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Abstract

Information retrieval algorithms attempt to match a usdgescription of their information
need with relevant information in a collection of documentsther data. Applications
include Web search engines, filtering and recommendatistesys, computer-assisted lan-
guage tutors, and many others. A key challenge of retridgalrithms is to perform fiec-
tive matching when many factors, such as the user’s truenrdton need, may be highly
uncertain and can only be partially observed via a small rermabkeywords. This disserta-
tion develops broadly applicable algorithms for measudnd exploiting such uncertainty
in retrieval algorithms to make them morgective and reliable. Our contributions include
new theoretical models, statistical methods, evaluagohrtiques, and retrieval algorithms.

As an application, we focus on a long-studied approach teomipg retrieval matching
that adds related terms to a query — a process knovwgui@s/ expansionQuery expansion
works well on average, but even state-of-the-art methodssailt highly unreliable and
can greatly hurt results for individual queries. We show hsamsitivity information for an
expansion algorithm can be obtained and used to improvelitbility without reducing
overall dfectiveness.

Our approach proceeds in two steps. First, treating the bagansion method as a
‘black box’, we gather information about how the algoritlsnoutput — a set of expansion
terms — changes with perturbations of the initial query asmiranked documents. This
step also results in a set of plausible expansion model dateti. We then introduce a
novel risk framework based on convex optimization that psiand combines these candi-
dates to produce a much more reliable version of the origiaaéline expansion algorithm.
Highlights of our results include:

e A new algorithmic framework for estimating more precise iguend document mod-
els, based on treating queries and document sets as randabiesinstead of single
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observations.

The first significant application and analysis of convexmpation methods to query
expansion problems in information retrieval.

A new family of statistical similarity measures we cpéirturbation kernelshat are
efficient to compute and give context-sensitive word clustgrin

The introduction of risk-reward analysis to informationrieval, including tradefd
curves, analysis, and risk measures.

A new general form of query éliculty measure that reflects clustering in the collec-
tion as well as the relation between a query and the collectio
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Chapter 1
Introduction

The traditional view of an information retrieval algorithinas been of a static process that
takes some input observation, such as a user’s query, addges an output, such as a set
of ranked documents from a collection. This thesis reprsdée first step in a new research
direction: measuring and exploiting teensitivityof an algorithm — how its output changes
with small changes in inputs or parameters — to improve it$opmance. Essentially,
we simulate the uncertainty inherent in théfidult matching problem the algorithm was
created to solve.

The goal of this dissertation is to show that we can explog fisight to develop ro-
bust, general-purpose algorithms for improving query &sgan and related model estima-
tion problems in information retrieval. By a robust algbnt, we mean one that not only
produces good results on average, but is also likely to hawel gvorst-case performance
on any individual problem. We make substantial progressatdvour goal with a novel
application of two powerful techniques. First, we appfiiaent types osamplingin new
ways to obtain risk estimates for variables of interest inteary retrieval models, and to
smooth noise across combined language models. Thesetirslatss are then used to form
aconvex optimizatioprogram that solves the robust model estimation problem.

Past researchi®rts on information retrieval algorithms have focusedédygn achiev-
ing good average performance, without much regard for thigil#tly of individual retrieval
results. The result is that current models are not robustcamdstill fail in basic ways,
leading to poor results for individual queries. For exampl@rent retrieval models often
fail to retrieve documents that cover all aspects of intetlest were implied by the query.
This is reflected in the unpredictable benefits of currentyagpansion methods, in which

1
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Figure 1.1: Example showing state-of-the-art, but unstalbhseline expansion algorithm
(left), compared to our goal of a robust version (right). Botethods achieve the same
average MAP gain (30%), but the robust version does so wehattyr reduced downside

risk. Example shows results on the TREC 1&2 corpus.

accuracy can be greatly hurt by the automatic addition efemant terms.

Figure 1.1 shows a concrete example of the instability ofreecu state-of-the-art query
expansion algorithm (left). The histogram bins queriesoating to diferent levels of
MAP gain or loss caused by applying the query expansion igor Clearly, even the
state-of-the-art algorithm still has unsatisfactory deide risk, as shown by the significant
left-hand tail on the left-side histogram: for example, antyer of queries at the extreme
left experience 50% or more drop in MAP. Our goal is to elininar at least greatly reduce
as much of this downside tail as possible, to obtaiotaistversion (right) that has greatly
improved stability, but with average MAP at least as goodhesikiaseline method. The
histogram at left shows the Indri 2.2 expansion algorithntteen TREC 1&2 topics. (In
fact, the histogram at right shows the actual performanddefoptimization method we
develop in Chapter 6.)

In addition, while state-of-the-art statistical retriewaodels have recognized the im-
portance of quantifying uncertainty, the practical imptions of treating important entities
such as queries and documents as random variables instesiolgtd observations have
not been fully explored. Thus, a further contribution ofsttiesis is to show how a ran-
dom variable approach can result in useful new algorithmduding more precise word
similarity measures and natural generalizations of engstjuery dificulty measures.
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In solving the problem of estimating a good expansion modekbfparticular query,
there are a number of competing objectives and constraomtthé estimation problem:
objectives such as maximizing expected utility of the magesus the risks of the multiple
sources of evidence that the model is based on; the depaadd@tween the sources of
evidence themselves; and additional important model cang$ such computation cost
and query aspect coverage. However, existing query expamsethods do a poor job of
capturing these tradés and goals in a unified, accessible framework.

To make progress on these problems, we bring together nppétations of two pow-
erful techniques. First, we provide a sampling-based féatian of retrieval scoring and
use this to estimate important quantities such as the meaoa@m@riance of the output of
an arbitrary feedback algorithm. The use of sampling fitd wéh our goal of general-
purpose methods, because typically we need to assume ttkrabout the functions being
sampled. This allows our methods to handle arbitrarily clexpetrieval operations and in
general be applied in a broad family of retrieval scenarios.

Second, we introduce a novel general-purpose risk frametiat characterizes query
model estimation as a convex optimization problem. The cibjes and constraints of
the convex program are derived using the sampling-basedast developed in the first
part of the thesis. In this way, we can find query models thatogtimal with respect to
the tradeffs between a number of competing optimization goals, in a Waywould be
difficult or impossible to specify with a single formula. Infortioa about the solution can
then be used as part of a retrieval algorithm. For examplelecBve query expansion
algorithm will not expand if there is no feasible solutiornthe optimization problem.

In the remainder of this chapter, we give some backgrouraltim¢ general problem,
describe why our research goal of flexible, robust retriegbrithms is important, and de-
scribe the role of risk estimation. We then summarize sorgeckallenges of this research,
and the main methods that we use for achieving our goals. @¢edy summarizing the
theoretical and practical contributions of this research.

1.1 The information retrieval problem

In a very broad sense, both people and computers often nithation when performing
particular tasks. We call the requirements that this infation must satisfy thaaformation
need and it might be only loosely defined, as might the tasks tledvas. A query is a
particular expression of an information need and may be@miplete or vague description
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of the information need (which we do not observe directly).

Information retrieval (IR) is a branch of computer sciendeoge main goal is to provide
effective methods for satisfying information needs. It haditranally been distinguished
from database retrievaby the fact that the representation of information is usualbre
loosely structured than the rigid table-based organinatioca database, and that the infor-
mation need is often not completely specified. However, thndtion between these two
fields is becoming more blurry as more structure is used iugmnts. Information that
satisfies an information need is calledevant

The scope of information retrieval is as broad as informmatiself. Early IR research,
covering a period roughly from the mid 1950s to the late 19#fizised on text — especially
text of interest to library applications such as books orfails. Today, however, retrieval
algorithms of one kind or another are also applied to videgital photos, scanned and
on-line handwriting, genetic data, music, audio clips, dgdertext, not to mention the
hundreds of dferent human languages handled by cross-lingual IR.

There is a general formulation of IR that all of these appiwe share. A retrieval
algorithm is given aquerygenerated by a user that represents their information nked.
the case of text, this query consists of a series of wordagalath possibly a set of relations
between them. We assume that the information to be foundegsn acollectionwhich
consists of a set afocumentsHere the term document is very general and refers to a basic
unit of information that could be a Web page, image, audip, @nd so on.

Given the query, the retrieval algorithm then scores theudwnts in the collection,
ranking them according to some measure of how well the quemg and relations are
matched by information in the document. For text, the refegimost often used between
terms are co-occurrence or proximity constraints. Traddi relevance also relies on the
frequency with which terms occur in a document, and how ualuthe terms are in the
collection.

1.2 Why robust retrieval algorithms are important

In looking at how &ective a retrieval algorithm is, it is important to distinglu its accuracy
in the average case from its accuracy on individual queAesalgorithm might have good
average accuracy, but have a large variation in accuraay fjeery-to-query, so that a few
gueries are satisfied with extremely high accuracy, butragieries obtain disasterously
low results. Another algorithm with equally good averagewracy might be much more
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consistent, avoiding the worst-case performance of thendormethod, while obtaining
slightly worse results than the best-possible case of the mnastable algorithm.

Query expansionfor example, is a widely-used information retrieval teicjue that
adds new words to a user’s query in hopes of bridging thiemince in vocabulary that
might exist between relevant documents and the user’'s gitéhen information is avail-
able from a user about which documents are relevant , we adorperelevance feedback
by expanding the query with terms from the relevant docusieiftno relevance judge-
ments are available, we can attempt to invent some, by asguime topk documents are
relevant: this operation is known pseudo-relevance feedback blind feedback

State-of-the-art feedback methods usually improve seszchracy on average, but can
also significantly hurt performance for specific quer*es [aeto et aH 2001a]. A desir-
able goal is therefore to investigate more robust exparaligorithms that can reduce the
number and severity of such failures without hurting ovepa¢cision. This is an impor-
tant unsolved problem for current information retrievaearch, and one significant reason
why Web search engines still make little or no use of pse@d®rance feedback.

Instability in retrieval is not desirable for a number of seas. First, it leads to dissat-
isfied users, who typically prefer results that are reaslyngtod and predictable to results
that are sometimes very good but completely unpredictaBkecond, worst-case perfor-

mance may be critical in retrieval applications that stigregnphasize precision over re-
call and thus have a low tolerance for noise. For examplegivstudent-oriented learning
goal, a software language tutor might need to retrieve anogpiate example from a col-
lection, or choose an alternative strategy if a high-qua&axample cannot be found, instead
of showing the student a poor example.

We now give a short explanation for how the concept of riskipartant to our goal of
robust retrieval algorithms, and how uncertainty can bereged and exploited to accom-
plish our research goals.

1.3 Estimating and exploiting risk in information retrieval

Current instability of retrieval algorithms is a result of eevitable feature of information
retrieval: uncertainty First, a retrieval algorithm cannot know the queries thét e
presented to it ahead of time, and even if it did, the useftgimation need may be vague or
incompletely specified by these queries. Even if the quepergectly specified, language
in the collection documents is inherently complex and ambigs and matching this against
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the query is a formidable problem by itself.

The result is that many important quantities calculatedhigyretrieval system, whether
a relevance score for a document, or a weight for a query estparterm, should not be
seen as fixed values, but rather as random variables whesesdtiue is uncertain but where
the uncertainty about the true value may be quantified byacépd the fixed value with
a probability distribution over possible values. It seemslent that any algorithm that
hopes to be robust would do well to include estimates of uac#y, such as probability
distributions, as one factor in its internal calculatioss,that it can quantify the risk or
uncertainty associated with its output. For example, ayjegpansion algorithm should
be able to control the tradeffdetween using a group of reliable, but possibly lefsative
expansion terms compared to a number of more unusual hikhhitgh reward terms.

1.3.1 Estimating risk and reward

The traded between risk and reward is a familiar dilemma from everydég. | When
we need to make an important decision, we often don’t knovhallfacts with certainty.
Instead, we must first understand how uncertain we are abeufacts, and then based
on how the facts might vary, estimate a range of possibleonogs, including best- and
worst-case scenarias

Similar ideas — in a more mathematically rigorous way — caafq@ied to the problem
of searching for information. The decision by an algorittowdturn a document to a user
is typically taken under great uncertainty about the trusimreaof the user’s needs, the
language of the document, how well the query matches a daatiared so on.

In order to consider factors such as risk and reward, a wetrig@lgorithm must have
ways to quantify them somehow. Existing retrieval algarithhave focused almost exclu-
sively on the ‘reward’ aspect of retrieval, which is typigaduantified in statistical models
by the probability of relevance given a document and queayléss research has examined
the critical additional aspects of ‘risk’ in a systematicywa

One reason having estimates of risk is important is that,eshew in this thesis, such
estimates allow us to improve the robustness, or worstqpagermance, of our algorithms.
For example, when a query expansion algorithm detects atgituwhere its proposed
qguery model is highly uncertain, it can scale back to a momseovative strategy that
gives the original safe query terms much more weight. As vesvdater in Chapter 6, this

IHere we use the wondsk in an informal sense without any specific mathematical défimassumed.
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behavior, known aselective query expansipis less &ective when estimates of term risk
are ignored.

One practical way to quantify uncertainty in a variable iggtimate a probability dis-
tribution for that variable. We can then make assumptioas tlertain properties of that
distribution, such as theariance (or covariance in several variables) are an acceptable
proxy for our uncertainty about the variable. If this can Ippleed to estimate uncertainty
in the input to an algorithm, then that algorithm may be ablguantify the uncertainty
in its output by somehow propagating the input’s statistpraperties through the com-
plex system. From this new information, the algorithm cataobconfidence intervals on
likely outcomes, which we show can be used for improved datismaking, algorithm
calibration, and model combination.

1.3.2 Exploiting information about risk

We now give a simple hypothetical example of how adding imfation about risk, in the
form of covariance, can improve model estimation.

Suppose the task is to estimate the words that are likelydoran relevant documents,
based on a query string observed from the user: "parkinsosésade”. A baseline algo-
rithm estimates that some related words (with their eseharobabilities of relevance) are
"disorders" 0.06, "syndrome" 0.05, and "brain" 0.04. Lookihgat these relevance scores
alone, an algorithm has no information about the meaningefitords — for example, that
"disorders" and "syndrome" express similar concepts — or l@wtords co-vary, or how
confident we are in these individual scores. Therefore, iergexpansion algorithm had
to pick the two "best" related words simply on the basis ofuatee scores, it would pick
"disorders” and "syndrome"”. More generally, if the algorithad 100 words, it might pick
thek highest-scoring words, or employ some threshold. Thisrigelg how current query
expansion methods operate.

Now suppose we have new information: we know that "disordars! "syndrome™
are likely to be highly correlated with each other in docutsenHowever, we are still
aware that "brain" has almost as high a relevance weight asttieg two, meaning it is
still likely to be a distinctive term in some relevant docurtg In this case, the best two
related words to choose may no longer be "disorders” and "symell, because we gain
little advantage from choosing features that select theedaature in relevant documents
twice: essentially, a redundant bet. The pair "syndrome™anan" may be a better choice



8 CHAPTER 1. INTRODUCTION

because each is correlated with &elient query term, and there is also some relation of
each to both terms: informally, they "cover" the meaning &f uery better than two
disease-related terms. Thus, in some cases it makes setteechoose the term with the
highest relevance weight. This example is simplistic boighhow information about how
terms in a relevance model co-vary can strondgfeet how a model is estimaEéd

1.3.3 Using sampling to estimate risk

There are several challenges in attempting to quantify. riskportant random variables,
such as a set of query expansion term weights, may be thetdtapucomplex non-linear
functions that are diicult to approximate. It is also not clear how accurate ouneses
need to be for them to be useful. Finally, if we need to askelrgewval system for additional
information, this requires extra computation, which slidog minimized for the algorithm
to remain practical.

In this dissertation the main tool we use to tackle thesesgsampling This includes
novel applications of some powerful sampling techniquesnfiother fields, such as the
unscented transform developed for particle filtering.

We adapt a Bayesian inference framework in which pluggalddutes can work to-
gether using the shared mechanism of probability. Bayasfarence also gives principled
ways to include prior knowledge about a given problem, tasida model in response to
new evidence, and to combine evidence from multiple hysabe

In a Bayesian formulation of retrieval, the user’'s queryresgnts evidence about rel-
evance, and is used to update the parameters of a model #aaibds what relevant doc-
uments look like, or perhaps how theyff@r from non-relevant documents. To calculate a
document score (for example) based on our retrieval moadeltbes uncertain parameters,
the correct formulation in Bayesian statistics is to catelthe expected outcome of the
model over all possible values of the parametérs ([Duda‘b(h]l], p. 487). This means
that when we account for uncertainty, formulas such as deatiscores becomategrals

over the space of parameters in the model. Unfortunatet)) sutegrals are usually very
expensive to compute, which makes their direct use impralctor real-world IR systems.
There are, however, numerical techniques fidiceently approximating these integrals by
evaluating the function at fierent points in the parameter domain and then combining the

2 |n fact, in Chapter 6 we show how an optimization approachipces exactly this type of term selection
behavior, using the sanparkinson’s diseasguery in Figuré 6.5 as an example.
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resulting function values.

One such method Blonte Carlo integrationwhich uses sampling to evaluate the in-
tegrand in regions where it is likely to take on large valuesoovary rapidly. The use
of sampling allows us to use a rich set of potential documadttarm scoring functions,
because almost no assumptions are made about the nature thietintegrand, which is
treated like a ‘black box’. Monte Carlo sampling also prowdeway to address robust-
ness, because instead of calculating one estimate of hewargla document is, we can
sample several ffierent estimates (using the right choice of sampling distitims) and
combine the results. In statistical terms, using multigleples and sampling methods can
reduce the variance of our estimate of the true value. Famiency, we tend to emphasize
deterministicsampling methods that use a small number of samples.

In a different setting, the idea of taking a representative samplelso prove to be a
powerful idea for getting an accurate estimate of the seitgipf a feedback algorithm,
and for smoothing out the performance of an unstable feddalgorithm usingoootstrap
sampling which is described further in Chapter 3.

1.3.4 Applying risk estimates to finding optimal models

In an optimization approach to model estimation, insteadyirig to solve a model estima-
tion problem by finding an explicit formula for the parameatexe take a more flexible path:
we specify objective and constraint functions that thelidelution should satisfy, and then
the actual work of searching the parameter space for thenapsolution is performed by
a general-purpossolverroutine.

Using the "parkinson’s disease" example of Section 1.3.2@hbwse can create an op-
timization model that instructs the solver to search fos sétterms satisfying two simul-
taneous criteria. First, it should prefer sets of terms b@ate high relevance weights; this
is the "reward" criterion to maximize. Second, the solverndtigrefer sets of terms that
are minimally "redundant”: this is a "risk" criterion to be mimied. The result will be
a method of model estimation in which the traffexan be easily adjusted. As we show
in Chapter 6, such risk constraints help stabilize the perémrce of model estimators.
Typically, our optimization will embody a basic tradébetween wanting to use evidence
that has strong expected relevance, such as highly-rard@thtents, or highly-weighted
expansion terms, and the risk or confidence in using thatecel

If the solver’s search of the model parameter space wereffioteat, there would be



10 CHAPTER 1. INTRODUCTION

little incentive to apply this approach to the time-crititask of retrieving documents from
a large collection. However, recent advances in the sped&dthf hardware and interior-
point solver algorithms are making convex optimization adity applicable technology
that can quickly handle problems having hundreds or thalsan variables. Part of our
aim in this dissertation, therefore, is to introduce thedfigs of this important tool to
information retrieval problems that might otherwise haeei too complex or eicult to
solve until now. In Chapter 6 we give an in-depth treatmenthef ¢convex optimization
approach and its other advantages.

1.4 Challenges to be addressed

In attempting to create improved models and algorithmsritarmation retrieval, the fol-
lowing challenges must be addressed along the way and ajflesthe solutions we choose.
Because IR typically involves human language, some of ttlesenges are inherited from
the general problem of attempting to capture meaning ardantion in language.

High dimensionality. Information retrieval models typically involve query anddd
ument representations having thousands of dimensions._tlierefore important that the
mathematical techniques we use can scale well, both in tefaxscuracy andféciency, to
a large number of dimensions and a potentially large numbpa@meters.

Run-time efficiency. Since a search system must respond to a user within a few sec-
onds, algorithms for analyzing a query, or scoring documemainst a query, must be
extremely dicient. Our ability to use more sophisticated models of laggufor IR is
thus restricted to some extent by our ability to compute whtdm dficiently. Thus, if
simple closed-form solutions are not available, methodddst approximations or pre-
computation become very important.

General-purpose methods.A well-designed retrieval system is modular: the imple-
mentations of dferent subcomponents of the retrieval process, such as teighting,
guery expansion, and documgqniery matching functions may be replaced or modified.
Some of this flexibility may even be available to the user, aienore advanced query
language for example. When we need to analyze the perfornaracparticular subcom-
ponent (such as the sensitivity of a document score or aseeteévance weight), we would
like to use methods that treat the subcomponent as a ‘blackabd make as few assump-
tions about the nature of the implementation as possible¢hitnway, we ensure that our
model estimation methods can be applied in as broad a rarggepérios as possible.
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Use of training data. One relatively recent development for information retalkeis
the availability of large datasets for training and analysrhis includes document col-
lections (particularly the Web), query logs from Web seagoljines and standardized test
collections, such as from TREC. We would like to take advamtaghese resources to help
train our statistical models, by using empirical Bayes rodthto estimatefeective prior
probability distributions. In query expansion scenarmsthe other hand, human-labeled
data is typically not available, or extremely limited. Ittigerefore also important that we
understand how sensitive our models are to having only alsamalunt of training data
from which to learn.

1.5 The problem of query drift

Central to the problem of unstable query expansion algostisthe problem ofjuery drift
Query drift is the change in focus of a search topic away framdriginal intent of the
user, typically because of incorrect or incomplete queryagsion or feedback methods.
The nature and causes of query drift have been examined imméeruof studies [Mitra
et al. 1998] [Harman & Buckley 2004], and form an importansisgor development of
solutions later in this thesis. The main causes of query clifi be categorized as follows.

—_

Poor initial retrieval. A key assumption of feedback methods is that at least some of

the top-ranked documents are relevant, on average. Theredne of the most common

scenarios causing query driftis a lack of relevant docusirthe top-retrieved documents.
One attempt to reduce query drift has focused on improviegpiiecision of the top-

retrieved documents. Mitra, Singhal, and Buckl‘ev [Mitraabk1998] perform re-ranking

by finding relevance indicators that enforce conditionshsag boolean term combinations

and term proximity, while also rewarding concept diversi@rouchet al. [Crouch et ai.

@Z] perform a similar type of reranking but focus on matghunstemmed query terms

in documents using heuristics such as sums of query termhigeig

Another method for improving the chance of finding at leasteoelevant documents is
to extend the initial retrieval to use multiple alternateeguhypotheses. Our use of query
variants in Chapter 3 and the AbraQ algorithm [Crabtree et @72 are two examples
of this approach. Kurland, Lee, and DomshILalk [Kurland é\eao%] also employ multi-
ple query hypotheses in the form of pseudo-queries: "Staftiom the original query,
our methods repeatedly seek potentially good renderersofrant set of pseudo-queries,
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guided by the hypothesis that documents that are the bestnens of a pseudo-query may
be good alternate renditions of it." Critically, they use arehoring strategy at each iter-
ation to interpolate the original query score with new ralese scores. Kurlaret al. also
usedocument clusteringp find related documents to those in the initial set(s).

Poor coverage of query aspects. No matter how many or few relevant documents are

found in the initial retrieval, recent studies [Harman & Biey 2004] [Collins-Thompson

& Callan‘ 2005] have recognized that weadpect coveragm the resulting feedback model
or final expansion model is something algorithms must detedtremedy to avoid query
drift. Here we use an informal definition aSpectto mean a topic of interest implied by

all or part of the query. For example, a query sucleasnomic impact of recycling tires
would have as possible aspects the concept areaswtling economyandtires. A more
specific aspect might beconomic impact

Certainly, poor initial retrieval is likely to lead to poor@ect coverage. Yet excellent
initial retrieval may also sftier from unbalanced aspect coverage in current feedback algo
rithms. In a summary of the results from the 2003 Reliablerdmiation Access Workshop,
Buckley writes, "...relationships between aspects of actepe not especially important
for state-of-the-art systems; the systems are failing aualhnmore basic level where the
top-retrieved documents are not reflecting some aspedt éﬂ{BUckle;(@]

In ad-hoc retrieval, the approach of Miaal. includes a document re-ranking function
that rewards multiplendependentoncepts based on word co-occurrence in the top 1000
documents. Their heuristic formula downweighting the dbntion of correlated terms
obtained consistent improvement compared to not using wssdciation.

Also related to aspect coverage in feedback models is tHe#giroofsubtopic retrieval
in which the criterion for selecting the top documents lotleyond the assumption of
independent relevance of documents, to select a set of dadsrthat together cover a set
of aspects or subtopids [Zhai el“al. 2603]. Here, the emphsisin the results presented to
the user, rather than the features learned for a feedbacklimod

Detecting poor or uncertain aspect coverage is closely ected with algorithms for
estimating query diiculty, which we discuss in more detail in Section 4.6.5.

Noise terms in feedback model. Selecting feedback terms is typically done in a two-step
process. First, a score is assigned to each term. This sfterelas the form of a two-part
scheme that combines some measure of the term’s rarity wittkelihood of being in the
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top-ranked documents. In essence, a score should refldciphadpability of being in a
relevant document, while also being a good discriminatairagi non-relevant documents.
The widely-usedf.idf scheme is one example of a scoring formula that combines tiaes
factors. In the second step, a greedy selection method th&depk terms using either a
rank threshold (top 10) or a score threshold (all terms withre>= S).

Ideally, a term will achieve a high because bottf andidf components have high
values. This corresponds to a rare term occurring very ety in the top-ranked docu-
ments. In many situations, however, one artifact ¢ffidf method is that a term can still
achieve a high score when only one component, sudf asvery high. This is the case
with stopwords, and in fact this scoring behavior becomedest when the use of a sto-
plist is turned & — even with feedback algorithms found in more sophistica&tdeval
systems, such as the Indri search enéine [Strohman‘ et a] B86d in this thesis.

We explore this phenomenon further in Section 3.4.10 anevghat techniques like

baggingcan help reduce the noise from unstable feedback term weggsthemes by
finding the terms that have more consistent scores undempteulelated hypotheses.

The value in improving feedback algorithms is not restddteapplications using either
explicit user input or completely automatic methods. Toamaeplish personalization of
search results, data can be provid@glicitly in a relevance feedback framework by using
user data. The resulting feedback model is then used tonledacuments with a bias
toward user interest. This approach is introduced by [Te@laal‘.‘ 200%]. In essence, the
main goal is estimating a more accurate model of relevamzksa feedback methods can
be seen as more than just an add-on component of a systenm) imiegral part of the
scoring procedure itself.

1.6 Summary of original contributions

This dissertation introduces new theoretical models, rtevssical methods, and new re-
trieval algorithms that are enabled by these models andadsthOur main contribution
is the development of robust model estimation methods wrimétion retrieval. The key
property of these algorithms is that they have significab#iter worst-case performance
than current methods, with no reduction — and in many casgsifisant improvement —
in average-case performance. The following three submesummarize the theoretical,
statistical, and algorithmic contributions in more detail
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1.6.1 Risk estimation for information retrieval

A principled risk framework for query model estimation. We frame the problem of
estimating an optimal query model as a convex optimizatioblem. Traditional methods
for estimating query models have made fairly restrictiveumsptions in order to simplify
the problem. For example, many traditional methods for liee#f, such as Rocchio, esti-
mate each term parameter independently of the others. Settiods fail to capture impor-
tant constraints involving thentire setof terms, such as the totality of query aspects being
covered. By formulating the problem in terms of convex ojtimtion problems we can ex-
tend our search space beyond a greedy threshold approdutd aptimal subsets of terms
with respect to such set-based conditions. Our framewoduite general in that it can
support any situation in which there are multiple sourcesfafrmation about relevance.

A sampling-based view for multi-strategy retrieval. We extend existing approaches
to statistical retrieval with a theoretical framework thbposes a novel view of docu-
ment scoring as the combination of multiple sampling disiions of the score integral.
Each sampling distribution corresponds to &eatent retrieval strategy. Existing meth-
ods from Monte Carlo integration are then used to perform rhodmbination for these
multiple complementary strategies. Essentially, sangpighused as a way to create re-
lated retrieval problems whose results may then be compamddmerged. This formu-
lation also gives new insights into existing document sepformulas. For example, we
show that the document-based scoring formula in the Reteviodel ‘[Lavrenku) 2004]
is actually a special case of a Monte Carlo integration heaslled multiple importance
sampling 7]. This in turn suggests useful new gdizations of the Relevance
Model scoring methods.

New IR evaluation methods. We introduce a new family of measures, callReLoss
measures, that quantify expansion algorithm/sakiance. With these measures, we then
construct new types of risk-reward curves to compare quegpgaesion algorithms. Using
a novel analogy between information retrieval and companat finance, we also obtain
useful new summary statistics such as thiglpoint risk tradeg;, and find counterparts
to the importantwo-fund theorenirom finance to derive a new heuristic for finding an
optimal query interpolation parameter.
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1.6.2 General purpose statistical methods

Data perturbation kernels. To solve the problem of findingkective query-specific sim-
ilarity measures, we introduce a general family of kernaléecl data perturbation kernels
that dficiently learn a metric over the input domain based on a smatiber of carefully
chosen perturbations of the training set. We apply this tormation retrieval by treat-
ing the query as a very small training set, and create a smatber of auxiliary queries
with different relative term weights compared to the original quamthis way, two input
points, such as words, are considered similar if their podligzs have similar sensitivity
to the same perturbations of the term weights in the origijoiry.

Sensitivity analysis for retrieval algorithms. We describe a new technique for comput-
ing the sensitivity of arbitrary retrieval functions, suat document scoring functions. The
method uses a novel application of tlnescented transforrfitom particle filtering to give
an accurate approximation of the first and second momentsbdfaay non-linear scor-
ing and other retrieval functions. Instead of trying to apgmate the potentially complex
retrieval function, the unscented transform gives an dlgor for selecting deterministic
representative samples in the input space. We assume agpasmetric family for the
input distribution: the logistic normal, which can appnméte the Dirichlet as a special
case. We generalize tlotarity measure of query fliculty to add a clustering factor for the
collection based on estimating the sensitivity of feedbaddels to perturbations of the

query.
1.6.3 Robust model estimation algorithms

Stable pseudo-relevance feedback modelsWe employ a novel use of sampling to sta-
bilize the language model estimated for pseudo-relevamegifack using a baseline algo-
rithm. Inspired by traditional bagging, we use replacensampling of the input data to
obtain multiple predictors for the feedback model. The attpowever, is a set of multi-
dimensional vectors instead of single-valued numeric asspredictors. Thus, instead of
simple averaging, we fit a latent Dirichlet distribution dimdl approximate maximum like-
lihood model parameters using fast quasi-Newton methols.r@sulting feedback model
is much less noisy than any of the individual input modelgaose it rewards terms that
have consistently good weights across multiple samples) éthey are not the highest-
weighted terms in any given individual input model. Using tombined feedback model
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Figure 1.2: Overview of thesis components, with gravitywgimg dependencies.

results in small but consistent improvements in precisibmaddition, it makes the use

of a stopword list much less critical — unlike with currenefdack algorithms — because
stopwords and noise terms tend to be high-variance feaitutbe combined model which

are then automatically removed. Since our method treatbdbeline model estimator as a
black box it is very general and can be applied to improvetiaty feedback algorithms.

Robust selective query expansion. We present a new algorithmic framework for robust
guery expansion that treats queries and top-ranked dodwsetnas random variables and
‘wraps’ a baseline expansion algorithm. Starting with a lkmamber of query variants,
we learn stable individual feedback models and a pertwbdternel, and perform model
combination using either a heuristic approach (Chap. 3) onaex optimization approach
(Chap. 6). Both methods result in improved robustness, whéedatter method also ex-
pands selectively for risky queries in a principled way, atighly resistant to noise in
the baseline feedback algorithm.

1.7 Overview of thesis organization

A graphical view of the thesis components and dependeneigclen them (in the style
of [Karger 1994]) is shown in Figure 1.2. The first two chapteummarize our research
and introduce basic problems and concepts. Chapter 2 begima whort review of some
probability theory and Bayesian decision theory, which #ue foundation of statistical
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methods in this thesis. It then goes on to describe two mose lwdncepts: sampling
and Monte Carlo integration. As an application to informatietrieval, the Relevance
Model is discussed and formulated in terms of Monte Carlogirstion. In Chapter 3,
we describe a framework for pseudo-relevance feedback pedfe implementations of
robust query and document model estimators that are bassahopling. We also describe
risk-reward curves, a new evaluation method for feedbagkrédhms. Data perturbation
kernels are introduced in Chapter 4 to learn query-specifitlaiity measures. We also
use these kernels to generalize a class of qudligdity measures. Chapters 5 and 6 bring
together the estimation methods from previous chaptersinvéh novel risk framework
based on convex optimization to solve the problem of findimlgust query models. We
review basics of convex optimization in Chapter 5 and then imapdér 6 describe and
evaluate objective functions and constraints that areulidef query model estimation.
This includes the ability to constrain solutions by aspewtetage or computation cost.
Chapter 7 summarizes our contributions in detail and digzisgew research directions
enabled by this work.

1.8 Summary

This chapter explained and motivated the goal of this reseavhich is to create robust,
general-purpose algorithms for model estimation in infation retrieval. We described
a number of problems with current model estimation methsdsh as their instability
for individual queries and their inability to capture thadedts between a wide range of
possible objectives in a principled way.

To achieve our goal with these challenges in mind, we ap@yutiion of two powerful
techniques. First, we apply sampling to obtain more robsstmates for important quan-
tities in information retrieval models such as the feedbacklel from initial top-retrieved
documents. Our methods make few assumptions about thésdsftéie baseline retrieval
method. This sampling-based formulation leads to new hisignd algorithms for re-
trieval, including novel ways to estimate good query vasamnd more precise language
models for pseudo-relevance feedback.

Second, we apply the new information gained from samplinghss covariance matri-
ces, to createffective additional constraints on traditional retrievg@a@ithms that improve
their robustness. To do this, we introduce a novel risk fraork that treats model estima-
tion as a convex optimization problem. One result of this reew, principled algorithm



18 CHAPTER 1. INTRODUCTION

for selective query expansion that is sensitive to the riskdividual query scenarios: if
there is no feasible solution to the optimization problere,dw not attempt to expand the
original query. Useful additional model constraints sushr@bustness, aspect coverage,
and sparsity can be expressed within this framework to gixergaflexible general-purpose
approach to finding optimal query models in a variety of ubedtrieval scenarios.

We believe this is the first significant exploration of samglimethods for estimating
information retrieval models, and the first general quergasmsion framework based on
convex optimization for information retrieval problemsaofy kind.



Chapter 2

Sampling Methods for Information
Retrieval

In this chapter we introduce some basic statistical and Bagigchniques and terminology
used throughout the rest of this dissertation. We then foausampling-based methods for
calculating expectations and other integrals, and exglaathn methods help us achieve our
goal of flexible, robust information retrieval algorithm#és an example application, we
describe the Generative Relevance Mohel [Lavrgnko ‘ZOOFR]\(IQBand show how a Monte
Carlo-like formulation of score estimation in the generatielevance model leads to new
insights into document scoring. We show that documentdbamseking in the GRM may
be seen as a special case of Monte Carlo integration using plisgntechnique known
as the balance heuristic. This in turn suggests new algosittor robust query expansion.
We next discuss the general issue of uncertainty in infaonatetrieval and give some
background on sampling and its use for retrieval problems.

2.1 Uncertainty and Risk in Information Retrieval

As we discussed in Chapter 1, uncertainty is an inherent featiinformation retrieval.
To achieve our goal of robust retrieval algorithms, we neagiswof quantifying uncertainty
so that retrieval algorithms can include it as a factor inrtbalculations.

We take the view that many of the quantities that appear nexel models, such as
the term weights assigned for query expansion, the finalygdecument score, and the
ranking of top-retrieved documents, are more properlyte@asandom variablesnstead

19
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of single observations. For example, in the case of a quem fihe user, we treat the
observed sequence of wordsas a noisy version of a hidden ‘true’ information negd
through a perturbation or translation procg%g|q’). In this view, the scoring function
A(g, d) comparing a documentagainstg is theoretically not a single-point comparison of
g andd, but anexpectatiorover a densityp(q’) derived fromq.

A(qg. d) = f d(d. q)p(a’lg)dq (2.1)

This by itself is not a new theoretical idea. Recent statisframeworks for retrieval, such
as the language modeling approAch [Ponte & Croft 1998], thevRece Modelo
2004] and the risk minimization framework [Harty & Zhai‘ZOOi] have recognized the
importance of quantifying uncertainty in retrieval modelypically, this is done through
the use of a probabilistic approach, and in particular a Bayemethodology that provides
a principled way to estimate the posterior distributionggbortant quantities, given some
observed evidence such a query from the user.

In practice, however, even state-of-the-art algorithmghanly begun to explore the
power and generality of such Bayesian frameworks. Theresaveral reasons for this.
First, these formulations are relatively recent and singgeroximations have been the
most productive to explore first. Second, more advancedagtjans of the models are
more computationally demanding to calculate. For exampléheory we must integrate
complex integrals over large-dimensional parameter spdeart of our work in this thesis
will explore ways to mitigate this expense, usinfi@ent sampling methods. We give
further details on how a sampling approach can lend insigbtBayesian retrieval models
using the Relevance Model as an example in Section|2.4 4t, #ie give some background
on basic statistical methods.

2.2 Background on Sampling

An essential tool that we will use to accomplish our goalsathidlexibility and robustness
is sampling Sampling is the process of generating observations ofd@orarvariable using
the probability density defined for that variable. In our wothe random variables are
typically parameters. These parameters usually occur@epa retrieval method, such as
the document weights used for pseudo-relevance feedbadkfioe generative models of
text, such as language models for queries and documents.
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Sampling is an fective, flexible approach for several reasons. First, treeaisam-
pling allows us to vary the input to any retrieval proc&sm a principled way, by encoding
the nature of our uncertainty about the data in the sampliagilolition. We can treat
the the process in question as a black box, so that insteaavoidito model the internal
parameters oF, we vary the input td= directly by sampling from its probability density.
This allows us to make very few assumptions about the natuleaetrieval process being
analyzetm

The notion that documents, queries and other objects akisiten IR are samples from
probability distributions is a fundamental concept in @bilistic approaches to IR such
as the language modeling approach [Ponte & &roft 1998] andGeeerative Relevance
Model LavrenkH 2004]. Thus, the idea of applying samplingtinods fits naturally with
these types of retrieval models.

Sampling is also important to consider fdfieiency reasons. In Bayesian frameworks
for probabilistic IR, document scoring is formulated inntex of integration over a param-
eter space of query and document models. These models are pdtameterized with
respect to a large vocabulary, and thus the integrands méygbedimensional, complex
functions defined by the product of a large number of factonese relative importance
is not known in advance. For example, to score a documenhstgaiquery in the risk
minimization framework‘ [Zhai & Lﬁertv‘ZOOé], the theoretical document score function
for a document, queryq having respective mode#s andéq for user( is

(o, 20 [ [ Ao, to)plocia 2OPLIcId0da 2.2)

In practice, one fective approximation for an integral having a high-dimensil posterior
distribution p(#) as a factor in the integrand is to simply evaluate the iredrat the mode
6 of p(6), giving which simplifies the integral to

r(dig, U) o A(6b. o) (2.3)

This can be seen as a Monte Carlo-like estimate using a siagipels. As we show later
in this chapter, there are natural generalizations to sganethods that combine multiple

1From a multi-task learning perspective, sampling is a wagréate related problems: similar predictions
on the related problems (inputs) define a similarity measuaréhe input space that can help with inductive
transfer, e.g. label propogation in unsupervised learning
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samples. In general, it can be far morf&a@ent to approximate the result of a process by
averaging over a few samples from its output than to seancarfalmost exact answer in
a large solution space. Sampling may sometimes be the onlyayaerform the estimate

if the form of the process is complex and non-linear.

