
Proactive Learning: Towards Learning with
Multiple Imperfect Predictors

Pinar Donmez

CMU-LTI-10-002

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Jaime G. Carbonell, Chair

Tom Mitchell
Jeff Schneider

Guy Lebanon, Georgia Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

c© 2010 Pinar Donmez

Keywords: Active learning, proactive learning, multiple noisy predictors, unsupervised
risk estimation, unsupervised supervised learning

To dad and mom.
Mom - This work would not be complete without your constant love and support.

Dad - I wish you could see this day that I will be earning my Ph.D. You’d have been proud.
Sizi çok seviyorum!

Abstract

Label scarcity is a serious problem in many machine learning applications.
In many domains such as classifying texts, images, etc., unlabeled data is
readily available whereas labels are fairly expensive to obtain due to labeler
availability, cost, and difficulty. Active learning is a paradigm that addresses this
challenge by carefully selecting instances to be labeled. The goal is to improve
the generalization performance of the learner with fewer labeling requests.

Although active learning is well studied in the literature, it makes unrealistic
assumptions. For instance, active learning assumes there is a unique omniscient
oracle that works for free or charges uniform fee. In many real-world applica-
tions, it is quite possible there are multiple imperfect predictors with differing
but unknown qualities. These qualities may vary from providing incorrect labels,
failing to provide a label at all or charging non-uniform fees. The proactive
learning paradigm addresses these problems to bridge the gap between active
learning and more practical real-life scenarios.

In this thesis, we first propose novel active learning methods for classification
and rank learning problems that are shown to be quite effective in various real-
world domains. We then describe a decision-theoretic framework that addresses
learning with multiple predictors having non-ideal characteristics mentioned
above with no apriori information, introducing proactive learning and how it can
address various scenarios. Later, we focus on more specific aspects of proactive
learning, especially coping with multiple fallible (noisy) predictors. We are
interested in estimating the labeling accuracy of the predictors to select the most
reliable ones in the absence of ground truth. We propose two novel approaches
that achieve this goal when first the labeling accuracies are stationary and
second when they vary with time. Our empirical evaluation demonstrates the
ability to infer the predictor accuracy without any prior information in both
synthetic and real-world datasets.

Finally, we frame the problem as unsupervised risk estimation of multiple
predictors as an alternative to the above approaches. The benefit is that it
allows risk to be defined as a parametric function where the parameter governs
the generation of the noisy predictor output. We propose maximum likelihood
estimation framework as a solution. One of the most crucial consequences of this
framework is to train classifiers that will minimize margin-based risk without
using a single labeled example. The likelihood maximization framework yields
statistically consistent estimators and hence effective estimation and training
capabilities as supported by the thorough empirical evaluation.

Acknowledgements

There are many people who have influenced my life as a PhD student. First and foremost, I
would like to thank my advisor Jaime Carbonell. He has been a great mentor through the
entire time. He has taught me how to see the big picture, how to approach a problem and
systematically tackle it and pretty much anything that I now know about doing research.
He has also given me the freedom to pursue what is interesting to me and guided me when
I am stuck. I am grateful for his unlimited support, encouragement and mentorship and I
feel special to be one of his students.

I am also greatly thankful to my thesis committee members: Tom Mitchell, Jeff Schneider
and Guy Lebanon. Tom has always asked the most insightful questions, forcing me to think
about the important issues. He has provided several invaluable comments to make the
thesis more complete and identified issues that I would have otherwise missed. I appreciate
Jeff for his great ideas and timely support. He has always caught the main problems with
my approach and suggested many useful alternatives. The research I have conducted turned
out to be more concrete because of his feedback. Last but not the least, I am grateful to Guy
for his detailed guidance and his tremendously novel ideas which always yielded the most
exciting results. He has helped me a great deal on so many technical levels and explained
his reasoning to help me understand several important issues. I consider myself extremely
privileged to have collaborated with him.

In addition, special thanks to my mentors Chris Burges and Krista Svore at Microsoft
Research when I was an intern in 2008. They have introduced me to the excitement and
challenges of industrial research. Their advice, criticisms and constructive feedback were
critical in my research career to make me a better researcher. I would also like to thank
Paul Bennett for his numerous valuable suggestions and comments when I first started to
work on active learning. Paul has always been very enthusiastic and open to share his ideas
and given me very useful advice on crucial aspects of my research. I owe many heartful
thanks to a lot of good friends at CMU Jon Elsas, Jaime Arguello, Andy Schlaikjer, Andreas
Zollmann, Pradipta Ray, Selen Uguroglu, Matt Bilotti, Grace Yang, and in Pittsburgh Oznur
Tastan, Tankut Dogrul, Soner Yaldiz, Mehmet Gerceker, Leman Akoglu, Hasan Akyol, Emre
Karagozler, Ozge Gokbayrak, Kerem Goren, Basak Isin, Umut Arslan and many others for

vii

viii

their amazing friendship and support. I am also deeply indebted to my dear mother and
sister for their endless love and encouragement.

Last but definitely not the least, I am thankful beyond words to my soon-to-be-husband
Volkan Ediz for he has always believed in me even at the times when I did not believe in
myself. Without his love, I would not have been the person I am today.

External Collaborators

In addition to the acknowledgments, I would like to share credit with my external collabo-
rators. Paul Bennett (Microsoft Research) has contributed to formulate the switching point
efficiently and effectively in the dynamic ensemble method, DUAL, in Chapter 3. He has also
helped to better shape the representation of the experimental results for DUAL. Krishnaku-
mar Balasubramanian (Georgia Institute of Technology) has contributed, in Chapter 7, to the
technical formulations for estimating regression error rates and the experiments regarding
analyzing the estimation error in the regression case. Furthermore, he has conducted the
experiments regarding the unsupervised grid search in Chapter 8 as well as analyzing the
sensitivity of the proposed solution to misspecifications in the prior p(Y).

ix

Notation and Basic Definitions

• x ∈ X = Rd: input data vector d = 1, 2, . . . ,M

• y ∈ Y = {1, . . . , l}: target label

• ŷ ∈ Y: noisy output label

• f : X → Y: predictor function

• ri: rank position of data point xi

• ϑ: real-valued decision threshold for classification

• ϑ̄: integer-valued rank threshold for ranking

• p(x): data density distribution

• p(y | x): posterior class label distribution

• p(x | y): class label conditional density

• F : set of linear functions, i.e. f(x) =< w, x >

• w: weight vector

• Lb ⊆ (X ,Y): set of labeled data

• Un ⊆ X : set of unlabeled data

• Il: set of indices for labeled data

• Iu: set of indices for unlabeled data

• G(V,E): graph with V (set of nodes) and E (set of edges)

• p ∈ V l: path of length l = |p|
• Pi,j: set of all paths that connect xi and xj

xi

xii

• DS: dissimilarity matrix with DSij = d(xi, xj) where d is any well-defined distance
function

• ||.||: Euclidean distance function

• λ: regularization parameter for regularized optimization

• U : utility function

• ET (Y | x,w): conditional entropy of the target label y given instance x and model w

• Dt: distribution over XxX at time t (for boosting)

• H(x): final scoring function for RankBoost, which is a weighted sum of weak rankings

• B: budget for label acquisition

Above is the general notation used throughout the thesis. Individual chapters or sections
may have additional notation which is introduced where mentioned. Different variations of
the general notation is also noted where used.

Contents

1 Introduction 1

2 Literature Review 7

2.1 Related Work on Active Learning . 7

2.2 Related Work on Proactive Learning . 11

3 Active Learning for Classification 15

3.1 Introduction . 15

3.2 The Dual Strategy Active Learning . 16

3.2.1 Motivation for DUAL Ensemble Approach 16

3.2.2 Density Weighted Uncertainty Sampling (DWUS) 17

3.2.3 Description of the DUAL Algorithm 19

3.2.4 Experimental Evaluation . 22

3.3 The Density-Sensitive Paired Sampling . 26

3.3.1 Density-Sensitive Distance Estimation 26

3.3.2 Density-Sensitive Paired Sampling 28

3.3.3 Experimental Evaluation . 34

3.4 Chapter Conclusions . 38

4 Active Learning for Rank Learning 41

4.1 Introduction . 41

4.2 Active Learning via Optimizing AUC . 42

4.2.1 Motivation . 42

xiii

xiv CONTENTS

4.2.2 SVM Active Learning for Ranking . 43

4.2.3 Experimental Evaluation . 47

4.3 Optimizing Estimated Loss Reduction for Active Sampling 50

4.3.1 Motivation . 50

4.3.2 SVM Rank Learning . 51

4.3.3 Active Sampling for RankSVM . 52

4.3.4 RankBoost Learning . 54

4.3.5 Active Sampling for RankBoost . 54

4.3.6 Final Selection . 56

4.3.7 Experimental Evaluation . 57

4.4 Chapter Conclusions . 58

5 From Active to Proactive Learning 61

5.1 Introduction . 61

5.2 Predictor and Instance Selection . 62

5.2.1 Scenario 1: Reluctance . 62

5.2.2 Scenario 2: Fallibility . 66

5.2.3 Scenario 3: Non-uniform Cost . 68

5.3 Experimental Evaluation . 69

5.3.1 Setup for All Three Scenarios . 69

5.3.2 Datasets . 71

5.3.3 Results . 71

5.4 Chapter Conclusions . 75

6 Joint Predictor Accuracy Estimation and Predictor Selection 79

6.1 Introduction . 79

6.2 A Multi-armed Bandit Approach in Stationary Conditions 80

6.2.1 Motivation . 80

6.2.2 Interval Estimation Learning . 81

6.2.3 Interval Estimate Threshold (IEThresh) 82

6.2.4 Experimental Evaluation . 85

CONTENTS xv

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions . . 92

6.3.1 Sequential Bayesian Estimation . 92

6.3.2 Particle Filtering for Estimating Time-Varying Predictor Accuracy . . 95

6.3.3 Particle Filtering for Predictor Selection 97

6.3.4 Experimental Evaluation . 99

6.4 Chapter Conclusions . 108

7 Unsupervised Estimation of Classification and Regression Risks 111

7.1 Introduction . 111

7.2 Unsupervised Risk Estimation Framework 113

7.2.1 Non-Collaborative Estimation of the Risks 114

7.2.2 Collaborative Estimation of the Risks: Conditionally Independent
Predictors . 118

7.2.3 Collaborative Estimation of the Risks: Conditionally Correlated Pre-
dictors . 120

7.2.4 Extensions to Missing Values . 121

7.3 Statistical Analysis of θ̂mle
n and R̂(fj) . 122

7.3.1 Consistency . 122

7.3.2 Asymptotic Variance . 131

7.4 Optimization Algorithms . 133

7.5 Experimental Evaluation . 134

7.6 Chapter Conclusions . 143

8 Unsupervised Margin-Based Risk Estimation 145

8.1 Introduction . 145

8.2 Unsupervised Margin-Based Risk Estimation 147

8.2.1 Asymptotic Normality of fθ(X)|Y . 149

8.2.2 Statistical Consistency . 151

8.3 Experimental Evaluation . 153

8.3.1 Application 1: Estimating Risk in Transfer Learning 153

8.3.2 Application 2: Unsupervised Class Partition with Known Class Prior . 154

xvi CONTENTS

8.3.3 Inaccurate Specification of p(Y) . 162

8.4 Chapter Conclusions . 162

9 Conclusions and Future Directions 165

9.1 Summary . 165

9.2 Future Directions . 169

List of Figures

1.1 Geneology of the thesis work . 3

3.1 Comparison of Density Weighted versus (standard) uniformly weighted Un-
certainty Sampling on two UCI benchmark datasets 22

3.2 Results on 4 different UCI benchmark datasets 24

3.3 Left: Results after adjusting the switching point for DUAL on the V-vs-Y Letter
data. Right: Results when DUAL is adjusted using Equation 3.15 on the splice
data. 25

3.4 Illustrative Example: The plus (minus) sign and circles indicate the positively
(negatively) labeled points and unlabeled data, respectively. xafter and
xbefore indicate the line before and after data is sampled for labeling. The
selected points are labeled either positive (shown in grey) or negative (shown
in black). This example illustrates our motivation to sample two points with
opposite labels at a time instead of a single point. 29

