us to vary the input to any retrieval processF in a principled way, by encoding

the nature of our uncertainty about the data in the sampling distribution. We can treat

the the process in question as a black box, so that instead of having to model the internal

parameters ofF, we vary the input toF directly by sampling from its probability density.

This allows us to make very few assumptions about the nature of the retrieval process being

analyzed.1

The notion that documents, queries and other objects of interest in IR are samples from

probability distributions is a fundamental concept in probabilistic approaches to IR such

as the language modeling approach [Ponte & Croft 1998] and theGenerative Relevance

Model [Lavrenko 2004]. Thus, the idea of applying sampling methods fits naturally with

these types of retrieval models.

Sampling is also important to consider for efficiency reasons. In Bayesian frameworks

for probabilistic IR, document scoring is formulated in terms of integration over a param-

eter space of query and document models. These models are often parameterized with

respect to a large vocabulary, and thus the integrands may behigh-dimensional, complex

functions defined by the product of a large number of factors whose relative importance

is not known in advance. For example, to score a document against a query in the risk

minimization framework [Zhai & Lafferty 2006], the theoretical document score function

for a documentd, queryq having respective modelsθD andθQ for userU is

r(d|q,U) ∝
∫

θQ

∫

θD

∆(θQ, θD)p(θQ|q,U)p(θD|d)dθDdθQ (2.2)

In practice, one effective approximation for an integral having a high-dimensional posterior

distributionp(θ) as a factor in the integrand is to simply evaluate the integrand at the mode

θ̂ of p(θ), giving which simplifies the integral to

r(d|q,U) ∝ ∆(θ̂D, θ̂Q) (2.3)

This can be seen as a Monte Carlo-like estimate using a single sample. As we show later

in this chapter, there are natural generalizations to scoring methods that combine multiple

1From a multi-task learning perspective, sampling is a way tocreate related problems: similar predictions
on the related problems (inputs) define a similarity measureon the input space that can help with inductive
transfer, e.g. label propogation in unsupervised learning.
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samples. In general, it can be far more efficient to approximate the result of a process by

averaging over a few samples from its output than to search for an almost exact answer in

a large solution space. Sampling may sometimes be the only way to perform the estimate

if the form of the process is complex and non-linear.

Sampling is relevant to the problem of robustness, becausemodel combinationamong

complementary retrieval strategies can be performed by an appropriate choice of sample

weighting scheme. This is a novel and fruitful connection for information retrieval. In

recent work, several studies have examined how to combine results of multiple related

document and query representations. These typically involve creating several modified

versions of the original query and combining the results. For example, to estimate query

difficulty YomTov et al. [YomTov et al. 2005] created a set of subqueries by selecting terms

one-at-a-time from the original query and combining the document rankings returned from

each subquery. Ando et al. [Ando et al. 2006] performed queryexpansion by leaving out

terms one-at-a-time from the original query to create a set of subqueries. They obtained

scores for expansion term candidates by combining the term scores over the resulting sets

of ranked documents. To our knowledge, no general model has been proposed that captures

the similar nature of these various related applications and that can answer questions such

as when and what types of subquery generation strategies arelikely to be effective; how

the results of the different subqueries (either document or term scores) should beweighted

and combined; and the likely effect of combining different subquery strategies on retrieval

accuracy and robustness.

We believe that our novel approach of combining a language model approach to IR with

sampling methods provides an effective, simple and principled framework for addressing

these types of questions.

2.3 Probability and statistics basics

Before describing our sampling framework, we give a brief review of some important con-

cepts from probability theory and statistics that will be used in the rest of this dissertation.

See [Pittman 1993] for further background on probability.
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2.3.1 Probability density functions

Thecumulative distribution functionof a random variableX ∈ R is defined as

P(x) = Pr{X ≤ x} (2.4)

with correspondingprobability density function

p(x) =
dP
dx

(x) (2.5)

The functionp(x) is also known as thedensity functionor thepdf of X. In the multidimen-

sional case when we have a vector of random variables (X1, . . . ,Xm) the joint cumulative

distribution functionis given by

P(x1, . . . , xm) = Pr{Xi ≤ xi : i = 1, . . . ,m} (2.6)

with joint density function

p(x1, . . . , xm) =
∂mP

∂x1 . . . ∂xm
(x1, . . . , xm) (2.7)

We then have

Pr{x ∈ D} =
∫

D
p(x1, . . . , xm)dx1 . . . dxm (2.8)

for any subsetD ⊂ Rm that is Lebesgue-measurable2.

We can generalize this when the random variableX takes values in some arbitrary

domainΩ to define theprobability distributionor simply thedistribution Pof X as follows:

P(D) = Pr{X ∈ D} (2.9)

for any measurable setD ⊂ Ω, with P(Ω) = 1. The density function is then the functionp

that satisfies

P(D) =
∫

D
p(x)dµ(x) (2.10)

2See, for example, background material athttp://en.wikipedia.org/wiki/Lebesgue_measure.
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2.3.2 Expected value and variance

Theexpected valueor expectationof a random variableY = f (X) is defined as

E [Y] =
∫

Ω

f (x)p(x)dµ(x), (2.11)

and itsvarianceis

V[Y] = E
[

(Y− E [Y])2
]

. (2.12)

Thestandard deviationof the random variableY is denoted

σ[Y] =
√

V[Y] (2.13)

We will assume that the expectation and variance of every random variable exist, that

is, have a bounded integral.

2.3.3 Bayesian decision theory

We assume we can quantify uncertainty about values of specific parameters or variables

via a joint distribution over those values. We can then quantify tradeoffs between decisions

using these probabilities, combined with estimates of the costs that accompany decisions.

This formulation is known asBayesian decision theoryand forms the theoretical basis for

taking an action under uncertainty.

More formally, given a set of possible actionsA = {ai}, i = 1, . . . ,m and a parameter

spaceΘ, the penalty of taking actionai for a specific parameter valueθ ∈ Θ is given by

the loss function∆(ai , θ). Taking an equivalent positive instead of a negative point-of-view,

we may also refer to theutility function U(ai , θ) to denote thebenefitobtained by choosing

actionai for parameterθ. Therisk or expected lossof a given actionai is the expectation of

∆(ai , θ) over all possible parameter values, with respect to the posterior distributionp(θ|X).

R(ai | X) =
∫

Θ

∆(ai , θ)p(θ|X)dθ (2.14)

TheBayes optimal decision criterionis to choose the actiona⋆ that minimizes the expected

loss over the posterior.

We denote byXi an observation from the random variableX. We callXi asamplefrom

X, and we usually denote the number of samples, which we call thesample size, by N.
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2.4 Monte Carlo integration

Because many important quantities in information retrieval models, such as document

scores, are formulated as integrals in a Bayesian framework, it makes sense to look at

methods for computing these efficiently if we are to use them in later risk frameworks. As

a specific example from information retrieval, we describe the Generative Relevance Model

and its use of integrals.

Monte Carlo integration is a widely-used method for evaluating integrals, particularly

when the integrand is complex and the domain of integration is high-dimensional. A good

overview of Monte Carlo integration is given in Kalos and Whitlock [Kalos & Whitlock

1986] and in Chapter 2 of Veach [Veach 1997].

First, note that the basic approach to evaluate a general integral of the form

I =
∫

Θ

f (θ)dµ(θ) (2.15)

on the domainΘ with measuredµ is to independently sampleN points X1, . . .XN in Θ

according to some density functionp(x), and then compute the random variable

FN =
1
N

N
∑

i=1

f (Xi)
p(Xi)

(2.16)

The random variableFN is called aMonte Carlo estimatorfor I. It is easy to show that

FN in Equation 2.16 gives an unbiased estimate ofI. We therefore focus on a method

for reducing the variance ofFN, since variance determines the number of samples needed

to get an accurate estimate of the integral. Large variance implies greater likelihood of

inaccurate values for the estimate ofI, especially when the number of samplesN is small.

We emphasize that in addition to sampling methods that use randomness, we also consider

severaldeterministicmethods of choosing samples in Section 2.5.5.

In this chapter, we use the following notation. The integrand of interest is denotedf (·).
A sampling techniqueSi has sampling distributionpi(·), and the number of samples taken

from it is ni. The j-th sample frompi(·) is denoted byXi, j. We denote a space of parameters

(e.g. for a relevance model) asΘ. To integrate over a domainΘ, we need to specify a

measureonΘ, denoteddµ(θ). For this chapter, we use a measuredp(θ) that can simply be

thought of as a probability density overΘ. In most of the cases we consider, this measure
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is based on an observed queryq, in which case it is denoteddpq(θ).

Monte Carlo integration is simple and quite general. To implement it, there are only

two operations needed: sampling over the domain, and function evaluation at a point in the

domain. Prior knowledge about the nature of the integrand can be easily incorporated into

the sampling technique to reduce the variance of the estimate.

2.4.1 The Generative Relevance Model

For a specific example of how a sampling approach can lend insight into Bayesian in-

formation retrieval methods, we now describe the Generative Relevance Model (GRM)

introduced by Lavrenko [Lavrenko 2004], and how some important integrals that arise in

that model are estimated. For example, we show how the standard GRM document scoring

function can be seen as a type of importance sampling procedure using multiple relevance

hypotheses.

In the Generative Relevance Model (GRM) both a document and aquery are hypothe-

sized to be samples from a shared generative relevance model(but with potentially differ-

ent sampling functions for each). LetR be a binary random variable for whichR = 1

denotes relevance andR = 0 denotes non-relevance. If we denote a joint probability

distribution over documents and queries asP(D,Q), then we define the relevance model

PR(·) = P(·|R = 1). The ideal relevance model would be based on a mixture model of the

relevant documents. Since the set of relevant documents is not known, however, we must

estimatePR based on the observed query and top-ranked documents.

Let R be the set of relevant documents. Assuming that documents and queries are con-

ditionally independent givenR, the joint probability of observing a wordw and a document

setD givenR is

P(w,D | R) = P(w | D)P(D | R) (2.17)

and so taking the marginal over documents, this becomes

P(w | R) =
∑

D∈C
P(w | D)P(D | R) (2.18)

whereC is the document collection. In Eq. 2.17 the prior probability of a documentnot in

the relevant set is set to zero.

The GRM uses a Bayesian formulation in whichPR is assumed to have parametersθ

assigned from the domain of all possible parametersΘ. We define an initial probability
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measuredp0(θ) that is a prior overΘ. After seeing the query, we update the measure to

create a posterior measuredpq(θ) defined by

dpq(θ) =
PR(Q = q|θ)
PR(Q = q)

dp0(θ) (2.19)

The relevance of a document is then expressed as an integral over the parameterθ with

measuredpq(θ) and the integrandf (·, θ) defining the ranking criterion. We denote the

score for a documentd with respect to a given queryq asp(d| q). The general form of this

integral is

p(d|q) =
∫

Θ

f (d, θ)dpq(θ) (2.20)

For document-based ranking, we compare the probabilitypθ of a documentd to the prob-

ability pC of the collectionC, under a shared distributionpθ with parametersθ. This gives

the integral:

p(d|q) =
∫

Θ

pθ(d)
pθ(C)

dpq(θ) (2.21)

Alternatively, we can estimate separate generating distributions inΘ for the document and

query separately and then compare these two distributions using a similarity function such

as KL-divergence – a method known asmodel-based ranking. In this case, the document

score is

p(d|q) =
∫

Θ

∆(θ, θd)dpq(θ) (2.22)

whereθd is the empirical distribution for documentd in Θ, and∆(·, ·) is the similarity

function.

In either case, calculating the integral for each document would be computationally ex-

pensive. As we noted earlier, previous work has used an approximation to the integral, typ-

ically taking the form of a single-sample estimate, where the sample is obtained by picking

the most likely model. In the GRM itself, Lavrenko [Lavrenko2004] used an expectation

over the parameter space, described in more detail in the next section. In general, we can

view different approximations to the scoring integral as different approaches to addressing

the uncertainty encoded by the Bayesian formulation.
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2.4.2 Monte Carlo integration in the GRM

We show how standard document scoring formulas in the GRM canbe viewed as the result

of two successive Monte Carlo-like approximations of different integrals.

First, consider the document likelihood ranking criterionfor the GRM, as given by

Eq. 2.21. As an example, we assume a unigram model, so that documentd = d0d1 · · · dn,

and

pθ(d) =
n
∏

i=1

p(di |θ) (2.23)

which leads to the ranking criterion

p(d|q) =
∫

Θ

n
∏

i=1

p(di | θ)dpq(θ). (2.24)

In his dissertation ([Lavrenko 2004], p.32), Lavrenko notes that the integral in Eq. 2.24

is computationally expensive and approximates it by evaluating the integrand at a single

valueθ̂ defined by the expected value over the parameter vectorθ:

θ̂ = Eq[θ] =
∫

Θ

θ · dpq(θ) (2.25)

which gives the document score

p(d|q) ≈
n
∏

i=1

p(di |θ̂) =
n
∏

i=1

p(di |Eq[θ]) (2.26)

To approximate non-relevant documents, we use the collectionC to approximatep(d|C) in

a similar way. This gives a final ranking criterion of

P(D = d | R= 1)
P(D = d | R= 0)

≈ PR(D = d | θ̂)
PR(D = d | C)

=

n
∏

i=1

p(di |Eq[θ])

p(di |EC[θ])
(2.27)

Viewing the measuredpq(θ) essentially as a sampling density overΘ, it is evident that

Eq. 2.27 is equivalent to a single-sample Monte Carlo estimate of Eq. 2.24 at the point̂θ.

The expectationEq[θ], however, isitself an integral overΘ that depends critically on how

dpq(θ) is defined. Therefore, we now show how the second Monte Carlo approximation,

that of Eq. 2.25, is accomplished in Lavrenko’s implementation of the GRM [Lavrenko



2.4. MONTE CARLO INTEGRATION 29

2004] by specifyingdpq(θ) using a method calledkernel-based density allocation. The

idea behind kernel-based density allocation is simple. Suppose we wish to create a density

function overΘ that reflects a likely generating distribution for a set ofm training examples

θ1, · · · , θm. To do this, we define the density as a superposition ofmsimplekernelfunctions

ki(θ), each of which is centered on a single training pointθi with local weightwi. This gives

dpq(θ) =
m
∑

i=1

wi · ki(θ) (2.28)

One very simple kernel is theDirac kernel which is given by

kq
0,1(θ) =















1 if θ = θq
0 otherwise

(2.29)

whereθq is the empirical distribution for a queryq. (Lavrenko also proposes, but does not

evaluate, the use of a Dirichlet kernel ([Lavrenko 2004], p.54–55).) We can think of the

use of a Dirac kernelki(θ) as equivalent to a deterministic sampling distribution that has

p(θi) = 1, andp(θ) = 0 everywhere else.

When we use the definition of Eq. 2.28 fordpq(θ) with the integral in Eq. 2.25, the Dirac

kernel formulation can be seen as equivalent to a multi-sample Monte Carlo approximation

of Eq[θ] in which we takemsamples overdpq(θ) with valuesθ0, · · · , θm−1. Our contribution

in Section 2.6 is to show that this multi-sample estimate is aspecial case of a sampling

technique calledmultiple importance samplingthat treats them different kernel densities

asm sampling strategies overΘ, obtains one sample from each strategy, and combines the

samples using a provably good sample weighting.

The key point here is that the use of multiple samples withm > 1 represents the intro-

duction of multiple hypotheses, as opposed to a single choice of model. Figure 2.1 shows a

simple illustration of how different model choices, seen as samples, can be more or less ef-

fective at estimating a document’s score for different queries. For some queries, the scoring

integrand for relevant documentsfD tends to be largest in the neighborhood of the original

query, and thus a single sample near the original query givesa better approximation than

using the feedback model. For other topics, the opposite is true: relevant documents have

highest scores near the feedback model, and thus a single feedback model sample gives the

more reliable score. Combining these complimentary strategies amounts to finding a good
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Figure 2.1: Model combination as a sample weighting problem, showing simplified view
of a document score integrandfD for two different query scenarios. Single-sample ap-
proximations using either an original query model (θQ) or a feedback model (θF) can give
good or bad estimates of the score integral. In some cases, relevant documents have high
scores for models near the original query (top). In other cases, relevance is better captured
by a feedback model (bottom) that is far from the original query. Since we do not know
the ‘correct’ choice in advance, we can manage risk by combining samples from multiple
complementary strategies, thus ‘hedging’ our model choices and stabilizing the retrieval
algorithm.

weighting scheme for the sample contributions. In the next section, we examine specific

methods for choosing samples and calculating weights for them, focusing on importance

sampling.

2.5 Sampling methods
In the previous section we saw how the standard document scoring formula for document-

based ranking in the GRM was based on using a single-sample Monte Carlo approximation

to an integral over the space of relevance model parameters.In this section we show how

our Monte Carlo estimators may be extended when multiple samples and sampling strate-
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gies are available.

One source of variance in the Monte Carlo estimate of an integral is a sampling distri-

bution that poorly matches the shape of the integrand. Sampling is most effective when we

sample in the parts of the domain where the integrandf (x) is largest, or varies the most.

The sampling methods described in this section attempt to reduce variance by getting a

good ‘fit’ to the integrand.

We will not review the extensive literature on sampling methods here. Instead, we focus

on those methods that are likely to best fit the types of problems we see in information

retrieval.

2.5.1 Importance sampling

One widely-used technique for reducing variance isimportance sampling([Kalos & Whit-

lock 1986], p.92). The key principle of importance samplingis to use a sampling distribu-

tion pi that is a close match for the shape of the integrandf (·). In particular, importance

sampling works well when the integrand tends to have its largest values on limited areas

in the domain. In the case of relevance functions, the neighborhood in parameter space

around the original query model is of particular interest, for example.

We now describe a generalization of importance sampling that can use multiple sam-

pling strategies for an integral and combine the samples in simple but effective ways.

2.5.2 Multiple importance sampling

Multiple importance sampling was introduced by Veach [Veach 1997] to deal with com-

plex integrals for light transport in computer graphics. The key idea of multiple importance

sampling is to combine several importance sampling techniques that make different as-

sumptions about the nature of the integrand. In this way, thestability of the estimate is

improved. In the information retrieval domain, the samplescorrespond to different models

θi, and thus multiple importance sampling is a form of model combination. The sample

(model) weights are given by various choices of heuristic, described below.

More formally, amulti-sample Monte Carlo estimatoris a weighted combination of

individual Monte Carlo estimators, each of which corresponds to one ofn sampling tech-
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niquesSi with sampling distributionspi(·) and whereni samples are taken from eachpi(·).

F =
n
∑

i=1

1
ni

ni
∑

j=1

ŵi(Xi, j)
f (Xi, j)

pi(Xi, j)
(2.30)

There are different choices for choosing the weighting function ˆwi(Xi, j) given to each

sampleXi, j. One choice is simply to set fixed weights. Unfortunately, ifany particular

sampling technique has high variance for a particular problem,F itself will also have high

variance. However, we can considerably improve on fixed weighting by using the following

family of heuristics defined by Veach [Veach 1997]. Proofs ofthe various properties of

these estimators we state here are given in Chapter 10 of Veach’s thesis.

The balance heuristic

The following weighting function ˆw(x), termed thebalance heuristic, happens to have a

very simple form, defined by the weighted combination

ŵi(x) =
ni pi(x)
∑

k nkpk(x)
(2.31)

Here,x is a sample (model) andni is the number of samples (models) taken using thei-th

sampling strategy. The balance heuristic has the property that the variance ofF can be

shown to never be much worse that the variance of any other weighted linear combina-

tion ([Veach 1997], p. 264).

Note that the balance heuristic can be reformulated as regular importance sampling over

a combined sampling distribution

p̂(x) = 1/n
n
∑

i=1

pi(x) (2.32)

The requirements for using a sampling technique with the balance heuristic are only slightly

greater than the minimal Monte Carlo requirements of sample generation and point evalu-

ation. Givenn sampling techniques and a sampleXi, j generated from sampling distribution

pi(x), we must be able to evaluate the probabilitypk(Xi, j) that theother n− 1 sampling

techniques generateXi, j.
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The power heuristic

A generalization of the balance heuristic is thepower heuristic, which raises the weights to

an exponentβ. The intent of the power heuristic is to sharpen the weighting functions and

reduce variance in cases where one of the score sampling distributions is a good fit for the

term score integrand.

ŵi(x) =
(ni pi(x))β
∑

k (nkpk(x))β
(2.33)

As β is increased, large weights move closer to one and small weights move closer to zero.

In the limit, we obtain themaximum heuristicwhich ignores allpi(·) except the largest one.

In practice, however, the maximum heuristic is not as effective because it discards too much

evidence.

2.5.3 Stratified sampling

One traditional variance-reduction method isstratified sampling([Kalos & Whitlock 1986],

p.112), which partitions the domainΘ into n non-overlapping regionsΘi and takesni sam-

ples from each region according to a density functionpi.

If Θ is the space of unigram language models, a stratumΘi might correspond to a

hypercube in which the probability of each wordθi,w lies in a pre-defined range [αi,w, βi,w].

If we associated language models with queries, we could use stratified sampling to generate

queries that were evenly sampled among the possibly interesting combinations of query

terms, where the strata were defined using thresholds on termprobabilities.

Stratified sampling works well (e.g. has good convergence properties) when the dimen-

sion of the domain is low and the integrand is well-behaved. ([Veach 1997] p.50). The

benefits of stratified sampling can be diminished for information retrieval problems: the

relevance function integrand is potentially complex, and for performance reasons the num-

ber of samples (queries) that we have to work with is usually very small. In addition, the

dimensionality – as determined by vocabulary size – would also need to be restricted to a

relatively small subset.

2.5.4 One-sample models

A different sampling method, calledone-sampleestimation, operates by first randomly se-

lecting a sampling methodSi according to the distributionps, and then taking a single

sample according to the corresponding sampling distribution pi. In this case, the balance
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heuristic can be shown to be optimal [Veach 1997]. In a sampling view of query expan-

sion, one-sample models would amount to selecting one of thetop-retrieved documents

according top(d|q) and then selecting a query from the terms in the document. The power

heuristic above corresponds to raising all document retrieval probabilities to a powerβ and

then normalizing them3.

2.5.5 Deterministic sampling

Because information retrieval evaluation must be extremely fast, the number of samples we

can apply with Monte-Carlo-type methods is typically small (less than 10). If we make as-

sumptions about the distribution of, sayθ in Θ, then we can explore deterministic methods

for sampling.

One technique for computing statistics of non-linear functions of a random variable is

theunscented transform[Julier & Uhlmann 2002]. Supposef (θ) is a scoring function, and

suppose we know the densityh(θ) of θ is distributed as ad-dimensional Gaussian with mean

µ and covariance matrixΣ. Then to approximate the expectation
∫

f (θ)h(θ) we choose 2d

pointsxk for k = 1, . . . ,2d such that

xk = µ + (
√

dΣ)k (2.34)

xd+k = µ − (
√

dΣ)k (2.35)

where (
√

dΣ)k is thek-th column of the matrix square root ofΣ. The matrix square root is

defined such that ifUDUT is the singular value decomposition ofΣ, with U = {U1, . . . ,Ud}
andD = diag{λ1, . . . , λd} then (

√
dΣ)k =

√
λkUk. The sample pointsxk effectively sum-

marize the mean and variance ofh(θ) and are then used in the following Monte-Carlo-like

approximation:
∫

f (x)h(x)dx≈ 1
2d

2d
∑

k=1

h(xk). (2.36)

This method can be generalized to includeµ and scaled versions ofxk as additional sample

points. We call the use of the unscented transform in this waysigma-point sampling.

The idea of using sigma points to replace the single-point estimate of Eq. 2.25 (re-

3This is reminiscent of a popular heuristic in natural language processing and elsewhere that squares
probability estimates and then normalizes them to obtain relative hypothesis weights, instead of using the
initial probability estimates.



2.5. SAMPLING METHODS 35

placing the Gaussian assumption in the example above with a Dirichlet assumption onθ)

is appealing because it allows us to replace Dirac functionswith effective approximations

of more realistic kernel functions that would otherwise be too computationally intensive to

use. Sigma-point sampling is also useful in constructing similarity measures for retrieval,

as we discuss further in Chapter 4.

2.5.6 Closed form solutions

In certain special cases, an integral may have a closed-formexact solution, making sampling-

based or other approximations unnecessary. For example, asnoted by [Dillon et al. 2007]

in their recent work on text classification, if we have a document unigram model for docu-

mentD with parametersθD, a query unigram model for queryQ with parametersθQ, and a

word-word translation model matrixTi j = p(ti |t j) the expected quadratic distance between

the two models with respect to the distribution induced byT can be written in closed form

after some algebra. The initial integral is

d(θQ, θD) =
∫

‖θQ̄ − θD̄‖22p(θQ̄|θQ)p(θD̄|θD)dθQ̄dθD̄ (2.37)

and this can be rewritten as

d(θQ, θD) =
∫

〈θQ̄, θQ̄〉p(θQ̄|θQ)dθQ̄ +

∫

〈θD̄, θD̄〉p(θD̄|θD)dθD̄ (2.38)

− 2
∫

〈θQ̄, θD̄〉p(θQ̄|θQ)p(θD̄|θD)dθQ̄dθD̄ (2.39)

resulting in the closed form solution

d(θQ, θD) = N−2
1

N1
∑

i=1

∑

j∈{1,...,N1}\{i}
(TTT)qi ,q j + N−2

2

N2
∑

i=1

∑

j∈{1,...,N2}\{i}
(TTT)di ,d j (2.40)

− 2N−1
1 N−2

2

N1
∑

i=1

N2
∑

j=1

(TTT)qi ,d j + N−1
1 + N−1

2 (2.41)

whereN1 andN2 are the length in words of the query and document respectively, qi is the

vocabulary index for thei-th word of Q, di is the vocabulary index for thei-th word of D,

andT is the word-word matrix of translation probabilities.

While scoring functions in information retrieval can take a similar form, useful distance
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functions between documents and queries may be much more complex than squared loss.

The Indri query language [Strohman et al. 2004], for example, allows passages and doc-

uments to be scored using arbitrarily complex functions that are the output of inference

networks described via a structured query language. We therefore want to choose methods

that can handle these more complex loss functions and in general make few assumptions

about the integrand, and so while closed-form solutions mayprove very useful for some

problems, we emphasize much more general approximations method like importance sam-

pling in most of our work.

2.6 Document-based ranking as a special case

of the balance heuristic

As an example of how a sampling-based view of information retrieval can lead to new

insight into existing methods, we now show that the standardformula for document-based

ranking in the GRM is actually a special case of the balance heuristic, using one sampling

strategy for each top-retrieved document.

Theorem 1. Given a collection of N documentsD = {d1, . . . ,di , . . . ,dN}, a queryq, and

a documentd ∈ D, let θd and θq be unigram models (say) in the relevance model space

Θ corresponding tod and q respectively. Let pi(θ) = p(θ | di) for each document di ∈ D.

Then the GRM document-based ranking formula

RD(d, q) =

∑N
i=1 pi(θd)pi(θq)
∑N

i=1 pi(θq)

is a special case of the balance heuristic.

Proof. We can write the document scoring function as an integral over the relevance model

parameter spaceΘ:

RD(d, q) = p(d | q) =
∫

Θ

p(d | θ)p(θ | q)dθ (2.42)
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For each documentdi ∈ D we define a sampling distributionpi(θ) = p(θ | di).4 A Monte

Carlo estimator forRD using samplesXi, j ∈ Θ is therefore

R̂D(d,q) =
N
∑

i=1

1
ni

ni
∑

j=1

ŵi(Xi, j)
p(d | Xi, j)p(Xi, j | q)

pi(Xi, j)
(2.43)

whereni is the number of samples from distributionpi. Settingŵ according to the balance

heuristic, we obtain

R̂D(d,q) =
N
∑

i=1

1
ni

ni
∑

j=1

p(d | Xi, j)p(Xi, j | q)
∑N

k=1 pk(Xi, j)

We view θq as a single sample from the true relevance distribution defined onΘ, and for

eachpi we letXi, j = θq andni = 1. Sincep(θq | q) is the same for all documents, this gives

R̂D(d,q)
rank
=

1
N

N
∑

i=1

p(d | θq)
∑N

k=1 pk(θq)

If we denotedm as any documentnot in the collectionD, we assume thatdm cannot be

retrieved by the query and thusp(dm | θq) = 0. This implies that

p(d | θq) =
N
∑

k=1

p(d | dk)p(dk | θq)

so that

R̂D(d,q)
rank
=

N
∑

i=1

∑

k p(θd | dk)p(dk | θq)
∑

k pk(θq)

rank
=

∑N
i=1 pi(θd)pi(θq)
∑N

i=1 pi(θq)

(2.44)

which is the desired GRM document ranking formula. �

In retrospect, we can see at least one reason why the GRM formula may be effective:

since at least a few documents in the top retrieved set are likely to be relevant, at least some

4For a practical implementation we would select a top-rankedsubset of documents instead of the entire
collection.
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of the sampling strategies will be a good fit for the shape of the true relevance distribution.

Suppose that instead of a single query from the user, we observe a set of queries{qi}
that are different attempts to express the same information need. This important scenario

has been studied extensively in IR, especially with respectto user modelling. Previous in-

fluential work was theI3Rproject of Croft and Thompson [Croft & Thompson 1987] in the

late 1980s, which used data fusion techniques to obtain improved results from combining

multiple representations. TheI3R project helped shape the design of TREC’s current topic

format, in which three successively more detailed expressions of the same information need

are given: the ‘title’, ‘description’, and ‘narrative’ fields.

When considering how to combine these types of multiple queryrepresentations, the

balance heuristic gives us a simple way to generalize Eq. 2.44 to include this information.

Theorem 2. Given a setQ of m queries with modelsθ j sampled from a distributionPI for

the same information needI, the document ranking formula in Eq. 2.44 generalizes to

RD(d,Q) =
N
∑

i=1

m
∑

j=1

m ·
pi(θ j)
∑

d pi(θ j)
pi(d) (2.45)

In addition to single-user scenarios, one application of a result like Eq. 2.45 would be

to use query logs from Web search engines to identify likely variations of the same query

from different users, which could then be used as samples in the above formula.

2.7 Other examples of sampling in IR

Other uses of sampling have recently made their way to IR. Bar-Yossef and Gurevich [Bar-

Yossef & Gurevich 2006] evaluate a number of sampling techniques, including the Metropo-

lis algorithm, to obtain near-uniform samples from a Web search engine’s index. Anagnos-

topoulos [Anagnostopoulos et al. 2005] et al. use random sampling of search results to

correct for bias in various applications that results from only considering the topk docu-

ments. They note that these applications include estimating the number of relevant docu-

ments, finding terms associated with the query terms, and clustering top results that give a

more complete covering of all aspects of the query results. The authors focus on efficient

implementation of random result sampling in the search engine itself.
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2.8 Summary

The primary contribution of this chapter is to introduce theuse of sampling to compute im-

portant quantities such as query variants, document scores, variances, and approximation

posterior distributions in information retrieval. Along the way, we also defined some ba-

sic concepts in probability and statistics, such as expectation and variance, that will prove

useful in later chapters. A key motivation for sampling is the idea that queries and doc-

uments are noisy observations or translations from some ideal latent query or document

model space. As such, they should be treated asrandom variablesand not single fixed

observations. This leads to the idea that entities such as scoring functions becomeinte-

grals over the distributions of the random variables. This in turnleads to the introduction

of sampling methods known asMonte Carlo integrationmethods for approximating these

potentially complex integrals. We discussed several approaches to sampling, especially

multiple importance samplingand heuristics for sample weighting.

Powerful Bayesian formulations such as the Generative Relevance Model [Lavrenko

2004] and Risk Minimization framework [Zhai & Lafferty 2006] are theoretical models that

incorporate the idea of queries and documents as random variables. However, in practice,

implementations of these models have failed to exploit their ability to account for multiple

potential query ‘translations’ or document expansions, each of which can be seen as the

result of some choice of translation process – and thus, sampling strategy – on the integral.

In Chapters 3, 4 and 6 we show that the choice of sampling strategy can have a significant

impact on task performance. Thus, finding sampling strategies that are reliable and effective

is a new research question – one that we begin to explore in this thesis.

As a specific example of the insights gained from a sampling-based view of retrieval

scoring, we showed how simple deterministic sampling methods are examples of effi-

cient approximations the document scoring integrals that arise in the Generative Relevance

Model (GRM). We proved that the unigram GRM document scoringfunction can be seen as

a special case of multiple importance sampling, with one sampling strategy per top-ranked

document, and the balance heuristic used for the weighted model combination.

We chose the GRM for analysis because of its simple (but significant) assumption that a

single underlying latent joint relevance distribution generates both documents and queries.

However, it is important to note that the connection betweenMonte Carlo integration meth-

ods can be applied to any statistical approaches to retrieval in which it makes sense to in-
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tegrate over a space of models, including the Bayesian formulations mentioned above. In

Chapter 3, we follow the practical implications of treating documents and queries as ran-

dom variables by forming a new general framework for improved query model estimation.



Chapter 3

A Theoretical Framework for Robust

Pseudo-Relevance Feedback

In Chapter 1 we discussedpseudo-relevance feedback, a method of automatic query ex-

pansion that attempts to improve retrieval performance by enhancing the query with terms

from the firstk top-ranked documents, which are assumed relevant. In this chapter we

explore how sampling can be used to improve the performance of pseudo-relevance feed-

back. The key idea is that existing pseudo-relevance feedback methods typically perform

averaging over the top-retrieved documents, but ignore an important statistical dimension:

the risk or variance associated with the underlying retrieved document sets and their rele-

vance weights from which the feedback model is calculated. Intuitively, by using sampling,

we can smooth out this risk over several models, to obtain a combined model with more

consistent performance.

We propose a general retrieval framework in which we define sampling distributions

over important entities such as the query and top-retrieveddocuments. The samples are

then used as input to a baseline feedback algorithm. We show how sampling can be used

to obtain estimates of algorithm variance and sensitivity,which in turn can be used to

improve retrieval quality in various ways. For example, in the case of pseudo-relevance

feedback we find that sampling top documents helps increase individual feedback model

precision by reducing noise terms, while sampling from the query improves robustness

(worst-case performance) by emphasizing terms related to multiple query aspects. The

result is a meta-feedback algorithm that is both more robustand more precise than the

41
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original strong baseline method.

Our main goal in this chapter is to use estimates of parameteruncertainty to improve

retrieval quality, especially the quality of feedback models, as evaluated by important mea-

sures such as precision and robustness (worst-case performance). Our basic strategy will

be to first generate multiple estimators for a given task, such as finding a good feedback

model. Each estimator represents a different strategy or set of assumptions about how a

good model would be derived. By using multiple estimators/strategies, we can essentially

hedge our bets so that we are not committing completely to a single strategy, while pre-

serving significant gains in case one strategy turns out to bevery effective. These multiple

estimators are then combined in a Bayesian framework in a waythat accounts for the un-

certainty or confidence in the component models. In this way,we aim to both improve the

accuracy of the final estimator, and increase stability in the predictions.

This chapter is organized as follows. Section 3.1 describesthe general retrieval frame-

work we use to perform enhanced feedback. We discuss specificmethods for model com-

bination in Section 3.2. Because the study of robustness is quite new, we introduce new

evaluation methods for it in Section 3.3, includingrisk-reward curveswhich are a very

important summary of performance throughout this thesis. The evaluation is contained in

Section 3.4, and related work is covered in Section 3.5. We analyze the computational costs

of the framework in Section 3.6. Section 3.7 describes a few possible future extensions.

We conclude by summarizing the key contributions of our approach in Section 3.8.

3.1 General retrieval framework
We now give a description of how a retrieval framework can be defined based on sampling

methods. We define some basics, and then describe our sampling framework in detail.

3.1.1 Basic concepts and notation

We assume a userU has an information needQ that is expressed as a specific queryq

to the search engine. Typicallyq consists of a set of search termsq = q1 . . . qN. We

assume a retrieval system that processes the queryq by assigning a real-valued document

score f (d, q) to each documentd in the collectionC, whereC = {d1, . . . , dC}. We also

make the very general assumption that the scores reflect somedegree of relevance, and

apply theProbability Ranking Principle[Robertson 1977], which makes the following two

assumptions, as stated by Robertson:
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• The relevanceof a document to a request is independent of the other documents in

the collection.

• Theusefulnessof a relevant document to a requester may depend on thenumberof

relevant documents the requester has already seen (the morehe has seen, the less

useful a subsequent one may be).