Sampling is relevant to the problem of robustness, becanoskel combinatio@mmong
complementary retrieval strategies can be performed bypanoariate choice of sample
weighting scheme. This is a novel and fruitful connectionifdormation retrieval. In
recent work, several studies have examined how to combsdtseof multiple related
document and query representations. These typically wevoteating several modified
versions of the original query and combining the resultst é&@mple, to estimate query
difficulty YomTov et aI.‘[YomTov et aJI. 2005] created a set of sudrtps by selecting terms
one-at-a-time from the original query and combining theutnent rankings returned from
each subquery. Ando et al. [Ando e M%} performed geepansion by leaving out
terms one-at-a-time from the original query to create a §subqueries. They obtained
scores for expansion term candidates by combining the teares over the resulting sets
of ranked documents. To our knowledge, no general modeldas proposed that captures
the similar nature of these various related applicatiortsthat can answer questions such
as when and what types of subquery generation strategidikelseto be dtective; how
the results of the dierent subqueries (either document or term scores) shoukklghted

and combined; and the likelyffect of combining dterent subquery strategies on retrieval
accuracy and robustness.

We believe that our novel approach of combining a languagdeteppproach to IR with
sampling methods provides affextive, simple and principled framework for addressing
these types of questions.

2.3 Probability and statistics basics

Before describing our sampling framework, we give a briefew of some important con-

cepts from probability theory and statistics that will bedsn the rest of this dissertation.
See [Pittmig 19%3] for further background on probability.
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2.3.1 Probability density functions
Thecumulative distribution functionf a random variabl& € R is defined as
P(x) = Pr{X < x} (2.4)

with correspondingprobability density function

P00 = S (%) 25)

The functionp(Xx) is also known as thdensity functioror thepdf of X. In the multidimen-
sional case when we have a vector of random variabtés (., X™) the joint cumulative
distribution functionis given by

POC,.... XM =Pr{X'<x:i=1,...,m (2.6)
with joint density function

m J"P
le,...,X =
( ) 5

m(xl,...,xm) (27)

We then have

Pr{xe D} = f p(xt, ..., xMdxt .. dx" (2.8)
D

for any subseD c R™ that is Lebesgue-measun%ole

We can generalize this when the random varialléakes values in some arbitrary
domainQ to define theprobability distributionor simply thedistribution Pof X as follows:

P(D) = Pr{X € D} (2.9)

for any measurable s& c Q, with P(QQ) = 1. The density function is then the functign
that satisfies

P(D) = fD p()ca(¥) (2.10)

2See, for example, background materiahatp: //en.wikipedia.org/wiki/Lebesgue_measure.



24 CHAPTER 2. SAMPLING METHODS FOR INFORMATION RETRIEVAL

2.3.2 Expected value and variance

Theexpected valuer expectatiorof a random variabl® = f(X) is defined as

B[Y] = f (%) PO, (2.11)

and itsvarianceis
VY] = E[(Y - E[Y])?]. (2.12)

Thestandard deviatiomof the random variabl¥ is denoted

olY] = VVIY] (2.13)

We will assume that the expectation and variance of evergaamvariable exist, that
is, have a bounded integral.

2.3.3 Bayesian decision theory

We assume we can quantify uncertainty about values of spgmfiameters or variables
via a joint distribution over those values. We can then giyatradedts between decisions
using these probabilities, combined with estimates of tstscthat accompany decisions.
This formulation is known aBayesian decision theognd forms the theoretical basis for
taking an action under uncertainty.

More formally, given a set of possible actios = {a;},i = 1,...,mand a parameter
space®, the penalty of taking actiog; for a specific parameter valuee O is given by
theloss functiomA(a;, 6). Taking an equivalent positive instead of a negative pofatiew,
we may also refer to thetility function U(a;, 6) to denote théenefitobtained by choosing
actiong for parametes. Therisk or expected lossf a given actiorg; is the expectation of
A(a;, 8) over all possible parameter values, with respect to thégpios distributionp(6|X).

RGa | X) = f@ A, O)p(EIX)da (2.14)

TheBayes optimal decision criterias to choose the actiam, that minimizes the expected
loss over the posterior.

We denote byX; an observation from the random varial{eWe callX; asamplefrom
X, and we usually denote the number of samples, which we eadlample sizeby N.
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2.4 Monte Carlo integration

Because many important quantities in information retiiewadels, such as document
scores, are formulated as integrals in a Bayesian framewbrkakes sense to look at
methods for computing thesdieiently if we are to use them in later risk frameworks. As
a specific example from information retrieval, we descrlim&enerative Relevance Model
and its use of integrals.

Monte Carlo integration is a widely-used method for evah@integrals, particularly
when the integrand is complex and the domain of integragdrigh-dimensional. A good

overview of Monte Carlo integration is given in Kalos and Wiak tKans & Whitloclli
1986] and in Chapter 2 of Vea 97].

First, note that the basic approach to evaluate a geneegjradtof the form

I= f@ £(0)du(6) (2.15)

on the domaim® with measuredu is to independently sampl points X;, ... Xy in ©
according to some density functiqaix), and then compute the random variable

1 f(X)
Fn = NZ Y (2.16)

The random variabl&, is called aMonte Carlo estimatofor 7. It is easy to show that
Fy in Equation 2.16 gives an unbiased estimate of We therefore focus on a method
for reducing the variance d¥y, since variance determines the number of samples needed
to get an accurate estimate of the integral. Large variamgies greater likelihood of
inaccurate values for the estimatefgfespecially when the number of samphkss small.
We emphasize that in addition to sampling methods that uskraness, we also consider
severaldeterministiomethods of choosing samples in Section 2.5.5.

In this chapter, we use the following notation. The integrahinterest is denoted().
A sampling techniqueS; has sampling distributiop;(-), and the number of samples taken
fromitis n;. The j-th sample fronp;(-) is denoted by ;. We denote a space of parameters
(e.g. for a relevance model) & To integrate over a domai®, we need to specify a
measureon ©, denoteddu(#). For this chapter, we use a measdgo6) that can simply be
thought of as a probability density over. In most of the cases we consider, this measure
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is based on an observed queryin which case it is denotedipy(6).

Monte Carlo integration is simple and quite general. To im#at it, there are only
two operations needed: sampling over the domain, and fumetraluation at a point in the
domain. Prior knowledge about the nature of the integramdbeaeasily incorporated into
the sampling technique to reduce the variance of the estimat

2.4.1 The Generative Relevance Model

For a specific example of how a sampling approach can lendhnh&nto Bayesian in-
formation retrieval methods, we now describe the Generdielevance Model (GRM)
introduced by Lavrenké [Lavrenuo 2004], and how some imgnatrintegrals that arise in
that model are estimated. For example, we show how the s@@RM document scoring

function can be seen as a type of importance sampling proeeciing multiple relevance
hypotheses.

In the Generative Relevance Model (GRM) both a document aneeey are hypothe-
sized to be samples from a shared generative relevance rfmdetith potentially difer-
ent sampling functions for each). L& be a binary random variable for whick = 1
denotes relevance arl = 0 denotes non-relevance. If we denote a joint probability
distribution over documents and queriesR{®, Q), then we define the relevance model
Pz(-) = P(:/R = 1). The ideal relevance model would be based on a mixture huddlee
relevant documents. Since the set of relevant documents ismown, however, we must
estimatePk based on the observed query and top-ranked documents.

Let R be the set of relevant documents. Assuming that documedtgquaries are con-
ditionally independent giveR, the joint probability of observing a wonst and a document
setD givenRis

Pw,D | R) = Pw|D)P(D|R) (2.17)

and so taking the marginal over documents, this becomes

PW|R) = > Pw|D)P(D|R) (2.18)
DeC
whereC is the document collection. In Eq. 2.17 the prior probapitif a documenhotin
the relevant set is set to zero.
The GRM uses a Bayesian formulation in whieh is assumed to have parametérs
assigned from the domain of all possible parame&rs/Ne define an initial probability
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measured py(d) that is a prior ove®. After seeing the query, we update the measure to
create a posterior measult@y(¢) defined by

Pz(Q = d10)

50— g PO (2.19)

dpg(f) =

The relevance of a document is then expressed as an integrahe parametet with
measured py(d) and the integrand (-, 6) defining the ranking criterion. We denote the
score for a documertt with respect to a given queryasp(d| g). The general form of this
integral is

p(dl) = f £(d 6)d py(6) (2.20)

Fordocument-based rankingie compare the probabilityg, of a documend to the prob-
ability pc of the collectionC, under a shared distributigm, with parameterg. This gives
the integral:

Py(d)
o Ps(C)
Alternatively, we can estimate separate generating digions in® for the document and
guery separately and then compare these two distributising @ similarity function such
as KL-divergence — a method known m®del-based rankingin this case, the document

score is

p(dig) = dpe(6) (2.21)

p(di) = f A6, 6)d p 6) (2.22)

wheredy is the empirical distribution for documernt in ®, andA(-,-) is the similarity
function.

In either case, calculating the integral for each documentidvbe computationally ex-
pensive. As we noted earlier, previous work has used an appation to the integral, typ-
ically taking the form of a single-sample estimate, wheseghmple is obtained by picking
the most likely model. In the GRM itself, Lavrenlio [LavreAROOJl] used an expectation
over the parameter space, described in more detail in thieseeton. In general, we can
view different approximations to the scoring integral a$silent approaches to addressing
the uncertainty encoded by the Bayesian formulation.
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2.4.2 Monte Carlo integration in the GRM

We show how standard document scoring formulas in the GRMeanewed as the result
of two successive Monte Carlo-like approximations dafefient integrals.

First, consider the document likelihood ranking criterimn the GRM, as given by
Eq.[2.21. As an example, we assume a unigram model, so thatdotd = dyd; - - - dy,,
and

n

po(d) = | | pcile) (2.23)

i=1

which leads to the ranking criterion

p(aic) = | [ ] ik e)dpu(o (229

i=1

In his dissertation ‘([Lavrenlio 20b4], p.32), Lavrenko rdteat the integral in EQ. 2.24
is computationally expensive and approximates it by evalgahe integrand at a single
valued defined by the expected value over the parameter véctor

6 = Eql0] = f@ 6 - dpy(6) (2.25)

which gives the document score

n n

p(dio) ~ [ | p(@i6) = | | p(ciiEq[e]) (2.26)

i=1 i=1

To approximate non-relevant documents, we use the calle€tito approximatgp(d|C) in
a similar way. This gives a final ranking criterion of

PO=d|R=1) Pgr(D=d[6) _ 7 PIE])
PD=d|R=0) Pg(D=d|C) 1] p(dfEc[6])

(2.27)

Viewing the measurep,(6) essentially as a sampling density o@&rit is evident that
Eq.[2.27 is equivalent to a single-sample Monte Carlo esérofEq. 2.24 at the poirit
The expectatioi®,[6], however, isitself an integral ove® that depends critically on how
dpy(6) is defined. Therefore, we now show how the second Monte Capooximation,
that of Eq.| 2.25, is accomplished in Lavrenko’s implemeatabf the GRM [Lavrenkb
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’IOLI] by specifyingd p,(6) using a method callekernel-based density allocation The
idea behind kernel-based density allocation is simple pSs@ we wish to create a density
function over® that reflects a likely generating distribution for a sehotraining examples
01,--- ,6m. To do this, we define the density as a superpositian simplekernelfunctions
ki(0), each of which is centered on a single training péjntith local weightw;. This gives

dpy(6) = ) wi - ki(6) (2.28)
i=1

One very simple kernel is thBirac kernel which is given by

1 ifo =6,

) (2.29)
0 otherwise

kgl(g) = {
wheredy is the empirical distribution for a queny. (Lavrenko also proposes, but does not
evaluate, the use of a Dirichlet kernél ([Lavre%ko j004]5|4.—55).) We can think of the
use of a Dirac kerne;(0) as equivalent to a deterministic sampling distributioatthas
p(6;) = 1, andp(d) = 0 everywhere else.

When we use the definition of Eq. 2.28 fiyp,(0) with the integral in Eq. 2.25, the Dirac
kernel formulation can be seen as equivalent to a multi-$aiMpnte Carlo approximation
of Eq[6] in which we takemsamples oved p,(6) with valuesd, - - - , 6m-1. Our contribution
in Section 2.6 is to show that this multi-sample estimate special case of a sampling
technique calledanultiple importance samplinthat treats then different kernel densities
asm sampling strategies ové, obtains one sample from each strategy, and combines the
samples using a provably good sample weighting.

The key point here is that the use of multiple samples with 1 represents the intro-
duction of multiple hypotheses, as opposed to a single etafimodel. Figure 2/1 shows a
simple illustration of how dterent model choices, seen as samples, can be more or less ef-
fective at estimating a document’s score fdfelient queries. For some queries, the scoring
integrand for relevant documents tends to be largest in the neighborhood of the original
query, and thus a single sample near the original query givastter approximation than
using the feedback model. For other topics, the oppositeiés relevant documents have
highest scores near the feedback model, and thus a singllesfele model sample gives the
more reliable score. Combining these complimentary str@segmounts to finding a good
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Figure 2.1: Model combination as a sample weighting problemowing simplified view
of a document score integrarfg for two different query scenarios. Single-sample ap-
proximations using either an original query mod&j) or a feedback modebg) can give
good or bad estimates of the score integral. In some cadegant documents have high
scores for models near the original query (top). In otheesarelevance is better captured
by a feedback model (bottom) that is far from the original iqueSince we do not know
the ‘correct’ choice in advance, we can manage risk by comgisamples from multiple
complementary strategies, thus ‘hedging’ our model clwaad stabilizing the retrieval
algorithm.

weighting scheme for the sample contributions. In the negtisn, we examine specific
methods for choosing samples and calculating weights femtHfocusing on importance
sampling.

2.5 Sampling methods

In the previous section we saw how the standard documenngdarmula for document-
based ranking in the GRM was based on using a single-sampi¢ée\@arlo approximation
to an integral over the space of relevance model paramdtethis section we show how
our Monte Carlo estimators may be extended when multiple ksvgmd sampling strate-
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gies are available.

One source of variance in the Monte Carlo estimate of an iateg@a sampling distri-
bution that poorly matches the shape of the integrand. Sagisl most &ective when we
sample in the parts of the domain where the integréf is largest, or varies the most.
The sampling methods described in this section attemptdoce variance by getting a
good ‘fit’ to the integrand.

We will not review the extensive literature on sampling noets here. Instead, we focus
on those methods that are likely to best fit the types of probleve see in information
retrieval.

2.5.1 Importance sampling

One widely-used technique for reducing variancerportance samplinfiKalos & Whit-

Iock‘1986], p.92). The key principle of importance samplisigp use a sampling distribu-
tion p; that is a close match for the shape of the integréayl In particular, importance

sampling works well when the integrand tends to have itselsirgalues on limited areas
in the domain. In the case of relevance functions, the neiditdod in parameter space
around the original query model is of particular interest,dxample.

We now describe a generalization of importance samplingdaa use multiple sam-
pling strategies for an integral and combine the samplesnple but dfective ways.

2.5.2 Multiple importance sampling

Multiple importance sampling was introduced by VeaichiNela@Q?] to deal with com-
plex integrals for light transport in computer graphics e Key idea of multiple importance
sampling is to combine several importance sampling teclesghat make étierent as-

sumptions about the nature of the integrand. In this waysthbility of the estimate is
improved. In the information retrieval domain, the sammesespond to dierent models

6;, and thus multiple importance sampling is a form of model boration. The sample
(model) weights are given by various choices of heuristsadibed below.

More formally, amulti-sample Monte Carlo estimatas a weighted combination of
individual Monte Carlo estimators, each of which corresmotwdone ofn sampling tech-
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niquessS; with sampling distributiong;(-) and wheren, samples are taken from eaplt:).

) nqd o F(X,)
F= ; H JZ:;WI(XH)WXLJ) (2.30)

There are dterent choices for choosing the weighting functieiX; ;) given to each
sampleX; ;. One choice is simply to set fixed weights. Unfortunatelyanfy particular
sampling technique has high variance for a particular gnobF itself will also have high
variance. However, we can considerably improve on fixed lateig by using the following
family of heuristics defined by Veac h 1997]. Proofdhasf various properties of
these estimators we state here are given in Chapter 10 of ¥ghelis.

The balance heuristic

The following weighting functionwv(x), termed thebalance heuristichappens to have a
very simple form, defined by the weighted combination

i Pi(X)

2k NikPx(X) (231)

Wi(X) =
Here,x is a sample (model) ang is the number of samples (models) taken usingitre
sampling strategy. The balance heuristic has the propkdlythe variance oF can be
shown to never be much worse that the variance of any otheghtesd linear combina-
tion ([Veac ], p. 264).

Note that the balance heuristic can be reformulated asaeguportance sampling over
a combined sampling distribution

pO) = 1/n ) pi(¥) (2:32)
i=1

The requirements for using a sampling technique with therizad heuristic are only slightly
greater than the minimal Monte Carlo requirements of samefeegation and point evalu-
ation. Givenn sampling techniques and a samp|g generated from sampling distribution
pi(X), we must be able to evaluate the probabil®yX; ;) that theother n— 1 sampling
techniques generaig ;.
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The power heuristic

A generalization of the balance heuristic is ti@ver heuristicwhich raises the weights to
an exponeng. The intent of the power heuristic is to sharpen the weightumctions and
reduce variance in cases where one of the score samplimtpdigins is a good fit for the
term score integrand.

(nipi(x))’
2k (Nepk(X))P
As B is increased, large weights move closer to one and smallhtgergove closer to zero.
In the limit, we obtain thenaximum heuristigvhich ignores alk;(-) except the largest one.
In practice, however, the maximum heuristic is notfiseive because it discards too much
evidence.

Wi(X) = (2.33)

2.5.3 Stratified sampling

One traditional variance-reduction methodisatified samplingﬂKans & Whitlock‘ 198%],
p.112), which partitions the domaéh into n non-overlapping region®; and takes; sam-
ples from each region according to a density funcippn

If ® is the space of unigram language models, a stra®jmight correspond to a
hypercube in which the probability of each waig, lies in a pre-defined range;i[w, 5iw]-

If we associated language models with queries, we couldttetéied sampling to generate
gueries that were evenly sampled among the possibly integesombinations of query
terms, where the strata were defined using thresholds onperbabilities.

Stratified sampling works well (e.g. has good convergenopgties) when the dimen-
sion of the domain is low and the integrand is weII-behavéf:(FT:h 1997] p.50). The
benefits of stratified sampling can be diminished for infaioraretrieval problems: the
relevance function integrand is potentially complex, amdoerformance reasons the num-
ber of samples (queries) that we have to work with is usuadlysmall. In addition, the
dimensionality — as determined by vocabulary size — wowdd aked to be restricted to a
relatively small subset.

2.5.4 One-sample models

A different sampling method, callehe-samplestimation, operates by first randomly se-
lecting a sampling metho8,; according to the distributiops, and then taking a single
sample according to the corresponding sampling distidouti. In this case, the balance
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heuristic can be shown to be optimWM997]. In a sargpliew of query expan-
sion, one-sample models would amount to selecting one ofapeetrieved documents
according top(d|g) and then selecting a query from the terms in the documerd.pblwer
heuristic above corresponds to raising all document rettiprobabilities to a powes and
then normalizing theEl

2.5.5 Deterministic sampling

Because information retrieval evaluation must be extrgrfast, the number of samples we
can apply with Monte-Carlo-type methods is typically smisé than 10). If we make as-
sumptions about the distribution of, s&yn ®, then we can explore deterministic methods
for sampling.

One technique for computing statistics of non-linear fior of a random variable is
theunscented transforrﬁ]ulier & UhImanH 200&]. SupposK#) is a scoring function, and
suppose we know the denshigp) of 6 is distributed as d-dimensional Gaussian with mean
u and covariance matriX. Then to approximate the expectatiﬁrf (6)h(6) we choose @
pointsx, fork = 1,...,2d such that

X = g+ (VAZ)c (2.34)
Xaek = p = (VAZ) (2.35)

where (VdZ), is thek-th column of the matrix square root &f The matrix square root is
defined such that i DU is the singular value decompositionxfwith U = {U, ..., Ug}
andD = diag{1s, ..., Aq} then (VdZ), = VAUy. The sample pointg, effectively sum-
marize the mean and variancehgp) and are then used in the following Monte-Carlo-like
approximation:

1 2d
f fO9heYdx ~ o5 ; h(X). (2.36)

This method can be generalized to includand scaled versions af as additional sample
points. We call the use of the unscented transform in this sigina-point sampling

The idea of using sigma points to replace the single-poitimese of Eq.| 2.25 (re-

3This is reminiscent of a popular heuristic in natural larggigrocessing and elsewhere that squares
probability estimates and then normalizes them to obtdative hypothesis weights, instead of using the
initial probability estimates.
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placing the Gaussian assumption in the example above withieh2t assumption ol)
is appealing because it allows us to replace Dirac functwatis effective approximations
of more realistic kernel functions that would otherwise de tomputationally intensive to
use. Sigma-point sampling is also useful in constructinglarity measures for retrieval,
as we discuss further in Chapter 4.

2.5.6 Closed form solutions

In certain special cases, an integral may have a closeddgatt solution, making sampling-
based or other approximations unnecessary. For examphated by‘[DiIIon et aH. 2007]

in their recent work on text classification, if we have a doeatrunigram model for docu-
mentD with parameter$p, a query unigram model for que@ with parametergg, and a
word-word translation model matrik;; = p(ti|t;) the expected quadratic distance between
the two models with respect to the distribution inducedibyan be written in closed form
after some algebra. The initial integral is

(6. 0) = [ 165 - G5l p0ci0c)PUocIoc) ol (2.37)

and this can be rewritten as
dt0.00) = [ (e 0P Eclic)ddg + [ (05 0o)pslon)d05  (2.38)
-2 [ (0. 05)PL6ie) PO ) el (2.39)

resulting in the closed form solution

Nl N2
d0o.00) = N2>\ > (TTq + N2> > (TTag, (2.40)
i=1 je(l....Ni}\{i} i=1 je{l,....Na}\{i}
N1 Nz
—2NTING2 DT (TT g0 + Nit o+ Ny (2.41)
i-1 j=1

whereN; andN, are the length in words of the query and document respeytigels the
vocabulary index for thé-th word of Q, d; is the vocabulary index for thieth word of D,
andT is the word-word matrix of translation probabilities.

While scoring functions in information retrieval can takeraigar form, useful distance
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functions between documents and queries may be much mongl@othan squared loss.
The Indri query Ianguagé [Strohman e“al. 2004], for examalews passages and doc-
uments to be scored using arbitrarily complex functiong #ra the output of inference

networks described via a structured query language. Wefibrer want to choose methods
that can handle these more complex loss functions and inrglemake few assumptions
about the integrand, and so while closed-form solutions praye very useful for some

problems, we emphasize much more general approximatiotisoehéke importance sam-

pling in most of our work.

2.6 Document-based ranking as a special case
of the balance heuristic

As an example of how a sampling-based view of informationieetl can lead to new
insight into existing methods, we now show that the stanftzrdula for document-based
ranking in the GRM is actually a special case of the balanceistec, using one sampling
strategy for each top-retrieved document.

Theorem 1. Given a collection of N document3 = {d,,...,d;,...,dy}, a queryq, and

a documentd € D, let 84 and 6, be unigram models (say) in the relevance model space
O corresponding tal and q respectively. Let¥) = p(@ | d;) for each document;cE D.
Then the GRM document-based ranking formula

Sivs Pi(6a) pi(6q)
d, =
Rold. ) Z:\il Pi(0q)

is a special case of the balance heuristic.

Proof. We can write the document scoring function as an integral thesrelevance model
parameter spade:

Ro(d. @) = p(d | q) = f@ p(d | 6)p(@ | )dd (2.42)
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For each documert; € D we define a sampling distribution (6) = p(@ | di)J; A Monte
Carlo estimator foRp using sampleX ; € © is therefore

1 Z’ (%) p(d | Xi,))p(Xi; | 9) (2.43)

e pi(Xi.)

wheren; is the number of samples from distributign Settingw according to the balance
heuristic, we obtain

Ro(d. 0) = i 10 (A1 X%)p(X%; 1 Q)
, S D pdXy)

We viewd, as a single sample from the true relevance distribution ddfon®, and for
eachp; we letX; j = 65 andn; = 1. Sincep(d, | g) is the same for all documents, this gives

R d rank 1 p(d | Gq)
(6.9 = Z Zk 1 P(0q)

If we denoted,, as any documermtot in the collection®, we assume that,, cannot be
retrieved by the query and thygd,, | 6,) = 0. This implies that

N
p(d]6g) = ) p(d|dqp(d| )
k=1
so that
. Ak 64 | d)p(c | 6
Bo(d. 0) a:kZ 2k p(;: pt)(g()k a)
- kP (2.44)
rank 2li=1 Pi(0a) Pi(6q)
Zi'\il Pi(6q)
which is the desired GRM document ranking formula. O

In retrospect, we can see at least one reason why the GRM fammay be &ective:
since at least a few documents in the top retrieved set aty li be relevant, at least some

“4For a practical implementation we would select a top-rarggaset of documents instead of the entire
collection.
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of the sampling strategies will be a good fit for the shape eftthe relevance distribution.

Suppose that instead of a single query from the user, we wbseset of queries;}
that are diferent attempts to express the same information need. Tipgrtamt scenario
has been studied extensively in IR, especially with resfweaser modelling. Previous in-
fluential work was theé>R project of Croft and Thompsoh [Croft & Thomps‘on 1987] in the
late 1980s, which used data fusion techniques to obtainawegr results from combining
multiple representations. THER project helped shape the design of TREC'’s current topic
format, in which three successively more detailed exposssof the same information need

are given: the ‘title’, ‘description’, and ‘narrative’ figs.

When considering how to combine these types of multiple quepyesentations, the
balance heuristic gives us a simple way to generalize Ed. td.#hclude this information.

Theorem 2. Given a se@ of m queries with model sampled from a distributiof?; for
the same information neefl the document ranking formula in Eq. 2.44 generalizes to

rod @ = 3 m PO (2.45)
< Zapi(®)

In addition to single-user scenarios, one application afsalt like Eq. 2.45 would be
to use query logs from Web search engines to identify likelgiations of the same query
from different users, which could then be used as samples in the atrowvela.

2.7 Other examples of sampling in IR

Other uses of sampling have recently made their way to IR-Y¥8asef and Gurevich [Bar-
Yossef & Gurevich 2006] evaluate a number of sampling tegphes, including the Metropo-

lis algorithm, to obtain near-uniform samples from a Welrce@ngine’s index. Anagnos-
topoulos ‘[Anagnostopoulos et EI. 2005] et al. use randonpbkagof search results to
correct for bias in various applications that results frontyaconsidering the tofx docu-
ments. They note that these applications include estigpétiea number of relevant docu-
ments, finding terms associated with the query terms, arglering top results that give a
more complete covering of all aspects of the query resulke duthors focus onflécient
implementation of random result sampling in the searchrenijself.
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2.8 Summary

The primary contribution of this chapter is to introduce tlse of sampling to compute im-
portant quantities such as query variants, document sceaeiances, and approximation
posterior distributions in information retrieval. Alonge way, we also defined some ba-
sic concepts in probability and statistics, such as expieatand variance, that will prove
useful in later chapters. A key motivation for sampling ie idea that queries and doc-
uments are noisy observations or translations from somal ldéent query or document
model space. As such, they should be treatecaadom variablesand not single fixed
observations. This leads to the idea that entities such @mgcfunctions becomente-
grals over the distributions of the random variables. This in tigads to the introduction
of sampling methods known &donte Carlo integratiormethods for approximating these
potentially complex integrals. We discussed several agugres to sampling, especially
multiple importance samplingnd heuristics for sample weighting.

Powerful Bayesian formulations such as the Generativevieete Modelo
’504] and Risk Minimization frameworL( [Zhai & lffaart)H 2006] are theoretical models that
incorporate the idea of queries and documents as randomilesi However, in practice,
implementations of these models have failed to exploit thieility to account for multiple
potential query ‘translations’ or document expansiongheaf which can be seen as the
result of some choice of translation process — and thus, lsagrgirategy — on the integral.
In Chapters 3, 4 and 6 we show that the choice of sampling giratn have a significant
impact on task performance. Thus, finding sampling strattiiat are reliable andfective
is a new research question — one that we begin to exploregrittasis.

As a specific example of the insights gained from a sampleget view of retrieval
scoring, we showed how simple deterministic sampling m#ghare examples offié
cient approximations the document scoring integrals tha¢an the Generative Relevance
Model (GRM). We proved that the unigram GRM document scolimgtion can be seen as
a special case of multiple importance sampling, with onepdiaugp strategy per top-ranked
document, and the balance heuristic used for the weightethoombination.

We chose the GRM for analysis because of its simple (butfiginit) assumption that a
single underlying latent joint relevance distribution geates both documents and queries.
However, it is important to note that the connection betwdente Carlo integration meth-
ods can be applied to any statistical approaches to retievehich it makes sense to in-
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tegrate over a space of models, including the Bayesian flattons mentioned above. In
Chapter 3, we follow the practical implications of treatingcdments and queries as ran-
dom variables by forming a new general framework for impebgeiery model estimation.



Chapter 3

A Theoretical Framework for Robust
Pseudo-Relevance Feedback

In Chapter 1 we discussqmbeudo-relevance feedback method of automatic query ex-
pansion that attempts to improve retrieval performancerthaacing the query with terms
from the firstk top-ranked documents, which are assumed relevant. In bapter we
explore how sampling can be used to improve the performahpseudo-relevance feed-
back. The key idea is that existing pseudo-relevance feddin@thods typically perform
averaging over the top-retrieved documents, but ignorergortant statistical dimension:
the risk or variance associated with the underlying re&tbdocument sets and their rele-
vance weights from which the feedback model is calculatetitively, by using sampling,
we can smooth out this risk over several models, to obtainnabazed model with more
consistent performance.

We propose a general retrieval framework in which we defimagdimg distributions
over important entities such as the query and top-retrigl@miments. The samples are
then used as input to a baseline feedback algorithm. We sbansbhmpling can be used
to obtain estimates of algorithm variance and sensitivitgich in turn can be used to
improve retrieval quality in various ways. For example, e tcase of pseudo-relevance
feedback we find that sampling top documents helps increabedual feedback model
precision by reducing noise terms, while sampling from tliergy improves robustness
(worst-case performance) by emphasizing terms relateduitipte query aspects. The
result is a meta-feedback algorithm that is both more robuast more precise than the

41
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original strong baseline method.

Our main goal in this chapter is to use estimates of paranuetegrtainty to improve
retrieval quality, especially the quality of feedback misgas evaluated by important mea-
sures such as precision and robustness (worst-case parfoen Our basic strategy will
be to first generate multiple estimators for a given taskhsagfinding a good feedback
model. Each estimator represents fadent strategy or set of assumptions about how a
good model would be derived. By using multiple estimaggirategies, we can essentially
hedge our bets so that we are not committing completely toglesistrategy, while pre-
serving significant gains in case one strategy turns out tebgeefective. These multiple
estimators are then combined in a Bayesian framework in athatyaccounts for the un-
certainty or confidence in the component models. In this wayaim to both improve the
accuracy of the final estimator, and increase stability engredictions.

This chapter is organized as follows. Section 3.1 desctibegeneral retrieval frame-
work we use to perform enhanced feedback. We discuss spefitods for model com-
bination in Section 3/2. Because the study of robustnessiie gew, we introduce new
evaluation methods for it in Section 3.3, includingk-reward curveswhich are a very
important summary of performance throughout this thestse &valuation is contained in
Section 3.4, and related work is covered in Section 3.5. Veéyae the computational costs
of the framework in Section 3.6. Section 3.7 describes a fessible future extensions.
We conclude by summarizing the key contributions of our apph in Section 3!8.

3.1 General retrieval framework

We now give a description of how a retrieval framework can eéméd based on sampling
methods. We define some basics, and then describe our sagrfrpimework in detail.

3.1.1 Basic concepts and notation

We assume a usdW has an information nee@ that is expressed as a specific query
to the search engine. Typically consists of a set of search termgs= q;...qy. We
assume a retrieval system that processes the qubyyassigning a real-valued document
scoref(d, ) to each documend in the collectionC, whereC = {di,...,dc}. We also
make the very general assumption that the scores reflect degree of relevance, and
apply theProbability Ranking Principlé;Robertsor% 1977], which makes the following two
assumptions, as stated by Robertson:
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e Therelevanceof a document to a request is independent of the other dodsnren
the collection.

e Theusefulnessf a relevant document to a requester may depend onuheerof
relevant documents the requester has already seen (thehmdras seen, the less
useful a subsequent one may be).

With these assumptions, we are justified in ranking docusieyndecreasing scorgd, q)
which can be calculated independently for each documenseriglly, this assumption
also implies that we can use the score to assign reasonatliel@selevance weights to
documents: either directly, if the retrieval model givesdment scores proportional to the
estimated probability of relevance, or indirectly accaglto rank otherwise. We make no
other assumptions aboiifd, ).

The nature off (d, q) may be complex. for example, if the retrieval system sufspor
structured query Ianguagés [Strohman ék al. b004], th{eng) may represent the output
of an arbitrarily complex inference network defined by theistured query operators. In
theory, this scoring function can also vary from query torgualthough in this work for
simplicity we keep the scoring function the same for all ger

As a basis to represent and compare documents and queriesevtieellanguage mod-
eling (LM) approach for information retrievell [Ponte & Cr&@gé]. In this view, a text
T is treated as a sequence of terms . ty that was generated by a statistical model with
parametergr. For simplicity, we use a unigram language model, which gdzdly a word
histogram. A unigram model assumes that each viaslgenerated independently of the
other words. We refer to the probability of tenmin language moded, by 6,[w]. More
sophisticated language models are possible that captueestracture in text, such as word
order or topic structure. For now, however, we start by usinggram models.

Let 9q and 64 denote the parameters of language models estimated forrg god
document respectively. The modfeql is selected by use#{ according to the distribution
p(éql‘u, Q). The actual observed queryis considered to be generated with probability
p(Cﬂéq)-

A scoring functionf in the language modeling approach can take mafigreint forms.
One widely-used function to compare two probability dizitions is theKL-divergen(g
measuref (61, 6,) = KL(64]|62).

IKL-divergence is defined in Appendix A,Section A.1
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Whatever the specific algorithm, we denote the sé&trefrieved documents farhaving
the largest values of in collectionC by Dy(q, f,C). For clarity we assume thdt k, and
C are fixed and just writ¢D when the query is understood, 80X, for an explicit queryq.
Each documend; in D has a corresponding scong, = f(d, g).

3.1.2 Pseudo-relevance feedback

Once we have the s@d, we can perfornpseudo-relevance feedbaRRF). We treat a
pseudo-relevance feedback algorithm as a black box fumdi@, ) whose input is a
gueryq and top-retrieved document sBtand whose output is a feedback language model
OF. 2

To incorporate feedback in the LM approach, we assume a nimadeld scheme in
which our goal is to take the query and resulting ranked detsD as input, and estimate
a feedback language modgl, which is then interpolated with the estimated originalmyue
modeld,:

Onew = (1—05)-@q+a-§p (3.1)

This includes the possibility @f = 1 where the original query mode is completely replaced
by the feedback model. In the next section, we explain howpsiag can be applied to
pseudo-relevance feedback and the calculaticﬁ& of

3.1.3 Aresampling approach to pseudo-relevance feedback

Instead of runningd once using the observegland D to get a singleds, we treat the
inputs to the feedback black box as random variables. Wenéeeessted in quantifying
the uncertainty of the feedback modelas a random variable that changes in response to
small changes g andD. We will then use this knowledge to combine multiple feedbac
models to produce a more robust final query model.

Like the document scoring functiof(d, g), the feedback algorithip(g, D) may im-
plement a complex, non-linear scoring formula, and sq asd? are varied, the resulting
feedback models may have a complex distribution over theespifeedback models (the
sample spage We denote the unknown density @ by p(f|@), whereea is a vector of
parameters. Note th@(6|) is a distribution over language models.

We would like to build up a picture of approximately whaff|@) looks like as the

20ther factors, such as the collectionare also part of the implicit input, but for clarity we omitetse
from the notation.
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Updated query model (red) for variant Q1

Top-retrieved docs
(variant Q1)

Collection

Original query model 6,
(with variants Q1, Q2)

Figure 3.1: General retrieval framework that treats quedad top-retrieved document
sets as random variables. Samples are taken in the formiafieais on the original query
and documents.

baseline feedback methddis run many times with slightly dierent inputs, To accomplish
this, we create a small number of query variagtérom the initial queryqg: a process we
call query resamplingFor eachg;, we then perforndocument set resampliroy creating a

small number of variants of the top-ranked document setmetlforg;. The entire process
is shown in Figure 3.1. We now describe document set resamfitst in Section 3.1.4 and
then query resampling in Section 3.11.5.

3.1.4 Document set resampling

To create variants of the top-ranked document set for a gjueny, we apply a widely-used
simulation technique calleblootstrap samplinquuda et al. 2001], p. 474). Bootstrap
sampling allows us to simulate the approximafieet of perturbing the parameters within
the black box feedback algorithm by perturbing its inputa gystematic way, while making
few assumptions about the nature of the feedback algodthm

More specifically, we randomly selektdocumentswith replacementrom 9. This
sampling can also be deterministic, and there is a sizalature on enumerating ‘good’
subsets using Gray codes and other meth‘ods [Diaconis & HEHMM. Whatever sam-
pling method is used, the result is a new documentkgt With this set, we then calculate
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Figure 3.2: How bootstrap sampling over the initial topkath document set is used to
create an output distribution over the sample space of plesigedback models.

a modified feedback language modg| = ®(q, D). We repeat this procedstimes to
obtain a set oB feedback language models, which we deré{g,} and which will be used
to fit a distributionp(6|a@). We will then obtain a final feedback mod@ﬁ‘ by choosing a
representative model fromp(f|a), such as the mode or mean. TypicaByis in the range
of 20 to 50 samples, with performance being relatively stablthis range. Figure 3.2
visualizes this process.

In traditional bootstrap sampling, each element of thening set (top-ranked docu-
ments) is equally likely to be chosen. Instead of treatinchehin O as equally likely,
however, an alternative is to weight the likelihood that dipalar document will be cho-
sen by its estimated probability of relevance, given eityeits document scorev,, or
some decreasing function df's rank. In this way, a document is more likely to be chosen
the higher itis in the ranking. This may be desirable bec#usay reduce noise by focus-
ing on fewer higher-quality documents — while carrying tlsk 1of shrinking the coverage
of important relevant concepts from lower-ranked docursent

We can model this weighted selection of top documents byguaisimple form of
parametric bootstrapln the parametric bootstrap, we estimate the paramete@oé dis-
tribution to fit the data, and then take random samples franhdistribution. Here, we can
consider a multinomial distribution over topics, treatiegch document as its own topic,
and using the document’s query likelihood score as its #eleprobability in the multi-
nomial. A set of documents of given size is then considered @mdom draw from this
multinomial. In addition to uniform and multinomial didbtions, other sampling strate-
gies are also possible. For example, we could model vaniatithe relative proportions of
the scoresvy using a Dirichlet distribution. We evaluatefidirent sampling schemes for
in Section 3.4.9.
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(a) Topic 401 (b) Topic 403 (c) Topic 459 (d) Topic 460

Foreign minorities, osteoporosis When can a lender Who was Moses
Germany foreclose on property

Figure 3.3: Visualization of expansion language modelalality using self-organizing
maps, showing the distribution of language models thattefom resampling the inputs

to the baseline expansion method. Dark areas represewingegi high model density.
The similarity function is Jensen-Shannon divergence. [Bhguage model that would
have been chosen by the baseline expansion is at the cergaclofmap. Note that for
some queries, such as topic 459 (Fig. 3.3c), the mode of #aameled distribution (in the
darkest area of the map)ftérs significantly from the baseline expansion choice (at the
center of each map).

Visualizing feedback distributions

Before describing how we usé;} to obtain a combined modé,f, it is instructive to view
some examples of actual feedback model distributions #satitr from bootstrap sampling
the top-retrieved documents fromfidirent TREC topics.