3.5 Graph of P̂ (yi 6= yj | xi, xj) versus ‖xi − xj‖ on g50c dataset 30

3.6 Results on UCI Breast data. The solid horizontal line indicates the 10-fold
cross-validation error using the entire data as the training data. 36

3.7 Results on four different datasets . 36

4.1 Average results on TD2004 (left figure) and TD2003 (right figure). X-axis
shows the # of iterations. 5 instances per query are selected per round. . . . 49

4.2 Comparison of different active learners on TD2003. The horizontal line
indicates the performance when the entire training data is used. Only ∼ 15%
of the training data is actively labeled in total by each method. 57

xvii

xviii LIST OF FIGURES

4.3 Comparison of different active learners on TD2004. The horizontal line
indicates the performance when the entire training data is used. Only ∼ 15%
of the training data is actively labeled in total by each method. 58

5.1 Performance Comparison for Scenario 1 (Reluctance) on the Spambase
dataset. The cost ratio is indicated above each plot. 72

5.2 Performance Comparison for Scenario 1 (Reluctance) on the Adult dataset.
The cost ratio is indicated above each plot. 73

5.3 Performance Comparison for Scenario 1 (Reluctance) on the VY-Letter dataset.
The cost ratio is indicated above each plot. 73

5.4 Performance Comparison for Scenario 2 (Fallibility) on the VY-Letter dataset.
The cost ratio is indicated above each plot. 75

5.5 Change in performance of each baseline with and without clustering on
Spambase. The type of baseline is given in the title. The cost ratio is 1:3. . . 76

5.6 Comparison of different algorithms under non-uniform cost structures (Sce-
nario 3) on Spambase, Face and V-Y Letter datasets, respectively. a) (Top
panel) Fixed-Cost predictor has Cost1 b) (Bottom Panel) Fixed-Cost predictor
has Cost2. 77

6.1 Average classification error vs. total number of predictor queries on six
benchmark datasets. Number of predictors is k = 10 and the predictor
accuracies are selected uniformly at random within the range [.5, 1]. The
solid curve indicates IEThresh in all graphs. The differences are statistically
significant based on a two-sided paired t-test at 95% confidence level. 84

6.2 Number of times each predictor is queried vs. the true predictor accuracy.
Each predictor corresponds to a single bar. Each bar is multicolored where
each color shows the relative contribution. Blue corresponds to the first 10
iterations, green corresponds to an additional 40 iterations and red corre-
sponds to another additional 100 iterations. The bar height shows the total
number of times an predictor is queried for labeling by IEThresh during first
150 iterations. 85

6.3 Average classification error vs. total number of predictor queries on ringnorm
dataset. For the top left figure, accuracy ∈ [.8, 1] for kgood = 5 predictors
and accuracy ∈ [.5, .7] for the remaining kbad = 5 predictors. kgood decreases
down to 1 and kbad increases up to 9 from left to right, top to bottom. 86

LIST OF FIGURES xix

6.4 Average classification error vs. total number of predictor queries on UCI
mushroom dataset. For the top left figure, accuracy ∈ [.8, 1] for kgood = 5
predictors and accuracy ∈ [.5, .7] for the remaining kbad = 5 predictors. kgood
decreases down to 1 and kbad increases up to 9 from left to right, top to bottom. 89

6.5 Total number of predictor queries required to reach a target accuracy is
plotted on UCI image dataset. For the top left figure, accuracy ∈ [.8, 1]
for kgood = 5 predictors and accuracy ∈ [.5, .7] for the remaining kbad = 5
predictors. kgood decreases down to 1 and kbad increases up to 9 from left to
right, top to bottom. 90

6.6 Total number of predictor queries required to reach a target accuracy is
plotted on UCI spambase dataset. For the top left figure, accuracy ∈ [.8, 1]
for kgood = 5 predictors and accuracy ∈ [.5, .7] for the remaining kbad = 5
predictors. kgood decreases down to 1 and kbad increases up to 9 from left to
right, top to bottom. 91

6.7 The Hidden Markov Model structure for the time-varying accuracy of a
predictor. The state sequence φt is an unobserved first-order Markov process.
The observation zt is dependent only on the current state φt for all t = 1, 2, 95

6.8 The pseudo-code for the basic filtering algorithm 97

6.9 Outline of the SFilter algorithm. 100

6.10 SFilter selects the sources when they are relatively highly accurate even in
the skewed case where there are only a few good sources to begin with.
SFilter also detects when the initially bad sources become more favorable
later and begins exploiting them. 102

6.11 SFilter is able to detect the consistent increase or decrease in any quality and
adopts quickly by choosing the predictors when they are reliable, though
with occasional exploration attempts. 103

6.12 SFilter’s estimate of the true marginal label distribution P (y = 1) = 0.8
improves over time. In fact, it converges to the true distribution with more
samples. 104

6.13 Shows how SFilter tracks the true predictor accuracy. Each graph corresponds
to a different predictor. The solid red line indicates the true accuracy of the
predictor whereas the dotted blue line shows the expected accuracy estimated
by SFilter. This is the result of a single run, though highly typical. SFilter is
able to track the tendency of the true accuracy quite well with occasional
temporal lags. 105

xx LIST OF FIGURES

6.14 Measuring predicted label quality by training and testing a classifier on 4
UCI datasets by all three methods. The y-axis indicates the accuracy of the
classifier on the test set, and the x-axis indicates the number of predictor
queries. The horizontal line shows the performance of a classifier trained on
the gold standard labels. 107

6.15 Results using 5 actual classifiers as predictors. The performance of each
classifier varies over time. Their outputs on a test set are used to predict the
true labels. A meta-classifier is trained using these labels and tested on a
held-out set for performance evaluation. The predicted labels obtained by
SFilter are significantly more effective in improving the data quality. 108

7.1 A plot of the loglikelihood functions `(θ) in the case of classification for k = 1
(left, θtrue = 0.75) and k = 2 (right, θtrue = (0.8, 0.6)>). The loglikelihood
was constructed based on random samples of unlabeled data with sizes
n = 100, 250, 500 (left) and n = 250 (right) and p(y = 1) = 0.75. In the
left panel the y values of the curves were scaled so their maxima would be
aligned. For k = 1 the estimators θ̂mle (and their errors |θ̂mle − 0.75|) for
n = 100, 250, 500 are 0.6633 (0.0867), 0.8061 (0.0561), 0.765 (0.0153). As
additional unlabeled examples are added the loglikelihood curves become
steeper and their maximizers become more accurate and closer to θtrue. . . . 119

7.2 A plot of the loglikelihood function `(θ) in the case of regression for k = 1
with θtrue = 0.3, τ = 1, µy = 0 and σy = 0.2. As additional unlabeled exam-
ples are added the loglikelihood curve become steeper and their maximizers
get closer to the true parameter θtrue resulting in a more accurate risk estimate.119

7.3 Left: Average value of |θ̂mle
n − θtrue| as a function of θtrue and p(y = 1) for

k = 1 classifier and n = 500 (computed over a uniform spaced grid of 15× 15
points). The plot illustrates the increased accuracy obtained by a less uniform
P (y). Right: Fisher information J(θ) for k = 1 as a function of θtrue and P (y).
The asymptotic variance of the estimator is J−1(θ) which closely matches the
experimental result in the left panel. 135

7.4 Left: Scatter plot contrasting the true and predicted values of θ in the case
of a single classifier k = 1, p(y = 1) = 0.8, and n = 500 unlabeled examples.
The displayed points were perturbed for improved visualization and the
striped effect is due to empirical evaluation over a discrete grid of θtrue

values. Right: mae(θ̂mle, θtrue) as a function of the number of unlabeled
examples for different number of classifiers (θtrue

i = p(y = 1) = 0.75) in the
collaborative case. The estimation error decreases as more classifiers are
used due to the collaborative nature of the estimation process. 136

LIST OF FIGURES xxi

7.5 Left: Scatter plot contrasting the true and predicted values of θ in the case of
a single regression model k = 1, σy = 1, and n = 1000 unlabeled examples.
The displayed points were perturbed for improved visualization and the
striped effect is due to empirical evaluation over a discrete grid of θtrue

values. Right: mae(θ̂mle, θtrue) as a function of the number of unlabeled
examples for different number of regression models (θtrue

i = σy = 1) in the
collaborative case. The estimation error decreases as more regression models
are used due to the collaborative nature of the estimation process. 136

7.6 Comparison of collaborative and non-collaborative estimation for k = 10
classifiers. mae(θ̂mle, θtrue) as a function of n is reported for θtrue

i = 0.75 ∀ki
and P (y = 1) = 0.75. The colored lines represent the estimation error for
each individual classifier and the solid black line represents the collaborative
estimation for all classifiers. The estimation converges to the truth faster in
the collaborative case than in the non-collaborative case. 137

7.7 Comparison of supervised and unsupervised estimation for different values
of classifiers with k = 1, 3, 5, 10. Supervised estimation uses the true labels
to determine the accuracy of the classifiers whereas in the unsupervised
case the estimation proceeds according to the collaborative estimation frame-
work. Despite the fact that the supervised case uses labels the unsupervised
framework reaches similar levels by increasing the number of classifiers. . . 138

7.8 The figure compares the estimator accuracy assuming that the marginal p(y)
is misspecified. The plots draw mae(θ̂mle, θtrue) as a function of n for k = 1
and θtrue = 0.75 when P true(y = 1) = 0.8 (left) and P true(y = 1) = 0.75
(right). Small perturbations in P true(y) do not affect the results significantly;
interestingly over-specifying P true(y = 1) leads to more accurate estimates
than under-specifying (misspecification closer to uniform distribution) . . . 139

7.9 Mean prediction accuracy for the unsupervised predictor combination scheme in
(7.7) for synthetic data. The left panel displays classification accuracy and the right
panel displays the regression accuracy as measured by 1− 1

m

∑m
i=1(ŷnew

i − ynew
i)2.

The graphs show that in both cases the accuracy increases with k and n in accordance
with the theory and the risk estimation experiments. 140

7.10 mae(θ̂mle, θtrue) as a function of n for different number of annotators k on
RTE (left) and TEMP (right) datasets. Left: n = 100, P (y = 1) = 0.5 and
θtrue = {0.85, 0.92, 0.58, 0.5, 0.51}. Right: n = 190, P (y = 1) = 0.56 and
θtrue = {0.93, 0.92, 0.54, 0.44, 0.92}. The classifiers were added in the order
specified. 140

xxii LIST OF FIGURES

7.11 mae(θtrue, θ̂mle) as a function of the test set size on the Ringnorm dataset.
p(y = 1) = 0.47, and θtrue is indicated in the legend in each plot. The
four panels represent mostly strong classifiers (upper left), a mixture of
strong and weak classifiers (upper right), mostly weak classifiers (bottom
left), and mostly very weak classifiers (bottom right). The figure shows
that the framework is robust to occasional deviations from the assumption
regarding better than random guess classification accuracy (upper right
panel). However, as most of the classifiers become weak or very weak, the
collaborative unsupervised estimation framework results in worse estimation
error. 142

7.12 mae(θ̂mle, θtrue) for the domain adaptation (n = 1000, p(y = 1) = 0.75) and
20 newsgroup (n = 15, 000, p(y = 1) = 0.05 for each one-vs-all data). The
unsupervised non-collaborative estimator outperforms the collaborative esti-
mator due to violation of the conditional independence assumption. Both
unsupervised estimators perform substantially better than the baseline train-
ing error rate estimator. In both cases the results were averaged over 50
random train test splits. 143

8.1 Centered histograms of fθ(X)|Y = 1 overlayed with the pdf of a fitted Gaussian
for multiple θ vectors (five rows: random θi ∼ U(−1/2, 1/2), Fisher’s LDA, logistic
regression, l2 regularized logistic regression, and l1 regularized logistic regression-all
regularization parameters were selected by cross validation) and datasets (columns:
Reuters RCV1 text data, MNIST digit images, and face images). The fifteen panels
show that even in moderate dimensionality (RCV1: 1000 top words, MNIST digits:
784 pixels, face images: 400 pixels) the assumption that fθ(X)|Y is normal holds
well (except perhaps for l1 regularization in the last row which promotes sparse θ). 152