With these assumptions, we are justified in ranking documents by decreasing scoref (d, q)

which can be calculated independently for each document. Essentially, this assumption

also implies that we can use the score to assign reasonable pseudo-relevance weights to

documents: either directly, if the retrieval model gives document scores proportional to the

estimated probability of relevance, or indirectly according to rank otherwise. We make no

other assumptions aboutf (d, q).

The nature off (d, q) may be complex. for example, if the retrieval system supports

structured query languages [Strohman et al. 2004], thenf (d, q) may represent the output

of an arbitrarily complex inference network defined by the structured query operators. In

theory, this scoring function can also vary from query to query, although in this work for

simplicity we keep the scoring function the same for all queries.

As a basis to represent and compare documents and queries we use the language mod-

eling (LM) approach for information retrieval [Ponte & Croft1998]. In this view, a text

T is treated as a sequence of termst1 . . . tN that was generated by a statistical model with

parametersθT . For simplicity, we use a unigram language model, which is basically a word

histogram. A unigram model assumes that each wordti is generated independently of the

other words. We refer to the probability of termw in language model̂θq by θ̂q[w]. More

sophisticated language models are possible that capture more structure in text, such as word

order or topic structure. For now, however, we start by usingunigram models.

Let θ̂q and θ̂d denote the parameters of language models estimated for a query and

document respectively. The modelθ̂q is selected by userU according to the distribution

p(θ̂q|U,Q). The actual observed queryq is considered to be generated with probability

p(q|θ̂q).
A scoring functionf in the language modeling approach can take many different forms.

One widely-used function to compare two probability distributions is theKL-divergence1

measuref (θ1, θ2) = KL(θ1||θ2).
1KL-divergence is defined in Appendix A,Section A.1
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Whatever the specific algorithm, we denote the set ofk retrieved documents forqhaving

the largest values off in collectionC byDk(q, f ,C). For clarity we assume thatf , k, and

C are fixed and just writeD when the query is understood, orDq for an explicit queryq.

Each documentdi inD has a corresponding scorewdi = f (di , q).

3.1.2 Pseudo-relevance feedback

Once we have the setD, we can performpseudo-relevance feedback(PRF). We treat a

pseudo-relevance feedback algorithm as a black box function Φ(q,D) whose input is a

queryq and top-retrieved document setD and whose output is a feedback language model

θF. 2

To incorporate feedback in the LM approach, we assume a model-based scheme in

which our goal is to take the query and resulting ranked documentsD as input, and estimate

a feedback language modelθ̂F, which is then interpolated with the estimated original query

modelθ̂q:

θ̂New= (1− α) · θ̂q + α · θ̂F (3.1)

This includes the possibility ofα = 1 where the original query mode is completely replaced

by the feedback model. In the next section, we explain how sampling can be applied to

pseudo-relevance feedback and the calculation ofθ̂F.

3.1.3 A resampling approach to pseudo-relevance feedback

Instead of runningΦ once using the observedq andD to get a singlêθF, we treat the

inputs to the feedback black box as random variables. We are interested in quantifying

the uncertainty of the feedback modelθ̂F as a random variable that changes in response to

small changes inq andD. We will then use this knowledge to combine multiple feedback

models to produce a more robust final query model.

Like the document scoring functionf (d, q), the feedback algorithmΦ(q,D) may im-

plement a complex, non-linear scoring formula, and so asq andD are varied, the resulting

feedback models may have a complex distribution over the space of feedback models (the

sample space). We denote the unknown density ofθF by p(θ |α), whereα is a vector of

parameters. Note thatp(θ |α) is a distribution over language models.

We would like to build up a picture of approximately whatp(θ |α) looks like as the

2Other factors, such as the collectionC are also part of the implicit input, but for clarity we omit these
from the notation.



3.1. GENERAL RETRIEVAL FRAMEWORK 45

n

Q

Q2

Q1

Collection

Updated query model (red) for variant Q1

Original query model 
Q

(with variants Q1, Q2)
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Figure 3.1: General retrieval framework that treats queries and top-retrieved document
sets as random variables. Samples are taken in the form of variations on the original query
and documents.

baseline feedback methodΦ is run many times with slightly different inputs, To accomplish

this, we create a small number of query variantsqi from the initial queryq: a process we

call query resampling. For eachqi, we then performdocument set resamplingby creating a

small number of variants of the top-ranked document set returned forqi. The entire process

is shown in Figure 3.1. We now describe document set resampling first in Section 3.1.4 and

then query resampling in Section 3.1.5.

3.1.4 Document set resampling

To create variants of the top-ranked document set for a givenquery, we apply a widely-used

simulation technique calledbootstrap sampling([Duda et al. 2001], p. 474). Bootstrap

sampling allows us to simulate the approximate effect of perturbing the parameters within

the black box feedback algorithm by perturbing its inputs ina systematic way, while making

few assumptions about the nature of the feedback algorithmΦ.

More specifically, we randomly selectk documentswith replacementfrom D. This

sampling can also be deterministic, and there is a sizable literature on enumerating ‘good’

subsets using Gray codes and other methods [Diaconis & Holmes 1994]. Whatever sam-

pling method is used, the result is a new document setD(i). With this set, we then calculate
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Figure 3.2: How bootstrap sampling over the initial top-ranked document set is used to
create an output distribution over the sample space of possible feedback models.

a modified feedback language modelθ(i) = Φ(q,D(i)). We repeat this processB times to

obtain a set ofB feedback language models, which we denote{θ(q,i)} and which will be used

to fit a distributionp(θ |α). We will then obtain a final feedback modelθ̂ q
F by choosing a

representative model fromp(θ |α), such as the mode or mean. TypicallyB is in the range

of 20 to 50 samples, with performance being relatively stable in this range. Figure 3.2

visualizes this process.

In traditional bootstrap sampling, each element of the training set (top-ranked docu-

ments) is equally likely to be chosen. Instead of treating each d in D as equally likely,

however, an alternative is to weight the likelihood that a particular document will be cho-

sen by its estimated probability of relevance, given eitherby its document scorewdi , or

some decreasing function ofdi ’s rank. In this way, a document is more likely to be chosen

the higher it is in the ranking. This may be desirable becauseit may reduce noise by focus-

ing on fewer higher-quality documents – while carrying the risk of shrinking the coverage

of important relevant concepts from lower-ranked documents.

We can model this weighted selection of top documents by using a simple form of

parametric bootstrap. In the parametric bootstrap, we estimate the parameters ofsome dis-

tribution to fit the data, and then take random samples from that distribution. Here, we can

consider a multinomial distribution over topics, treatingeach document as its own topic,

and using the document’s query likelihood score as its selection probability in the multi-

nomial. A set of documents of given size is then considered asa random draw from this

multinomial. In addition to uniform and multinomial distributions, other sampling strate-

gies are also possible. For example, we could model variation in the relative proportions of

the scoreswd using a Dirichlet distribution. We evaluate different sampling schemes forD
in Section 3.4.9.
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(c) Topic 459
When can a lender
foreclose on property
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(d) Topic 460
Who was Moses

Figure 3.3: Visualization of expansion language model variability using self-organizing
maps, showing the distribution of language models that results from resampling the inputs
to the baseline expansion method. Dark areas represent regions of high model density.
The similarity function is Jensen-Shannon divergence. Thelanguage model that would
have been chosen by the baseline expansion is at the center ofeach map. Note that for
some queries, such as topic 459 (Fig. 3.3c), the mode of the resampled distribution (in the
darkest area of the map) differs significantly from the baseline expansion choice (at the
center of each map).

Visualizing feedback distributions

Before describing how we use{θ(q,i)} to obtain a combined modelθ̂ q
F , it is instructive to view

some examples of actual feedback model distributions that result from bootstrap sampling

the top-retrieved documents from different TREC topics.

Each point in our sample space is a language model, which typically has several thou-

sand dimensions. To help analyze the behavior of our method we used a Self-Organizing

Map (via the SOM-PAK package [Kohonen et al. 1996]), to ‘flatten’ and visualize the

high-dimensional density function3.

The density maps for several TREC topics are shown in Figure 3.3 above. Thedark

areas represent regions of high similarity between language models. Thelight areas rep-

resent regions of low similarity – the ‘valleys’ between clusters. Each diagram is plotted

so that the language model that would have been chosen by the baseline expansion is at

thecenterof each plot. A single peak (mode) is evident in examples suchas Fig.3.3b, but

more complex structure appears in others, as in Fig.3.3d. Also, while the peak is often

3Because our points are language models in the multinomial simplex, we extended SOM-PAK to support
Jensen-Shannon divergence, a widely-used similarity measure between probability distributions. Jensen-
Shannon divergence and related measures are defined in Appendix A, Section A.1
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close to the baseline feedback model, for some topics they are a significant distance apart

(as measured by Jensen-Shannon divergence), as in Fig. 3.3c. In such cases, the mode or

mean of the feedback distribution often performs significantly better than the baseline (and

in a smaller proportion of cases, significantly worse).

Fitting a feedback model distribution

Because the feedback sample space is potentially complex, we do not attempt to derive a

posterior distribution in closed form, but instead use simulation. We call the densityp(θ |α)

over possible feedback models thefeedback model distribution, whereα is a set of param-

eters for the distribution. Our goal in this section is to fit auseful parametric distribution

p(θ |α) using the sampled feedback models{θ(q,i)}. We then select a representative model

from p(θ |α), such as the modêθ q
F , as the final expansion model forq.

Our sample space is the set of all possible language modelsLF that may be output as

feedback models. Our approach is to take samples from this space and then fit a distribution

to the samples using maximum likelihood. For simplicity, westart by assuming the latent

feedback distribution has the form of a Dirichlet distribution. Although the Dirichlet is

a unimodal distribution, and in general quite limited in itsexpressiveness in the sample

space, it is a natural match for the multinomial language model, can be estimated quickly,

and can capture the most salient features of confident and uncertain feedback models, such

as the overall spread of the distibution.

After obtaining feedback model samples by resampling the feedback model inputs,

we estimate the feedback distribution. We assume that the multinomial feedback models

{θ̂1, . . . , θ̂B} were generated by a latent Dirichlet distribution with parameters{α1, . . . , αN}.
To estimate the{α1, . . . , αN}, we fit the Dirichlet parameters to theB language model sam-

ples according to maximum likelihood using a generalized Newton procedure, details of

which are given in Minka [Minka 2000b]. We assume a simple Dirichlet prior over the

{α1, . . . , αN}, setting each toαi = µ · p(wi | C), whereµ is a parameter andp(· | C) is

the collection language model estimated from a set of documents from collectionC. The

parameter fitting converges very quickly – typically just 2 or 3 iterations are enough – so

that it is practical to apply at query-time when computational overhead must be small. A

further approximation for speed is to restrict the calculation to a subsetVD of the collec-

tion vocabularyV using the firstk top-ranked documents (e.g.k = 1000), since we assume

VD covers the great majority of relevant terms. Note that for this step we are re-using the
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existing retrieved documents and not performing additional queries.

Given the parameters of anN-dimensional Dirichlet distributionDir (α) the meanµ and

modex vectors are easy to calculate and are given respectively by

µi =
αi
∑

αi
(3.2) and xi =

αi−1
∑

αi−N . (3.3)

We can then choose the combined modelθ̂ q
F as mean or the mode ofp(θ |α) as the final

enhanced feedback model. In practice, we found the mode to give slightly better perfor-

mance.

Document set sampling strategies

The top-retrieved documents from the original query represent an important source of evi-

dence for relevance. If estimated probabilities of relevance for each document are available,

this creates a set of relative weights over the documents. The following two methods were

tested in our evaluation.

• Uniform selectionThis strategy ignores the relevance scores from the initialretrieval

and gives each document in the topk the same probability of selection in a bootstrap

sample.

• Rank-weighted selectionThis strategy chooses documents with probability propor-

tional to their relevance scores, if available, or a rank-based weighting otherwise. In

this way, documents that were more highly ranked are more likely to be selected.

When relevance scores are available, the observed weights are the relative scores.

Otherwise, the reciprocal of the rank position may be used asa weight.

3.1.5 Query resampling

In the previous section, we calculated a combined feedback model θ̂ q
F from a set of re-

sampled feedback language models{θ(q,i)} using document sets{Di} as input to a baseline

feedback methodΦ(q, {Di}), while holdingq fixed. The{Di} were obtained by sampling

fromDq using a sampling distributionpD(·).
Instead of keepingq fixed, we can consider also defining a query sampling method

that generates variantsqi from q according to a distributionp(qi |q). We use the following

deterministic sampling methods for generating variants ofthe original query. Each method

corresponds to a different set of assumptions about the nature of the query, such as which

aspects are most important. From least to most sophisticated, these are as follows.
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• No expansion(NoExp). Use only the original query. The assumption is thatthe given

terms are a complete description of the information need.

• Single term-at-a-time(TAT). A single term is chosen from the original query. This

assumes that only one aspect of the query, namely, that represented by the term, is

most important.

• Leave-one-out(LOO). A single term is left out of the original query for eachvariant.

The assumption is that one of the query terms is a noise term. The LOO strategy may

be seen as a form ofjackknifeestimator [Efron 1979].

• Sigma-point sampling(SPS). A very general sampling formulation that combines the

features of LOO and TAT in a continuously variable form. The key idea of sigma-

point sampling is to choose a small number of points that approximate a query neigh-

borhood density around the initial query. The sigma points are chosen such that their

mean and variance are equal to the mean and variance of the query neighborhood dis-

tribution, which we define as a Dirichlet prior with sharpness parameterβU . When

βU ≫ 1, the variants are only small adjustments to the original query. If βU ≪ 1, we

get a mixture of variants, half of which are very close to a LOOsample and the other

half to a TAT sample4. Details on sigma-point sampling are given in Section 4.2.5of

Chapter 4.

The final result of running query variantsqi with document set resampling is a set of feed-

back models{θ̂ qi

F }.

3.1.6 Justification for a sampling approach to feedback

In addition to the general flexibility and efficiency reasons for sampling that were discussed

in Section 2.2, the use of sampling is particularly apt for pseudo-relevance feedback for two

reasons.

First, we want to improve the quality of individual feedbackmodels by smoothing out

variation when the baseline feedback model is unstable. In this respect, our approach re-

semblesbagging[Breiman 1996], an ensemble approach which generates multiple versions

of a predictor by making bootstrap copies of the training set, and then averages the (numer-

ical) predictors. In our application, top-retrieved documents can be seen as a kind of noisy

4For queries of two words, we revert to LOO sampling.
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training set for relevance, and the feedback algorithm is a soft relevance predictor for terms.

Unlike traditional bagging, however, the individual relevance predictors for terms may also

exhibit complex inter-term correlation structure, and so in theory this scenario also has

connections to structured prediction.5

Second, sampling is an effective way to approximate basic properties of the feedback

posterior distribution, which can then be used for improvedmodel combination. For exam-

ple, a model may be weighted by its prediction confidence, estimated as a function of the

variability of the posterior around the model. We now discuss this idea in more depth.

3.2 Model Combination
We now discuss ways to combine the set of models{θ̂ qi

F } into a final feedback modelθ̂F. In

this chapter we apply a simple heuristic approach to model combination. In Chapters 4 – 6

we develop an alternative approach to model combination based on convex optimization

that can exploit dependencies between terms.

Let w(θ j) be the weight given to modelθ̂ j, where
∑

k w(θk) = 1. We have two options

for model combination. The simplest is to assume that all models are independent, and that

w(θ j) is based on properties of that model alone. The second type is more complex, but

uses the more realistic assumption that models may be correlated. This is sensible because

in our applications, models are typically generated from similar input.

We first consider the case where models are independent. In that scenario, we make

the assumption that terms within each model are also independent. We then discuss the

dependent model case we give a simple but effective weighting method that uses inter-

model correlation.

3.2.1 Model Combination: Independent models

Suppose we haveM feedback models to combine. One widely-used model combination

approach in other domains is to perform Bayesian model averaging among the compo-

nent models. This is a linear mixture of the component feedback models with each model

weighted by its posterior probability. This gives

w(θ j) =
L(θ j |q) · τ j
∑

kL(θk|q) · τk
(3.4)

5In this work, we only model weak negative correlation between terms via the use of a Dirichlet distribu-
tion. More interesting correlation structures using, for example, the logistic normal, are possible.
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whereL(θ) is a likelihood function over feedback models conditionedon the query, and

τi is the prior probability of modelθi. As more evidence appears about which model is

likely to be the ‘correct’ one, the posterior weights sharpen toward the ‘best’ model. Model

averaging makes some strong assumptions: it assumes that one of the component models is

the ‘true’ generative model, that posteriors are accurate,and generally that the components

reflect exhaustive and mutually exclusive generative models of the data.

If we assume that the model most likely to be the ‘true’ model is the query modelθq
estimated from the originalq, then using the loss functionL(θ) = KL(θq||θ), we obtain a

form of Bayesian extension [Akaike 1979] to the Akaike Information Criterion [Akaike

1974]. The AIC was originally introduced for model selection. Instead of selecting a

single model, however, the Bayesian extension of AIC averages over model choices, using

exp(−1
2AIC) for the role of model likelihood. Using the loss functionL(θ) above and

neglecting the constant model dimension factor of AIC, this gives

L(θ j |q) ∝ exp−1
2

KL(θq||θ j) (3.5)

as an approximate expression for the model likelihood, assuming a uniform priorτi = 1/M.

This in turn gives the model weight

w(θ j) =
exp−1

2KL(θq||θ j)
∑

k exp−1
2KL(θq||θk)

which gives models more weight that are relatively ‘closer’to the most likely model. Uni-

form weighting withw(θ j) = 1
M is another possible choice.

For a richer hypothesis space we can move beyond interpolation of models, where the

mixture weight for each component of the parameter vectorθi is equal to the model weight.

When the vector components represent term weight, this amounts to term-specificmodel

weights. There are two cases to consider: we treat terms as independent or we consider

correlations.

Independent terms

In the simplest case, we can consider each termw independently of the others. We call

this our ’independent term’ model combination strategy that ignores dependency relations

between terms. Our goal is to find optimal parametersp(R | w) for a final feedback model
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θ̂Final by using evidence from all sources available: the original query, and query variants

with their corresponding feedback submodelsθ̂ j. Defining the optimality criteria is a criti-

cal step and will determine the parameter estimation method.

We estimate two parameters for each term. First, we estimatea relevanceprobability

µw = p(R | w). Second, we estimate avariance factorσ2
w giving the variance thatµw

has between the givenM feedback models, normalized by the within-model variance.We

define the heuristic

σ2
w =

M
∑

i=1

λi ·
(µw,i − µw)2

σ2
w,i

(3.6)

whereλi is the overall weight assigned to modeli (from Section 3.2.1), andσ2
w,i is the

variance of termw within model i according to the Dirichlet distributionαi estimated for

modeli during document set resampling.

Optimality criteria can be very different depending on the context of model combina-

tion. In the case of query variants, we expect term probabilities in the corresponding sub-

models to vary in response to query changes. Higher varianceterms are better because they

are more highly correlated with query terms. On the other hand, when combining models

from resampled document sets,lower within-model term variance is better, because we

assume a stable latent relevance model that generated the submodels. Both of these factors

are present in this model combination heuristic.

Independent models, dependent terms

In this scenario, we would model dependencies (such as co-occurrence) between terms

within each model. The computational cost is much higher: language model vocabularies

tend to have at least 10,000 terms and the number of dependencies grows as the square

of vocabulary size. This in turn increases our need for training data to fit the much larger

number of parameters in the covariance matrix. There are ways to mitigate this expense,

such as restricting the vocabulary size, or the complexity of covariance structure we can

express.

One type of flexible structure restriction we have investigated in a different study is

a graph-based term dependency language model [Collins-Thompson & Callan 2005] in

which a term’s probability is derived from approximating the stationary distribution of a

lazy random walk on the graph. The graph is built from multiple sources of evidence about

terms.
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We do not apply term dependencies for model combination in this chapter. Instead, we

explore that in Chapter 6, by creating a term covariance matrix to form a risk minimization

objective. The covariance matrix is derived using a more efficient method than [Collins-

Thompson & Callan 2005] based on the perturbation kernel of Chapter 4.

3.2.2 Model Combination: Dependent models

While treating sampled models as independent makes for simpler analysis, it is not espe-

cially realistic. In the case of pseudo-relevance feedback, the feedback models generated

after running slightly different query variants are likely to be somewhat correlated. This

implies that when the feedback models are used to predict relevance, their successes and

errors will also be correlated. In some scenarios, ignoringthis correlation may increase

risk, because we are making redundant bets that will either be ‘very right’ or ‘very wrong’

together. On the other hand, it may pay to reward models that are part of a highly correlated

set (a cluster) while downweighting outliers. In any case, abetter approach is to consider

the risk of the sampled modelsas a setinstead of individually. This means estimating the

model weightswi according to the interaction of theθi. As a specific example, suppose

we have several similar low-confidence feedback models, anda single very different high-

confidence model. For a given term, this means we may have several low-confidence rel-

evance weights from very similar sources, and a high-confidence single-source relevance

weight. If we ignored the overall similarity between the component sources the result

would be biased towards a majority-vote decision in favor ofthe low-confidence classi-

fiers. By taking model dependence into account, the low-confidence classifiers would be

discounted by a factor dependent on their correlation [Ghahramani & Kim 2003].

As one example of a scheme for calculating the weighting of dependent models, we

apply the technique from Monte Carlo integration described in Chapter 2 calledmultiple

importance samplingusing thebalance heuristic[Veach 1997]. This scheme weights each

model according to its relative probability compared to theother models. This assumes that

we can define a densitypj(·) from which model̂θ j was drawn (typically, as the most likely

observation), and that we can calculate the probabilitypj(θ̂k) of one model̂θk in the density

of any other model̂θ j.

More specifically, suppose we assume thej-th modelθ̂ j to be the mode of a density

pj(·) having a Dirichlet distribution with parametersα j. In particular, letsj be the scale

factor forα j. Under these assumptions, the probability mass at the modec j = pj(θ̂ j) is
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like a confidence score for modelθ̂ j: when pj(·) is sharply peaked, the probability mass

is highly concentrated around the mode, andc j will be close to 1. When the Dirichlet

distribution is spread out and uncertain, the mode accountsfor much less mass and soc j

will be much smaller. We also definevar(θ̂ j) = 1/cj as the variability of̂θ j, which is high

when confidence is low. Now consider a different model̂θi. We can define a similarity

measure

σ(θ̂i , θ̂ j) = pj(θ̂i) (3.7)

Using the balance heuristic [Veach 1997] for model combination, the weightw(θ j) given to

modelθ̂ j is given by

w(θ j) =
nj pj(θ̂ j)
∑

k nkpk(θ̂ j)
(3.8)

With all nj = 1, we can rewrite the above expression in terms of confidence and similarity

measures just discussed, namely

w(θ j) =
(

1+ var(θ̂ j) ·
∑

k, j

σ(θ̂ j , θ̂k)
)−1

. (3.9)

Thus, the balance heuristic weightw(θ j) assigned to model̂θ j accounts for both individual

model confidence and cross-model correlation. A feedback model that is similar to many

other models will have a high similarity factor
∑

k, j σ(θ̂ j , θ̂k). An increasing similarity

factor will decrease the model weight, reflecting the fact that we are making redundant

‘bets’ that may increase our risk. Moreover, this effect is amplified whenvar(θ̂ j) is high

(model confidence is low), which is exactly what we need. In the special case where all

models are totally dissimilar, the similarity factor will be zero and all models are weighted

equally.

Using the fact that thepj(·) are Dirichlet, Eq. 3.9 can be written as

w(θ j) =
(

1+
1
sj
·
∑

k, j

e−JS(θ̂ j ||θ̂k)
)−1

(3.10)

This completes the discussion of our framework for pseudo-relevance feedback using

sampling. We now introduce several measures for evaluatingthe robustness of information

retrieval algorithms.
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3.3 Evaluation Methods for Robustness
When applying a query expansion algorithm reduces precisioncompared to the initial

query, we say that the algorithm hurts that query and call this a failure of the expansion

algorithm. Maximizing theworst-caseperformance of an expansion algorithm means min-

imizing the number and/or magnitude of failures. Arobustalgorithm is one that has both

good worst-case performance and good average performance.Ideally, a robust feedback

method would never perform worse – and hopefully, better – than using the original query.

To evaluate robustness of query expansion algorithms, we use three approaches that sum-

marize different aspects of an algorithm’s worst-case performance, and the tradeoff be-

tween worst-case performance and overall performance: therobustness index, robustness

histograms, andrisk-reward tradeoff curves.

3.3.1 Robustness Index

As a general summary statistic for robustness we employ a very simple measure called the

robustness index(RI). 6 For a set of queriesQ, the RI measure is defined as:

RI(Q) =
n+ − n−
|Q| (3.11)

wheren+ is the number of queries helped by the feedback method andn− is the number

of queries hurt. Here, by ‘helped’ we mean obtaining a higher(non-zero gain in) average

precision after applying feedback. Different flavors of RI are possible, using P20, break-

even point, and others instead of average precision. We focus on average precision since

this is a widely-used measure of retrieval effectiveness for generic IR evaluations. However,

we do also measure top-20 robustness results using a more sensitive measure, R-Loss@20,

described below in Section 3.3.3.

The range of RI values runs from a minimum of−1.0, when all queries are hurt by

the feedback method, to+1.0 when all queries are helped. A major drawback of the RI

measure is that it ignores the actualmagnitudeof improvement or decline across the setQ

of queries7. However, we use it because it is easy to understand as a general indication of

robustness.

6This is sometimes also called thereliability of improvement indexand was used in Sakaiet al. [Sakai
et al. 2005].

7A paired or t-test could be used to partly account for magnitude of changes.
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Figure 3.4: Example of a histogram showing the distributionof gains and losses in MAP
over a set of queries, as a result of applying a particular query expansion algorithm.

3.3.2 Robustness histograms

For a more detailed look at an algorithm’s effectiveness, we can plot the distribution of

gains and losses for individual queries as a result of applying the algorithm. Typically

we use a statistic such as percentage MAP gain or decrease after applying the expansion

algorithm. The performance range (for the loss or gain in thestatistic) is usually grouped

into bins in increments of 10% or 25% (as in the example) change in the statistic. The

y-axis gives the number of queries that fall into each bin. An example of a robustness

histogram is shown in Figure 3.4. Unlike the single RI statistic, histograms can distinguish

between two systems that might hurt the same number of queries but which do so by very

different magnitudes.

A histogram gives results for a particular fixed algorithm, or choice of algorithm param-

eters, such as the feedback interpolation parameterα. A robustness histogram can capture

some notion of the tradeoff between thedownside riskof an algorithm, as measured by the

area of the bins on the left half of the graph (‘queries hurt’), versus the overallreward as

measured by the average gain over all the bins on the histogram.
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Risk-Reward Tradeoff Curves
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Figure 3.5: Typical risk-reward tradeoff curve for two algorithms, showing how downside
risk (R-Loss) and MAP improvement change together as the feedback interpolation param-
eterα is increased from 0. (original query, no expansion) to 1.0 (all feedback model, no
original query). Curves that arehigherandto the leftgive a better tradeoff.

What the histogram does not show is how the risk-reward tradeoff changeswith change

in an algorithm parameter. Typically, we are concerned withthe interpolation parameterα

as it varies from 0 to 1. For that, we need the following very useful risk-reward tradeoff

curve.

3.3.3 Risk-reward tradeoff curves

We observe that when interpolating a feedback model with theoriginal query model there

is generally a risk/reward tradeoff: giving more weight to the original query model (lower

α) is less risky but also reduces the potential gains when the feedback model is effective,

and vice versa. By plotting the joint risk and reward that themodel achieves over a range

of α values, we obtain acurve that gives a more complete picture of the quality of the

feedback model as the interpolation parameterα given in Eq. 3.1 is varied fromα = 0.0

(original query only) toα = 1.0 (all feedback).

Machine learning, text classification, and information retrieval evaluations have pre-

viously used certain curves plotting the relation between two variables related to system

effectiveness. In the 1960s, Swets [Swets 1963] introduced theuse of signal detection the-
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ory to IR evaluation in the form of ROC curves, plotting falsepositivesvs. false negatives.

Another early method, still widely-used, is the precision-recall curve (or P-R curve) [Man-

ning & Schütze 2000]. Recently, deeper connections betweenROC and P-R curves have

been shown [Davis & Goadrich 2006].

Risk/reward tradeoff curves were first introduced by Markowitz [1952] as part of his

pioneering finance work on portfolio selection (for which hereceived a Nobel Prize).

Markowitz identified many of the key features and analysis methods for risk-reward curves

that are still used in economics and finance today. In this section we show how these con-

cepts can also add a new dimension to the analysis of information retrieval algorithms.

Measures of risk and reward

To compute a risk-reward tradeoff curve for an information retrieval algorithm, we must

first decide on how to quantify risk and reward. The appropriate measures will vary de-

pending on the type of retrieval task: a good "reward" measurefor Web search, for exam-

ple, may be precision in the top-20 documents (P20); legal IRapplications may focus on

recall; and general IR evaluations may use mean average precision (MAP). We generally

will focus on risk-reward curves using MAP or P20 as the "reward" measure, and this is

plotted on they-axis of the chart.

The "risk" measure is meant to capture the variance or some other undesirable aspect of

the "reward" measure that should be minimized. To evaluate query expansion algorithms,

we assume the results from the initial query represent our minimal acceptable retrieval

performance: we do not want to obtain worse results than the initial query. We are therefore

particularly interested in thedownside riskof an algorithm: the reduction in reward due to

failure cases. (Recall that a failure case is one in which thereward after using the algorithm

is lower than the reward obtained with the initial query.) The risk measure is assigned to

thex-axis of the risk-reward curve.

We denoteRI (Q) as the initial reward obtained with the queryQ with no expansion, and

RF(Q) as the final reward obtained when a query expansion algorithm is applied toQ. We

denote the test set of queries asQ and the set of queries for which the expansion algorithm

fails asQFAIL. Then the downside riskFFAIL(Q) for Q is simply

FFAIL(Q) =



















RI (Q) − RF(Q) if RI (Q) − RF(Q) > 0

0 otherwise
(3.12)
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and the total downside risk for the test set of queries is

FFAIL(Q) =
∑

Q∈Q
FFAIL(Q) (3.13)

When the reward measure is precision at the topk documents – such as P20 – we define

a derived quantity calledR-Loss at k, denotedRLk, that is thenet loss of relevant documents

due to failure. Since precision is the fraction of thek documents that are relevant,RLk is

simply

RLk(Q) = k · FFAIL(Q) (3.14)

The same definition can be applied when the reward measure is MAP and we refer to this

simply asR-Loss(without specifyingk). In this case, we setk to the size of the retrieved

document set, which isk = 1000 unless otherwise specified. Just as MAP gives a combined

picture of precision results averaged over multiple valuesof k, so the R-Loss measure gives

an averaged net loss of relevant documents due to failure.

Examples of typical risk-reward curves for query expansionalgorithms are shown in

Figure 3.5. The curve is generated by varying the interpolation parameterα. Because the

reward is relative to the initial query, all curves start at the origin (α = 0). We will typically

plot in α increments of 0.1.

Properties of risk-reward curves

A higher-quality feedback model will give tradeoff curves that are consistently higher and

to the left of the baseline model’s tradeoff curve. We say that one tradeoff curveA domi-

natesanother curveB if the reward achieved byA for any given risk level is always at least

as high as achieved byB at the same risk level. Thus, we say that one query expansion al-

gorithmA dominatesanother algorithmB if the tradeoff curve forA dominates the tradeoff

curve forB. For example, in Figure 3.5 algorithmA dominates algorithmB.

Each point on the risk-reward chart represents the outcome of an experiment averaged

over (typically) dozens or hundreds of queries, for a particular setting of algorithm param-

eters. If we could run the algorithm in an unlimited number ofexperiments using every

possible combination of parameter settings, we would obtain a (large!) set of points scat-

tered over the chart. Theefficient frontieron a risk-reward graph is the boundary of the

convex hull containing these points and represents the bestperformance that an algorithm

can achieve at any given level of risk, for any choice of parameters. Typically, the efficient
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Figure 3.6: Example showing the information retrieval equivalent of the two-fund theorem
from finance: how an effectiveα can be found for a given level of risk

frontier must be approximated by sampling a range of parameter choices.

The risk-reward ratioρ(P) of a feedback strategy (point)P that achieves MAP gain

G(P) and R-LossF(P) is simply

ρ(P) = G(P)/F(P) (3.15)

which is theslopeof the line joiningP to the origin.

A number of potentially useful measures follow from this view. For example, we could

calculate the risk-reward functionρ(α) as a function ofα, and chooseα = 0.5 as the

standard ratio for an algorithm, themidpoint risk tradeoff, giving a single value that could

be used to compare with other algorithms on the same collection.

Borrowing another concept from portfolio theory, theSharpe ratiois the slope of the

point P⋆ on the algorithm’s efficient frontier with maximum slopeρ⋆. 8 Thus, using some

approximation of the efficient frontier (maintaining a convex hull), we could identify the

best achieved tradeoff of an algorithm.
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A two-step heuristic for effective linear interpolation.

Suppose we know the level of riskF we want to accept for a set of queries (say, in terms of

average relevant documents lost to failures in the topk). We have an expansion algorithm

with a tunable parameter setΘ that produces a feedback modelθ, and we can combine

the initial queryq with the usual linear interpolation parameterα controlling the mixture

betweenq and the feedback modelθ. How should we optimize the joint parameter set

(Θ, α) to to achieve the given level of riskF on average?

To answer this question, we first note that the lineL(α) joining the two end points (cor-

responding toα = 0 andα = 1.0) of the tradeoff curves in our experiments often provides

a lower bound for the entire tradeoff curve. Furthermore, tradeoff curves are concave or

very close to concave9, so that the line joining any two points on the tradeoff curve gives

the minimum expected performance for the curve above the line. This observation suggests

that the search for an optimal interpolated model for any expansion algorithm at a particular

level of risk can be broken into two distinct steps, as illustrated in Figure 3.6.

1. Optimize the risk-reward tradeoff of the expansion model by itself (i.e. atα = 1.0)

to obtain the optimal pointE⋆. This is equivalent to maximizing the slope ofL⋆(α),

the line joining the origin toE⋆.

2. Chooseα to achieve the specified risk level onL⋆. The actual MAP gain will be at

least as high as the MAP gain onL⋆ atα. Use this value ofα to interpolate with the

initial query model.

Because the actual tradeoff curve is not linear, we are making the assumption that optimiz-

ing L⋆ will result in optimizing the MAP gain for a given risk level on the rest of the curve.

Comparing the baseline and QMOD tradeoff curves, we see that shifting the endpointE⋆ up

and left results in a corresponding shift of the entire curveup and left (by varying amounts

at differentα points). Our two-step observation is a conjecture, but the observed behavior

of all tradeoff curves we have seen strongly suggests this is a useful heuristic. This method

can simplify the search for an optimal model at a given level of risk, and can be used with

any feedback algorithm.

This heuristic is similar to a basic result of modern portfolio theory known as thetwo-

fund separation theorem[Tobin 1956]. If investors care only about the expected return

8 In finance, a pointP represents a choice of portfolio, andP⋆ is called the "market portfolio".
9See Figure 3.8 and other MAP/R-Loss curves for some evidence for this.
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and the standard deviation of their portfolio return, then every investor holds a portfolio

consisting of the market portfolioM and the risk-free asset in some proportion. In infor-

mation retrieval terms, the risk-free asset is the originalquery, and the market portfolio

M corresponds to the feedback modelP⋆ on the efficient frontier with the highest Sharpe

ratio.

There are important differences in the properties of risk-reward curves between infor-

mation retrieval and finance. In finance, the optimal tradeoff solutions for a mixture of a

risk-free asset and a given portfolioP, parametrized byα, the proportion invested inP,

form a straight line joining the corresponding points on the risk-reward chart.10 This lin-

earity results from the quadratic nature of the traditionalmean-variance utility function.

However, as the query expansion curves in Section 3.4 make clear, the best risk and return

tradeoffs available for an algorithm donot necessarily co-vary linearly as the interpolation

weightα shifts toward the "risk-free" asset (query) and away from thefeedback model̂θF.

Instead, the curve is usually concave and above the line joining the origin (risk-free query)

to the chart point corresponding to the feedback model. The cause of this requires further

study, but we conjecture that this non-linearity is a consequence of the clustering behav-

ior of relevant documents (and perhaps the nature of the meanaverage precision reward

function).