Each point in our sample space is a language model, whichalpihas several thou-
sand dimensions. To help analyze the behavior of our metl®dsed a Self-Organizing
Map (via the SOM-PAK packa 43 [Kohonen e“al. :IJ996]), to ‘f@attand visualize the
high-dimensional density functign

The density maps for several TREC topics are shown in FigulBeaBove. Thealark
areas represent regions of high similarity between languagdels. Thdight areas rep-
resent regions of low similarity — the ‘valleys’ betweenstiers. Each diagram is plotted
so that the language model that would have been chosen byaiedire expansion is at
the centerof each plot. A single peak (mode) is evident in examples sischig.3.3b, but
more complex structure appears in others, as in Fig.3.3d0,Alhile the peak is often

3Because our points are language models in the multinonmgdlek, we extended SOM-PAK to support
Jensen-Shannon divergence, a widely-used similarity omedsetween probability distributions. Jensen-
Shannon divergence and related measures are defined in digferSection A.1
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close to the baseline feedback model, for some topics theeg afgnificant distance apart
(as measured by Jensen-Shannon divergence), as in Fig.I8.8ach cases, the mode or
mean of the feedback distribution often performs signifilgdoetter than the baseline (and
in a smaller proportion of cases, significantly worse).

Fitting a feedback model distribution

Because the feedback sample space is potentially compkxowot attempt to derive a
posterior distribution in closed form, but instead use datian. We call the densitp(6|«)
over possible feedback models tteedback model distributionvherea is a set of param-
eters for the distribution. Our goal in this section is to fiiseful parametric distribution
p(dla) using the sampled feedback modfg,;)}. We then select a representative model
from p(f|a), such as the mod@Fq, as the final expansion model fqr

Our sample space is the set of all possible language mdjethat may be output as
feedback models. Our approach is to take samples from tatesgnd then fit a distribution
to the samples using maximum likelihood. For simplicity, start by assuming the latent
feedback distribution has the form of a Dirichlet distriloumt Although the Dirichlet is
a unimodal distribution, and in general quite limited in égpressiveness in the sample
space, it is a natural match for the multinomial language ehazhn be estimated quickly,
and can capture the most salient features of confident arettantfeedback models, such
as the overall spread of the distibution.

After obtaining feedback model samples by resampling tleelfack model inputs,
we estimate the feedback distribution. We assume that tHenmmial feedback models
{04,...,08) were generated by a latent Dirichlet distribution with paeders{as, ..., an}.
To estimate théa;, . .., ayn}, we fit the Dirichlet parameters to thiglanguage model sam-
ples according to maximum likelihood using a generalizewtda procedure, details of
which are given in Minka@Ob]. We assume a simpleidbiet prior over the
{ai,...,an}, Setting each ta; = u - p(w; | C), whereu is a parameter ang(- | C) is
the collection language model estimated from a set of doatsrfeom collectionC. The
parameter fitting converges very quickly — typically justi23oiterations are enough — so
that it is practical to apply at query-time when computagilooverhead must be small. A
further approximation for speed is to restrict the caldolato a subset’,, of the collec-
tion vocabularyV using the firsk top-ranked documents (e.kg= 1000), since we assume
Vyp covers the great majority of relevant terms. Note that fes #tep we are re-using the
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existing retrieved documents and not performing addifigoeries.
Given the parameters of ardimensional Dirichlet distributio®ir (o) the mean: and
modex vectors are easy to calculate and are given respectively by

pi=- (3.2) and x:;i—-l (3.3)

ai—N*
We can then choose the combined mo@,%las mean or the mode @{6|@) as the final

enhanced feedback model. In practice, we found the modevéosijghtly better perfor-
mance.

Document set sampling strategies

The top-retrieved documents from the original query repnésn important source of evi-
dence for relevance. If estimated probabilities of releeafior each document are available,
this creates a set of relative weights over the documents fdllowing two methods were
tested in our evaluation.

e Uniform selectionThis strategy ignores the relevance scores from the imgtaleval
and gives each document in the tofhe same probability of selection in a bootstrap
sample.

e Rank-weighted selectiohhis strategy chooses documents with probability propor-
tional to their relevance scores, if available, or a rankdshweighting otherwise. In
this way, documents that were more highly ranked are moedlito be selected.
When relevance scores are available, the observed weighthamrelative scores.
Otherwise, the reciprocal of the rank position may be useahasight.

3.1.5 Query resampling

In the previous section, we calculated a combined feedbamtiehd,”’ from a set of re-
sampled feedback language mod#g;)} using document se{®;} as input to a baseline
feedback method(q, {D;}), while holdingq fixed. The{D;} were obtained by sampling
from Dq using a sampling distributiopy(-).

Instead of keeping) fixed, we can consider also defining a query sampling method
that generates variantg from q according to a distributiop(qg;|g). We use the following
deterministic sampling methods for generating variantheforiginal query. Each method
corresponds to a flerent set of assumptions about the nature of the query, suainiah
aspects are most important. From least to most sophidiictitese are as follows.
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No expansioiNoEXxp). Use only the original query. The assumption is thatgiven
terms are a complete description of the information need.

Single term-at-a-timg€TAT). A single term is chosen from the original query. This
assumes that only one aspect of the query, namely, thatseaesd by the term, is
most important.

Leave-one-oufLOO). A single term is left out of the original query for eactriant.
The assumption is that one of the query terms is a noise teh@LDO strategy may
be seen as a form gdickknifeestimator [Efror% 1979].

Sigma-point samplin¢SPS). A very general sampling formulation that combines th
features of LOO and TAT in a continuously variable form. Tley kdea of sigma-
point sampling is to choose a small number of points that@pprate a query neigh-
borhood density around the initial query. The sigma poinésciosen such that their
mean and variance are equal to the mean and variance of thergighborhood dis-
tribution, which we define as a Dirichlet prior with sharpsgmrametegy. When
Bu > 1, the variants are only small adjustments to the originerguf 3y, < 1, we
get a mixture of variants, half of which are very close to a L&Mple and the other
half to a TAT sampEa Details on sigma-point sampling are given in Section 4a2.5
Chapter 4.

The final result of running query variangg with document set resampling is a set of feed-
back modelgd,. ™.

3.1.6 Justification for a sampling approach to feedback

In addition to the general flexibility andfeciency reasons for sampling that were discussed
in Section 2.2, the use of sampling is particularly apt faymo-relevance feedback for two
reasons.

First, we want to improve the quality of individual feedbaunkdels by smoothing out
variation when the baseline feedback model is unstablehigréspect, our approach re-
semble:bagginngreimaAJ 199%], an ensemble approach which generatesptewersions
of a predictor by making bootstrap copies of the training @etl then averages the (numer-
ical) predictors. In our application, top-retrieved do@nts can be seen as a kind of noisy

4For queries of two words, we revert to LOO sampling.
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training set for relevance, and the feedback algorithm @firelevance predictor for terms.
Unlike traditional bagging, however, the individual redée predictors for terms may also
exhibit complex inter-term correlation structure, and saheory this scenario also has
connections to structured predicti%n.

Second, sampling is arffective way to approximate basic properties of the feedback
posterior distribution, which can then be used for improxextiel combination. For exam-
ple, a model may be weighted by its prediction confidencémnaséd as a function of the
variability of the posterior around the model. We now digctiss idea in more depth.

3.2 Model Combination

We now discuss ways to combine the set of mocfl-ﬁ's into a final feedback modél:. In
this chapter we apply a simple heuristic approach to modebtoation. In Chapters/ 4|+ 6
we develop an alternative approach to model combinatioedas convex optimization
that can exploit dependencies between terms.

Let w(0;) be the weight given to modég, where}, wW(6) = 1. We have two options
for model combination. The simplest is to assume that alleisdre independent, and that
w(6;) is based on properties of that model alone. The second sypere complex, but
uses the more realistic assumption that models may be ateteIThis is sensible because
in our applications, models are typically generated fromilsir input.

We first consider the case where models are independent.atrstienario, we make
the assumption that terms within each model are also indkgrgn We then discuss the
dependent model case we give a simple Wigative weighting method that uses inter-
model correlation.

3.2.1 Model Combination: Independent models

Suppose we havhl feedback models to combine. One widely-used model combmat
approach in other domains is to perform Bayesian model giggaamong the compo-
nent models. This is a linear mixture of the component feekllmaodels with each model
weighted by its posterior probability. This gives

__Li19) -7
2k L(6la) - T«

5In this work, we only model weak negative correlation betwesrms via the use of a Dirichlet distribu-
tion. More interesting correlation structures using, feample, the logistic normal, are possible.

w(;) (3.4)
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where £(6) is a likelihood function over feedback models conditiormedthe query, and

7; IS the prior probability of mode#;. As more evidence appears about which model is
likely to be the ‘correct’ one, the posterior weights sharpmvard the ‘best’ model. Model
averaging makes some strong assumptions: it assumes thaf tire component models is
the ‘true’ generative model, that posteriors are accueatd,generally that the components
reflect exhaustive and mutually exclusive generative nwdethe data.

If we assume that the model most likely to be the ‘true’ modehie query modél,
estimated from the originad, then using the loss functidn(f) = KL(6q4/|6), we obtain a
form of Bayesian extensio79] to the Akaike Imf@tion Criterion -
1974]. The AIC was originally introduced for model seleatiolnstead of selecting a
single model, however, the Bayesian extension of AIC avesayer model choices, using
exp(—%AIC) for the role of model likelihood. Using the loss functidsd) above and
neglecting the constant model dimension factor of AIC, tleg

1
L(0|) o eXp—EKL(GqIIQJ‘) (3.5)

as an approximate expression for the model likelihood,rassyia uniform priorr; = 1/M.
This in turn gives the model weight

exp—3KL(64/16))

w(0;) =
S exp—1K L6416k

which gives models more weight that are relatively ‘clogerthe most likely model. Uni-
form weighting withw(6;) = % is another possible choice.

For a richer hypothesis space we can move beyond interpolafimodels, where the
mixture weight for each component of the parameter vegtisrequal to the model weight.
When the vector components represent term weight, this ataaoterm-specifianodel
weights. There are two cases to consider: we treat termsdapémdent or we consider
correlations.

Independent terms

In the simplest case, we can consider each terindependently of the others. We call
this our 'independent term’ model combination strategy thaores dependency relations
between terms. Our goal is to find optimal parame¥#® | w) for a final feedback model
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Orina Dy using evidence from all sources available: the originarg, and query variants
with their corresponding feedback submoc@lsDefining the optimality criteria is a criti-
cal step and will determine the parameter estimation method

We estimate two parameters for each term. First, we estimegkevanceprobability
uw = P(R | w). Second, we estimate\ariancefactor o2, giving the variance that,,
has between the gived feedback models, normalized by the within-model variarwe.
define the heuristic

ZM: ,Uw)2 (3.6)

i=1 WI

where 4; is the overall weight assigned to mode(from Section 3.2.1), and?; is the
variance of ternw within modeli according to the Dirichlet distributiona; estimated for
modeli during document set resampling.

Optimality criteria can be very éierent depending on the context of model combina-
tion. In the case of query variants, we expect term prolaslin the corresponding sub-
models to vary in response to query changes. Higher varimges are better because they
are more highly correlated with query terms. On the otherdha&arhen combining models
from resampled document seteyer within-model term variance is better, because we
assume a stable latent relevance model that generatedaim®dals. Both of these factors

are present in this model combination heuristic.

Independent models, dependent terms

In this scenario, we would model dependencies (such as car@nce) between terms
within each model. The computational cost is much highergleage model vocabularies
tend to have at least 10,000 terms and the number of depeardagrows as the square
of vocabulary size. This in turn increases our need for ingidata to fit the much larger
number of parameters in the covariance matrix. There aresuw@ynitigate this expense,
such as restricting the vocabulary size, or the compleXityovariance structure we can
express.

One type of flexible structure restriction we have invesgdain a diferent study is
a graph-based term dependency language mbdel [Collins-pdamé& CaIIaH 20d5] in
which a term’s probability is derived from approximatingetktationary distribution of a
lazy random walk on the graph. The graph is built from muétipburces of evidence about

terms.
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We do not apply term dependencies for model combinationigndimapter. Instead, we
explore that in Chapter 6, by creating a term covariance mairfiorm a risk minimization
objective. The covariance matrix is derived using a mdteient method than [Collins-
Thompson & Callah 20&)5] based on the perturbation kernel op@nal.

3.2.2 Model Combination: Dependent models

While treating sampled models as independent makes for simaphlysis, it is not espe-
cially realistic. In the case of pseudo-relevance feedptiek feedback models generated
after running slightly diferent query variants are likely to be somewhat correlateluis T
implies that when the feedback models are used to predetarte, their successes and
errors will also be correlated. In some scenarios, ignoting correlation may increase
risk, because we are making redundant bets that will eitbévdry right’ or ‘very wrong’
together. On the other hand, it may pay to reward models teagiart of a highly correlated
set (a cluster) while downweighting outliers. In any casbetier approach is to consider
the risk of the sampled modeds a seinstead of individually. This means estimating the
model weightsw;, according to the interaction of th&. As a specific example, suppose
we have several similar low-confidence feedback modelsassidgle very dierent high-
confidence model. For a given term, this means we may haveadés@-confidence rel-
evance weights from very similar sources, and a high-confidesingle-source relevance
weight. If we ignored the overall similarity between the gqmmnent sources the result
would be biased towards a majority-vote decision in favoth& low-confidence classi-
fiers. By taking model dependence into account, the low-denfie classifiers would be
discounted by a factor dependent on their correla{ion [Emalni & Kim‘ 200&].

As one example of a scheme for calculating the weighting peddent models, we
apply the technigue from Monte Carlo integration describe@hapter 2 callednultiple
importance samplingsing thebalance heuristicd@@?]. This scheme weights each
model according to its relative probability compared todtiger models. This assumes that
we can define a density;(-) from which model@,- was drawn (typically, as the most likely
observation), and that we can calculate the probatpl,—i(@k) of one modefy in the density
of any other moded;.

More specifically, suppose we assume fhih model@,— to be the mode of a density
p;j(-) having a Dirichlet distribution with parameters;. In particular, lets; be the scale
factor foraj. Under these assumptions, the probability mass at the mpdepj(éj) is
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like a confidence score for modé,-l: when p;(-) is sharply peaked, the probability mass
is highly concentrated around the mode, andvill be close to 1. When the Dirichlet
distribution is spread out and uncertain, the mode accdontsiuch less mass and €9
will be much smaller. We also definﬁar(éj) = 1/c; as the variability oi@j, which is high
when confidence is low. Now consider afdrent modeB;,. We can define a similarity
measure

o (6,6)) = pi(6) (3.7)

Using the balance heurist 97] for model comlamathe weighw(6;) given to
modeld; is given by

n; pi(63)
Sk NPx(@5)
With all nj = 1, we can rewrite the above expression in terms of confidendesiilarity
measures just discussed, namely

W) = (3.8)

-1
w(;) = (1+var(é,-) - Za(é,-,ék)) . (3.9)
k]

Thus, the balance heuristic weighif¢;) assigned to modélj accounts for both individual
model confidence and cross-model correlation. A feedbaadlteitbat is similar to many
other models will have a high similarity factgr,.; o-(@j,@k). An increasing similarity
factor will decrease the model weight, reflecting the faett tve are making redundant
‘bets’ that may increase our risk. Moreover, thigeet is amplified Whewar(é,-) is high
(model confidence is low), which is exactly what we need. Edpecial case where all
models are totally dissimilar, the similarity factor wilelzero and all models are weighted
equally.

Using the fact that the;(-) are Dirichlet, Eq. 3.9 can be written as

w(e)_(1+— D -JS(HJ””@) (3.10)

k#]

This completes the discussion of our framework for psewdevance feedback using
sampling. We now introduce several measures for evalu#tegobustness of information
retrieval algorithms.
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3.3 Evaluation Methods for Robustness

When applying a query expansion algorithm reduces precismnpared to the initial
query, we say that the algorithm hurts that query and cadl &failure of the expansion
algorithm. Maximizing thevorst-casgerformance of an expansion algorithm means min-
imizing the number andr magnitude of failures. Aobustalgorithm is one that has both
good worst-case performance and good average performadeally, a robust feedback
method would never perform worse — and hopefully, betteran tinsing the original query.
To evaluate robustness of query expansion algorithms, weluse approaches that sum-
marize diferent aspects of an algorithm’s worst-case performance,tlaa tradef be-
tween worst-case performance and overall performancerothestness indexobustness
histogramsandrisk-reward tradeg curves

3.3.1 Robustness Index

As a general summary statistic for robustness we employyasieple measure called the
robustness inde¢R1).1° For a set of querie®), the Rl measure is defined as:

n+_n_

IQl

wheren, is the number of queries helped by the feedback methodians the number

of queries hurt. Here, by ‘helped’ we mean obtaining a highen-zero gain in) average
precision after applying feedback. fBérent flavors of RI are possible, using P20, break-
even point, and others instead of average precision. Wesfonlaverage precision since
this is a widely-used measure of retrievlleetiveness for generic IR evaluations. However,
we do also measure top-20 robustness results using a maiévsemeasure, R-Loss@20,
described below in Section 3.3.3.

The range of RI values runs from a minimum 1.0, when all queries are hurt by
the feedback method, t61.0 when all queries are helped. A major drawback of the RI
measure is that it ignores the acto@gnitudeof improvement or decline across the et
of querie@. However, we use it because it is easy to understand as aajj@mdication of
robustness.

RI(Q) =

(3.11)

5This is sometimes also called thaiability of improvement indeand was used in Salaial. [Sakai

et al. 2005].

A paired or t-test could be used to partly account for magtgitaf changes.
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Figure 3.4: Example of a histogram showing the distributtbgains and losses in MAP
over a set of queries, as a result of applying a particulangergpansion algorithm.

3.3.2 Robustness histograms

For a more detailed look at an algorithm'ffextiveness, we can plot the distribution of
gains and losses for individual queries as a result of apglyihe algorithm. Typically
we use a statistic such as percentage MAP gain or decreasepfilying the expansion
algorithm. The performance range (for the loss or gain indgtiaistic) is usually grouped
into bins in increments of 10% or 25% (as in the example) cbanghe statistic. The
y-axis gives the number of queries that fall into each bin. Aareple of a robustness
histogram is shown in Figure 3.4. Unlike the single RI statj$istograms can distinguish
between two systems that might hurt the same number of cuieniewhich do so by very
different magnitudes.

A histogram gives results for a particular fixed algorithm¢hboice of algorithm param-
eters, such as the feedback interpolation paraneetérrobustness histogram can capture
some notion of the trad@tbetween thelownside rislof an algorithm, as measured by the
area of the bins on the left half of the graph (‘queries hukt&rsus the overalieward as
measured by the average gain over all the bins on the histogra
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Risk-Reward Tradeoff Curves
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Figure 3.5: Typical risk-reward tradéaurve for two algorithms, showing how downside
risk (R-Loss) and MAP improvement change together as thibimek interpolation param-
etera is increased from O(original query, no expansion) to 1.0 (all feedback model, n
original query). Curves that af@gherandto the leftgive a better tradet

What the histogram does not show is how the risk-reward tiidbangesvith change
in an algorithm parameter. Typically, we are concerned withinterpolation parameter
as it varies from 0 to 1. For that, we need the following vergfutrisk-reward tradeg’
curve

3.3.3 Risk-reward tradedf curves

We observe that when interpolating a feedback model withotiggnal query model there
is generally a riskeward tradefi: giving more weight to the original query model (lower
a) is less risky but also reduces the potential gains whendbdlfack model isféective,
and vice versa. By plotting the joint risk and reward thatith@del achieves over a range
of a values, we obtain aurvethat gives a more complete picture of the quality of the
feedback model as the interpolation parametgiven in Eql 3.1 is varied frora = 0.0
(original query only) tax = 1.0 (all feedback).

Machine learning, text classification, and informatiorriestal evaluations have pre-
viously used certain curves plotting the relation betwegn variables related to system
effectiveness. In the 1960s, Swéts [S%ets £963] introducedgb®f signal detection the-
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ory to IR evaluation in the form of ROC curves, plotting fafsesitivesvs. false negatives.
Another early method, still widely-used, is the precisiewcall curve (or P-R curve) [Man-
ning & Schitze 2000]. Recently, deeper connections betyR€@ and P-R curves have
been showA [Davis & Goadriéh 2006].

Risk/reward tradefi curves were first introduced H)y MarkOV\Mz [1952] as part of hi
pioneering finance work on portfolio selection (for which texeived a Nobel Prize).
Markowitz identified many of the key features and analysighoes for risk-reward curves

that are still used in economics and finance today. In thissewe show how these con-
cepts can also add a new dimension to the analysis of infaymedtrieval algorithms.

Measures of risk and reward

To compute a risk-reward tradaurve for an information retrieval algorithm, we must
first decide on how to quantify risk and reward. The apprdpriaeasures will vary de-
pending on the type of retrieval task: a good "reward" meaguré/eb search, for exam-
ple, may be precision in the top-20 documents (P20); legadBications may focus on
recall; and general IR evaluations may use mean averagsipre¢MAP). We generally
will focus on risk-reward curves using MAP or P20 as the "relwaneasure, and this is
plotted on they-axis of the chart.

The "risk" measure is meant to capture the variance or soneg ottdesirable aspect of
the "reward" measure that should be minimized. To evalua¢eygexpansion algorithms,
we assume the results from the initial query represent omimal acceptable retrieval
performance: we do not want to obtain worse results thamikialiquery. We are therefore
particularly interested in thdownside rislof an algorithm: the reduction in reward due to
failure cases. (Recall that a failure case is one in whichehard after using the algorithm
is lower than the reward obtained with the initial query.)eTiisk measure is assigned to
the x-axis of the risk-reward curve.

We denoter, (Q) as the initial reward obtained with the quepywith no expansion, and
Rr(Q) as the final reward obtained when a query expansion algoighapplied toQ. We
denote the test set of queries@sand the set of queries for which the expansion algorithm
fails asQra L. Then the downside riskga . (Q) for Q is simply

Frai(Q) = (3.12)

otherwise

{R. (Q-Re(Q if R(Q-R(Q>0
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and the total downside risk for the test set of queries is

Fral(@Q) = Z FraiL(Q) (3.13)

Qe

When the reward measure is precision at thekkdpcuments — such as P20 — we define
a derived quantity calleR-Loss at kdenotedRLy, that is thenet loss of relevant documents
due to failure Since precision is the fraction of thkedocuments that are relevamly is
simply
RL(Q) = k- FraL(Q) (3.14)

The same definition can be applied when the reward measurédi® &md we refer to this
simply asR-Loss(without specifyingk). In this case, we sétto the size of the retrieved
document set, which is= 1000 unless otherwise specified. Just as MAP gives a combined
picture of precision results averaged over multiple valfds so the R-Loss measure gives
an averaged net loss of relevant documents due to failure.

Examples of typical risk-reward curves for query expansagorithms are shown in
Figurel 3.5. The curve is generated by varying the interpmigbarameter.. Because the
reward is relative to the initial query, all curves startla prigin ¢ = 0). We will typically
plotin @ increments of (..

Properties of risk-reward curves

A higher-quality feedback model will give trad@urves that are consistently higher and
to the left of the baseline model’s tradéourve. We say that one trad&curve A domi-
natesanother curve if the reward achieved b for any given risk level is always at least
as high as achieved i at the same risk level. Thus, we say that one query expankion a
gorithm A dominatesnother algorithnB if the tradedt curve forA dominates the trad€o
curve forB. For example, in Figure 3.5 algorithAdominates algorithni.

Each point on the risk-reward chart represents the outcdraa experiment averaged
over (typically) dozens or hundreds of queries, for a patéicsetting of algorithm param-
eters. If we could run the algorithm in an unlimited numberesperiments using every
possible combination of parameter settings, we would aldagiarge!) set of points scat-
tered over the chart. Theficient frontieron a risk-reward graph is the boundary of the
convex hull containing these points and represents thepgeekirmance that an algorithm
can achieve at any given level of risk, for any choice of patars. Typically, the f@cient
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Risk-Reward Tradeoff Curves
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Figure 3.6: Example showing the information retrieval @gient of the two-fund theorem
from finance: how anféectivea can be found for a given level of risk

frontier must be approximated by sampling a range of parana#ioices.

The risk-reward ratiop(P) of a feedback strategy (poinB that achieves MAP gain
G(P) and R-Losd=(P) is simply

p(P) = G(P)/F(P) (3.15)
which is theslopeof the line joiningP to the origin.

A number of potentially useful measures follow from thiswid-or example, we could
calculate the risk-reward function(e) as a function ofw, and choosexr = 0.5 as the
standard ratio for an algorithm, tmeidpoint risk tradeg, giving a single value that could
be used to compare with other algorithms on the same calecti

Borrowing another concept from portfolio theory, tBlharpe ratiois the slope of the
point P* on the algorithm’s ficient frontier with maximum slopg*. 8 Thus, using some
approximation of the ficient frontier (maintaining a convex hull), we could idéypntihe
best achieved tradgbof an algorithm.
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A two-step heuristic for effective linear interpolation.

Suppose we know the level of riskwe want to accept for a set of queries (say, in terms of
average relevant documents lost to failures in thekjop/Ve have an expansion algorithm
with a tunable parameter sé that produces a feedback modgland we can combine
the initial queryqg with the usual linear interpolation parametecontrolling the mixture
betweenqg and the feedback modél How should we optimize the joint parameter set
(®, @) to to achieve the given level of rigk on average?

To answer this question, we first note that the lirfe) joining the two end points (cor-
responding tar = 0 anda = 1.0) of the tradef curves in our experiments often provides
a lower bound for the entire tradgaurve. Furthermore, tradéocurves are concave or
very close to concageso that the line joining any two points on the traffesurve gives
the minimum expected performance for the curve above tlee Tihis observation suggests
that the search for an optimal interpolated model for anyaespn algorithm at a particular
level of risk can be broken into two distinct steps, as illatgd in Figure 3.6.

1. Optimize the risk-reward tradé&mf the expansion model by itself (i.e. at= 1.0)
to obtain the optimal poinE*. This is equivalent to maximizing the slope lof(a),
the line joining the origin tde*.

2. Chooser to achieve the specified risk level ari. The actual MAP gain will be at
least as high as the MAP gain & ata. Use this value o# to interpolate with the
initial query model.

Because the actual trad&ourve is not linear, we are making the assumption that ogtimi
ing L* will result in optimizing the MAP gain for a given risk levehdhe rest of the curve.
Comparing the baseline and QMOD traffarurves, we see that shifting the endpdiritup
and left results in a corresponding shift of the entire cwpend left (by varying amounts
at differenta points). Our two-step observation is a conjecture, but theeoved behavior
of all tradedt curves we have seen strongly suggests this is a useful tieufiikis method
can simplify the search for an optimal model at a given lev¥elsk, and can be used with
any feedback algorithm.

This heuristic is similar to a basic result of modern portddheory known as théwo-
fund separation theorerfiobin ]. If investors care only about the expected mretu

8 In finance, a poinP represents a choice of portfolio, aRd is called the "market portfolio".
9See Figurée 3.8 and other MAR-Loss curves for some evidence for this.
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and the standard deviation of their portfolio return, thearg investor holds a portfolio
consisting of the market portfoliM and the risk-free asset in some proportion. In infor-
mation retrieval terms, the risk-free asset is the origimatry, and the market portfolio
M corresponds to the feedback mo@el on the dficient frontier with the highest Sharpe
ratio.

There are important éfierences in the properties of risk-reward curves betweer-inf
mation retrieval and finance. In finance, the optimal tréisolutions for a mixture of a
risk-free asset and a given portfol®y parametrized byy, the proportion invested iR,
form astraight linejoining the corresponding points on the risk-reward ch.his lin-
earity results from the quadratic nature of the traditiomean-variance utility function.
However, as the query expansion curves in Section 3.4 make, ¢the best risk and return
tradedts available for an algorithm daeot necessarily co-vary linearly as the interpolation
weighta shifts toward the "risk-free" asset (query) and away fromfeeelback modei.
Instead, the curve is usually concave and above the lineappihe origin (risk-free query)
to the chart point corresponding to the feedback model. Huse of this requires further
study, but we conjecture that this non-linearity is a congege of the clustering behav-
ior of relevant documents (and perhaps the nature of the raearage precision reward
function).

3.4 Evaluation Results

In this section we present results confirming the usefuloéssing sampling for pseudo-
relevance feedback. In particular, we show that finding tloelenof the feedback model
distribution from weighted resampling of top-ranked do@mts, and of combining the
feedback models obtained fromfidirent small changes in the original query, results in
retrieval that is both more precise and robust than the esaiethod alone.

The results are organized as follows. In Section 3.4.3 wie &&20 (top-20 precision).
Section 3.4.[7 examines thfect of the number of samples on precision improvements. We
use the evaluation methods described in Section 3.3 tosaEs@sstness in Section 3.4.4.
Section 3.4.8 comparesftirent methods of generating query variants, while Sectiérg3
compares two document sampling strategies. Finally, 8@&i4.10 analyzes how com-
bining multiple models improves precision by smoothing oaoise terms, including stop-
words.

101 finance this is known as theapital allocation line
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3.4.1 General method

We evaluated performance on six TREC topic sets, coveringgaadf 700 unique queries.
These TREC topic sets are TREC 1&2, TREC 7, TREC 8, wt10g,5t02004, and gov2.
Details on TREC topic sets, collections and methodologygaren in Appendix C. We
chose these corpora for their varied content and documepepties. For example, wt10g
documents are Web pages with a wide variety of subjects amelssivhile TREC-1&2
documents are more homogeneous news articles. Indexingeamel/al was performed
using the Indri system in the Lemur tooIlJit [Metzler & Cr [Mr]. Our
gueries were derived from the words in the title field of theEXRtopics. Phrases were not
used. To generate the baseline queries passed to Indri, agpead the query terms with
Indri’s #combine operator. For example, the initial query for topic 404 is:

#combine(ireland peace talks)

We performed Krovetz stemming for all experiments. Becauséound that the base-
line (Indri) expansion method performed better using awtwp list with the feedback
model, all experiments used a stoplist of 419 common Enghsids. However, an inter-
esting side-fect of our resampling approach is that it tends to remove nshogwords
from the feedback model, making a stoplist less criticalisT& discussed further in Sec-

tion 3.4.10.

3.4.2 Baseline feedback method

For our baseline expansion method, we use an algorithmdedlin Indri 2.2 as the de-
fault expansion method. This method first selects termsgusitog-odds calculation de-
scribed by Ponté [Ponke 2000], but assigns final term weigsitsy Lavrenko’s relevance
model‘[Lavrenk$ 2004].

We chose the Indri method because it gives a consistentiggtaseline, is based on
a language modeling approach, and is simple to experimeht wi a TREC evaluation
using the GOV2 corpu% [Collins-Thompson et‘ al. 2{004], thehoetwas one of the top-
performing runs, achieving a 19.8% gain in MAP compared togisnexpanded queries.
In this evaluation, it achieves an average gain in MAP of #%&loVer the six collections.

Indri’'s expansion method first calculates a log-odds rafi)y for each potential expan-

sion termv given by
p(vID)
o(V) = lo
v ; 9 p(vC)

(3.16)
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#weight (0.5 #combine(ireland peace talks) 0.5
#weight(0.10 ireland 0.08 peace 0.08 northern ...)

Figure 3.7: An example of a simple expanded query for TREGctdp4, showing the
original query terms and expansion term set each given weigh = 0.5.

over all topk documentsD containingv, within collectionC. Then, the expansion term
candidates are sorted by descendafg), and the topm are chosen. Finally, the term
weightsr(v) used in the expanded query are calculated based on theaRe&model

r(v) o« " p(lD)p(vD) (3.17)
D
The quantityp(q|D) is the probability score assigned to the document in thilmetrieval.
We use Dirichlet smoothing gf(v|D) with ¢ = 1000.

This relevance model is then combined with the original guesing linear interpola-
tion, weighted by a parametet By default we used the top 50 documents for feedback
and the top 20 expansion terms, with the feedback interpolggarameterr = 0.5 un-
less otherwise stated. For example, the baseline expangey fipr topic 404 is shown in
Figure 3.7

3.4.3 Expansion precision performance

For each query, we obtained a setBfeedback models using the Indri baseline. Each
feedback model was obtained from a random sample of thé& tbgpcuments taken with
replacement. For these experimer@sy 30 andk = 50. Each feedback model contained
20 terms. On the query side, we used leave-one-out (LOO) lszgrip create the query
variants, since as we show later, LOO sampling generallyidated the other methods
for all collections. We estimated an enhanced feedback hiiade the Dirichlet posterior
distribution for each query variant, and used the varianoeehcombination heuristic to
obtain term weights for the combined feedback model fronthelquery variants. We call
our methodesampling feedbaaksing heuristic model combination and denote it as RS-FB
here (later, we also refer to this as HMC RS-FB if comparingiel@ombination methods)
We denote the Indri baseline feedback method as Base-FRitR&om applying both
the baseline expansion method (Base-FB) and resamplirameiqn (RS-FB) are shown in
Table 3.1. These results use per-term model weights, wiflorum model-wide priors.
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Collection NOEXxp Base-FB RS-FB
(@ =0.5) (¢ =0.5)
TREC MAP 0.1762 | 0.2317 ¢31.9%)N | 0.2472(+40.3%)NE
182 P20 0.4217| 0.4483 ¢6.9%)N | 0.4990(+18.3%)"E
R-Loss@20| 0/366 | 117366 (-32.0%) | 64/366(-17.5%)
RI 0 0.4844 0.5781
MAP 0.1830 0.2079 ¢13.8%)N | 0.2165(+18.3%)"E
TREC 7 P20 0.3456| 0.3467 (0.3%) | 0.3656(+5.9%)"F
R-Loss@20| 0/57 23/57 (-40.4%) 24/57 (-42.1%)
RI 0 0.4146 0.4634
MAP 0.1920 0.2220 ¢-15.5%)N | 0.2288(+19.2%)NE
TREC 8 P20 0.3213 0.3585 (-11.8%)Y | 0.3596(+11.9%)N
R-Loss@20| 0/76 2976 (-38.2%) 23/76(-30.2%)
RI 0 0.4286 0.4762
MAP 0.1747| 0.1830 ¢5.2%) | 0.1984(+13.6%)NE
wt10g P20 0.2228| 0.2340 (5.4%) | 0.2494(+11.9%)"E
R-Loss@20| 0/158 | 59158 (-37.3%) 55158(-34.8%)
RI 0 -0.0270 0.1892
MAP 0.2152| 0.2441 ¢-13.5%)N | 0.2538(+17.9%)NE
robust2004 P20 0.3252| 0.3397 ¢4.5%)N | 0.3538(+8.8%)"FE
R-Loss@20| 0/394 | 124394 (-31.2%) | 112/394(-28.4%)
RI 0 0.3364 0.3818
gov2 MAP 0.2736| 0.2907 ¢6.5%)N | 0.2959(+8.1%)NE
(2004— P20 0.5214| 0.5214 ¢0.0%) | 0.5352(+2.6%)"E
2006) R-Loss@20| 0/575 | 171575 (-29.7%) | 126575(-21.9%)
RI 0 0.0922 0.1915

Table 3.1: Comparison of baseline (Base-FB) feedback arssumgsling feedback using
heuristic model combination (RS-FB). Precision improvetrsthown for Base-FB and RS-
FB is relative to using no expansion. R-Loss changes arével® no expansion (Base-
FB), where negative change is good. For Robustness Ind@xhiBher is better. Significant
differences at the 0.05 level using the Wilcoxon signed-rartkatesmarked byN andE
superscripts, for improvement over NOExp and Base-FB gjedy.
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The RS-FB method achieved consistent gains in precisionBage-FB for all six topic
sets, measured by both MAP and P20. RS-FB obtained higher &4&RP20 than Base-
FB for every topic set, giving a macro-averaged improvenoér®t. 9% over no expansion
compared to 4.8% for Base-FB. The lowest P20 gain for RS-FB NoExp was+2.6% for
gov2 and the highest wasl8.3% for trec12. For MAP, RS-FB achieved a macro-averaged
gain in MAP of +19.6% over NoExp, compared to the Indri baseline expanszn of
+14.4%. Gains in both MAP and P20 over both no expansion aralibagxpansion were
statistically significant at the 0.05 level for virtuallyl arecision measurements, according
to a Wilcoxon signed-rank test. The lone exception was alsiR@0 measurement on
TREC 8, which was equivalent to the baseline.

These gains in precision were accompanied by a univezgaltionin expansion fail-
ures: RS-BF increased the Robustness Index over Base-F&doy topic set. Similarly,
R-Loss@20, the actual net loss of relevant documents inoih@®,decreasecompared
to the baseline Indri expansion by amounts ranging from 6#0g) to 45.3% (TREC
1&2). TREC 7 was the only topic set to show a small R-Loss iasee(1 relevant docu-
ment).

3.4.4 Evaluating Robustness

We now present figures using risk-reward trafi@oirves, and robustness histograms.

Risk/reward tradeoff curves

One obvious way to improve the worst-case performance aflfeek is simply to use
a smaller fixede interpolation parameter, such as= 0.2, placing less weight on the
(possibly risky) feedback model and more on the originalrgué/e call this the ‘smalk’
strategy.

We compared the robustness tradeeurves between our resampling feedback algo-
rithm, and the simple smatl-method. We call the resampling feedback method HMC (for
Heuristic Model Combination).

Tradedf curves using MAPR-Loss are summarized in Figure 3.8, and curves using
P20R-Loss@20 are in Figure 3.9. As expected, risk (as measwyrdrtlboss) increases
continuously as we move along the curve, and MAP gain gegaralreases at first. At
some breakeven point, MAP gain begins to drop as the origimaty model is given much
less weight. Since higher and to the left is better, it is rctoat for all six collections,
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HMC resampling feedback gives a consistently dominaneta@ticurve compared to the
baseline feedback model, whether MAP or P20 is used as trerdeweasure.

Robustness Histograms

We examine the histogram of MAP improvement across setspadgo (We examine both
MAP and P20 improvement via trad€f@urves in Section 3.4.4.) Relative changes in AP
for all topics is given by the histogram in Figure 3.10. Thener of queries helped or hurt
by expansion is shown, binned by the loss or gain in averaggson by using feedback.

Compared to Base-FB, the RS-FB method achieves a noticahletren in the number
of queries negativelyfiected by expansion (i.e. where AP is hurt by 25% or more),avhil
preserving positive gains in AP. The results for TREC 1&2 paeticularly good. RS-FB
not only achieves higher MAP gain (Base-FB31.9%, RS-FB+40.3%) but the robust-
ness of RS-FB was superior : only 4 topics were hurt by 50% arenuging resampling
feedback, compared to 9 for the baseline method.

However, while these results are promising, there is roomirfgprovement. There
are still multiple failures at the -50% level and worse for @llections. In Chapter|6
we introduce an alternate model combination method thatigees further reductions in
serious failures. Section 6.4.2 has robustness histogramsthat method for comparison.

3.4.5 Hfect with an alternate expansion algorithm

To test the generality of RS-FB with another strong expanbiaseline, we replaced the
baseline Indri method (Relevance model) with a Rocchitestgctor space method in
which the topk document vectors were given equal weight and ustiia representation.
The same query variants and document resampling were usedhasIndri experiments.
The resulting trade® curves are shown in Figure 3.11. As with the Relevance model
expansion baseline, RS-FB has strong performance and dtsithe Rocchidf.idf ex-
pansion for every collection.