8.2 The dependence of |R̂n − Rn|/Rn for logoss (top) and hingeloss (bottom), based
on synthetic data, on the number of unlabeled examples n and how it changes with
the classifier accuracy (acc) and the label marginal p(Y). The logloss estimation
generally decreases nicely with n (approaching 1% relative error at n = 1000 and
decaying further). The estimation error decreases with the accuracy of the classifier
(left) and with non-uniformity of p(Y). 155

LIST OF FIGURES xxiii

8.3 Error in estimating logloss for logistic regression classifiers trained on one 20-
newsgroup classification task and tested on another. We followed the transfer
learning setup which may be referred to for more detail. The train and test sets
contained samples from two top categories in the topic hierarchy but with different
subcategory proportions. As a result, the train and test distributions are similar but
not identical. The first column indicates the top category classification task. The
second column indicates the empirical log-loss Rn calculated using the true labels of
the test set (8.8). The third and forth columns indicate the absolute and the relative
errors of the unsupervised logloss estimates. The fifth column n is the test set size
and the last column is the label marginal p(y = 1). 156

8.4 Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on RCV1 data. The panels display the performance of the
learned classifier in terms of the unsupervised R̂n and the supervised Rn logloss
estimates based on the training set (left), based on the test set (middle) and the test
classification error rate (right). The performance criteria are plotted as a function
of the iteration number of Algorithm 9 (gradient descent). The figure shows that
the algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for
more detail. 157

8.5 Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on RCV1 data. The panels display the performance of the
learned classifier in terms of the unsupervised R̂n and the supervised Rn logloss
estimates based on the training set (left), based on the test set (middle) and the test
classification error rate (right). The performance criteria are plotted as a function
of the iteration number of Algorithm 10 (grid search). The figure shows that the
algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for
more detail. 158

8.6 Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on the MNIST data. The panels display the performance of the
learned classifier in terms of the unsupervised R̂n and the supervised Rn logloss
estimates based on the training set (left), based on the test set (middle) and the test
classification error rate (right). The performance criteria are plotted as a function
of the iteration number of Algorithm 9 (gradient descent). The figure shows that
the algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for
more detail. 159

xxiv LIST OF FIGURES

8.7 Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on MNIST data. The panels display the performance of the
learned classifier in terms of the unsupervised R̂n and the supervised Rn logloss
estimates based on the training set (left), based on the test set (middle) and the test
classification error rate (right). The performance criteria are plotted as a function
of the iteration number of Algorithm 10 (grid search). The figure shows that the
algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for
more detail. 160

8.8 Performance of unsupervised classifier training on RCV1 data (top class
vs. classes 2-5) for misspecified p(Y). The performance of the estimated
classifier (in terms of train set empirical logloss Rn (8.8) and test set error
rate measured using held-out labels) as a function of the amount of deviation
between the assumed and true p(Y = 1) (true p(Y = 1) = 0.3)). The
classifier performance is extremely good when the assumed p(Y) is close to
the truth and degrades relatively gracefully with the amount of misspecification.164

9.1 A table summary of all the techniques described in this thesis. The left column
indicates the name of the algorithm followed by its major functionality on the middle
column. The last column indicates the assumptions made for the corresponding
technique. 166

List of Tables

3.1 Characteristics of the Datasets, Values of the Parameters and p-value for
significance tests after 40 iterations . 23

3.2 Properties of the datasets used in Paired Sampling 35

3.3 Comparison of five different active learners on all datasets 37

4.1 Performance and Selection Time Comparison. Iter: the # of iterations. Loss-
Min: the proposed method, Ent: entropy-based method, Diverse: Divergence-
based sampling, Un: maximum-uncertainty sampling. Time: training time +
ranking time + instance selection time. 50

5.1 Predictor properties and costs. BC is the clustering budget, B is the entire
budget. Uncertain % is the percentage of the uncertain data points. Cost
Ratio is the ratio of the cost of the unreliable predictor to the cost of the
reliable one. 70

5.2 Overview of Datasets. +/- is the positive/negative ratio. Dim is the dimen-
sionality. 71

5.3 Results on different datasets for two scenarios. Cost column shows the total
cost spent to reach the corresponding error rate. The best result on each row
is given in bold. 74

6.1 Properties of six datasets used in the experiments. All are binary classification
tasks with varying sizes. 83

6.2 The size and the annotator accuracies for each AMT dataset. 85

6.3 Relative Performance Comparison on RTE dataset. The last column indicates
the total number of queries issued to predictors by each method. IEThresh
performs accurately with a moderate labeling effort as opposed to intensive
labeling by Repeated. 88

xxv

xxvi LIST OF TABLES

6.4 Relative Performance Comparison on TEMP dataset. The last column in-
dicates the total number of queries issued to predictors by each method.
IEThresh performs accurately with a moderate labeling effort as opposed to
intensive labeling by Repeated. 88

6.5 Performance measurement of SFilter w.r.t increasing σ values in the presence
of 10 predictors. 101

6.6 Robustness analysis of SFilter against small perturbations in estimated vs.
true σ when the true σ is equal to 0.02. The analysis is performed over 500
instances drawn from P (y = 1) = .75, where y ∈ {0, 1} 101

6.7 Performance measurement of SFilter for various quality predictors. Uniform
denotes the predictors’ initial accuracies are uniformly distributed. Skewed
denotes there are only a few good predictors while the majority are highly
unreliable. P (y = 1) = 0.75. 102

6.8 Properties of the UCI datasets. All are binary classification problems. 106

Chapter 1

Introduction

In most machine learning domains, unlabeled data is available in abundance, but obtaining
class labels or ranking preferences requires extensive human effort, sometimes from experts
with very limited availability. For instance, it is easy to crawl the web, but much more costly
to pay human annotators to carefully examine the web documents in order to assign topics
or relevance-based judgments in a document retrieval scenario. It is also simple to collect
images, but much harder to obtain linguistic content labels. For tasks such as classifying
galaxies in the Sloan Sky Catalog, scarce expertise is required. Thus, it is crucial to design
methods that will considerably reduce the labeling effort without sacrificing a significant
loss of generalization accuracy.

The active learning paradigm addresses this challenge. In active learning, a few labeled
instances are typically provided together with a large set of unlabeled instances. The
objective is first to select optimal instance(s) for an external oracle to label, and then re-run
the learning method with the additional labels to minimize the prediction error, i.e. to
improve performance. The active learning task attempts to optimize learning by selecting
the most informative instances to be labeled, where informativeness is typically defined as
maximal expected improvement in accuracy. Several studies including our own [Tong and
Koller, 2000; Roy and McCallum, 2001; Nguyen and Smeulders, 2004; Donmez et al., 2007;
Donmez and Carbonell, 2008b] show that active learning greatly helps reduce the labeling
effort in various domains. However, active learning relies on unrealistic assumptions, largely
swept under the proverbial carpet thus far. For instance, active learning assumes there is
a unique omniscient oracle. In real life, it is possible and more general to have multiple
sources of information with differing reliabilities or areas of expertise. Active learning also
assumes that the single oracle is perfect, always providing a correct answer when requested.
In reality, though, a “predictor” (we use the term to refer to any source of information) may
be incorrect (fallible) with some probability (either fixed or time-varying or dependent on
the difficulty of the question). Moreover, a predictor may be reluctant - it may refuse to

1

2 Chapter 1: Introduction

answer if it is too uncertain or too busy. Finally, active learning presumes the predictor is
either free or charges uniform cost in label elicitation. Such an assumption is naive since
cost is likely to be regulated by difficulty (amount of work required to formulate an answer)
or other factors. We propose, in this thesis, proactive learning as a new paradigm that relaxes
these assumptions and enables active learning to reach practical applications.

Figure 1 depicts a geneology of the thesis work. First, we developed active learning
algorithms for classification and ranking learning using machine learning techniques. For
classification, our main focus was to combine the uncertainty principle with the underlying
instance-space density to sample instances in the maximally uncertain and highly dense
regions [Donmez et al., 2007; Donmez and Carbonell, 2008a]. We also investigated different
strategies for active rank learning. We adopted a theoretically motivated loss minimization
framework leading to effective, efficient and fast converging results. We proposed sampling
based on maximizing the estimated loss differential over unlabeled data in [Donmez and
Carbonell, 2008b]. Similarly in [Donmez and Carbonell, 2009], we proposed a sampling
strategy that selects instances minimizing the hinge rank loss in a SVM rank learning
setting. Both methods lead to promising results with significant improvements against
state-of-the-art baselines in the literature [Brinker, 2004; Yu, 2005; Amini et al., 2006;
Rajaram et al., 2007].

More recently, we studied proactive learning with reluctant, fallible and variable-cost
predictors by formulating active label sampling as inherently a decision-theoretic problem.
We assumed that the different predictor properties can be defined as a function of the query
difficulty, i.e. the level of difficulty to classify the sampled instance, and analyzed each
property: reluctance, reliability, and cost variability. We proposed an effective decision-
theoretic approach to sample the optimal instance to be labeled as well as the optimal
predictor to label it. Our empirical evaluation on benchmark datasets show promising
results.

The remainder of the thesis focuses on learning with multiple fallible predictors. Many
inductive learning applications rely on accurately labeled instances since they aim at
maximizing the classification accuracy based on a set of training instances. The maximum
accuracy achieved depends strongly on the quality of the labeling process. However, what
happens if there are multiple predictors with different but unknown labeling accuracies?
With the recent advent of inexpensive and scalable online annotation tools, such as Amazon’s
Mechanical Turk (http://www.mturk.com), the labeling process has become more vulnerable
to noise - and without prior knowledge of the accuracy of each individual predictor. For
some simple tasks, these tools are shown to be reliable in producing quality labels on
average [Snow et al., 2008], but for other tasks quality is highly variable [Ambati et al.,
2010]. It is still unclear to what extent such tools can be trusted for tasks that require
expertise higher than unvetted average annotators can handle. For instance, multiple
experts might not agree on the medical diagnosis of a clinical case, or on the primary topic
of a document, even if we hypothesize the existence of a ground truth (or consensus).

3

Rank
Learning

Ac!ve
Learning

Classifica!on

Loss
Differen!al
[ICML ‘08]

AUC Op!miza!on
[ECIR ‘09]

DUAL Ensemble
[ECML ‘07]

Paired Sampling
[ISAIM ’08]

Fallible
Predictors

Reluctant
Predictors

Variable-Cost
Predictors

Decision-Theore!c
Proac!ve Learning
[CIKM ‘08]

Sta!onary
Fallibility
[KDD ‘09]

Non-Sta!onary
Fallibility
[SDM ‘10]

Risk Es!ma!on

0-1 Risk
[JMLR ‘10]

Margin-Based Risk +
Unsupervised Classifica!on
[ICML_sub ‘10]

Figure 1.1: Geneology of the thesis work

4 Chapter 1: Introduction

In remote-sensing applications, image analysis is often a manual process with subjective
labeling by multiple labelers. Furthermore, using human annotators is not the only way
to acquire labels. Extensive machinery and different lab experiments are often applied in
protein structure prediction to determine which fold a protein sequence assumes. In medical
diagnosis, blood or urine tests, certain type of biopsy, etc. are used to diagnose a patient
(i.e. to produce diagnosis labels). These procedures range from cheap and partially reliable
to more costly and more reliable. Hence, it is essential to use multiple sources to increase
confidence while maintaining a trade-off between quality and cost. This requires estimating
the accuracy of multiple prediction sources and identifying the highly accurate ones to rely
on.