3.4 Evaluation Results
In this section we present results confirming the usefulnessof using sampling for pseudo-

relevance feedback. In particular, we show that finding the mode of the feedback model

distribution from weighted resampling of top-ranked documents, and of combining the

feedback models obtained from different small changes in the original query, results in

retrieval that is both more precise and robust than the baseline method alone.

The results are organized as follows. In Section 3.4.3 we look at P20 (top-20 precision).

Section 3.4.7 examines the effect of the number of samples on precision improvements. We

use the evaluation methods described in Section 3.3 to assess robustness in Section 3.4.4.

Section 3.4.8 compares different methods of generating query variants, while Section 3.4.9

compares two document sampling strategies. Finally, Section 3.4.10 analyzes how com-

bining multiple models improves precision by smoothing outnoise terms, including stop-

words.
10In finance this is known as thecapital allocation line.
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3.4.1 General method

We evaluated performance on six TREC topic sets, covering a total of 700 unique queries.

These TREC topic sets are TREC 1&2, TREC 7, TREC 8, wt10g, robust 2004, and gov2.

Details on TREC topic sets, collections and methodology aregiven in Appendix C. We

chose these corpora for their varied content and document properties. For example, wt10g

documents are Web pages with a wide variety of subjects and styles while TREC-1&2

documents are more homogeneous news articles. Indexing andretrieval was performed

using the Indri system in the Lemur toolkit [Metzler & Croft 2004] [Lemur 2002]. Our

queries were derived from the words in the title field of the TREC topics. Phrases were not

used. To generate the baseline queries passed to Indri, we wrapped the query terms with

Indri’s #combine operator. For example, the initial query for topic 404 is:

#combine(ireland peace talks)

We performed Krovetz stemming for all experiments. Becausewe found that the base-

line (Indri) expansion method performed better using a stopword list with the feedback

model, all experiments used a stoplist of 419 common Englishwords. However, an inter-

esting side-effect of our resampling approach is that it tends to remove manystopwords

from the feedback model, making a stoplist less critical. This is discussed further in Sec-

tion 3.4.10.

3.4.2 Baseline feedback method

For our baseline expansion method, we use an algorithm included in Indri 2.2 as the de-

fault expansion method. This method first selects terms using a log-odds calculation de-

scribed by Ponte [Ponte 2000], but assigns final term weightsusing Lavrenko’s relevance

model[Lavrenko 2004].

We chose the Indri method because it gives a consistently strong baseline, is based on

a language modeling approach, and is simple to experiment with. In a TREC evaluation

using the GOV2 corpus [Collins-Thompson et al. 2004], the method was one of the top-

performing runs, achieving a 19.8% gain in MAP compared to using unexpanded queries.

In this evaluation, it achieves an average gain in MAP of 14.4% over the six collections.

Indri’s expansion method first calculates a log-odds ratioo(v) for each potential expan-

sion termv given by

o(v) =
∑

D

log
p(v|D)
p(v|C)

(3.16)
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#weight(0.5 #combine(ireland peace talks) 0.5

#weight(0.10 ireland 0.08 peace 0.08 northern ...)

Figure 3.7: An example of a simple expanded query for TREC topic 404, showing the
original query terms and expansion term set each given weight of α = 0.5.

over all top-k documentsD containingv, within collectionC. Then, the expansion term

candidates are sorted by descendingo(v), and the topm are chosen. Finally, the term

weightsr(v) used in the expanded query are calculated based on the Relevance model

r(v) ∝
∑

D

p(q|D)p(v|D) (3.17)

The quantityp(q|D) is the probability score assigned to the document in the initial retrieval.

We use Dirichlet smoothing ofp(v|D) with µ = 1000.

This relevance model is then combined with the original query using linear interpola-

tion, weighted by a parameterα. By default we used the top 50 documents for feedback

and the top 20 expansion terms, with the feedback interpolation parameterα = 0.5 un-

less otherwise stated. For example, the baseline expanded query for topic 404 is shown in

Figure 3.7

3.4.3 Expansion precision performance

For each query, we obtained a set ofB feedback models using the Indri baseline. Each

feedback model was obtained from a random sample of the topk documents taken with

replacement. For these experiments,B = 30 andk = 50. Each feedback model contained

20 terms. On the query side, we used leave-one-out (LOO) sampling to create the query

variants, since as we show later, LOO sampling generally dominated the other methods

for all collections. We estimated an enhanced feedback model from the Dirichlet posterior

distribution for each query variant, and used the variance model combination heuristic to

obtain term weights for the combined feedback model from allthe query variants. We call

our methodresampling feedbackusing heuristic model combination and denote it as RS-FB

here (later, we also refer to this as HMC RS-FB if comparing model combination methods)

We denote the Indri baseline feedback method as Base-FB. Results from applying both

the baseline expansion method (Base-FB) and resampling expansion (RS-FB) are shown in

Table 3.1. These results use per-term model weights, with uniform model-wide priors.



66
CHAPTER 3. A THEORETICAL FRAMEWORK FOR ROBUST

PSEUDO-RELEVANCE FEEDBACK

Collection NoExp Base-FB RS-FB
(α = 0.5) (α = 0.5)

TREC
1&2

MAP 0.1762 0.2317 (+31.9%)N 0.2472(+40.3%)N,E

P20 0.4217 0.4483 (+6.9%)N 0.4990(+18.3%)N,E

R-Loss@20 0/366 117/366 (-32.0%) 64/366(-17.5%)
RI 0 0.4844 0.5781

TREC 7
MAP 0.1830 0.2079 (+13.8%)N 0.2165(+18.3%)N,E

P20 0.3456 0.3467 (+0.3%) 0.3656(+5.9%)N,E

R-Loss@20 0/57 23/57 (-40.4%) 24/57 (-42.1%)
RI 0 0.4146 0.4634

TREC 8
MAP 0.1920 0.2220 (+15.5%)N 0.2288(+19.2%)N,E

P20 0.3213 0.3585 (+11.8%)N 0.3596(+11.9%)N

R-Loss@20 0/76 29/76 (-38.2%) 23/76 (-30.2%)
RI 0 0.4286 0.4762

wt10g
MAP 0.1747 0.1830 (+5.2%) 0.1984(+13.6%)N,E

P20 0.2228 0.2340 (+5.4%) 0.2494(+11.9%)N,E

R-Loss@20 0/158 59/158 (-37.3%) 55/158(-34.8%)
RI 0 -0.0270 0.1892

robust2004
MAP 0.2152 0.2441 (+13.5%)N 0.2538(+17.9%)N,E

P20 0.3252 0.3397 (+4.5%)N 0.3538(+8.8%)N,E

R-Loss@20 0/394 124/394 (-31.2%) 112/394(-28.4%)
RI 0 0.3364 0.3818

gov2
(2004–
2006)

MAP 0.2736 0.2907 (+6.5%)N 0.2959(+8.1%)N,E

P20 0.5214 0.5214 (+0.0%) 0.5352(+2.6%)N,E

R-Loss@20 0/575 171/575 (-29.7%) 126/575(-21.9%)
RI 0 0.0922 0.1915

Table 3.1: Comparison of baseline (Base-FB) feedback and re-sampling feedback using
heuristic model combination (RS-FB). Precision improvement shown for Base-FB and RS-
FB is relative to using no expansion. R-Loss changes are relative to no expansion (Base-
FB), where negative change is good. For Robustness Index (RI), higher is better. Significant
differences at the 0.05 level using the Wilcoxon signed-rank test are marked byN andE
superscripts, for improvement over NoExp and Base-FB respectively.
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The RS-FB method achieved consistent gains in precision over Base-FB for all six topic

sets, measured by both MAP and P20. RS-FB obtained higher MAPand P20 than Base-

FB for every topic set, giving a macro-averaged improvementof 9.9% over no expansion

compared to 4.8% for Base-FB. The lowest P20 gain for RS-FB over NoExp was+2.6% for

gov2 and the highest was+18.3% for trec12. For MAP, RS-FB achieved a macro-averaged

gain in MAP of+19.6% over NoExp, compared to the Indri baseline expansion gain of

+14.4%. Gains in both MAP and P20 over both no expansion and baseline expansion were

statistically significant at the 0.05 level for virtually all precision measurements, according

to a Wilcoxon signed-rank test. The lone exception was a single P20 measurement on

TREC 8, which was equivalent to the baseline.

These gains in precision were accompanied by a universalreductionin expansion fail-

ures: RS-BF increased the Robustness Index over Base-FB forevery topic set. Similarly,

R-Loss@20, the actual net loss of relevant documents in the top 20,decreasedcompared

to the baseline Indri expansion by amounts ranging from 6.7%(wt10g) to 45.3% (TREC

1&2). TREC 7 was the only topic set to show a small R-Loss increase (1 relevant docu-

ment).

3.4.4 Evaluating Robustness

We now present figures using risk-reward tradeoff curves, and robustness histograms.

Risk/reward tradeoff curves

One obvious way to improve the worst-case performance of feedback is simply to use

a smaller fixedα interpolation parameter, such asα = 0.2, placing less weight on the

(possibly risky) feedback model and more on the original query. We call this the ‘small-α’

strategy.

We compared the robustness trade-off curves between our resampling feedback algo-

rithm, and the simple small-αmethod. We call the resampling feedback method HMC (for

Heuristic Model Combination).

Tradeoff curves using MAP/R-Loss are summarized in Figure 3.8, and curves using

P20/R-Loss@20 are in Figure 3.9. As expected, risk (as measured by R-Loss) increases

continuously as we move along the curve, and MAP gain generally increases at first. At

some breakeven point, MAP gain begins to drop as the originalquery model is given much

less weight. Since higher and to the left is better, it is clear that for all six collections,
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HMC resampling feedback gives a consistently dominant trade-off curve compared to the

baseline feedback model, whether MAP or P20 is used as the reward measure.

Robustness Histograms

We examine the histogram of MAP improvement across sets of topics. (We examine both

MAP and P20 improvement via trade-off curves in Section 3.4.4.) Relative changes in AP

for all topics is given by the histogram in Figure 3.10. The number of queries helped or hurt

by expansion is shown, binned by the loss or gain in average precision by using feedback.

Compared to Base-FB, the RS-FB method achieves a noticable reduction in the number

of queries negatively affected by expansion (i.e. where AP is hurt by 25% or more), while

preserving positive gains in AP. The results for TREC 1&2 areparticularly good. RS-FB

not only achieves higher MAP gain (Base-FB:+31.9%, RS-FB:+40.3%) but the robust-

ness of RS-FB was superior : only 4 topics were hurt by 50% or more using resampling

feedback, compared to 9 for the baseline method.

However, while these results are promising, there is room for improvement. There

are still multiple failures at the -50% level and worse for all collections. In Chapter 6

we introduce an alternate model combination method that provides further reductions in

serious failures. Section 6.4.2 has robustness histogramsfrom that method for comparison.

3.4.5 Effect with an alternate expansion algorithm

To test the generality of RS-FB with another strong expansion baseline, we replaced the

baseline Indri method (Relevance model) with a Rocchio-style vector space method in

which the topk document vectors were given equal weight and used atf.idf representation.

The same query variants and document resampling were used asin the Indri experiments.

The resulting tradeoff curves are shown in Figure 3.11. As with the Relevance model

expansion baseline, RS-FB has strong performance and dominates the Rocchiotf.idf ex-

pansion for every collection.

3.4.6 Tolerance to poor baseline expansion algorithm

To test how tolerant RS-FB is to the choice of a very poor baseline algorithm, we replaced

the default Indri method with a Rocchio scheme that ignores term frequency (tf ) and uses

only idf in the term representation. This results in a very noisy expansion model dominated

by rare terms that are poor discriminators for relevance. The results for two representative

collections, TREC 7 and wt10g, are shown in Figure 3.12. In both cases, this newidf
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Figure 3.8: Risk-reward tradeoff curves for six TREC topic sets, showing how the HMC
RS-FB robust feedback method consistently dominates the performance of the baseline
feedback method. The baseline feedback model is the Indri Relevance Model. Tradeoff
curves that arehigher and to the leftare better. Points are plotted inα-increments of 0.1,
starting withα = 0 at the origin and increasing toα = 1.0.
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Figure 3.9: Risk-reward tradeoff curves for six TREC topic sets using P20 and R-Loss@20
(instead of MAP and R-Loss). The baseline feedback model is the Indri Relevance Model.
Tradeoff curves that arehigher and to the leftgive a better risk-reward tradeoff. Curves are
plotted with points atα-increments of 0.1, starting withα = 0 at the origin and increasing
to α = 1.0.
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Figure 3.10: Robustness histograms for all six TREC collections, comparing the baseline
expansion method (white) with the RS-FB resampling algorithm (solid). The number of
queries helped or hurt by expansion is shown, binned by the loss or gain in average pre-
cision by using feedback. The baseline feedback here was Indri 2.2 (Modified Relevance
Model with stoplist) and resampling feedback using both query (LOO) and top-document
sampling.
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Figure 3.11: The effect on risk-reward tradeoff curves of applying RS-FB (solid line) to
an alternate, Rocchio-style expansion algorithm usingtf.idf representation (dotted line)
instead of the default Relevance model baseline. Tradeoff curves that arehigher and to the
left are better. Points are plotted inα-increments of 0.1, starting withα = 0 at the origin
and increasing toα = 1.0.
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Figure 3.12: Risk-reward tradeoff curves for two representative TREC topic sets, showing
the effect of using RS-FB with a very poor baseline expansion algorithm. The solid line is
the curve given by the RS-FB algorithm using the pooridf baseline. The dashed line is the
curve given by theidf baseline alone. Results for other collections are similar.

expansion algorithm performed terribly: MAP loss atα = 1.0 was worse than -80% in

all cases. Applying RS-FB to this poor baseline resulted in little improved performance,

showing that the RS-FB method is not especially tolerant of aweak expansion baseline.

We have omitted the other four standard collections becausetheir results are similar.

However, in Chapter 6, we introduce a new, more selective model combination method

that has, as one side-effect, much better tolerance of weak expansion algorithms. See Sec-

tion 6.4.5 for a comparison.

3.4.7 Effect of sample size

In Section 3.1.3 we described how we generateB feedback models, each from a different

resampling of the top-retrieved documentsD. Because there is a moderate computational

cost to computing a feedback model, it is important to understand the tradeoff between

gains from the method and the number of feedback models computed. Here we evaluate

the effect ofB on MAP and P10 compared to the baseline feedback algorithm.

The results are summarized in Figure 3.13 for all collections. The left chart shows the

stability of the MAP gain asB increases from 5 to 100, for a set of top-50 documents.

MAP stabilizes after about 40 sampled document sets, although whenB ≥ 20 the MAP
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Figure 3.13: The stability of results as a function of the number of bootstrap samples
from the top-retrieved documents. Gains or losses shown arerelative to the Indri baseline
expansion method.

differences are relatively minor. The story for P10 is similar. The majority of gains are

achieved by the pointB = 10, with the gain for wt10g actually declining to zero with

more samples. The variance in the P10 chart is larger simply because the smallest possible

increment of that statistic is±0.1. Interestingly, atB = 5 or B = 10, all collections showed

a modest gain in both MAP and P10 over the baseline, while the wt10g collection showed

significant worsening of both MAP and P10 forB ≥ 10. The reason for this is likely as

follows.

In a sense,B can be considered a smoothing parameter. As we take more resampled

sets, we model the top-retrieved documents more and more accurately. Conversely, as

B decreases, more noise is introduced into our model of the true feedback distribution,

inducing a sort of generalization into the feedback model. It appears that even 5 resampled

feedback models are enough to achieve small, consistent improvement in performance for

all collections. Our choice ofB thus depends on how we wish to trade off small but more

consistent gains, with less computation, whenB ≤ 10, with the possibility for slightly larger

potential gains for some collections but also higher variance and increased computational

cost whenB ≥ 10. In general, a reasonable rule of thumb appears to be to take B to be

about 20% ofk, the number of top-retrieved documents.
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Figure 3.14: The effect of query variant sampling method on risk-reward tradeoff, showing
how LOO sampling generally dominates the other methods. LOOis leave-one-out, TAT
is term-at-a-time, and SP is sigma-point sampling. The baseline is Indri Relevance model
expansion.
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3.4.8 Effect of query sampling method

We compared the effect of TAT, LOO, and sigma-point query variant methods on thetrade-

off curve of the baseline expansion algorithm. For sigma-pointsampling (SP) we show two

different runs, usingβU = 0.1 (wide) andβU = 5.0 (more peaked) query neighborhood.

The results are shown in Figure 3.14.

Leave-one-out (LOO) variants achieved the highest maximumMAP gain for every col-

lection shown, and generally gave a dominant tradeoff curve over all other methods. Term-

at-a-time (TAT) variants achieved the lowest MAP gain on allcollections except wt10g.

The LOO curve dominated the TAT curve for all six collections. This difference in per-

formance between LOO and TAT is likely due to the fact that LOOpreserves much more

of the query context. There was little significant difference between SPβU = 5.0 (query

neighborhood more peaked around initial query) and SPβU = 0.1 (broader neighborhood).

For the most ‘well-behaved’ collection, TREC 1&2, the peaked SP had consistently higher

MAP gains forα > 0.5 at equivalent risk levels. For the other collections, however, the

methods performed comparably. Compared to the baseline, atα = 0.5 using any query

variant method led to a better risk-reward ratio for TREC 1&2, TREC 7, and wt10g, equal

results for TREC 8 and Robust 2004, and inconclusive resultsfor gov2 (LOO helped MAP,

TAT did not).

One important question is which one of document re-samplingor the use of multiple

query variants is responsible for the improved robustness observed in Section 3.8? Second,

what is the effect of document resampling alone on precision? The results in Table 3.2 sug-

gest that query variants may be largely account for the improved robustness. When query

variants are turned off and the original query is used by itself with document sampling,

there is little net change in average precision, a small decrease in P10 for 3 out of the 4

topic sets, but a significant drop in robustness for all topicsets.

3.4.9 The effect of document resampling method

We give two results on document resampling here. First, we examined the effect of two

different document sampling methods on retrieval effectiveness. Second, we measured the

effect on precision of adding document resampling to the baseline method (which uses no

document resampling).

The ‘uniform weighting’ strategy ignored the relevance scores from the initial retrieval
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Collection DS+ QV DS+ No QV

TREC
1&2

MAP 0.2406 0.2547 (+5.86%)
P10 0.5263 0.5362 (+1.88%)
RI 0.7087 0.6515 (-0.0572)

TREC 7
MAP 0.2169 0.2200 (+1.43%)
P10 0.4480 0.4300 (-4.02%)
RI 0.5652 0.2609 (-0.3043)

TREC 8
MAP 0.2268 0.2257 (-0.49%)
P10 0.4340 0.4200 (-3.23%)
RI 0.4545 0.4091 (-0.0454)

wt10g
MAP 0.1946 0.1865 (-4.16%)
P10 0.2960 0.2680 (-9.46%)
RI 0.1429 0.0220 (-0.1209)

Table 3.2: Comparison of resampling feedback using documentsampling (DS) with (QV)
and without (No QV) combining feedback models from multiplequery variants.

Collection QV + Uniform QV + Relevance-score
weighting weighting

TREC
1&2

MAP 0.2545 0.2406 (-5.46%)
P10 0.5369 0.5263 (-1.97%)
RI 0.6212 0.7087 (+14.09%)

TREC 7
MAP 0.2174 0.2169 (-0.23%)
P10 0.4320 0.4480 (+3.70%)
RI 0.4783 0.5652 (+18.17%)

TREC 8
MAP 0.2267 0.2268 (+0.04%)
P10 0.4120 0.4340 (+5.34%)
RI 0.4545 0.4545 (+0.00%)

wt10g
MAP 0.1808 0.1946 (+7.63%)
P10 0.2680 0.2960 (+10.45%)
RI 0.0220 0.1099 (+399.5%)

Table 3.3: Comparison of uniform and relevance-weighted document sampling. The per-
centage change compared to uniform sampling is shown in parentheses. QV indicates that
query variants were used in both runs.
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Figure 3.15: The effect of document resampling on baseline expansion P10. The asterisk
shows differences that are significant at the 0.05 level.

and gave each document in the topk the same probability of selection. In contrast, the

‘relevance-score weighting’ strategy chose documents with probability proportional to their

relevance scores. In this way, documents that were more highly ranked were more likely to

be selected. Results are shown in Table 3.3.

The relevance-score weighting strategy performs better overall, with significantly higher

RI and P10 scores on 3 of the 4 topic sets. The difference in average precision between the

methods, however, is less marked. This suggests that uniform weighting acts to increase

variance in retrieval results: when initial average precision is high, there are many relevant

documents in the topk and uniform sampling may give a more representative relevance

model than focusing on the highly-ranked items. On the otherhand, when initial precision

is low, there are few relevant documents in the bottom ranks and uniform sampling mixes

in more of the non-relevant documents.

Figure 3.15 shows the differences in P10 for no expansion (NoExpand), the baseline

Indri expansion without document resampling (BaseExpand), and baseline expansion with

document resampling using relevance-weighted selection (RSExpand), across four TREC

collections. We can see that a consistent effect of turning on document resampling across

all four collections is to increase the P10 precision of the baseline method. We explore this

effect further in Section 3.4.10.
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Baseline FB p(wi |R) Resampling FB p(wi |R)
said 0.055 court 0.026
court 0.055 pay 0.018
pay 0.034 federal 0.012
but 0.026 education 0.011

employees 0.024 teachers 0.010
their 0.024 employees 0.010
not 0.023 case 0.010

federal 0.021 their 0.009
workers 0.020 appeals 0.008

education 0.020 union 0.007

Table 3.4: Feedback term quality when a stoplist is not used.Feedback terms for TREC
topic 60:merit pay vs seniority.

3.4.10 The effect of resampling on expansion term quality

Ideally, a retrieval model should not require a stopword list when estimating a model of rel-

evance: a robust statistical model should down-weight stopwords automatically depending

on context. Stopwords can harm feedback if selected as feedback terms, because they are

typically poor discriminators and waste valuable term slots. In practice, however, because

most term selection methods resemble atf.idf type of weighting, terms with lowidf but

very hightf can sometimes be selected as expansion term candidates.

This happens, for example, even with the Relevance Model approach that is part of

our baseline feedback. To ensure as strong a baseline as possible, we use a stoplist for

all experiments reported here. If we turn off the stopword list, however, we obtain results

such as those shown in Table 3.4 where four of the top ten baseline feedback terms for

TREC topic 60 (said, but, their, not) are stopwords using theBase-FB method. (The top

100 expansion terms were selected to generate this example.)

Indri’s method attempts to address the stopword problem by applying an initial step

based on Ponte [Ponte 2000] to select less-common terms thathave high log-odds of being

in the top-ranked documents compared to the whole collection. Nevertheless, this does not

overcome the stopword problem completely, especially as the number of feedback terms

grows.

Using resampling feedback, however, appears to mitigate the effect of stopwords au-
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Figure 3.16: Example from TREC topic 60:merit pay vs. seniority, showing how term
ranking varies as four different bootstrap samples of the top-retrieved documents areused
as input to the baseline feedback algorithm. Some terms suchas ‘union’, ‘pay’ and ‘ap-
peals’ have a low but stable ranking across all feedback models, while noise words, such as
stopwords ‘but’ and ‘said’ rank highly in some feedback models, but fail to make the topm
in others (denoted by a negative rank score). Near-stopwords such as ‘right’ and ‘system’
are also shown and are also typically removed because of inconsistent ranking.

tomatically. In the example of Table 3.4, resampling feedback leaves only one stopword

(their) in the top ten. We observed similar feedback term behavior across many other top-

ics. The reason for this effect appears to be the interaction of the term selection scorewith

the top-m term cutoff. While the presence and even proportion of particular stopwords is

fairly stable across different document samples, their relative position in the top-m list is

not, as sets of documents with varying numbers of better, lower-frequency competing terms

are examined for each sample. As a result, while some number of stopwords may appear

in each sampled document set, any given stopword tends to fall below the cutoff for mul-

tiple samples, leading to its classification as a high-variance, low-weight feature. Thus, as

with traditional bagging, the use of resampling for feedback acts to stabilize an unstable

relevance predictor for terms.

More insight into this behavior is given by Figure 3.16, which shows how the ranking of

seven individual feedback terms varies across four successive bootstrap samples of the top-

retrieval documents. A negative rank score on the diagram indicates that the term did not

appear in the top-mscoring terms for that sample. The first three terms, ‘union’, ‘pay’, and



3.5. RELATED WORK 81

‘appeals’ all consistently rank in the top-m terms chosen by the baseline feedback method,

for all four feedback lists. The next two terms, ‘right’ and ‘system’ are higher-frequency

near-stopwords. ‘Right’ appears in the topm for 2 out 4 samples, while ‘system’ appears

only once out of 4 samples. The stopwords ‘but’ and ‘said’ have even higher score variance:

when they are selected, they tend to be ranked very high, but they both only appear in 2 out

of 4 samples.

The result of this when fitting a Dirichlet distribution to the feedback models is that

terms that consistently score highly, and thus are selectedfor the topm terms, are assigned

a fairly highαi parameter, while many stopwords and near-stopwords have much higher

score variance and thus receive anαi closer to 1. The bagging-type behavior becomes

clear here; we can think of feedback in terms of a 2-class classification problem identifying

‘good’ feedback terms vs. ‘bad’ feedback terms, such that terms scoring in the topm are

given a label of ‘good’, and other terms classified as ‘bad’. Bagging would then select the

terms appearing in a majority of feedback models: in this case, the first three terms shown

in the figure.

The reason that high-variance terms are treated as inferioris that we are searching for

features that are consistent with multiple samples from a single latent ’relevance’ model.

We expect the occurrence of such good relevance features to be stable within the set of

relevant documentsin competition with other possible term-features. Such features will

maximize the number of relevant documents for which we obtain good discriminators.

3.5 Related work
Our approach is related to previous work from several areas of information retrieval and

machine learning. Our use of query variation for feedback was inspired by the work

of [YomTov et al. 2005] for query difficulty estimation, who used TAT query variants to

generate variance statistics that were used as features fora difficulty classifier. Other related

work includes a study Carpineto et al. [Carpineto et al. 2001b], who investigated combining

terms from different distributional methods (all based on top-ranked documents from the

initial query only) using a term-reranking combination heuristic. In a set of TREC topics

they found wide average variation in the rank-distance of terms from different expansion

methods.

A study by [Amati et al. 2004] is one of the closest in problem area to our own work: the

authors’ goal is to obtain more robust expansion using selective expansion methods. Selec-
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tive expansion is done by setting a threshold for a heuristicthey callInfoQ, which combines

query length, another heuristic calledInfoPriorQ which is the normalized deviation of the

idf values of the query terms, and a factorMQ which is essentially the normalized deviation

of the query clarity score, resulting in the formula

In f oQ=
1

QueryLen
·
( In f oPriorQ− µIn f oPriorQ

σIn f oPriorQ
+ MQ

)

. (3.18)

Their study had important limitations. First, it was based on only one collection.11 Second,

the authors measured robustness primarily by the increase in the number of topics with no

relevant documents in the top 10 (i.e. having P@10 of zero). We believe this is a poor

summary statistic for robustness: it completely ignores the magnitude of expansion failure

on the many topics that have low but non-zero P@10, and it focuses exclusively on the

highest possible P@10 loss (zero), which represent only a fraction of actual expansion

failures. The authors also definedMAP(X), the MAP of theX worst-performing topics, but

their selective expansion results (p.12) did not use this statistic.

More recently, Crabtreeet al. developed a system called AbraQ [Crabtree et al. 2007]

for automatic query expansion that treats the query as a set of aspects, and aims to find

expansion terms that adequately ‘cover’ all of the aspects in some sense. Because of these

shared assumptions we we now give a brief summary of AbraQ andthen discuss similarities

and differences with our work. The authors evaluated their method ononly ten queries

using private relevance assessments of Web results from Google, so a direct experimental

comparison is not possible.

3.5.1 The AbraQ algorithm

AbraQ first identifies aspects in the original query by scoring word subsequences using

their web frequency. Theexistencescore of a subsequenceT = wi . . .w j is given by

Existence(T) =
DPHRAS E(T)

DAND(T)
(3.19)

and thesupportscore forT is defined as

S upport(T) =
DPHRAS E(T)

∑

T′∈Perm(T)\{T} DPHRAS E(T′)
(3.20)

11Robust 2003 topics on TREC disks 4&5 minus Congressional Record.
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whereDPHRAS E(T) is the number of documents containingT as a phrase, andDAND(T) is

the number of documents containing all of the termsT without regard to proximity or order.

The aspect scoreS(T) is defined as the heuristic

S(T) = Existence(T) · S upport(T) (3.21)

=
DPHRAS E(T)

DAND(T)
· DPHRAS E(T)
∑

T′∈Perm(T) DPHRAS E(T′)
(3.22)

(3.23)

wherePerm(T) is the set of all permutations of the sequenceT. The subsequence of terms

T is considered an aspect ifS(T) > 1. This leads to a set of aspectsAQ for a queryQ

where each aspect is defined by a subset of query terms inT.

Once the setAQ has been identified, AbraQ calculates a vocabulary modelVocab(A)

for eachA ∈ AQ using a normalized weighted vector of terms having high co-occurrence

with the aspect stringA. The modelVocab(D) represents the vocabulary model of the

initial top-retrieved documents in response to queryQ. AbraQ determines which aspects

are underrepresented in the results of the original queryQ by computing a similarity-based

relative aspect scoreRAS(A,D) between the aspect vocabulary and the initial document

vocabulary vectors, normalized across all aspects.

RAS(A,Q) =
Vocab(A) · Vocab(D)

∑

Ai∈AQ
Vocab(Ai) · Vocab(D)

(3.24)

Therepresentation level threshold RLT(Q) is the heuristic

RLT(Q) =
1

1+ |AQ|
(3.25)

An aspectA is considered valid and underrepresented if

0.2 · RLT(Q) < RAS(A,Q) < RLT(Q). (3.26)

An aspect is considered invalid ifRAS(A,Q) < 0.2 · RLT(Q), in which case further split-

ting and processing is done toA to search for underrepresented subaspects ofA. Any

underrepresented aspects are enhanced with additional expansion terms from that aspect’s

vocabulary model. If AbraQ determines that all aspects are represented adequately, it does
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not refine the query.

The AbraQ algorithm requires potentially large numbers of extra queries. According

to the authors [Crabtree et al. 2007] for initial queries ofn words, in the worst case when

each query term is a separate aspect, the number of extra queries isO(n2). This means that

for typical web queries of 2–10 words with aspects of 1–3 words, AbraQ needs between

803 and 4027 count-operations to calculateD(T) and DPHRAS E (each of which may be

a web query when using the Web as global collection) as well as53 to 105 additional

queries to perform aspect refinement. When typical web query length distributions are

taken into account, AbraQ can be expected to use 56 extra queries. In contrast, our methods

require dramatically fewer extra query operations: in the worst case, never more thanO(n)

additional queries on the collection.

3.5.2 Other related work

The idea of examining the overlap between lists of suggestedterms has also been used

in early query expansion approaches. Xu and Croft’s method ofLocal Context Analysis

(LCA) [Xu & Croft 2000] includes a factor in the empirically-derived weighting formula

that causes expansion terms to be preferred that have connections to multiple query terms.

On the document side, recent work by Zhou & Croft [Zhou & Croft 2006] explored the

idea of adding noise to documents, re-scoring them, and using the stability of the resulting

rankings as an estimate of query difficulty. This is related to our use of document sampling

to estimate the risk of the feedback model built from the different sets of top-retrieved

documents. To be practical, however, their method requiresthe co-operation of the search

engine, whereas our method does not. Sakai et al. [Sakai et al. 2005] proposed an approach

to improving the robustness of pseudo-relevance feedback using a method they callselec-

tive sampling. The essence of their method is that they allow skipping of some top-ranked

documents, based on a clustering criterion, in order to select a more varied and novel set

of documents later in the ranking for use by a traditional pseudo-feedback method. Their

study did not find significant improvements in either robustness (RI) or MAP on their cor-

pora.

Two recent studies have attempted to find good predictors of expansion effectiveness. In

his thesis, ([Billerbeck 2005], p.81) made a detailed studyof query expansion using a local

analysis method, including the effects of varying two parameters: the number of documents

in the initial ranking, and the number of expansion terms. Hefound no correlation between
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the average precision of the initial query, and the amount that query was improved by query

expansion. He tried several statistics for predicting expansion effectiveness, including a

clarity-type query difficulty score, but with no success. [Amati et al. 2004] also reported

that ‘the performance of query expansion (QE) is not directly related to query difficulty,

consistent with the observation that although the retrieval effectiveness of QE in general

increases as the query difficulty increases, very easy queries hurt performance’.

Our use of query variants to improve query expansion is related to the recent use of

associated queries, which are user queries that all share high statistical similarity with a

particular document. In [Billerbeck 2005], p.90), sets of associated queries are obtained

using Excite query logs. These past queries are then combined into surrogate documents,

which are then used for query expansion. With this method, the author’s best algorithm

obtained a MAP on wt10g of 0.1893. This was the only comparable set of topics with our

study, and is in line with the Indri baseline wt10g MAP of 0.1830. For comparison, our RS-

FB MAP on wt10g was 0.1984 (about 5% higher). Robustness results were not available,

and results for TREC 7 and 8 were apparently poor and not reported. Billerback concludes

that associated-based query expansion is most effective when the past queries available are

a good match for the collection being searched.

Content-based image retrieval, having to deal with a more varied set of features, has

explored sophisticated methods for ‘query shifting’ – another term for query expansion –

based on feedback. The work of [J. Peng 1999] is a good examplein this domain, although

little or no use of variance estimates or robust model combination methods is performed.

Greiff, Morgan and Ponte [Greiff et al. 2002] explored the role of variance in term

weighting. In a series of simulations that simplified the problem to 2-feature documents,

they found that average precision degrades as term frequency variance – high noise – in-

creases. Downweighting terms with high variance resulted in improved average precision.

This seems in accord with our own findings for individual feedback models.

Estimates of output variance have recently been used for improved text classification.

Leeet al. [Lee et al. 2006] used query-specific variance estimates of classifier outputs to

perform improved model combination. Instead of using sampling, they were able to derive

closed-form expressions for classifier variance by assuming base classifiers using simple

types of inference networks.

Ando and Zhang proposed a method that they call structural feedback [Ando & Zhang

2005] and showed how to apply it to query expansion for the TREC Genomics Track. They
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usedr query variations to obtainRdifferent setsSr of top-ranked documents that have been

intersected with the top-ranked documents obtained from the original queryqorig. For each

Si, the normalized centroid vector ˆwi of the documents is calculated. Principal component

analysis (PCA) is then applied to the ˆwi to obtain the matrixΦ of H left singular vectorsφh

that are used to obtain the new, expanded query

qexp= qorig + Φ
TΦqorig. (3.27)

In the caseH = 1, we have a single left singular vectorφ:

qexp= qorig + (φTqorig)φ

so that the dot productφTqorig is a type of dynamic weight on the expanded query that is

based on the similarity of the original query to the expandedquery. The use of variance as a

feedback model quality measure occurs indirectly through the application of PCA. It would

be interesting to study the connections between this approach and our own model-fitting

method.

Finally, in language modeling approaches to feedback, Tao and Zhai [Tao & Zhai 2006]

describe a method for feedback that allows each document to have a different feedbackα.

The goal of their method is to make the feedback algorithm less sensitive to the number

k of top-ranked documents chosen. The feedback weights are derived automatically using

regularized EM. A roughly equal balance of query and expansion model is implied by

their EM stopping condition. They propose tailoring the stopping parameterη based on a

function of some quality measure of feedback documents.

There has already been substantial work in the field of machine learning on ensemble

methods that resample the training data in various ways. In this respect, our approach re-

sembles methods such asbagging[Breiman 1996], an ensemble approach which generates

multiple versions of a predictor by making bootstrap copiesof the training set, and then

combines the predictions of the base classifier by averaging(for numerical predictors) or

majority vote. Bagging has been proven effective at stabilizing the performance of un-

stable base classifiers. In our application, top-retrieveddocuments can be seen as a kind

of noisy training set for relevance. Thus, by viewing retrieval functions such as pseudo-

relevance feedback as learning algorithms trained using sampling-based methods, we can
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apply a broad body of existing results and methods previously applied to tasks such as text

classification.

3.6 Computational complexity
Running extra query variants and creating multiple feedback models provide us with valu-

able information about query and document uncertainty, butthey also have extra computa-

tional costs. We now explain the nature of these costs and howthey can be mitigated. Our

focus in this chapter has been on finding which methods work best, and not on optimizing

performance.