3.4.6 Tolerance to poor baseline expansion algorithm

To test how tolerant RS-FB is to the choice of a very poor hasellgorithm, we replaced
the default Indri method with a Rocchio scheme that ignoees frequencytf) and uses
onlyidf in the term representation. This results in a very noisy agma model dominated
by rare terms that are poor discriminators for relevancee f#sults for two representative
collections, TREC 7 and wtl10g, are shown in Figure 3.12. Ithlmases, this newdf
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Figure 3.8: Risk-reward tradéiocurves for six TREC topic sets, showing how the HMC
RS-FB robust feedback method consistently dominates thHerpence of the baseline
feedback method. The baseline feedback model is the IndevRece Model. Tradeb
curves that ardigher and to the lefare better. Points are plotted anincrements of @,
starting witha = 0 at the origin and increasing to= 1.0.
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Figure 3.9: Risk-reward tradéacurves for six TREC topic sets using P20 and R-Loss@20
(instead of MAP and R-Loss). The baseline feedback modkeisrtdri Relevance Model.
Tradedf curves that aréigher and to the lefgive a better risk-reward trad&oCurves are
plotted with points at-increments of (1, starting witha = 0 at the origin and increasing
toa = 1.0.
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Figure 3.10: Robustness histograms for all six TREC cabest comparing the baseline
expansion method (white) with the RS-FB resampling alpari{solid). The number of
queries helped or hurt by expansion is shown, binned by tb& do gain in average pre-
cision by using feedback. The baseline feedback here wasar&l(Modified Relevance
Model with stoplist) and resampling feedback using bothrgeOO) and top-document

sampling.
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Figure 3.11: The fect on risk-reward traddgbcurves of applying RS-FB (solid line) to
an alternate, Rocchio-style expansion algorithm udfndf representation (dotted line)
instead of the default Relevance model baseline. Trdideoves that ar@igher and to the
left are better. Points are plotted éarincrements of (., starting witha = 0 at the origin
and increasing ta = 1.0.
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Figure 3.12: Risk-reward tradé&aurves for two representative TREC topic sets, showing
the dfect of using RS-FB with a very poor baseline expansion dlgiori The solid line is
the curve given by the RS-FB algorithm using the piolbrbaseline. The dashed line is the
curve given by thedf baseline alone. Results for other collections are similar.

expansion algorithm performed terribly: MAP lossat= 1.0 was worse than -80% in
all cases. Applying RS-FB to this poor baseline resultedtile improved performance,
showing that the RS-FB method is not especially tolerant weak expansion baseline.
We have omitted the other four standard collections becteseresults are similar.

However, in Chapter'6, we introduce a new, more selective iramebination method
that has, as one sidéfect, much better tolerance of weak expansion algorithms.S&e-
tion|6.4.5 for a comparison.

3.4.7 Hfect of sample size

In Section 3.1.3 we described how we geneifieedback models, each from aférent
resampling of the top-retrieved documemds Because there is a moderate computational
cost to computing a feedback model, it is important to urtdexs the tradeld between
gains from the method and the number of feedback models ceaptiere we evaluate
the dfect of B on MAP and P10 compared to the baseline feedback algorithm.

The results are summarized in Figure 3.13 for all collectiohhe left chart shows the
stability of the MAP gain a®B increases from 5 to 100, for a set of top-50 documents.
MAP stabilizes after about 40 sampled document sets, ajthethenB > 20 the MAP
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Figure 3.13: The stability of results as a function of the bemof bootstrap samples
from the top-retrieved documents. Gains or losses showretatve to the Indri baseline
expansion method.

differences are relatively minor. The story for P10 is similahe Tmajority of gains are
achieved by the poinB = 10, with the gain for wt10g actually declining to zero with
more samples. The variance in the P10 chart is larger singidgise the smallest possible
increment of that statistic i50.1. Interestingly, aB = 5 or B = 10, all collections showed
a modest gain in both MAP and P10 over the baseline, while th@gwcollection showed
significant worsening of both MAP and P10 fBr> 10. The reason for this is likely as
follows.

In a senseB can be considered a smoothing parameter. As we take monepésh
sets, we model the top-retrieved documents more and morgaety. Conversely, as
B decreases, more noise is introduced into our model of the felmdback distribution,
inducing a sort of generalization into the feedback modelppears that even 5 resampled
feedback models are enough to achieve small, consistenbugment in performance for
all collections. Our choice dB thus depends on how we wish to trad& small but more
consistent gains, with less computation, wiBeq 10, with the possibility for slightly larger
potential gains for some collections but also higher vargaand increased computational
cost whenB > 10. In general, a reasonable rule of thumb appears to be ¢éoBad be
about 20% ok, the number of top-retrieved documents.
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Figure 3.14: Thefect of query variant sampling method on risk-reward tratjetowing
how LOO sampling generally dominates the other methods. li©@ave-one-out, TAT
is term-at-a-time, and SP is sigma-point sampling. Thellmeses Indri Relevance model
expansion.
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3.4.8 Hfect of query sampling method

We compared theffect of TAT, LOO, and sigma-point query variant methods onthde-
off curve of the baseline expansion algorithm. For sigma-pantpling (SP) we show two
different runs, using, = 0.1 (wide) and8y, = 5.0 (more peaked) query neighborhood.
The results are shown in Figure 3.14.

Leave-one-out (LOO) variants achieved the highest maximU&® gain for every col-
lection shown, and generally gave a dominant tréidearve over all other methods. Term-
at-a-time (TAT) variants achieved the lowest MAP gain oncalllections except wt10g.
The LOO curve dominated the TAT curve for all six collectionkhis diference in per-
formance between LOO and TAT is likely due to the fact that L@®serves much more
of the query context. There was little significanffdrence between SR, = 5.0 (Query
neighborhood more peaked around initial query) an@g8P= 0.1 (broader neighborhood).
For the most ‘well-behaved’ collection, TREC 1&2, the pedls® had consistently higher
MAP gains fora > 0.5 at equivalent risk levels. For the other collections, heasvethe
methods performed comparably. Compared to the baseline,=at0.5 using any query
variant method led to a better risk-reward ratio for TREC 1&REC 7, and wt10g, equal
results for TREC 8 and Robust 2004, and inconclusive refulgov2 (LOO helped MAP,
TAT did not).

One important question is which one of document re-sampmintpe use of multiple
query variants is responsible for the improved robustnessed in Sectian 3.8? Second,
what is the &ect of document resampling alone on precision? The resufable 3.2 sug-
gest that query variants may be largely account for the ingmtoobustness. When query
variants are turnedfband the original query is used by itself with document sangpli
there is little net change in average precision, a smallesess in P10 for 3 out of the 4
topic sets, but a significant drop in robustness for all teeits.

3.4.9 The dfect of document resampling method

We give two results on document resampling here. First, veanéxed the ffect of two
different document sampling methods on retrievBdaiveness. Second, we measured the
effect on precision of adding document resampling to the basetiethod (which uses no
document resampling).

The ‘uniform weighting’ strategy ignored the relevancerssdrom the initial retrieval
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Collection DS+ QV DS+ No QV
TREC MAP | 0.2406 | 0.2547 (5.86%)
182 P10 | 0.5263 | 0.5362 ¢1.88%)
RI 0.7087 | 0.6515 (-0.0572)
MAP | 0.2169 | 0.2200 ¢1.43%)
TREC 7 P10 | 0.4480 | 0.4300 (-4.02%)
RI 0.5652 | 0.2609 (-0.3043)
MAP | 0.2268 | 0.2257 (-0.49%)
TREC 8 P10 | 0.4340 | 0.4200 (-3.23%)
RI 0.4545 | 0.4091 (-0.0454)
MAP | 0.1946 | 0.1865 (-4.16%)
wt10g P10 | 0.2960 | 0.2680 (-9.46%)
RI 0.1429 | 0.0220 (-0.1209)

Table 3.2: Comparison of resampling feedback using docusampling (DS) with (QV)
and without (No QV) combining feedback models from multiglesry variants.

Collection QV + Uniform | QV + Relevance-score
weighting weighting

TREC MAP 0.2545 0.2406 (-5.46%)
182 P10 0.5369 0.5263 (-1.97%)
RI 0.6212 0.7087 ¢14.09%)
MAP 0.2174 0.2169 (-0.23%)
TREC 7 P10 0.4320 0.4480 ¢3.70%)
RI 0.4783 0.5652 ¢18.17%)
MAP 0.2267 0.2268 ¢0.04%)
TREC 8 P10 0.4120 0.4340 ¢5.34%)
RI 0.4545 0.4545 ¢0.00%)
MAP 0.1808 0.1946 ¢7.63%)
wt10g P10 0.2680 0.2960 ¢10.45%)
RI 0.0220 0.1099 ¢399.5%)

Table 3.3: Comparison of uniform and relevance-weightedig@nt sampling. The per-
centage change compared to uniform sampling is shown impfases. QV indicates that
guery variants were used in both runs.
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Figure 3.15: The fect of document resampling on baseline expansion P10. Taesks
shows dfferences that are significant at the 0.05 level.

and gave each document in the tophe same probability of selection. In contrast, the
‘relevance-score weighting’ strategy chose documents pvibbability proportional to their
relevance scores. In this way, documents that were mordyhighked were more likely to
be selected. Results are shown in Table 3.3.

The relevance-score weighting strategy performs betteradly with significantly higher
RI and P10 scores on 3 of the 4 topic sets. ThEetence in average precision between the
methods, however, is less marked. This suggests that omifggighting acts to increase
variance in retrieval results: when initial average prieciss high, there are many relevant
documents in the tog and uniform sampling may give a more representative relean
model than focusing on the highly-ranked items. On the dilaed, when initial precision
is low, there are few relevant documents in the bottom ramkisumiform sampling mixes
in more of the non-relevant documents.

Figure 3.15 shows the flierences in P10 for no expansion (NoExpand), the baseline
Indri expansion without document resampling (BaseExpaantt) baseline expansion with
document resampling using relevance-weighted selecR&kEkpand), across four TREC
collections. We can see that a consistetea of turning on document resampling across
all four collections is to increase the P10 precision of thedbine method. We explore this
effect further in Section 3.4.10.
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Baseline FB| p(wi|R) | Resampling FB p(wi|R)
said 0.055 court 0.026
court 0.055 pay 0.018
pay 0.034 federal 0.012
but 0.026 education 0.011

employees| 0.024 teachers 0.010
their 0.024 employees 0.010
not 0.023 case 0.010

federal 0.021 their 0.009
workers 0.020 appeals 0.008
education | 0.020 union 0.007

Table 3.4: Feedback term quality when a stoplist is not useskdback terms for TREC
topic 60: merit pay vs seniority

3.4.10 The #ect of resampling on expansion term quality

Ideally, a retrieval model should not require a stopwortMisen estimating a model of rel-
evance: a robust statistical model should down-weightetogs automatically depending
on context. Stopwords can harm feedback if selected as &&dbrms, because they are
typically poor discriminators and waste valuable termssldh practice, however, because
most term selection methods resembld.idf type of weighting, terms with lowdf but
very hightf can sometimes be selected as expansion term candidates.

This happens, for example, even with the Relevance Modeioapp that is part of
our baseline feedback. To ensure as strong a baseline ablpps#ge use a stoplist for
all experiments reported here. If we turff the stopword list, however, we obtain results
such as those shown in Table 3.4 where four of the top tenibasiedback terms for
TREC topic 60 (said, but, their, not) are stopwords usingBhse-FB method. (The top
100 expansion terms were selected to generate this example.

Indri's method attempts to address the stopword problemdptyang an initial step
based on Ponte [Po 00] to select less-common termisab@high log-odds of being
in the top-ranked documents compared to the whole collectizvertheless, this does not
overcome the stopword problem completely, especially astimber of feedback terms
grows.

Using resampling feedback, however, appears to mitigaestect of stopwords au-
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Figure 3.16: Example from TREC topic 6@erit pay vs. seniorityshowing how term
ranking varies as four ffierent bootstrap samples of the top-retrieved documentssae
as input to the baseline feedback algorithm. Some terms asichnion’, ‘pay’ and ‘ap-
peals’ have a low but stable ranking across all feedback fepdéile noise words, such as
stopwords ‘but’ and ‘said’ rank highly in some feedback misdbkut fail to make the tom

in others (denoted by a negative rank score). Near-stopngurdh as ‘right’ and ‘system’
are also shown and are also typically removed because afisnstent ranking.

tomatically. In the example of Table 3.4, resampling fe@#tdaaves only one stopword
(their) in the top ten. We observed similar feedback termaleir across many other top-
ics. The reason for thisfkect appears to be the interaction of the term selection stibie
the topm term cutdt. While the presence and even proportion of particular stopgs/es
fairly stable across dlierent document samples, their relative position in thenost is
not, as sets of documents with varying numbers of betteetdrequency competing terms
are examined for each sample. As a result, while some nunflsowords may appear
in each sampled document set, any given stopword tendsl| toefalv the cuté for mul-
tiple samples, leading to its classification as a high-vexeg low-weight feature. Thus, as
with traditional bagging, the use of resampling for feedbacts to stabilize an unstable
relevance predictor for terms.

More insight into this behavior is given by Figure 3.16, whihows how the ranking of
seven individual feedback terms varies across four sumeelssotstrap samples of the top-
retrieval documents. A negative rank score on the diagrahcates that the term did not
appear in the topa scoring terms for that sample. The first three terms, ‘unigdy’, and
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‘appeals’ all consistently rank in the tapterms chosen by the baseline feedback method,
for all four feedback lists. The next two terms, ‘right’ angl/stem’ are higher-frequency
near-stopwords. ‘Right’ appears in the topfor 2 out 4 samples, while ‘system’ appears
only once out of 4 samples. The stopwords ‘but’ and ‘saideheven higher score variance:
when they are selected, they tend to be ranked very highhbytdoth only appear in 2 out
of 4 samples.

The result of this when fitting a Dirichlet distribution togtieedback models is that
terms that consistently score highly, and thus are seldotdte topmterms, are assigned
a fairly high a; parameter, while many stopwords and near-stopwords haw figher
score variance and thus receive @ncloser to 1. The bagging-type behavior becomes
clear here; we can think of feedback in terms of a 2-classitieation problem identifying
‘good’ feedback terms vs. ‘bad’ feedback terms, such thatdescoring in the topn are
given a label of ‘good’, and other terms classified as ‘badig&ng would then select the
terms appearing in a majority of feedback models: in thictse first three terms shown
in the figure.

The reason that high-variance terms are treated as infiertbat we are searching for
features that are consistent with multiple samples frormglsilatent relevance’ model.
We expect the occurrence of such good relevance features stable within the set of
relevant documents competition with other possible term-featureéSuch features will
maximize the number of relevant documents for which we obgaiod discriminators.

3.5 Related work

Our approach is related to previous work from several aréasformation retrieval and
machine learning. Our use of query variation for feedbacls wepired by the work
of ﬂYomTov et alﬁ 2005] for query diiculty estimation, who used TAT query variants to
generate variance statistics that were used as featurasliticulty classifier. Other related
work includes a study Carpineto et 41I. [Carpineto eLt al. zbmsz investigated combining
terms from dfferent distributional methods (all based on top-ranked dws from the
initial query only) using a term-reranking combination hstic. In a set of TREC topics
they found wide average variation in the rank-distance ohgefrom diferent expansion
methods.

A study by ‘[Amati et al‘. 20d4] is one of the closest in probleeeeao our own work: the
authors’ goal is to obtain more robust expansion using seéeexpansion methods. Selec-
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tive expansion is done by setting a threshold for a heutiség callinfoQ, which combines
guery length, another heuristic calladoPriorQ which is the normalized deviation of the
idf values of the query terms, and a fackdg which is essentially the normalized deviation
of the query clarity score, resulting in the formula

InfoQ =

1 (InfoPriorQ — MinfoPriorQ

Sueryien ; MQ). (3.18)

T’ InfoPriorQ
Their study had important limitations. First, it was basadaly one collectio@ Second,
the authors measured robustness primarily by the increatbeinumber of topics with no
relevant documents in the top 10 (i.e. having P@10 of zerog. bélieve this is a poor
summary statistic for robustness: it completely ignoresrttagnitude of expansion failure
on the many topics that have low but non-zero P@10, and itsexexclusively on the
highest possible P@10 loss (zero), which represent onhaetiém of actual expansion
failures. The authors also definBtiAP(X), the MAP of theX worst-performing topics, but
their selective expansion results (p.12) did not use tlaisss$ic.

More recently, Crabtreet al. developed a system called Abra{Q [Crabtree gt al. 2007]
for automatic query expansion that treats the query as afsetpects, and aims to find
expansion terms that adequately ‘cover’ all of the aspect®me sense. Because of these
shared assumptions we we now give a brief summary of AbraQ@reerddiscuss similarities
and diferences with our work. The authors evaluated their methodroy ten queries
using private relevance assessments of Web results frongl&aso a direct experimental
comparison is not possible.

3.5.1 The AbraQ algorithm

AbraQ first identifies aspects in the original query by sapnvord subsequences using
their web frequency. Thexistencescore of a subsequente= w; ... w; is given by

DPHRAS dT)

Existencérl) = 3.19
€ Dano(T) (3.19)

and thesupportscore forT is defined as
Suppor{T) = DerirasdT) (3.20)

Y 1epermr\(T} DrHRASKT”)
11Robust 2003 topics on TREC disks 4&5 minus Congressionabilec
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whereDphrasgT) is the number of documents containifigas a phrase, andanp(T) is
the number of documents containing all of the tefimgithout regard to proximity or order.
The aspect scor8(T) is defined as the heuristic
S(T) Existencérl) - Suppor(T) (3.22)
DprrasgT) DprrasdT) (3.22)
Dano(T)  Zrepermr) Dprras£T7)

(3.23)

wherePern(T) is the set of all permutations of the sequeficd he subsequence of terms
T is considered an aspect$(T) > 1. This leads to a set of aspectk, for a queryQ
where each aspect is defined by a subset of query terms in

Once the sefAg has been identified, AbraQ calculates a vocabulary mudeki{A)
for eachA € Ag using a normalized weighted vector of terms having high couorence
with the aspect stringd. The modelVocal{D) represents the vocabulary model of the
initial top-retrieved documents in response to quéyAbraQ determines which aspects
are underrepresented in the results of the original q@eloy computing a similarity-based
relative aspect scorRASA, D) between the aspect vocabulary and the initial document
vocabulary vectors, normalized across all aspects.

Vocal{A) - Vocal{D)

RASIA Q) = Yaea, Vocal{A) - Vocal{D) (3.24)
Therepresentation level threshold R(Q) is the heuristic
RLT(Q) = ! (3.25)
1+ |Agl
An aspectA is considered valid and underrepresented if
0.2-RLT(Q) < RAYA, Q) < RLT(Q). (3.26)

An aspect is considered invalidRASA, Q) < 0.2 - RLT(Q), in which case further split-
ting and processing is done # to search for underrepresented subaspecta. ofAny
underrepresented aspects are enhanced with additionah&xm terms from that aspect’s
vocabulary model. If AbraQ determines that all aspects gpeasented adequately, it does
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not refine the query.

The AbraQ algorithm requires potentially large numbersxdfaqueries. According
to the authorg [Crabtree etuil. 26)07] for initial queriesafords, in the worst case when
each query term is a separate aspect, the number of extriag|isf(n?). This means that
for typical web queries of 2—-10 words with aspects of 1-3 wprbraQ needs between
803 and 4027 count-operations to calcul®x@) and Dpyrase (each of which may be
a web query when using the Web as global collection) as we83aso 105 additional
gueries to perform aspect refinement. When typical web quemgth distributions are
taken into account, AbraQ can be expected to use 56 extraeguén contrast, our methods

require dramatically fewer extra query operations: in tle¥st/case, never more th&{n)
additional queries on the collection.

3.5.2 Other related work

The idea of examining the overlap between lists of suggetstieds has also been used
in early query expansion approaches. Xu and Croft's methddoo&l Context Analysis
(LCA) [&u & Croft bood] includes a factor in the empirically-deed weighting formula
that causes expansion terms to be preferred that have domseto multiple query terms.
On the document side, recent work by Zhou & Crbft [Zhou & d‘rofOBDexplored the
idea of adding noise to documents, re-scoring them, andytisastability of the resulting
rankings as an estimate of querytdiulty. This is related to our use of document sampling
to estimate the risk of the feedback model built from thfedent sets of top-retrieved
documents. To be practical, however, their method reqtimeso-operation of the search
engine, whereas our method does not. Sakai ét al. [Saka‘im(w] proposed an approach

to improving the robustness of pseudo-relevance feedbsicl @ method they cadlelec-
tive sampling The essence of their method is that they allow skipping ofestop-ranked
documents, based on a clustering criterion, in order tact@lenore varied and novel set
of documents later in the ranking for use by a traditionalyasefeedback method. Their
study did not find significant improvements in either robess(R1) or MAP on their cor-
pora.

Two recent studies have attempted to find good predictorspEresion &ectiveness. In
his thesis, k[BiIIerbeclk 2005], p.81) made a detailed stoidyuery expansion using a local
analysis method, including théects of varying two parameters: the number of documents

in the initial ranking, and the number of expansion termsfdimd no correlation between
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the average precision of the initial query, and the amouattdbery was improved by query
expansion. He tried several statistics for predicting espan dfectiveness, including a
clarity-type query diiculty score, but with no success. [Amati et‘al. 2004] alsooregul
that ‘the performance of query expansion (QE) is not diyerlated to query diiculty,
consistent with the observation that although the retlieff@ctiveness of QE in general
increases as the quenyfiiculty increases, very easy queries hurt performance’.

Our use of query variants to improve query expansion is edlab the recent use of
associated queriesvhich are user queries that all share high statisticallanty with a
particular document. IA [BiIIerber 20b5], p.90), sets s$@ciated queries are obtained
using Excite query logs. These past queries are then corhiib@ surrogate documents,
which are then used for query expansion. With this methoel atithor’s best algorithm
obtained a MAP on wt10g of 0.1893. This was the only comparabt of topics with our
study, and is in line with the Indri baseline wt10g MAP of (08 For comparison, our RS-
FB MAP on wt10g was 0.1984 (about 5% higher). Robustnesdtsasare not available,
and results for TREC 7 and 8 were apparently poor and not reghoBillerback concludes
that associated-based query expansion is nttette/e when the past queries available are
a good match for the collection being searched.

Content-based image retrieval, having to deal with a moredaset of features, has
explored sophisticated methods for ‘query shifting’ — d&@otterm for query expansion —
based on feedback. The work (51999] is a good examihlies domain, although
little or no use of variance estimates or robust model coatimn methods is performed.

Greiff, Morgan and Ponté [Grefi et aﬂ 2002] explored the role of variance in term
weighting. In a series of simulations that simplified thelgpeon to 2-feature documents,
they found that average precision degrades as term fregjuam@ance — high noise — in-
creases. Downweighting terms with high variance resultdchproved average precision.
This seems in accord with our own findings for individual feadk models.

Estimates of output variance have recently been used foroweg text classification.
Leeet al. ﬂLee et aIJ 200‘6] used query-specific variance estimatesagbifier outputs to
perform improved model combination. Instead of using samgpkhey were able to derive
closed-form expressions for classifier variance by assgrbase classifiers using simple
types of inference networks.

Ando and Zhang proposed a method that they call structuealdack [Ando & ZhaAg
%5] and showed how to apply it to query expansion for the CR¥Enomics Track. They
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usedr query variations to obtaiR different set$, of top-ranked documents that have been
intersected with the top-ranked documents obtained fr@wtiginal querygyig. For each

Si, the normalized centroid vectar, 6f the documents is calculated. Principal component
analysis (PCA) is then applied to theté obtain the matrixp of H left singular vectorgy,
that are used to obtain the new, expanded query

Gexp = Torig + ©" PCorig. (3.27)

In the caseH = 1, we have a single left singular vecigr

Oexp = Corig + (¢qurig)¢

so that the dot produet’ gqrig is a type of dynamic weight on the expanded query that is
based on the similarity of the original query to the expangieery. The use of variance as a
feedback model quality measure occurs indirectly throbgheipplication of PCA. It would

be interesting to study the connections between this appraad our own model-fitting
method.

Finally, in language modeling approaches to feedback, mdZhai ‘[Tao & Zhan 2006]
describe a method for feedback that allows each documerav® & diferent feedback:.
The goal of their method is to make the feedback algorithra gisitive to the number
k of top-ranked documents chosen. The feedback weights akedautomatically using
regularized EM. A roughly equal balance of query and exmgansnodel is implied by
their EM stopping condition. They propose tailoring thepgtimg parameten based on a
function of some quality measure of feedback documents.

There has already been substantial work in the field of mack@arning on ensemble
methods that resample the training data in various wayshignréspect, our approach re-
sembles methods such laagging|BreimaAJ 1996], an ensemble approach which generates
multiple versions of a predictor by making bootstrap coméshe training set, and then
combines the predictions of the base classifier by averadanghumerical predictors) or
majority vote. Bagging has been provefiegtive at stabilizing the performance of un-
stable base classifiers. In our application, top-retriede@cuments can be seen as a kind
of noisy training set for relevance. Thus, by viewing retalkefunctions such as pseudo-
relevance feedback as learning algorithms trained usingpbag-based methods, we can
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apply a broad body of existing results and methods prewoaysplied to tasks such as text
classification.

3.6 Computational complexity

Running extra query variants and creating multiple feellmaodels provide us with valu-
able information about query and document uncertaintythey also have extra computa-
tional costs. We now explain the nature of these costs andiheywcan be mitigated. Our
focus in this chapter has been on finding which methods wosk la@d not on optimizing
performance.

In the case of document set resampling, we have two main:steps

1. EstimatingB feedback models

2. Fitting the Dirichlet distribution to these models.

For Step 1, thek document representations must be loaded into memory. Eppdns
whether we do standard pseudo-relevance feedback, or pésgnieedback. For each
of the B feedback models, the costs are roughly as follows. Wittocuments each on
averagel words long, from Heaps Law for English we have a vocabulazg sif roughly

d = 45- Vak. For example, when = 1000 andk = 50, we have a vocabulary vector
size of about 10000 unique words. We perfakm d floating point calculations to obtain
term weights, wher& is a small consta@c, including a sort ofd(d logd) to find the topm
feedback terms. Step 1 is an ideal case for parallel impl¢atien if we care to do so: all
B models can be computed in parallel and can all share the satadldck.

For Step 2, the computation costs digiterations for finding ther parameters anils
iterations for finding the scale parameters. In our cddes 5, T = 3. For eithew or scale
parameter fitting, each iteration requires abdutB calls to the log function andd2calls
to digamma-family functior%. In real numbers, to perform step 2 for a query amounts to
about 10000- 10- (5 + 3) = 800,000 calls to log and@- (5 + 3) = 160 000 calls to a
digamma-family function. While these counts might seem higé note that on an Intel
Xeon CPU (3.20 GHz) using the standard-math library, the above calls took a total of
0.17 seconds. In addition, our numerical code has not betensixely tuned for speed, so
that further performance improvements may be possible.

12K is typically less than 10
13|n addition to a small number @(d) steps such as finding the meardofalues
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In the case of query variants, the computational cost is sdrathigher. For example,
the Indri search engine constructs an inference networkdas the user's query. How-
ever, the nature of our basic query variation methods is shehonly theweightsof term
evidence nodes in the network are changed. Except for thghiveslues, the inference net-
work structure itself is identical for all variants. Poteflly the most expensive operation
in constructing the network is fetching and decompresdimgiiverted list from disk for
each term. However, because the same inference networleaasell in all cases, this cost
is amortized across all query variants. Furthermore, tteymal design of the Indri search
engine is such that scoring a document against multiple-teenght variants is possible to
do simultaneously andigciently :Strohmau; 20&7]. Thus, if embedded into the coredea
algorithm, the marginal increase in computation cost iy \@w.

Even if query variation originates completely external lte search engine, multiple
query variants submitted close in time are still likely togrecessed relativelyfigciently:
IR system caching or operating system paging will potelgtr@giduce the large inverted list
costs via caching. Multiple query variants can be processedrallel, reducing thefeect
on user response time (but of course, increasing total CP&gaaportionally). Finally,
the number of subqueries could easily be adapted to the loadserver: under high load,
the strategy would simply degrade toward the performandbeobriginal query.

3.7 Discussion

We now comment on connections between our approach, baggiddgrelevance Models,
followed by some possibilities for future extensions.

3.7.1 Connections to bagging

Unlike traditional bagging, the output from our ‘classifighe baseline feedback method
®, is not a single numeric or categorical response, but a laggunodel represented by
a high-dimensional vector. Thus, we do not simply averagevtttors that result from
resampling the top-retrieved documents. Instead, we salskghtly more general and
appropriate problem and find the maximum likelihood solutio a latent Dirichlet distri-
bution fitting the observed multinomial feedback models. Wdge observed that simple
averaging typically gives significantly worse average @ieo than using the mode of the
fitted Dirichlet distribution.
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3.7.2 Connections to the Relevance model

The use of a kernel to smooth document model estimates indley&hce Modeo
@] creates anfiect similar to bootstrap sampling. By perturbing the ungead doc-
ument model estimate (according to its treatment as a rangorable with the kernel
distribution), we induce a perturbation in the documentieny likelihood score. Since doc-
uments are weighted by this score in calculating their doutiion to the feedback model,
the kernel &ectively acts to smooth document weights. The bootstraphodeseeks to
approximatgsimulate this &ect by sampling the relative document weights directly from
some hypothesized distribution, where the observed dootuimeights are treated as the
most likely draw from that distribution. In his thesis, Lawnko did not evaluate the use of
more sophisticated document kernels such as a Dirichleiekén an actual retrieval set-
ting, due to its computation burden. However, based on oalyais, we believe thefiect
of such document kernels is expected to be similar to theibhgggpe dfect of bootstrap
sampling and thus a precision-enhancing device.

3.7.3 Future extensions

The following query variant methods were not implementedlic study, but we mention
them for possible future investigation.

e Document-based varian{®V). To capture more realistic covariance structure, we
can consider a method by Benn@ZOO?] createdtitoas the sensitiv-
ity of text classifiers. Query models are sampled deterrigaily from a Voronoi
cell around the original query. This cell is created from ified query models,
each of which is an interpolation of the original query moa#éh some top-retrieved
document. The interpolation parametgrfor each modified queryj; is set to the
largest value that keeps the original query as the nearéghlna to the modified
model. Since each; requires several retrieval operations to estimate, thepcdaa
tional overhead for this method would likely be several ngeeater than the most
sophisticated method used in this thesis, sigma-point Bagmp

e Translation model§TM). These use kernels defined on graphs of term relations to
define a translation mapping between testrand termw;. An example of this ap-
proach was recently applied to text classification‘by [ Dl ket al.‘ 200%]. A related
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approach using term dependencies for query expansion wdgedtby [Collins-
Thompson & Callat% 20&)5]. Thperturbation kernelghat we learn in Chapter 4
from query variants may also be seen as a form of translatefrtrained from lo-
cal (top document) data, and we evaluate tfieat on query expansion performance
in Section 4.3.3.

Different document sampling strategies are also possible.dlloeiing methods were
not implemented for this study but are candidates for tgstin

e Dirichlet over weights.This would model the relative weights of documents with a
Dirichlet distribution.

e Logistic normal. Extending the idea of a document as a topic, similarity betwe
document topics could be modeled using a covariance malte. logistic normal
distribution described later in Section 4.2.4 could easitydel more complex covari-
ance structure.

3.8 Conclusions

We have presented a new approach to pseudo-relevance é&dumed on document and
guery sampling. While our study uses the language modelipgpaph as a framework for
experiments, we make few assumptions about the actual mgslof the feedback algo-
rithm. Our results on standard TREC collections show thatfiamework improves the
robustness of a strong baseline feedback method acrossesyvair collections, without
sacrificing average precision. It also gives small but csiesit gains in top-10 precision,
which is typically dificult to do. In general, our approach has the following acsges.

First, the framework idlexible it assumes little about the baseline feedback method.
We observed consistent improvements in precision and tobss using dierent strong
baseline feedback algorithms. We believe it is likely, eiere, that any baseline algorithm
obtaining good initial performance, especially if unseablith respect to small changes in
the top-retrieved documents, will benefit from our method.

Second, the sampling approachpiewerful because it gives a principled way to get
variance or sensitivity estimates from any black box precefiowing us to quantify the
uncertainty associated with important random variableh siss document or query model
parameters. We showed that using such variance calcutatesulted in more féective
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model combination of dierent feedback models. We also showed that the confidence
estimates obtained for sets of expansion terms may be ugetiftom selective expansion.
Furthermore, we discussed how sampling methods can extendige of retrieval scoring
functions for which current Bayesian retrieval framewoaks practical.

Third, the algorithms here ageneric extensive parameter training is not essential to
achieve good performance. This does not mean that furtheronmements are not worth
pursuing with parameter tuning based on training data. kamgle, inductive transfer
may certainly be possible to perform meta-learning acroSsrént retrieval problems or
corpora. For standard use, however, tife@ive values of important parameters suclras
(feedback interpolationk (number of top-ranked documents), etc. appear stable @iaros
variety of collections.

Fourth, our method iprecision-orientedconsistently increasing the percentage of rel-
evant documents in the top 10 retrieved documents. This ésaable quality for applica-
tions such as web search where accuracy in the first few seisuttesirable. We showed
that this increase in precision is likely due to the bagdikg-effect of emphasizing feed-
back terms that have low variance across multiple sampkesthose that are consistent
across related hypotheses of relevance.

Fifth, resampling istableand provides more robust feedback. We showed how query-
side resampling is responsible for most gains in robustri®semphasizing terms that are
consistently related to multiple query aspects. We alsdyaed the trade-h between ro-
bustness and average precision, and showed that when quty@mdocument resampling
were used together, the resulting feedback model gave adtacurve significantly bet-
ter than the baseline language model, with better tridedues for a wide range of the
interpolation parameter.

As with any ensemble-type approach that relies on obtaimngiple sources of evi-
dence, there is increased computational cost. In Sectiown&summarized how to mitigate
these costs, using Ind#i [Strohman elJ al. 2004] as a speci@imple. We believe the gain
in retrieval quality and increased family of practical Sogrfunctions that sampling makes
possible are an acceptable traffeo

The next chapter demonstrates an additional benefit to mgropiiery variants that fur-
ther amortizes their cost: exactly the same result infolonatan be re-used for learning
improved query-specific similarity measures or quetjiclilty measures.




Chapter 4
Data Perturbation Kernels

In this chapter we introduce another novel application afigiing to information retrieval:
learning query-specific similarity measures using smatiysbations to the original query.
We will use these similarity measures in Chapter 6 to modei tedationships, which will
result in more reliable model combination results than tlertstic methods we have just
described in Chapter 3. Therefore, we digress for one chaptiercus on éective term
similarity measures.

We call the general class of kernels that we introduce farphrposealata perturbation
kernels because they are learned from the results of a small nuniipertirbations to the
training data. For example, when the training data is a qagpgrturbation may be a small
change in the relative weighting of the original terms. lis thay we obtain new informa-
tion about thechangedo feedback models (or other statistical models) in a neagidod
of the original query. Our approachftirs from existing kernel families such as proba-
bility product kernels that assign exactly one probabiignsity to each point in the input
spaceX and then integrate oveX. Instead, we take essentially the dual view and identify
each input point with multiple probability densities evatied at that point, and then inte-
grate over probability density space. The resulting athars are generally morefective
than similarity measures based on the original query aloaes a principled mathematical
foundation, are relatively simple to implement, and can Xtereded to arbitrary retrieval
objects.

The key idea of data perturbation kernels is that two inpjgcisx andy, such as terms
or language models, are considered similar in the conteatgiVen quenQ if the prob-
ability distributionsp(x|Q) and p(y|Q) that depend o are dfected in similar ways with
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small variations inQ. For example, the probability of termsandy may covary in gener-
ative relevance modelg(:|R) estimated using variants . We call this theperturbation
similarity of x andy.

As we show below, the ‘ideal’ perturbation similarity meesPSM) with respect to
Q takes the form of an integral over all possible queries in ighteorhood ofQ. Com-
puting the exact integral is not possible since we do not ktiev‘true’ distribution of
gueries given the unobservable information need. Howsweican apply general-purpose
integration methods such as importance sampling (destitb€hapter 2) to learn an ap-
proximation to the true PSM by using query perturbationsn@stmes referred to aguery
varianty. Since there is a computational cost to searching withyquariants, and many
potential methods to generate variants, we develop algostfor choosing a small set of
‘good’ query variants. In particular, we give afffieient deterministic algorithm called
sigma-point samplinthat is éfective for arbitrary integrands in the perturbation simiia
integral. Sigma-point sampling can also be thought of asaigé query variant generation
method that behaves like an adjustable combination of LODT&T sampling described
in Chapter 3.

Our motivation for introducing data perturbation kernedsto create higher-quality
guery-specifisimilarity measures. For example, a problem with many axgstvord sim-
ilarity measures is that they do not adequately hapdlgsemy a condition in which a
word has multiple meanings sensesThese senses can be verffelient: the wordvave
can refer to a water phenomenon, a hand motion, and so oncalygmilarity measures
ignore thecontextin which two words are used, and focus only on some functiocineir
joint appearance or non-appearance. When context is ignibredelated words for tlier-
ent senses of the same word are incorrectly calculated tolbse’ to each other, because
each is close to the original word. Unlike static similantyeasures, such as word co-
occurrence in a general collection, query-specific sintjlaneasures use thather query
termsto provide additional context for the similarity computati

A specific query example occurs with the word “java”, whicksmaultiple meanings:
it can refer to a drink (cfiee), a programming language, or a place. Many word similar-
ity measures would give all three related wordsffee”, “programming”, and "indonesia”
strong similarity scores to “java”, because such measwigon general statistics that ig-
nore context, such as word co-occurrence in a large, geoemeis. Knowing that “java” is
used in a query like “java interpreter download”, howevie perturbation kernel automat-
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ically discounts similarity between words that that do riebdave significant connections
to the query terms. In this case, the wordsffee” and "indonesia” do not exhibit strong
connections to "interpreter” and "download” and thus wob&lconsidered much less re-
lated to "java” than words like "programming” that reflecetborrect sense.

The rest of this chapter is organized as follows. Sectiongikés an overview of the
problem and our solution. In Section 4.2 we give a detailetheraatical derivation of
our similarity formulas. We then give two applications ofr@approach. First in Sec-
tion/4.3 we derive a new similarity measure between wordedg@erturbation similarity
for clustering terms for query expansion. Second, in Seddig we apply the same ker-
nel in a diferent domain — that of language models — and use this to cbgeneralized
clarity scorethat extends the existing method of the same name by Cronsnsémd and
Croft ﬂCronen-Townsend & Croft 2002]. In Section 4.5 we confitme &fectiveness of
perturbation similarity, especially for collections in igh relevant documents are highly
clustered. We discuss connections to related work in Seétié. Section 4.7 summarizes
our conclusions. In Appendix B we discuss related work onsuess oflocal influencen
statistics that are closely connected with the notion ofysbing the query as training data.

4.1 Overview

In Chapter 3, we developed the idea of using query variantsfmave the performance
of query expansion. Each query variaptesulted in a new set of retrieved documefks
and a corresponding set of feedback models Here, we are interested not in combining
the models, but extracting information from them about temmilarity, which we can then
use for more fective model combination. In machine learning terms, the afsquery
variants to derive a similarity measure between words cacopsidered a form of multi-
task metric learning in which each query variant is an aarjlitask. Two terms andv
can be compared by how their probabilitig®|6;) and p(v|6;) covary across all models;}.
Theseperturbation kernelsvould be expected to be more precise because they retain the
guery as critical context, as opposed to similarity learinech a general large corpus. Such
kernels could be applied in many domains of interest, and tverfocus on two important
domains: terms, and language models.

We next give the complete mathematical formulation of dataysbation kernels, pro-
ceeding in three steps. First, after introducing basic epts; we give the ideal but com-
putationally intractable version of a basic similarity @fion in terms of an integral over
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the space of query functions. In this formulation, a quegighbourhoodpecifies a prob-
ability distribution around the original query, which igated as a function. In this view,
each query variant is a point in function space near themmalgjuery, and the query neigh-
borhood then forms the probability measure for the sintyantegral. Finally, we give an
algorithm for an éicient approximation of the similarity integral that recggronly a small
number of deterministic samples in query function spacerfguwariants). As we did in
Chapter 3, we model the quetyas generated by a latent mixture model with each mix-
ture component corresponding to ddrent hypothesis about the information need. Each
hypothesis corresponds to dfdrent query variant which in turn is used to estimate a dif-
ferent generative modéj of relevance. We choose a latent model such that the maximum
likelihood model is the one derived from the original queky, We then compute a distance
or loss function of each variant’'s model parametef(s¢lative to the maximum likelihood
parameters of,.

4.2 Mathematical formulation

Our goal in this section is to derive a rigorous mathematicathod for estimating query-
specific similarity, based on treating the query string asitng data. To achieve this goal,
we solve a more general problem by introducing a data-dep@nrcernel called thelata
perturbation kernel The data perturbation kernel compares the nature oehsitivityof
the probability estimates for two input pointsand x’ to perturbations of the training set.
As such, it focuses on relative change in probability, andahsolute dierences.