We have analyzed learning with multiple noisy predictors in the absence of gold standard
labels in [Donmez et al., 2009; Donmez et al., 2010a]. Donmez et al. [2009] considers
the case where the labeling accuracies of the predictors are fixed over time. It proposes
an Interval Estimation learning technique which naturally balances the exploration vs.
exploitation trade-off. It relies on majority voting over the responses of individual predictors
themselves to evaluate the performance of each. Another dimension we address is that in
many application areas providers of information may exhibit varying accuracy over time. It
is, therefore, useful to track such variation in order to know when and how much to rely
upon their answers. For instance, scientific equipment used over time may lose calibration,
and thus gradually increase measurement error, until calibrated or upgraded causing a
return to earlier peak performance or better. Loan officers at financial institutions may
apply decision criteria increasingly at odds with the economic environment (e.g. leading
to financial crises). Text topic labelers, on the other hand, become sloppier with time
due to fatigue effects, but may be refreshed in future labeling sessions. The same is true
for clinicians diagnosing ailments after pro-longed on-call sessions. Lab technicians may
hone their skills over time, and thus run more accurate experiments with increasingly
reliable results. In [Donmez et al., 2010a], we tackle the problem of learning from multiple
predictors with time-varying accuracies. We propose a framework based on Sequential
Bayesian Estimation to learn the expected accuracy at each time step while simultaneously
deciding which predictors to query for a label in an incremental learning framework.
The experimental results demonstrate the strength of the proposed method in terms of
estimating the time-varying reliability of multiple predictors and producing quality labels
without extensive label queries.

Finally, we have considered risk estimation using exclusively unlabeled data. Tradition-
ally, the risk of a predictor f : X → Y is estimated through empirical evaluation using the
true labels. However, there are various reasons that lead us to use only unlabeled data to
estimate the risks. Consider organizations using training sets with private labels to construct
predictors. Then, labeled data is not available due to privacy concerns. For example, in
medical diagnosis prediction, the predictors f1, . . . , fk may be obtained by k hospitals, each
using private internal labeled data. Each hospital releases its predictor to the public which

5

uses a separate unlabeled set to estimate the risks R(f1), . . . , R(fk). Companies releasing
predictors to clients as black boxes (without their training data) are other examples, such
as entity labelers for text mining products. The main reason for them not to share their
training data is to protect their intellectual property. This is a common practice in the
consulting and analytics industry.

Domain adaptation or transfer learning in general is another example to motivate the
use of unlabeled data for risk estimation. Transfer learning addresses the challenge of
learning classifiers (or regressors) in one domain and applying them in a different but
related domain, e.g. training classifiers in the newswire domain and testing them in the
biomedical documents. This phenomenon is important in many different areas, especially in
NLP since it is often the case that labeled data is available in one domain (source domain)
but the aim is to make predictions in another domain (target domain) [Daumé III, 2007].
Furthermore, predictors might be trained on labeled data drawn from the past but are
used at test time to predict data drawn from a different distribution associated with the
present time. Since the training and test datasets are drawn from different distributions,
training error will not provide an accurate estimate for the test error of the predictor. A
similar situation might arise in personalization tasks such as personalized spam filtering.
For instance, some messages could be considered either spam or nonspam by different
people. Even optimal filters will perform poorly on such emails especially if they are
trained considering only the preferences of a specific set of users. Therefore, it is crucial to
estimate how well such predictors perform on new datasets for which no labels are available.
We propose in [Donmez et al., 2010c] a maximum likelihood estimator for 0-1 risk (for
classification) and mean squared error (for regression) that is proven to be statistically
consistent. One of the side benefits of the proposed framework is that it allows making
predictions on the new test examples using the estimated risk and the noisy outputs of the
predictor(s).

In [Donmez et al., 2010b], we extend the risk estimation framework to work with more
general risks such as margin-based risk functions. We focus on estimating margin-based risk
functions such as log-loss, hinge-loss, exponential loss, etc. through a likelihood maximiza-
tion technique over the unlabeled data. We prove that the technique is statistically consistent
for high-dimensional linear classifiers, especially suitable for text and image domains. The
unsupervised risk estimate framework allows building unsupervised algorithms that aims to
minimize the estimated risk without using a single labeled example. This framework further
leads to an unsupervised clustering with known class priors p(y). Our empirical analyses
demonstrate that the estimated risk minimizers yield highly accurate class partitioning of
the data in different large-scale real-world benchmark datasets. The details are described in
[Donmez et al., 2010b] and Chapter 8.

The rest of the thesis is organized as follows. In the next chapter, we review the
literature on active and proactive learning to give the reader the necessary background
for the following material. In Chapter 3, we describe our contributions on active learning

6 Chapter 1: Introduction

for classification. We propose two novel ensemble methods. Our first method, DUAL,
estimates the best operating range for density-weighted uncertainty sampling and standard
uncertainty sampling. Our second contribution defines a utilify function which favors
data points with close proximity to a large number of uncertain points. Furthermore,
it aims to sample pairs with opposite class labels to maximize straddling the decision
boundary. It relies on the cluster assumption that the decision boundary should lie in low
density regions of the input space to estimate the distant pairs with opposite labels. In
Chapter 4 we describe the methods we have developed for active rank learning. These
methods both consider efficient ways to estimate the effect of candidate examples on the
loss by their contribution to the current loss or its future estimate. We then introduce in
Chapter 5 a decision-theoretic approach to proactive learning concerning different scenarios
to investigate predictor properties such as fallibility, reluctance and variable-cost. Chapter 6
deals with noisy predictors and analyzes joint predictor accuracy estimation and predictor
selection for both stationary and non-stationary cases of predictor accuracy. The common
attribute of both approaches is their ability to balance the exploration vs. exploitation
trade-off. Chapters 7 and 8 both consider unsupervised risk estimation where the former
focuses on classification and regression error rates and the latter focuses on margin-based
risk estimation for linear classifiers. A likelihood maximization framework is adopted in
both cases, leading to statistically consistent estimators. Chapter 8 also proposes a novel
unsupervised class partitioning using exclusively unlabeled data based on the margin-based
risk estimation framework. Finally, we offer our conclusions and summarize the thesis
contributions in Chapter 9.

Chapter 2

Literature Review

2.1 Related Work on Active Learning

Active learning has received considerable interest among researchers over the past 15 years.
There have been several studies investigating the use of active learning in classification, rank
learning, regression, and function optimization. In this chapter, we review the literature on
active learning for classification and rank learning including our own contributions.

For classification, there are a number of active learning algorithms. The Query-by-
Committee algorithm [Seung et al., 1992; Freund et al., 1997] is among the earliest work.
The method samples a set of classifiers from a fixed prior distribution over hypotheses.
Then, the example leading the highest disagreement between the committee of classifiers is
chosen to be labeled. Liere and Tadepalli [2007] uses a similar notion of a commmittee to
solve active learning for text categorization using Winnow classifiers. Cohn et al. [1995]
initiated a statistically optimal method that selects the example, once labeled and added
to the training data, is expected to result in the lowest error rate on future test examples.
Unfortunately, this method cannot scale well to very large datasets due to its repeatedly
re-training nature. Roy and McCallum [2001] proposed a practical solution to this problem
by using Monte Carlo estimation of error reduction, and described an efficient incremental
training procedure for Naive Bayes classifier. This technique is claimed to be applicable
to any learning method where incremental training is efficient. However, it is still not
practical for many large scale real-life applications, such as rank learning for document
retrieval. In order to address this issue, we proposed sampling based on an estimation of
loss differential without having to re-train the learning method for each candidate [Donmez
and Carbonell, 2008b]. We have observed very encouraging results on benchmark test

7

8 Chapter 2: Literature Review

corpora for document retrieval. Details are provided in Section 4.3.

Uncertainty Sampling originated by [Lewis and Gale, 1994] chooses the example which
the current learner is most uncertain about. Tong and Koller [2000] adopted the same idea
and applied it to a support vector machine (SVM) classifier. They provided a theoretical mo-
tivation based on shrinking the version space as much as possible; in other words, selecting
the example that will minimize the maximum expected size of the version space. In case of
linear discriminant functions, this corresponds to the selection of the unlabeled example
with the smallest margin [Tong and Koller, 2000]. Despite the theoretical justification of the
version-space reduction methods, they suffer from wasting time eliminating areas of the
parameter space that have no direct effect on the error rate, but may have indirect effects.
Hence, these methods are not immune to selecting outliers [McCallum and Nigam, 1998]
since they have high uncertainty, but getting their labels do not help the learner improve the
generalization performance. Nevertheless, uncertainty sampling plays a key role in many
studies in the literature, including our previous work, which will be explained in detail in
Chapter 3.

There are also several active learning strategies that incorporate the underlying data
distribution into the selection mechanism. Most of these methods propose ways to trade-off
an uncertainty measure with the density of the sample. Xu et al. [2003] uses the k-means
algorithm to cluster the samples lying inside the margin of an SVM classifier trained on the
current labeled set. The cluster centers are then selected for labeling. Shen and Zhai [2005]
adopts the same idea in an information retrieval scenario, and uses the k-medoid algorithm
for the top relevant examples. Similar active learning schemes are proposed by [Tang et
al., 2002] for natural language parsing, and by [Zhang and Chen, 2002] for content-based
information retrieval. In [McCallum and Nigam, 1998], a naive Bayes classifier is trained
on both labeled and unlabeled data using an EM algorithm. Under the assumption that
unlabeled data dominates the labeled data, the training algorithm clusters the dataset where
labeled data is used for initialization only. Clustering information, then, contributes to the
selection such that an uncertainty measure is weighed with the density of the example.
Another active learning approach that utilizes the uncertainty and the density criteria is
our paired sampling strategy described in [Donmez and Carbonell, 2008a]. The difference
between our method and the density-based methods introduced above is that our method
relies on balanced sampling on both sides of a decision boundary rather than sampling
disproportionately on one side. Furthermore, it exploits the natural grouping (clustering)
of the data to effectively reduce distance as a function of local density, and maximizes
a utility-based conditional entropy criterion for sampling. We have shown that this new
density-sensitive method yields significantly superior performance over multiple datasets
against other popular active learning sampling methods including representative sampling,
uncertainty sampling and density-only sampling.

Nguyen and Smeulders [2004] suggested a probabilistic framework where clustering is
combined with a discriminative model. The motivating idea behind their method is that

2.1 Related Work on Active Learning 9

examples lying on the classification boundary, in other words most uncertain examples,
are informative, but using information about the underlying data distribution helps to
select better examples. Their method favors higher density examples lying close to the
decision boundary. Those examples are assumed to have the largest contribution to the
current error. Though their strategy works well in practice, especially by reducing the error
quickly, it exhibits very slow additional learning after substantial sampling. On the other
hand, standard uncertainty sampling initially has a slower learning rate, but gradually
outperforms their method, as shown in our previous work [Donmez et al., 2007]. The
reason is that density based methods sample from maximal-density unlabeled regions, and
thus help establish the initial classification boundary where it affects the most remaining
unlabeled data. On the other hand, uncertainty sampling fine tunes a decision boundary
by sampling the regions where the classifier is least certain, regardless of the distribution
of the unlabeled data. Our algorithm, DUAL [Donmez et al., 2007], tackles this issue by
proposing a principled ensemble-based approach that selects which sampling method to
apply based on estimated residual classification error reduction. DUAL incorporates a robust
combination of density weighted and uniform uncertainty sampling. We have empirically
shown that DUAL combines the best of both worlds, and leads to superior performance
across various domains [Donmez et al., 2007]. Details of the DUAL implementation can be
found in Section 3.2.

Baram et al. [2003] presented an online algorithm (COMB) that selects among three
alternative active learning strategies using a variant of the multi-armed bandit algorithm to
decide the strategy to be used at each iteration. Albeit the similarities between DUAL and
COMB, there is a major distinction. COMB aims to select which sampling method is optimal
for a given dataset, whereas DUAL focuses on selecting the operating range among the
sampling methods. Other ensembled active learning methods have appeared in literature.
Melville and Mooney [2003] extends the query-by-committee algorithm by constructing
diverse committees by employing artificial training examples. Co-testing [Muslea et al.,
2000] is another ensemble active learning strategy inspired by the multi-view approach
called co-training [Blum and Mitchell, 1998]. It utilizes two redundant views of the training
data to create an ensemble and selects the unlabeled instance where two classifiers disagree.