In the case of document set resampling, we have two main steps:

1. EstimatingB feedback models

2. Fitting the Dirichlet distribution to these models.

For Step 1, thek document representations must be loaded into memory. This happens

whether we do standard pseudo-relevance feedback, or resampling feedback. For each

of the B feedback models, the costs are roughly as follows. Withk documents each on

averageλ words long, from Heaps Law for English we have a vocabulary size of roughly

d = 45 ·
√
λ k. For example, whenλ = 1000 andk = 50, we have a vocabulary vector

size of about 10000 unique words. We performK · d floating point calculations to obtain

term weights, whereK is a small constant12, including a sort ofO(d logd) to find the topm

feedback terms. Step 1 is an ideal case for parallel implementation if we care to do so: all

B models can be computed in parallel and can all share the same data block.

For Step 2, the computation costs areTα iterations for finding theα parameters andTs

iterations for finding the scale parameters. In our code,Tα = 5,Ts = 3. For eitherα or scale

parameter fitting, each iteration requires aboutd · B calls to the log function and 2d calls

to digamma-family functions13. In real numbers, to perform step 2 for a query amounts to

about 10,000 · 10 · (5 + 3) = 800,000 calls to log and 2d · (5 + 3) = 160,000 calls to a

digamma-family function. While these counts might seem high, we note that on an Intel

Xeon CPU (3.20 GHz) using the standard C++math library, the above calls took a total of

0.17 seconds. In addition, our numerical code has not been extensively tuned for speed, so

that further performance improvements may be possible.

12K is typically less than 10
13In addition to a small number ofO(d) steps such as finding the mean ofd values
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In the case of query variants, the computational cost is somewhat higher. For example,

the Indri search engine constructs an inference network based on the user’s query. How-

ever, the nature of our basic query variation methods is suchthat only theweightsof term

evidence nodes in the network are changed. Except for the weight values, the inference net-

work structure itself is identical for all variants. Potentially the most expensive operation

in constructing the network is fetching and decompressing the inverted list from disk for

each term. However, because the same inference network can be used in all cases, this cost

is amortized across all query variants. Furthermore, the internal design of the Indri search

engine is such that scoring a document against multiple term-weight variants is possible to

do simultaneously and efficiently [Strohman 2007]. Thus, if embedded into the core search

algorithm, the marginal increase in computation cost is very low.

Even if query variation originates completely external to the search engine, multiple

query variants submitted close in time are still likely to beprocessed relatively efficiently:

IR system caching or operating system paging will potentially reduce the large inverted list

costs via caching. Multiple query variants can be processedin parallel, reducing the effect

on user response time (but of course, increasing total CPU load proportionally). Finally,

the number of subqueries could easily be adapted to the load on a server: under high load,

the strategy would simply degrade toward the performance ofthe original query.

3.7 Discussion

We now comment on connections between our approach, bagging, and Relevance Models,

followed by some possibilities for future extensions.

3.7.1 Connections to bagging

Unlike traditional bagging, the output from our ‘classifier’, the baseline feedback method

Φ, is not a single numeric or categorical response, but a language model represented by

a high-dimensional vector. Thus, we do not simply average the vectors that result from

resampling the top-retrieved documents. Instead, we solvea slightly more general and

appropriate problem and find the maximum likelihood solution to a latent Dirichlet distri-

bution fitting the observed multinomial feedback models. Wehave observed that simple

averaging typically gives significantly worse average precision than using the mode of the

fitted Dirichlet distribution.
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3.7.2 Connections to the Relevance model

The use of a kernel to smooth document model estimates in the Relevance Model [Lavrenko

2004] creates an effect similar to bootstrap sampling. By perturbing the underlying doc-

ument model estimate (according to its treatment as a randomvariable with the kernel

distribution), we induce a perturbation in the document’s query likelihood score. Since doc-

uments are weighted by this score in calculating their contribution to the feedback model,

the kernel effectively acts to smooth document weights. The bootstrap method seeks to

approximate/simulate this effect by sampling the relative document weights directly from

some hypothesized distribution, where the observed document weights are treated as the

most likely draw from that distribution. In his thesis, Lavrenko did not evaluate the use of

more sophisticated document kernels such as a Dirichlet kernel in an actual retrieval set-

ting, due to its computation burden. However, based on our analysis, we believe the effect

of such document kernels is expected to be similar to the bagging-type effect of bootstrap

sampling and thus a precision-enhancing device.

3.7.3 Future extensions

The following query variant methods were not implemented for this study, but we mention

them for possible future investigation.

• Document-based variants(DV). To capture more realistic covariance structure, we

can consider a method by Bennett [Bennett 2007] created to estimate the sensitiv-

ity of text classifiers. Query models are sampled deterministically from a Voronoi

cell around the original query. This cell is created from modified query models,

each of which is an interpolation of the original query modelwith some top-retrieved

document. The interpolation parameterαi for each modified queryqi is set to the

largest value that keeps the original query as the nearest neighbor to the modified

model. Since eachαi requires several retrieval operations to estimate, the computa-

tional overhead for this method would likely be several times greater than the most

sophisticated method used in this thesis, sigma-point sampling.

• Translation models(TM). These use kernels defined on graphs of term relations to

define a translation mapping between termwi and termw j. An example of this ap-

proach was recently applied to text classification by [Dillon et al. 2007]. A related
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approach using term dependencies for query expansion was studied by [Collins-

Thompson & Callan 2005]. Theperturbation kernelsthat we learn in Chapter 4

from query variants may also be seen as a form of translation model trained from lo-

cal (top document) data, and we evaluate the effect on query expansion performance

in Section 4.3.3.

Different document sampling strategies are also possible. The following methods were

not implemented for this study but are candidates for testing.

• Dirichlet over weights.This would model the relative weights of documents with a

Dirichlet distribution.

• Logistic normal. Extending the idea of a document as a topic, similarity between

document topics could be modeled using a covariance matrix.The logistic normal

distribution described later in Section 4.2.4 could easilymodel more complex covari-

ance structure.

3.8 Conclusions
We have presented a new approach to pseudo-relevance feedback based on document and

query sampling. While our study uses the language modeling approach as a framework for

experiments, we make few assumptions about the actual workings of the feedback algo-

rithm. Our results on standard TREC collections show that our framework improves the

robustness of a strong baseline feedback method across a variety of collections, without

sacrificing average precision. It also gives small but consistent gains in top-10 precision,

which is typically difficult to do. In general, our approach has the following advantages.

First, the framework isflexible: it assumes little about the baseline feedback method.

We observed consistent improvements in precision and robustness using different strong

baseline feedback algorithms. We believe it is likely, therefore, that any baseline algorithm

obtaining good initial performance, especially if unstable with respect to small changes in

the top-retrieved documents, will benefit from our method.

Second, the sampling approach ispowerful, because it gives a principled way to get

variance or sensitivity estimates from any black box process, allowing us to quantify the

uncertainty associated with important random variables such as document or query model

parameters. We showed that using such variance calculations resulted in more effective
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model combination of different feedback models. We also showed that the confidence

estimates obtained for sets of expansion terms may be used toperform selective expansion.

Furthermore, we discussed how sampling methods can extend the range of retrieval scoring

functions for which current Bayesian retrieval frameworksare practical.

Third, the algorithms here aregeneric: extensive parameter training is not essential to

achieve good performance. This does not mean that further improvements are not worth

pursuing with parameter tuning based on training data. For example, inductive transfer

may certainly be possible to perform meta-learning across different retrieval problems or

corpora. For standard use, however, the effective values of important parameters such asα

(feedback interpolation),k (number of top-ranked documents), etc. appear stable across a

variety of collections.

Fourth, our method isprecision-oriented, consistently increasing the percentage of rel-

evant documents in the top 10 retrieved documents. This is a desirable quality for applica-

tions such as web search where accuracy in the first few results is desirable. We showed

that this increase in precision is likely due to the bagging-like effect of emphasizing feed-

back terms that have low variance across multiple samples, i.e. those that are consistent

across related hypotheses of relevance.

Fifth, resampling isstableand provides more robust feedback. We showed how query-

side resampling is responsible for most gains in robustness, by emphasizing terms that are

consistently related to multiple query aspects. We also analyzed the trade-off between ro-

bustness and average precision, and showed that when query and top-document resampling

were used together, the resulting feedback model gave a tradeoff curve significantly bet-

ter than the baseline language model, with better tradeoff values for a wide range of the

interpolation parameterα.

As with any ensemble-type approach that relies on obtainingmultiple sources of evi-

dence, there is increased computational cost. In Section 3.6 we summarized how to mitigate

these costs, using Indri [Strohman et al. 2004] as a specific example. We believe the gain

in retrieval quality and increased family of practical scoring functions that sampling makes

possible are an acceptable tradeoff.

The next chapter demonstrates an additional benefit to running query variants that fur-

ther amortizes their cost: exactly the same result information can be re-used for learning

improved query-specific similarity measures or query difficulty measures.



Chapter 4

Data Perturbation Kernels

In this chapter we introduce another novel application of sampling to information retrieval:

learning query-specific similarity measures using small perturbations to the original query.

We will use these similarity measures in Chapter 6 to model term relationships, which will

result in more reliable model combination results than the heuristic methods we have just

described in Chapter 3. Therefore, we digress for one chapterto focus on effective term

similarity measures.

We call the general class of kernels that we introduce for this purposedata perturbation

kernels, because they are learned from the results of a small number of perturbations to the

training data. For example, when the training data is a query, a perturbation may be a small

change in the relative weighting of the original terms. In this way we obtain new informa-

tion about thechangesto feedback models (or other statistical models) in a neighborhood

of the original query. Our approach differs from existing kernel families such as proba-

bility product kernels that assign exactly one probabilitydensity to each point in the input

spaceX and then integrate overX. Instead, we take essentially the dual view and identify

each input point with multiple probability densities evaluated at that point, and then inte-

grate over probability density space. The resulting algorithms are generally more effective

than similarity measures based on the original query alone,have a principled mathematical

foundation, are relatively simple to implement, and can be extended to arbitrary retrieval

objects.

The key idea of data perturbation kernels is that two input objectsx andy, such as terms

or language models, are considered similar in the context ofa given queryQ if the prob-

ability distributionsp(x|Q) andp(y|Q) that depend onQ are affected in similar ways with
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small variations inQ. For example, the probability of termsx andy may covary in gener-

ative relevance modelsp(·|R) estimated using variants ofQ. We call this theperturbation

similarity of x andy.

As we show below, the ‘ideal’ perturbation similarity measure (PSM) with respect to

Q takes the form of an integral over all possible queries in a neighborhood ofQ. Com-

puting the exact integral is not possible since we do not knowthe ‘true’ distribution of

queries given the unobservable information need. However,we can apply general-purpose

integration methods such as importance sampling (described in Chapter 2) to learn an ap-

proximation to the true PSM by using query perturbations (sometimes referred to asquery

variants). Since there is a computational cost to searching with query variants, and many

potential methods to generate variants, we develop algorithms for choosing a small set of

‘good’ query variants. In particular, we give an efficient deterministic algorithm called

sigma-point samplingthat is effective for arbitrary integrands in the perturbation similarity

integral. Sigma-point sampling can also be thought of as a general query variant generation

method that behaves like an adjustable combination of LOO and TAT sampling described

in Chapter 3.

Our motivation for introducing data perturbation kernels is to create higher-quality

query-specificsimilarity measures. For example, a problem with many existing word sim-

ilarity measures is that they do not adequately handlepolysemy, a condition in which a

word has multiple meanings orsenses. These senses can be very different: the wordwave

can refer to a water phenomenon, a hand motion, and so on. Typical similarity measures

ignore thecontextin which two words are used, and focus only on some function oftheir

joint appearance or non-appearance. When context is ignored, the related words for differ-

ent senses of the same word are incorrectly calculated to be ‘close’ to each other, because

each is close to the original word. Unlike static similaritymeasures, such as word co-

occurrence in a general collection, query-specific similarity measures use theother query

termsto provide additional context for the similarity computation.

A specific query example occurs with the word “java”, which has multiple meanings:

it can refer to a drink (coffee), a programming language, or a place. Many word similar-

ity measures would give all three related words “coffee”, “programming”, and ”indonesia”

strong similarity scores to “java”, because such measures rely on general statistics that ig-

nore context, such as word co-occurrence in a large, genericcorpus. Knowing that “java” is

used in a query like “java interpreter download”, however, the perturbation kernel automat-



94 CHAPTER 4. DATA PERTURBATION KERNELS

ically discounts similarity between words that that do not also have significant connections

to the query terms. In this case, the words “coffee” and ”indonesia” do not exhibit strong

connections to ”interpreter” and ”download” and thus wouldbe considered much less re-

lated to ”java” than words like ”programming” that reflect the correct sense.

The rest of this chapter is organized as follows. Section 4.1gives an overview of the

problem and our solution. In Section 4.2 we give a detailed mathematical derivation of

our similarity formulas. We then give two applications of our approach. First in Sec-

tion 4.3 we derive a new similarity measure between words called perturbation similarity

for clustering terms for query expansion. Second, in Section 4.4 we apply the same ker-

nel in a different domain – that of language models – and use this to obtaina generalized

clarity scorethat extends the existing method of the same name by Cronen-Townsend and

Croft [Cronen-Townsend & Croft 2002]. In Section 4.5 we confirm the effectiveness of

perturbation similarity, especially for collections in which relevant documents are highly

clustered. We discuss connections to related work in Section 4.6. Section 4.7 summarizes

our conclusions. In Appendix B we discuss related work on measures oflocal influencein

statistics that are closely connected with the notion of perturbing the query as training data.

4.1 Overview
In Chapter 3, we developed the idea of using query variants to improve the performance

of query expansion. Each query variantqi resulted in a new set of retrieved documentsDi

and a corresponding set of feedback models{θi}. Here, we are interested not in combining

the models, but extracting information from them about termsimilarity, which we can then

use for more effective model combination. In machine learning terms, the use of query

variants to derive a similarity measure between words can beconsidered a form of multi-

task metric learning in which each query variant is an auxiliary task. Two termsu andv

can be compared by how their probabilitiesp(u|θi) andp(v|θi) covary across all models{θi}.
Theseperturbation kernelswould be expected to be more precise because they retain the

query as critical context, as opposed to similarity learnedfrom a general large corpus. Such

kernels could be applied in many domains of interest, and here we focus on two important

domains: terms, and language models.

We next give the complete mathematical formulation of data perturbation kernels, pro-

ceeding in three steps. First, after introducing basic concepts, we give the ideal but com-

putationally intractable version of a basic similarity function in terms of an integral over
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the space of query functions. In this formulation, a queryneighbourhoodspecifies a prob-

ability distribution around the original query, which is treated as a function. In this view,

each query variant is a point in function space near the original query, and the query neigh-

borhood then forms the probability measure for the similarity integral. Finally, we give an

algorithm for an efficient approximation of the similarity integral that requires only a small

number of deterministic samples in query function space (query variants). As we did in

Chapter 3, we model the queryq as generated by a latent mixture model with each mix-

ture component corresponding to a different hypothesis about the information need. Each

hypothesis corresponds to a different query variant which in turn is used to estimate a dif-

ferent generative modelθi of relevance. We choose a latent model such that the maximum

likelihood model is the one derived from the original query,θq. We then compute a distance

or loss function of each variant’s model parameter(s)θi relative to the maximum likelihood

parameters ofθq.

4.2 Mathematical formulation
Our goal in this section is to derive a rigorous mathematicalmethod for estimating query-

specific similarity, based on treating the query string as training data. To achieve this goal,

we solve a more general problem by introducing a data-dependent kernel called thedata

perturbation kernel. The data perturbation kernel compares the nature of thesensitivityof

the probability estimates for two input pointsx andx′ to perturbations of the training set.

As such, it focuses on relative change in probability, and not absolute differences.

4.2.1 Basic concepts

We first introduce some notation and basic concepts. LetX be the input domain from

which training examplesxi are drawn. The setX may be a finite set, as with a vocabulary

V of words, or infinite as with a real vector spaceRd. Let P be the set of probability

distributions onX. A training setx of examples is drawn fromX and a density estimate

p(x) ∈ P is created from the examples using anestimatorfunctionR : Xn → P. Note

that p(x) may be either parameteric or non-parametric. For example,R may be a complex

algorithm that estimates a Relevance Model densityp(w|θ) over a finite vocabulary space

of wordsX = V. (This would be a parametric model with parametersθ.)

Feature mapping and kernels. For any pointx in input spaceX we identify anm-

dimensional vector called afeature mapping, denotedφ : X → Rm. A feature mapping
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is a different representation ofx in the feature spaceF = Rm. Note thatF may be either

finite- or infinite-dimensional depending on the feature space. Given a feature mapping

φ(x), we define a symmetric functionk(·) to measure the closeness of input pointsx andy:

k(x, y) = φ(x) · φ(y) (4.1)

where the right side of the equation is theinner productof φ(x) andφ(y) in the spaceF .

If we have a set ofn objectsx = {xi} ∈ X then the matrixKx with i, j entry k(xi , xj) is

called thekernel matrixfor the setx. The functionk(·) is called akernel functionif the

kernel matrix is always positive semi-definite for any subset of objects fromX. Given two

instancesx1 andx2 fromX, the 2-normdistanceδ(xi , x j) betweenx1 andx2 in terms of the

kernelk is given by

δ(xi , x j) = ‖φ(xi) − φ(x j)‖2 (4.2)

=

√

k2(xi , xi) + k2(x j , x j) − 2k(xi , x j). (4.3)

Perturbations to input data. A perturbationto a training set ofn instancesx = {x1 . . . xn}
can modeled by a vector of countsα = {α1 . . . αn}with countαi corresponding to the weight

of training examplexi. For the original training set,αi = 1 for all instancesxi. To leave

out the instancexi, we setαi = 0. To givexi more weight, we setαi > 1. A perturbation

strategyis a setA of perturbation vectors. The setAmay be selected with either a random

or deterministic process. Two examples are:

• Theleave-one-outstrategy is deterministic, withA = {α1 . . .αm} whereαi[ j] = 0 for

i = j and 1 otherwise.

• TheDirichlet strategy randomly samplesmvectors using the DirichletDir (1n).

It will be convenient to denote the probability density of a variablex ∈ X that results from

a perturbationαi to the training setx asp(i)(x).

In the context of information retrieval, we treat the queryq as training data for rel-

evance. If we take as our domainX the set of all possible wordsV we can viewq as

consisting of the unordered set of termsq1 . . . qn, and each termqi may be thought of as an

item of training data selected fromX, so thatq ∈ Xn. Note that we have already processed
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Figure 4.1: The matrix of probability vectors for a discreteinput space (here representing
a word vocabulary). Each column represents the discrete parameteric or non-parametric
probability distribution across all words estimated from aparticular perturbation of the
training data (i.e. query). Conversely, the rowsφ(xi) give the probability estimates across
all perturbations for a given wordxi.

the same query variants for robust feedback as described in Chapter 3, so we essentially get

the use of the resulting feedback models ‘for free’ to use in estimating the kernelk(·).
Figure 4.1 shows the matrixA that results from usingm training set perturbations with

an example vocabulary. One way we might defineφ is

φk(xi) = Aik = p(xi |q(αk)) (4.4)

whereAik is the (i, k)-th entry ofA. In this case, thei-th column ofA is just the probability

distribution over the vocabularyX estimated from the training set (query) perturbationqi.

The row vectorφ(xi) is the feature mapping for the wordxi. A simple form of perturbation

similarity k(xi , x j) is simply the dot product between rows:

k(xi , x j) =
m
∑

k=1

AikAjk. (4.5)

It is important to note, however, that there are many choicesfor how to defineφ, and

thusA. For example, we may want to defineφ such that the dot product of two column

vectors corresponds to a particular metric between probability densities. In the next section,
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we generalize this example to similarity of two objects in anarbitrary domain, so that the

simple sum of Eq. 4.5 becomes an integral expressing a general inner product over some

feature space.

4.2.2 Canonical similarity integrals

Our formulation of perturbation similarity is inspired by earlier work of Baxter using

auxiliary tasks for classification and function approximation. Baxter showed that for 1-

nearest-neighbor classification, there is a unique optimalsimilarity measure that he called

the Canonical Distortion Measure (CDM) [Baxter 1997]. In the classification setting, this

quantityδ(x1, x2) is the expected loss of classifyingx1 with x2’s label. The expectation is

taken over a probability space of classifiers (tasks). The CDMfor a particular type of task

is uniquely defined by two factors: the choice of loss function and the task distribution.

Note that the CDM may not be symmetric or satisfy the triangle inequality, so it does not

technically define a metric.

In this chapter we apply Baxter’s idea to information retrieval applications, where we

view a task as relevance estimation with respect to a particular query q. We call a task

distribution for q a query neighborhoodof q.1 We define the query neighborhood as a

probability measureQ( f ) over the space of query functionsF . The canonical similarity

measure∆q(x, y) is the expected loss overQ, givenx andy in the input domainX.

∆q(x1, x2) =
∫

F
ρ( f (x), f (y))dQ( f ) (4.6)

This measure is uniquely determined by the task functionf , the choice of query neigh-

borhood measureQ and loss functionρ(u, v). We focus on the squared-loss function

ρ(x1, x2) = (x1 − x2)2. This gives the distance measureA(θ1, θ2):

AQ(θ1, θ2) =
∫

F
ρ( f (θ1), f (θ2))dQ( f ) (4.7)

= EQ[( f (θ1) − f (θ2))
2] (4.8)

= EQ[ f (θ1)
2] + EQ[ f (θ2)

2] − 2EQ[ f (θ1) f (θ2)] (4.9)

1In Baxter’s terminology this would be called aquery environment.
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where the expectation is taken over the query neighborhoodQ.2

As Figure 4.1 suggests, there are two approaches to computing similarity betweenxi

andx j in X, corresponding to comparing rows or columns in matrixA.

First, we can pick some mapping that identifiesxi with a singlecolumnvector of A,

representing a probability distributionpi(x) defined over all ofX, and then compute a

similarity or inner product between distributionspi(x), pj(x). We call thisintegration over

input space, because that is the domain for the inner product over distributions.

Alternatively, we can identifyxi with therow vector of featuresφ(xi). Each entryφk(xi)

corresponds to the result of usingk-th query perturbation as training data. This is essentially

Baxter’s measure and in the limit integrates over the continuous domain of tasks (queries).

We call thisintegration over perturbation space.

Integration over input space When we assign each input pointxi a probability distribu-

tion over input space, we can integrate over input space – in the discrete case, thecolumns

of A. This type of similarity measure has been the subject of recent work by other authors.

Jebara, Kondor and Howard [Jebara et al. 2004] introducedprobability product kernels

(PPK) where the kernel function is

kPPK(xi , x j) =
∫

X
pi(x)βpj(x)βdx (4.11)

for a positive constantβ.

A related special case when each input pointxi is identified with its own perturbation

q(i) leaving outxi results in theleave-one-out(LOO) kernel [Tsuda & Kawanabe 2002],

which measures the similarity of two domain members according to the similarity of their

influences on the density when the samples are left out of a given training set. The LOO

kernel works for both parametric and non-parametric densities, by measuring the distance

between arbitrary probability distributions using the Hellinger norm [Tsuda & Kawanabe

2002].

kLOO(xi , x j) = 4(n− 1)2
∫

(
√

p̂(i)(x) −
√

p̂(x))(
√

p̂( j)(x) −
√

p̂(x))dx (4.12)

2Other loss functions, such as the Hamming metric

ρ(x1, x2) = 1 − δ(x1, x2) (4.10)

are also possible.
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Tsuda and Kawanabe showed that for parametric probability densities the Fisher kernel [Jaakkola

et al. 1999] is a close approximation to the LOO kernel and converges to the LOO kernel

as the number of training samplesn goes to infinity.

An importance sampling approximation to the LOO kernel can be derived by taking

p̂(x) as the sampling distribution, with thexi as the evaluation points. This gives

kLOO(xi , xj) ≈
4(n− 1)2

n

n
∑

i=1

(
√

p̂(i)(xi) −
√

p̂(xi))(
√

p̂( j)(xi) −
√

p̂(xi))

p̂(xi)
(4.13)

which in turn can be written in the form

kLOO(xi , xj) ≈
n
∑

i=1

φ(xi)φ(x j) (4.14)

Thus, by defining the matrixA with n columns (one for each leave-one-out distribution)

and setting the column vectors to have the values

φi(x) =
2(n− 1)
√

n

√

p̂(i)(x) −
√

p̂(x)
√

p̂(x)
(4.15)

then finding a good approximation to the leave-one-out kernel reduces to computing a

simple relative change in (square-root transformed) probability, and taking the dot product

of the resulting columns.

One limitation of the LOO-type kernel is that it is only defined for elements (e.g. vocab-

ulary) that actually exist in the training set. For domains like information retrieval where

the training data (query) is extremely limited, this is a significant problem, since it implies

that the LOO kernel is only available between those words that happen to occur in the query.

This is clearly not acceptable if we wish to perform any kind of useful term clustering.

Integration over perturbation space If we take inner products between the perturbation

rows in matrix A, this gives the data perturbation kernel that we introduce in this chapter.

In contrast to the probability product family of kernels, integration over perturbations does

not assume a mapping from each pointxi to a specific densitypi(x).

Instead, we fix the two input domain elementsxi andx j and integrate over a probability

spaceP of density functions. These density functionsp(α)(·) are those that result from

perturbationsα on the training data, and we assume we have a measureQ(p) overP that
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describes the distribution over perturbation densitiesp(α)(·). We assume that the density

p(α)(·) is defined for all elements of the input domainX (although it may be zero), so that

the integral exists for all pairs (x, y) ∈ X2, and is

∆q(x1, x2) =
∫

P
ρ(p(x1), p(x2))dQ(p) (4.16)

Note that this has close connections to the scenario corresponding to the Canonical Distor-

tion Measure, in which each density functionp(α)(·) corresponds to a auxiliary prediction

task for the main prediction taskpq(·) using original queryq.

In the special case where we use the loss functionρ(u, v) = uβvβ for some constantβ,

we get the counterpart to the probability product kernel in the probability density domain

(instead of the input domain).

∆q(x1, x2) =
∫

P
p(x1)

βp(x2)
βdQ(p) (4.17)

4.2.3 Approximating the similarity integral

By writing the similarity measure as an integral in Eq. 4.6. we can now bring to bear the

general-purpose integration methods described in Chapter 2.

Our approach is to formulate a Monte-Carlo-like estimate by sampling density func-

tions from the domainP. Since each sample corresponds to a query variant, the question

then becomes how to choose specific query variants. Our method of selecting samples will

be a form ofimportance sampling, using knowledge of the properties ofQ(p).

Recall that the basic approach to evaluate a general integral of the form

I =
∫

Θ

f (θ)dµ(θ) (4.18)

on the domainΘ with measuredµ is to independently sampleN points X1, . . .XN in Θ

according to some density functionp(x), and then compute the random variable

FN =
1
N

N
∑

i=1

f (Xi)
p(Xi)

(4.19)

This approach is very general and ignores any information wehave about the nature of
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f . If we know that f is concentrated in particular areas, we can obtain a more efficient,

lower-variance estimate by usingimportance samplingof f .

Supposepq ∈ P is the density function overX associated with using the original query

q as training data. Letp(α) be the density function resulting from training on a perturbation

αwith q. Then informally whenα ≈ 1|q| – i.e. a ‘small’ adjustment toq – p(α) will typically

be close topq, with the measureQ(p) concentrated there. Thus, importance sampling in

the region ofpq is likely to be an effective strategy. We now elaborate on specific choices

of importance sampling strategy over the query neighborhood probability measureQ(p) to

evaluate the integral in Eq. 4.17.

4.2.4 Importance sampling with query neighborhoods

Our goal in this section is to define the PSM for a given query bydefining the probability

measureQ(p) over the space of queriesF . We define aquery neighborhooddensity func-

tion h(θ) for a queryq that describes how the query model behaves as a random variable

with respect to the original query. One way to interpret thisis how different query mod-

els for the same underlying information need might be generated. In essence, by defining

Q(p), which we call theneighborhoodof q, we are stating our assumptions about how we

characterize the uncertainty inherent inq. The result is that, instead of keepingq fixed as

in traditional systems, we treat it as a random variable. Using the distributionQ( f ), we will

createN query variantsq1, q2, . . . , qn.

We now discuss parametric and non-parametric methods for specifying h(θ). The sim-

plest strategy is to choose no variants at all, and simply usethe original query. In this case,

this corresponds to choosing a measureQ( f ) so that the original query functionfq is the

unique mode of the distribution, and the integral is estimated using a single sample at the

mode:

∆q(x, y) ≈ ρ( fq(x), fq(y)) (4.20)

We can also use the term-at-a-time (TAT) and leave-one-out (LOO) methods we used

in Chapter 3. The advantage of the TAT and LOO methods is that they are extremely

simple to implement. They both useN + 1 variants of the query, while being somewhat

complementary strategies, making them ideal for comparison. The disadvantage of TAT is

that, since only single terms are used, it may not adequatelycapture covariation between

pairs of terms, especially as the query length increases. Aswe showed for query expansion

in Section 3.4.8, and will show in Section 4.5, this leads to poor overall performance on
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Single term Leave-one-out

Sigma points (a)

Equal term prior

Sigma points (b)

Unequal term prior

Figure 4.2: Examples of different query sampling strategies, visualized on the simplexof
term weights for a three-term query. The original query, with all term weights equal, is in
the center of each simplex, except for sigma points (b), where its location is determined by
term-specific prior parameters. The black dots denote queryvariants that result from each
scheme. Shown are term-at-a-time (TAT, top left), leave-one-out (LOO, top right) and the
sigma points method (second row) for uniform term prior (bottom left) and non-uniform
priors (bottom right).
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various tasks.

We now define a family of parametric query neighborhoods thatbehaves somewhat like

an adjustable, hybrid form of both TAT and LOO.

Parametric query neighborhoods with the logistic normal distribution

If we have a vocabulary ofd+1 terms, we may have a unigram model over this vocabulary,

in which case it is convenient for us to work in thed-dimensional simplex. However, the

unscented transform that we describe in the next section is based on a Gaussian distribution

in unbounded Euclidean space. We tie together these two spaces by definingh(θ) to be a

flexible parametric density based on thelogistic normaldistribution [Aitchison & Shen

1980] over the simplex of term weights. The logistic normal distribution provides a simple

way to embed a Gaussian input distribution into thed-dimensional simplex. As a special

case, when the query neighborhood is well-approximated using a parameteric distribution

called the logistic normal, we produce an effective set of query variants using the unscented

transform from particle filtering.

The logistic normal implies the following generative process for a set of query term

weights. First we draw a set of latent variablesη ∼ (µ,Σ) where N(µ,Σ) is a k − 1-

dimensional Gaussian distribution. Then we projectη to thek-dimensional simplex point

r, representing the relative query term weights, withj-coordinater j using the logistic trans-

formation

r j =
expη j
∑k

i=1 expηi

While the Dirichlet distribution can only capture a weak general negative correlation

among terms, the logistic normal can capture much richer dependency structure between

terms according to the parameters of the Gaussian covariance matrix. The logistic normal

class has a total of12d(d + 3) parameters compared to thed + 1 of the Dirichlet.

Special case: Dirichlet approximation

A query model is often defined using a multinomial distribution over words. Since defining

a query neighborhood amounts to specifying a prior over the query model, it is convenient

to specify the query neighborhood in terms of the conjugate prior Dirichlet distribution.

We can closely approximate the Dirichlet distribution using the following formulas

from Aitchison & Shen [Aitchison & Shen 1980] to convert ad + 1 dimensional Dirichlet

distribution with parametersαi to a logistic normal meanµ and covariance matrixΣ (with
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entriesµi andσi j ).

µi = Ψ0(αi) − Ψ0(αd+1) (4.21)

σii = Ψ1(αi) + Ψ1(αd+1) (4.22)

σi j = Ψ1(αd+1) (i , j) (4.23)

whereΨ0(z) andΨ1(z) are the digamma and trigamma functions respectively3.

When using a Dirichlet distribution for the query neighborhood, we use a Dirichlet prior

βU to control the sharpness of the overall distribution and thus the amount of variation in

the sigma-points. WhenβU ≫ 1, the variants are only small adjustments to the original

query. If βU ≪ 1, we get a mixture of variants, half of which are very close toa LOO

sample and the other half to a TAT sample.

In this study, we use a simple variation strategy and allowr to vary according to a

Dirichlet distributionαr having its mean at the center of the simplex. Thus, to useαr

with the unscented transform we just approximateαr using Eq. 4.23, to obtain the logistic

normal (µr ,Σr).

Non-parametric query neighborhoods

The problem of estimating query neighborhood density is related to sensitivity estimation

of text classifiers. As such, it is possible to construct non-parametric density estimates with

some increase in computation cost.

In a recent example, Bennett [Bennett 2007] estimates the sensitivity of a classification

function with respect to small changes in the target (query)point. He defines a local non-

parametric density function for the query point based on itsVoronoi cell, and computes

the classification function for a small set of points sampledfrom the border of the Voronoi

cell. The advantage of this approach is that it samples in directions that are locally dense,

avoiding unlikely query points. A similar approach could beapplied to retrieval, with thek

query variants selected to maintain document ranking (say)close to that of to the original

query.

In this chapter, we focus on simple parametric methods for generating query variants

since these are computationally cheap to calculate and are sufficient to test the hypothesis

that some form of query variation is useful. In future work itwould be interesting to test

3Ψ0(z) = Γ′(z)/Γ(z) andΨ1(z) = Ψ0(z)′
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what, if any, improvements using non-parametric estimatesmight give.

4.2.5 Sigma-point sampling with the Unscented Transform

Assuming we have defined a parametric query neighborhood with the logistic normal, we

derive a deterministic importance sampling strategy called sigma-point sampling, which is

derived from a powerful method for computing statistics of non-linear functions of a ran-

dom variable, called theunscented transform[Julier & Uhlmann 2002] (UT). Previously,

the main use for the UT has been in particle filtering algorithms, where it has been very

successful. The unscented transform both specifies a way to select query samples and also

specifies the weights to use with the samples to calculate approximate lower moments of

the output distribution, such as mean, variance, and skew.

The key idea of sigma-point sampling is to choose a small number of points that ap-

proximate the query neighborhood density. The sigma pointsare chosen such that their

mean and variance are equal to the mean and variance of the underlying input distribution.

The basic unscented transform works as follows. Supposef (θ) is a scoring function,

and suppose we approximate the densityh(θ) of θ as ad-dimensional Gaussian with mean

µ and covariance matrixΣ. Then to approximate the expectation
∫

f (θ)h(θ) we choose 2d

pointsxk for k = 1, . . . ,2d such that

xk = µ + (
√

dΣ)k (4.24)

xd+k = µ − (
√

dΣ)k (4.25)

where (
√

dΣ)k is thek-th column of the matrix square root ofΣ. The matrix square root is

defined such that ifUDUT is the singular value decomposition ofΣ, with U = {U1, . . . ,Ud}
andD = diag{λ1, . . . , λd} then (

√
dΣ)k =

√
λkUk. The sample pointsxk effectively sum-

marize the mean and variance ofh(θ) and are then used in the following Monte-Carlo-like

approximation:
∫

f (x)h(x)dx≈ 1
2d

2d
∑

k=1

wk · f (xk). (4.26)

This method can be generalized to includeµ and scaled versions ofxk as additional sample

points.

Given a set of 2d + 1 sigma points{xi} in the input space, the unscented transform
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defines the weightwm of the sigma point at the mean to be

wm =
κ

α2(d − 1+ κ)
+ (1− 1

α2
) (4.27)

and the other 2d sigma points have weight

ws =
1

α2(d − 1+ κ)
(4.28)

where we setα = 1.0, κ = max(1,d − 2). Using these weights, the unscented transform

guarantees [Julier & Uhlmann 2002] that the mean and variance of f (θ) are given with

accuracy up to second-order by

µ = Eh[ f (x)] =
2d
∑

i=1

wm:i f (xi) (4.29)

σ2 = Eh[ f 2(x)] − µ2 =

2d
∑

i=1

ws:i f (xi) − µ2 (4.30)

where the sigma pointsxi and corresponding weightswm:i (for means) andws:i (for vari-

ance) are derived based on the Gaussian input distributionh(x). To review, the sigma-point

sampling method gives us a provably good way of choosing samples in query space. We

allow the query term weights to be distributed according to the logistic normal on the sim-

plex, or as an approximate Dirichlet as a special case. Usingthe unscented transform, we

can use these query samples to compute the expected value andvariance of any non-linear

scoring function of the query.