4.2.1 Basic concepts

We first introduce some notation and basic concepts. L& the input domain from
which training exampleg; are drawn. The seX may be a finite set, as with a vocabulary
<V of words, or infinite as with a real vector spagé. Let # be the set of probability
distributions onX. A training setx of examples is drawn frorX and a density estimate
p(x) € P is created from the examples using estimatorfunctionR : X" — #. Note
that p(x) may be either parameteric or non-parametric. For exanmplaay be a complex
algorithm that estimates a Relevance Model deng(tyld) over a finite vocabulary space
of wordsX = V. (This would be a parametric model with parametg)js

Feature mapping and kernels. For any pointx in input spaceX we identify anm-
dimensional vector called f@ature mappingdenotedp : X — R™. A feature mapping
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is a diferent representation of in the feature spacgé = R™. Note thatf may be either
finite- or infinite-dimensional depending on the featurecgpaGiven a feature mapping
#(X), we define a symmetric functid-) to measure the closeness of input poxgndy:

k(x.y) = ¢(X) - ¢(y) (4.1)

where the right side of the equation is timmer productof ¢(x) and¢(y) in the spacef.

If we have a set oh objectsx = {x} € X then the matrixK, with i, j entry k(x;, X;) is

called thekernel matrixfor the setx. The functionk(-) is called akernel functionif the

kernel matrix is always positive semi-definite for any sulid@bjects fromX. Given two
instances; andx; from X, the 2-normdistances(x;, x;) betweerx; andx, in terms of the
kernelk is given by

o(Xi, Xj) = ll¢(xi) — (X))l (4.2)
= Ko, %) + K2(x. X)) = 2K(x;. X)). (4.3)

Perturbations to inputdata. A perturbationto a training set oh instancex = {X; ... Xp}
can modeled by a vector of counts= {a; . .. an} with counta; corresponding to the weight
of training examplex;. For the original training sety; = 1 for all instances;. To leave
out the instance;, we seta; = 0. To givex; more weight, we set; > 1. A perturbation
strategyis a setA of perturbation vectors. The sét may be selected with either a random
or deterministic process. Two examples are:

e Theleave-one-oustrategy is deterministic, witl = {e; . .. @y} whereq;[ j] = O for
i = jand 1 otherwise.

e TheDirichlet strategy randomly sampl@svectors using the DirichleDir (1").

It will be convenient to denote the probability density ofaiablex € X that results from
a perturbationy; to the training sek as p)(X).

In the context of information retrieval, we treat the quepas training data for rel-
evance. If we take as our domaiithe set of all possible wordd’ we can viewq as
consisting of the unordered set of terms . . ¢,, and each termy; may be thought of as an
item of training data selected froAj, so thatg € X". Note that we have already processed
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Perturbation space: ¢(x))
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Figure 4.1: The matrix of probability vectors for a discretput space (here representing
a word vocabulary). Each column represents the discret@npeteric or non-parametric

probability distribution across all words estimated fronparticular perturbation of the

training data (i.e. query). Conversely, the row(x;) give the probability estimates across
all perturbations for a given wors.

the same query variants for robust feedback as describedapté€h3, so we essentially get
the use of the resulting feedback models ‘for free’ to usestimeating the kernek(:).

Figure 4.1 shows the matrik that results from usingn training set perturbations with
an example vocabulary. One way we might defirie

(%) = Ak = P(XilOay)) (4.4)

whereAy is the {, k)-th entry ofA. In this case, theth column ofA is just the probability
distribution over the vocabulary estimated from the training set (query) perturbatgpn
The row vectow(x;) is the feature mapping for the worgl. A simple form of perturbation
similarity k(xi, X;) is simply the dot product between rows:

KO %) = > AwAjk. (4.5)
k=1

It is important to note, however, that there are many choicefiow to definep, and
thusA. For example, we may want to defigesuch that the dot product of two column
vectors corresponds to a particular metric between prdibafiensities. In the next section,



98 CHAPTER 4. DATA PERTURBATION KERNELS

we generalize this example to similarity of two objects inaahitrary domain, so that the
simple sum of Eq. 4|5 becomes an integral expressing a deneea product over some
feature space.

4.2.2 Canonical similarity integrals

Our formulation of perturbation similarity is inspired byadier work of Baxter using

auxiliary tasks for classification and function approximoat Baxter showed that for 1-
nearest-neighbor classification, there is a unique optsimallarity measure that he called
the Canonical Distortion Measure (CDI\%) [Balngﬂ. In theessification setting, this
guantityd(Xy, X) is the expected loss of classifying with x,’s label. The expectation is
taken over a probability space of classifiers (tasks). The G\ particular type of task
is uniquely defined by two factors: the choice of loss funttimd the task distribution.
Note that the CDM may not be symmetric or satisfy the triangegjuality, so it does not
technically define a metric.

In this chapter we apply Baxter’s idea to information retaleapplications, where we
view a task as relevance estimation with respect to a péatiqueryg. We call a task
distribution for g a query neighborhooaf qE We define the query neighborhood as a
probability measur&)(f) over the space of query functiorfs. The canonical similarity
measure\q(x, y) is the expected loss ov€), givenx andy in the input domainX.

Aq(Xe, Xo) = L p(F(X), F )T (4.6)

This measure is uniquely determined by the task funcfipthe choice of query neigh-
borhood measur€® and loss functiorp(u,v). We focus on the squared-loss function
(X1, X2) = (X1 — X2)2. This gives the distance measi@;, 6.):

A0, 0) = L p(1(62), 1(6:))d 1) (4.7)
= Eol((6r) - 1(6))7] 4.8)
= Eql f(61)°] + Eql f(62)°] — 2Eql f (61) T (62)] (4.9)

1In Baxter’s terminology this would be calledoaery environment
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where the expectation is taken over the query neighborl@%d

As Figure 4.1 suggests, there are two approaches to comgpsitimlarity betweerx;
andx; in X, corresponding to comparing rows or columns in ma#ix

First, we can pick some mapping that identifigswvith a singlecolumnvector of A,
representing a probability distributiop(x) defined over all ofX, and then compute a
similarity or inner product between distributiopgx), p;(x). We call thisintegration over
input spacebecause that is the domain for the inner product over digions.

Alternatively, we can identify; with therow vector of features(x;). Each entryp.(x;)
corresponds to the result of usikgh query perturbation as training data. This is essepgtiall
Baxter’'s measure and in the limit integrates over the caiors domain of tasks (queries).
We call thisintegration over perturbation space

Integration over input space When we assign each input poita probability distribu-
tion over input space, we can integrate over input space keiscrete case, tlmlumns
of A. This type of similarity measure has been the subject ofiewerk by other authors.
Jebara, Kondor and Howarb [Jebara et al. 2004] introdyszetdability product kernels
(PPK) where the kernel function is

koer(4,) = [ PPy (0 (4.1)

for a positive constarg.

A related special case when each input pognis identified with its own perturbation
q® leaving outx; results in theeave-one-ou{LOO) kernel ‘[Tsuda & Kawanaue 2d02],
which measures the similarity of two domain members acogrth the similarity of their
influences on the density when the samples are left out ofengiaining set. The LOO
kernel works for both parametric and non-parametric dessiby measuring the distance
beiveen arbitrary probability distributions using the kger norm ‘[Tsuda & Kawanabe
2002].

kioo(Xi» Xj) = 4(n — 1)? f (VPO(x) = VPOYN(VPD(x) — /P(x))dx (4.12)

20ther loss functions, such as the Hamming metric
p(X1, %) = 1 = 6(x1, X2) (4.10)

are also possible.
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Tsuda and Kawanabe showed that for parametric probabditgities the Fisher kernel [Jaakkola
et al. 1999] is a close approximation to the LOO kernel andreages to the LOO kernel
as the number of training samplegoes to infinity.

An importance sampling approximation to the LOO kernel cardbrived by taking
P(x) as the sampling distribution, with the as the evaluation points. This gives

4(n - 1y Z (VPO(x) — VRO (VED(xi) — v/B(x:))

K Xi, Xi) = — 4.13
which in turn can be written in the form
n
kLoo(%, X)) = ) ¢05)¢(x)) (4.14)
i=1

Thus, by defining the matri@ with n columns (one for each leave-one-out distribution)
and setting the column vectors to have the values

_ 2(0- 1) VB9(x) - VAKX
Vi VP(X)

then finding a good approximation to the leave-one-out Kemduces to computing a
simple relative change in (square-root transformed) podityg and taking the dot product
of the resulting columns.

One limitation of the LOO-type kernel is that it is only defthir elements (e.g. vocab-
ulary) that actually exist in the training set. For domaiike information retrieval where
the training data (query) is extremely limited, this is arsfigant problem, since it implies
that the LOO kernelis only available between those worddthgpen to occur in the query.
This is clearly not acceptable if we wish to perform any kiridiseful term clustering.

$i(X) (4.15)

Integration over perturbation space If we take inner products between the perturbation
rowsin matrix A, this gives the data perturbation kernel that we introducthis chapter.
In contrast to the probability product family of kernelstagration over perturbations does
not assume a mapping from each pointo a specific density;(x).

Instead, we fix the two input domain elemertsindx; and integrate over a probability
spacef of density functions. These density functiopg)(-) are those that result from
perturbationsy on the training data, and we assume we have a me&Xymeover # that
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describes the distribution over perturbation densipgs(-). We assume that the density
P@)(-) is defined for all elements of the input domaXn(although it may be zero), so that
the integral exists for all pairsx(y) € X?, and is

Aq(Xs, X2) = f p(p(x2). P(x2))dQAP) (4.16)

Note that this has close connections to the scenario camelépg to the Canonical Distor-
tion Measure, in which each density functipp,(-) corresponds to a auxiliary prediction
task for the main prediction tagl(-) using original queny.

In the special case where we use the loss fungtionv) = UV for some constarg,
we get the counterpart to the probability product kernehia probability density domain
(instead of the input domain).

Aqg(Xe, X) = L PO PO dQ(p) (4.17)

4.2.3 Approximating the similarity integral

By writing the similarity measure as an integral in Eq. 4.6 @an now bring to bear the
general-purpose integration methods described in Chapter 2

Our approach is to formulate a Monte-Carlo-like estimate dygling density func-
tions from the domairP. Since each sample corresponds to a query variant, theiguest
then becomes how to choose specific query variants. Our nhetirselecting samples will
be a form ofimportance samplingusing knowledge of the properties @{p).

Recall that the basic approach to evaluate a general intefgitee form

I= f@ £ (6)du(6) (4.18)

on the domaim® with measuredu is to independently sampl points Xy, ... Xy in ©
according to some density functiqaix), and then compute the random variable

N .
Fn = %Z m (4.19)

This approach is very general and ignores any informatiorhewxe about the nature of
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f. If we know thatf is concentrated in particular areas, we can obtain a miicest,
lower-variance estimate by usimgportance samplingf f.

Suppose, € P is the density function oveX associated with using the original query
g as training data. Lep,) be the density function resulting from training on a peratitn
a with g. Then informally whenr ~ 19 —i.e. a ‘small’ adjustment tq — p,) will typically
be close top,, with the measur€)(p) concentrated there. Thus, importance sampling in
the region ofpy is likely to be an &ective strategy. We now elaborate on specific choices
of importance sampling strategy over the query neighbagtmobability measur€(p) to
evaluate the integral in Eq. 4.17.

4.2.4 Importance sampling with query neighborhoods

Our goal in this section is to define the PSM for a given quergléfining the probability
measure(p) over the space of querigs. We define ayjuery neighborhoodensity func-
tion h(#) for a queryq that describes how the query model behaves as a random leariab
with respect to the original query. One way to interpret iBifiow diferent query mod-
els for the same underlying information need might be geadradn essence, by defining
Q(p), which we call theneighborhoof g, we are stating our assumptions about how we
characterize the uncertainty inherentgnThe result is that, instead of keepigdixed as

in traditional systems, we treat it as a random variableng#he distributiorQ(f), we will
createN query variantsy;, d, . . - , G-

We now discuss parametric and non-parametric methods &mifgjpng h(6). The sim-
plest strategy is to choose no variants at all, and simplyheseriginal query. In this case,
this corresponds to choosing a meas@(é) so that the original query functiofy, is the
unique mode of the distribution, and the integral is estegdaising a single sample at the
mode:

Aq(%,y) = p(fa(X); fa(y)) (4.20)

We can also use the term-at-a-time (TAT) and leave-one{oD0) methods we used
in Chapter 3. The advantage of the TAT and LOO methods is tleat #ine extremely
simple to implement. They both u$é¢+ 1 variants of the query, while being somewhat
complementary strategies, making them ideal for comparigtie disadvantage of TAT is
that, since only single terms are used, it may not adequaggyure covariation between
pairs of terms, especially as the query length increasesve®showed for query expansion
in Section 3.4.8, and will show in Section 4.5, this leads dorpoverall performance on



4.2. MATHEMATICAL FORMULATION 103

© O
@
Single term Leave-one-out
e O L
o e
¢ ° o °
Sigma points (a) Sigma points (b)
Equal term prior Unequal term prior

Figure 4.2: Examples of fferent query sampling strategies, visualized on the simpiex
term weights for a three-term query. The original queryjwvatl term weights equal, is in
the center of each simplex, except for sigma points (b), @/ftsfocation is determined by
term-specific prior parameters. The black dots denote quemgnts that result from each
scheme. Shown are term-at-a-time (TAT, top left), leave-ouat (LOO, top right) and the
sigma points method (second row) for uniform term prior {bot left) and non-uniform
priors (bottom right).
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various tasks.
We now define a family of parametric query neighborhoodshleatives somewhat like
an adjustable, hybrid form of both TAT and LOO.

Parametric query neighborhoods with the logistic normal dstribution

If we have a vocabulary af+ 1 terms, we may have a unigram model over this vocabulary,
in which case it is convenient for us to work in tdedimensional simplex. However, the
unscented transform that we describe in the next sectiossisdbon a Gaussian distribution
in unbounded Euclidean space. We tie together these twasmcdefiningh(6) to be a
flexible parametric density based on tlagistic normaldistribution ‘[Aitchison & Shen
@)] over the simplex of term weights. The logistic normatrmibution provides a simple
way to embed a Gaussian input distribution into thdimensional simplex. As a special
case, when the query neighborhood is well-approximatetgusiparameteric distribution
called the logistic normal, we produce difietive set of query variants using the unscented

transform from particle filtering.

The logistic normal implies the following generative presdor a set of query term
weights. First we draw a set of latent variabbes~ (u,X) where N(u,X) is ak — 1-
dimensional Gaussian distribution. Then we proptd thek-dimensional simplex point
r, representing the relative query term weights, witoordinate j using the logistic trans-

formation
i expn;

J Yie1 expn;

While the Dirichlet distribution can only capture a weak gah@egative correlation
among terms, the logistic normal can capture much richeexégncy structure between
terms according to the parameters of the Gaussian covariaatrix. The logistic normal
class has a total ola‘d(d + 3) parameters compared to the+ 1 of the Dirichlet.

Special case: Dirichlet approximation

A query model is often defined using a multinomial distribatover words. Since defining
a query neighborhood amounts to specifying a prior over treryymodel, it is convenient
to specify the query neighborhood in terms of the conjugate Pirichlet distribution.

We can closely approximate the Dirichlet distribution wgsithe following formulas
from Aitchison & Shen [Aitchison & Shegn 19%0] to convertlar 1 dimensional Dirichlet
distribution with parameters; to a logistic normal meap and covariance matrix (with
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entriesy; ando;).

ui = Polai) — Yolads1) (4.21)
aii = V1) + P1(ag1) (4.22)
oij = Y1(@gs1) (i#]) (4.23)

whereW¥y(2) and¥,(2) are the digamma and trigamma functions respecg\/ely

When using a Dirichlet distribution for the query neighbastdpwe use a Dirichlet prior
Bu to control the sharpness of the overall distribution andsttine amount of variation in
the sigma-points. WheB, > 1, the variants are only small adjustments to the original
query. IfBy < 1, we get a mixture of variants, half of which are very closeatbOO
sample and the other half to a TAT sample.

In this study, we use a simple variation strategy and aliot@ vary according to a
Dirichlet distributiona, having its mean at the center of the simplex. Thus, tomse
with the unscented transform we just approximateising Eq. 4.23, to obtain the logistic
normal u,, ;).

Non-parametric query neighborhoods

The problem of estimating query neighborhood density iategl to sensitivity estimation
of text classifiers. As such, itis possible to construct parametric density estimates with
some increase in computation cost.

In a recent example, BennOO?] estimates thwtadty of a classification
function with respect to small changes in the target (qupomit. He defines a local non-
parametric density function for the query point based orVieonoi cell, and computes
the classification function for a small set of points samgtedh the border of the Voronoi
cell. The advantage of this approach is that it samples gctons that are locally dense,
avoiding unlikely query points. A similar approach coulddpplied to retrieval, with th&
query variants selected to maintain document ranking (slage to that of to the original
query.

In this chapter, we focus on simple parametric methods foegeing query variants
since these are computationally cheap to calculate andureient to test the hypothesis
that some form of query variation is useful. In future workvibuld be interesting to test

$¥o(2) = I"(9)/I'(2) and¥1(2) = ¥o(2)
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what, if any, improvements using non-parametric estimatiggt give.

4.2.5 Sigma-point sampling with the Unscented Transform

Assuming we have defined a parametric query neighborhoddthét logistic normal, we
derive a deterministic importance sampling strategy dadlgma-point samplingvhich is
derived from a powerful method for computing statistics ohdinear functions of a ran-
dom variable, called thenscented transfornﬂJuIier & UhImanA 200&] (UT). Previously,
the main use for the UT has been in patrticle filtering algongh where it has been very

successful. The unscented transform both specifies a wajdotguery samples and also
specifies the weights to use with the samples to calculatozaippate lower moments of
the output distribution, such as mean, variance, and skew.

The key idea of sigma-point sampling is to choose a small mumbpoints that ap-
proximate the query neighborhood density. The sigma pa@rgschosen such that their
mean and variance are equal to the mean and variance of tieeyind input distribution.

The basic unscented transform works as follows. Suppg@®eis a scoring function,
and suppose we approximate the denk(#}) of 6 as ad-dimensional Gaussian with mean
u and covariance matriX. Then to approximate the expectatiﬁrf (6)h(#) we choose @
pointsx fork = 1,..., 2d such that

X = 1+ (VD) (4.24)
Xaek = p — (VAZ), (4.25)

where (VdZ)i is thek-th column of the matrix square root &f The matrix square root is
defined such that i DU is the singular value decompositionxyfwith U = {U, ..., Ug}
andD = diag{1s, ..., Aq} then (VA=) = VAUy. The sample points, effectively sum-
marize the mean and variancehgf) and are then used in the following Monte-Carlo-like
approximation:

2d
f f(X)h(X)dx ~ 2_1d kz; Wi - T (%) (4.26)

This method can be generalized to includand scaled versions af as additional sample
points.

Given a set of 8 + 1 sigma pointgx;} in the input space, the unscented transform
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defines the weight,, of the sigma point at the mean to be

K 1

W = m + (1 - ?) (427)

and the other @ sigma points have weight

1

W= d—1+0

(4.28)
where we setr = 1.0, x = max1,d — 2). Using these weights, the unscented transform
guarantee§ [Julier & UhImaAn 2d02] that the mean and vagiarid (¢) are given with
accuracy up to second-order by

2d
p=Ealf(9] = ) Wini F(x) (4.29)
- 2d
o = Bnl 150 - 1 = ) weif(x) — 1 (4.30)
i=1

where the sigma pointg and corresponding weightg,,; (for means) andvs; (for vari-
ance) are derived based on the Gaussian input distribb)dn To review, the sigma-point
sampling method gives us a provably good way of choosing Esmp query space. We
allow the query term weights to be distributed accordinglbgistic normal on the sim-
plex, or as an approximate Dirichlet as a special case. Ubmgnscented transform, we
can use these query samples to compute the expected valvaraartte of any non-linear
scoring function of the query.

With this density defined over the input space, the unscaraedform gives us a set of
‘sigma points’ in query space that can be used as query \aridinese variants are prov-
ably good in the sense that, when used with the appropriatgtee we obtain approxima-
tions of the mean and variance of the scoring function thebacurate to second-order.

Sigma-point sampling is a theoretically well-founded &gy for sampling the query
neighborhood. By ‘well-founded’ we mean that the estimatamportant statistics of the
scoring function such as the mean and variance are guadsiciée accurate up to second-
order. In other words, if the scoring function is quadratien the unscented transform is
exact. An example of sigma-point query variants is showrabld 4.1.

The processing cost of sigma-point sampling is not highabse for a query oN
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Variant | Query terms

Al. foreign (0.333333); minorities (0.333333); germany (0.333333)
A2. foreign (0.133447); minorities (0.133447); germany (0.733106)
A3. foreign (0.458289); minorities (0.458289); germany (0.083422)
A4, foreign (0.092386); minorities (0.660575); germany (0.247039)
A5. foreign (0.660575); minorities (0.092386); germany (0.247039)

Table 4.1: Example of five ( — 1) sigma-point query variants used for TREC topic 401,
“foreign minorities germany”. Relative term weights ar®@gim in parenthesis next to each
term. We could also make other choices, such as permutaifdhese weights.

terms, we need to perform a singular value decompositioh@Nt— 1 by N — 1 logistic
normal covariance matrix; sincd is typically 10 terms or less for typical queries, the
covariance matrix is small.

One potential disadvantage is that we require more sampésthe TAT and LOO
methods: a total of [@ — 1 samples instead ™ + 1. For example, a five-word query
would require 6 LOO samples (the original query plus 5 LOQarats), while sigma-point
sampling would use 9 variants. Because most informatiarexed queries are five terms
or less, this dierence will usually be small.

There are interesting directions for future work: sigmafpgsampling is a general in-
tegration method not limited to use with queries. It coulduked with document models
to calculate expectations of common similarity or loss tiores between queries and doc-
uments, with respect to mixtures of Gaussians or DiricHi@t®xample. We leave details
for a separate study. For example, it would be interestingveduate how the number of
sigma-point sampledi@cts performance for fierent applications.

Figure 4.2 visualizes all three methods for a three-ternmgukhe original query, with
all term weights equal, is in the center of each simplex. Tlekdots denote query
variants that result from each scheme. TAT sampling (top) tg¥es all the weight to one
term per sample and sets the other term weights to zero. taaeut (top right) sets one
term weight to zero in from each sample and gives the restl@egight. The sigma points
method (second row) selects certain eigenvectors assutminguery was drawn from a
logistic normal distribution. In fect this gives a ‘softer’ version of the other two discrete
strategies combined. Also shown is the case where theligitery term weights are not
all equal, to show how the sigma-point method adapts to thplex geometry correctly.



4.3. APPLICATION: TERM SIMILARITY 109

function PreparePerturbationKernel(training_data)
6 — MLE_E stimato(training_data);
V « GeneratePerturbatior{raining_data);
forall perturbationsyy € V do
O — MLE_E stimato(vy);
forall elements xin finite domain X do
oe(Xi) = (VO[xi] = VO[xi])/ VA(x) /* Other feature mappings possible ¥

end
end

return ¢
Function PreparePerturbationKernel (training_datd

¢ < PreparePerturbationKernel(training_data);
Ir «— PerturbationKernef{,"watermelon”, "banana");
function PerturbationKernel( ¢, x;, X;)
distance— 3, (¢(xi) — ¢(X;))
return distance
Function PerturbationKernel(X;, X;)

A pseudocode version of the data perturbation kernel fonciind its setup function
PreparePerturbationKernel are given in Figure PreparePerturbationKernel.

In the next sections we apply the methods of Section 4.2 toimwgmrtant similarity
estimation problems: term similarity, and language modullarity. The common theme
is that we extend existing measures by replacing a single &tasistic with arexpectation
over that base statistic with respect to the distributioera@uery functions.

4.3 Application: Term similarity

Statistical properties of words in text are a key ingredianhodern information retrieval
methods. In this section we are concerned with estimatiaigsital properties of a very
basic unit: pairs of terms. For example, we may wish to meakow a pair of terms is
correlated, given a set of documents. From the earliest worinformation retrieval, re-
searchers have been interested in how pairs of words atedeknd in automatic methods
for quantifying term dependencies. Doﬂle [nggm] digmxd a simple statistical de-
pendency test which was essentially Pointwise Mutual médion (PMI). Doyle used PMI
to find phrases and compound words (adjacent correlatiand)term dependencies (prox-
imal correlations), with the overall goal of creating terssaciation maps or heirarchies to
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assist with searching and browsing. Many other flavors cd@ation measures, such like
Expected Mutual Information (EMIMJ [van Rijsberglan 1973ve also been explored:
many of these are variations on the associations possibletog 2x 2 contingency table

of term occurrence. In addition to document frequency detéernal resources such as
WordNet [Resniﬁ 1935] have been used to form or augment temesity measures.

Much of this long history of term similarity has been appliedquery expansion. In
early work, Sparck Joneg [JoHes 1971] clustered words wsord cooccurrence in doc-

uments, and used the clusters to expand queries. Term m%Hi; gsteas been used for both
manual ‘[Thompson & Crc“t 19%9] and automatic [Qiu & Frei 19@3pansion. In the
context of query expansion, there are two broad types of ssnmiarity: global methods,
which are query-independent and typically use statisties the entire collection; anid-

cal methods, where the computation is specific to a given quagh as by using the top
ranked documents of the query. Xu and Croft [Xu & Croft 2000] tamed global and local

methods inocal context analysif§Xu & Croft bOOO] for automatic query expansion. By
improving query-specific term similarity methods, therefowe can potentially improve

important information retrieval methods like automatieqguexpansion that rely on them.

As we noted earlier, the use of query variants has certaiargdges over co-occurrence
statistics that treat the query terms separately. Becaasanly perturb part of the original
query, the covariance data for a term with a given query teasithe remaining query terms
to use for context. This makes the perturbation kernel moreservative in finding good
related words, accounting for polysemy by requiring thadetedencies with multiple terms
in context exist for the closest related words. This releana multiple relations with the
qguery is reflected in the fact that the (Euclidean) distangeerturbation space that defines
word similarity for ann-word query is the sum of squaresmperturbation features, each
of which measures the interaction between the target woddsaguery term. Words will
have a very low Euclidean distance only when th&etlences of many perturbation features
are low.

4.3.1 Mathematical formulation

For term similarity, the task input domai¥ is a finite vocabulary set of terms. We suppose
we have an unperturbed quegyvith language model,. For each query variamj of g, we
use the corresponding top-retrieved documéntand their scores to estimate a generative
Relevance Modei [Lavrenkto 2d04] with parametérsWe can now quantify thefiect on
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the model probabilityp(wi6;) of word w due to the perturbation (query variar) which
we denote by the mappingy(w) for w.

There are many ways to defiggw), but one plausible approach starts by calculating
theodds ratio ¢(w)

oy P(WIG)
oi(w) = o(Wi0e) (4.31)
We can then consider the mapping
¢i(w) = 2logo;(w) (4.32)
p(wié;)
%9 pwidy) 439
= 2(log p(wi6;) — log p(wifly)) (4.34)

This gives the relative change in log-likelihood of tewrin model8y (from query variant
k) compared to the Relevance Moqxl|6,) for the original query. Essentially, this results
in exactly the likelihood displacement measure of Cook (seeBE=2 in Secl B), which
shows a connection between the idea of a perturbation kenogbrevious work in statistics
on local influence, described further in Appendix B.

It is instructive to analyze how the canonical integral in Bd can be decomposed
when substituting Eq. 4.32 into Eq. 4.6 we obtain the exmamsi

W16k) P(W2|6i) 24
Al we) = f (log IO(W1|9) ~log p(w2|9)) 4D (4.35)
_ > P(W1|6k) p(w-|6)
- Llo p(Wzlek)p(Wlle)dQ(f) (4.36)
We can define a factor
oWy, ws) = log P2l (4.37)

AR
that is independent of query variants, and the complemgfaator

P(W4|6k)
P(W2|6k)

A(wy, W5) = lo (4.38)
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that does not involve the original query. Using these, wetban rewriteA(wy, w,) as

AW, Wa) = Ao(Wa, Wa)? + 2 Ao(Wis, W) L A, w)dQ(F) (4.39)

+ f Ax(Wa, Wo)?dQ(f) (4.40)
F

Note that the functiom\(wy, w,) may not be a strict metric: for example, we can have
A(wy, W,) = 0 whenw; andw, are diferent.

This analysis shows how adding query variants allows us gbrdjuish between two
termsw; andw, having the same or very similar probabilities in the origirelevance
modeld: in that caseAq(wq, W,) ~ 0 and saA(wy, W) becomes a function of the additional
variant model alone.

Writing the term similarity measure as an integral (or sumrgégrals) allows us to
apply the sampling-based integration methods of Chaptern2palticular, we can use
the sigma-point sampling approximation to Eq. 4.39 witQuery variantsg; . .. g, with
sample weightsv, as defined in Eq. 4.27 and Eqg. 4.28. Using the resulting Reteva
Modelsé;, ... 8, to define theAy, the term similarity function using the data perturbation
kernel is given by:

AW, Wp) % Ag(Wa, Wo)? + 2 - Ao(Wa, W) D WA(Wa, W) (4.41)
k

+ Z WiAk(Wa, W»)? (4.42)
K

Hellinger feature mapping As an alternative to Eq. 4.32 where we transforroéal) by
logu, we can use the transform of the functigfu— 1, which has a similar shape, to obtain

£) = Vo) - 1 (4.43)
 [pwie)  [p(wieg
- \/ p(Wid) \/ p(Widy) (4.44)

_ VP8 — +/p(Wif)
v P(Wibg)

(4.45)
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which is exactly the mapping used by the leave-one-out késee Eq. 4.12) that is based
on the Hellinger norm.

4.3.2 Visualizing perturbation similarity

A simple example of a term similarity mapping using queryiaats for 20 individual
feedback terms is shown in Figure 4.5. (The symbols useddbtpe words have no
special meaning and can be ignored.) The x-axis ngaf8) and the y-axis mapg,(w)
where

VPar (W) = /Pg(W)
VPa(W)
where the perturbation strategy is leave-one-out. In oftwds, ¢ indicates change in
feedback model probability when one word, (e.g. "wave" in'japanese wave" topic) is
given greatly reduced weight in the query. The probabiliseg the original unmodified
guery is the baseline mean level, represented by the origins, terms that have similar
responses to the same query perturbations are close inpée s By ‘close’, we mean

simple Euclidean distance between two points.

Pr(w) = (4.46)

The perturbation feature mapping provides several typeseful information about the
guery and feedback model terms and their relationshipst,Fiigives a clustering of terms
in the feedback model. For example, in Subfigure 4.5a the I'advor" noise cluster has
been separated from the other terms and placed in the NEapiadrile the SE quadrant
brings together terms related to "japanese”, such as "asian"paefecture”. Thabsence
of related terms is also evident: no term is close to "wave"sipeat space. This may be
evidence that this is a singularly important term to the guercause it is diicult to find
related words, and thus must be preserved and given sigmtifigzight.

Second, the global location of the clusters provides sordigation of their potential
relevance to the original query topic. The Euclidean distaftom the origin indicates
the variance of each term’s estimated probability of rateeacompared to the original
qguery. The farther reaches of the NE quadrant contain terhtse probabilityincreased
significantly when either of the first two query terms was regat) making these terms less
likely to be important to the original information need. O tother hand, terms in the NW
and SE quadrants had lower probability when one of the cporeding terms was removed,
providing evidence of partial relevance. Terms in the SWdyaat are less common but
are the most likely to be strong additions to a feedback msidek since they covary with
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Figure 4.5: The top 20 expansion terms for several TREC soggcthey map to the first
two co-ordinates in perturbation space. Thaxis represents the log of the relative change
in probability for a word in the feedback model for the firsiequ variant, compared to its
probability in the feedback model for the initial query. Slianly, the y-axis shows the log
change for the second query variants, and so on. Thus, tehoseaprobabilities respond
similarly to the same query variants are close in this space.
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Figure 4.5: The top 20 expansion terms for several TREC sopgcthey map to the first
two co-ordinates in perturbation space. Note how the mappnperturbation space is
effective in removing many expansion noise terms from the rmaghood of the original
qguery terms, typically placing them in the upper right carokthis space. Close words in
the upper right corner have been jittered apart for clarity.
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both query terms and thus more likely to be related to botttepts.

Third, the relative proximity of the original query terms éach other in perturbation
space gives an indication for how phrase-like their behagioThis reflects the fact that,
if two or more terms form a single concept together, such téatoving one of the terms
results in substantially altering that concept — and thegditlcuments in which it is used —
then the variation caused by these changes will be significdisruptive no matter which
term is removed and their statistics will be very similar.

4.3.3 Evaluation of kernel performance for query expansion

We now perform a task-based evaluation of the term clugjeslstained with the pertur-
bation kernel by applying it to query expansion. Later irstthiesis, in Chapter 6, we will
introduce a query expansion method called@MOD algorithmthat takes a kernel matrix
as one of its inputs. Because it is very easy to switch fiedint kernels into the QMOD
algorithm, we use that method here as our query expansiknksvever, it is not impor-
tant at this point to know any further details about the QMO@bethm for the purposes
of evaluating the relative performance offdrent kernels.

To visualize expansion performance we use the risk-rewactetif curve, described in
Section 3.4.4. The curves for our standard six TREC topis ae¢ shown in Figure 4.6.
For comparison, we chose a kernel derived from a term adsmtimeasure that did not
require the use of query variants and could be calculated the initial set of top-retrieved
documents. Recall that we are deriving term associatidrssta from a set of documents
that is already biased toward the query terms, so that thebauwf documentsiot con-
taining a query term is frequently zero, or close to zero. sflwe need to use arffective
term assocation measure that ignores this non-relevamtimegnformation. The Jaccard
measure is a simple, long-used term assocation measusatisdies this property. Details
on the Jaccard measure are given in Section A.2 of AppendiX\&. also tried several
other association measures, including expected and psmtwutual information, but the
Jaccard measure gave the best relative performance of these

Figure 4.6 compares the risk-reward traff@nrves using the perturbation kernel against
the Jaccard distance, using the QMOD query expansion #igothat will be introduced
in Chapter 6. For four of the six collections (TREC 7, TREC 818g, and gov2) the
perturbation kernel provides a small but consistent impnognts over the Jaccard measure
for virtually all values ofa. At a setting ofa = 0.5, the improvements are largest for
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Figure 4.6: Risk-reward tradé&ocurves for six TREC topic sets, showing the improved
performance of the perturbation kernel compared to a Jddeanel on some collections.
The solid (red) line is the curve given by the QMOD algorithging the perturbation
kernel. The dashed (pink) line uses the same QMOD algorithshparameter settings, but
substitutes a Jaccard kernel. Traffesurves that ardigher and to the lefgive a better
risk-reward tradefd. Curves are plotted with points atincrements of @, starting with

a = 0 at the origin and increasing to= 1.0.
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TREC 8 and gov2. For TREC 8, the perturbation kernel gives éP\gain of 14.5% with
R-Loss of 262, while the Jaccard kernel gives a MAP gain o8& 6évith R-Loss of 307.
For the gov2 collection, the perturbation kernel MAP gai®.i88% with R-Loss of 2555,
while the Jaccard kernel has MAP gain of 8.13% with R-Loss @332 For two of the
collections (TREC 1&2 and Robust 2004), the performanceéheftivo kernels is almost
identical: TREC 1&2 shows only a tiny advantage for the pddtion kernel forw > 0.6.
The results suggest that the perturbation kernel givesdtengial for useful gains on some
collections, with little downside risk.

4.4  Application: Language model similarity and
qguery difficulty

We now examine similarity functions over setsmbdelsrather than sets of single param-
eters. Our goal will be to obtain a similarity function to cpame a query model against
a collection model as an estimate of querffidulty. We show that using query variants
generalizes this clarity-type measure of querffidulty, by replacing a single similarity
calculation with arexpectedlistance from the query model to the collection model, with
respect to the query neighborhood distribution.

4.4.1 Generalizing the query clarity score

Thequery clarityscore was introduced by Cronen-Townsend and Croft [Cronem3end
& Croft ‘ZOOé] as a way to estimate quenylitulty by calculating the similarity of a given
query’s unigram model to the collection unigram model udfihgdivergence. In this sec-
tion we show how the clarity score generalizes to an expesitadarity with respect to

multiple query variants.

Let 64 represents the query model derived for the qugnand letd, be the model
derived for a query variarg; taken in the query neighborho@@ Supposé, represents a
language model describing the collection Then we define thgeneralized clarityscore
of a queryq with respect to the collectio@ and query neighborhood meas@eas

Aoc(@) = EqlKL(E4ll0)] + EqlKL(@clla]) — 28ol \[KL@EIA)KLECA)]  (4.47)

Thus, when the query is treated as a random variable, thendistfrom the query to the
collection becomes an expectation over the query neigluoor®.
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If we choose the query neighborho@to be a point-distribution with all probability
mass on the original queny, so that

1 ifo=¢
d.0) = K 4.48
.(6) { 0 otherwise (4.48)
then
EQ[KL(9q||9i)] = KL(9q||9q)
and generalized clarity reduces to the base clarity scaorg &md collectiorC:
Ac(0) = KL(0gll6a) + KL(Gcllfg) — 2 /K L(0gll6) K L(Ec60) (4.49)
= 0+ KL(fcllfg) + /0 KL(6cll0q) (4.50)
= KL(#cl9,) (4.51)

which is just the clarity score for quexyand collectiorC. Thus, generalized clarity adds
additional second-order information abaytvhen the set of auxiliary queries & is not
empty.

4.5 Evaluation of generalized clarity

In this section we evaluate the usefulness of using vabased similarity measures on a
language model similarity task, to estimate a clarity score

45.1 General method

We evaluated performance on the following sets of TREC ®piud collections: 51-150
(TREC-1&2), 201-250 (TREC-4), 351-400 (TREC-7), 401-450 (TR®), and 451-550
(wtl0g, TREC-9&10). We also included the set of topics frora TREC Robust 2004
(301-450; 601-700) track. We chose these collections far tlaried content and document
properties. For example, wt10g documents are Web pagesawitide variety of subjects
and styles while TREC-1&2 documents are more homogeneous akigles.

Indexing and retrieval was performed using the Indri sysitethe Lemur toolkit [Met-
zler & Croft‘ZOOJl] tLemuH 2002]. Our queries were derived frahe words in the title
field of the TREC topics. Phrases were not used. We perfornmiedefz stemming for all
experiments with a stoplist of 419 common English words. eDtietails on the baseline
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Collection TAT | LOO | Sigma-point
TREC 1&2 | 0.311 | 0.338 0.406
TREC 4 -0.071| 0.401 0.465
TREC 7 0.265 | 0.221 0.268
TREC 8 0.446 | 0.414 0.418
Robust 2004 0.178 | 0.212 0.249

Table 4.2: The iect of diferent query sampling strategies on the Kendalbrrelation of
generalized clarity with average precision.

feedback method and query syntax can be founh in [Collingalgson & CaIIaH1 2067].

There is some inconsistency in the way query performancdigiren is evaluated
across studies. We choose one of the more consistent me&sunel in the various papers:
Kendall'st, which measures similarity between two rankings. In oudgtthis means we
compared the ranking of topics sorted by a performance in&sslich as average precision,
with ranking of the same topics sorted by the query scorimgtion.

4.5.2 Hfect of query sampling strategies

We evaluated how each of the three query sampling stratedi€, TAT, and sigma-point
sampling — &ected the quality of the generalized clarity estimate, Whwas measured by
Kendall+ correlation with average precision. The results are surimediin Table 4.2.

Sigma-point (SP) sampling achieved the highest score ort éfducollections, com-
pared with LOO sampling (O collections) and TAT sampling ¢llection). SP sampling
achieved significant gains of0.064 in Kendallr correlation on both TREC 1&2 and
TREC 4, compared to LOO sampling. Sigma-point sampling (8&9 better than TAT
and LOO, except for a smalllierence on TREC-8.

In general, SP sampling appears to have a useful gain ingtaithis task, with a more
consistent upside and smaller downside risk. However, theuat of gain is relatively
small. This may be due to query lengtfiexts, or the need for additional parameter tuning
for sigma-point query neighborhoods.