Recently, there have been attempts to address the challenges in active sampling for rank
learning. Brinker [2004] uses a notion of the margin as an approximation to reducing
the volume of the version space. The margin in the ranking scenario is defined as the
minimum difference of scores between two instances assuming the ranking solution is
a real-valued scoring function. Yu [2005] adopted the same notion of margin for SVM
rank learning and proposed a batch mode selection that minimizes the sum of the rank
score differences of all data pairs within the batch of samples. Yu proposed an efficient
implementation which considers only the rank-adjacent pairs and showed that this strategy
is optimal in terms of selecting the most ambiguous set of samples with respect to the ranking
function. The major drawback of this margin-based sampling method of [Brinker, 2004;

10 Chapter 2: Literature Review

Yu, 2005] is that a scoring function for ranking may assign very similar scores to two relevant
or two non-relevant instances. Such instances do not carry any additional information for the
rank learner to distinguish between the relevant and the non-relevant data; hence, cannot
help improve the current ranking function. A similar observation is made by [Amini et al.,
2006], which proposed a divergence-based active sampling method for rank learning. The
proposed method selects the samples at which two different ranking functions maximally
disagree. One of the two functions is the current ranking function trained on the labeled
data, and the other is a randomized function obtained by cross-validation [Amini et al.,
2006]. The divergence-based strategy is effective only when a sufficiently large initial
labeled data is available, which is impractical for many real-life ranking applications, such
as document retrieval.

We have proposed two different sampling methods for rank learning in [Donmez
and Carbonell, 2009] and [Donmez and Carbonell, 2008b]. Both methods take into
account the loss minimization factor due to its direct effect on the performance of the
ranker. To the best of our knowledge, none of the sampling methods for ranking have
directly addressed loss minimization before. Hence, our work is the fist such attempt that
relies on loss minimization for active learning in ranking. Our method in [Donmez and
Carbonell, 2009] relies on the relationship between the area under the ROC curve (AUC)
and loss minimization. Steck [2007] has shown that minimizing hinge loss is an accurate
approximation for maximizing AUC. In retrospect, SVMs should be good rankers since
they optimize a ranking quality measure, namely the AUC. We use this relationship to
sample instances with the largest expected hinge rank loss (a ranking variant of hinge loss
defined in [Steck, 2007]. Our empirical results demonstrate that maximizing the AUC is
well correlated with maximizing other rank evaluation metrics, such as MAP and NDCG.
Our sampling method also significantly outperforms the margin-based heuristic and the
divergence-based sampling method of [Amini et al., 2006].

The method we propose in [Donmez and Carbonell, 2008b] targets the expected loss
of a ranking function, and aims to reduce it by sampling the instances that will have a
positive effect on the performance. Specifically, the instances with the highest potential to
update the current ranking function in a favorable way are sampled via maximizing the
expected loss differential. This differential is defined as a function of the estimated error
of a ranker introduced by the addition of the candidate instance. This principle is applied
using RankSVM and RankBoost algorithms as the baselines. Our empirical evaluations on
two TREC benchmark corpora show a significant advantage favoring our method against
the margin-based heuristic of [Brinker, 2004; Yu, 2005] and random sampling.

2.2 Related Work on Proactive Learning 11

2.2 Related Work on Proactive Learning

Proactive learning is a virgin area that has not yet been fully explored. Proactive learning
addresses a major disability in active learning to be practical in real-world situations. Thus
far, active learning methods assume there is a perfect predictor which always provides an
answer at no cost and is never wrong. Such assumptions are not realistic in real-life. First
of all, there is almost always a cost for labeling; i.e. immense lab effort is needed to derive
the topological structure of a large protein. Second, the predictor may not be reliable; i.e. it
may give incorrect answers or no answer at all depending on the query difficulty. Third, not
all queries cost the same; some queries might be genuily harder to find an answer, hence
costs more. Last but not the least, there is no reason to believe there should exist one and
only one predictor. In fact, there might be multiple predictors which charge different fees,
have different expertise and different reliability. Therefore, proactive learning requires joint
optimization of the expected value of information of learning and its cost depending on
the query difficulty, predictor reliability, and so on. This suggests an interestingly complex
decision-theoretic problem where the most cost-effective (highest utility) instance should
be sampled instead of the one with the highest value of information.

We addressed fallible predictors together with reluctant and variable-cost ones in [Don-
mez and Carbonell, 2008c]. That work assumes two experts with differing costs: e.g.
one is the perfectly reliable expert whereas the other is a noisy expert whose reliability
is conditioned on the instances. We further assume that the fallible expert provides a
confidence score together with the label. The confidence score is used to assess the quality
of the expert. The instance-conditional reliability of the fallible expert is estimated via an
exploration phase where the most representative instances are queried and the confidence
is propagated through the neighbors. The paper provides a decision-theoretic framework to
make the optimal instance-expert selection.

Melville et al. [2005] also addresses the cost-sensitivity in active learning in the context
of feature-value acquisition. In some machine learning tasks, the training data has missing
feature values which are often quite expensive to obtain. The goal of active feature-
value acquisition is to incrementally select feature values that are most cost-effective
for improving the performance. Melville et al. propose a selection approach based on
the expected utility of acquiring the value of a feature. The utility of an acquisition is
defined in terms of the improvement in model accuracy per unit cost [Melville et al.,
2005]. Since the true values for the model accuracy (accuracy on the unseen test data)
is unknown, it is estimated by the training set accuracy. If the feature costs are assumed
to be equal, this strategy is similar to the loss reduction principles presented earlier in
several research studies [Nguyen and Smeulders, 2004; Donmez and Carbonell, 2008b;
Roy and McCallum, 2001].

When there is no available gold standard labels, collecting multiple annotations is

12 Chapter 2: Literature Review

becoming a more common practice in the literature. Repeated labeling on the same
data point has been considered by [Sheng et al., 2008; Smyth et al., 1994; Smyth et
al., 1995] because the labels may not be reliable. The focus of [Smyth et al., 1994;
Smyth et al., 1995] is to learn from probabilistic labels in the absence of ground truth
in an image processing application. In their task, the domain experts examine an image
and provide subjective class labels. They provide a probabilistic framework to model the
subjective labeling process and use EM to estimate the model parameters as maximizers
of a likelihood function [Smyth et al., 1995]. Sheng et al. [2008] and Snow et al. [2008]
show that it can be effective to use multiple, potentially noisy labels in the absence of gold
standard. Sheng et al. relies on an active learning framework that uses repeated labeling
and provides conditions where repeated labeling can be effective for improving data quality.
Their results point out that repeated labeling can give additional benefit especially when
the labeling quality is low. Snow et al., on the other hand, collected labeled data through
Amazon Mechanical Turk (www.mturk.com) for simple natural language understanding
tasks. They empirically show high agreement between the existing gold-standard labels
and non-expert annotations. Their analysis is carried out on fairly straightforward tasks
and collecting a reasonably large number of non-experts labels. However, it is unclear if
their conclusions would generalize to other tasks that require better-than-average expertise
and under high label acquisition cost which restricts the total number of labelings one can
afford.

Raykar et al. [2009] propose an EM-based algorithm to estimate the error rate of
multiple annotators assuming conditional independence of the annotator judgments given
the true label. Their method iteratively estimates the gold standard, and measures the
performance of multiple annotators and update the gold standard based on the performance
measures. Dekel and Shamir [2009] offer a solution to identify low-quality or malicious
annotators. But their framework is rather limited in the sense that it is based only on
Support Vector Machines (SVMs). More importantly, they assume that each annotator is
either good or bad, not in a continous distribution and not time-varying. Good annotators
assign labels based on the marginal distribution of the true label conditioned on the instance
whereas bad annotators provide malicious answers.

We directly address learning with multiple noisy predictors, each of which has unknown
labeling accuracy in [Donmez et al., 2009]. The goal of our work is to estimate each labeler’s
accuracy and use these estimates to select the highest quality labeler(s) for additional
label acquisition. Hence, it balances an exploration vs. exploitation tradeoff to acquire
information about predictors and to select the best quality ones. It adopts Interval Estimation
Learning and proposes a thresholding mechanism to narrow down the set of potentially
good predictors and improves the estimation accuracy with many fewer exploratory trials.

In [Donmez et al., 2010a] we offer a new framework which differs from the previous
body of work in a variety of ways. The previous works all assume the accuracy (or the
labeling quality) of the annotators are fixed. Our framework explicitly deals with non-

2.2 Related Work on Proactive Learning 13

stationary labeling accuracy. We model the accuracy of each annotator as a time-varying
unobserved state sequence without directional bias. For instance, an annotator might learn
the task over time and get better in labeling. Also, she might occasionally get tired and
her performance drops but it increases again after enough rest and so on. Our framework
provides the necessary tools to track this change with the assumption that the maximal
degree of the change is known. Another example is the case where the annotators are
trained classifiers. As one can imagine, the performance of a classifier improves with more
training data but it may decrease due to noise in the labels or over-fitting. Hence, such
classifiers are good examples for annotators with time-varying accuracies.

Donmez et al. [2010c] and Donmez et al. [2010b] formulate the problem as an
unsupervised risk estimation task. Donmez et al. [2010c] focuses on estimating 0-1 risk
(for classification) and mean squared error (for regression) of multiple predictors in the
absence of true labels. The paper proposes a maximum likelihood estimator which is proven
to be statistically consistent and shown to be very effective on synthetic and real-world
data. Donmez et al. [2010b], on the other hand, extends this work by estimating a more
general risk, namely the risk concerned with continuous loss functions such as log loss,
hinge loss, etc. The most profound consequence of this risk estimation framework is that it
leads to an unsupervised partition of the data into class labels via estimating margin-based
risk functions without a single labeled example. The theoretical and empirical evaluation
demonstrates the effectiveness of unsupervised risk estimation and class partition without
any labeled data whatsoever. Xu and Schuurmans [2005] and Bie and Cristianini [2003]
have proposed two-class clustering principles for SVMs. The idea is to find a labeling such
that the obtained margin over subsequent runs of SVM would be maximal over all possible
labelings. A reformulation of this problem allows semidefinite techniques to be applied
to find a solution [Xu and Schuurmans, 2005; Bie and Cristianini, 2003]. Although their
method achieves performance exceeding or competitive with spectral clustering in most
cases, it is limited to SVMs. Our framework, on the other hand, is general to work with any
margin-based risk functions; hence, provides substantial modeling flexibility with desirable
performance.

Chapter 3

Active Learning for Classification

3.1 Introduction

As mentioned before, obtaining class labels to train supervised machine learning techniques
is costly and time-consuming. On the other hand, unlabeled data is available in abundance
in many domains. For instance, it is relatively simple to collect images, but much harder to
obtain semantically sound content labels. It is also easier to obtain geological data pertaining
to regions that may contain oil, but much more costly to drill multiple deep test holes to
classify the ones that really contain oil. Active learning consists of optimizing sampling
strategies over unlabeled data with respect to an optimization criterion while minimizing
the number of samples required for definitive categorization for training. Typically, the
learner starts with a very small number of labeled examples, trains a classifier and selects
new sample(s) to be labeled, re-trains the classifier and iterates.

In this chapter, we introduce two novel active sampling methods for classification
problems. The first section that follows describes the first approach which is an ensemble-
based strategy that utilizes the best strategy at each time during the evolving training
process, depending on the sample size. More specifically, our strategy is a context-sensitive
sampling method whose primary focus is to improve active learning for the later portion of
the process, rather than traditional methods that concentrate primarily on the initial dataset
labeling. Our experimental evaluation shows that 1) the proposed strategy is reliably better
than the best of the single strategies of the ensemble, and 2) it is better across various
domains and for both minimal and copious labeled data volumes.

The last section describes also an ensemble sampling method with the following specific
goals: 1)maximizing the likelihood of straddling the decision boundary with paired samples,
2) a transformed distance function to effectively reduce distance as a function of local density,
and 3) rely on a utilitybased conditional-entropy maximization criterion to combine factors

15

16 Chapter 3: Active Learning for Classification

in making the sampling decision. Our experimental evaluation shows the effectiveness of
this sampling scheme against popular active sampling methods.

3.2 The Dual Strategy Active Learning

3.2.1 Motivation for DUAL Ensemble Approach

Nguyen and Smeulders [2004] suggest a probabilistic framework where clustering infor-
mation is incorporated into the active sampling scheme. They argue that data points lying
on the classification boundary are informative, but using information about the underlying
data distribution helps to select better examples.