With this density defined over the input space, the unscentedtransform gives us a set of

‘sigma points’ in query space that can be used as query variants. These variants are prov-

ably good in the sense that, when used with the appropriate weights, we obtain approxima-

tions of the mean and variance of the scoring function that are accurate to second-order.

Sigma-point sampling is a theoretically well-founded strategy for sampling the query

neighborhood. By ‘well-founded’ we mean that the estimatesof important statistics of the

scoring function such as the mean and variance are guaranteed to be accurate up to second-

order. In other words, if the scoring function is quadratic,then the unscented transform is

exact. An example of sigma-point query variants is shown in Table 4.1.

The processing cost of sigma-point sampling is not high, because for a query ofN
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Variant Query terms
A1. foreign (0.333333); minorities (0.333333); germany (0.333333)

A2. foreign (0.133447); minorities (0.133447); germany (0.733106)

A3. foreign (0.458289); minorities (0.458289); germany (0.083422)

A4. foreign (0.092386); minorities (0.660575); germany (0.247039)

A5. foreign (0.660575); minorities (0.092386); germany (0.247039)

Table 4.1: Example of five (2N − 1) sigma-point query variants used for TREC topic 401,
“foreign minorities germany”. Relative term weights are shown in parenthesis next to each
term. We could also make other choices, such as permutationsof these weights.

terms, we need to perform a singular value decomposition of the N − 1 by N − 1 logistic

normal covariance matrix; sinceN is typically 10 terms or less for typical queries, the

covariance matrix is small.

One potential disadvantage is that we require more samples than the TAT and LOO

methods: a total of 2N − 1 samples instead ofN + 1. For example, a five-word query

would require 6 LOO samples (the original query plus 5 LOO variants), while sigma-point

sampling would use 9 variants. Because most information retrieval queries are five terms

or less, this difference will usually be small.

There are interesting directions for future work: sigma-point sampling is a general in-

tegration method not limited to use with queries. It could beused with document models

to calculate expectations of common similarity or loss functions between queries and doc-

uments, with respect to mixtures of Gaussians or Dirichletsfor example. We leave details

for a separate study. For example, it would be interesting toevaluate how the number of

sigma-point samples affects performance for different applications.

Figure 4.2 visualizes all three methods for a three-term query. The original query, with

all term weights equal, is in the center of each simplex. The black dots denote query

variants that result from each scheme. TAT sampling (top left) gives all the weight to one

term per sample and sets the other term weights to zero. Leave-one-out (top right) sets one

term weight to zero in from each sample and gives the rest equal weight. The sigma points

method (second row) selects certain eigenvectors assumingthe query was drawn from a

logistic normal distribution. In effect this gives a ‘softer’ version of the other two discrete

strategies combined. Also shown is the case where the initial query term weights are not

all equal, to show how the sigma-point method adapts to the simplex geometry correctly.
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function PreparePerturbationKernel(training_data)
θ̂ ← MLE_Estimator(training_data);
V ← GeneratePerturbations(training_data);
forall perturbationsvk ∈ V do
θ̂k ← MLE_Estimator(vk);
forall elements xi in finite domainX do
φk(xi) = (

√

θ̂k[xi] −
√

θ̂[xi])/
√

θ̂(xi) /* Other feature mappings possible */
end

end
return φ

Function PreparePerturbationKernel(training_data)

φ← PreparePerturbationKernel(training_data);
r ← PerturbationKernel(φ,"watermelon", "banana");
function PerturbationKernel( φ, xi , x j)
distance← ∑|φ|k=1(φk(xi) − φk(x j))2

return distance;
Function PerturbationKernel(xi , x j)

A pseudocode version of the data perturbation kernel function and its setup function

PreparePerturbationKernel are given in Figure PreparePerturbationKernel.

In the next sections we apply the methods of Section 4.2 to twoimportant similarity

estimation problems: term similarity, and language model similarity. The common theme

is that we extend existing measures by replacing a single base statistic with anexpectation

over that base statistic with respect to the distribution over query functions.

4.3 Application: Term similarity
Statistical properties of words in text are a key ingredientin modern information retrieval

methods. In this section we are concerned with estimating statistical properties of a very

basic unit: pairs of terms. For example, we may wish to measure how a pair of terms is

correlated, given a set of documents. From the earliest workon information retrieval, re-

searchers have been interested in how pairs of words are related, and in automatic methods

for quantifying term dependencies. Doyle [Doyle 1961] described a simple statistical de-

pendency test which was essentially Pointwise Mutual Information (PMI). Doyle used PMI

to find phrases and compound words (adjacent correlations),and term dependencies (prox-

imal correlations), with the overall goal of creating term association maps or heirarchies to



110 CHAPTER 4. DATA PERTURBATION KERNELS

assist with searching and browsing. Many other flavors of association measures, such like

Expected Mutual Information (EMIM) [van Rijsbergen 1979] have also been explored:

many of these are variations on the associations possible over the 2× 2 contingency table

of term occurrence. In addition to document frequency data,external resources such as

WordNet [Resnik 1995] have been used to form or augment term similarity measures.

Much of this long history of term similarity has been appliedto query expansion. In

early work, Spärck Jones [Jones 1971] clustered words usingword cooccurrence in doc-

uments, and used the clusters to expand queries. Term clustering has been used for both

manual [Thompson & Croft 1989] and automatic [Qiu & Frei 1993]expansion. In the

context of query expansion, there are two broad types of termsimilarity: global methods,

which are query-independent and typically use statistics over the entire collection; andlo-

cal methods, where the computation is specific to a given query, such as by using the top

ranked documents of the query. Xu and Croft [Xu & Croft 2000] combined global and local

methods inlocal context analysis[Xu & Croft 2000] for automatic query expansion. By

improving query-specific term similarity methods, therefore, we can potentially improve

important information retrieval methods like automatic query expansion that rely on them.

As we noted earlier, the use of query variants has certain advantages over co-occurrence

statistics that treat the query terms separately. Because we only perturb part of the original

query, the covariance data for a term with a given query term has the remaining query terms

to use for context. This makes the perturbation kernel more conservative in finding good

related words, accounting for polysemy by requiring that dependencies with multiple terms

in context exist for the closest related words. This reliance on multiple relations with the

query is reflected in the fact that the (Euclidean) distance in perturbation space that defines

word similarity for ann-word query is the sum of squares ofn perturbation features, each

of which measures the interaction between the target word and a query term. Words will

have a very low Euclidean distance only when the differences of many perturbation features

are low.

4.3.1 Mathematical formulation

For term similarity, the task input domainV is a finite vocabulary set of terms. We suppose

we have an unperturbed queryq with language modelθq. For each query variantqi of q, we

use the corresponding top-retrieved documentsDi and their scores to estimate a generative

Relevance Model [Lavrenko 2004] with parametersθi. We can now quantify the effect on
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the model probabilityp(w|θi) of word w due to the perturbation (query variant)qi, which

we denote by the mappingφi(w) for w.

There are many ways to defineφi(w), but one plausible approach starts by calculating

theodds ratio oi(w)

oi(w) =
p(w|θi)
p(w|θq)

(4.31)

We can then consider the mapping

φi(w) = 2 logoi(w) (4.32)

= 2 log
p(w|θi)
p(w|θq)

(4.33)

= 2(logp(w|θi) − log p(w|θq)) (4.34)

This gives the relative change in log-likelihood of termw in modelθk (from query variant

qk) compared to the Relevance Modelp(·|θq) for the original query. Essentially, this results

in exactly the likelihood displacement measure of Cook (see Eq. B.2 in Sec. B), which

shows a connection between the idea of a perturbation kerneland previous work in statistics

on local influence, described further in Appendix B.

It is instructive to analyze how the canonical integral in Eq. 4.6 can be decomposed

when substituting Eq. 4.32 into Eq. 4.6 we obtain the expansion

∆(w1,w2) =
∫

F
(log

p(w1|θk)
p(w1|θ)

− log
p(w2|θk)
p(w2|θ)

)2dQ( f ) (4.35)

=

∫

F
log2 p(w1|θk)p(w2|θ)

p(w2|θk)p(w1|θ)
dQ( f ) (4.36)

We can define a factor

∆0(w1,w2) = log
p(w2|θ)
p(w1|θ)

(4.37)

that is independent of query variants, and the complementary factor

∆k(w1,w2) = log
p(w1|θk)
p(w2|θk)

(4.38)
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that does not involve the original query. Using these, we canthen rewrite∆(w1,w2) as

∆(w1,w2) = ∆0(w1,w2)
2 + 2 · ∆0(w1,w2)

∫

F
∆k(w1,w2)dQ( f ) (4.39)

+

∫

F
∆k(w1,w2)

2dQ( f ) (4.40)

Note that the function∆(w1,w2) may not be a strict metric: for example, we can have

∆(w1,w2) = 0 whenw1 andw2 are different.

This analysis shows how adding query variants allows us to distinguish between two

termsw1 and w2 having the same or very similar probabilities in the original relevance

modelθ: in that case,∆0(w1,w2) ≈ 0 and so∆(w1,w2) becomes a function of the additional

variant model alone.

Writing the term similarity measure as an integral (or sum of integrals) allows us to

apply the sampling-based integration methods of Chapter 2. In particular, we can use

the sigma-point sampling approximation to Eq. 4.39 withn query variantsq1 . . . qn with

sample weightswk as defined in Eq. 4.27 and Eq. 4.28. Using the resulting Relevance

Modelsθ1 . . . θn to define the∆k, the term similarity function using the data perturbation

kernel is given by:

∆(w1,w2) ≈ ∆0(w1,w2)
2 + 2 · ∆0(w1,w2)

∑

k

wk∆k(w1,w2) (4.41)

+
∑

k

wk∆k(w1,w2)
2 (4.42)

Hellinger feature mapping As an alternative to Eq. 4.32 where we transformedo(w) by

logu, we can use the transform of the function
√

u−1, which has a similar shape, to obtain

φk(w) =
√

ok(w) − 1 (4.43)

=

√

p(w|θk)
p(w|θq)

−

√

p(w|θq)
p(w|θq)

(4.44)

=

√

p(w|θk) −
√

p(w|θq)
√

p(w|θq)
(4.45)
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which is exactly the mapping used by the leave-one-out kernel (see Eq. 4.12) that is based

on the Hellinger norm.

4.3.2 Visualizing perturbation similarity

A simple example of a term similarity mapping using query variants for 20 individual

feedback terms is shown in Figure 4.5. (The symbols used to plot the words have no

special meaning and can be ignored.) The x-axis mapsφ1(w) and the y-axis mapsφ2(w)

where

φk(w) =

√

pαk(w) −
√

pq(w)
√

pq(w)
(4.46)

where the perturbation strategy is leave-one-out. In otherwords,φk indicates change in

feedback model probability when one word, (e.g. "wave" in the"japanese wave" topic) is

given greatly reduced weight in the query. The probability given the original unmodified

query is the baseline mean level, represented by the origin.Thus, terms that have similar

responses to the same query perturbations are close in this space. By ‘close’, we mean

simple Euclidean distance between two points.

The perturbation feature mapping provides several types ofuseful information about the

query and feedback model terms and their relationships. First, it gives a clustering of terms

in the feedback model. For example, in Subfigure 4.5a the "pearl harbor" noise cluster has

been separated from the other terms and placed in the NE quadrant, while the SE quadrant

brings together terms related to "japanese", such as "asian" and "prefecture". Theabsence

of related terms is also evident: no term is close to "wave" in aspect space. This may be

evidence that this is a singularly important term to the query because it is difficult to find

related words, and thus must be preserved and given significant weight.

Second, the global location of the clusters provides some indication of their potential

relevance to the original query topic. The Euclidean distance from the origin indicates

the variance of each term’s estimated probability of relevance compared to the original

query. The farther reaches of the NE quadrant contain terms whose probabilityincreased

significantly when either of the first two query terms was removed, making these terms less

likely to be important to the original information need. On the other hand, terms in the NW

and SE quadrants had lower probability when one of the corresponding terms was removed,

providing evidence of partial relevance. Terms in the SW quadrant are less common but

are the most likely to be strong additions to a feedback modelsince since they covary with
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(a) Topic 491 japanese wave
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(b) Topic 406 parkinson’s disease

Figure 4.5: The top 20 expansion terms for several TREC topics as they map to the first
two co-ordinates in perturbation space. Thex-axis represents the log of the relative change
in probability for a word in the feedback model for the first query variant, compared to its
probability in the feedback model for the initial query. Similarly, the y-axis shows the log
change for the second query variants, and so on. Thus, terms whose probabilities respond
similarly to the same query variants are close in this space.
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(c) Topic 433 greek philosophy stoicism
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(d) Topic 484 skoda auto

Figure 4.5: The top 20 expansion terms for several TREC topics as they map to the first
two co-ordinates in perturbation space. Note how the mapping to perturbation space is
effective in removing many expansion noise terms from the neighborhood of the original
query terms, typically placing them in the upper right corner of this space. Close words in
the upper right corner have been jittered apart for clarity.
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both query terms and thus more likely to be related to both concepts.

Third, the relative proximity of the original query terms toeach other in perturbation

space gives an indication for how phrase-like their behavior is. This reflects the fact that,

if two or more terms form a single concept together, such thatremoving one of the terms

results in substantially altering that concept – and thus the documents in which it is used –

then the variation caused by these changes will be significantly disruptive no matter which

term is removed and their statistics will be very similar.

4.3.3 Evaluation of kernel performance for query expansion

We now perform a task-based evaluation of the term clustering obtained with the pertur-

bation kernel by applying it to query expansion. Later in this thesis, in Chapter 6, we will

introduce a query expansion method called theQMOD algorithmthat takes a kernel matrix

as one of its inputs. Because it is very easy to switch in different kernels into the QMOD

algorithm, we use that method here as our query expansion task. However, it is not impor-

tant at this point to know any further details about the QMOD algorithm for the purposes

of evaluating the relative performance of different kernels.

To visualize expansion performance we use the risk-reward tradeoff curve, described in

Section 3.4.4. The curves for our standard six TREC topic sets are shown in Figure 4.6.

For comparison, we chose a kernel derived from a term association measure that did not

require the use of query variants and could be calculated from the initial set of top-retrieved

documents. Recall that we are deriving term association statistics from a set of documents

that is already biased toward the query terms, so that the number of documentsnot con-

taining a query term is frequently zero, or close to zero. Thus, we need to use an effective

term assocation measure that ignores this non-relevant negative information. The Jaccard

measure is a simple, long-used term assocation measure thatsatisfies this property. Details

on the Jaccard measure are given in Section A.2 of Appendix A.We also tried several

other association measures, including expected and pointwise mutual information, but the

Jaccard measure gave the best relative performance of these.

Figure 4.6 compares the risk-reward tradeoff curves using the perturbation kernel against

the Jaccard distance, using the QMOD query expansion algorithm that will be introduced

in Chapter 6. For four of the six collections (TREC 7, TREC 8, wt10g, and gov2) the

perturbation kernel provides a small but consistent improvements over the Jaccard measure

for virtually all values ofα. At a setting ofα = 0.5, the improvements are largest for
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Figure 4.6: Risk-reward tradeoff curves for six TREC topic sets, showing the improved
performance of the perturbation kernel compared to a Jaccard kernel on some collections.
The solid (red) line is the curve given by the QMOD algorithm using the perturbation
kernel. The dashed (pink) line uses the same QMOD algorithm and parameter settings, but
substitutes a Jaccard kernel. Tradeoff curves that arehigher and to the leftgive a better
risk-reward tradeoff. Curves are plotted with points atα-increments of 0.1, starting with
α = 0 at the origin and increasing toα = 1.0.
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TREC 8 and gov2. For TREC 8, the perturbation kernel gives a MAP gain of 14.5% with

R-Loss of 262, while the Jaccard kernel gives a MAP gain of 8.68% with R-Loss of 307.

For the gov2 collection, the perturbation kernel MAP gain is9.78% with R-Loss of 2555,

while the Jaccard kernel has MAP gain of 8.13% with R-Loss of 2605. For two of the

collections (TREC 1&2 and Robust 2004), the performance of the two kernels is almost

identical: TREC 1&2 shows only a tiny advantage for the perturbation kernel forα ≥ 0.6.

The results suggest that the perturbation kernel gives the potential for useful gains on some

collections, with little downside risk.

4.4 Application: Language model similarity and

query difficulty
We now examine similarity functions over sets ofmodelsrather than sets of single param-

eters. Our goal will be to obtain a similarity function to compare a query model against

a collection model as an estimate of query difficulty. We show that using query variants

generalizes this clarity-type measure of query difficulty, by replacing a single similarity

calculation with anexpecteddistance from the query model to the collection model, with

respect to the query neighborhood distribution.

4.4.1 Generalizing the query clarity score

Thequery clarityscore was introduced by Cronen-Townsend and Croft [Cronen-Townsend

& Croft 2002] as a way to estimate query difficulty by calculating the similarity of a given

query’s unigram model to the collection unigram model usingKL-divergence. In this sec-

tion we show how the clarity score generalizes to an expectedsimilarity with respect to

multiple query variants.

Let θq represents the query model derived for the queryq, and letθi be the model

derived for a query variantqi taken in the query neighborhoodQ. SupposeθC represents a

language model describing the collectionC. Then we define thegeneralized clarityscore

of a queryq with respect to the collectionC and query neighborhood measureQ as

AQ,C(q) = EQ[KL(θq||θi)] + EQ[KL(θC||θi]) − 2EQ[
√

KL(θq||θi)KL(θC||θi)] (4.47)

Thus, when the query is treated as a random variable, the distance from the query to the

collection becomes an expectation over the query neighborhoodQ.
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If we choose the query neighborhoodQ to be a point-distribution with all probability

mass on the original queryq, so that

Qq
0,1(θ) =















1 if θ = θq
0 otherwise

(4.48)

then

EQ[KL(θq||θi)] = KL(θq||θq)

and generalized clarity reduces to the base clarity score for q and collectionC:

AC(q) = KL(θq||θq) + KL(θC||θq) − 2
√

KL(θq||θq)KL(θC||θq) (4.49)

= 0+ KL(θC||θq) +
√

0 · KL(θC||θq) (4.50)

= KL(θC||θq) (4.51)

which is just the clarity score for queryq and collectionC. Thus, generalized clarity adds

additional second-order information aboutq when the set of auxiliary queries ofQ is not

empty.

4.5 Evaluation of generalized clarity
In this section we evaluate the usefulness of using variant-based similarity measures on a

language model similarity task, to estimate a clarity score.

4.5.1 General method

We evaluated performance on the following sets of TREC topics and collections: 51-150

(TREC-1&2), 201-250 (TREC-4), 351-400 (TREC-7), 401-450 (TREC-8), and 451-550

(wt10g, TREC-9&10). We also included the set of topics from the TREC Robust 2004

(301-450; 601-700) track. We chose these collections for their varied content and document

properties. For example, wt10g documents are Web pages witha wide variety of subjects

and styles while TREC-1&2 documents are more homogeneous news articles.

Indexing and retrieval was performed using the Indri systemin the Lemur toolkit [Met-

zler & Croft 2004] [Lemur 2002]. Our queries were derived fromthe words in the title

field of the TREC topics. Phrases were not used. We performed Krovetz stemming for all

experiments with a stoplist of 419 common English words. Other details on the baseline
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Collection TAT LOO Sigma-point
TREC 1&2 0.311 0.338 0.406
TREC 4 -0.071 0.401 0.465
TREC 7 0.265 0.221 0.268
TREC 8 0.446 0.414 0.418
Robust 2004 0.178 0.212 0.249

Table 4.2: The effect of different query sampling strategies on the Kendall-τ correlation of
generalized clarity with average precision.

feedback method and query syntax can be found in [Collins-Thompson & Callan 2007].

There is some inconsistency in the way query performance prediction is evaluated

across studies. We choose one of the more consistent measures found in the various papers:

Kendall’sτ, which measures similarity between two rankings. In our study, this means we

compared the ranking of topics sorted by a performance baseline such as average precision,

with ranking of the same topics sorted by the query scoring function.

4.5.2 Effect of query sampling strategies

We evaluated how each of the three query sampling strategies– LOO, TAT, and sigma-point

sampling – affected the quality of the generalized clarity estimate, which was measured by

Kendall-τ correlation with average precision. The results are summarized in Table 4.2.

Sigma-point (SP) sampling achieved the highest score on 4 out of 5 collections, com-

pared with LOO sampling (0 collections) and TAT sampling (1 collection). SP sampling

achieved significant gains of+0.064 in Kendall-τ correlation on both TREC 1&2 and

TREC 4, compared to LOO sampling. Sigma-point sampling (SP)was better than TAT

and LOO, except for a small difference on TREC-8.

In general, SP sampling appears to have a useful gain in quality for this task, with a more

consistent upside and smaller downside risk. However, the amount of gain is relatively

small. This may be due to query length effects, or the need for additional parameter tuning

for sigma-point query neighborhoods.

4.5.3 Effectiveness of generalized clarity score

Our goal in this section is not to claim the best general querydifficulty method. Instead,

we tested how useful the generalized clarity score (GC) was, relative to the baseline clarity
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Collection GC C C+GC
TREC 1&2: 51–150 0.406 0.339 0.451
TREC 4: 201–250 0.465 0.552 0.555
TREC 7: 351–400 0.268 0.416 0.383
TREC 8: 401–450 0.418 0.394 0.448
Robust 2004 0.249 0.361 0.362
wt10g: 451–550 0.238 0.275 0.278

Table 4.3: Kendall-τ rank-correlation with average precision of generalized clarity(GC),
clarity score(C) and combined (C+GC) with average precision. Sigma-point sampling was
used for query variation.

(C) method, and when combined with baseline clarity using simple interpolation (C+GC)

with C and GC given equal weight.

A comparison of the Kendall-τ correlation for different methods and test collections

is shown in Table 4.3. Although gains from adding GC as a feature were negligible for

some collections, GC had a rank-correlation with average precision greater than 0.40 for

the TREC 1&2, TREC 4, and TREC 8 collections. This led to a significant gain for the

combined C+GC method for TREC 1&2 of 0.451, compared to baseline clarity(0.406),

and for the TREC 8 collection (0.448 vs 0.394).

Conversely, adding GC almost never hurt baseline clarity performance. The one ex-

ception was the TREC 7 collection: baseline clarity was slightly higher (0.416) than the

combined method (0.383). This is not unexpected since for TREC 7 generalized clarity had

the lowest rank-correlation (0.268) with AP of all test collections.

The correlations obtained by the combined C+GC method compare favorably to state-

of-the-art results. For example, on the collections sharedwith the evaluation (using 2

pooled systems) of [Aslam & Pavlu 2007] (which we call JS), C+GC score for TREC

7 was 0.383, compared to 0.436 (JS); TREC 8 C+GC was 0.448 compared to 0.443 (JS);

Robust 2004 C+GC was 0.362 vs 0.393 (JS).

4.6 Related Work

We first review related work on distance measures and kernels, followed by recent methods

for query-specific term similarity and estimating query difficulty.
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4.6.1 Distance measures as probabilities

The distance between two data points or instances can be defined in terms of probability.

In a classification setting, each instance is identified witha class labelc, and so the prob-

ability might be the misclassification probability: the likelihood that two points actually

have different class labels, rather than being in the same class [Minka 2000a]. Thus, the

optimal choice for the 1-nearest neighbor ofx is the neighborxL with lowest probability

of misclassification. More generally, a canonical similarity function can be defined as the

cost of mislabeling if two points are in different classes, with many different cost functions

possible. Yianilos [Yianilos 1995] estimates the task distribution and views the Canonical

Distortion Measure as an evidence ratio.

The idea of defining a distance by comparing probability distributions, also known as

distributional similarity is discussed by Lee [Lee 1999]. Dillon et al. [Dillon et al. 2007]

discuss word distance as probability of Type II error, wherethe distributions in question

are the language models of the word contexts. Blanzieri and Ricci introduce a minimum

risk distance measure [Blanzieri & Ricci 1999] that optimizes finite misclassification risk,

extending an earlier nearest neighbor method of Short and Fukunaga [Short & Fukanaga

1980] that learned a reduced set of prototypes along with a local metric.

4.6.2 Kernels over probability densities

The probability product kernel and leave-one-out kernel described in Section 4.2.2 that in-

tegrate over input space are related to a broader family of kernels that involve inner products

over probability densities.

Conditional symmetric kernels. Let h be a hidden variable whose values are drawn

from a finite setH (this can be extended to continuous domains). Watkins [Watkins 2000]

introducedconditional symmetric kernels

k(x, x′) =
∑

h∈H
p(x|h)p(x′|h)p(h) (4.52)

The conditional symmetric kernel can be seen as a special case of data perturbation kernels

if we identify the latent spaceH with the set of hypotheses of the ‘true’ information need

expressed by some query variant. This requires the generative processp(x|h) be known.
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Marginalized kernels. If p(h|x) is known, we can usemarginalized kernels[Tsuda et al.

2002]. Suppose we have a kernelkZ(z, z′) defined between the joint variablesz = (x,h)

andz′ = (x′,h′). The marginalized kernelk(x, x′) is the expectation ofkZ over the hidden

variable as follows:

k(x, x′) =
∑

h∈H

∑

h′∈H
p(h|x)p(h′|x′)kZ(z, z′) (4.53)

Zhaoet al. [Zhao et al. 2006] add a time-dependent aspect to query-specific similarity

using the marginalized kernel approach to model the evolution of click-through data.

Fisher kernels. The Fisher kernel, introduced by Jaakkola, Diekhans and Haussler [Jaakkola

et al. 1999] is a special case of marginalized kernel. Our perturbation similarity measure is

related to Fisher-type kernels that compare the sufficient statistics of generative models, in

the following way.

We use term similarity as an example for an informal argument. Let θ̂ be the relevance

model estimated using the original query. Each query variant qi results in a corresponding

relevance modelθi. TheFisher scoreof a termx is a vector of derivatives: one for each

latent variable.

Ux = g(θ̂, x) =
∂log pθ̂(x)

∂θ
(4.54)

and the Fisher kernelκ(x1, x2) betweenx andy is given by

κ(x, y) = UxI −1Uy. (4.55)

Let θk = θ̂ + ǫk, and suppose that‖ǫk‖ = δk for some norm. The task functionfk(w) we use

for term similarity can be rewritten as

fk(x) = log
p(x|θk)
p(x|θ̂)

(4.56)

= δk ·
log p(x|θ̂ + ǫk) − log p(x|θ̂)

δk
(4.57)

≈ δk ·
∂log pθ̂(x)

∂θk
(4.58)

Assuming the magnitude of theδk are roughlyδ for all k variants, we can denotef (x) as

the vector offk(x) for all k, and it is evident thatf (x) ∝ Ux, i.e. that the vector of resulting

perturbation scores is a type of Fisher score. However, unlike the classic Fisher kernel,
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calculating the perturbation kernel does not assume the underlying likelihood function is

differentiable, making it applicable to a wider family of generative models.

4.6.3 Query-specific term similarity and clustering

The basic concept of query-specific similarity measures hasexisted for decades. Preece [Preece

1973] and later Willett [Willett 1985] proposed improving document classification and

clustering by including the query as context information. Tombros and van Rijsbergen [Tombros

& van Rijsbergen 2001] proposed and tested the effectiveness of query-specific (also called

query-sensitive) measures. Such measures are biased in favor of pairs of documents that

jointly contain attributes (e.g. terms) of the query. According to Tombros and van Rijsber-

gen’s hypothesis, "pairs of relevant documents will exhibitan inherent similarity which is

dictated by the query itself (that) conventional measures... such as the cosine coefficient,

can not detect..." They measured the effectiveness of a similarity measure by examining

the degree to which relevant documents were brought closer together (compared to non-

relevant ones). They found that simple query-sensitive measures gave significant improve-

ment over traditional cosine similarity on several small test collections.

While the idea of query-specific similarity measures is not new, research on such al-

gorithms has continued to be of great interest in areas such as Web search, which needs

precise ways to compare not only documents but summaries, online ads, alternate queries,

and other short snippets of text. Recent extensions for Web documents look beyond the

basic query terms to other features related to the query suchas clickthrough data, related

entries in query logs, and so on.

Recently a few other kernels have used expansion methods to obtain more context for a

similarity comparison. The kernel of [Sahami & Heilman 2006] compared two text snippets

by computing the inner product of the query expansions that result by considering each

text snippet as a Web query. Each query expansion is represented as a normalized centroid

of the tf.idf vectors for the corresponding top-ranked documents. [Metzler et al. 2007]

subsequently evaluated a set of related measures to performquery-query comparisons. In

comparison to these, the perturbation kernel has focused onrepresenting and comparing

individual words, not snippets, according to each word’s ofperturbation features. There

is, however, a natural extension for using perturbation kernels to compare text snippets, by

representing each snippet as the union of the perturbation features derived for the snippet’s

individual words. In a way, this can be seen as a generalization of existing expansion-based
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methods that adds sensitivity information to the basic expanded representation. We leave

this as a subject for future work.

4.6.4 Other statistical text similarity methods

Recent work has begun to examine the implications of treating queries more fully as ran-

dom variables. For example, Dillonet al. [Dillon et al. 2007] proposed a method for

taking expected distances on word histograms with respect to a word translation model.

They applied their method to text classification with generally positive improvements in

classification accuracy. In a more general framework, Yih and Meek [Yih & Meek 2007]

combine multiple types of similarity estimates, using logistic regression to learn combina-

tions of similarity measures for query suggestion.

Related to the Fisher-type kernels of Section 4.6.2, [Lafferty & Lebanon 2002] intro-

ducedinformation diffusion kernelsover statistical parameter spaces. In the case of discrete

data such as text, information diffusion kernels can be used with the multinomial distribu-

tion to compute the geodesic distance between multinomial parametersθ1 andθ2 estimated

from two text passages (e.g. using maximum likelihood). It would be interesting to ex-

plore the connections between this family of kernels and thegeneralization of perturbation

kernels to text snippets described above.

Ando et al. [Ando et al. 2006] used leave-one-out (LOO) variants for performing query

expansion in the TREC 2005 Genomics track. Most significantly, they reiterate the con-

nection between multi-task learning and using auxiliary queries that was previously stated

in general form by Baxter [Baxter 1997]. However, their workis not focused on metric

learning for general IR objects, except in the sense that an enhanced query model provides

a better similarity function for retrieval. Instead, they focus on estimating an improved

query model by calculating a Rocchio-type feedback model using the length-normalized

average of the positive examples.

4.6.5 Query difficulty

Recent studies point toward the conclusion that estimatingvarianceis an important facet

of predicting query performance. More specifically, the sensitivity of some aspect of

the retrieval process to variation in input or model parameters has been shown to be ef-

fective in varying degrees. This includes variance of results ranking (by varying docu-

ment models) [Zhou & Croft 2006], query variation [YomTov et al. 2005], query termidf



126 CHAPTER 4. DATA PERTURBATION KERNELS

weights [Vinay et al. 2005] and document scores [Diaz 2007b].

Our method is in the query variation group. Previously, we showed that combining

the results from multiple query variants improved the robustness and precision of a strong

baseline pseudo-relevance feedback (PRF) method. Our approach has several differences

from that of [YomTov et al. 2005]. First, we do not require a training phase. Second, our

best query variation strategy is based on sigma-point sampling, not term-at-a-time. Collins-

Thompson & Callan applied query variation to enhance the robustness of pseudo-relevance

feedback [Collins-Thompson & Callan 2007].

Aslam & Pavlu [Aslam & Pavlu 2007] introduce variation by combining TREC runs

from multiple systems for the same query. Their difficulty prediction statistic, which

achieves impressive results with multiple systems, has close connections with our gen-

eralized clarity statistic: both methods measure the distance between the language models

of the top-retrieved document sets obtained from either query variants (our system) or re-

trieval function variants (Aslam & Pavlu). Our interest is in the performance achievable

with a single system, so it would be very interesting to understand more about how the

variation achievable with multiple systems could be at least partially achieved with the

correct types of perturbation to a single system.

4.6.6 Other uses of data perturbation

In the field of recommender systems (collaborative filtering, or CF) methods for quantifying

the influenceof a user were introduced by Rashidet al. [Al Mamunur Rashid & Riedl

2005]4. In particular, for a given userU they measure the net change in ratings predictions

for all other users, caused by leaving out the observed data for U. Change is measured by

either total change across all items (NPD), or bucketed intounique users (a measure they

term NUPD). This is attractive because it makes few assumptions about the underlying CF

algorithm, although it can be computationally expensive. Mathematically, the influence

I(u) of useru in user-setU is a sum over all itemsa (from item-setA)

Iδ(u) =
∑

v∈U,v,u

∑

a∈A
[|p̂(u)

v (a) − p̂v(a)| ≥ δ] (4.59)

whereδ is a threshold that specifies the change needed for the smallest possible rating ad-

justment. Such influence methods are actually an instance ofa general class of perturbation

4Thanks to Sean McNee for this connection.
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techniques developed earlier in the statistics literature, which are described in Appendix B.

Other interesting uses of perturbations can be found in graph theory. For example,

[Prabhu & Deo 1984] examine the extent to which two graphs canbe discovered to be

isomorphic by perturbing each graphG by adding a vertex and connecting it to all other

vertices ofG. The characteristic polynomials of the perturbed graphsG1+ v andG2+ v are

then compared. There seem to be deeper connections here to kernel methods which have

yet to be fully explored.

The idea of performing tests to measure the sensitivity of a model to perturbations in

the training data or model parameters has been of interest tostatisticians for some time,

and is discussed further in Appendix B.

4.7 Conclusions
The data perturbation kernel is a useful tool for comparing the similarity of elements in

a domainX when we have a probability density over the entire spaceX that is derived

from using a possibly very small subset of it as training data. Similarity between elements

is induced with respect to small perturbations in the training data. While the probability

product space family of kernels assign exactly one probability density to each point in

the input spaceX and then integrate overX, our approach is essentially the dual: Each

input point is identified with multiple probability densities evaluated at that point, and we

integrate over probability density space. By treating the query as training data chosen from

a discrete vocabulary space, we can obtain a query-specific similarity measure between

words or language models by running a small number of query variants. Since we already

use the same query variants to obtain multiple feedback models, there is essentially no

additional cost to using this similarity measure for retrieval within our framework.

Using the data perturbation kernel on the space of language models generalizes the

existing query clarity measure by adding a sensitivity component. This suggests the gain

in Kendall tau with average precision may be a useful test forthe IRcluster hypothesisin

a given collection and set of queries. Furthermore, when this situation exists the method

we use to explore the query neighborhood becomes more important, since our results will

be more sensitive to the results of that method. Indeed, on those collections we observed

some improvement moving from a term-at-a-time strategy to sigma-point sampling which

used more query points to explore the neighborhood.

The data perturbation kernel is very simple to apply but has surprisingly deep connec-
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tions to multi-task learning and Fisher-type kernels. We suspect there are also fundamental

connections to spectral clustering methods but leave this analysis for future work. In the

next chapter, the term similarity measure based on the perturbation kernel is used as an

important ingredient in selecting effective query models in an optimization framework.



Chapter 5

Convex Optimization

The second part of this thesis, on optimization algorithms,forms the capstone of our work

on estimating statistical models for robust retrieval. Here we apply the sampling-based

estimators introduced in Chapter 3 and the data perturbationkernels described in Chapter 4

to form objectives and constraints within a general risk framework for estimating retrieval

models. This novel optimization approach allows us to estimate good query models under

a variety of useful retrieval scenarios.

One strength of this approach is that we can easily control the trade off between com-

peting objectives and constraints such as maximizing expected utility of the model versus

the risk of multiple sources of evidence that the model is based on. We can also model

the dependencies between the sources of evidence themselves, or between the optimization

objectives and multiple arbitrary constraints such as a minimum or maximum number of

terms in the model, or the consistency of aspect coverage of the information need. As we

show in Chapter 6, when evidence uncertainty and its relationto optimizing the objective

is ignored, the result will be less robust query models.

We can break the problem of finding ‘good’ query models into two parts. First, we

must specify theobjective functionsthat describe the properties of the model we want

to optimize. For example, we may wish to maximize the expected relevance score of the

query model. Second, there may be any number ofconstraintsthat the model must also

satisfy. For example, there might be a performance cost for adding an expansion term to a

query, causing us to prefer queries with fewer terms. Another constraint might be that we

prefer a query model that is more robust, i.e. less likely to hurt unexpanded performance,

in exchange for lower average precision. Ideally, we not only want to find optimal query

129
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models with respect to the objectives and constraints, but also have simple ways for users

to specify how they want to trade off between competing objectives.