4.5.3 Hfectiveness of generalized clarity score

Our goal in this section is not to claim the best general quigfjculty method. Instead,
we tested how useful the generalized clarity score (GC) vedative to the baseline clarity
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Collection GC C C+GC
TREC 1&2: 51-150| 0.406| 0.339| 0.451
TREC 4: 201-250 || 0.465| 0.552| 0.555
TREC 7: 351-400 | 0.268| 0.416| 0.383
TREC 8: 401-450 || 0.418| 0.394| 0.448
Robust 2004 0.249| 0.361| 0.362
wt10g: 451-550 0.238| 0.275| 0.278

Table 4.3: Kendall rank-correlation with average precision of generalizeatit(GC),
clarity score(C) and combined ¢GC) with average precision. Sigma-point sampling was
used for query variation.

(C) method, and when combined with baseline clarity usingolnmterpolation (GGC)
with C and GC given equal weight.

A comparison of the Kendatt-correlation for diferent methods and test collections
is shown in Table 4/3. Although gains from adding GC as a featere negligible for
some collections, GC had a rank-correlation with averageipion greater than 0.40 for
the TREC 1&2, TREC 4, and TREC 8 collections. This led to aifiggmt gain for the
combined G-GC method for TREC 1&2 of 0.451, compared to baseline clgfit$#06),
and for the TREC 8 collection (0.448 vs 0.394).

Conversely, adding GC almost never hurt baseline claritfoperance. The one ex-
ception was the TREC 7 collection: baseline clarity washshghigher (0.416) than the
combined method (0.383). This is not unexpected since f&T R generalized clarity had
the lowest rank-correlation (0.268) with AP of all test eafiions.

The correlations obtained by the combined@&C method compare favorably to state-
of-the-art results. For example, on the collections shavél the evaluation (using 2
pooled systems) o+ [Aslam & Paviu 2007] (which we call JS}GL score for TREC
7 was 0.383, compared to 0.436 (JS); TREC-83C was 0.448 compared to 0.443 (JS);
Robust 2004 €GC was 0.362 vs 0.393 (JS).

4.6 Related Work

We first review related work on distance measures and kerfodlswved by recent methods
for query-specific term similarity and estimating querffidulty.
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4.6.1 Distance measures as probabilities

The distance between two data points or instances can beedefirterms of probability.
In a classification setting, each instance is identified aitihass labet, and so the prob-
ability might be the misclassification probability: thedikhood that two points actually
have diferent class labels, rather than being in the same @ 0K0a]. Thus, the
optimal choice for the 1-nearest neighborois the neighborx,_ with lowest probability
of misclassification. More generally, a canonical simtlafunction can be defined as the
cost of mislabeling if two points are infélerent classes, with manyftBrent cost functions
possible. Yianilos iYianiIoS] estimates the taskrdbstion and views the Canonical
Distortion Measure as an evidence ratio.

The idea of defining a distance by comparing probabilityritigtions, also known as
distributional similarity is discussed by L999]l|<ﬁh et al. [Dillon et aIHZOO?]
discuss word distance as probability of Type Il error, whigre distributions in question
are the language models of the word contexts. Blanzieri andi Ritroduce a minimum
risk distance measurLe [Blanzieri & Ri&ci 1999] that optiesZinite misclassification risk,
extending an earlier nearest neighbor method of Short alkdrl'aga‘[Short & Fukanaba
@)] that learned a reduced set of prototypes along witlea loetric.

4.6.2 Kernels over probability densities

The probability product kernel and leave-one-out kernskdéed in Sectionh 4.2.2 that in-
tegrate over input space are related to a broader familyroiie that involve inner products
over probability densities.

Conditional symmetric kernels. Let h be a hidden variable whose values are drawn
from a finite setH (this can be extended to continuous domains). Watﬂins [MO]
introducedconditional symmetric kernels

k(x, X) = Z p(xIh) p(x'|h)p(h) (4.52)
heH
The conditional symmetric kernel can be seen as a specrltakta perturbation kernels
if we identify the latent spack with the set of hypotheses of the ‘true’ information need
expressed by some query variant. This requires the genmeaicesgp(xh) be known.
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Marginalized kernels. If p(h|x) is known, we can usmarginalized kerneIéTsuda et ;I.
2002]. Suppose we have a kertke(z Z) defined between the joint variables= (x, h)
andz = (x,h’). The marginalized kerné{(x, X’) is the expectation df; over the hidden
variable as follows:

kO X) = > 3 PP X ke(2.2) (4.53)

heH heH

Zhaoet al. [Zhao et a” 20d6] add a time-dependent aspect to queryfgpsinilarity
using the marginalized kernel approach to model the evaudf click-through data.

Fisher kernels. The Fisher kernel, introduced by Jaakkola, Diekhans andgslau[Jaakkola
et al. 1999] is a special case of marginalized kernel. Ouupeation similarity measure is
related to Fisher-type kernels that compare thé&eant statistics of generative models, in
the following way.

We use term similarity as an example for an informal argumketé be the relevance
model estimated using the original query. Each query vagaresults in a corresponding
relevance moded,. The Fisher scoreof a termx is a vector of derivatives: one for each
latent variable.

" olog p;(X
U, = g6, ) = 209 Pi¥) (4.54)
00
and the Fisher kernelx,, x,) betweenx andy is given by
k(X y) = Uyl 71U, (4.55)

Let6y = 6 + &, and suppose thig|| = 6« for some norm. The task functiofa(w) we use
for term similarity can be rewritten as

P(X6k)

f(X) = log = (4.56)
p(Xd) )

5. log p(x|6 + e;)k — log p(x|6) (4.57)

~ Oy - Blog ps) (4.58)

06

Assuming the magnitude of thig are roughlys for all k variants, we can denotEx) as
the vector offc(x) for all k, and it is evident that (x) o« Uy, i.e. that the vector of resulting
perturbation scores is a type of Fisher score. Howeverkerilie classic Fisher kernel,
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calculating the perturbation kernel does not assume thertymag likelihood function is
differentiable, making it applicable to a wider family of gerim@models.

4.6.3 Query-specific term similarity and clustering

The basic concept of query-specific similarity measureskised for decades. Preege iPreece
1973] and later WiIIettt 1985] proposed improvingpclment classification and

clustering by including the query as context informatioambros and van Rijsbergen [Tombros
& van Rijsbergen 2001] proposed and tested tiieativeness of query-specific (also called
guery-sensitive) measures. Such measures are biasedmofapairs of documents that
jointly contain attributes (e.g. terms) of the query. Aatiog to Tombros and van Rijsber-
gen’s hypothesis, "pairs of relevant documents will exhélpiinherent similarity which is
dictated by the query itself (that) conventional measuresich as the cosine déieient,

can not detect..." They measured thEeetiveness of a similarity measure by examining
the degree to which relevant documents were brought cloggther (compared to non-
relevant ones). They found that simple query-sensitivesmes gave significant improve-
ment over traditional cosine similarity on several smadt ollections.

While the idea of query-specific similarity measures is nat,n@search on such al-
gorithms has continued to be of great interest in areas ssidifed search, which needs
precise ways to compare not only documents but summariésea@ds, alternate queries,
and other short snippets of text. Recent extensions for Véelirdents look beyond the
basic query terms to other features related to the query asalickthrough data, related
entries in query logs, and so on.

Recently a few other kernels have used expansion methodigamanore context for a
similarity comparison. The kernel J)f [Sahami & Heilrﬂan Zh)eﬁmpared two text snippets
by computing the inner product of the query expansions tesitilt by considering each
text snippet as a Web query. Each query expansion is refegsas a normalized centroid
of the tf.idf vectors for the corresponding top-ranked documen{s. [Me&t al.‘ 2007]
subsequently evaluated a set of related measures to pegiceng-query comparisons. In
comparison to these, the perturbation kernel has focuseemesenting and comparing

individual words, not snippets, according to each word'pefturbation features. There
is, however, a natural extension for using perturbatiomé&ksto compare text snippets, by
representing each snippet as the union of the perturbagmifes derived for the snippet’s
individual words. In a way, this can be seen as a generalizafi existing expansion-based
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methods that adds sensitivity information to the basic egpd representation. We leave
this as a subject for future work.

4.6.4 Other statistical text similarity methods

Recent work has begun to examine the implications of trgajureries more fully as ran-
dom variables. For example, Dillogt al. [Dillon et al. 2007] proposed a method for
taking expected distances on word histograms with resjpeatword translation model.
They applied their method to text classification with gefignaositive improvements in
classification accuracy. In a more general framework, Yith bteek ‘[Yih & MeeIH 2007]
combine multiple types of similarity estimates, using &igi regression to learn combina-
tions of similarity measures for query suggestion.

Related to the Fisher-type kernels of SGCW.G‘.Z.ITEH‘R/ & Lebano#l 2002] intro-
ducednformation dffusion kernel®ver statistical parameter spaces. In the case of discrete
data such as text, informationffilision kernels can be used with the multinomial distribu-
tion to compute the geodesic distance between multinorai@meter®; andd, estimated
from two text passages (e.g. using maximum likelihood). duld be interesting to ex-
plore the connections between this family of kernels andytreeralization of perturbation
kernels to text snippets described above.

Ando et al. ‘[Ando et a‘. 20&)6] used leave-one-out (LOO) vasdor performing query
expansion in the TREC 2005 Genomics track. Most signifigatitey reiterate the con-
nection between multi-task learning and using auxiliargrigs that was previously stated
in general form by Baxtel@ r 1997]. However, their wasknot focused on metric
learning for general IR objects, except in the sense thahhareed query model provides
a better similarity function for retrieval. Instead, theyctis on estimating an improved
guery model by calculating a Rocchio-type feedback modelguhe length-normalized
average of the positive examples.

4.6.5 Query dfficulty

Recent studies point toward the conclusion that estimatarganceis an important facet
of predicting query performance. More specifically, the ssgvity of some aspect of
the retrieval process to variation in input or model pararehas been shown to be ef-
fective in varying degrees. This includes variance of resstdnking (by varying docu-
ment models)‘ [Zhou & Cro*t 2006], query variati(;n [YomTov datggéS], query termdf
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weights ‘[Vinay et aJI‘ 2065] and document scoﬁes [%iaz 2b07b]

Our method is in the query variation group. Previously, wevetd that combining
the results from multiple query variants improved the rdbass and precision of a strong
baseline pseudo-relevance feedback (PRF) method. Ouoagphas several fiierences
from that of ‘[YomTov et aJI‘ 2065]. First, we do not require aiting phase. Second, our
best query variation strategy is based on sigma-point sagypiot term-at-a-time. Collins-
Thompson & Callan applied query variation to enhance thestitass of pseudo-relevance
feedback‘ [Collins-Thompson & Calluan 2607].

Aslam & Pavlu [Aslam & PavI‘LL 2067] introduce variation by cbiming TREC runs
from multiple systems for the same query. Theiffidulty prediction statistic, which

achieves impressive results with multiple systems, hasectmnnections with our gen-
eralized clarity statistic: both methods measure the deggdetween the language models
of the top-retrieved document sets obtained from eitheryquariants (our system) or re-
trieval function variants (Aslam & Pavlu). Our interest rsthe performance achievable
with a single system, so it would be very interesting to ustierd more about how the
variation achievable with multiple systems could be attlgestially achieved with the
correct types of perturbation to a single system.

4.6.6 Other uses of data perturbation

In the field of recommender systems (collaborative filteromgCF) methods for quantifying
the influenceof a user were introduced by Rashetlal. [Al Mamunur Rashid & Riedl|

%H In particular, for a given usdy they measure the net change in ratings predictions
for all other users, caused by leaving out the observed datd.f Change is measured by
either total change across all items (NPD), or bucketedumique users (a measure they
term NUPD). This is attractive because it makes few assumgtibout the underlying CF
algorithm, although it can be computationally expensiveatidmatically, the influence

I (u) of useruin user-setJ is a sum over all itema (from item-setA)

L= ) > Ip@E - pa)l = 3] (4.59)

veU,v£U aeA

wheres is a threshold that specifies the change needed for the stpdissible rating ad-
justment. Such influence methods are actually an instanegenheral class of perturbation

4Thanks to Sean McNee for this connection.
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techniques developed earlier in the statistics literatwbech are described in Appendix B.

Other interesting uses of perturbations can be found intgthpory. For example,
ﬁPrabhu & Dedl—%i] examine the extent to which two graphslmamliscovered to be
isomorphic by perturbing each gra@by adding a vertex and connecting it to all other
vertices ofG. The characteristic polynomials of the perturbed graphs vandG, + v are
then compared. There seem to be deeper connections hersntd keethods which have
yet to be fully explored.

The idea of performing tests to measure the sensitivity ofodehto perturbations in
the training data or model parameters has been of interestatisticians for some time,
and is discussed further in Appendix B.

4.7 Conclusions

The data perturbation kernel is a useful tool for comparimg $imilarity of elements in
a domainX when we have a probability density over the entire spddhat is derived
from using a possibly very small subset of it as training d&ianilarity between elements
is induced with respect to small perturbations in the tragniata. While the probability
product space family of kernels assign exactly one prolighldlensity to each point in
the input space&X and then integrate oveX, our approach is essentially the dual: Each
input point is identified with multiple probability denss evaluated at that point, and we
integrate over probability density space. By treating therg as training data chosen from
a discrete vocabulary space, we can obtain a query-spetifitasty measure between
words or language models by running a small number of quemans. Since we already
use the same query variants to obtain multiple feedback meotleere is essentially no
additional cost to using this similarity measure for retalewithin our framework.

Using the data perturbation kernel on the space of languaggel® generalizes the
existing query clarity measure by adding a sensitivity comgnt. This suggests the gain
in Kendall tau with average precision may be a useful testiferR cluster hypothesis
a given collection and set of queries. Furthermore, whes ghuation exists the method
we use to explore the query neighborhood becomes more iangpsgince our results will
be more sensitive to the results of that method. Indeed, asetkollections we observed
some improvement moving from a term-at-a-time strategygma-point sampling which
used more query points to explore the neighborhood.

The data perturbation kernel is very simple to apply but heprssingly deep connec-
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tions to multi-task learning and Fisher-type kernels. Wepsat there are also fundamental
connections to spectral clustering methods but leave tia$yais for future work. In the
next chapter, the term similarity measure based on the fixation kernel is used as an
important ingredient in selectingfective query models in an optimization framework.



Chapter 5
Convex Optimization

The second part of this thesis, on optimization algorithimsns the capstone of our work
on estimating statistical models for robust retrieval. élare apply the sampling-based
estimators introduced in Chapter 3 and the data perturbkéorels described in Chapter 4
to form objectives and constraints within a general riskrfeavork for estimating retrieval
models. This novel optimization approach allows us to esttngood query models under
a variety of useful retrieval scenarios.

One strength of this approach is that we can easily conteotrdde ¢ between com-
peting objectives and constraints such as maximizing @ggadility of the model versus
the risk of multiple sources of evidence that the model issHasn. We can also model
the dependencies between the sources of evidence thes)salbetween the optimization
objectives and multiple arbitrary constraints such as amum or maximum number of
terms in the model, or the consistency of aspect coverageeahformation need. As we
show in Chapter 6, when evidence uncertainty and its relatiaptimizing the objective
is ignored, the result will be less robust query models.

We can break the problem of finding ‘good’ query models into arts. First, we
must specify theobjective functionsthat describe the properties of the model we want
to optimize. For example, we may wish to maximize the expbotdevance score of the
guery model. Second, there may be any numbesaoistraintsthat the model must also
satisfy. For example, there might be a performance costdding an expansion term to a
query, causing us to prefer queries with fewer terms. Anotio@straint might be that we
prefer a query model that is more robust, i.e. less likelyud inexpanded performance,
in exchange for lower average precision. Ideally, we noyavéant to find optimal query
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models with respect to the objectives and constraints, Isotleave simple ways for users
to specify how they want to traddéfdetween competing objectives.

We give a detailed development of convex programming methmdddress these prob-
lems in Chapter 6. In this chapter, we give some preliminaryivations and background
for using convex optimization methods for information retal problems.

5.1 Optimization methods

Given the many possible objectives and constraints ingbimechoosing a query and the
trade-dfs possible among these factors, the problem of finding a ‘ggodry model is
complex. However, there is a principled framework thatvaas to structure the problem
by making our assumptions clear and allowing us to contraf a@ manage competing
tradedts between objectives, while providin€fieient computational methods to find solu-
tions. This is the approach known esnvex optimizatiofCO).

We will show that even simple CO methods, with easy-to-urtdads objectives and
constraints, help us balance the various traffe-gequired of the optimal query model,
such as the tradefidbetween expected return (a good feedback model) and modizhea
(the amount of harm if wrong). Typically, our optimizatiorilvembody a basic traddb
between wanting to use evidence that has strong expecta@nele (such as highly-ranked
documents, or highly-weighted expansion terms), andvdre&nceor risk of using that
evidence, or variance in covering the query aspects.

We now give some background on optimization and introdubiagjc terminology and
concepts that we will use to specify objectives and congsaiAn excellent resource on
convex optimization theory and practicé is Boyd & Vandeg@r‘[2004] and we follow
their notation below.

5.1.1 General optimization problems

The general optimization problem is to find &rthat minimizes the value of the function
fo(X) for all eligible x that must satisfy the conditiorfgx) < 0 andh;(x) = 0. We use the
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following notation:

minimize fo(X)
subjectto  fi(x) <0, i=1...,m (5.1)
h(x)=0, i=1...,p

to describe the problem, witk € R" being theoptimization variableand the function
fo(x) : R" — R being theobjective function The objective function is also sometimes
called thecost function The conditionsfi(x) < 0 andh;(x) = 0 are called thenequality
constraintsandequality constraintsespectively, withfi(x) : R" - R andhj(x) : R" - R
being the correspondingpnstraint functions

We denote thelomainof the optimization problem a®, which is the set of alk for
which the objective function and all constraint functioms defined. A poinx € D is
calledfeasibleif all constraintsfi(x) < 0 andh;(x) = O are satisfied at. The optimization
problem 5.1 itself is said to bfeasibleif at least one feasible point exists. Otherwise,
it is calledinfeasible in which case we adapt the convention that the optimal vafuef
X = oo. For any feasible pointg, with fo(xi) — o ask — oo then the optimal value
X* = —oo, and we call the problemnbounded belowAn optimization problem isolvable
if there exists a feasible point for which the minimum of thgeztive function is attained.

An important special case of the general optimization mobb.1 is thefeasibility
problem in which the objective functiorig(x) = 0, i.e. is identically zero for all inputs. In
this case, the optimal value &§(x) is either zero if a feasiblg exists, or if the feasible
set is empty. This problem is written as

find X
subjectto  fi(x) <0, i=1,...,m (5.2)
h(x)=0, i=1,...,p

The feasibility problem is a consistency test of the comstsaif consistency is satisfied,
we obtain a feasible point.

Although we have presented optimization in terms of minatian, naturally we can
also form a corresponding maximization problem simply byimizing —fo(x) with re-
spect to the same constraints. In these cases, the objkaistion — fo(X) is also known as
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theutility function.

5.1.2 Convex optimization

We first give a brief review of convex sets and functions. infally, a setC is convexif
every point inC can be “seen” from any other point@ That is, there is an unobstructed
straight path between them that lies entirely witGinMathematically, for any,y € C and
a € [0, 1], then

ax+ (l-a)yeC. (5.3)

A function f : R" — R is convexf its input space (domairn is a convex set, and for any
pointsx,y € D the following holds for € [0, 1]:

flax+ (1 - a)y) < af(x) + (L-a)f(y). (5.4)

If fis differentiable, then a very important property of convex fumsiis as followsf is
convex if and only if its domaiD is convex and

fiy) > f(X) + VE(X)(y - X) (5.5)

for all x,y € O. This implies that wheiV f(x) = 0, thenf(y) > f(x) for all y € D andx
gives a global minimum fof.

A convex optimization problens an optimization problem in which the following
requirements hold.

e The objective functiorfy(X) is convex.
e The inequality constraint functionfyx) are convex.
e The equality constraint functions aréfiae, i.e. have the forrh;(x) = a,"x - by.

e The variablex € S where S is a convex set.

We write the standard form of a convex optimization problesn a

minimize fo(X)
subjectto  fi(x) <0, i=1...,m (5.6)
aTx:bi, izl,...,p
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Convex optimization has attractive theoretical propertiesr example, a key property of
convex problems is that, if we have a locally optimal solatmoint, then it must also
be globally optimal. This means we will not get ‘stuck’ at @db maximum point and
will not have to search exhaustively for a global solutionls@ convex optimization is
tractable: solving can be done with polynomial complexitythe number of constraints
and variables.

In addition, certain meta-problems become easier whendlat®d as a convex pro-
gram. Findingrobustsolutions to convex problems can often be also easily egpteas a
CP. This is discussed further in Section 5.2.4. Also, mang panblems can be ‘relaxed’
to the form of a convex problem with known approximation bdsinThe graph labeling
problem discussed in Section 6.1 that we use for query madiehation is one application
of convex relaxation.

5.1.3 Convexity of common retrieval functions

We note that many functions used as important scoring dlgscor constraints in informa-
tion retrieval are convex. For example, we state withoubptioe fact that for a given query
modeld,, the KL-divergencdlL(6,/|04), an important comparison function in the language
modeling approach to retrieval, is a convex functiorfgf Similarly, the dot product of a
given query vector with a document vector is always convex.

In fact, many common ranking functions are convex functiewsn in more complex
qguery formulations. For example, the Indiri [Metzler & CHoﬁ@4] retrieval system makes

use of an inference network constructed from term evidenckes and operator nodes. A
common query operation is tieombine operator

n

f#combine(b) = l_l bil/n (57)

i=1

which calculates the geometric mean of the input beliefs| #ue variant thetweight
operator
n Wi
f#weight(b’ W) = l_[ biZka (58)

i=1

limportantly — since many useful convex programs are nonesimia practice — this can often be proven
for many problems whether or not the objective and congsaire diferentiable.
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and the#max operator
finax (D) = maxby. (5.9)
1=1...n

These are all convex functions of the belief inpitsWhen certain combinations of oper-
ators are used to form a more complex query, the resultingmgrfunction is also convex.
This is because nesting of convex functions (mathemayiazdlled function composition)
can result in convex functions under fairly broad condi§ioAs an example, the structured
guery (such as we might use to perform query expansion) dbtime

#weight( 0.7 #combine(estonia economy) 0.3 #weight( 0.3 estonia 0.2
economy 0.1 kroons 0.1 tallinn 0.1 baltic))

is a convex function of the concept weights, because the swdlunction is the compo-
sition of

f = fuweight ({ Frcombine (D), Frveignt (D)}, W) (5.10)

Since the functiorfyeign: IS @ Non-decreasing function of its input, the resulting posed
function is still convex.

The fact that many common retrieval scoring or comparisocfions are convex means
it is possible to use convex programming techniques to op#iraver retrieval objects or
actions in a realistic way.

5.2 Convex program families

The following are some basic forms of convex programming & summarize as back-
ground information.

5.2.1 Linear programming

A linear program (LP) has objective and constraints thatadreffine. The standard form
foralLPis

minimize c'x+d
subjectto  Gx<xh (5.11)
Ax=D
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wherec,d € R",G € R™", A € RP". The feasible set of an LP is some polyhedfmas
defined by the constraints, and we are essentially findingptienal pointx* € ¥ that is
farthest in the direction of the vecter.

5.2.2 Quadratic programming

An important subclass of convex program, callegbadratic program(QP) is more general
than linear programs because it allows a (convex) quadodijective function with &ine
constraints. The standard form for a QP is

minimize  12X'PX+q'x+r
subjectto  Gx=<h (5.12)
Ax=Db

whereP € S}, G e R™", A € RP". The notatiorP € S! denotes that the matrR is in the
family of positive semi-definite matrices.

If we allow (convex) quadratic inequality constraints el of dfine, we obtain the
more general class gfuadratically constrained quadratic progra(@CQP).

minimize 1/2X"PoX + Qo' X + Ig
subject to I2X'Pix+q'x+ri<0, i=1...,m (5.13)
Ax=Db

whereP; € S1,i = 1,...,m. A QCQP minimizes a quadratic objective over a feasible set
that is the intersection of ellipsoids. If we hake= 0,i = 1, ... mthis reduces to a simple
QP, while takingP = 0 gives a linear program as a special case.

5.2.3 Second-order cone programming

A more general class of convex program callexbaond-order cone progra(®OCP). For
an SOCP we allow constraints of the form

IAX+ bl < c"x+d (5.14)



136 CHAPTER 5. CONVEX OPTIMIZATION

with A € R*". Note the right-hand side allows affiae function instead of the constait
found in QCQPs. Thus a general second-order cone program (BlSPhe form

minimize  ¢'x

subjectto  |JAX+Dbjl<c'x+d, i=1,...,L (5.15)
Fx=g
where||-|| is the Euclidean norm. When =0, i=1...mthe SOCP reducestoa QCQP
as a special case. K =0, i=1...m,then we obtain a general linear program (LP).

The norm constraint in Eq. 5.14 is not limited to the Euclidearm: it can be naturally
generalized [Alizadeh & Goldfa}b 2001] tomnorm

n
IXlp = IXlhym = (> Ix1"™™ (5.16)
i=1

wherep = |/m for positive integer$, m. The p-norm arises, for example, in tlextended
Boolean modebf retrieval. ‘[Salton et ah. 1983]. The Euclidean norm cspends to the
case whem = 2, m = 1. Essentially, the value qf controls the ‘softness’ of the matching

function, withp — o approaching the strict Boolean model, agmd- 1/2 approaching
standard vector space similarity. The SOCP constraint

IXlp = O IxIm™ <t (5.17)
i=1

can be written as a set of second-order cone and linear ifiggsianamely

_t|_|_m§r|_n < =X
s’ < x
s>0 (5.18)
n
s <t
i=1
t>0

Such extensions increase the space of possibly useful SQigRaprs for information re-

Raw
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trieval situations.

5.2.4 Robust optimization

In robust optimizationwe optimize for the worst-case scenario for an underlyingper
problem by expressing bounded uncertainty in the objeetingconstraint functions. This
is also known as eninimaxpolicy, because we are minimizing the maximum loss possible
over the data, where the minimization is taken over all tdassets of constraints. It is
not surprising that, to formulate query models with good stmase performance, we will
examine robust optimization methods.

We perform robust optimization by making the objective andstraint functiond;(x)
functions of not only the optimization variablec R", but also a parameter vectore Rk
that is a random variable that captures this uncertaintgralieg to a specified probability
distribution. The standard form of this program is

minimize supfo(X, U)
ueU

subject to sugi(x,uy <0, i=1,....m (5.19)

ueU

In a variant of this approach, we seek to avoid distributi@saumptions and instead spec-
ify a set of moments fou, such as mean and covariance.
Taking a simple linear program as an example, we start wehutiderlying problem

minimize  c¢'x
subjectto  a'x<hb, i=1...,L (5.20)

and model uncertainty in thg by proposing thag; was generated by a random process
driven by a hidden variable,

a =a + Py, lul <1 (5.21)

where the process has mearand covariance matriR; € R™". Substituting these uncer-
tain constraints results in the robust version of the liq@agram, which turns out to be a
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second-order cone program

minimize c'x

subjectto & x+|Pi'x|<b, i=1,...,L (5.22)

The additionalregularization termg|P;"x|| are typical of robust versions of convex pro-
grams: expressing uncertaintyanis in some sense equivalent to constrainiig lie away
from the directions of greatest uncertainty of #e The quadratic program we describe
in Chapter 6 may be seen as a robust optimization problem. dlngst linear program
developed by‘ [Lanckriet et &I. 2002] for text classificattowhile obtaining approximate
performance guarantees on the misclassification probabils one such example in prac-
tical use.

5.3 Convex programming implementations

Convex programming methods are fast approaching ‘techgbkigtus. Well-designed,
fast, modular libraries such as the Matlab CVX toolkit fronausford [Boyd & Vanden-
berghé 20d4] and Python CVXO#T [VandenbeAghe JZOOS] areablaifor high-level pro-
gram specification and solution. Internally, they make use specialized program called
solverthat operates on convex programs in some canonical formh Balwer typically
specializes in a particular type of program, such as LP, @B and so on. High-level
software such as CVXOPT hides this complexity by automadicslecting the correct
solver for the given program.

Current state-of-the-art solvers use a class of algorithowknas interior-point meth-
ods for nonlinear convex optimization problems. Exampliesusrent solver software in-
clude MOSEK‘[Anders% 1999] and SeDummOM]. Ingepoint methods have
polynomial-time worst case complexity and cdhaently handle problems involving hun-
dreds of constraints and thousands of variables.‘ As [Boydafdénberg Le 2004] point
out, in some sense, once the program is specified correagyessentially solved.

Thus, the remaining work in using convex programming meshlbes in two areas.
First, the problem objectives and constraints must be gu@ately analyzed and an appro-
priate program specified. The objective functions must lsome proven connection to
reality and desirable outcomes. Second, statistics us#tkinbjective function and con-
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straints, such as the expected utility and variance of ameot score, must be reasonably
estimated and calibrated. Accurate estimation means thdtave a method for producing
a provably good approximation given the distribution asgtiom we make. By calibrated,
informally we mean that a number such as estimated probabilirelevance does have
reasonable correlation with actual relevance on average.

For the actual solution of convex programs, our system atigraises the CVXOPT
package‘ [Vandenberghe 2&)08], written in Python. Our magrygprocessing routines in
C++ call into CVXOPT via the Python C API. We did not need to make @ayglifications
to CVXOPT itself (as of version 0.9).

While there is little work to date applying convex optimizatimethods to information

retrieval, we note that the use of convex optimization iseasingly becoming used in the
database community. Such is the approach proposed by Gibasg, and Ferhatosman-
oglu [Gibas et ai. 206)7] to use a convex solver to prune coatjuut and JO overhead for
determining a togk ranking of records where the scoring function is convex.

5.4 Conclusions

This chapter introduced the idea of applying convex optatian methods to information
retrieval problems. In particular, we focused on providihg background needed for the
specific problem of estimating robust query models, whicHissussed next in detail in
Chapter 6. The use of convex optimization methods givesfacient way to search a
richer space of potential query models, whose quality iduastad with respect to prop-
erties of the whole set, such as a balanced representatimlaple query aspects. This
is in contrast to current greedy approaches that only looak @ate-dimensional selection
process involving a threshold on term score or rank. A corxmization approach also
gives a unifying framework for specifying models that empadmpeting tradefs, such
as between choosing terms with high, but uncertain, relsvacores. Finally, by encod-
ing heuristics in the feasible set of query models, we obsaimay to perform selective
expansion with multiple criteria.



Chapter 6

Optimization Methods for Query Model
Estimation

Our aim in this chapter is to develop a rigorous theoreticdi® for automatically esti-
mating reliable expanded query models. We present a noaelework that treats query
model estimation as a convex optimization problem. Infdiynave seek query models
that use a set of terms with high expected relevance but Ip&ctrd risk. This approach
gives a natural way to perform robust selective expansibtiere is no feasible solution
to the optimization problem, we do not attempt to expand tigiral query. Useful ad-
ditional model constraints such as aspect coverage andwugtons (e.g. to favor short
expansions) can be expressed within this framework to gixeryaflexible general-purpose
approach to findingféective query models in a variety of useful retrieval scevsri

Current methods for calculating query modeldfeufrom several drawbacks. First,
existing methods have little principled accounting for tlek associated with a particular
term. This is partly because a bit of extra computationalkwoust be done to gather
the evidence required to make such risk estimates. (In Clmaftand| 4. we introduced
one method, query variants, that i$extive in gathering this datdfiently.) As a result,
current methods calculate term weights primarily by an etgx reward criterion, such
as probability in a generative relevance model. Such terang Ine high-reward, but also
related to few or no other query terms, making them more higlh iThe result is generally
the unstable feedback results that we see in even stateedadrt feedback algorithms.

Second, selection of expansion terms is typically done iready fashion by rank or
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score, which ignores the properties of the terms as a seteanls to the problem of aspect
imbalance, which in turn leads to query drift.

Third, few existing feedback algorithms are able to perfayuoery expansiorselec-
tively. That is, most query expansion techniques cannot deteat @ligiery is risky and
automatically scale down or avoid expansion in such casesead, if query expansion is
used at all, it is usually applied to all queries, regardtE#assk. A recent study by [Amati

et al.‘ 2004] proposed to solve the problem of selective esiparby attempting to predict
which queries should have expansion applied or not. Thegldped a decision criterion
based on an ad-hoc combination of heuristics such as quegghleand rarity of query
terms. However, their approach remains an all-or-nothoigteon that either keeps or re-
jects all expansion termsm. Ideally, we want a more flexillgerdthm that can determine
the best number of expansion terms to use automaticallju@img possibly none).

Finally, there may be other factors that must be constraisiech as the computational
cost of sending many expansion terms to the search enging@rset-based properties of
the expansion terms. To our knowledge such situations dreamalled by any single query
model estimation framework in a principled way — especialhen we must reconcile these
competing goals somehow.

To remedy all of these problems, we need a better theordtimalework for query
model estimation: one that incorporates both risk and réwata about terms; that detects
risky situations and expands selectively by automaticaligosing the right number of
expansion terms; that can incorporate arbitrary additipnablem constraints such as a
computational budget; and that has a fast practical impheatien.

The central tool that we propose to provide such a risk fraamkws convex optimiza-
tion. An optimization approach frees us from the need to jpi@ea closed-form formula for
term weighting. Instead, we specify a (convex) objectivection and a set of constraints
that a good query model should satisfy, letting the solvehéavork of searching the space
of feasible query models. If no feasible model is found, wendbattempt to expand the
original query. Such an approach makes it easy to add custostraints.

The basic building blocks of our risk framework have two parfirst, we seek to
minimize an objective that consists of two criteria: terrfevance, and term risk. Term
risk considers both the risk of an individual term, and thedibonal risk of choosing one
term given we have already chosen another. Second, we gpecistraints on what ‘good’
sets of terms should look like. These constraints are chtwsaddress traditional reasons
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Figure 6.1: Query model estimation as a constrained grapélifeg problem using two

labels (relevant, non-relevant) on a graph of pairwise teglations. The square nodes X,
Y, and Z represent query terms, and circular nodes reprgsssntial expansion terms.
Dark nodes represent terms with high estimated label weityat are likely to be added to
the initial query. Additional constraints can select sét®eoms having desirable properties
for stable expansion, such as a bias toward relevant labkeled to multiple query terms

(right).

for query drift.

This chapter is organized as follows. In Section 6.1 we fdateuquery term weight-
ing as a graph labeling problem and describe linear and atiagiroblems in their basic
form. In Section 6.2 we develop the specific objective andstramt functions that will
be useful for robust query model estimation, and give théchasmplete convex program
used for query model estimation. We give examples of how &stcimodel may be refined
in Section 6.3.11, including how to implement a non-convedd®t constraint. We demon-
strate the ffectiveness of our convex formulation in Section 6.4 on saathtest collections
and explore the contributions of each constraint type orgtradity of the estimated query
model. Section 6.5 is a discussion of some implications ofvwmrk for query expansion
and Section 6.6 discusses related work.

6.1 Query model estimation as a graph labeling problem

We can gain some insight into the problem of query model edton by viewing the
process of building a query as a two-clésselingproblem over terms. Given a vocabulary
V, for each termt € V we decide to either add tertrto the query (assign label ‘1’ to the
term), or to leave it out (assign label ‘0’). The initial gydgerms are given a label of ‘1’.
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Our goal is to find a functiorf : V — {0, 1} that classifies the finite s&f of [V| = K
terms, choosing one of the two labels for each term. The tammgypically related, so that
the pairwise similarityr(i, j) between any two terms;, w; is represented by the weight of
the edge connecting; andw; in the undirected grap® = (V, E), whereE is the set of
all edges. The cost functidn(f) captures our displeasure for a givénaccording to how
badly the following two criteria are given by the labelingpduced byf.

e The cosfci gives the cost of labeling tertnwith labelk € {0, 1}.

e The costr;-d(f(i), f(j)) gives the penalty for assigning labdl§) and f(j) to items
i and j when their similarity iso; ;. The functiond(u, v) is a metric that is the same
for all edges. Typically, similar items are expected to hsweilar labels and thus a
penalty is assigned to the degree this expectation is eidlat

For this study, we assume a very simple metric in whil@hj) = 1if i # j and O otherwise.
In a probabilistic setting, finding the most probable labglcan be viewed as a form of
maximum a posteriori (MAP) estimation over the Markov ramditeld defined by the term
graph.

Although this problem is NP-hard for arbitrary configuraisy various approximation
algorithms exist that run in polynomial time by relaxing tbenstraints. Here we relax
the condition that the labels be integerg§@1} and allow real values in [@]. A review
of relaxations for the more general metric labeling problisngiven by Ravikumar and
Lafferty [Ravikumar & Lafert)}‘ 200%]. The basic relaxation we use is

maximize Z CsjXsj + Z O s jitkXs; Xk
S stk

subject to sz,- =1 (6.1)
j
0< Xsj < 1

The variablexs ; denotes the assignment value of lapfer terms. For a two-class problem
wherej € {0, 1}, the values ok for one class completely determine the values for the other
class since they must sum to 1. It thereforéisas to optimize over only thes for one
class, and to simplify matters, we often refeictar o, instead ofcsj Or og .t k-

Our method obtains its initial assignment cos{sbased on term weights from a base-
line feedback method, given an observed query and correlapprset of query-ranked
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documents. For our baseline expansion method, we use tregsiiefault feedback algo-
rithm included in Indri 2.2 based on Lavrenko’s Relevanc@McﬁLavrenk& 200‘4]. Further
details are available i% [Collins-Thompson & Ca“an 2‘007].

In the next section, we discuss how to specify valuesfpandos . that make sense
for query model estimation. Our goal is to find a set of weights(x, . . ., Xx) where each
x; corresponds to the weight in the final query model of tefrand thus is the relative value
of each word in the expanded query. The graph labeling faatrad may be interpreted
as combining two natural objectives: the first maximizes eékpected relevance of the
selected terms, and the second minimizes the risk assdaiatie the selection. We now
describe each of these in more detail, followed by a desoripdf additional set-based
constraints that are useful for query expansion.

6.2 Objectives and constraints for query model estimation

Typically, our optimization will embody a basic tradébetween wanting to use evidence
that has strong expected relevance, such as expansion watimkigh relevance model
weights, and the risk or confidence in using that evidence. bé¢gn by describing the
objectives and constraints over term sets that might be tefest for estimating query
models, and then show how these properties can be formuaté&zbmetimes competing)
constraints or objectives in a convex optimization prohl&ime object of this section is not
to describe a specific strategy for formulating a query, bther to address the problem of
how to weight the dterent sources of evidence (words) that the query will bedase

6.2.1 Relevance objectives

Given an initial set of term weights from a baseline expamsiwethodc = (cy,...,Ck)
theexpected relevanaaver the vocabulary of a solutionx is given by the weighted sum
C- X = Y CX. Essentially, maximizing expected relevance biases #levant' labels
toward those words with the highestvalues. Other relevance objective functions are
also possible, as long as they are convex. For exampteaifd X represent probability
distributions over terms, then we could replacex with KL(c||x) as an objective since
KL-divergence is also convex mandx.

The initial assignment costs (label valuesgan be set using a number of methods
depending on how scores from the baseline expansion maglabamalized. In the case of
Indri’'s language model-based expansion, we are given atsrof the Relevance Model
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p(WR) over the highest-rankinlgdocumen{% We can also estimate a non-relevance model
p(w|N) using the collection to approximate non-relevant docusieor using thdowest-
ranked kdocuments out of the top 1000 retrieved by the initial gu@rylo setcs, we first
computep(R | w) for each wordw via Bayes Theorem,

p(WR)

P(WIR) + p(w|N) (6.2)

p(Rw) =

assumingp(R) = p(N) = 1/2. Using the notatiop(R/Q) and p(RIQ) to denote our belief
that any query word or non-query word respectively shoulgehabel 1, the initial expected
label value is then

| PR+ (- pRQ) - PRW) s€Q 63
P(RQ) - p(Rws) s¢Q

for the ‘relevant’ label. We us@(RQ) = 0.75 andp(R|(5) = 0.5. Since the label values
must sum to one, for binary labels we hasg = 1 — c4;. It may be possible to use more
sophisticated methods for setting thg such as dterent probability distribution models
of relevance and non-relevance scores.