They assume higher density samples lying close to the decision boundary are more
informative. We call their method density weighted uncertainty sampling, or DWUS for
short. DWUS uses the following active selection criterion:

s = arg max
i∈Iu

E[(ŷi − yi)2 | xi]p(xi) (3.1)

where E[(ŷi− yi)2 | xi] and p(xi) are the expected error and density of a given data point xi,
respectively. Iu is the index for the unlabeled data. (3.1) selects for labeling the unlabeled
data point with the maximum density-weighted uncertainty. Hence, it favors points with
the largest contribution to the current classification error. In contrast, one can use an
uncertainty-based criterion within the same probabilistic framework as illustrated by the
following formula:

s = arg max
i∈Iu

E[(ŷi − yi)2 | xi] (3.2)

We refer to (3.2) as Uncertainty Sampling for the rest of Section 3.2. Consider Fig. 3.1, which
displays the performance of DWUS and Uncertainty Sampling on two of the datasets that
we explore in more detail later. Combining uncertainty with the density of the underlying
data is a good strategy to reduce the error quickly. However, we have empirically observed
that, after rapid initial gains, DWUS exhibits very slow additional learning while uncertainty
sampling continues to exhibit more rapid improvement.1 A theoretical insight into why
this might be the case remains an open question. A similar behavior is also evident in [Xu
et al., 2003] where their representative sampling method increases accuracy in the initial
phase while uncertainty sampling has a slower learning rate, but gradually outperforms
their method.

1Although a quick drop in classification error for DWUS is also observed in [Nguyen and Smeulders, 2004],
they did not compare with uncertainty sampling.

3.2 The Dual Strategy Active Learning 17

We investigated the Spearman’s ranking correlation over candidates to be labeled by
density and uncertainty in our scenario, and found that they seldom reinforce each other,
but instead they tend to disagree on sample point selection. At early iterations, many points
are highly uncertain. Thus, DWUS can pick high density points which are lower down in
the uncertainty ranking but have a high absolute uncertainty score. Later, points with high
absolute uncertainty are no longer in dense regions. DWUS picks points that have moderate
density but low uncertainty because such points are scored highly according to (3.1). Hence,
it wastes effort picking instances with no large effect on error rate reduction.

Fortunately, we can do better across the full spectrum of labeled instances by our
algorithm DUAL which adopts a dynamically reweighed mixture of density and uncertainty
components and achieves performance superior to its competitors over a variety of datasets.
In the following section, we review essential parts of DWUS and then describe DUAL.

3.2.2 Density Weighted Uncertainty Sampling (DWUS)

Nguyen and Smeulders [2004] assume a clustering structure of the underlying data. x ∈ Rd
is the data and y ∈ {+1, 0} is the class label. The cluster label k ∈ {1, 2, ..,K} indicates
the hidden cluster information for every single data point where K is the number of total
clusters. In order to calculate the posterior P (y | x), they use the following marginalization:

P (y | x)=
K∑
k=1

P (y, k | x) =
K∑
k=1

P (y | k, x)P (k | x) (3.3)

where P (y | k, x) is the probability of the class label y given the cluster k and the data point
x, and P (k | x) is the probability of the cluster given the data point. But once k is known, y
and x are independent since points in one cluster are assumed to share the same label as
the cluster; hence knowing the cluster label k is enough to model the class label y. Thus:

P (y | x) =
K∑
k=1

P (y, k | x) =
K∑
k=1

P (y | k)P (k | x) (3.4)

P (k | x) is calculated only once unless the data is re-clustered, whereas P (y | k) is updated
each time a new data point is added to the training set. Before explaining how to estimate
these two distributions, we illustrate below how the algorithm works:

1. Cluster the data.

2. Estimate P (y | k).

3. Calculate P (y | x) (Equation 3.4).

18 Chapter 3: Active Learning for Classification

4. Choose an unlabeled sample based on (Equation 3.1) and label.

5. Re-cluster if necessary.

6. Repeat steps 2-5 until stop.

We first explain how to induce P (k | x) according to [Nguyen and Smeulders, 2004]. A
Gaussian mixture model is used to estimate the data density using the clustering structure
such that p(x) is a mixture of K Gaussians with weights P (k). Hence, p(x) =

∑K
k=1 p(x |

k)P (k). where p(x | k) is a multivariate Gaussian sharing the same variance σ2 for all
clusters k:

p(x | k) = (2π)−d/2σ−d exp{− ||x− ck||
2

2σ2
} (3.5)

where ck is the centroid of the k-th cluster which is determined via the K-medoid algorithm
[Struyf et al., 1997]. It is similar to the K-means algorithm since they both try to minimize
the squared error between the points assigned to a cluster and the cluster centroid. In
K-means, the centroid is the average of all points in the cluster, whereas in K-medoid the
most centrally located point in the cluster is the centroid. Moreover, K-medoid is more
robust to noise or outliers.

Once the cluster representatives are identified, an EM procedure is applied to estimate
the cluster prior P (k) using the following two steps:

E-step: M-step:

P (k | xi) =
P (k) exp{−||xi−ck||2

2σ2 }∑K
ḱ=1

P (ḱ) exp{−||xi−cḱ||
2

2σ2 }
P (k) =

1
n

n∑
i=1

P (k | xi) (3.6)

The cluster label distribution P (y | k) is calculated using the following logistic regression
model: P (y | k) = 1

1+exp(−y(ck.a+b)) , a ∈ Rd and b ∈ R are logistic regression parameters1.
ck is the k-th cluster centroid, so P (y | k) models the class distribution for a representative
subset of the entire dataset. Points are assigned to a cluster with the probability P (k | x) so
that their labels will be affected by their cluster membership probabilities (See Equation 3.4).
Hence, a distribution is learned at each cluster and no cluster purity requirement is forced.

The parameters of the logistic regression model are estimated via the following likelihood
maximization:

l(a, b) =
∑

i∈Il∪Iu

ln p(xi; c1, ..., cK , P (1), ..., P (K)) +
∑
i∈Il

lnP (yi | xi; a, b) (3.7)

where Il and Iu are the indices for labeled and unlabeled data, respectively. The parameters
of the first summand have already been determined by the K-medoid algorithm and the EM

1While we use logistic regression, any probabilistic classifier can be adapted.

3.2 The Dual Strategy Active Learning 19

routine in Equation 3.6. The second summand is used to estimate the parameters a and b
via Equation 3.4, as follows:

l(a, b) =
λ

2
||a||2 −

∑
i∈Il

ln

{
K∑
k=1

P (k | xi)P (yi | k; a, b)

}
(3.8)

The regularization parameter λ is given initially independently of the data. Since the
problem is convex, it has a unique solution which can be solved via Newton’s algorithm.
Then we can calculate the probability P (yi | k; â, b̂) using the logistic regression model
and obtain the class posterior probability P (yi | xi; â, b̂) using Equation 3.4. The label ŷi is
predicted for each unlabeled point xi according to Bayes rule. Finally, active point selection
is done by Equation 3.1. The error expectation for a given unlabeled point E[(ŷi − yi)2 | xi]
in that equation is:

E[(ŷi − yi)2 | xi] = (ŷi − 1)2P (yi = 1 | xi) + (ŷi)2P (yi = 0 | xi) (3.9)

Since the probability P (yi | xi) is unknown, its current approximation P (yi | xi; â, b̂) is
used instead. Additionally, data points are re-clustered into smaller clusters as the expected
error reduces. The reason is that it is important to make significant changes in the decision
boundary during the early iterations of active sampling. Later the classification boundary
becomes more stable and thus needs to be finely tuned. Additional details can be found in
[Nguyen and Smeulders, 2004].

3.2.3 Description of the DUAL Algorithm

DUAL works as follows: It starts executing DWUS up until it estimates a cross-over point with
uncertainty sampling by predicting a low derivative of the expected error, e.g. ∂ε(DWUS)

∂xt
≤ δ.

The derivative estimation need not be exact, requiring only the detection of diminishing
returns which we explain soon. Then, it switches to execute a combined strategy of density-
based and uncertainty-based sampling. In practice, we do not know the future classification
error of DWUS, but we can approximate it by calculating the average expected error of
DWUS on the unlabeled data. It will not give us the exact cross-over point, but it will
provide a rough estimate of when we should consider switching between methods. The
expected error of DWUS on the unlabeled data can be evaluated as follows:

ε̂t(DWUS) =
1
nt

∑
i∈Iu

E[(ŷi − yi)2 | xi] (3.10)

where E[(ŷi − yi)2 | xi] is calculated as in Equation 3.9. Moreover, it is re-calculated at each
iteration of active sampling. t is the iteration number, and nt is the number of unlabeled
instances at the t-th iteration and Iu is the set of indices of the unlabeled points at time

20 Chapter 3: Active Learning for Classification

t. By monitoring the average expected error at every single iteration, we can estimate
when DWUS’ performance starts to saturate, i.e., ∂ε̂(DWUS)

∂xt
≤ δ. δ is assigned a fixed

small value in our evaluations [See Section 4.2 for how it was estimated]. When it is
near zero, this is equivalent to detecting when a method is stuck in local minima/plateau
in gradient descent methods. In fact, this principle is flexible enough to work with any
two active learning methods where one is superior for labeling the initial data and the
other is favorable later in the process. It generalizes to N sampling methods by introducing
additional estimated switchover points based on estimated derivative of expected error for
each additional sampling strategy.

We know that the strength of DWUS comes from the fact that it incorporates the density
information into the selection mechanism. However, as the number of iterations increases
uncertainty sampling outperforms DWUS and DWUS exhibits diminishing returns. We
propose to use a mixture model for active sampling after we estimate the cross-over:

x∗s = arg max
i∈Iu

π1 ∗ E[(ŷi − yi)2 | xi] + (1− π1) ∗ p(xi) (3.11)

It is desirable for the above model to minimize the expected future error. If we were to select
based on only the uncertainty, then the chosen point would be x∗US = arg maxi∈Iu E[(ŷi −
yi)2 | xi]. After labeling x∗US , the expected loss is:

fUS =
1
n

∑
j

ELb+{x∗US ,y}[(ŷj − yj)
2 | xj] (3.12)

The subscript Lb + {x∗US , y} indicates that the expectation is calculated from the model
trained on the data Lb + {x∗US , y}. Assume fUS=0, then we can achieve the minimum
expected loss by forcing π1 = 1; hence x∗s = x∗US . The appropriate weight in this scenario is
inversely related with the expected error of uncertainty sampling. Thus, we can replace the
weights by π1 = 1− fUS , and 1− π1 = fUS , and obtain the following model:

x∗s = arg max
i∈Iu

(1− fUS) ∗ E[(ŷi − yi)2 | xi] + fUS ∗ p(xi) (3.13)

Achieving the minimum expected loss is guaranteed only for the extreme case where the
expected error, fUS , of uncertainty sampling is equal to 0. However, correlating the weight
of uncertainty sampling with its generalization performance increases the odds of selecting
a better candidate after the cross-over.
In the real world, we do not know the true value of fUS . So we need to approximate it.
After estimating the cross-over, we are interested in giving higher priority to uncertainty,
reflecting how well uncertainty sampling would perform on the unlabeled set. Therefore,
we approximate fUS as ε̂(US), the average expected error of uncertainty sampling on the
unlabeled portion of the data. This leads us to the following selection criterion for DUAL:

x∗s = arg max
i∈Iu

(1− ε̂(US)) ∗ E[(ŷi − yi)2 | xi] + ε̂(US) ∗ p(xi) (3.14)

3.2 The Dual Strategy Active Learning 21

ε̂(US) is updated at every iteration t after the cross-over. Its calculation is exactly the same
as in Equation 3.10. However, the data to sample from is restricted to the already labeled
examples by active selection. We construct a set with the actively sampled examples by
DWUS until the cross-over, and call it set A. Uncertainty sampling is allowed to choose the
most uncertain data point from only among elements in set A by estimating the posterior
P (yi | xi; â, b̂) over the initially labeled data. The chosen point is added to to the initial
labeled set for uncertainty sampling and removed from set A. The average expected error of
uncertainty sampling is calculated on the remaining unlabeled data. Then, DUAL selects the
next data point to label via the criterion in Equation 3.14. This labeled point is also added
to set A. Hence, set A is dynamically updated at each iteration with the actively sampled
points. Consequently, in order to calculate the expected error of uncertainty sampling the
algorithm never requests the label of a point that has not already been sampled during the
active learning process. Such a restriction will prevent an exact estimate of the expected
error. But, it is a reasonable alternative, and introduces no additional cost of labeling. The
pseudo-code for the DUAL algorithm is given in Algorithm 1.