We give a detailed development of convex programming methods to address these prob-

lems in Chapter 6. In this chapter, we give some preliminary motivations and background

for using convex optimization methods for information retrieval problems.

5.1 Optimization methods

Given the many possible objectives and constraints involved in choosing a query and the

trade-offs possible among these factors, the problem of finding a ‘good’ query model is

complex. However, there is a principled framework that allows us to structure the problem

by making our assumptions clear and allowing us to control how we manage competing

tradeoffs between objectives, while providing efficient computational methods to find solu-

tions. This is the approach known asconvex optimization(CO).

We will show that even simple CO methods, with easy-to-understand objectives and

constraints, help us balance the various trade-offs required of the optimal query model,

such as the trade-off between expected return (a good feedback model) and model variance

(the amount of harm if wrong). Typically, our optimization will embody a basic tradeoff

between wanting to use evidence that has strong expected relevance (such as highly-ranked

documents, or highly-weighted expansion terms), and thevarianceor risk of using that

evidence, or variance in covering the query aspects.

We now give some background on optimization and introducingbasic terminology and

concepts that we will use to specify objectives and constraints. An excellent resource on

convex optimization theory and practice is Boyd & Vandenberghe [2004] and we follow

their notation below.

5.1.1 General optimization problems

The general optimization problem is to find anx that minimizes the value of the function

f0(x) for all eligible x that must satisfy the conditionsfi(x) ≤ 0 andhi(x) = 0. We use the
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following notation:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m (5.1)

hi(x) = 0, i = 1, . . . , p

to describe the problem, withx ∈ Rn being theoptimization variableand the function

f0(x) : Rn → R being theobjective function. The objective function is also sometimes

called thecost function. The conditionsfi(x) ≤ 0 andhi(x) = 0 are called theinequality

constraintsandequality constraintsrespectively, withfi(x) : Rn → R andhi(x) : Rn → R
being the correspondingconstraint functions.

We denote thedomainof the optimization problem asD, which is the set of allx for

which the objective function and all constraint functions are defined. A pointx ∈ D is

calledfeasibleif all constraintsfi(x) ≤ 0 andhi(x) = 0 are satisfied atx. The optimization

problem 5.1 itself is said to befeasibleif at least one feasible pointx exists. Otherwise,

it is calledinfeasible, in which case we adapt the convention that the optimal valuex⋆ of

x = ∞. For any feasible pointsxk with f0(xk) → ∞ ask → ∞ then the optimal value

x⋆ = −∞, and we call the problemunbounded below. An optimization problem issolvable

if there exists a feasible point for which the minimum of the objective function is attained.

An important special case of the general optimization problem 5.1 is thefeasibility

problem, in which the objective functionf0(x) = 0, i.e. is identically zero for all inputs. In

this case, the optimal value off0(x) is either zero if a feasiblex exists, or∞ if the feasible

set is empty. This problem is written as

find x

subject to fi(x) ≤ 0, i = 1, . . . ,m (5.2)

hi(x) = 0, i = 1, . . . , p

The feasibility problem is a consistency test of the constraints; if consistency is satisfied,

we obtain a feasible point.

Although we have presented optimization in terms of minimization, naturally we can

also form a corresponding maximization problem simply by minimizing − f0(x) with re-

spect to the same constraints. In these cases, the objectivefunction− f0(x) is also known as
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theutility function.

5.1.2 Convex optimization

We first give a brief review of convex sets and functions. Informally, a setC is convexif

every point inC can be “seen” from any other point inC. That is, there is an unobstructed

straight path between them that lies entirely withinC. Mathematically, for anyx, y ∈ C and

α ∈ [0,1], then

αx+ (1− α)y ∈ C. (5.3)

A function f : Rn → R is convexif its input space (domain)D is a convex set, and for any

pointsx, y ∈ D the following holds forα ∈ [0,1]:

f (αx+ (1− α)y) ≤ α f (x) + (1− α) f (y). (5.4)

If f is differentiable, then a very important property of convex functions is as follows:f is

convex if and only if its domainD is convex and

f (y) ≥ f (x) + ∇ f (x)T(y− x) (5.5)

for all x, y ∈ D. This implies that when∇ f (x) = 0, then f (y) ≥ f (x) for all y ∈ D andx

gives a global minimum forf .

A convex optimization problemis an optimization problem in which the following

requirements hold.

• The objective functionf0(x) is convex.

• The inequality constraint functionsfi(x) are convex.

• The equality constraint functions are affine, i.e. have the formhi(x) = ai
Tx− bi.

• The variablex ∈ S where S is a convex set.

We write the standard form of a convex optimization problem as:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m (5.6)

ai
Tx = bi , i = 1, . . . , p Raw
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Convex optimization has attractive theoretical properties. For example, a key property of

convex problems is that, if we have a locally optimal solution point, then it must also

be globally optimal. This means we will not get ‘stuck’ at a local maximum point and

will not have to search exhaustively for a global solution. Also, convex optimization is

tractable: solving can be done with polynomial complexity in the number of constraints

and variables.1

In addition, certain meta-problems become easier when formulated as a convex pro-

gram. Findingrobustsolutions to convex problems can often be also easily expressed as a

CP. This is discussed further in Section 5.2.4. Also, many hard problems can be ‘relaxed’

to the form of a convex problem with known approximation bounds. The graph labeling

problem discussed in Section 6.1 that we use for query model estimation is one application

of convex relaxation.

5.1.3 Convexity of common retrieval functions

We note that many functions used as important scoring objectives or constraints in informa-

tion retrieval are convex. For example, we state without proof the fact that for a given query

modelθq, the KL-divergenceKL(θq||θd), an important comparison function in the language

modeling approach to retrieval, is a convex function ofθd. Similarly, the dot product of a

given query vector with a document vector is always convex.

In fact, many common ranking functions are convex functionseven in more complex

query formulations. For example, the Indri [Metzler & Croft 2004] retrieval system makes

use of an inference network constructed from term evidence nodes and operator nodes. A

common query operation is the#combine operator

f#combine(b) =
n
∏

i=1

b1/n
i (5.7)

which calculates the geometric mean of the input beliefs, and the variant the#weight

operator

f#weight(b,w) =
n
∏

i=1

b
wi
∑

k wk
i (5.8)

1Importantly – since many useful convex programs are non-smooth in practice – this can often be proven
for many problems whether or not the objective and constraints are differentiable.
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and the#max operator

f#max(b) = max
i=1...n

bi . (5.9)

These are all convex functions of the belief inputsbi. When certain combinations of oper-

ators are used to form a more complex query, the resulting ranking function is also convex.

This is because nesting of convex functions (mathematically, called function composition)

can result in convex functions under fairly broad conditions. As an example, the structured

query (such as we might use to perform query expansion) of theform

#weight( 0.7 #combine(estonia economy) 0.3 #weight( 0.3 estonia 0.2

economy 0.1 kroons 0.1 tallinn 0.1 baltic))

is a convex function of the concept weights, because the combined function is the compo-

sition of

f = f#weight({ f#combine(b), f#weight(b)},w) (5.10)

Since the functionf#weight is a non-decreasing function of its input, the resulting composed

function is still convex.

The fact that many common retrieval scoring or comparison functions are convex means

it is possible to use convex programming techniques to optimize over retrieval objects or

actions in a realistic way.

5.2 Convex program families
The following are some basic forms of convex programming that we summarize as back-

ground information.

5.2.1 Linear programming

A linear program (LP) has objective and constraints that areall affine. The standard form

for a LP is

minimize cTx+ d

subject to Gx� h (5.11)

Ax= b
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wherec,d ∈ Rn,G ∈ Rm×n, A ∈ Rp×n. The feasible set of an LP is some polyhedronP as

defined by the constraints, and we are essentially finding theoptimal pointx⋆ ∈ P that is

farthest in the direction of the vector−c.

5.2.2 Quadratic programming

An important subclass of convex program, called aquadratic program(QP) is more general

than linear programs because it allows a (convex) quadraticobjective function with affine

constraints. The standard form for a QP is

minimize 1/2xTPx+ qTx+ r

subject to Gx� h (5.12)

Ax= b

whereP ∈ Sn
+, G ∈ Rm×n, A ∈ Rp×n. The notationP ∈ Sn

+ denotes that the matrixP is in the

family of positive semi-definite matrices.

If we allow (convex) quadratic inequality constraints instead of affine, we obtain the

more general class ofquadratically constrained quadratic program(QCQP).

minimize 1/2xTP0x+ q0
Tx+ r0

subject to 1/2xTPi x+ qi
Tx+ r i ≤ 0, i = 1, . . . ,m (5.13)

Ax= b Raw

wherePi ∈ Sn
+, i = 1, . . . ,m. A QCQP minimizes a quadratic objective over a feasible set

that is the intersection of ellipsoids. If we havePi = 0, i = 1, . . .m this reduces to a simple

QP, while takingP = 0 gives a linear program as a special case.

5.2.3 Second-order cone programming

A more general class of convex program called asecond-order cone program(SOCP). For

an SOCP we allow constraints of the form

‖Ax+ b‖ ≤ cTx+ d (5.14)
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with A ∈ Rk×n. Note the right-hand side allows an affine function instead of the constantd

found in QCQPs. Thus a general second-order cone program (SOCP) has the form

minimize cTx

subject to ‖Ai x+ bi‖ ≤ ci
Tx+ di , i = 1, . . . , L (5.15)

Fx = g Raw

where‖·‖ is the Euclidean norm. Whenci = 0, i = 1 . . .m the SOCP reduces to a QCQP

as a special case. IfAi = 0, i = 1 . . .m, then we obtain a general linear program (LP).

The norm constraint in Eq. 5.14 is not limited to the Euclidean norm: it can be naturally

generalized [Alizadeh & Goldfarb 2001] to ap-norm

‖x‖p = ‖x‖l/m = (
n
∑

i=1

|xi |l/m)m/l (5.16)

wherep = l/m for positive integersl, m. The p-norm arises, for example, in theextended

Boolean modelof retrieval. [Salton et al. 1983]. The Euclidean norm corresponds to the

case whenl = 2, m = 1. Essentially, the value ofp controls the ‘softness’ of the matching

function, with p → ∞ approaching the strict Boolean model, andp → 1/2 approaching

standard vector space similarity. The SOCP constraint

‖x‖p = (
n
∑

i=1

|xi |l/m)m/l ≤ t (5.17)

can be written as a set of second-order cone and linear inequalities, namely

−t
l−m

l s
m
l

i ≤ −xi

t
l−m

l s
m
l

i ≤ xi

si ≥ 0 (5.18)
n
∑

i=1

si ≤ t

t ≥ 0

Such extensions increase the space of possibly useful SOCP programs for information re-
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trieval situations.

5.2.4 Robust optimization

In robust optimization, we optimize for the worst-case scenario for an underlying simpler

problem by expressing bounded uncertainty in the objectiveand constraint functions. This

is also known as aminimaxpolicy, because we are minimizing the maximum loss possible

over the data, where the minimization is taken over all feasible sets of constraints. It is

not surprising that, to formulate query models with good worst-case performance, we will

examine robust optimization methods.

We perform robust optimization by making the objective and constraint functionsfi(x)

functions of not only the optimization variablex ∈ Rn, but also a parameter vectoru ∈ Rk

that is a random variable that captures this uncertainty according to a specified probability

distribution. The standard form of this program is

minimize sup
u∈U

f0(x,u)

subject to sup
u∈U

fi(x,u) ≤ 0, i = 1, . . . ,m (5.19)

In a variant of this approach, we seek to avoid distributional assumptions and instead spec-

ify a set of moments foru, such as mean and covariance.

Taking a simple linear program as an example, we start with the underlying problem

minimize cTx

subject to ai
Tx ≤ bi , i = 1, . . . , L (5.20)

and model uncertainty in theai by proposing thatai was generated by a random process

driven by a hidden variableui

ai = āi + Piu, ‖u‖ ≤ 1 (5.21)

where the process has mean ¯ai and covariance matrixPi ∈ Rm×n. Substituting these uncer-

tain constraints results in the robust version of the linearprogram, which turns out to be a
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second-order cone program

minimize cTx

subject to ¯ai
Tx+ ‖Pi

Tx‖ ≤ bi , i = 1, . . . , L (5.22)

The additionalregularization terms‖Pi
Tx‖ are typical of robust versions of convex pro-

grams: expressing uncertainty inai is in some sense equivalent to constrainingx to lie away

from the directions of greatest uncertainty of theai. The quadratic program we describe

in Chapter 6 may be seen as a robust optimization problem. The robust linear program

developed by [Lanckriet et al. 2002] for text classification– while obtaining approximate

performance guarantees on the misclassification probability – is one such example in prac-

tical use.

5.3 Convex programming implementations
Convex programming methods are fast approaching ‘technology’ status. Well-designed,

fast, modular libraries such as the Matlab CVX toolkit from Stanford [Boyd & Vanden-

berghe 2004] and Python CVXOPT [Vandenberghe 2008] are available for high-level pro-

gram specification and solution. Internally, they make use of a specialized program called

solver that operates on convex programs in some canonical form. Each solver typically

specializes in a particular type of program, such as LP, QP, SOCP, and so on. High-level

software such as CVXOPT hides this complexity by automatically selecting the correct

solver for the given program.

Current state-of-the-art solvers use a class of algorithm known as interior-point meth-

ods for nonlinear convex optimization problems. Examples of current solver software in-

clude MOSEK [Anderson 1999] and SeDuMi [Sturm 2004]. Interior-point methods have

polynomial-time worst case complexity and can efficiently handle problems involving hun-

dreds of constraints and thousands of variables. As [Boyd & Vandenberghe 2004] point

out, in some sense, once the program is specified correctly, it is essentially solved.

Thus, the remaining work in using convex programming methods lies in two areas.

First, the problem objectives and constraints must be appropriately analyzed and an appro-

priate program specified. The objective functions must havesome proven connection to

reality and desirable outcomes. Second, statistics used inthe objective function and con-
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straints, such as the expected utility and variance of a document score, must be reasonably

estimated and calibrated. Accurate estimation means that we have a method for producing

a provably good approximation given the distribution assumption we make. By calibrated,

informally we mean that a number such as estimated probability of relevance does have

reasonable correlation with actual relevance on average.

For the actual solution of convex programs, our system currently uses the CVXOPT

package [Vandenberghe 2008], written in Python. Our main query processing routines in

C++ call into CVXOPT via the Python C API. We did not need to make anymodifications

to CVXOPT itself (as of version 0.9).

While there is little work to date applying convex optimization methods to information

retrieval, we note that the use of convex optimization is increasingly becoming used in the

database community. Such is the approach proposed by Gibas,Zheng, and Ferhatosman-

oglu [Gibas et al. 2007] to use a convex solver to prune computation and I/O overhead for

determining a top-k ranking of records where the scoring function is convex.

5.4 Conclusions
This chapter introduced the idea of applying convex optimization methods to information

retrieval problems. In particular, we focused on providingthe background needed for the

specific problem of estimating robust query models, which isdiscussed next in detail in

Chapter 6. The use of convex optimization methods gives an efficient way to search a

richer space of potential query models, whose quality is evaluated with respect to prop-

erties of the whole set, such as a balanced representation ofmultiple query aspects. This

is in contrast to current greedy approaches that only look ata one-dimensional selection

process involving a threshold on term score or rank. A convexoptimization approach also

gives a unifying framework for specifying models that embody competing tradeoffs, such

as between choosing terms with high, but uncertain, relevance scores. Finally, by encod-

ing heuristics in the feasible set of query models, we obtaina way to perform selective

expansion with multiple criteria.



Chapter 6

Optimization Methods for Query Model

Estimation

Our aim in this chapter is to develop a rigorous theoretical basis for automatically esti-

mating reliable expanded query models. We present a novel framework that treats query

model estimation as a convex optimization problem. Informally, we seek query models

that use a set of terms with high expected relevance but low expected risk. This approach

gives a natural way to perform robust selective expansion: if there is no feasible solution

to the optimization problem, we do not attempt to expand the original query. Useful ad-

ditional model constraints such as aspect coverage and costfunctions (e.g. to favor short

expansions) can be expressed within this framework to give avery flexible general-purpose

approach to finding effective query models in a variety of useful retrieval scenarios.

Current methods for calculating query models suffer from several drawbacks. First,

existing methods have little principled accounting for therisk associated with a particular

term. This is partly because a bit of extra computational work must be done to gather

the evidence required to make such risk estimates. (In Chapters 3 and 4. we introduced

one method, query variants, that is effective in gathering this data efficiently.) As a result,

current methods calculate term weights primarily by an expected reward criterion, such

as probability in a generative relevance model. Such terms may be high-reward, but also

related to few or no other query terms, making them more high risk. The result is generally

the unstable feedback results that we see in even state-of-the-art feedback algorithms.

Second, selection of expansion terms is typically done in a greedy fashion by rank or

140
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score, which ignores the properties of the terms as a set and leads to the problem of aspect

imbalance, which in turn leads to query drift.

Third, few existing feedback algorithms are able to performquery expansionselec-

tively. That is, most query expansion techniques cannot detect when a query is risky and

automatically scale down or avoid expansion in such cases. Instead, if query expansion is

used at all, it is usually applied to all queries, regardlessof risk. A recent study by [Amati

et al. 2004] proposed to solve the problem of selective expansion by attempting to predict

which queries should have expansion applied or not. They developed a decision criterion

based on an ad-hoc combination of heuristics such as query length and rarity of query

terms. However, their approach remains an all-or-nothing solution that either keeps or re-

jects all expansion termsm. Ideally, we want a more flexible algorithm that can determine

the best number of expansion terms to use automatically (including possibly none).

Finally, there may be other factors that must be constrained, such as the computational

cost of sending many expansion terms to the search engine, orother set-based properties of

the expansion terms. To our knowledge such situations are not handled by any single query

model estimation framework in a principled way – especiallywhen we must reconcile these

competing goals somehow.

To remedy all of these problems, we need a better theoreticalframework for query

model estimation: one that incorporates both risk and reward data about terms; that detects

risky situations and expands selectively by automaticallychoosing the right number of

expansion terms; that can incorporate arbitrary additional problem constraints such as a

computational budget; and that has a fast practical implementation.

The central tool that we propose to provide such a risk framework is convex optimiza-

tion. An optimization approach frees us from the need to provide a closed-form formula for

term weighting. Instead, we specify a (convex) objective function and a set of constraints

that a good query model should satisfy, letting the solver dothe work of searching the space

of feasible query models. If no feasible model is found, we donot attempt to expand the

original query. Such an approach makes it easy to add custom constraints.

The basic building blocks of our risk framework have two parts. First, we seek to

minimize an objective that consists of two criteria: term relevance, and term risk. Term

risk considers both the risk of an individual term, and the conditional risk of choosing one

term given we have already chosen another. Second, we specify constraints on what ‘good’

sets of terms should look like. These constraints are chosento address traditional reasons
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Figure 6.1: Query model estimation as a constrained graph labeling problem using two
labels (relevant, non-relevant) on a graph of pairwise termrelations. The square nodes X,
Y, and Z represent query terms, and circular nodes representpotential expansion terms.
Dark nodes represent terms with high estimated label weights that are likely to be added to
the initial query. Additional constraints can select sets of terms having desirable properties
for stable expansion, such as a bias toward relevant labels related to multiple query terms
(right).

for query drift.

This chapter is organized as follows. In Section 6.1 we formulate query term weight-

ing as a graph labeling problem and describe linear and quadratic problems in their basic

form. In Section 6.2 we develop the specific objective and constraint functions that will

be useful for robust query model estimation, and give the basic complete convex program

used for query model estimation. We give examples of how the basic model may be refined

in Section 6.3.1, including how to implement a non-convex budget constraint. We demon-

strate the effectiveness of our convex formulation in Section 6.4 on standard test collections

and explore the contributions of each constraint type on thequality of the estimated query

model. Section 6.5 is a discussion of some implications of our work for query expansion

and Section 6.6 discusses related work.

6.1 Query model estimation as a graph labeling problem

We can gain some insight into the problem of query model estimation by viewing the

process of building a query as a two-classlabelingproblem over terms. Given a vocabulary

V, for each termt ∈ V we decide to either add termt to the query (assign label ‘1’ to the

term), or to leave it out (assign label ‘0’). The initial query terms are given a label of ‘1’.
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Our goal is to find a functionf : V → {0,1} that classifies the finite setV of |V| = K

terms, choosing one of the two labels for each term. The termsare typically related, so that

the pairwise similarityσ(i, j) between any two termswi ,w j is represented by the weight of

the edge connectingwi andw j in the undirected graphG = (V,E), whereE is the set of

all edges. The cost functionL( f ) captures our displeasure for a givenf , according to how

badly the following two criteria are given by the labeling produced byf .

• The costci:k gives the cost of labeling termti with labelk ∈ {0,1}.

• The costσi, j ·d( f (i), f ( j)) gives the penalty for assigning labelsf (i) and f ( j) to items

i and j when their similarity isσi, j. The functiond(u, v) is a metric that is the same

for all edges. Typically, similar items are expected to havesimilar labels and thus a

penalty is assigned to the degree this expectation is violated.

For this study, we assume a very simple metric in whichd(i, j) = 1 if i , j and 0 otherwise.

In a probabilistic setting, finding the most probable labeling can be viewed as a form of

maximum a posteriori (MAP) estimation over the Markov random field defined by the term

graph.

Although this problem is NP-hard for arbitrary configurations, various approximation

algorithms exist that run in polynomial time by relaxing theconstraints. Here we relax

the condition that the labels be integers in{0,1} and allow real values in [0,1]. A review

of relaxations for the more general metric labeling problemis given by Ravikumar and

Lafferty [Ravikumar & Lafferty 2006]. The basic relaxation we use is

maximize
∑

s; j

cs; j xs; j +
∑

s,t; j,k

σs, j;t,kxs; j xt;k

subject to
∑

j

xs; j = 1

0 ≤ xs; j ≤ 1

(6.1)

The variablexs; j denotes the assignment value of labelj for terms. For a two-class problem

where j ∈ {0,1}, the values ofx for one class completely determine the values for the other

class since they must sum to 1. It therefore suffices to optimize over only thexs for one

class, and to simplify matters, we often refer tocs orσs,t instead ofcs; j orσs, j:t,k.

Our method obtains its initial assignment costscs; j based on term weights from a base-

line feedback method, given an observed query and corresponding set of query-ranked
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documents. For our baseline expansion method, we use the strong default feedback algo-

rithm included in Indri 2.2 based on Lavrenko’s Relevance Model [Lavrenko 2004]. Further

details are available in [Collins-Thompson & Callan 2007].

In the next section, we discuss how to specify values forcs; j andσs, j;t,k that make sense

for query model estimation. Our goal is to find a set of weightsx = (x1, . . . , xK) where each

xi corresponds to the weight in the final query model of termwi and thus is the relative value

of each word in the expanded query. The graph labeling formulation may be interpreted

as combining two natural objectives: the first maximizes theexpected relevance of the

selected terms, and the second minimizes the risk associated with the selection. We now

describe each of these in more detail, followed by a description of additional set-based

constraints that are useful for query expansion.

6.2 Objectives and constraints for query model estimation
Typically, our optimization will embody a basic tradeoff between wanting to use evidence

that has strong expected relevance, such as expansion termswith high relevance model

weights, and the risk or confidence in using that evidence. Webegin by describing the

objectives and constraints over term sets that might be of interest for estimating query

models, and then show how these properties can be formulatedas (sometimes competing)

constraints or objectives in a convex optimization problem. The object of this section is not

to describe a specific strategy for formulating a query, but rather to address the problem of

how to weight the different sources of evidence (words) that the query will be based on.

6.2.1 Relevance objectives

Given an initial set of term weights from a baseline expansion methodc = (c1, . . . , cK)

theexpected relevanceover the vocabularyV of a solutionx is given by the weighted sum

c · x =
∑

k ckxk. Essentially, maximizing expected relevance biases the ‘relevant’ labels

toward those words with the highestci values. Other relevance objective functions are

also possible, as long as they are convex. For example, ifc and x represent probability

distributions over terms, then we could replacec · x with KL(c||x) as an objective since

KL-divergence is also convex inc andx.

The initial assignment costs (label values)c can be set using a number of methods

depending on how scores from the baseline expansion model are normalized. In the case of

Indri’s language model-based expansion, we are given estimates of the Relevance Model
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p(w|R) over the highest-rankingk documents1. We can also estimate a non-relevance model

p(w|N) using the collection to approximate non-relevant documents, or using thelowest-

ranked kdocuments out of the top 1000 retrieved by the initial queryQ. To setcs:1, we first

computep(R | w) for each wordw via Bayes Theorem,

p(R|w) =
p(w|R)

p(w|R) + p(w|N)
(6.2)

assumingp(R) = p(N) = 1/2. Using the notationp(R|Q) andp(R|Q̄) to denote our belief

that any query word or non-query word respectively should have label 1, the initial expected

label value is then

cs:1 =



















p(R|Q) + (1− p(R|Q)) · p(R|ws) s ∈ Q

p(R|Q̄) · p(R|ws) s < Q
(6.3)

for the ‘relevant’ label. We usep(R|Q) = 0.75 andp(R|Q̄) = 0.5. Since the label values

must sum to one, for binary labels we havecs:0 = 1− cs:1. It may be possible to use more

sophisticated methods for setting thecs; j such as different probability distribution models

of relevance and non-relevance scores.

6.2.2 Risk objectives

Optimizing for expected term relevance only considers one dimension of the problem. A

second critical objective is minimizing the risk associated with a particular term labeling.

We adapt an informal definition of risk here in which the variance of the expected relevance

is a proxy for uncertainty, encoded in the matrixΣwith entriesσi j . Using a betting analogy,

the weightsx = {xi} represent wagers on the utility of the query model terms. A risky

strategy would place all bets on the single term with highestrelevance score. A lower-risk

strategy would distribute bets among terms that had both a large estimated relevance and

low redundancy, to cover all aspects of the query.

Conditional term risk. First, we consider theconditional riskσi j between pairs of terms

wi andw j. To quantify conditional risk, we measure the redundancy ofchoosing wordwi

given thatw j has already been selected. This relation is expressed by choosing a symmet-

ric similarity measureσ(wi ,w j) betweenwi andw j, which is rescaled into a distance-like

1We use the symbolsRandN to represent relevance and non-relevance respectively.
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measured(wi ,w j) with the formula

σi j = d(wi ,w j) = γ exp(−ρ · σ(wi ,w j)) (6.4)

The quantitiesγ andρ are scaling constants that depend on the output scale ofσ, and the

choice ofγ also controls the relative importance of individual vs. conditional term risk.

In this study, theσ(wi ,w j) measure is the perturbation kernel defined in Chapter 4.

Details on the perturbation kernel parameters used for evaluation are given in Section 6.4.1.

Individual risk. We say that a term related to multiple query terms exhibitsterm cen-

trality. Previous work has shown that central terms are more likely to be more effective for

expansion than terms related to few query terms [Collins-Thompson & Callan 2005] [Xu

& Croft 1996]. We use term centrality to quantify a term’s individual risk, and define it

for a termwi in terms of the vectordi of all similarities ofwi with all query terms. The

covariance matrixΣ then has diagonal entries

σii = ‖di‖22 =
∑

wq∈Q
d2(wi ,wq) (6.5)

Other definitions of centrality are certainly possible, e.g. depending on generative assump-

tions for term distributions.

We can now combine relevance and risk into a single objective, and control the tradeoff

with a single parameterκ, by minimizing the function

L(x) = −cT x+
κ

2
xTΣx. (6.6)

If Σ is estimated from term co-occurrence data in the top-retrieved documents, then the

condition to minimizexTΣx also encodes the fact that we want to select expansion terms

that are not all in the same co-occurrence cluster. Rather, we prefer a set of expansion

terms that are more diverse, covering a larger range of potential topics. Risk estimates

may also come from the similarity measures given by data perturbation kernels described

in Chapter 4. Looking beyond criteria that focus on individual terms or pairs of terms,

we now discussset-based constraints, which are properties of the entire set of expansion

terms.
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BUT

(a) Greedy term selection

court 0.026

appeals 0.018

federal 0.012

employees 0.010
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education  0.009

teachers 0.008

union 0.007

seniority 0.007

salary 0.006
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legal,

education &

pay aspects

(b) Set-based term selection

Figure 6.2: Hypothetical query: Merit pay law for teachers,Showing greedy expansion
term selection (left) and set-based selection (right)

6.2.3 Set-based constraints

One restriction of current query enhancement methods is that they typically make term-

by-term decisions, without considering the qualities of the set of terms as a whole. An

example of this behavior is shown in Figure 6.2. We can identify three broad, complemen-

tary aspects for a query likemerit pay law for teachers: a legal aspect, a financial aspect,

and an educational aspect2. A one-dimensional greedy selection by term score, especially

for a small number of terms, has the risk of emphasizing termsrelated to one aspect, such

aslaw, and not others. This in turn increases the risk of query drift. A more stable feedback

algorithm would select terms that cover all three aspects ofthe query. We call this property

aspect balance. Figure 6.3 gives a graphical example of aspect balance (left), along with

another criterion, which we callaspect coverage(center), and the term centrality objective

(right) given earlier.

In this figure, each subfigure shows a different constraint. For each constraint, two

possible colorings of a word graph are shown on the left and right. The word graph contains

words related to two hypothetical query termsX andY. The dots of the graph represent the

related words (vertices) – the edges and word labels of the graph have been omitted for

clarity, to focus on the nature of the labeling. Dots coloredblack are words selected to

form the query expansion forX andY. Conversely, light-colored dots are words that are

not included in the expansion. The left-hand labeling in a subfigure selects a subset of

terms that does a weak job of satisfying the constraint (aspect balance, aspect coverage, or

2 Alternative aspect lists could certainly be defined for thisexample, such as a more genericlocation,
procedure, time. The important point is that any aspect that covers the meaning of the query should have a
similar covering in the expanded version of the query.
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Y Y

Bad Good

(a) Aspect balance

Y Y

Low High

(b) Aspect coverage

Y Y

Variable Centered

(c) Term centering

Figure 6.3: Three complementary criteria for expansion term weighting on a graph of can-
didate terms, and two query termsX andY. The aspect balance constraint (Subfig. 6.3a)
prefers sets of expansion terms that balance the representation of X and Y. The aspect
coverage constraint (Subfig. 6.3b) increases recall by allowing more expansion candidates
within a distance threshold of each term. Term centering (Subfig. 6.3c) prefers terms near
the center of the graph, and thus more likely to be related to both terms, with minimum
variation in the distances toX andY.

term centering). The right-hand labeling selects a subset of terms that strongly satisfies the

constraint. Note that some coloring can satisfy some of these constraints but not others.

For example, the term subset selected in the left-hand labeling of Figure 6.3(c) has good

aspect balance and coverage, but is not strongly centered between the original query terms

X andY.

We now define aspect balance and other set-based constraintsmore formally. To define

these constraints mathematically, we map terms to their co-ordinates in the data perturba-

tion space defined in Chapter 4. In this space, each wordwi has a corresponding feature

vectorφ(w) with entriesφk(w)

φk(w) =

√

p(w|θk) −
√

p(w|θq)
√

p(w|θq)
. (6.7)

The similarity between words becomes a simple Euclidean distance in this space. De-

tails on the specific settings for the perturbation kernel used in this chapter are given in

Section 6.4.1. We now show how to write these constraints as optimization constraints in

terms of these feature vectors.
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Aspect balance. Recall that in Chapter 4 we created the matrixA from the vectorsφ(wi)

of perturbations for each wordwi, i.e.

φk(wi) = Aik = p(wi |q(αk)) (6.8)

whereAik is the (i, k)-th entry ofA. In this chapter we restrictA to just the query term feature

vectorsφ(qi), making the simplistic assumption that each of a query’s terms represents a

separate and unique aspect of the user’s information need. We create the matrixA from the

vectorsφ(wi) whereφk(wi) = σik for each query termqk. (Recall thatσik is thei, k-th entry

in matrixΣ given by Eq. 6.4.) In effect,Ax gives the projection of the solution modelx on

each query term’s feature vectorφ(qi). The requirement thatx be in balance is equivalent

to the requirement that the mean of the projections be equal to the meanζµ of theφ(qi).

This is expressed as

Ax≤ µ + ζµ (6.9)

To demand an exact solution, we setζµ = 0. In reality, some slack is desirable for slightly

better results and so we use a small positive value such asζµ = 2.0.

The assumption that each query term and the perturbation features associated with it

represent a different aspect of the information need is somewhat unrealistic, but it greatly

simplifies the model. In a more general Bayesian treatment, aspects would be described by

latent variables, which in turn would require treating the matrix A as uncertain, resulting in

a second-order cone optimization problem3.

Query term support. Another important constraint is that the set of initial query termsQ

be predicted by the solution labeling. We express this mathematically by requiring that the

the weights for the ‘relevant’ label on the query termsxi:1 lie in a rangeβi ≤ xi ≤ ui and in

particular be above the thresholdβi for xi ∈ Q. Currentlyβi is set to a default value of 0.95

for all query terms, and zero for all other terms.ui is set to 1.0 for all terms. Term-specific

values forβi may also be desirable to reflect the rarity or ambiguity of individual words.

Aspect coverage. One of the strengths of query expansion is its potential for solving the

vocabulary mismatch problem by finding different words to express the same information

need. Therefore, we can also require a minimal level ofaspect coverage. That is, we

3We actually did implement this generalization, but encountered technical problems with the current
solver in obtaining stable solutions in higher dimensions.We expect to pursue this in future work.
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minimize − cTx− κ
2

xTΣx Relevance, term centrality (risk) (6.12)

subject to Ax≤ µ + ζµ Aspect balance (6.13)

gi
Tx ≥ ζi , wi ∈ Q Aspect coverage (6.14)

βi ≤ xi;1 ≤ ui , wi ∈ Q Minimum query term support (6.15)
∑

k

xi;k = 1 Label uniqueness (6.16)

x � 0 Positivity (6.17)

Figure 6.4: The basic quadratic program QMOD used for query model estimation.

may require more than just that terms are balanced evenly among all query terms: we may

care about the absolute level of support that exists. For example, suppose our information

sources are feedback terms, and we have two possible term weightings that are otherwise

feasible solutions. The first weighting has only enough terms selected to give a minimal

non-zero but even covering to all aspects. The second weighting scheme has three times

as many terms, but also gives an even covering. Assuming no conflicting constraints such

as maximum query length, we may prefer the second weighting because it increases the

chance we find the right alternate words for the query, potentially improving recall.

We denote the vector of distances from query termqi in queryQ to neighboring words

by the vectorgi, which has entriesgik defined by

gik = d(wi ,wk) k = 1 . . .K, wi ∈ Q (6.10)

whered(wi ,wk) is given in Eq. 6.4. The projectiongi
T x gives us the aspect coverage, or

how well the words selected by the solutionx ‘cover’ term qi. The more expansion terms

nearqi that are given higher weights, the larger this value becomes. When only the query

term is covered, the value ofgi
T x = σii . We want the aspect coverage for each of the

vectorsgi to exceed a thresholdζi, and this is expressed by the constraint

gi
T x ≥ ζi . (6.11)
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6.2.4 Combining objectives and constraints

Putting together the relevance and risk objectives, and constraining by the set properties,

results in the following complete quadratic program for query model estimation, which we

call QMOD, shown in Figure 6.4. The purpose of each objectiveor constraint is given in

italics on the right. The roles and default values of the various QMOD parameters are sum-

marized in Table 6.1. Sample output from running QMOD is shown in Figure 6.5. Note

that a term likedisordersmay have a much higher initial relevance weight than another

term (e.g.brain), but becausedisordersis highly redundant with the other key termssyn-

dromeanddisease, the termdisordersis actually removed from the solution, whilebrain

is retained.

We perform an extensive evaluation of the sensitivity of retrieval performance to these

parameters across multiple collections in Section 6.4.3. Fig. 6.9 shows how a typical so-

lution changes as the objective parameterκ increases, moving from focusing on just the

highest relevance weights, to a more diverse set of terms.

6.3 Extensions to the basic model

We now show how extra criteria, such as budget constraints, weight diversification, and

uncertainty in the relevance parameters are easy to add to the basic QMOD framework.