6.2.2 Risk objectives

Optimizing for expected term relevance only considers angedsion of the problem. A
second critical objective is minimizing the risk assoaiatgth a particular term labeling.
We adapt an informal definition of risk here in which the vada of the expected relevance
is a proxy for uncertainty, encoded in the matiwith entrieso;. Using a betting analogy,
the weightsx = {x} represent wagers on the utility of the query model terms. skyri
strategy would place all bets on the single term with highelstvance score. A lower-risk
strategy would distribute bets among terms that had botinge lestimated relevance and
low redundancy, to cover all aspects of the query.

Conditional term risk.  First, we consider theonditional riskoj; between pairs of terms
w; andw;. To quantify conditional risk, we measure the redundancghmfosing wordw;
given thatw; has already been selected. This relation is expressed lmsicigpa symmet-
ric similarity measurer(w;, w;) betweerw; andw;, which is rescaled into a distance-like

We use the symboR andN to represent relevance and non-relevance respectively.
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measureal(w;, wj) with the formula
oij = d(Wi, Wj) = y expp - (Wi, wj)) (6.4)

The quantitiesy andp are scaling constants that depend on the output scate afid the
choice ofy also controls the relative importance of individual vs. dibional term risk.

In this study, theo(w;, w;) measure is the perturbation kernel defined in Chapter 4.
Details on the perturbation kernel parameters used fouatian are given in Section 6.4.1.

Individual risk. We say that a term related to multiple query terms exhitatsn cen-

trality. Previous work has shown that central terms are more likebetmore &ective for

expansion than terms related to few query teﬁms [CollinsAlpson & CaIIaA 2065] [Xu
& Croft 1996]. We use term centrality to quantify a term’s mdual risk, and define it
for a termw; in terms of the vectod; of all similarities ofw; with all query terms. The
covariance matrix then has diagonal entries

i = llalls = ) d’(wi, w) (6.5)

WeeQ

Other definitions of centrality are certainly possible, &lgpending on generative assump-
tions for term distributions.

We can now combine relevance and risk into a single objedcind control the traddd
with a single parametexr, by minimizing the function

L(X) = —C"x+ ngZX. (6.6)

If ¥ is estimated from term co-occurrence data in the top-setdedocuments, then the
condition to minimizex"Xx also encodes the fact that we want to select expansion terms
that are not all in the same co-occurrence cluster. Rathempnefer a set of expansion
terms that are more diverse, covering a larger range of fiateopics. Risk estimates
may also come from the similarity measures given by dataugsation kernels described

in Chapter 4. Looking beyond criteria that focus on individteams or pairs of terms,

we now discusset-based constraintsvhich are properties of the entire set of expansion
terms.
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Figure 6.2: Hypothetical query: Merit pay law for teache8fiowing greedy expansion
term selection (left) and set-based selection (right)

6.2.3 Set-based constraints

One restriction of current query enhancement methods istitieg typically make term-
by-term decisions, without considering the qualities of $letof terms as a whole. An
example of this behavior is shown in Figure 6.2. We can idgtitree broad, complemen-
tary aspects for a query likeerit pay law for teachersa legal aspect, a financial aspect,
and an educational aspécA one-dimensional greedy selection by term score, eslhecia
for a small number of terms, has the risk of emphasizing testaged to one aspect, such
aslaw, and not others. This in turn increases the risk of query.diiimore stable feedback
algorithm would select terms that cover all three aspectsefuery. We call this property
aspect balanceFigure 6.3 gives a graphical example of aspect balancg, (bng with
another criterion, which we cadlspect coveragéenter), and the term centrality objective
(right) given earlier.

In this figure, each subfigure shows dfeient constraint. For each constraint, two
possible colorings of a word graph are shown on the left gttt riThe word graph contains
words related to two hypothetical query tergandY. The dots of the graph represent the
related words (vertices) — the edges and word labels of thphghave been omitted for
clarity, to focus on the nature of the labeling. Dots colobdaick are words selected to
form the query expansion fok andY. Conversely, light-colored dots are words that are
not included in the expansion. The left-hand labeling in a suibégselects a subset of
terms that does a weak job of satisfying the constraint @dpsance, aspect coverage, or

2 Alternative aspect lists could certainly be defined for #m&mple, such as a more genducation,
procedure time. The important point is that any aspect that covers the meawii the query should have a
similar covering in the expanded version of the query.
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Bad

Good

(a) Aspect balance

(b) Aspect coverage

o®

Y
[ ]

Variable

o®

Y
o

Centered

(c) Term centering

Figure 6.3: Three complementary criteria for expansiomteseighting on a graph of can-
didate terms, and two query terisandY. The aspect balance constraint (Subfig. 6.3a)
prefers sets of expansion terms that balance the repréisentd X andY. The aspect
coverage constraint (Subfig. 6.3b) increases recall byvallp more expansion candidates
within a distance threshold of each term. Term centerindfi§u6.3c) prefers terms near
the center of the graph, and thus more likely to be relatedoth berms, with minimum
variation in the distances ¢ andY.

term centering). The right-hand labeling selects a sulfgerms that strongly satisfies the
constraint. Note that some coloring can satisfy some ofetlemstraints but not others.
For example, the term subset selected in the left-handitapef Figure 6.3(c) has good
aspect balance and coverage, but is not strongly centeteg e the original query terms
X andy.

We now define aspect balance and other set-based constrairésormally. To define
these constraints mathematically, we map terms to theardorates in the data perturba-
tion space defined in Chapter 4. In this space, each wptths a corresponding feature
vectorg(w) with entriesg,(w)

VPWIG) — +/p(Widg)
\/PWidg) '

The similarity between words becomes a simple Euclideatami® in this space. De-

d(w) = (6.7)

tails on the specific settings for the perturbation kerneldum this chapter are given in
Section 6.4.1. We now show how to write these constraintpém@ation constraints in
terms of these feature vectors.
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Aspect balance. Recall that in Chapter 4 we created the magifrom the vectorss(w;)
of perturbations for each wond;, i.e.

d(Wi) = A = p(WilOay)) (6.8)

whereAy is the {, k)-th entry ofA. In this chapter we restriét to just the query term feature
vectorse(q;), making the simplistic assumption that each of a queryisserepresents a
separate and unique aspect of the user’s information neecatr&dte the matriA from the
vectorsp(w;) wheregy(w;) = ok for each query terngy. (Recall thatr is thei, k-th entry
in matrix £ given by Eq. 6.4.) In flect, Ax gives the projection of the solution modebn
each query term’s feature vectgfq)). The requirement that be in balance is equivalent
to the requirement that the mean of the projections be eguiiet meary, of the ¢(q;).
This is expressed as

AX< u+ ¢, (6.9)

To demand an exact solution, we ggt= 0. In reality, some slack is desirable for slightly
better results and so we use a small positive value su¢gh-a2.0.

The assumption that each query term and the perturbatiganrésaassociated with it
represent a dierent aspect of the information need is somewhat unreglistit it greatly
simplifies the model. In a more general Bayesian treatmepeas would be described by
latent variables, which in turn would require treating thatrix A as uncertain, resulting in
a second-order cone optimization probfem

Query term support. Another important constraint is that the set of initial quesrmsQ
be predicted by the solution labeling. We express this nma#ttieally by requiring that the
the weights for the ‘relevant’ label on the query termglie in a range3; < x; < u; and in
particular be above the thresh@gdfor x; € Q. Currentlyg; is set to a default value of@6
for all query terms, and zero for all other termgis set to 1.0 for all terms. Term-specific
values for; may also be desirable to reflect the rarity or ambiguity ofvittial words.

Aspect coverage. One of the strengths of query expansion is its potential dbrisg the
vocabulary mismatch problem by findingfidirent words to express the same information
need. Therefore, we can also require a minimal leveagpect coverage That is, we

3We actually did implement this generalization, but enceted technical problems with the current
solver in obtaining stable solutions in higher dimensidie. expect to pursue this in future work.
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minimize —c'x - ngZx Relevance, term centrality (risk) (6.12)
subjectto AX<u+¢, Aspect balance (6.13)
g'X>4, weQ Aspect coverage (6.14)
Bi<X1<U, wWeQ Minimum query term support (6.15)
Z Xik = 1 Label uniqueness (6.16)
xkz 0 Positivity  (6.17)

Figure 6.4: The basic quadratic program QMOD used for quesgehestimation.

may require more than just that terms are balanced evenlygralbquery terms: we may

care about the absolute level of support that exists. Fanpig suppose our information
sources are feedback terms, and we have two possible terghtivegjs that are otherwise
feasible solutions. The first weighting has only enough ses@lected to give a minimal

non-zero but even covering to all aspects. The second wegghtheme has three times
as many terms, but also gives an even covering. Assuming mitiatsng constraints such

as maximum query length, we may prefer the second weightioguse it increases the
chance we find the right alternate words for the query, patynimproving recall.

We denote the vector of distances from query teynm queryQ to neighboring words
by the vectoig;, which has entriegy defined by

Ok = d(wi, W) k=1...K, weQ (6.10)

whered(w;, wy) is given in Eql 6.4. The projectiog ' x gives us the aspect coverage, or
how well the words selected by the solutigfcover’ term g,. The more expansion terms
nearg; that are given higher weights, the larger this value becoésen only the query
term is covered, the value @f'x = o;;. We want the aspect coverage for each of the
vectorsg; to exceed a thresholfl, and this is expressed by the constraint

o' x> 4. (6.11)
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6.2.4 Combining objectives and constraints

Putting together the relevance and risk objectives, angtcaining by the set properties,
results in the following complete quadratic program foriguaodel estimation, which we
call QMOD, shown in Figure 6.4. The purpose of each objedativeonstraint is given in
italics on the right. The roles and default values of thea@siQMOD parameters are sum-
marized in Table 6.1. Sample output from running QMOD is shawFigure 6.5. Note
that a term likedisordersmay have a much higher initial relevance weight than another
term (e.g.brain), but becauseéisordersis highly redundant with the other key terragn-
dromeanddiseasethe termdisordersis actually removed from the solution, whiteain

is retained.

We perform an extensive evaluation of the sensitivity ofiegtl performance to these
parameters across multiple collections in Section 6.4i8. -9 shows how a typical so-
lution changes as the objective parameténcreases, moving from focusing on just the
highest relevance weights, to a more diverse set of terms.

6.3 Extensions to the basic model

We now show how extra criteria, such as budget constrainggghw diversification, and
uncertainty in the relevance parameters are easy to ade teatsic QMOD framework.

6.3.1 Budget constraints

We can specify there is a computation cesbr each termw in a query we send to the
server. If our goal is to find the optimal language model , we add a constraint that
the total query cost must be less thany. The optimal query will then consist of a small
subset of terms, each of which covaries significantly witHtiple important terms in the
document. In most realistic scenarios, the cost of addirughen expansion term can be
approximated as fixed at a constant vaflzeno term is much more expensive to add to
a query than any other, and the total cost is simply lineahertumber of query terms
Because of the non-convex nature of the fixed cost consi{zént at zero, non-zero con-
stant everywhere else) this cannot be solved directly byeonptimization, but there are
heuristics that allow us to get close to optimal quickly.

40f course, more sophisticated cost functions also fit withis framework, in the case where increase in
cost is greater than linear.
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Symbol Name Meaning Default

K Bi-objective tradef Controls tradefy between the influ; 1.0
ence of initial relevance assignment
costs and term covariance. Higher
k means more focus on the term co-
variance objective.
' Balance tolerance Controls tightness of balange 2.0
among all query aspects. Higher
¢, relaxes the balance requirement
between all query aspects.
¢ Aspect coverage Controls the minimum support far 0.1
each query aspect. Higher re-
quires more expansion terms near
each query term. Wheg, = O,
no expansion terms are strictly re-
quired: the query term alone is suf-
ficient. As ¢ increases, the fea-
sible set shrinks and solutions be-
come more conservative.
Yy Conditional covariance | Higher y gives more influence to 0.75
conditional risk (term covariance)
compared to individual term risk.
For example, ify = 0 then only in-
dividual term risk values (the diag
onal of the covariance matri) are
used.

Bi Minimum query term support Minimum final label value for each 0.95
qguery term. Reducing; for thei-
th query termg; relaxes the require
ment thatg; must be predicted by
the query model.

Table 6.1: Summary of control parameters for basic QMOD catadlprogram.



6.3. EXTENSIONS TO THE BASIC MODEL 153

Initial assignment weights:
parkinson: 0.996
disease: 0.848
syndrome: 0.495
patients: 0.313
parkinsons: 0.492
brain: 0.360
disorders: 0.491
treatment: 0.289
patient: 0.483
diseases: 0.153

pcost dcost gap pres dres

0: 0.0000e+00 3.8908e+00 5e+01 1le+00 1le+00
1: -1.5007e+00 2.1905e+01 4e+01 9e-01 9e-01
2: 2.5299e+00 4.5050e+01 4e+01 1e-00 7e-01
3: 1.8112e+01 6.5871e+01 3e+01 1le+00 4e-01

13: 8.8980e+01 8.8980e+01 7e-05 2e-06 le-14

14: 8.8980e+01 8.8980e+01 2e-06 4e-08 le-14
(Successful convergence of primal and dual solutions.)
Final label values:

parkinson:0.9900
disease:0.9900
syndrome:0.2077
patients:0.0918
parkinsons:0.1350
brain:0.0256
disorders:0.0000
treatment:0.0000
patient:0.0000
diseases:0.0000

Figure 6.5: Excerpts from output of CVXOPT solver on a constd quadratic program,
showing elements of thesolution vector (final label values). The query in this exémg
TREC topic 454: “parkinson’s disease”.
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One heuristic is to simply set a threshold on #and set any; below the threshold to
zero. A more sophisticated but also more principled apgreacently described by [Lobo
et al. 2007] uses a convex relaxation of the fixed cost constifsat utilizes estimates of
upper and lower bounds on the values of xhdf we can compute upper and lower bounds
on thex;, we can use the initial non-sparse solution as input to aaegation step, where
we find a sparse vectgrthat minimizes th&1-norm distance to the original solution, with

the non-zergy; falling within the corresponding; bounds.

We denote the cost function for a solution (query weightsy ¢(x) which gives the
general query cost constraint
1'%+ ¢(X) <0 (6.18)

If ¢(x) is a convex function, this constraint defines a convex set.ce define individual
costs for each element afby writing

$() = > (%) (6.19)
i=1

whereg; is the cost function for elementin the simplest case, there are no costs associated
with any query term, and sap(x) = 0. If there is no use of elementin the solutiong; = 0.
Portfolio optimization considers a general fixed-pluséncost function in which costs are

a linear function of thex;, this makes much less sense for information retrieval. éfxh
represent query term weights, we do not expect a query to ane siowly as one term’s
weight is increased over another term’s (non-zero) W%ig‘lﬂlowever, the specific case of a
fixed cosffor anx; is very relevant to retrieval, because adding more termstoegly does
increase processing costs. We therefore focus on the speasie where(x;) = 8 for some
constanps.

We adapt a heuristic introduced in the thesis of Fa{zel i] and recently first
applied to portfolio optimization iH [Lobo et al. 2007]. Welge successive refinements
of QMOD such that at thi-th step we use a cost functigfi(x) = 3; ¢*(x). in the cost

50r any other information source. For specificity we work witformation sources being terms.

SDifferent terms, however, might indeed hav@etient processing costs when the weight is non-zero. For
example, adding a word with a huge term frequency could slowrda query much more than adding a very
rare term, due to the time required to process invertedflista the index.
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constraint’ by using iterative refinements ¢f

#9) = (—)ix| (6.20)
X"+ 6
whereg; is the fixed cost associated with ands is a small constant that acts like a thresh-
old, below which any value is deemed to be zero. Intuitiviis heuristic successively
increases the cost of smallas they become smaller, thus accelerating them toward zero,
while satisfying the other constraints of the problem. Rertdetails such as proof of con-

vergence of this heuristic are given ‘in [Lobo eﬂ al. 2007].

0 x=0
¢i(x) = (6.21)
B % #0

The above heuristic may be overly general for most practeaieval scenarios, since
X can never be negative and computation cost does not ggne@kase as a function of
the term weighimagnitude However, it may be desirable to setfdrentfixed costs for
each term that reflect factors such term frequency, sinoe tequency fects the size of
inverted list that must be loaded at search time. In thesplsmeases, it would dfice to
use a vector of penalty weights within &1i-norm constraint that controls sparsity.

6.3.2 Weight diversification

Another useful type of constraint is to specify that no mdranta fractionr, @ € [0, 1] of
the total weight mass be allocated to the largetgrm weights. This can be encoded as
follows (see‘[Boyd & Vandenbernge 2604], 5.19).

I T K1
maximize C X— EX X

subjectto  1'x=1, x>0 (6.22)
r-t+Zuk5a (6.23)
k
1"t +u>x (6.24)
u>0

"The heuristic can also be used when the cost function is ust iobjective function.
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6.3.3 Uncertainty in parameters or objectives

Our estimates of term relevance and risk weights (expedtkty and risk) may themselves
be uncertain. We might have a range of values for each, olpraufitrategies. In this case,
we might want to optimize the worst-case scenario given etupfof strategies. We can
handle uncertainty in the statistical model for X) using multiple such modelgg, Zy).

Interestingly, we can express a constraint of the fétrob(r < a) < g wherea is
a given unwanted return level amdis a given maximum probability. Or multiple such
constraints for various levels of loss.

We can maximize the minimum of the expected returns (coasge) and so combin-
ing these into one objective, we have

maximize rrk1inkax
1/2

subjectto  px+ @‘1(,3)“2 X| > a (6.25)
k

We can take our approach one step further and assume themeasgainty about the
aspect matriXA. Using astochasti@approach to robust approximation we assume the matrix
Ais a random variable with meah and noise described by the mattikx which has first
and second momenis[U] = 0 andE[UTU] = P. We minimizeE[||(ﬂ+ U)x - b||2]
(Reminder: we assunmnijg]; is the default norm denoted Kjy|.)

E[IIAx=bI?| = E[IAx—b+UxP| (6.26)
= [|Ax— b+ E|X'UTUX| (6.27)
= ||Ax-b|> + X"Px (6.28)
= ||Ax—b|? + ||PY2x|? (6.29)
WhenP = yl this becomes
IAX— bl + ¥IXI[? (6.30)

This can also be seen as a form of Tikhonov regularizatibmth& Vandenbergh‘e 2064],
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p. 306). We can use this derivation to obtain a SOCP for re¢pttie balance constraint
with uncertainA, to implement true latent aspects.

6.3.4 Incorporating query difficulty statistics

A query dificulty statisticD(q) amounts to an estimate of a query’s likely utility. This
may dfect our estimate of the expected return of the original quegking feedback more
or less attractive. For example, if we had a reliable way &dmt that the initial query’s
performance was likely to be poor, then then we have littlese by applying query expan-
sion anyway. In this scenario, poor performance after qegpansion is not necessarily
worse than poor performance before query expansion, wisicur implicit assumption
when query diiculty is ignored.

In the extreme case where the original retrieval is highliikety to be much above
zero average precision, the optimal expansion strategybeagtected. For example, we
may wish to distribute risk among clusters, choosing onengtirepresentative per cluster
— minimizing redundant non-relevant documents and optirgifor recall. The existence
of a reliableD(q) function, even if the reliability is limited to low or highxremes, also
leaves open the possibility of usirig(q;) as a search objective over multiple iterations,
finding the maximunD(q;) for different expanded query candidatgsor usingD(q;) for
improved model combination.

6.4 Evaluation

Our evaluation of the QMOD algorithm has several parts. Adieescribing the details of
experimental setup in Section 6.4.1, we confirm in Secti@gn26the superior quality of
the solutions found by QMOD compared to a strong baselinamsipn model. We do
this by comparing the risk-reward curves for both methodshasinterpolation valuex
with the initial query is varied from 0 to 1. We also summariesults using standard
retrieval measures. It turns out that for most topic sethedvaluation, the expansions
computed by QMOD fier substantial reductions in downside risk, while mairtegror
exceeding the precision of the baseline method. Secondatidd 6.4.3 we explore how
the QMOD program achieves its robust solutions by analyhimg changes in the objec-
tive and constraint parameters (summarized in gtéytthe risk-reward tradefio
curve. Third, in Sections 6.4.4 and 6.4.5 we test the geiteal QMOD by applying it to
two alternative baseline algorithms. Respectively, ttesea Rocchio-type method, and a
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very noisyidf-only method whose purpose is to verify that QMOD succebsaitenuates
noise. Finally, in Section 6.4.6 we verify that the feasibét for the QMOD convex pro-
gram is well-calibrated for the task of selective query exgpan. We show that QMOD’s
constraints focus on solutions for queries with moderatgaod expansion performance,
while tending to avoid queries at the extreme ends of theopmdnce spectrum.

6.4.1 Evaluation setup

The basic methodology and collections of our evaluationsetre the same as used to
evaluate heuristic model combination in Chapter 3. To revigevevaluated performance
on six TREC topic sets, covering a total of 700 unique quefiégse TREC topic sets are
TREC 1&2, TREC 7, TREC 8, wt10g, robust2004, and gov2. Detanl TREC topic sets,
collections and methodology are given in Appendix C. The siagiees, indexing process,
and baseline feedback algorithm (Indri) were used as invhkiation in Section 3.4.1.

As with our experiments in Section 3.1.4, for eiword query, we used leave-one-out
(LOO) query variation to produce + 1 subqueries (query variants), including the entire
initial query as one variant.To compute each of the correspondimg 1 feedback models
(one for each variant’s result set), we also used the samenaemnt resampling method
and parameters as in Section 3.1.4, i.e. using the top 5@dadécuments, weighting by
relevance score, and using 30 document-set resamplingsh wiere combined by fitting
the maximume-likelihood Dirichlet distribution and takitige mode.

We then set the inputs to QMOD as follows. Féii@ency, we limited our vocabulary
V to the topn = 100 expansion term candidates according to the raw expassae from
the Indri algorithm. With these Indri term scores, the esgof the assignment cost vector
cwere set using EQ. 6.3 in Section 6.2.1. The matrk;es andg; were also calculated dy-
namically for each query using the definitions given in SBt6.2.3. The entries & and
g are determined by the definition of the distance functiéms, w;), which in turn is de-
fined in terms of the similarity functioor(ws, W;). In this evaluation, the functiom(ws, W)
is the perturbation kernel described in Chapter 4. Becaus@dt possible to calculate the
perturbation kernel for single-word queries, the Jaccaethwd given in Appendix A was
used to compute-(ws, W;) for single-word queries instead of the perturbation keriide
matrix A is a skinny|Q| x K matrix, with each row being the feature vecigd;) for query

8For one-word queries, this means only the original query wsesd, and the final feedback model was
based on document resampling only.
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termq;. There is one matrig; for each query terng; € Q, as defined by Eq. 6.10.

To compute the perturbation kernel and feature veaprs), we used then + 1 LOO
feedback models calculated above to compute the featutervygey;) for each word using
Eq./6.7. In that equation, the valpéw|dy) is the probability of wordwv in thek-th feedback
model K = 1...n), andp(wfy) is the feedback model for the initial quegy We set the
rescaling parametess= 0.75 andp = 0.25 in Eq!/ 6.4.

The default values fok, v, and the other QMOD control parameters were set to the
values shown in Table 6.1 for all collections. We obtainessthcollection-wide parameter
settings empirically: to obtain realistic generalizatiore first examined performance vari-
ation over TREC 1&2, TREC 7, and TREC 8. We then picked a comsednf parameters
that gave consistent performance across those collectitsr these parameters and the
optimization code were frozen, we ran experiments on therdtiree collections: wt10g,
robust2004, and gov2. We used a maximum of 100 iterationswnening QMOD, and
used the default convergence settings for the cvxopt QResolv

After the QMOD program was run, we chose the top 20 terms aaogito soft label
value (i.e. the solution values found by QMOD). Terms withoft $abel value of less
than 0.01 were ignored. Some queries had less than 20 finahsiqn terms with non-zero
weight, either because the QMOD program was infeasibleuttneg in no expansion terms
at all — or simply because of the sparsity-seeking natureeobbjective. Finally, to combine
the feedback model output by QMOD with the initial query, wsed the same default
interpolation settingr = 0.5 as the experiments in Chapter 3 (except where otherwise
indicated to produce tradéaurves).

6.4.2 Risk-reward performance

In this section we evaluate the robustness of the query rmadtimated using the convex
program in Figl. 6.4 over multiple standard TREC collectioils we noted earlier in Chap-
ter/1, there are elements of both risk and reward in attergpairfind efective, robust query
models. Our primary tool for summarizing the tradéia these two objectives is the is the
risk-reward curveand therobustness histogram

Risk-reward curves Risk-reward curves for six TREC topic sets are shown in Fagu6.

The x-axis summarizes downside risk with R-Loss, the net losglevant documents lost
due to expansion failures. Tlyeaxis summarizes reward using percentage MAP gain over
the initial query (no expansion). The solid (red) line is tueve given by the robust QMOD
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Figure 6.6: Risk-reward tradéacurves for six TREC topic sets, showing how the QMOD
and HMC robust feedback methods consistently dominatedlfenmance of the baseline
feedback method. HMC is the heuristic model combinationhmétfrom Chap. 3. The
baseline feedback model is the Indri Relevance Model. Tidderves that ar@igher and

to the leftare better. Points are plotted inincrements of @, starting witha = 0 at the
origin and increasing ta = 1.0.
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Figure 6.7: Risk-reward tradéacurves for six TREC topic sets using P20 and R-Loss@20
(instead of MAP and R-Loss). The baseline feedback modkeisrtdri Relevance Model.
Tradedf curves that ar@igher and to the lefgive a better risk-reward trad&oCurves are
plotted with points at-increments of (4, starting witha = 0 at the origin and increasing
toa = 1.0.
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algorithm. The dashed (pink) line is the curve given by theefiae expansion algorithm,
which is the Indri Relevance model described in Section23.4radedf curves that are
higher and to the lefgive a better risk-reward tradéo For comparison with the QMOD
model combination method, we have included HMC, the hearisgthod described and
evaluated in Chap. 3. The inputs to HMC and QMOD, query vasiantd resampled doc-
ument sets, were the same.

It is evident that, except for one brief segment at the enth@Robust2004 curve, the
QMOD tradedt curve dominates the corresponding baseline curveafiyrvalue of the
interpolation parameter, on any topic set. In fact, most of the time the QMOD curve is
significantly above and left of the baseline curve. This nseidmat no matter what risk-
reward tradefi the baseline expansion model provides, the QMOD algoritamaiways
provide a better one, so that the same average precisiomilalae, but with lower — and
in most cases, significantly lower — downside risk. This afsplies that the optimal MAP
gain available with QMOD is always higher than the corresfog optimal baseline MAP
performance.

The optimal MAP gain for the robust curve tends to occur ahrgzalues ofr — about
onea-step of 0.1 — than the baseline method. (Recall that higherlues mean that less
of the original query is used.) For example, we have the ¥ahg optimala values for
QMOD vs baseline respectively: Robust2004: 0.7 vs 0.612e®.8 vs 0.8; wt10g: 0.5
vs 0.3; trec8a: 0.7 vs 0.6; trec7a: 0.9 vs 0.8; and gov2: 0@.3s The average optimal
a = 0.67 for the robust QMOD model compareddo= 0.57 for the baseline. In fact, if we
choose a standard operational setting for QMOILx e 0.6, the result are statistically as
good or better than the optimalsetting for the corresponding baseline run.

Even in the extreme case when the initial query model is digszhand only the feed-
back model is usedy( = 1.0) — we call this the curve’s ‘endpoint’ — the performance of
the QMOD algorithm is still reasonably good. Generally, #repoints of the baseline
algorithm give the worst performance — even if the MAP gaihigh at an endpoint, the
same MAP gain is available with much lower downside risk ataléer value ofa. The
same is true for the QMOD trad&aurve, but for every test set the endpoint of the QMOD
algorithm is above and left of the baseline endpoint, prioxgjdhigher relative reward with
lower risk. In general, because the QMOD feedback model iemadiable, it is safer to
choose higher operational valuesoof

For an alternate view, curves using P20 and R-Loss@?20 asd@nd risk measures are
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shown in Figure 6.7. It is notable that QMOD never hurts P2ZGfty @ on any collection
we tried. HMC (heuristic) only dtiers a small loss on the gov2 collection fer= 1.0.
The Relevance model baseline hurts P20 significantly forabast2004, wt10g and gov2
collections at around = 0.7 and above (depending on the collection).

In comparing the QMOD and HMC methods, both dominate thelinesteedback al-
gorithm, but have slightly diierent risk-reward properties. Generally, QMOD gives lower
risk solutions. For example, as shown in Table 6.2 R-Loss@Z20nsistently lower than
HMC, with little loss in MAP. Compared to HMC tradéacurves, QMOD curves tend to
be shrunk slightly toward the origin, with endpoints#£ 1.0) reflecting consistently lower
R-Loss, especially when measured by P20. The penalty for Q@ minor reduction in
maximum achievable MAP gain, which is about 2—3% higher WAMC. One likely ex-
planation for this dierence is that QMOD is a true selective expansion method20%-—
of queries are simply not expanded because of high estimesiedHMC does not have
this *hard’ selection ability and always expands, resgliima somewhat less conservative
strategy.

General retrieval measures Table 6.2 compares average precision, R-Loss, and Rl-statis
tics for the initial, baseline, QMOD, and HMC (Chapter 3) feadk methods for specific
choices ofe = 0.5 (the standard setting). For all six collectionspat 0.5 the average
precision and P20 for QMOD are statistically equal or supén the baseline expansion,
while QMOD also reduces the number of relevant documentseandp 20 lost to failures
(R-Loss@20) by amounts ranging from 34.5% (TREC 8) to 76.9RHC 1& 2).

Note that the no-expansion case provides the initial refieslacuments, serving as the
baseline for R-Loss, so R-Loss is always zero for the no+esipa case. The total number
of relevant documents is shown in the denominator of the Bslfmaction.

Comparing QMOD and HMC, the overall MAP gains over the origigaéry perfor-
mance are comparable: thefdrence in percentage gain is less than 5% on average, and
differences in P20 are even smaller. However, QMOD is somewhea rabust, achieving
lower R-Loss@20 scores than both Base-FB and HMC-FB on ddaains.

Looking at the simple fraction of net queries helped usirggRobustness Index (RI),
QMOD ata = 0.5 outperforms the baseline at = 0.5 on 5 out of 6 collections, and
has equal performance for TREC 8. QMOD has higher RI than HM@oar out of six
collections.
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Collection NoExp Base-FB QMOD-FB HMC-FB
(¢ =0.5) (¢ =0.5) (¢ =0.5)
TREC MAP 0.1762] 0.2317 ¢:31.9%)N | 0.2346 (-33.2%)NF | 0.2472(+40.3%)NE
182 P20 0.4217] 0.4483 ¢-6.94%)N | 0.4945 ¢-17.3%)~E | 0.4990(+18.3%)"E
R-Loss@20| 0/366 117/366 27/366(-76.9%) 64/366 (-45.2%)
RI 0 0.4844 0.5859 0.5781
MAP 0.1830| 0.2079 ¢13.8%)N | 0.2106 ¢-15.1%)N | 0.2165(+18.3%)N-E
TREC7 P20 0.3456| 0.3467 ¢-0.3%) 0.3689(+6.8%)NEF | 0.3656 (5.9%)NE
R-Loss@20| 0/57 2357 12/57 (-47.8%) 24/57 (+4.5%)
RI 0 0.4146 0.5610 0.4634
MAP 0.1920| 0.2220 ¢15.5%)N | 0.2199 ¢-14.5%)N | 0.2288(+19.2%)N-E
TREC 8 P20 0.3213] 0.3585 ¢11.8%)N | 0.3660(+13.9%)" 0.3596 ¢11.9%)N
R-Loss@20| 0/76 2976 1976 (-34.5%) 23/76 (-20.6%)
RI 0 0.4286 0.4286 0.4762
MAP 0.1747| 0.1830 (5.2%) | 0.1990(+14.0%) NE | 0.1984 ¢13.6%)NE
wt10g P20 0.2228| 0.2340 ¢5.4%) | 0.2512(+12.7%)VE | 0.2494 ¢-11.9%)NE
R-Loss@20| 0/158 59158 29/158(-50.8%) 55158 (-6.7%)
RI 0 -0.0270 0.2703 0.1892
MAP 0.2152] 0.2441 ¢13.5%)N | 0.2451 (-13.9%)NE | 0.2538(+17.9%)NE
robust2004 P20 0.3252| 0.3397 ¢4.5%)N 0.3458 ¢-6.3%)" 0.3538(+8.8%)N-E
R-Loss@20| 0/394 124/394 98/394 (-21.0%) 112/394 (-9.7%)
RI 0 0.3364 0.3773 0.3818
gov2 MAP 0.2736| 0.2907 ¢6.5%)N 0.3004(+9.8%)NE [ 0.2959 ¢8.1%)N-E
(2004- P20 0.5214| 0.5214 ¢0.0%) 0.5524(+6.09%)NE | 0.5352 ¢-2.6%)N-EF
2006) R-Loss@20| 0/575 171/575 11¢575(-32.2%) 126575 (-26.3%)
RI 0 0.0922 0.2624 0.1915

Table 6.2: Performance comparison of baseline (Base-F&iack, robust (QMOD-FB)
feedback, and heuristic model combination (HMC-FB) fee#tlfamm Chapter 3. Preci-
sion improvement shown for Base-FB, QMOD-FB, and HMC-FB latige to using no

expansion. R-Loss change for QMOD and HMC are relative telbesexpansion (nega-
tive change is good). For Robustness Index (RI), highertiebeSignificant diferences at
the 0.05 level using the Wilcoxon signed-rank test are naalkeN andE superscripts, for

improvement over NOExp and Base-FB respectively.
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Robustness histograms Robustness histograms were introduced in Section 3.4.4 and
provide a detailed look at how badly queries were hurt angdwby an expansion algo-
rithm. Figure 6.8 gives the combined robustness histog@m £ 0.5 for QMOD (dark)
and the baseline (light). This makes clear that the worktries — cases where a query’s av-
erage precision was hurt by more than 60% — have been vitelhinated by the QMOD
algorithm, while the upside gain distribution remains vemnilar to the baseline gains.
The gov2 corpus was most challenging, with four queries reim@ with greater than 60%
AP loss after expansion. The reasons for this require fudhalysis, but QMOD'’s overall
gains in robustness were still significant (Table 6.2).

The most noticeable fierences in gains are a reduction in the highest categorye(mor
than 100% AP gain) and an increase in the lowest gains (0 t9.1B&th of these are due
to the selective expansion mechanism of the QMOD algorithrahich queries that are
deemed to risky to expand are left alone, resulting in a zét@Ain.

6.4.3 Parameter and constraint sensitivity

The QMOD convex program has a number of control parametdnghmare summarized in
Table 6.1 along with their default values. In this sectionpeeform a sensitivity analysis
for each of these parameters to see how thégcathe risk-reward trad€bas they are

changed. In particular, we look at which constraints anéupeaters are most influential in
finding robust solutions compared to the baseline expansion

Bi-objective parameter (k)

The bi-objective parameterdictates the relative weights given to the two objectivesdi
ing terms with high initial relevance weights (node assignbcosts in the graph) versus
terms with low individual and conditional risk. Figure 6.Bcsvs a complete family of
solutions as the parameter is increased from zero. Note hevproportion allocated to
the original query termparkinsonand diseaseremains balanced for all solutions. The
most dfective range fok is 0.5 to 125, which balances the original query terms with the
expansion terms more or less equally. The default value wdarsevaluation ix = 1.0.

Query term support constraint

Varying theg parameter, which constrains the minimum allowable labkie/éor the initial
guery terms, has a dramatiffect on both risk and reward, as Figure 6.10 shows. For all
collections we tried, highly dominant trad&aurves were obtained fg values close to
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Figure 6.8: Comparison of expansion robustness for six TR&8@aions, showing how
the robust QMOD version hurts significantly fewer queriegrsby the greatly reduced tail
on the left half (queries hurt). (Recall that MAP performamd QMOD is also as good or
better than baseline.) The histograms show counts of cgjdriened by percent change in
MAP. The dark bars show robust expansion performance uss@MOD convex program
with default control parameters. The light bars show basetixpansion performance.
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Figure 6.9: Example showing a family of solutions for a sienguadratic program as a
function of the covariance objective weigh{x-axis). Wherk is close to zero, emphasis
is on the relevance maximization objective (query termstanahs with highest relevance
weights). Ask is increased, more weight is given to the risk (covariancajimization
objective. Each vertical ‘slice’ represents the outputhd CVXOPT solver running the
QMOD quadratic program for a particular value @fshowing elements of the solution
vector (final relative term weights). The vertical line slwavtypical default value of =
0.75. The query in this example is TREC topic 454: “parkinsah&ase”. (Some terms,
such as ‘garagefonts’ and ‘bitstream’ are noise terms.)
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Figure 6.10: The #ect on the risk-reward tradéccurve of varying the query term weight
constraint g), with other QMOD parameters kept at default values. Thelb@sexpansion
tradedt curve is also shown (dotted line).
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Figure 6.11: The fect on MAP gain — ignoring risk — of varying the restriction omn-
imum query term label value, represented by the parangtefhe baseline expansion
tradedf curve is also shown (dotted line).

1.0, meaning that it is important for the QMOD solution tasigly predict the initial query
terms. Specific per-collection optim@balues varied from 0.75 to 1.0 between collections,
but the diference between optimal performance and performance @dsé tended to be
small. (We discuss this further below.) Choosfhg 0.99 was a consistently good choice
for all collections. Interestingly, risk (in terms of R-Le)schanges little g8 increases from
0.5 and above, even though reward (MAP gain) changes suiadiarOn the other hand, as
3 decreases below 0.5, risk increases and reward continulestease substantially. Te
constraint by itself does not provide a complete solutidheoparts of the convex program,
such as the covariance paramegteact to reduce risk in tandem with tjgeconstraint and
we show this in the following sections.

We currently set the minimum label value for query tegnto the same constraint
level B; = g for all query terms. An interesting item for future work wdube to examine
methods for setting term-specif@ values, so that, for example, rare terms may benefit
from higherg; constraints.

Figure 6.11 provides another view@tensitivity that ignores the risk tradéoshowing
MAP gain only, as a function ¢# (with the feedback interpolation parameter 0.5) for
different collections.
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Figure 6.12: The fect on the risk-reward tradéocurve of varying the term coverage
constraint, represented by the paraméteiThe baseline expansion tradéourve is also
shown (dotted line).
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Term coverage constraint

Figurel 6.12 shows theffect of varying the term coverage parameter Higher values
of £ act to strengthen the constraint: the feasible set is o#strito only those solutions
having multiple good expansion terms near to every term éngiery, giving much more
risk-averse behavior of the program. Indeed, we can seesikatoes usually shrink signif-
icantly as¢; is increased. However, for this parameter there is a cooredipg decrease in
MAP gain due to the increased number of infeasible queri® (&P gain) as the program
becomes more conservative. In practicé,\&lue between zero and 0.5 allows a beneficial
reduction in risk. Our default setting is to omit the consttasetting; = 0. Values of¢
much greater than 1.0 are likely to be too conservative fostrsoenarios. An interesting
item for future work would be to experiment with feasiblesstitat penalize term coverage
in different ways instead of rewarding it.

Aspect balance tolerance

Figurel 6.13 shows theffect of relaxing the aspect balance tolerance paranggtgpward
from zero. The general result of enforcing a strong centedanstraint {, = 0) is to
shrink the curve downward, but with little change in risk.ig hesult occurs because as the
constraint becomes stronger, the QMOD program becomes ocom&ervative and more
reluctant to touch the initial query. As a result, overall MAain shrinks, but the quality
of the remaining balanced expansions is still high.

We found that values aof, around 2 give consistently good results for all collections
Increasing;, beyond 2 yields little further improvement.