Algorithm 1 The DUAL Algorithm
Input: Labeled data Lb, Unlabeled data Un, max number of iterations T, and δ.
Output: A set S of actively sampled data points.
Program
Initialize: t = 0 and S = {}.
while while(not switching point) do

Run DWUS algorithm and compute ∂ε̂(DWUS)
∂xt

.

if ∂ε̂(DWUS)
∂xt

> δ then
x∗s = arg maxi∈Iu E[(ŷi − yi)2 | xi]p(xi)
Add the chosen point to set S: S = S ∪ x∗s
t=t+1 (Increment counter t)

else
Hit the switching point.

end if
end while
while while(t < T) do

Compute E[(ŷ − y)2|x], p(x) via DWUS, and ε̂t(US) via uncertainty sampling.
x∗s = arg maxi∈Iu(1− ε̂t(US)) ∗ E[(ŷi − yi)2 | xi] + ε̂t(US) ∗ p(xi)
Add the chosen point to set S: S = S ∪ x∗s
t=t+1

end while

22 Chapter 3: Active Learning for Classification

0 20 40 60 80 100
Samples added to Labeled Set

0.24

0.28

0.32

0.36

0.4

C
la

ss
if

ic
at

io
n

E
rr

or
DWUS
Uncertainty Sampling

Diabetes

0 20 40 60 80 100
Samples added to Labeled Set

0

0.05

0.1

0.15

0.2

DWUS
Uncertainty Sampling

O-vs-D Letter

Figure 3.1: Comparison of Density Weighted versus (standard) uniformly weighted Uncer-
tainty Sampling on two UCI benchmark datasets

3.2.4 Experimental Evaluation

To evaluate the performance of DUAL, we ran experiments on UCI benchmarks: diabetes,
splice, image segment, and letter recognition [Newman et al., 1998]. Some of these
problems are not binary tasks so we used the random partitioning into two classes as
described by [Rätsch et al., 2001]. For the letter recognition problem, we picked three pairs
of letters (M-vs-N, O-vs-D, V-vs-Y) that are most likely to be confused with each other. Thus,
we examine six binary discrimination tasks. For each dataset, the initial labeled set is 0.4%
of the entire data and contains an equal number of positive and negative instances. For
clustering, we followed the same procedure used by [Nguyen and Smeulders, 2004] where
the initial number of clusters is 20 and clusters are split until they reach a desired volume.
The values of the parameters are given in Table 6.1 along with the basic characteristics
of the datasets. These parameters and the δ parameter used for switching criteria were
estimated on other data sets and held constant throughout our experiments, in order to
avoid over-tuning. We compared the performance of DUAL with the following baselines:

1. DWUS

2. Uncertainty sampling: It selects the most uncertain instance by the classifier to be
labeled; i.e., x∗s = arg maxi∈Iu E[(ŷi − yi)2 | xi]

3. Density-based sampling: It adopts the same probabilistic framework as DWUS but
uses only the density information for active data selection; i.e., x∗s = arg maxi∈Iu p(xi)

4. Representative sampling [Xu et al., 2003]: The unlabeled points that fall inside the
margin are clustered using k-means in a linear SVM framework. The centroid of the
largest cluster among k = 10 clusters is chosen to be labeled.

3.2 The Dual Strategy Active Learning 23

Table 3.1: Characteristics of the Datasets, Values of the Parameters and p-value for signifi-
cance tests after 40 iterations

DATASET TOTAL SIZE +/- RATIO DIMS(D) SIGMA(σ) LAMBDA(λ) DUAL>DWUS
DIABETES 768 0.536 8 0.5 0.1 p < 0.0001
SPLICE 3175 0.926 60 3 5 p < 0.0001
IMAGE 2310 1.33 18 0.5 0.1 p < 0.0001
M-VS-N 1575 1.011 16 0.1 0.1 p < 0.0001
O-VS-D 1558 0.935 16 0.1 0.1 p < 0.0001
V-VS-Y 1550 0.972 16 0.1 0.1 p < 0.0001

5. COMB method of [Baram et al., 2003]: uses an ensemble of uncertainty sampling,
sampling method of [Roy and McCallum, 2001], and a distance-based strategy choos-
ing the unlabeled instance that is farthest from the current labeled set. COMB uses
SVM with Gaussian kernel for all three strategies.

The performance of each algorithm was averaged over 4 runs. At each run, a different initial
training set was chosen randomly. At each iteration of each algorithm, the active learner
selected a sample from the unlabeled pool to be labeled. After it has been added to the
training set, the classifier is re-trained and tested on the remaining unlabeled data and the
classification error is reported. We also conducted significance tests between DUAL and
DWUS to report whether they perform significantly different. In order to determine whether
two active learning systems differ statistically significantly, it is common to compare the
difference in their errors averaged over a range of iterations [Melville and Mooney, 2004;
Guo and Greiner, 2007]. Comparing performance over all 100 iterations would suppress
detection of statistical differences since DUAL executes DWUS until cross-over. We conducted
the comparison when they start to differ, which is on average after 40 iterations; we compute
the two-sided paired t-tests by averaging from the 40th to 100th iteration. Table 6.1 shows
that DUAL statistically outperforms DWUS in that range. For the remaining comparisons,
we compute 2-sided paired t-tests over the full operating range since we want to know if
DUAL is superior to the other methods more generally and DUAL does not execute these
other methods at any iteration. Figure 3.2 presents the improvement in error reduction
using DUAL over the other methods. We only display representative results on 4 datasets
for consistency. For the results on all datasets see www.cs.cmu.edu/~pinard/DualResults.
DUAL outperforms DWUS and representative sampling both with p < 0.0001 significance.
DUAL outperforms COMB with p < 0.0001 significance on 4 out of 6 datasets, and with
p < 0.05 on Image and M-vs-N data sets. We also calculate the error reduction of DUAL
compared to the strong baseline DWUS. In each graph after 3/4 of the sampling iterations
after cross-over occurs, we observe 40% relative error reduction on O-vs-D data, 30% on
Image, 50% on M-vs-N, 27% on V-vs-Y, 10% on Splice, and 6% on Diabetes dataset. These
results are significant both statistically and also with respect to the magnitude reduction in
relative residual error. DUAL is superior to Uncertainty sampling (p < 0.001) on 5 out of

http://www.cs.cmu.edu/~pinard/DualResults

24 Chapter 3: Active Learning for Classification

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

C
la

ss
if

ic
at

io
n

 E
rr

o
r

DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

M-vs-N Letter

0 20 40 60 80 100
of Samples added to Labeled Set

0

0.1

0.2

0.3

C
la

ss
if

ic
at

io
n

 E
rr

o
r

DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

Image Segment

0 20 40 60 80 100
of Samples added to Labeled Set

0.3

0.35

0.4

0.45
DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

Splice

0 20 40 60 80 100
0

0.1

0.2

0.3

DUAL

DWUS

Uncertainty Sampling

Density-based Sampling

Representative Sampling

COMB

V-vs-Y Letter

Figure 3.2: Results on 4 different UCI benchmark datasets

3.2 The Dual Strategy Active Learning 25

0 20 40 60 80 100
of Samples added to Labeled Set

0

0.1

0.2

0.3

C
la

ss
if

ic
at

io
n

E
rr

or

Adjusted DUAL

DUAL

DWUS

Uncertainty Sampling

COMB

V-vs-Y Letter

0 20 40 60 80 100
of Samples added to Labeled Set

0.3

0.35

0.4

0.45

C
la

ss
if

ic
at

io
n

E
rr

or

Adjusted DUAL

DUAL

DWUS

Density-based Sampling

COMB

Splice

Figure 3.3: Left: Results after adjusting the switching point for DUAL on the V-vs-Y Letter
data. Right: Results when DUAL is adjusted using Equation 3.15 on the splice data.

6 datasets. We see on the V-vs-Y data that the cross-over between DWUS and uncertainty
sampling occurs at a very early stage, but the current estimate of the expected error of DWUS
to switch selection criteria is not accurate at the very early points in that dataset. Clearly,
DUAL might have benefited from changing its selection criterion at an earlier iteration.

As part of a failure analysis and in order to test this hypothesis, we conducted another set
of experiments where we simulated a better relative error estimator for strategy switching.
Fig. 3.3 demonstrates that DUAL outperforms all other methods when the true cross-
over point is identified, indicating that better error estimation is a profitable area of
research. In fact, one hypothesized solution is to switch when P (error(M2) | X) <
P (error(M1) | X) + ε, which considers the probability that over future selected instances
method 2, M2, will have less error than method 1, M1. Studying more robust switching
criteria is out of the scope of this thesis and left as future work.

DUAL outperforms Density-based sampling (p < 0.0001) on all but splice data. Density-
based sampling performs worst for almost 40 iterations but then beats all of the others
thereafter, totally breaking the pattern observed in the other datasets. Currently, DUAL only
estimates how likely the uncertainty score is to lead to improvement, but the density-based
method may also be likely to improve. One strategy is to calculate the expected error ε̂(DS)
of density-based sampling and modify Equation 3.14 to obtain the following:

x∗s = arg max
i∈Iu

{ε̂(DS) ∗ E[(ŷi − yi)2 | xi] + (1− ε̂(DS)) ∗ p(xi)} (3.15)

Fig. 4 presents the result after the modification in Equation 3.15. The adjustment helps
DUAL make a significant improvement on the error reduction. Moreover, it consistently
decreases the error as more data is labeled, hence its error reduction curve is smooth as

26 Chapter 3: Active Learning for Classification

opposed to the higher variance of density-based sampling. This suggests that pure density-
based sampling is inconsistent in reducing error since it only considers the underlying
data distribution regardless of the current model. Thus, we argue that DUAL may be
more reliable than individual scoring based on density due to its combination formula that
adaptively establishes balance between two selection criteria. Even though a strategy such
as uncertainty or density based sampling performs well individually, Figures 3.2 and 3.3
illustrate that it is more advantageous to use their combination.

3.3 The Density-Sensitive Paired Sampling

This section describes the density-sensitive paired sampling technique developed based
on two key principles: a) Balanced sampling on both sides of the decision boundary is
more effective than sampling one side disproportionately, and b) exploiting the natural
grouping (clustering) of unlabeled data establishes a more meaningful non-Euclidean
distance function with respect to estimated category membership. In the sections that
follow, we first outline a transformation of the data exploiting the cluster hypothesis, which
states that the decision boundary should lie in low density regions (i.e. inter-cluster, vs
intra-cluster). In section 3.3.2, we derive a sampling criterion that favors pairs of points
straddling the decision boundary with maximum utility. We present experimental results in
section 3.3.3 that demonstrate the superiority of the proposed method.

3.3.1 Density-Sensitive Distance Estimation

In order to sample points that are likely to be maximally informative to an active learner, we
first seek to maximize the chance that we will sample on both sides of a decision boundary
– sampling disproportionately on either side will not optimize boundary placement in
the learning process. Maximizing the distance between two points is a step in the right
direction, but Euclidean distance may not be the optimal measure; instead we investigate
density-sensitive distance functions.