6.3.1 Budget constraints

We can specify there is a computation costǫ for each termw in a query we send to the

server. If our goal is to find the optimal language model , we can add a constraint that

the total query cost must be less thanǫMax. The optimal query will then consist of a small

subset of terms, each of which covaries significantly with multiple important terms in the

document. In most realistic scenarios, the cost of adding another expansion term can be

approximated as fixed at a constant valueβ: no term is much more expensive to add to

a query than any other, and the total cost is simply linear in the number of query terms4.

Because of the non-convex nature of the fixed cost constraint(zero at zero, non-zero con-

stant everywhere else) this cannot be solved directly by convex optimization, but there are

heuristics that allow us to get close to optimal quickly.

4Of course, more sophisticated cost functions also fit withinthis framework, in the case where increase in
cost is greater than linear.
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Symbol Name Meaning Default
κ Bi-objective tradeoff Controls tradeoff between the influ-

ence of initial relevance assignment
costs and term covariance. Higher
κ means more focus on the term co-
variance objective.

1.0

ζµ Balance tolerance Controls tightness of balance
among all query aspects. Higher
ζµ relaxes the balance requirement
between all query aspects.

2.0

ζi Aspect coverage Controls the minimum support for
each query aspect. Higherζi re-
quires more expansion terms near
each query term. Whenζi = 0,
no expansion terms are strictly re-
quired: the query term alone is suf-
ficient. As ζi increases, the fea-
sible set shrinks and solutions be-
come more conservative.

0.1

γ Conditional covariance Higher γ gives more influence to
conditional risk (term covariance)
compared to individual term risk.
For example, ifγ = 0 then only in-
dividual term risk values (the diag-
onal of the covariance matrixΣ) are
used.

0.75

βi Minimum query term support Minimum final label value for each
query term. Reducingβi for the i-
th query termqi relaxes the require-
ment thatqi must be predicted by
the query model.

0.95

Table 6.1: Summary of control parameters for basic QMOD quadratic program.
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Initial assignment weights:

parkinson: 0.996

disease: 0.848

syndrome: 0.495

patients: 0.313

parkinsons: 0.492

brain: 0.360

disorders: 0.491

treatment: 0.289

patient: 0.483

diseases: 0.153

...

pcost dcost gap pres dres

0: 0.0000e+00 3.8908e+00 5e+01 1e+00 1e+00

1: -1.5007e+00 2.1905e+01 4e+01 9e-01 9e-01

2: 2.5299e+00 4.5050e+01 4e+01 1e-00 7e-01

3: 1.8112e+01 6.5871e+01 3e+01 1e+00 4e-01

...

13: 8.8980e+01 8.8980e+01 7e-05 2e-06 1e-14

14: 8.8980e+01 8.8980e+01 2e-06 4e-08 1e-14

(Successful convergence of primal and dual solutions.)

Final label values:

...

parkinson:0.9900

disease:0.9900

syndrome:0.2077

patients:0.0918

parkinsons:0.1350

brain:0.0256

disorders:0.0000

treatment:0.0000

patient:0.0000

diseases:0.0000

...

Figure 6.5: Excerpts from output of CVXOPT solver on a constrained quadratic program,
showing elements of thex solution vector (final label values). The query in this example is
TREC topic 454: “parkinson’s disease”.
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One heuristic is to simply set a threshold on thexi and set anyxi below the threshold to

zero. A more sophisticated but also more principled approach recently described by [Lobo

et al. 2007] uses a convex relaxation of the fixed cost constraint that utilizes estimates of

upper and lower bounds on the values of thexi. If we can compute upper and lower bounds

on thexi, we can use the initial non-sparse solution as input to a regularization step, where

we find a sparse vectory that minimizes theℓ1-norm distance to the original solution, with

the non-zeroyi falling within the correspondingxi bounds.

We denote the cost function for a solution (query weights)x by φ(x) which gives the

general query cost constraint

1Tx+ φ(x) ≤ 0 (6.18)

If φ(x) is a convex function, this constraint defines a convex set. We can define individual

costs for each element ofx by writing

φ(x) =
n
∑

i=1

φi(x) (6.19)

whereφi is the cost function for elementi. In the simplest case, there are no costs associated

with any query term5, and soφ(x) = 0. If there is no use of elementxi in the solution,φi = 0.

Portfolio optimization considers a general fixed-plus-linear cost function in which costs are

a linear function of thexi, this makes much less sense for information retrieval. If the xi

represent query term weights, we do not expect a query to run more slowly as one term’s

weight is increased over another term’s (non-zero) weight6. However, the specific case of a

fixed costfor an xi is very relevant to retrieval, because adding more terms to aquerydoes

increase processing costs. We therefore focus on the specific case whereφ(xi) = β for some

constantβ.

We adapt a heuristic introduced in the thesis of Fazel [Fazel2002] and recently first

applied to portfolio optimization in [Lobo et al. 2007]. We solve successive refinements

of QMOD such that at thek-th step we use a cost functionφk(x) =
∑

i φ
(k)
i (xi). in the cost

5Or any other information source. For specificity we work withinformation sources being terms.
6Different terms, however, might indeed have different processing costs when the weight is non-zero. For

example, adding a word with a huge term frequency could slow down a query much more than adding a very
rare term, due to the time required to process inverted listsfrom the index.
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constraint7 by using iterative refinements ofφ:

φ
(k)
i (xi) = (

βi

|x(k)
i | + δ

)|xi | (6.20)

whereβi is the fixed cost associated withxi, andδ is a small constant that acts like a thresh-

old, below which any value is deemed to be zero. Intuitively,this heuristic successively

increases the cost of smallxi as they become smaller, thus accelerating them toward zero,

while satisfying the other constraints of the problem. Further details such as proof of con-

vergence of this heuristic are given in [Lobo et al. 2007].

φi(xi) =



















0 xi = 0

β xi , 0
(6.21)

The above heuristic may be overly general for most practicalretrieval scenarios, since

xi can never be negative and computation cost does not generally increase as a function of

the term weightmagnitude. However, it may be desirable to set differentfixedcosts for

each term that reflect factors such term frequency, since term frequency affects the size of

inverted list that must be loaded at search time. In these simpler cases, it would suffice to

use a vector of penalty weights within anℓ-1-norm constraint that controls sparsity.

6.3.2 Weight diversification

Another useful type of constraint is to specify that no more than a fractionα, α ∈ [0,1] of

the total weight mass be allocated to the largestr term weights. This can be encoded as

follows (see [Boyd & Vandenberghe 2004], 5.19).

maximize cTx− κ
2

xTΣx

subject to 1Tx = 1, x � 0 (6.22)

r · t +
∑

k

uk ≤ α (6.23)

1Tt + u ≥ x (6.24)

u ≥ 0

7The heuristic can also be used when the cost function is used in the objective function.
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6.3.3 Uncertainty in parameters or objectives

Our estimates of term relevance and risk weights (expected utility and risk) may themselves

be uncertain. We might have a range of values for each, or multiple strategies. In this case,

we might want to optimize the worst-case scenario given our set of of strategies. We can

handle uncertainty in the statistical model for (p,Σ) using multiple such models (pk,Σk).

Interestingly, we can express a constraint of the formProb(r ≤ α) ≤ β whereα is

a given unwanted return level andβ is a given maximum probability. Or multiple such

constraints for various levels of loss.

We can maximize the minimum of the expected returns (conservative) and so combin-

ing these into one objective, we have

maximize min
k

pk
Tx

subject to pk
Tx+ Φ−1(β)‖

1/2
∑

k

x‖ ≥ α (6.25)

We can take our approach one step further and assume there is uncertainty about the

aspect matrixA. Using astochasticapproach to robust approximation we assume the matrix

A is a random variable with meanA and noise described by the matrixU, which has first

and second momentsE [U] = 0 andE
[

UTU
]

= P. We minimizeE
[

‖(A+ U)x− b‖2
]

(Reminder: we assume‖·‖2 is the default norm denoted by‖·‖.)

E

[

‖Ax− b‖2
]

= E
[

‖Ax− b+ Ux‖2
]

(6.26)

= ‖Ax− b‖2 + E
[

xTUTUx
]

(6.27)

= ‖Ax− b‖2 + xTPx (6.28)

= ‖Ax− b‖2 + ‖P1/2x‖2 (6.29)

WhenP = γI this becomes

‖Ax− b‖2 + γ‖x‖2 (6.30)

This can also be seen as a form of Tikhonov regularization ( [Boyd & Vandenberghe 2004],
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p. 306). We can use this derivation to obtain a SOCP for relaxing the balance constraint

with uncertainA, to implement true latent aspects.

6.3.4 Incorporating query difficulty statistics

A query difficulty statisticD(q) amounts to an estimate of a query’s likely utility. This

may affect our estimate of the expected return of the original query, making feedback more

or less attractive. For example, if we had a reliable way to predict that the initial query’s

performance was likely to be poor, then then we have little tolose by applying query expan-

sion anyway. In this scenario, poor performance after queryexpansion is not necessarily

worse than poor performance before query expansion, which is our implicit assumption

when query difficulty is ignored.

In the extreme case where the original retrieval is highly unlikely to be much above

zero average precision, the optimal expansion strategy maybe affected. For example, we

may wish to distribute risk among clusters, choosing one strong representative per cluster

– minimizing redundant non-relevant documents and optimizing for recall. The existence

of a reliableD(q) function, even if the reliability is limited to low or high extremes, also

leaves open the possibility of usingD(qi) as a search objective over multiple iterations,

finding the maximumD(qi) for different expanded query candidatesqi, or usingD(qi) for

improved model combination.

6.4 Evaluation
Our evaluation of the QMOD algorithm has several parts. After describing the details of

experimental setup in Section 6.4.1, we confirm in Section 6.4.2 the superior quality of

the solutions found by QMOD compared to a strong baseline expansion model. We do

this by comparing the risk-reward curves for both methods asthe interpolation valueα

with the initial query is varied from 0 to 1. We also summarizeresults using standard

retrieval measures. It turns out that for most topic sets in the evaluation, the expansions

computed by QMOD offer substantial reductions in downside risk, while maintaining or

exceeding the precision of the baseline method. Second, in Section 6.4.3 we explore how

the QMOD program achieves its robust solutions by analyzinghow changes in the objec-

tive and constraint parameters (summarized in Table 6.1) affect the risk-reward trade-off

curve. Third, in Sections 6.4.4 and 6.4.5 we test the generality of QMOD by applying it to

two alternative baseline algorithms. Respectively, theseare a Rocchio-type method, and a
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very noisyidf -only method whose purpose is to verify that QMOD successfully attenuates

noise. Finally, in Section 6.4.6 we verify that the feasibleset for the QMOD convex pro-

gram is well-calibrated for the task of selective query expansion. We show that QMOD’s

constraints focus on solutions for queries with moderate togood expansion performance,

while tending to avoid queries at the extreme ends of the performance spectrum.

6.4.1 Evaluation setup

The basic methodology and collections of our evaluation setup are the same as used to

evaluate heuristic model combination in Chapter 3. To review, we evaluated performance

on six TREC topic sets, covering a total of 700 unique queries. These TREC topic sets are

TREC 1&2, TREC 7, TREC 8, wt10g, robust2004, and gov2. Details on TREC topic sets,

collections and methodology are given in Appendix C. The sameindices, indexing process,

and baseline feedback algorithm (Indri) were used as in the evaluation in Section 3.4.1.

As with our experiments in Section 3.1.4, for ann-word query, we used leave-one-out

(LOO) query variation to producen + 1 subqueries (query variants), including the entire

initial query as one variant.8 To compute each of the correspondingn+ 1 feedback models

(one for each variant’s result set), we also used the same document resampling method

and parameters as in Section 3.1.4, i.e. using the top 50 ranked documents, weighting by

relevance score, and using 30 document-set resamplings, which were combined by fitting

the maximum-likelihood Dirichlet distribution and takingthe mode.

We then set the inputs to QMOD as follows. For efficiency, we limited our vocabulary

V to the topn = 100 expansion term candidates according to the raw expansion score from

the Indri algorithm. With these Indri term scores, the entries of the assignment cost vector

c were set using Eq. 6.3 in Section 6.2.1. The matricesΣ, A, andgi were also calculated dy-

namically for each query using the definitions given in Section 6.2.3. The entries ofΣ and

gi are determined by the definition of the distance functiond(ws,wt), which in turn is de-

fined in terms of the similarity functionσ(ws,wt). In this evaluation, the functionσ(ws,wt)

is the perturbation kernel described in Chapter 4. Because itis not possible to calculate the

perturbation kernel for single-word queries, the Jaccard method given in Appendix A was

used to computeσ(ws,wt) for single-word queries instead of the perturbation kernel. The

matrix A is a skinny|Q| × K matrix, with each row being the feature vectorφ(qi) for query

8For one-word queries, this means only the original query wasused, and the final feedback model was
based on document resampling only.
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term qi. There is one matrixgi for each query termqi ∈ Q, as defined by Eq. 6.10.

To compute the perturbation kernel and feature vectorsφ(wi), we used then + 1 LOO

feedback models calculated above to compute the feature vector φ(wi) for each word using

Eq. 6.7. In that equation, the valuep(w|θk) is the probability of wordw in thek-th feedback

model (k = 1 . . . n), andp(w|θq) is the feedback model for the initial queryq. We set the

rescaling parametersγ = 0.75 andρ = 0.25 in Eq. 6.4.

The default values forκ, γ, and the other QMOD control parameters were set to the

values shown in Table 6.1 for all collections. We obtained these collection-wide parameter

settings empirically: to obtain realistic generalization, we first examined performance vari-

ation over TREC 1&2, TREC 7, and TREC 8. We then picked a commonset of parameters

that gave consistent performance across those collections. After these parameters and the

optimization code were frozen, we ran experiments on the other three collections: wt10g,

robust2004, and gov2. We used a maximum of 100 iterations when running QMOD, and

used the default convergence settings for the cvxopt QP solver.

After the QMOD program was run, we chose the top 20 terms according to soft label

value (i.e. the solution values found by QMOD). Terms with a soft label value of less

than 0.01 were ignored. Some queries had less than 20 final expansion terms with non-zero

weight, either because the QMOD program was infeasible – resulting in no expansion terms

at all – or simply because of the sparsity-seeking nature of the objective. Finally, to combine

the feedback model output by QMOD with the initial query, we used the same default

interpolation settingα = 0.5 as the experiments in Chapter 3 (except where otherwise

indicated to produce tradeoff curves).

6.4.2 Risk-reward performance

In this section we evaluate the robustness of the query models estimated using the convex

program in Fig. 6.4 over multiple standard TREC collections. As we noted earlier in Chap-

ter 1, there are elements of both risk and reward in attempting to find effective, robust query

models. Our primary tool for summarizing the trade-off in these two objectives is the is the

risk-reward curve, and therobustness histogram.

Risk-reward curves Risk-reward curves for six TREC topic sets are shown in Figure 6.6.

The x-axis summarizes downside risk with R-Loss, the net loss in relevant documents lost

due to expansion failures. They-axis summarizes reward using percentage MAP gain over

the initial query (no expansion). The solid (red) line is thecurve given by the robust QMOD
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Figure 6.6: Risk-reward tradeoff curves for six TREC topic sets, showing how the QMOD
and HMC robust feedback methods consistently dominate the performance of the baseline
feedback method. HMC is the heuristic model combination method from Chap. 3. The
baseline feedback model is the Indri Relevance Model. Tradeoff curves that arehigher and
to the leftare better. Points are plotted inα-increments of 0.1, starting withα = 0 at the
origin and increasing toα = 1.0.
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Figure 6.7: Risk-reward tradeoff curves for six TREC topic sets using P20 and R-Loss@20
(instead of MAP and R-Loss). The baseline feedback model is the Indri Relevance Model.
Tradeoff curves that arehigher and to the leftgive a better risk-reward tradeoff. Curves are
plotted with points atα-increments of 0.1, starting withα = 0 at the origin and increasing
to α = 1.0.
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algorithm. The dashed (pink) line is the curve given by the baseline expansion algorithm,

which is the Indri Relevance model described in Section 3.4.2. Tradeoff curves that are

higher and to the leftgive a better risk-reward tradeoff. For comparison with the QMOD

model combination method, we have included HMC, the heuristic method described and

evaluated in Chap. 3. The inputs to HMC and QMOD, query variants and resampled doc-

ument sets, were the same.

It is evident that, except for one brief segment at the end of the Robust2004 curve, the

QMOD tradeoff curve dominates the corresponding baseline curve forany value of the

interpolation parameterα, on any topic set. In fact, most of the time the QMOD curve is

significantly above and left of the baseline curve. This means that no matter what risk-

reward tradeoff the baseline expansion model provides, the QMOD algorithm can always

provide a better one, so that the same average precision is available, but with lower – and

in most cases, significantly lower – downside risk. This alsoimplies that the optimal MAP

gain available with QMOD is always higher than the corresponding optimal baseline MAP

performance.

The optimal MAP gain for the robust curve tends to occur at higher values ofα – about

oneα-step of 0.1 – than the baseline method. (Recall that higherα values mean that less

of the original query is used.) For example, we have the following optimalα values for

QMOD vs baseline respectively: Robust2004: 0.7 vs 0.6; trec12: 0.8 vs 0.8; wt10g: 0.5

vs 0.3; trec8a: 0.7 vs 0.6; trec7a: 0.9 vs 0.8; and gov2: 0.4 vs0.3. The average optimal

α = 0.67 for the robust QMOD model compared toα = 0.57 for the baseline. In fact, if we

choose a standard operational setting for QMOD ofα = 0.6, the result are statistically as

good or better than the optimalα setting for the corresponding baseline run.

Even in the extreme case when the initial query model is discarded and only the feed-

back model is used (α = 1.0) – we call this the curve’s ‘endpoint’ – the performance of

the QMOD algorithm is still reasonably good. Generally, theendpoints of the baseline

algorithm give the worst performance – even if the MAP gain ishigh at an endpoint, the

same MAP gain is available with much lower downside risk at a smaller value ofα. The

same is true for the QMOD tradeoff curve, but for every test set the endpoint of the QMOD

algorithm is above and left of the baseline endpoint, providing higher relative reward with

lower risk. In general, because the QMOD feedback model is more reliable, it is safer to

choose higher operational values ofα.

For an alternate view, curves using P20 and R-Loss@20 as reward and risk measures are
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shown in Figure 6.7. It is notable that QMOD never hurts P20 for anyα on any collection

we tried. HMC (heuristic) only suffers a small loss on the gov2 collection forα = 1.0.

The Relevance model baseline hurts P20 significantly for therobust2004, wt10g and gov2

collections at aroundα = 0.7 and above (depending on the collection).

In comparing the QMOD and HMC methods, both dominate the baseline feedback al-

gorithm, but have slightly different risk-reward properties. Generally, QMOD gives lower-

risk solutions. For example, as shown in Table 6.2 R-Loss@20is consistently lower than

HMC, with little loss in MAP. Compared to HMC tradeoff curves, QMOD curves tend to

be shrunk slightly toward the origin, with endpoints (α = 1.0) reflecting consistently lower

R-Loss, especially when measured by P20. The penalty for QMOD is a minor reduction in

maximum achievable MAP gain, which is about 2–3% higher withHMC. One likely ex-

planation for this difference is that QMOD is a true selective expansion method: 15–20%

of queries are simply not expanded because of high estimatedrisk. HMC does not have

this ‘hard’ selection ability and always expands, resulting in a somewhat less conservative

strategy.

General retrieval measures Table 6.2 compares average precision, R-Loss, and RI statis-

tics for the initial, baseline, QMOD, and HMC (Chapter 3) feedback methods for specific

choices ofα = 0.5 (the standard setting). For all six collections, atα = 0.5 the average

precision and P20 for QMOD are statistically equal or superior to the baseline expansion,

while QMOD also reduces the number of relevant documents in the top 20 lost to failures

(R-Loss@20) by amounts ranging from 34.5% (TREC 8) to 76.9% (TREC 1& 2).

Note that the no-expansion case provides the initial relevant documents, serving as the

baseline for R-Loss, so R-Loss is always zero for the no-expansion case. The total number

of relevant documents is shown in the denominator of the R-Loss fraction.

Comparing QMOD and HMC, the overall MAP gains over the originalquery perfor-

mance are comparable: the difference in percentage gain is less than 5% on average, and

differences in P20 are even smaller. However, QMOD is somewhat more robust, achieving

lower R-Loss@20 scores than both Base-FB and HMC-FB on all collections.

Looking at the simple fraction of net queries helped using the Robustness Index (RI),

QMOD at α = 0.5 outperforms the baseline atα = 0.5 on 5 out of 6 collections, and

has equal performance for TREC 8. QMOD has higher RI than HMC on four out of six

collections.
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Collection NoExp Base-FB QMOD-FB HMC-FB
(α = 0.5) (α = 0.5) (α = 0.5)

TREC
1&2

MAP 0.1762 0.2317 (+31.9%)N 0.2346 (+33.2%)N,E 0.2472(+40.3%)N,E

P20 0.4217 0.4483 (+6.94%)N 0.4945 (+17.3%)N,E 0.4990(+18.3%)N,E

R-Loss@20 0/366 117/366 27/366(-76.9%) 64/366 (-45.2%)
RI 0 0.4844 0.5859 0.5781

TREC 7
MAP 0.1830 0.2079 (+13.8%)N 0.2106 (+15.1%)N 0.2165(+18.3%)N,E

P20 0.3456 0.3467 (+0.3%) 0.3689(+6.8%)N,E 0.3656 (+5.9%)N,E

R-Loss@20 0/57 23/57 12/57 (-47.8%) 24/57 (+4.5%)
RI 0 0.4146 0.5610 0.4634

TREC 8
MAP 0.1920 0.2220 (+15.5%)N 0.2199 (+14.5%)N 0.2288(+19.2%)N,E

P20 0.3213 0.3585 (+11.8%)N 0.3660(+13.9%)N 0.3596 (+11.9%)N

R-Loss@20 0/76 29/76 19/76 (-34.5%) 23/76 (-20.6%)
RI 0 0.4286 0.4286 0.4762

wt10g
MAP 0.1747 0.1830 (+5.2%) 0.1990(+14.0%) N,E 0.1984 (+13.6%)N,E

P20 0.2228 0.2340 (+5.4%) 0.2512(+12.7%)N,E 0.2494 (+11.9%)N,E

R-Loss@20 0/158 59/158 29/158(-50.8%) 55/158 (-6.7%)
RI 0 -0.0270 0.2703 0.1892

robust2004
MAP 0.2152 0.2441 (+13.5%)N 0.2451 (+13.9%)N,E 0.2538(+17.9%)N,E

P20 0.3252 0.3397 (+4.5%)N 0.3458 (+6.3%)N 0.3538(+8.8%)N,E

R-Loss@20 0/394 124/394 98/394(-21.0%) 112/394 (-9.7%)
RI 0 0.3364 0.3773 0.3818

gov2
(2004–
2006)

MAP 0.2736 0.2907 (+6.5%)N 0.3004(+9.8%)N,E 0.2959 (+8.1%)N,E

P20 0.5214 0.5214 (+0.0%) 0.5524(+6.0%)N,E 0.5352 (+2.6%)N,E

R-Loss@20 0/575 171/575 116/575(-32.2%) 126/575 (-26.3%)
RI 0 0.0922 0.2624 0.1915

Table 6.2: Performance comparison of baseline (Base-FB) feedback, robust (QMOD-FB)
feedback, and heuristic model combination (HMC-FB) feedback from Chapter 3. Preci-
sion improvement shown for Base-FB, QMOD-FB, and HMC-FB is relative to using no
expansion. R-Loss change for QMOD and HMC are relative to baseline expansion (nega-
tive change is good). For Robustness Index (RI), higher is better. Significant differences at
the 0.05 level using the Wilcoxon signed-rank test are marked byN andE superscripts, for
improvement over NoExp and Base-FB respectively.
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Robustness histograms Robustness histograms were introduced in Section 3.4.4 and

provide a detailed look at how badly queries were hurt and helped by an expansion algo-

rithm. Figure 6.8 gives the combined robustness histogram for α = 0.5 for QMOD (dark)

and the baseline (light). This makes clear that the worst failures – cases where a query’s av-

erage precision was hurt by more than 60% – have been virtually eliminated by the QMOD

algorithm, while the upside gain distribution remains verysimilar to the baseline gains.

The gov2 corpus was most challenging, with four queries remaining with greater than 60%

AP loss after expansion. The reasons for this require further analysis, but QMOD’s overall

gains in robustness were still significant (Table 6.2).

The most noticeable differences in gains are a reduction in the highest category (more

than 100% AP gain) and an increase in the lowest gains (0 to 10%). Both of these are due

to the selective expansion mechanism of the QMOD algorithm,in which queries that are

deemed to risky to expand are left alone, resulting in a zero AP gain.

6.4.3 Parameter and constraint sensitivity

The QMOD convex program has a number of control parameters, which are summarized in

Table 6.1 along with their default values. In this section weperform a sensitivity analysis

for each of these parameters to see how they affect the risk-reward tradeoff as they are

changed. In particular, we look at which constraints and parameters are most influential in

finding robust solutions compared to the baseline expansion.

Bi-objective parameter (κ)

The bi-objective parameterκ dictates the relative weights given to the two objectives: find-

ing terms with high initial relevance weights (node assignment costs in the graph) versus

terms with low individual and conditional risk. Figure 6.9 shows a complete family of

solutions as the parameter is increased from zero. Note how the proportion allocated to

the original query termsparkinsonanddiseaseremains balanced for all solutions. The

most effective range forκ is 0.5 to 1.25, which balances the original query terms with the

expansion terms more or less equally. The default value we use for evaluation isκ = 1.0.

Query term support constraint

Varying theβ parameter, which constrains the minimum allowable label value for the initial

query terms, has a dramatic effect on both risk and reward, as Figure 6.10 shows. For all

collections we tried, highly dominant tradeoff curves were obtained forβ values close to
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Figure 6.8: Comparison of expansion robustness for six TREC collections, showing how
the robust QMOD version hurts significantly fewer queries, seen by the greatly reduced tail
on the left half (queries hurt). (Recall that MAP performance of QMOD is also as good or
better than baseline.) The histograms show counts of queries, binned by percent change in
MAP. The dark bars show robust expansion performance using the QMOD convex program
with default control parameters. The light bars show baseline expansion performance.
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Figure 6.9: Example showing a family of solutions for a simple quadratic program as a
function of the covariance objective weightκ (x-axis). Whenκ is close to zero, emphasis
is on the relevance maximization objective (query terms andterms with highest relevance
weights). Asκ is increased, more weight is given to the risk (covariance) minimization
objective. Each vertical ‘slice’ represents the output of the CVXOPT solver running the
QMOD quadratic program for a particular value ofκ, showing elements of thex solution
vector (final relative term weights). The vertical line shows a typical default value ofκ =
0.75. The query in this example is TREC topic 454: “parkinson’sdisease”. (Some terms,
such as ‘garagefonts’ and ‘bitstream’ are noise terms.)
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Query term  constraint : TREC 1&2
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Figure 6.10: The effect on the risk-reward tradeoff curve of varying the query term weight
constraint (β), with other QMOD parameters kept at default values. The baseline expansion
tradeoff curve is also shown (dotted line).
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Figure 6.11: The effect on MAP gain – ignoring risk – of varying the restriction onmin-
imum query term label value, represented by the parameterβ. The baseline expansion
tradeoff curve is also shown (dotted line).

1.0, meaning that it is important for the QMOD solution to strongly predict the initial query

terms. Specific per-collection optimalβ values varied from 0.75 to 1.0 between collections,

but the difference between optimal performance and performance close to 1.0 tended to be

small. (We discuss this further below.) Choosingβ = 0.99 was a consistently good choice

for all collections. Interestingly, risk (in terms of R-Loss) changes little asβ increases from

0.5 and above, even though reward (MAP gain) changes substantially. On the other hand, as

β decreases below 0.5, risk increases and reward continues todecrease substantially. Theβ

constraint by itself does not provide a complete solution: other parts of the convex program,

such as the covariance parameterγ, act to reduce risk in tandem with theβ constraint and

we show this in the following sections.

We currently set the minimum label value for query termqi to the same constraint

level βi = β for all query terms. An interesting item for future work would be to examine

methods for setting term-specificβi values, so that, for example, rare terms may benefit

from higherβi constraints.

Figure 6.11 provides another view ofβ sensitivity that ignores the risk tradeoff, showing

MAP gain only, as a function ofβ (with the feedback interpolation parameterα = 0.5) for

different collections.
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Term coverage constraint : TREC 1&2
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Term coverage constraint : TREC 7
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(b) TREC 7

Term coverage constraint : TREC 8
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(c) TREC 8

Term coverage constraint : wt10g
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(d) wt10g

Term coverage constraint : robust2004
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(e) Robust 2004

Term coverage constraint : gov2
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Figure 6.12: The effect on the risk-reward tradeoff curve of varying the term coverage
constraint, represented by the parameterζi. The baseline expansion tradeoff curve is also
shown (dotted line).



6.4. EVALUATION 171

Term coverage constraint

Figure 6.12 shows the effect of varying the term coverage parameterζi. Higher values

of ζi act to strengthen the constraint: the feasible set is restricted to only those solutions

having multiple good expansion terms near to every term in the query, giving much more

risk-averse behavior of the program. Indeed, we can see thatrisk does usually shrink signif-

icantly asζi is increased. However, for this parameter there is a corresponding decrease in

MAP gain due to the increased number of infeasible queries (zero AP gain) as the program

becomes more conservative. In practice, aζi value between zero and 0.5 allows a beneficial

reduction in risk. Our default setting is to omit the constraint, settingζi = 0. Values ofζ

much greater than 1.0 are likely to be too conservative for most scenarios. An interesting

item for future work would be to experiment with feasible sets that penalize term coverage

in different ways instead of rewarding it.

Aspect balance tolerance

Figure 6.13 shows the effect of relaxing the aspect balance tolerance parameterζµ upward

from zero. The general result of enforcing a strong centering constraint (ζµ = 0) is to

shrink the curve downward, but with little change in risk. This result occurs because as the

constraint becomes stronger, the QMOD program becomes moreconservative and more

reluctant to touch the initial query. As a result, overall MAP gain shrinks, but the quality

of the remaining balanced expansions is still high.

We found that values ofζµ around 2 give consistently good results for all collections.

Increasingζµ beyond 2 yields little further improvement.

Covariance parameterγ

Recall that we decomposed the covariance matrixΣ asΣ = D+ γ ·E whereD is a diagonal

matrix of individual term risk factors, andE a symmetric matrix withei j being the condi-

tional risk of using termi given we have already selected termj. The parameterγ controls

the relative influence of the off-diagonal elements ofΣ compared to individual term risk.

Our hypothesis is that including the conditional term risk in our QMOD program improves

the solution, and thus that there is some optimal value or range ofγ is greater than zero.

Figure 6.14 shows the effect of varyingγ across all six collections. We observe that reduc-

ing γ does reduce MAP gain, but simultaneously gives a significantreduction of risk (as

measured by R-loss); the slope of the tradeoff curve, for the main operational range from 0
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Aspect balance relaxation : TREC 1&2
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Aspect balance relaxation : TREC 8
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Aspect balance relaxation : wt10g
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Aspect balance relaxation : robust2004
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Aspect balance relaxation : gov2
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Figure 6.13: The effect on the risk-reward tradeoff curve of relaxing the aspect balance
condition by increasingζµ from 0 to 2, with other QMOD parameters kept at default values.
(ζµ = 0 forces exact centering.) The baseline expansion tradeoff curve is also shown (dotted
line).
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Covariance gamma constraint : trec12
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Covariance gamma constraint : trec 7
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Covariance gamma constraint : trec 8
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(c) TREC 8

Covariance gamma constraint : wt10g
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Covariance gamma constraint : robust2004
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Figure 6.14: The effect of the covariance parameter (γ) on the risk-reward trade-off curve.
As γ is increased, the off-diagonal elements of the covariance matrix, representingterm
dependencies, are given more weight. The baseline expansion tradeoff curve is also shown
(dotted line).
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to 0.5, remains roughly the same. Thus, values ofγ close to zero result in robust but very

conservative solutions. Asγ increases toward 1.0, the tradeoff curve expands upward and

to the right, until between 0.75 and 1.0 it reaches an approximate maximum MAP gain.

Values ofγmuch beyond 1.0 tend to preserve this maximum gain and curve shape, but pull

and extrapolate the curve right, extending the risk while providing negligible additional

little MAP gain. We find that a value ofγ = 0.75 is a good default value for all evaluated

collections.

6.4.4 Effect with an alternate expansion algorithm

We also applied QMOD to the results of a different strong expansion algorithm. We re-

placed the baseline Indri method (Relevance model) with a Rocchio-style vector space

method in which the topk document vectors were given equal weight and used atf.idf rep-

resentation. The same query variants and document resampling were used as in the Indri

experiments. The tradeoff curves are shown in Figure 6.15.

The Rocchio baseline had slightly stronger performance than the Relevance model

baseline on the trec12, trec7, and trec8 collections. QMOD still achieved a gain on the

initial half of the trec12 and trec7 curves. QMOD continued its strong performance on the

two Web collections. As it did with the Relevance model baseline, QMOD dominates the

Rocchiotf.idf baseline for the wt10g and gov2 collections.

6.4.5 Tolerance to poor baseline expansion algorithm

As we did in Section 3.4.6 with the RS-FB with heuristic modelcombination, we tested

QMOD’s tolerance for noise by applying it to the same very poor baseline algorithm,

namely, a Rocchio scheme that ignores term frequency (t f ) and uses onlyid f in the term

representation. This results in a very noisy expansion model dominated by rare terms that

are poor discriminators for relevance. The results for two representative collections, TREC

7 and wt10g, are shown in Figure 6.16. For comparison, the results for RS-FB (Chapter 3)

are also shown. As we saw in Section 3.4.6, thisid f baseline is very weak: MAP loss at

α = 1.0 was worse than -80% in all cases. However, applying QMOD successfully lim-

ited the damage caused by the weak expansion baseline, in a manner much more effective

than RS-FB. Atα = 0.5, for TREC 7a, MAP loss is reduced from -11.8% to almost zero

(0.88%) with reduction in R-Loss from 1136 to 390. For wt10g,MAP loss is reduced from

-35.1% to -6.1% with reduction in R-Loss from 5485 to 1703. Wehave omitted the other
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QMOD trec12: rocchio/tfidf
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(b) TREC 7

QMOD trec8a: rocchio/tfidf
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QMOD gov2: rocchio/tfidf
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Figure 6.15: The effect on risk-reward tradeoff curves of applying QMOD (solid line) to
a Rocchio-style expansion algorithm (dotted line) insteadof the default Relevance model
baseline. Tradeoff curves that arehigher and to the leftare better. Points are plotted in
α-increments of 0.1, starting withα = 0 at the origin and increasing toα = 1.0.
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QMOD trec7a: rocchio/idf-only

-100

-80

-60

-40

-20

0

0 2000 4000 6000 8000

R-Loss

P
e

rc
e

n
t 

M
A

P
 G

a
in

(a) TREC 7 (QMOD)

HMC trec7a: rocchio/idf-only

-100

-80

-60

-40

-20

0

0 2000 4000 6000 8000

R-Loss

P
e

rc
e

n
t 

M
A

P
 G

a
in

HMC idf

single idf

(b) TREC 7 (RS-FB)

QMOD wt10g: rocchio/idf-only

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 2000 4000 6000 8000 10000 12000 14000

R-Loss

P
e

rc
e

n
t 

M
A

P
 G

a
in

(c) wt10g (QMOD)

HMC wt10g: rocchio/idf-only

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 2000 4000 6000 8000 10000 12000 14000

R-Loss

P
e

rc
e

n
t 

M
A

P
 G

a
in

HMC idf

single idf

(d) wt10g (RS-FB)

Figure 6.16: Risk-reward tradeoff curves for two representative TREC topic sets, showing
the much greater tolerance of the convex QMOD algorithm (left) to noise from a poor
baseline expansion algorithm. For comparison, the weak tolerance of RS-FB (Chap. 3) for
the sameidf baseline is shown (right). The point corresponding toα = 0.5 for each method
is enlarged for visibility. Results for other collections are similar.
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four standard collections because their results are similar: the MAP loss from QMOD at

α = 0.5 is typically between 0% and -5%, versus a baseline MAP loss on the order of -20%

to -40%.

While this noise scenario is deliberately chosen to be extreme, it serves to clearly illus-

trate the greatly increased noise tolerance that QMOD achieves due to its selective nature,

compared to the non-selective RS-FB.

6.4.6 Calibration of feasible set

If the constraints of a convex program are well-designed forstable query expansion, the

odds of an infeasible solution should be much greater than 50% for queries that are risky.