Covariance parametery

Recall that we decomposed the covariance matasX = D +y - E whereD is a diagonal
matrix of individual term risk factors, anfl a symmetric matrix witte; being the condi-
tional risk of using term given we have already selected teynThe parametey controls
the relative influence of thefiodiagonal elements & compared to individual term risk.
Our hypothesis is that including the conditional term rislour QMOD program improves
the solution, and thus that there is some optimal value ageaiy is greater than zero.
Figure 6.14 shows theffect of varyingy across all six collections. We observe that reduc-
ing v does reduce MAP gain, but simultaneously gives a signifioeshiction of risk (as
measured by R-loss); the slope of the tratlearve, for the main operational range from O
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condition by increasing, from 0 to 2, with other QMOD parameters kept at default values
(¢, = O forces exact centering.) The baseline expansion tfédanove is also shown (dotted

line).
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to 0.5, remains roughly the same. Thus, valueg olose to zero result in robust but very
conservative solutions. Agincreases toward 1.0, the tradourve expands upward and
to the right, until between 0.75 and 1.0 it reaches an apprate maximum MAP gain.
Values ofy much beyond 1.0 tend to preserve this maximum gain and chiaes but pull
and extrapolate the curve right, extending the risk whileviating negligible additional
little MAP gain. We find that a value of = 0.75 is a good default value for all evaluated
collections.

6.4.4 Hfect with an alternate expansion algorithm

We also applied QMOD to the results of dfdrent strong expansion algorithm. We re-
placed the baseline Indri method (Relevance model) with ecRio-style vector space
method in which the tog document vectors were given equal weight and usidia rep-
resentation. The same query variants and document resagnpére used as in the Indri
experiments. The tradéacurves are shown in Figure 6.15.

The Rocchio baseline had slightly stronger performance tha Relevance model
baseline on the trec12, trec7, and trec8 collections. QM@Dashieved a gain on the
initial half of the trec12 and trec7 curves. QMOD continuexistrong performance on the
two Web collections. As it did with the Relevance model basglQMOD dominates the
Rocchiotf.idf baseline for the wt10g and gov2 collections.

6.4.5 Tolerance to poor baseline expansion algorithm

As we did in Section 3.4.6 with the RS-FB with heuristic modeinbination, we tested
QMOD'’s tolerance for noise by applying it to the same very ipbaseline algorithm,
namely, a Rocchio scheme that ignores term frequetigyafhd uses onlyd f in the term
representation. This results in a very noisy expansion iaai@inated by rare terms that
are poor discriminators for relevance. The results for tejgresentative collections, TREC
7 and wt10g, are shown in Figure 6.16. For comparison, thdtsstor RS-FB (Chapter 3)
are also shown. As we saw in Section 3.4.6, tHis baseline is very weak: MAP loss at
a = 1.0 was worse than -80% in all cases. However, applying QMORessfully lim-
ited the damage caused by the weak expansion baseline, inrlemauch more féective
than RS-FB. Alx = 0.5, for TREC 7a, MAP loss is reduced from -11.8% to almost zero
(0.88%) with reduction in R-Loss from 1136 to 390. For wt1PBAP loss is reduced from
-35.1% to -6.1% with reduction in R-Loss from 5485 to 1703. Né&e omitted the other
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four standard collections because their results are sintitee MAP loss from QMOD at
a = 0.5 s typically between 0% and -5%, versus a baseline MAP logk@order of -20%
to -40%.

While this noise scenario is deliberately chosen to be exdréinserves to clearly illus-
trate the greatly increased noise tolerance that QMOD waekidue to its selective nature,
compared to the non-selective RS-FB.

6.4.6 Calibration of feasible set

If the constraints of a convex program are well-designedsfable query expansion, the
odds of an infeasible solution should be much greater théf &0 queries that are risky.
In those cases, the algorithm will not attempt to enhanceytieey. Conversely, the odds
of finding a feasible query model should ideally increasettioese queries that are more
amenable to expansion.

Across all collections, 17% of the queries had infeasibtﬂgmms@ We binned these
infeasible queries according to the actual gain or losswiatld have been achieved with
the baseline expansion, normalized by the original numbegueries appearing in each bin
when the (non-selective) baseline expansion is used. TWes ¢he log-odds of reverting
to the original query for any given galoss level.

The results are shown in in Figure 6.17. As predicted, the @V&Dyorithm is more
likely to decide infeasibility for the high-risk zones agtextreme ends of the scale. Fur-
thermore, the odds of finding a feasible solution do indeeck@mse directly with the actual
benefits of using expansion, up to a point where we reach aage@recision gain of 75%
and higher. Beyond that point, such high-reward queriesals@ considered high risk by
the algorithm, and the likelihood of reverting to the origiilquery increases dramatically
again. In previous work, ([Carpineto et EI. 2001a], p. 18)nfduhat queries with high
initial precision could hardly be improved upon, and suge@shat ‘selective policies for
guery expansion... (should) focus on queries that areewitio dificult nor too easy.’. Our
analysis makes clear that the feasible set and thus theigelegpansion behavior of the
convex algorithm is well-calibrated to the true expansiendfit.

While this is a strong result, we are still losing some largengidor some queries.
Given that these queries have a particularly extreme (pe¥iesponse to query expansion,
identifying them is likely to be an easier task than tryingotedicting expansion success

%We used a maximum of 100 convergence steps.
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Figure 6.17: The log-odds of reverting to the original quasya result of selective expan-
sion. Queries are binned by the percent change in averagsipreif baseline expansion
were used. Columns above the line indicate greater-tham-estds that we revert to the
original query.

for any possible query. Features that distinguish extrexpamsion success may be similar
to the kinds of features explored for quenyfdiulty, such as the quality and stability of
the initial results clustering, expansion term clusteritig specificity of the query terms,
and so on. These features may then be incorporated as dotssinethe QMOD program
which are adjusted for each query.

6.5 Discussion

The robust QMOD estimation algorithm obtained consisyebdtter tradefy curves than
the baseline expansion algorithm for the collections wduatad. In most cases, the gains
are quite striking: for example, on the 150 TREC 1&2 topies@MOD algorithm achieves
higher MAP gain atx = 0.6 than the optimal baseline, while losing less than half the
number of relevant documents due to expansion failure. QM0 outperformed the
baseline according to the percentage gain in queries helpid) the Robustness Index
(RI). Overall, our results on six diverse test sets showttaQMOD solution dramatically
reduces the downside risk of the baseline algorithm, witlsaarificing its strong retrieval
performance. We now analyze the factors contributing tee¢henproved trade® curves,
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and the implications for the design of future query expamsilgorithms.

6.5.1 Factors in improved risk-reward tradedfs

The best trade® curves were obtained using an intermediate mix of both ébgesx, and
with all constraints active. Some parameters had a more atrargfect on the trade®
curve than others. The query term coverage pararpates a highly influential constraint:
it has a strong féect on MAP gain, but little f#ect on risk. Conversely, the conditional
covariance parameterhad a larger fect on risk reduction (and a weakedfext on MAP).
Activating both of these together resulted in most of thermepment in the QMOD trade-
off curve. Other constraints such as the term centering constjawere less critical but
acted to further shrink the risk of the trad&ourve with little reduction in MAP. The term
coverage constrairdt also acted to increase the conservativism of the solutioprdctice,
a small value such a% = 0.1 or less provides a good balance.

We found that good default QMOD parameter values were: {tigbhstrained query
term weights £ = 0.99), moderately relaxed term centering constrajnt( 2.0), minimal
term coverage constraing;(= 0.1), intermediate use of conditional term risk € 0.75)
and roughly equal objective weighting € 1.0). The valuex = 0.4 gives a safe tradéo
with smaller risk: the resulting combination comes with®?4 or less of the optimal MAP
for both algorithms.

6.5.2 Implications for query expansion

Our findings have the following implications for the desigmaanalysis of future query
expansion algorithms.

Query-anchoring of the expansion model. Our analysis shows that the best risk-reward
tradedt curves were obtained by expansion models in which the @igjnery terms were
highly weighted. Thus, strong anchoring to the original pears to be a necessary,
although not stiicient, condition for robust expansion modelsA key point here is that
we are focused only on the support that exists for the quesffjitand that this support
need not be at the expense of the expansion terms: it is attedgor many other terms
to also obtain high label weights. Indeed, because we teeat Weights as labels and not
as probabilities, high weights on the initial query termsah@ot imply reduced weight on

10To simplify analysis, we assume a ‘clean’ initial query, tieat any typographic errors, misspellings, etc.
in the original query have been corrected at an earlier sthgeocessing.
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other terms.

This query-anchor finding is in accord with recent relatedkwby Winaver et al.
[2007], who reported that an extensive automatic searcthiofeedback modély that
minimized the KL-divergenc&L(6y,|l6o) to the initial queryQ gave performance close
to the manually optimized feedback model. Hefg,is an unsmoothed language model
constructed from the initial que!® anddy, is a Jelinek-Mercer smoothed language model,
constructed by interpolating the set of document languag@atsdp, of the 100 top-ranked
documents using expanded query madiel

Selective expansion. Because of the uncertainty inherent in query expansion, elleue
that a second necessary condition to obtain any robust gxggnsion algorithm is the use,
in some form, of three basic steps that involve selectiveabieh at each stage.

1. The uncertainty in the ‘correct’ expansion model pararseshould be captured by a
set of multiple plausible model hypotheses, resulting incauguet’ of alternatives. In
our work, this is accomplished by using query variants toveste diferent feedback
models. In Chapter|3 we showed that when the number of alteimgiotheses is
reduced, the robustness of the query expansion algoritfif@rsu

2. A ‘hard’ selection process should eliminate implausitriedels completely. This
role is performed in our work by the constraints defining asfele set to a convex
optimization problem. If necessary, all hypotheses extleptobserved query are
sometimes rejected. The term centering and query term ageeconstraints are
examples of a weak and a strong constraint respectively.

3. Afinal ‘soft’ selection process is used to perform modehbmation on the remain-
ing good models. Rather than assigning a single weight tihalterms in a model,
we allow the algorithm to calculate weights that are termetwlent. This greatly
increases the richness of the hypothesis space of possiblegoss, making it more
likely a good solution will be found. Although in theory thatso greatly increases the
number of model weights to be estimated, in practice the ctatipnal cost can be
limited: for example, the vocabulary size can be limitechgsksay, an initial thresh-
old on the topn relevance weighted baseline terms. Model combinationigaimap-
ter is a natural result of solving the metric labeling obipt furthermore, expansion
models with many good terms naturally result in lower refatveights to the original
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guery terms, while some queries have few or no good expansiars. Hfectively,
this dynamically chooses the number of tofinal expansion terms (including zero
terms), rather than forcing us to choose a fikad advance: this flexibility would be
impossible with a simpler model-assigned weighting scheme

Risk-reward curves. We regard the risk-reward trad€curve as an important new diag-
nostic tool for analyzing and comparing théetiveness of expansion algorithms. Ideally,
such curves should become standard in the evaluation of @&y @xpansion or reformu-
lation algorithm.

6.5.3 Comparing sampling and optimization approaches

The two main approaches we have introduced for improvingsoiess are the sampling-
based approach of Chapter 3 and the convex optimization aplpraf this chapter. These
methods are complementary, but quitéelient. While sampling acts to average over un-
certainty, the QMOD framework can be used without probatidimodels and makes use
of fixed estimates for objective and constraint paramees currently connect sampling
and optimization by using perturbation kernels (obtainredifsampling) as the covariance
estimate in the optimization, but such a connection is natlst required.

A key advantage of sampling-based methods is that they ageyageneral way to get
at the sensitivity and uncertainty of virtually any obsdatearesult or parameter calculated
by a retrieval algorithm. In Chapter 3 we showed that suchigeihg information was
useful for improving the quality of expansion models. Mareg we have a powerful set
of existing statistical tools that can be applied to fit pdwbstic models to the sampled
information. These models in turn fit naturally with exigfiprobabilistic retrieval frame-
works. One disadvantage is the increased computationaloasbtaining the sampled
results, although in Chapter 3 we discussed ways this expense be mitigated.

At the start of this chapter, we already stated the many hsnafusing an optimiza-
tion framework for finding good expansion models. A limitatiof our current approach,
however, is that it does not yet fully incorporate the uraiety information that could be
available from sampling. This is partly by design, in orderstart by exploring simpler
models first. Ideally, however, we could go further to congbihe strengths of sampling
and optimization approaches by using a more general rofpishization framework that
accounts for uncertainty in parameters (such as the as@okm). Then, sampling meth-
ods could provide the estimates to quantify this uncenairidepending on our robust
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optimization approach, these estimates could be in the @drdistribution parameters or
(distribution-free) moments obtained from sampled eds@®dor the uncertain variables,
or could simply be finite sets of sampled parameter values.

6.6 Related Work

Historically, the problem of optimization under uncertgitnas been the domain of oper-
ations research and economics. More recently, many othds fiencluding branches of
computer science such as image processing‘(e.q. Tsuda ﬁam%]) have made sub-
stantial algorithmic contributions. The common thread agthese various fields is that
of finding an optimal action or selection when we can only obxsen imperfect signal
describing the state of the world. This forces us to quantifigertainty — typically by
modeling it with a probability distribution — and to formiéadecision rules about what
optimality means when the data, or even the goal itself, acerain, and how to tradefo
benefits against risks.

One of the most prolific areas of research has been the fieldropatational finance,
from which we have borrowed the rigkward paradigm. The classic finance optimization
problem isportfolio allocation under uncertaintyinitially pioneered bﬂ/ MarkowhH [19%2],
the goal of portfolio optimization is to allocate a given lgedl over a set of securities in a
way that not only maximizes the expected return of our inwesit, but also diversifies
the portfolio to reduce risk. For example, we typically aldiuying too many highly
correlated stocks in the same industry sector. The expedtkty of the securities, and
their covariance over times, is estimated from historicgtagd and the optimal portfolio is
found as the solution to a quadratic optimization probleimsTean-variance optimization
model has since been generalized and refined in numerous ways

While the problems faced by portfolio managers and searcinesadpoth involve op-
timization under uncertainty, the finance scenario alsosigrsficant diferences from in-
formation retrieval. First, although we would like to traake query in some sense as a
risk-free asset, we currently have no reliable way to qiamthat the corresponding “rate
of return” might be, which would require a reliable estimatejuery dfficulty. Second, we
typically do not have extensive historical data to modeiarasre. Instead, we must generate
our own pseudo-training data for every query, using methigdthe query variant strategy
of Chap! 3. The extensive query logs generated from millidnser queries to Web search
engines may prove to help in this regard.
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6.7 Conclusions

Our work in this chapter extends the ideas and expansioneframmk introduced in Chap-
ter 3 by adapting convex optimization methods for model coaion. We show further
improvements over the earlier heuristic approach in thédityuz the final combined model
based on the results of multiple query variants. Our apprasio cast the problem of query
model estimation in terms of constrained metric labelingiBegrating relevance and risk
objectives with additional set-based constraints to siekdg reduce expansion for the most
risky queries, our approach produces dramatic reductiotise downside risk of a strong
baseline algorithm while retaining or exceeding its gamaverage precision.

We introduced simple refinements to the basic metric labgtiroblem that capture
constraints on the nature of query terms selected for annskpa. The quality ohspect
balancerestricts label weights so that all aspects (terms) of ayjaler covered more or less
equally. Theaspect coverageonstraint specifies roughly how many nearby related terms,
for any query term, must exist in the solution: allowing mesgansion terms increases
potential recall, but also potential expansion risk. Téen centralityconstraint prefers
terms whose distances (say, as measured using the datébpadn kernel) to all of the
guery terms have low variance, and thus are more centratigtéal in kernel space. We
also showed how other heuristic constraints, such as budgstraints also fit easily into
this framework.

Because of the generality of our framework, a number of esiters and refinements
to the basic program can be studied. For example, additlmnddet constraints may be
added to constrain the total number of non-zero term weightee solution, similar to
iil. 2607]. $ed, sensitivity analysis of the
constraints is likely to provide useful information for setlearning: interesting extensions
to semi-supervised learning are possible to incorporatitiadal observations such as
relevance feedback from the user. Finally, there are a feditiadal parameters, such as
kernel rescaling cdicients, and it would be interesting to determine the optisedtings.
The values we use have not been extensively tuned, so thia¢fyrerformance gains may
be possible.

In the concluding chapter that follows, we look beyond thendm of term weights
to describe how our constrained optimization approach neagdneralized to help solve
difficult information retrieval problems in other domains.

methods from portfolio optimizatior% [Lobo et




Chapter 7
Conclusion

In essence, all work in this thesis flows from the logical iroglions of two key assump-
tions. First, that important entities such as queries apdanked document sets be treated
as noisy observations of a latent random variable. Secbatithe resulting posterior dis-
tributions — and expectations, covariance matrices, anerafuantities derived from them
— represent information about the critical but neglectedatision ofrisk which can be
guantified and exploited to improve the robustness and gicgtof information retrieval
algorithms in a very general way. As a concrete applicatibthis approach, we make
significant progress on a long-standing problem: improvimgreliability of query expan-
sion algorithms without reducing their overaftectiveness, while making few assumptions
about the base expansion technique.

In practical terms, we implement this vision in two phasesst tby using sampling —
producing small numbers of query and document variants -stimate feedback model
risk and generate multiple feedback model hypotheses; erwhsl, using an optimization
framework that prunes and combines these model hypothegpesduce a robust fiective
final expansion model.

Starting with the basic generalized retrieval frameworlsalibed in Chapter 3, we
achieved significantimprovements in both precision andsuiess over six standard TREC
test collections. The best results in that chapter werdamddaby combining leave-one-out
guery variation, bootstrap sampling over documents, anduaistic model combination
step derived from sample weighting heuristics in Monte Caregration. We then devel-
oped further improvements to model combination in Chaptesifgia more principled,
transparent and extensible framework based on convex gatiion. This resulted in the

184
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QMOD algorithm, which, unlike the heuristic model combinatmethod, was much more
tolerant of a poor baseline algorithm and could operatectieddy to avoid risky expan-
sion situations. We showed that, within the optimizaticgpstself, the best results were
obtained by combining several active constraints on thefsexpansion terms, with indi-
vidual and conditional term risk estimates. We obtainethrrincremental improvements
by re-using term score variance information in Chapter 4 tivdeerturbation kernels, a
new type of similarity measure.

7.1 Significance of this work to the field
of information retrieval

We believe this dissertation introduces important charigethe way people will view,
implement and evaluate query expansion. First, query estpammethods no longer need
to restrict themselves to greedy, threshold-based hagisiat neglect properties of the set
of terms as a whole, such as aspect balance. Instead, weear&fthink of expansion
methods in the most natural way, namely, in terms of primd@et-basectriteria, and
balanced tradefts between multiple competing objectives such as relevamnd eisk.

Another shift is our emphasis on quantifying thsk of query expansion instead of
merely maximizing reward measures like mean average poeci$-or evaluation, we in-
troduce estimation and analysis of risk and reward, fo@usin downside risk, not just
average-case performance. We include new evaluation miegwach as risk-reward trade-
off curves, which we believe should become a standard methahdyzing and compar-
ing expansion algorithms in the future.

To implement these ideas, we add two powerful new methodsusle of resampling
for model estimation, and optimization with constraints $elective expansion. There is
great freedom in particular in the relevance and risk objestand metric constraints that
may be used with the optimization framework of Chapter 6. Esitens and refinements
to both resampling and optimization represent new resedirelstions for IR in their own
righ@. In general, the principled, extensible theoretical framek we introduce is fruitful
ground for future exploration of factors that interact afi@get query expansion.

Our algorithmic contributions focus ageneral-purposenethods that can take existing

! For example, [Lee et al. 20b8] very recently published atelubased refinement to document resam-
pling that improves on the basic methods in [Collins-Thoampé& Callan 200T7]for pseudo-relevance feed-
back.
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expansion algorithms and make them better. Most propospbiraments to query expan-
sion only apply to a particular retrieval model. Our algonits, on the other hand, treat the
retrieval model or ranking function as a black box, whichlddee implemented using vec-
tor space models, inference networks, statistical langumagdeling, or other approaches.
Thus, the techniques we introduce are broadly applicable.

We now give a more detailed overview of contributions thananginal summary in
Chapter 1.

7.2 Dissertation Summary

In the first part of this thesis, we discussed the issue ofsti@ss in query expansion al-
gorithms, and how it is important to distinguish averagsegaerformance from worst-case
performance when evaluating retrieval algorithms suchetevance feedback. Current
feedback methods are unstable and while performing welvenage, can still hurt many
individual queries. We summarized the main causes of qudtywhich is a key problem
of existing expansion methods. These problems include ipd@l retrieval, aspect imbal-
ance, and unstable term quality. We discussed how theséeprslzan be addressed with
novel applications of sampling and convex optimizatiort ttem measure and account for
risk as well agewardin searching for fective and robust query models.

7.2.1 Sampling methods

In order to incorporate risk as a factor in information resmal algorithms, we introduced
methods for estimating riskfleciently. Given some quantity, such as score variance, as a
proxy for risk, we showed how the use sémplingin small amounts can produce useful
estimates of variance.

In Chapter 2 we introduced another application of sampliagely, calculating Monte
Carlo estimates of important integrals that arise in docurseoring. We derived document
scoring in the Relevance Model as a form of importance sargplMonte-Carlo-type esti-
mates recur in the thesis for a number of useful integrals:GRM formula for document
scoring, document-smoothing kernels, and canonical aritylmeasures (data perturbation
kernels).

We address the issue of noise terms in query expansion mioglelsplying a general-
ized form of bagging to the top-ranked document set, fittinggximum likelihood Dirich-
let distriubtion to the sampled feedback models and selgdtie mode of this Dirichlet
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as the combined feedback model. This stabilizes the fe&dimaclels produced by our
baseline feedback algorithm, choosing terms that are stamdiacross multiple training
sets, and thereby increasing the precision of the feedbacdkels. We used self-organizing
maps to give a novel visualization of how expansion modedhinisty occurs in real query

situations.

7.2.2 Query variant framework

We showed that sampling query variants is a way to help adqirear initial retrieval qual-
ity, by increasing the number of query hypotheses. Eachyqaeiant perturbs the relative
weights on the original query terms. In this way, even if thigioal query returns few or
no relevant documents in the top 10 (say), the use of quergntarincreases the likeli-
hood of finding at least a few more relevant documents. Weudssd model combination
approaches that aréfective in combining the results of thesdfdrent hypotheses. We in-
troducedsigma-point samplingthe novel application of the unscented transform theorem
from particle filtering to finding a good set of perturbatioeights. We connected the idea
of query perturbation to work ofocal influence and sensitivityy general statistics. We
also introduced new measures to evaluate ffextveness of a query expansion algorithm
including the use of risk-reward curves.

7.2.3 Data perturbation kernels

We show that the use of query variants produces a valuabéelsdefit: training data
for learning similarity measures over terms. We introduataddependent kernels called
data perturbation kerneland show how they can be derived theoretically from impaan
sampling methods on an integral (based on the CanonicalrbestdMeasure).

We applied data perturbation kernels in practical appgbeestto both individual terms,
and language models. When applied to terms, in addition iagvaluable risk and simi-
larity data for convex optimization, it also induces a pseaguery-specific similarity mea-
sure between documents. We evaluated thecaveness of the perturbation kernel as the
term similarity measure in the QMOD covariance matrix foeguexpansion and com-
pared this to a term association (Jaccard) measure witH botatonsistent gains. We also
showed how treating the query as a random variable can beagagrove query dficulty
prediction, generalizing an existing quenyitiulty measure by adding an interaction term
for similarity between documents in a collection in additio the similarity of the query
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to the collection.

7.2.4 Optimization methods for query model estimation

In the final part of the thesis, we developed a convex optitimndramework for estimating
guery models. This takes the view that the selection andieig of query terms should
be done as a set: that is, taking account the properties ddritiee set of terms, instead
of a greedy strategy that considers only the propertiesh(sisaelevance scores) that can
result in aspect imbalance and other problems for smaltsrcgéerms. Another advantage
of this approach is its simplicity. By reducing query modslimation to an optimization
problem, it allows éicient general-purpose convex optimization technique®tagplied.

Our evaluation shows that a convex optimization approaotiiges further gains in ro-
bustness and resistance to noise over the heuristic metfoasdel combination in Chap-
ter/3. The model combination method in Chapter 3 required araép step to estimate
whether or not to expand, whereas the convex program integeverything into a single
set of easily understood criteria, making changes and ivgonents much more transpar-
ent. In general, the use of an optimization framework presid natural way to perform
selective expansion, by constraining the objective withasible set of models that satisfy
the conditions of reasonable expansion models, such asijppsompeting) constraints
including aspect balance, term confidence, and coverageeny @spects.

There are a number of reasons that current Web search ergjilhe® not use auto-
matic feedback methods to increase result quality. Paittisfthesis work has sought to
address those reasons. First, there is great pressureftgideey processing times very fast
(i.e. less than 250ms), not only to provide satisfying resgatimes, but also to maximize
user throughput for a site, and thus increase the numbeneftisement views. The extra
computation cost of automatic feedback is thus seen as évegalthough our algorithms
make use of more CPU time, we have tried to keep factors sutieamitnber and nature of
subqueries féicient. Second, some query expansion methods, like Latenac Anal-
ysis tDeerwester et AI. 1990], may operate by providing dez& hundreds of weighted
expansion terms. The reason why certain pages become magikgd becomes somewhat
more confusing and less predictable for a user. Our methodsntrast, focus on choosing
a small number of high-quality terms (including possiblytaams at all). Finally, if the
average gains of automatic query model estimation are evee tvidely used to improve
search, this downside risk must be greatly reduced. Usingnaipled convex optimization
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approach, we have taken a significant step forward in solthirsgproblem.

7.3 Future directions

The sampling and optimization approaches we have presdotedformation retrieval
open new directions for research far beyond their use forygtegm weighting. We now
discuss some possible generalizations to other domains.

Federated search under constraints. Much of the riskreward analysis that is appro-
priate for query models can be applied to other types of midron resources. Finding
optimal query models can be seen as an instance of a much ranegad) problem, of
finding the value of one or mormaformation sourcesgiven a set of constraints on our
access to them, and a description of relationships betwesemmtormation sources. In fed-
erated search, for example, the information sources ar¢éenwois, but multiple databases
or indexes. Given initial source quality or reliability s&dics for each database, pair-wise
overlap or similarity measures, and resource costs forss;aee can apply a very similar
convex optimization approach to solve for the informati@hue weights for each collec-
tion. With these weights, we can prioritize the order in whaollections are searched or
their results ranked. Note thgparsesolutions are likely to be even more important for fed-
erated search than for query expansion: the cost of a nanveeight for a collection may
imply the large overhead of searching a remote collectiomaking the decisionotto ac-
cess one or more particular collections could be critidadlllindexes have no access cost,
then a lossy approach may not be needed and redundant dac@meval can be done at
merge time‘ [Shokouhi & Zob&al 20b7]. However, to our knowledi¢tle work in federated
search addresses the problem of how to select or weightnesogiven constraints such
as a fixed computation or access budget: if our access torsEsois constrained, a lossy
approach is unavoidable and an optimization problem musbbﬁea

Machine translation and summarization. Matching a query with a document can be
viewed as a form of statistical translatidn [Berger &f[ﬂlty‘1999]. Conversely, meth-
ods we have developed in this thesis for improved matchingh sis computing feedback
term weights under constraints, may be useful for relatekistauch as computingbest
candidate lists for statistical translation or cross-liabinformation retrieval.

2We also note that the problem of constrained resource safeist closely related to the dual problem
of information flow and capacity, where nodes are identifiégithwdges or routes instead of indexes. In this
case, the optimization problem can be viewed as allocatafiicc amounts in the network.
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Furthermore, instead of using our method to produce quergetsdor feedback, we
could apply it to individual documents to produgeery-biased summariex those doc-
uments. Such summaries would select a subset of terms,gshras sentences having
balanced aspect coverage for the query. When the summarizatoblem has feasible
solutions given the aspect coverage, term weight variaaee,other constraints, we can
choose a particular summary by specifying another critet@ooptimize. For example, we
can define thenost giicient summarys the smallest set of terms that have adequate aspect
coverage, i.e. that best predict the terms in the examplerdent.

Extensions to semi-supervised and active learning.In general, we have sought to min-
imize our reliance on supervised learning methods. Trgiwiata is often dficult andor
expensive to obtain, and ad-hoc retrieval itself is more Bkmeta-learning problem that
changes from query to query. Instead, we often create pseaihing data for each in-
dividual query problem through the use of methods such asyqueiants. However, if
training data is available for a particular task or user saskguery classification or term
similarity, it would be interesting to extend our methodsutpervised learning. A resource
like Web query logs may improvetectiveness by allowing more realistic modeling of the
true task (query) neighborhood, which heaviljegts the selection of related words. User
feedback may also provide training data that can be usedristr@in refinements of ex-
pansion term candidates. Another research directione@liat semi-supervised learning is
finding improved resampling strategies that exploit thestdting behavior of documents.

There are also interesting possibilities for active leagniOne advantage of a convex
optimization approach is that we can easily perform a sieitgiinalysis of the constraints.
That is, we can see how much the optimal query moddfected by small changes in each
constraint. Then, we can focus on the constraints thiattthe optimal solution the most,
and potentially gather more information on those to refireegblution. For example, if
the constraints include conditions on which expansion seware marked as relevant by
a hypothetical user, the sensitivity analysis would idgritie most influential unlabelled
terms, and thus find the most useful terms for which to obteina feedback. In this way,
instead of using terms directly in an expanded query, weccaudximize the utility we
get from allowing the user to select and give us feedbacks plocess could be repeated:
the observed selections could in turn be used to refine theflisxpansion candidates by
further constraints, such as requiring that the previosslfected terms continue to have
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high weight.

Optimizing over the domain of document weights also leadise¢adea of using regular-
ization of retrieval scores to reflect content similarityaBintroduced this concept recently
by another path in his thes@i%?a] and discussetecibased retrieval and its rela-
tion to score regularization. Instead of treating docurm@stindependent sources, we can
calculate the similarity between them and take this int@antwhen estimating document
weights for feedback. If we reward clusters, we can modifyvhriance constraint to pre-
fer close weights with a cluster, but largdfdrences between clusters. Alternatively, we
can specify that the query mod#ilversifyits reliance on resources by emphasizing a single
representative element from a cluster of similar resources

Improving search by working harder. As we have shown with our results on bagging
relevance models and running query variants, practicatorgments in precision and ro-
bustness are directly achievable by increasing the CPU timiable to the search engine
to process a given query. This suggests an exciting dire¢tiofuture research, namely,
exploring how to improve search results furthenkgrking harder either automatically or
under the control of the user. Given the tremendous increaskister-based computing
resources available for search and text mining, the tréidexiween computational com-
plexity and retrieval fectiveness appears to hold some promise. Powerful opesdtle
bagging and subquery retrieval are inherently parallblzand, with an adaptive approach
based on server load, the response time need not greatlydettie actual response time
for the user. When CPU load is highffet may simply be dynamically scaled back to
the default simple search model. Further operations dwingpre CPU-intensive search,
such as lazy evaluation of deeper linguistic concepts itiipelocuments, may also be
part of a portfolio of more intensive methods. In this way, kygothesize that significant
performance gains may be possible for the mosiadilt types of queries.
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Appendix A

Background Material

This Appendix contains background definitions and explianaif important concepts used
in the dissertation.

A.1 Kullback-Leibler divergence

Given probability mass functiong(x) andq(x), the Kullback-Leibler divergence between

p andq is defined as )

p(X

KL(pllo) = Z P(log (A1)
The Kullback-Leibler divergence is typically referred te laL-divergenceor sometimes
asrelative entropy Note thatKL(p||g) is not symmetric: choosingL(q||p) instead of
KL(pllg) can lead to very dierent results in some situations. Th#d,.(p|/g) computes
the similarity of distributions, but is not a true ‘distaneeetric between them (and the
triangle equality also does not holdKL(pl|q) is zero if and only ifp andq are identical
distributions, and is always non-negative and is undefihg(k) = 0 for anyx.
Jensen-Shannon divergerise symmetrized and smoothed version of KL-divergence,

defined as

IS(pl9) = SKL(pIm) + SKL(GlIm) (12

where 1
m(x) = E(D(X) + (X)) (A.3)

The JS-divergence is the average of KL-divergences to teeage distribution. While
JS(pllg) does not define a metria/JS(pl|q) does give a metric called théellinger metric
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A.2 Association measures

If we have two binary attributed and B, we can define variouassociation measures
terms of the four celld/,p in a 2x 2 contingency table whemd,, is the number of samples
with both A = 1 andB = 1, Mg is the number of samples with = 1 andB = 0, and so
on. For query expansion, the binary event we use for wey@orresponds to a document
containingw,, resulting interm association measures

One association measure, thaeccard cogicient AjaccarpiS given by

Mi1
Moz + M1+ Myz

AjaccarRD= (A.4)

This gives a similarity measure between 0 and 1. We converirilo a distance measure
diaccarnoCOmMpatible with the perturbation kernel by rescaling ughmgformula

0 3accARDWa, Wh) = 1 €XP—L2 - AjaccAREWa, Wh) (A.5)

whereps; = 15.0 andB, = 2.0, which were obtained using empirical tuning.
Another association measure used in our experimenialess Q Cogicient which is
defined as

OR-1
Q= OR+1 (A.6)
whereORis the odds-ratio MM
OR= 2711 A7
Mo1M1g (A1)

In practice we use a rescaled varightlefined as

Q=51+Q) (9)



Appendix B

Statistical measures of influence

The idea of performing tests to measure the sensitivity ofoadehto perturbations in the
training data or model parameters has been of interesttistgte@ns for some time. Initial
attempts at sensitivity analysis in the 1970s proposeddistics that focused on perturbing
the case-weights for the simple scenario of linear reﬁThe seminal work of Cook
resulting in Cook’s D-statisti@ k 1979] is an example oé@uch measure. Cook’s D-
statistic estimates the influence of a single caseifthedata element) on the model when
the case is left out of the training set. The influelg®f case is given as

VY2
D. = % (B.1)
whereY andYj; are thenxl vectors of fitted values on the full training set, and withou
casd, respectively. Alsop is the dimension of the parameter spgdavhereY = X3+,
wheree is Gaussian noise.) Cook and Weisbérq [Cook & Weis‘oerq 19821 &tended

this to leaving out a subset of the data.

In a later paper, CooIL [Co&k 1&86] further generalized thisibg introducinglocal
influencemethods that are closely connected with the query pertiormate describe later.
Given observed dataand ag-dimensional perturbation vectar he defined a likelihood

1n the statistics literature, what we might call a trainingimt, namely, an observation on a response
variable in combination with values for the explanatoryiables, is termed aase The case-weightare
what we have termed training set weights. Estimators sutéeags-one-out estimators that set case-weights
to zero are termedase deletioschemes [Cofﬂk 1986].
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Figure B.1: By varyingw Iin the space&?, a surfacex(w) is generated. Local influence
measures the curvature @fw) at the pointwy.

displacement (LD)
LD(w) = 2- (L8, Y) - L(6.)) (B.2)

as a way to measure the distance of the parameter estimateselmeperturbed and un-
perturbed responses. Hereandd, are the maximum-likelihood estimates f@iin the
unperturbed and perturbed models respectively.

Using thesd.D values, Cook then defineafluence graphswvhich summarize the influ-
ence of a perturbation schenweon a model with parameteésand log-likelihood function
L(#). The influence graph is the geometric surface formed @aries in the spac@, giving

theq + 1 vector.
w
a(w) = [ LD(w) ] (B.3)

The vectorwy = 1 (all ones) represents no change to the data, with all poietsng

a weight of 1.0. Applying concepts fromftkrential geometry, Cook defined theacal
influence diagnostias the direction of maximum curvature on the influence grapbrad
the pointwy. The goal is to summarize how the surfadey) deviates from its tangent plane
at wg. This can be done by examining the curvature of specificadilysen curves called
normal section®n a(w) that pass throughwy. This is illustrated in Figure B.1.
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McCulloch koCuIIocIH 1989] develops a Bayesian version ofthigleas: a sensitivity
analysis that measures the change in the posterior digtnibgiven changes in either the
sampling distribution or the prior distribution. Thesher informationmatrix

0%k(w)
) = 50 da; (B.4)
is used to form the statistic G
A* = max6 Pos(@0)d (B.5)

~ ll=1 6"Gprior(wo)d
The eigenvectos* corresponding to the largest eigenvalifegives valuable information
about the perturbations that achieve the largest localgdariD(w), enabling us to obtain
the relative importance of the elementswaf This is useful diagnostic information on the
sensitivity of the model. The largest absolute elementk.@f correspond to the cases
(training points) in data having the largest influence onpbsterior distribution.



Appendix C

TREC Evaluation

This section summarizes the TREC corpora and topics usedriexperiments. These
datasets provide a standardized methodology for compé#nmgerformance of dierent
retrieval algorithms. A TREC evaluation set consists oképarts: topics, collections,
and human relevance judgments. These are supplied by therafion Retrieval Labo-
ratory at the U.S. National Institute of Standards (NISThisTdata may be downloaded
from the TREC site at NISThttp://trec.nist.gov. Further information on the TREC
assessment and evaluation methodology may be fou}\d inheesr& Harma“1 20&)5].
Information needs in TREC are expressedi@scs Typically, a topic comprises a
short, medium, and long description need. These are cadledectively, the title, descrip-
tion, and narrative fields. An example of a TREC topic is giweRrigure C.1. An informa-
tion retrieval system takes a set of topics as input, coimgegach topic to the appropriate
guery form for that system. The system runs the query on ttectdlection, returning a
ranked list of documents. Each document has a document IDvimaprovided as part of
its entry in the collection. Because the human relevancgmehts use the same document
IDs, the system’s results may be scored for relevance ag@iesiuman judgments, thus
enabling us to calculate standard IR measures for the systerh as precision, recall, etc.
Tablel C.1 gives summary statistics for the four TREC colewtiused in this thesis.
Some topic sets use the same underlying collection: for pl@rthe topic sets for TREC 7,
TREC 8, and Robust 2004 all use the collection built from thatent on TREC Disks 4&5
(minus the Congressional Record documents). In such césediferent topic set names
and numeric ranges are given on the same row, separated lyslems. The relevance
judgements provided by NIST are compiled by human assesddrsse are stored in a
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APPENDIX C. TREC EVALUATION

| Collection | Description | Docs | Size [ AvgDoclen | Topics
TREC 1&2 Newswire articles (TREGQ 741,856 | 2.099Gb 2.967Kb 51-150, 151-200
Disks 1&2)
TREC 7, | Newswire articles (TREGQ 527,094 1.36Gb 474 bytes | 351-400; 401-450
TREC 8; | Disks 4&5 minus CR) 301-450, 601-700
Robust 2004
WT10g Small web crawl 1,692,096 10Gb 6.2Kb 451-550
GOV2 (2004-| Crawl of .gov domain 25,205,179| 400Gb 15.0Kb 701-850
2006)

Table C.1: Summary statistics for TREC collections usedimttiesis.

<top>
<num> Number:

<title> U.S. 0il industry history

701

<desc> Description:
Describe the history of the U.S. oil industry

<narr> Narrative:
Relevant documents will include those on historical exploration and

drilling as well as history of regulatory bodies.
of the oil industry in various states, even if drilling began in 1950

or later.

</top>

Relevant are history

Figure C.1: Example of a TREC topic (topic 701), showing thersimedium, and long

descriptions of an information need.
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701 0 GX000-00-13923627 0O
701 0 GX000-13-3889188 0
701 0 GX000-15-11323601 0O
701 0 GX000-21-7072501 0
701 O GX000-22-11749547 0
701 0 GX000-25-2008761 1
701 0 GX000-27-14827260 0
701 0 GX000-27-4783281 0
701 0 GX000-41-2972136 0
701 0 GX000-43-8149041 2
701 0 GX000-45-2286833 0
701 0 GX000-46-2808962 0
701 0 GX000-48-10208090 0
701 0 GX000-55-12164304 0
701 0 GX000-55-3407826 2
701 0 GX000-67-12045787 2

Figure C.2: Sample TREC relevance assessment format, shdwerfirst few assessments
for Topic 701

grelsfile. An example of the format for a TREC qrels file is shown igdtie C.2. The
fields are, in order: the topic number, an unused field, docdirtis and relevance score.
The relevance score takes values of 0 (not relevant), Ivaetg or 2 (highly relevant).
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