In those cases, the algorithm will not attempt to enhance thequery. Conversely, the odds

of finding a feasible query model should ideally increase forthoese queries that are more

amenable to expansion.

Across all collections, 17% of the queries had infeasible programs9. We binned these

infeasible queries according to the actual gain or loss thatwould have been achieved with

the baseline expansion, normalized by the original number of queries appearing in each bin

when the (non-selective) baseline expansion is used. This gives the log-odds of reverting

to the original query for any given gain/loss level.

The results are shown in in Figure 6.17. As predicted, the QMOD algorithm is more

likely to decide infeasibility for the high-risk zones at the extreme ends of the scale. Fur-

thermore, the odds of finding a feasible solution do indeed increase directly with the actual

benefits of using expansion, up to a point where we reach an average precision gain of 75%

and higher. Beyond that point, such high-reward queries arealso considered high risk by

the algorithm, and the likelihood of reverting to the original query increases dramatically

again. In previous work, ([Carpineto et al. 2001a], p. 18) found that queries with high

initial precision could hardly be improved upon, and suggested that ‘selective policies for

query expansion... (should) focus on queries that are neither too difficult nor too easy.’. Our

analysis makes clear that the feasible set and thus the selective expansion behavior of the

convex algorithm is well-calibrated to the true expansion benefit.

While this is a strong result, we are still losing some large gains for some queries.

Given that these queries have a particularly extreme (positive) response to query expansion,

identifying them is likely to be an easier task than trying topredicting expansion success

9We used a maximum of 100 convergence steps.
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Figure 6.17: The log-odds of reverting to the original queryas a result of selective expan-
sion. Queries are binned by the percent change in average precision if baseline expansion
were used. Columns above the line indicate greater-than-even odds that we revert to the
original query.

for any possible query. Features that distinguish extreme expansion success may be similar

to the kinds of features explored for query difficulty, such as the quality and stability of

the initial results clustering, expansion term clustering, the specificity of the query terms,

and so on. These features may then be incorporated as constraints in the QMOD program

which are adjusted for each query.

6.5 Discussion
The robust QMOD estimation algorithm obtained consistently better tradeoff curves than

the baseline expansion algorithm for the collections we evaluated. In most cases, the gains

are quite striking: for example, on the 150 TREC 1&2 topics the QMOD algorithm achieves

higher MAP gain atα = 0.6 than the optimal baselineα, while losing less than half the

number of relevant documents due to expansion failure. QMODalso outperformed the

baseline according to the percentage gain in queries helpedusing the Robustness Index

(RI). Overall, our results on six diverse test sets show thatthe QMOD solution dramatically

reduces the downside risk of the baseline algorithm, without sacrificing its strong retrieval

performance. We now analyze the factors contributing to these improved tradeoff curves,
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and the implications for the design of future query expansion algorithms.

6.5.1 Factors in improved risk-reward tradeoffs

The best tradeoff curves were obtained using an intermediate mix of both objectives, and

with all constraints active. Some parameters had a more dramatic effect on the tradeoff

curve than others. The query term coverage parameterβ was a highly influential constraint:

it has a strong effect on MAP gain, but little effect on risk. Conversely, the conditional

covariance parameterγ had a larger effect on risk reduction (and a weaker effect on MAP).

Activating both of these together resulted in most of the improvement in the QMOD trade-

off curve. Other constraints such as the term centering constraint ζµ were less critical but

acted to further shrink the risk of the tradeoff curve with little reduction in MAP. The term

coverage constraintζi also acted to increase the conservativism of the solution. In practice,

a small value such asζi = 0.1 or less provides a good balance.

We found that good default QMOD parameter values were: highly constrained query

term weights (β = 0.99), moderately relaxed term centering constraint (ζµ = 2.0), minimal

term coverage constraint (ζi = 0.1), intermediate use of conditional term risk (γ = 0.75)

and roughly equal objective weighting (κ = 1.0). The valueα = 0.4 gives a safe tradeoff

with smaller risk: the resulting combination comes within 10% or less of the optimal MAP

for both algorithms.

6.5.2 Implications for query expansion

Our findings have the following implications for the design and analysis of future query

expansion algorithms.

Query-anchoring of the expansion model. Our analysis shows that the best risk-reward

tradeoff curves were obtained by expansion models in which the original query terms were

highly weighted. Thus, strong anchoring to the original query appears to be a necessary,

although not sufficient, condition for robust expansion models10. A key point here is that

we are focused only on the support that exists for the query itself, and that this support

need not be at the expense of the expansion terms: it is acceptable for many other terms

to also obtain high label weights. Indeed, because we treat term weights as labels and not

as probabilities, high weights on the initial query terms need not imply reduced weight on

10To simplify analysis, we assume a ‘clean’ initial query, i.e. that any typographic errors, misspellings, etc.
in the original query have been corrected at an earlier stageof processing.
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other terms.

This query-anchor finding is in accord with recent related work by Winaver et al.

[2007], who reported that an extensive automatic search forthe feedback modelθM⋆ that

minimized the KL-divergenceKL(θMi ||θQ) to the initial queryQ gave performance close

to the manually optimized feedback model. Here,θQ is an unsmoothed language model

constructed from the initial queryQ andθMi is a Jelinek-Mercer smoothed language model,

constructed by interpolating the set of document language modelsθDi of the 100 top-ranked

documents using expanded query modelMi.

Selective expansion. Because of the uncertainty inherent in query expansion, we believe

that a second necessary condition to obtain any robust queryexpansion algorithm is the use,

in some form, of three basic steps that involve selective behavior at each stage.

1. The uncertainty in the ‘correct’ expansion model parameters should be captured by a

set of multiple plausible model hypotheses, resulting in a ‘bouquet’ of alternatives. In

our work, this is accomplished by using query variants to estimate different feedback

models. In Chapter 3 we showed that when the number of alternate hypotheses is

reduced, the robustness of the query expansion algorithm suffers.

2. A ‘hard’ selection process should eliminate implausiblemodels completely. This

role is performed in our work by the constraints defining a feasible set to a convex

optimization problem. If necessary, all hypotheses exceptthe observed query are

sometimes rejected. The term centering and query term coverage constraints are

examples of a weak and a strong constraint respectively.

3. A final ‘soft’ selection process is used to perform model combination on the remain-

ing good models. Rather than assigning a single weight to allthe terms in a model,

we allow the algorithm to calculate weights that are term-dependent. This greatly

increases the richness of the hypothesis space of possible solutions, making it more

likely a good solution will be found. Although in theory thisalso greatly increases the

number of model weights to be estimated, in practice the computational cost can be

limited: for example, the vocabulary size can be limited using, say, an initial thresh-

old on the top-n relevance weighted baseline terms. Model combination in this chap-

ter is a natural result of solving the metric labeling objective: furthermore, expansion

models with many good terms naturally result in lower relative weights to the original
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query terms, while some queries have few or no good expansionterms. Effectively,

this dynamically chooses the number of top-k final expansion terms (including zero

terms), rather than forcing us to choose a fixedk in advance: this flexibility would be

impossible with a simpler model-assigned weighting scheme.

Risk-reward curves. We regard the risk-reward tradeoff curve as an important new diag-

nostic tool for analyzing and comparing the effectiveness of expansion algorithms. Ideally,

such curves should become standard in the evaluation of any query expansion or reformu-

lation algorithm.

6.5.3 Comparing sampling and optimization approaches

The two main approaches we have introduced for improving robustness are the sampling-

based approach of Chapter 3 and the convex optimization approach of this chapter. These

methods are complementary, but quite different. While sampling acts to average over un-

certainty, the QMOD framework can be used without probabilistic models and makes use

of fixed estimates for objective and constraint parameters.We currently connect sampling

and optimization by using perturbation kernels (obtained from sampling) as the covariance

estimate in the optimization, but such a connection is not strictly required.

A key advantage of sampling-based methods is that they are a very general way to get

at the sensitivity and uncertainty of virtually any observable result or parameter calculated

by a retrieval algorithm. In Chapter 3 we showed that such sensitivity information was

useful for improving the quality of expansion models. Moreover, we have a powerful set

of existing statistical tools that can be applied to fit probabilistic models to the sampled

information. These models in turn fit naturally with existing probabilistic retrieval frame-

works. One disadvantage is the increased computational cost of obtaining the sampled

results, although in Chapter 3 we discussed ways this expensecould be mitigated.

At the start of this chapter, we already stated the many benefits of using an optimiza-

tion framework for finding good expansion models. A limitation of our current approach,

however, is that it does not yet fully incorporate the uncertainty information that could be

available from sampling. This is partly by design, in order to start by exploring simpler

models first. Ideally, however, we could go further to combine the strengths of sampling

and optimization approaches by using a more general robust optimization framework that

accounts for uncertainty in parameters (such as the aspect matrix A). Then, sampling meth-

ods could provide the estimates to quantify this uncertainty. Depending on our robust
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optimization approach, these estimates could be in the formof distribution parameters or

(distribution-free) moments obtained from sampled estimates for the uncertain variables,

or could simply be finite sets of sampled parameter values.

6.6 Related Work
Historically, the problem of optimization under uncertainty has been the domain of oper-

ations research and economics. More recently, many other fields, including branches of

computer science such as image processing (e.g. Tsuda & Ratsch [2005]) have made sub-

stantial algorithmic contributions. The common thread among these various fields is that

of finding an optimal action or selection when we can only observe an imperfect signal

describing the state of the world. This forces us to quantifyuncertainty – typically by

modeling it with a probability distribution – and to formulate decision rules about what

optimality means when the data, or even the goal itself, are uncertain, and how to trade off

benefits against risks.

One of the most prolific areas of research has been the field of computational finance,

from which we have borrowed the risk/reward paradigm. The classic finance optimization

problem isportfolio allocation under uncertainty. Initially pioneered by Markowitz [1952],

the goal of portfolio optimization is to allocate a given budget over a set of securities in a

way that not only maximizes the expected return of our investment, but also diversifies

the portfolio to reduce risk. For example, we typically avoid buying too many highly

correlated stocks in the same industry sector. The expectedutility of the securities, and

their covariance over times, is estimated from historical data, and the optimal portfolio is

found as the solution to a quadratic optimization problem. This mean-variance optimization

model has since been generalized and refined in numerous ways.

While the problems faced by portfolio managers and search engines both involve op-

timization under uncertainty, the finance scenario also hassignificant differences from in-

formation retrieval. First, although we would like to treatthe query in some sense as a

risk-free asset, we currently have no reliable way to quantify what the corresponding “rate

of return” might be, which would require a reliable estimateof query difficulty. Second, we

typically do not have extensive historical data to model variance. Instead, we must generate

our own pseudo-training data for every query, using methodslike the query variant strategy

of Chap. 3. The extensive query logs generated from millions of user queries to Web search

engines may prove to help in this regard.
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6.7 Conclusions
Our work in this chapter extends the ideas and expansion framework introduced in Chap-

ter 3 by adapting convex optimization methods for model combination. We show further

improvements over the earlier heuristic approach in the quality of the final combined model

based on the results of multiple query variants. Our approach is to cast the problem of query

model estimation in terms of constrained metric labeling. By integrating relevance and risk

objectives with additional set-based constraints to selectively reduce expansion for the most

risky queries, our approach produces dramatic reductions in the downside risk of a strong

baseline algorithm while retaining or exceeding its gains in average precision.

We introduced simple refinements to the basic metric labeling problem that capture

constraints on the nature of query terms selected for an expansion. The quality ofaspect

balancerestricts label weights so that all aspects (terms) of a query are covered more or less

equally. Theaspect coverageconstraint specifies roughly how many nearby related terms,

for any query term, must exist in the solution: allowing moreexpansion terms increases

potential recall, but also potential expansion risk. Theterm centralityconstraint prefers

terms whose distances (say, as measured using the data perturbation kernel) to all of the

query terms have low variance, and thus are more centrally located in kernel space. We

also showed how other heuristic constraints, such as budgetconstraints also fit easily into

this framework.

Because of the generality of our framework, a number of extensions and refinements

to the basic program can be studied. For example, additionalbudget constraints may be

added to constrain the total number of non-zero term weightsin the solution, similar to

methods from portfolio optimization [Lobo et al. 2007]. Second, sensitivity analysis of the

constraints is likely to provide useful information for active learning: interesting extensions

to semi-supervised learning are possible to incorporate additional observations such as

relevance feedback from the user. Finally, there are a few additional parameters, such as

kernel rescaling coefficients, and it would be interesting to determine the optimalsettings.

The values we use have not been extensively tuned, so that further performance gains may

be possible.

In the concluding chapter that follows, we look beyond the domain of term weights

to describe how our constrained optimization approach may be generalized to help solve

difficult information retrieval problems in other domains.



Chapter 7

Conclusion

In essence, all work in this thesis flows from the logical implications of two key assump-

tions. First, that important entities such as queries and top-ranked document sets be treated

as noisy observations of a latent random variable. Second, that the resulting posterior dis-

tributions – and expectations, covariance matrices, and other quantities derived from them

– represent information about the critical but neglected dimension ofrisk which can be

quantified and exploited to improve the robustness and precision of information retrieval

algorithms in a very general way. As a concrete application of this approach, we make

significant progress on a long-standing problem: improvingthe reliability of query expan-

sion algorithms without reducing their overall effectiveness, while making few assumptions

about the base expansion technique.

In practical terms, we implement this vision in two phases: first by using sampling –

producing small numbers of query and document variants – to estimate feedback model

risk and generate multiple feedback model hypotheses; and second, using an optimization

framework that prunes and combines these model hypotheses to produce a robust, effective

final expansion model.

Starting with the basic generalized retrieval framework described in Chapter 3, we

achieved significant improvements in both precision and robustness over six standard TREC

test collections. The best results in that chapter were obtained by combining leave-one-out

query variation, bootstrap sampling over documents, and a heuristic model combination

step derived from sample weighting heuristics in Monte Carlointegration. We then devel-

oped further improvements to model combination in Chapter 6 using a more principled,

transparent and extensible framework based on convex optimization. This resulted in the

184
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QMOD algorithm, which, unlike the heuristic model combination method, was much more

tolerant of a poor baseline algorithm and could operate selectively to avoid risky expan-

sion situations. We showed that, within the optimization step itself, the best results were

obtained by combining several active constraints on the setof expansion terms, with indi-

vidual and conditional term risk estimates. We obtained further incremental improvements

by re-using term score variance information in Chapter 4 to derive perturbation kernels, a

new type of similarity measure.

7.1 Significance of this work to the field

of information retrieval
We believe this dissertation introduces important changesto the way people will view,

implement and evaluate query expansion. First, query expansion methods no longer need

to restrict themselves to greedy, threshold-based heuristics that neglect properties of the set

of terms as a whole, such as aspect balance. Instead, we are free to think of expansion

methods in the most natural way, namely, in terms of principled set-basedcriteria, and

balanced trade offs between multiple competing objectives such as relevance and risk.

Another shift is our emphasis on quantifying therisk of query expansion instead of

merely maximizing reward measures like mean average precision. For evaluation, we in-

troduce estimation and analysis of risk and reward, focusing on downside risk, not just

average-case performance. We include new evaluation methods such as risk-reward trade-

off curves, which we believe should become a standard method foranalyzing and compar-

ing expansion algorithms in the future.

To implement these ideas, we add two powerful new methods: the use of resampling

for model estimation, and optimization with constraints for selective expansion. There is

great freedom in particular in the relevance and risk objectives and metric constraints that

may be used with the optimization framework of Chapter 6. Extensions and refinements

to both resampling and optimization represent new researchdirections for IR in their own

right1. In general, the principled, extensible theoretical framework we introduce is fruitful

ground for future exploration of factors that interact and affect query expansion.

Our algorithmic contributions focus ongeneral-purposemethods that can take existing

1 For example, [Lee et al. 2008] very recently published a cluster-based refinement to document resam-
pling that improves on the basic methods in [Collins-Thompson & Callan 2007]for pseudo-relevance feed-
back.
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expansion algorithms and make them better. Most proposed improvements to query expan-

sion only apply to a particular retrieval model. Our algorithms, on the other hand, treat the

retrieval model or ranking function as a black box, which could be implemented using vec-

tor space models, inference networks, statistical language modeling, or other approaches.

Thus, the techniques we introduce are broadly applicable.

We now give a more detailed overview of contributions than our original summary in

Chapter 1.

7.2 Dissertation Summary
In the first part of this thesis, we discussed the issue of robustness in query expansion al-

gorithms, and how it is important to distinguish average-case performance from worst-case

performance when evaluating retrieval algorithms such as relevance feedback. Current

feedback methods are unstable and while performing well on average, can still hurt many

individual queries. We summarized the main causes of query drift, which is a key problem

of existing expansion methods. These problems include poorinitial retrieval, aspect imbal-

ance, and unstable term quality. We discussed how these problems can be addressed with

novel applications of sampling and convex optimization that can measure and account for

risk as well asreward in searching for effective and robust query models.

7.2.1 Sampling methods

In order to incorporate risk as a factor in information retrieval algorithms, we introduced

methods for estimating risk efficiently. Given some quantity, such as score variance, as a

proxy for risk, we showed how the use ofsamplingin small amounts can produce useful

estimates of variance.

In Chapter 2 we introduced another application of sampling, namely, calculating Monte

Carlo estimates of important integrals that arise in document scoring. We derived document

scoring in the Relevance Model as a form of importance sampling . Monte-Carlo-type esti-

mates recur in the thesis for a number of useful integrals: the GRM formula for document

scoring, document-smoothing kernels, and canonical similarity measures (data perturbation

kernels).

We address the issue of noise terms in query expansion modelsby applying a general-

ized form of bagging to the top-ranked document set, fitting amaximum likelihood Dirich-

let distriubtion to the sampled feedback models and selecting the mode of this Dirichlet
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as the combined feedback model. This stabilizes the feedback models produced by our

baseline feedback algorithm, choosing terms that are consistent across multiple training

sets, and thereby increasing the precision of the feedback models. We used self-organizing

maps to give a novel visualization of how expansion model instability occurs in real query

situations.

7.2.2 Query variant framework

We showed that sampling query variants is a way to help address poor initial retrieval qual-

ity, by increasing the number of query hypotheses. Each query variant perturbs the relative

weights on the original query terms. In this way, even if the original query returns few or

no relevant documents in the top 10 (say), the use of query variants increases the likeli-

hood of finding at least a few more relevant documents. We discussed model combination

approaches that are effective in combining the results of these different hypotheses. We in-

troducedsigma-point sampling: the novel application of the unscented transform theorem

from particle filtering to finding a good set of perturbation weights. We connected the idea

of query perturbation to work onlocal influence and sensitivityin general statistics. We

also introduced new measures to evaluate the effectiveness of a query expansion algorithm

including the use of risk-reward curves.

7.2.3 Data perturbation kernels

We show that the use of query variants produces a valuable side benefit: training data

for learning similarity measures over terms. We introduce data dependent kernels called

data perturbation kernelsand show how they can be derived theoretically from importance

sampling methods on an integral (based on the Canonical Distortion Measure).

We applied data perturbation kernels in practical applications to both individual terms,

and language models. When applied to terms, in addition to giving valuable risk and simi-

larity data for convex optimization, it also induces a precise query-specific similarity mea-

sure between documents. We evaluated the effectiveness of the perturbation kernel as the

term similarity measure in the QMOD covariance matrix for query expansion and com-

pared this to a term association (Jaccard) measure with small but consistent gains. We also

showed how treating the query as a random variable can be usedto improve query difficulty

prediction, generalizing an existing query difficulty measure by adding an interaction term

for similarity between documents in a collection in addition to the similarity of the query
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to the collection.

7.2.4 Optimization methods for query model estimation

In the final part of the thesis, we developed a convex optimization framework for estimating

query models. This takes the view that the selection and weighting of query terms should

be done as a set: that is, taking account the properties of theentire set of terms, instead

of a greedy strategy that considers only the properties (such as relevance scores) that can

result in aspect imbalance and other problems for smaller sets of terms. Another advantage

of this approach is its simplicity. By reducing query model estimation to an optimization

problem, it allows efficient general-purpose convex optimization techniques to be applied.

Our evaluation shows that a convex optimization approach provides further gains in ro-

bustness and resistance to noise over the heuristic methodsof model combination in Chap-

ter 3. The model combination method in Chapter 3 required a separate step to estimate

whether or not to expand, whereas the convex program integrates everything into a single

set of easily understood criteria, making changes and improvements much more transpar-

ent. In general, the use of an optimization framework provides a natural way to perform

selective expansion, by constraining the objective with a feasible set of models that satisfy

the conditions of reasonable expansion models, such as (possibly competing) constraints

including aspect balance, term confidence, and coverage of query aspects.

There are a number of reasons that current Web search enginesstill do not use auto-

matic feedback methods to increase result quality. Part of this thesis work has sought to

address those reasons. First, there is great pressure to keep query processing times very fast

(i.e. less than 250ms), not only to provide satisfying response times, but also to maximize

user throughput for a site, and thus increase the number of advertisement views. The extra

computation cost of automatic feedback is thus seen as a negative. Although our algorithms

make use of more CPU time, we have tried to keep factors such as the number and nature of

subqueries efficient. Second, some query expansion methods, like Latent Semantic Anal-

ysis [Deerwester et al. 1990], may operate by providing dozens or hundreds of weighted

expansion terms. The reason why certain pages become highlyranked becomes somewhat

more confusing and less predictable for a user. Our methods,in contrast, focus on choosing

a small number of high-quality terms (including possibly noterms at all). Finally, if the

average gains of automatic query model estimation are ever to be widely used to improve

search, this downside risk must be greatly reduced. Using a principled convex optimization
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approach, we have taken a significant step forward in solvingthis problem.

7.3 Future directions
The sampling and optimization approaches we have presentedfor information retrieval

open new directions for research far beyond their use for query term weighting. We now

discuss some possible generalizations to other domains.

Federated search under constraints. Much of the risk/reward analysis that is appro-

priate for query models can be applied to other types of information resources. Finding

optimal query models can be seen as an instance of a much more general problem, of

finding the value of one or moreinformation sources, given a set of constraints on our

access to them, and a description of relationships between the information sources. In fed-

erated search, for example, the information sources are notterms, but multiple databases

or indexes. Given initial source quality or reliability statistics for each database, pair-wise

overlap or similarity measures, and resource costs for access, we can apply a very similar

convex optimization approach to solve for the information value weights for each collec-

tion. With these weights, we can prioritize the order in which collections are searched or

their results ranked. Note thatsparsesolutions are likely to be even more important for fed-

erated search than for query expansion: the cost of a non-zero weight for a collection may

imply the large overhead of searching a remote collection, so making the decisionnot to ac-

cess one or more particular collections could be critical. If all indexes have no access cost,

then a lossy approach may not be needed and redundant document removal can be done at

merge time [Shokouhi & Zobel 2007]. However, to our knowledge little work in federated

search addresses the problem of how to select or weight resources given constraints such

as a fixed computation or access budget: if our access to resources is constrained, a lossy

approach is unavoidable and an optimization problem must besolved2.

Machine translation and summarization. Matching a query with a document can be

viewed as a form of statistical translation [Berger & Lafferty 1999]. Conversely, meth-

ods we have developed in this thesis for improved matching, such as computing feedback

term weights under constraints, may be useful for related tasks such as computingn-best

candidate lists for statistical translation or cross-lingual information retrieval.

2We also note that the problem of constrained resource selection is closely related to the dual problem
of information flow and capacity, where nodes are identified with edges or routes instead of indexes. In this
case, the optimization problem can be viewed as allocating traffic amounts in the network.
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Furthermore, instead of using our method to produce query models for feedback, we

could apply it to individual documents to producequery-biased summariesof those doc-

uments. Such summaries would select a subset of terms, phrases, or sentences having

balanced aspect coverage for the query. When the summarization problem has feasible

solutions given the aspect coverage, term weight variance,and other constraints, we can

choose a particular summary by specifying another criterion to optimize. For example, we

can define themost efficient summaryas the smallest set of terms that have adequate aspect

coverage, i.e. that best predict the terms in the example document.

Extensions to semi-supervised and active learning.In general, we have sought to min-

imize our reliance on supervised learning methods. Training data is often difficult and/or

expensive to obtain, and ad-hoc retrieval itself is more like a meta-learning problem that

changes from query to query. Instead, we often create pseudo-training data for each in-

dividual query problem through the use of methods such as query variants. However, if

training data is available for a particular task or user suchas query classification or term

similarity, it would be interesting to extend our methods tosupervised learning. A resource

like Web query logs may improve effectiveness by allowing more realistic modeling of the

true task (query) neighborhood, which heavily affects the selection of related words. User

feedback may also provide training data that can be used to constrain refinements of ex-

pansion term candidates. Another research direction related to semi-supervised learning is

finding improved resampling strategies that exploit the clustering behavior of documents.

There are also interesting possibilities for active learning. One advantage of a convex

optimization approach is that we can easily perform a sensitivity analysis of the constraints.

That is, we can see how much the optimal query model is affected by small changes in each

constraint. Then, we can focus on the constraints that affect the optimal solution the most,

and potentially gather more information on those to refine the solution. For example, if

the constraints include conditions on which expansion terms were marked as relevant by

a hypothetical user, the sensitivity analysis would identify the most influential unlabelled

terms, and thus find the most useful terms for which to obtain actual feedback. In this way,

instead of using terms directly in an expanded query, we could maximize the utility we

get from allowing the user to select and give us feedback. This process could be repeated:

the observed selections could in turn be used to refine the list of expansion candidates by

further constraints, such as requiring that the previouslyselected terms continue to have
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high weight.

Optimizing over the domain of document weights also leads tothe idea of using regular-

ization of retrieval scores to reflect content similarity. Diaz introduced this concept recently

by another path in his thesis [Diaz 2007a] and discusses cluster-based retrieval and its rela-

tion to score regularization. Instead of treating documents as independent sources, we can

calculate the similarity between them and take this into account when estimating document

weights for feedback. If we reward clusters, we can modify the variance constraint to pre-

fer close weights with a cluster, but large differences between clusters. Alternatively, we

can specify that the query modeldiversifyits reliance on resources by emphasizing a single

representative element from a cluster of similar resources.

Improving search by working harder. As we have shown with our results on bagging

relevance models and running query variants, practical improvements in precision and ro-

bustness are directly achievable by increasing the CPU time available to the search engine

to process a given query. This suggests an exciting direction for future research, namely,

exploring how to improve search results further byworking harder, either automatically or

under the control of the user. Given the tremendous increasein cluster-based computing

resources available for search and text mining, the tradeoff between computational com-

plexity and retrieval effectiveness appears to hold some promise. Powerful operations like

bagging and subquery retrieval are inherently parallelizable and, with an adaptive approach

based on server load, the response time need not greatly extend the actual response time

for the user. When CPU load is high, effort may simply be dynamically scaled back to

the default simple search model. Further operations duringa more CPU-intensive search,

such as lazy evaluation of deeper linguistic concepts in specific documents, may also be

part of a portfolio of more intensive methods. In this way, wehypothesize that significant

performance gains may be possible for the most difficult types of queries.
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Appendix A

Background Material

This Appendix contains background definitions and explanation of important concepts used

in the dissertation.

A.1 Kullback-Leibler divergence
Given probability mass functionsp(x) andq(x), the Kullback-Leibler divergence between

p andq is defined as

KL(p||q) =
∑

x

p(x) log
p(x)
q(x)

(A.1)

The Kullback-Leibler divergence is typically referred to as KL-divergenceor sometimes

as relative entropy. Note thatKL(p||q) is not symmetric: choosingKL(q||p) instead of

KL(p||q) can lead to very different results in some situations. Thus,KL(p||q) computes

the similarity of distributions, but is not a true ‘distance’ metric between them (and the

triangle equality also does not hold).KL(p||q) is zero if and only ifp andq are identical

distributions, and is always non-negative and is undefined if q(x) = 0 for anyx.

Jensen-Shannon divergenceis a symmetrized and smoothed version of KL-divergence,

defined as

JS(p||q) =
1
2

KL(p||m) +
1
2

KL(q||m) (A.2)

where

m(x) =
1
2

(p(x) + q(x)). (A.3)

The JS-divergence is the average of KL-divergences to the average distribution. While

JS(p||q) does not define a metric,
√

JS(p||q) does give a metric called theHellinger metric.
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A.2 Association measures
If we have two binary attributesA andB, we can define variousassociation measuresin

terms of the four cellsMab in a 2×2 contingency table whereM11 is the number of samples

with both A = 1 andB = 1, M10 is the number of samples withA = 1 andB = 0, and so

on. For query expansion, the binary event we use for wordwA corresponds to a document

containingwA, resulting interm association measures.

One association measure, theJaccard coefficient∆JACCARDis given by

∆JACCARD=
M11

M01+ M10+ M11
. (A.4)

This gives a similarity measure between 0 and 1. We convert this into a distance measure

δJACCARDcompatible with the perturbation kernel by rescaling usingthe formula

δJACCARD(wa,wb) = β1 exp−β2 · ∆JACCARD(wa,wb) (A.5)

whereβ1 = 15.0 andβ2 = 2.0, which were obtained using empirical tuning.

Another association measure used in our experiments isYule’s Q Coefficient, which is

defined as

Q =
OR− 1
OR+ 1

(A.6)

whereOR is the odds-ratio

OR=
M00M11

M01M10
. (A.7)

In practice we use a rescaled variantQ̂ defined as

Q̂ =
1
2

(1+ Q). (A.8)
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Statistical measures of influence

The idea of performing tests to measure the sensitivity of a model to perturbations in the

training data or model parameters has been of interest to statisticians for some time. Initial

attempts at sensitivity analysis in the 1970s proposed diagnostics that focused on perturbing

the case-weights for the simple scenario of linear regression 1. The seminal work of Cook

resulting in Cook’s D-statistic [Cook 1979] is an example of one such measure. Cook’s D-

statistic estimates the influence of a single case (thei-th data element) on the model when

the case is left out of the training set. The influenceDi of casei is given as

Di =
‖Ŷ− Ŷ(i)‖2

pσ̇2
(B.1)

whereŶ and Ŷ(i) are thenx1 vectors of fitted values on the full training set, and without

casei, respectively. Also,p is the dimension of the parameter spaceβ (whereY = X · β+ ǫ,
whereǫ is Gaussian noise.) Cook and Weisberg [Cook & Weisberg 1982] later extended

this to leaving out a subset of the data.

In a later paper, Cook [Cook 1986] further generalized this idea by introducinglocal

influencemethods that are closely connected with the query perturbation we describe later.

Given observed datay and aq-dimensional perturbation vectorω he defined a likelihood

1In the statistics literature, what we might call a training point, namely, an observation on a response
variable in combination with values for the explanatory variables, is termed acase. The case-weightsare
what we have termed training set weights. Estimators such asleave-one-out estimators that set case-weights
to zero are termedcase deletionschemes [Cook 1986].
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0

( 0)

( )

Figure B.1: By varyingω in the spaceΩ, a surfaceα(ω) is generated. Local influence
measures the curvature ofα(ω) at the pointω0.

displacement (LD)

LD(ω) = 2 · (L(θ̂, y) − L(θ̂ω)) (B.2)

as a way to measure the distance of the parameter estimates between perturbed and un-

perturbed responses. Here,θ̂ and θ̂ω are the maximum-likelihood estimates forθ in the

unperturbed and perturbed models respectively.

Using theseLD values, Cook then definedinfluence graphs, which summarize the influ-

ence of a perturbation schemeω on a model with parametersθ and log-likelihood function

L(θ). The influence graph is the geometric surface formed asω varies in the spaceΩ, giving

theq+ 1 vector.

α(ω) =















ω

LD(ω)















. (B.3)

The vectorω0 = 1 (all ones) represents no change to the data, with all points getting

a weight of 1.0. Applying concepts from differential geometry, Cook defined thelocal

influence diagnosticas the direction of maximum curvature on the influence graph around

the pointω0. The goal is to summarize how the surfaceα(ω) deviates from its tangent plane

at ω0. This can be done by examining the curvature of specifically-chosen curves called

normal sectionsonα(ω) that pass throughαω0. This is illustrated in Figure B.1.



208 APPENDIX B. STATISTICAL MEASURES OF INFLUENCE

McCulloch [McCulloch 1989] develops a Bayesian version of these ideas: a sensitivity

analysis that measures the change in the posterior distribution given changes in either the

sampling distribution or the prior distribution. TheFisher informationmatrix

G(ω) =
∂2k(ω)
∂ωi . . . ∂ω j

(B.4)

is used to form the statistic

λ⋆ = max
‖δ‖=1

δTGPOS T(ω0)δ
δTGPRIOR(ω0)δ

(B.5)

The eigenvectorδ⋆ corresponding to the largest eigenvalueλ⋆ gives valuable information

about the perturbations that achieve the largest local change inLD(ω), enabling us to obtain

the relative importance of the elements ofω. This is useful diagnostic information on the

sensitivity of the model. The largest absolute elements ofLmax correspond to the cases

(training points) in data having the largest influence on theposterior distribution.



Appendix C

TREC Evaluation

This section summarizes the TREC corpora and topics used in our experiments. These

datasets provide a standardized methodology for comparingthe performance of different

retrieval algorithms. A TREC evaluation set consists of three parts: topics, collections,

and human relevance judgments. These are supplied by the Information Retrieval Labo-

ratory at the U.S. National Institute of Standards (NIST). This data may be downloaded

from the TREC site at NIST:http://trec.nist.gov. Further information on the TREC

assessment and evaluation methodology may be found in [Voorhees & Harman 2005].

Information needs in TREC are expressed astopics. Typically, a topic comprises a

short, medium, and long description need. These are called,respectively, the title, descrip-

tion, and narrative fields. An example of a TREC topic is givenin Figure C.1. An informa-

tion retrieval system takes a set of topics as input, converting each topic to the appropriate

query form for that system. The system runs the query on the test collection, returning a

ranked list of documents. Each document has a document ID that was provided as part of

its entry in the collection. Because the human relevance judgments use the same document

IDs, the system’s results may be scored for relevance against the human judgments, thus

enabling us to calculate standard IR measures for the system, such as precision, recall, etc.

Table C.1 gives summary statistics for the four TREC collections used in this thesis.

Some topic sets use the same underlying collection: for example, the topic sets for TREC 7,

TREC 8, and Robust 2004 all use the collection built from the content on TREC Disks 4&5

(minus the Congressional Record documents). In such cases, the different topic set names

and numeric ranges are given on the same row, separated by semi-colons. The relevance

judgements provided by NIST are compiled by human assessors. These are stored in a
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Collection Description Docs Size Avg Doc Len Topics

TREC 1&2 Newswire articles (TREC
Disks 1&2)

741,856 2.099Gb 2.967Kb 51–150, 151–200

TREC 7;
TREC 8;
Robust 2004

Newswire articles (TREC
Disks 4&5 minus CR)

527,094 1.36Gb 474 bytes 351–400; 401–450;
301–450, 601–700

WT10g Small web crawl 1,692,096 10Gb 6.2Kb 451–550
GOV2 (2004-
2006)

Crawl of .gov domain 25,205,179 400Gb 15.0Kb 701–850

Table C.1: Summary statistics for TREC collections used in this thesis.

<top>

<num> Number: 701

<title> U.S. oil industry history

<desc> Description:

Describe the history of the U.S. oil industry

<narr> Narrative:

Relevant documents will include those on historical exploration and

drilling as well as history of regulatory bodies. Relevant are history

of the oil industry in various states, even if drilling began in 1950

or later.

</top>

Figure C.1: Example of a TREC topic (topic 701), showing the short, medium, and long
descriptions of an information need.
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701 0 GX000-00-13923627 0

701 0 GX000-13-3889188 0

701 0 GX000-15-11323601 0

701 0 GX000-21-7072501 0

701 0 GX000-22-11749547 0

701 0 GX000-25-2008761 1

701 0 GX000-27-14827260 0

701 0 GX000-27-4783281 0

701 0 GX000-41-2972136 0

701 0 GX000-43-8149041 2

701 0 GX000-45-2286833 0

701 0 GX000-46-2808962 0

701 0 GX000-48-10208090 0

701 0 GX000-55-12164304 0

701 0 GX000-55-3407826 2

701 0 GX000-67-12045787 2

Figure C.2: Sample TREC relevance assessment format, showing the first few assessments
for Topic 701

qrels file. An example of the format for a TREC qrels file is shown in Figure C.2. The

fields are, in order: the topic number, an unused field, document ID, and relevance score.

The relevance score takes values of 0 (not relevant), 1 (relevant), or 2 (highly relevant).
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