According to the cluster hypothesis, the decision boundary should lie in low density
regions, and hence should not cut clusters [Chapelle, 2005]. Our goal is to represent the
data in such a way that points in separate clusters are assigned high-distances (equivalent
to low similarities). In order to enforce this criterion, we chose to derive pairwise sim-
ilarities/dissimilarities in a fully-connected graph-based representation of the data. Let
G = (V,E) be a graph where V is the set of nodes each of which denotes a data point and E
denotes the edges between nodes. Edge weights are Euclidean distances, i.e. ‖x−y‖. p ∈ V l

is defined as a path of length l = |p| that connects the nodes xi and xj if (pk, pk+1) ∈ E for
1 ≤ k < l, and p1 = xi and pl = xj . Points in the same cluster can be connected via a path

3.3 The Density-Sensitive Paired Sampling 27

traveling in that cluster, thereby a high density region. Conversely, any path connecting
points in different clusters has to travel along a low density region. The density-sensitive
distance between any two points can be approximated by first selecting the longest distance
edge along each path, i.e. the weakest link, then repeating this process for every path that
connects these two points, and finally finding the minimum among the longest distance
edges. This approach was first proposed by [Fischer et al., 2004] and used for clustering:

d(xi, xj) = min
p∈Pi,j

max
1≤k<|p|

‖pk − pk+1‖ (3.16)

where Pi,j is the set of all paths that connects xi and xj . The above formulation does not
take into account the length of the paths. A long path connecting two points in different
clusters might have a very short edge; hence that single outlier would dramatically disrupt
the distance approximation. In order to avoid this problem, we incorporate the path length
into the above equation by taking the sum over the edge distances instead of the maximum:

d(xi, xj) =
1
ρ

ln(1 + min
p∈Pi,j

|p|−1∑
k=1

(eρ‖pk−pk+1‖ − 1))

 (3.17)

Equation 3.17 is proposed by Chapelle [2005]. Equation 3.16 and 3.17 are equivalent
when ρ→∞. For large values of ρ, the distances between points in the same cluster are
decreased whereas the distances between points in different clusters are still dominated
by the gaps between clusters. For small values of ρ, every edge contributes to the distance
calculation. We follow their approach by applying Multidimensional Scaling (MDS) [Cox
and Cox, 1994] to the dissimilarity matrix DS, where DSij = d(xi, xj) in Equation 3.17
to obtain a Euclidean representation of a set of objects while preserving their distance
relationships. MDS first transforms the distance matrixDS into a new matrixA by definining
aij = −1

2DS
2
ij . Matrix A is used to derive matrix ∆ = [δij] such that δij = aij − āi − āj + ā,

where āi and āj are row and column means of A, respectively; and ā is the mean of all
elements in A. The eigenvalues (ν1, ν2, ..., νk) and eigenvectors (u1, u2, ..., uk) of ∆ are

computed, and the latter is scaled so that
√
u
′
kuk =

√
νk. Chapelle [2005] showed that

it is safe to discard the eigenvectors with small eigenvalues; hence we followed their
formulization by taking only the first p eigenvectors that satisfy the following inequality:

p∑
i=1

νi ≥ (1− δ)
∑

max(0, νi) where νp ≤ δν1 and ν1 ≥ ... ≥ νn ≥ 0 (3.18)

The δ parameter is fixed at 0.1 as specified in [Chapelle, 2005], though it could potentially
be optimized. Let Λ be an n x p matrix whose columns are the scaled eigenvectors, then
the rows of Λ are the coordinates of the objects in MDS space, i.e. x̃i,. = Λi,.. The time
complexity to compute the distance matrix DS is O(n2(n+ logn)) when Dijkstra’s shortest

28 Chapter 3: Active Learning for Classification

path length algorithm is adopted to implement the search for the next closest unexplored
node in the graph using a binary heap [Chapelle, 2005]. This is the implementation we used
in the paper. The MDS transformation takes O(n3) time since it computes the eigenvectors of
an n x n matrix. However, if a k nearest neighbor graph is used instead of a fully-connected
graph, and if only the first p eigenvectors are considered, the time complexity for both steps
can be reduced.

3.3.2 Density-Sensitive Paired Sampling

Given a set of training data points in MDS space (X, y) = {(x1, y1), ..., (xm, ym)}, we use
logistic regression to obtain the posterior class distribution. But our approach is designed to
be used with any probabilistic classifier including Gaussian processes or Bayesian optimal
classifiers. We focus on binary problems in our evaluations, though our method can be easily
adapted to multi-class cases. We provide information on handling multi-class problems as
appropriate throughout the section. The logistic regression model is

P (y | x,w) = σ(ywTx) =
1

1 + exp(−ywTx)
(3.19)

where y ∈ {−1,+1}. We use the regularized version to find the parameter vector w which
minimizes the negative log-likelihood:

l(w) =
m∑
i=1

log(1 + exp(−yiwTxi)) +
ν

2
wTw (3.20)

The minimization problem is convex so it can be solved by a number of iterative algorithms.
We use iteratively reweighted least squares method: wnew = wold −H−1g, where g and H
are the gradient and Hessian of l(w), respectively:

∂l(w)
∂w

= λw +
m∑
i=1

−yixi(1− p(yi | xi, w))

∂2l(w)
∂2w

= λ+
m∑
i=1

xix
T
i p(yi | xi, w)(1− p(yi | xi, w))

(3.21)

If there are m instances of d dimensions, it takes O(md2) time per iteration.

In order to maximize the likelihood of straddling the decision boundary, and to halve the
computational time, we sample a pair of points to label at a time, in contrast to the traditional
active learning methods that select one point at each iteration. Figure 3.4 illustrates the
motivation for paired sampling in active learning. Here we assume for simplicity the data is

3.3 The Density-Sensitive Paired Sampling 29

1before

1after

3after

3before

2before

2after

1before

2before=2after

3before

1after

3after

Figure 3.4: Illustrative Example: The plus (minus) sign and circles indicate the positively
(negatively) labeled points and unlabeled data, respectively. xafter and xbefore indicate
the line before and after data is sampled for labeling. The selected points are labeled
either positive (shown in grey) or negative (shown in black). This example illustrates our
motivation to sample two points with opposite labels at a time instead of a single point.

linearly separable. The dashed line shows the current decision boundary while the two solid
lines define the region where the true boundary is expected to lie; namely the version space.
The left figure in Figure 3.4 is an example of sampling a pair for labeling from opposite sides
of the current boundary. It greatly reduces the version space since both points affect how the
version space will be bounded. The current boundary also shifts significantly. On the other
hand, the figure on the right shows that only a single point is sampled for labeling. The
amount of shift in the current hypothesis is relatively small. The version space is not reduced
as significantly as in the previous scenario since only one point contributes to the reduction.
These two scenarios illustrate why it is more advantageous to straddle the decision boundary
in order to reduce the set of candidate hypotheses rapidly. With this goal in mind, we strive
to sample two points with opposite class labels. In multi-class scenarios, this is equivalent
to sampling as many points as the number of classes at each iteration of active learning,
seeking to maximize the chance of sampling each class once per round. Since the labels of
the unlabeled data are unknown, we need to approximate the likelihood that any two points
have opposite class labels, P (yi 6= yj | xi, xj), for all i, j ∈ Iu where Iu is the set of indices
of the unlabeled points in the data. By our cluster assumption, points in different clusters
are likely to have different labels. In the new representation of the data, points in different
clusters are assigned low similarity. It is then reasonable to define P (yi 6= yj | xi, xj) as
proportional to the distance between xi and xj , i.e. P (yi 6= yj | xi, xj) ∝ ‖xi − xj‖2. We

30 Chapter 3: Active Learning for Classification

pairwise distance

P
ro

ba
bi

lit
y(

op
po

si
te

 la
be

ls
)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.
3

0.
4

0.
5

0.
6

Figure 3.5: Graph of P̂ (yi 6= yj | xi, xj) versus ‖xi − xj‖ on g50c dataset

provide here an empirical analysis justifying this claim.

We estimated the probability P (yi 6= yj | xi, xj) as a function of the pairwise distance
‖xi − xj‖. Figure 3.5 is generated on g50c dataset. We sorted the pairwise distances in
increasing order and divided them into 30 equal intervals. For each interval, all pairs (xi, xj)
with distance ‖xi − xj‖ falling within that interval were examined. P (yi 6= yj | xi, xj) was
estimated as the relative frequency of pairs in that interval with opposite class labels. As
shown in Figure 3.5, P (yi 6= yj | xi, xj) monotonically increases with the pairwise distance.
This analysis empirically shows that P̂ (yi 6= yj | ‖xi−xj‖) ≥ P̂ (yi 6= yk | ‖xi−xk‖)⇔ ‖xi−
xj‖ ≥ ‖xi−xk‖. The curve may differ for other datasets, but if the class membership is a well-
defined (e.g. smooth) function, the same principle applies. The dotted line is the probability
P (yi 6= yj) = P (yi = 1, yj = −1) + P (yi = −1, yj = 1), independent of any knowledge
regarding the data distribution. It is equal to 0.5 in this dataset. The absolute difference
between the two curves at any point indicates the loss |P (yi 6= yj)− P̂ (yi 6= yj | ‖xi − xj‖)|
introduced by relying on ‖xi − xj‖. Hence, sampling distant pairs increases the likelihood
that they have opposite class labels without sacrificing a large penalty. This procedure is
conducted only to support our claim, i.e. P (yi 6= yj | xi, xj) ∝ ‖xi − xj‖2; the proposed
active sampling strategy is carried on an unsupervised manner.

As the goal of active learning is to learn the model parameters accurately with the least
number of labeled examples, the selected instances need to be informative, e.g. the points
whose labels we are most uncertain about. Uncertainty-based active learning strategies have
been proposed by a number of researchers [Lewis and Gale, 1994; Tong and Koller, 2000;
Campbell et al., 2000; Schohn and Cohn, 2000]. Such strategies work fairly well in practice,
and have nice theoretical properties related to VC dimension reduction [Tong and Koller,
2000]. Thus, in order to obtain a faster learning rate we need to select two points that are
likely to have opposite labels and high uncertainty. We first define a scoring function for

3.3 The Density-Sensitive Paired Sampling 31

each pair of unlabeled points as follows:

S(i, j) = P (yi 6= yj | xi, xj) ∗ U(i, j)

= c‖xi − xj‖2 ∗ U(i, j) (3.22)

where c is a normalization constant for P (yi 6= yj | xi, xj), and U(i, j) is a complex utility
score which will be explained soon. Before doing so, let us give an outline of how our
method works:

32 Chapter 3: Active Learning for Classification

1. Compute the distance matrix DS using Equation 3.17 and transform the entire data
into the MDS space

2. Compute the pairwise Euclidean distances, ‖xi − xj‖, of the transformed data

3. Train the logistic regression classifier using the current training set in its transformed
form and estimate the posterior class probabilities P (y | x, ŵ)

4. For all i 6= j ∈ Iu
(a) Compute the score S(i, j) using Equation 3.22

5. Choose for labeling the points xi∗ , xj∗ which have the highest score S(i, j), add them
to the training set and remove i∗, j∗ from Iu.

6. Repeat 3-5 until a desired amount is sampled

Another important factor for active sampling is to select points from high density
regions. It is shown to boost the performance in various studies [Cohn et al., 1995;
Zhang and Chen, 2002; Xu et al., 2003; Nguyen and Smeulders, 2004; Donmez et al.,
2007]. Obtaining the label of an instance with high density has the advantage that it will
significantly increase our confidence in the labels of the neighbors. One drawback with this
approach is that it does not take into account the current learner’s predictions. High density
points may already be correctly labeled by the current learner with high confidence. In this
case, there is no much benefit in querying points with dense neighborhoods because it will
not provide much information about the labels of the remaining unlabeled instances.

For a given point x, p(x) can be estimated as the average similarity to the remaining

points,

Pn
i=1 exp(−‖x−xi‖

2)

n−1

Zn
, where n is the total number of points, and Zn is the normalization

constant. From an active learning point of view, however, we are more interested in the
close neighborhood of a point since it will directly be affected by the labeling of that point.
Thus, we constrain the density estimation to the points in a local neighborhood. That is, the
density estimate for a given point will depend only on those unlabeled neighbors whose
distance to the point is smaller than a pre-defined threshold:

p̂(x) =

∑
k∈Nx exp(−‖x− xk‖2)

Z ′n
(3.23)

where Nx = {r ∈ Iu| ‖x − xr‖ < t} is the set of indices of the unlabeled points whose
distance to x is smaller than the threshold t. Z

′
n is again the normalization constant. Note

that Equation 3.23 is not an average; it does not divide by the size of the neighborhood;
|Nx|. By enforcing the estimate in Equation 3.23, we guarantee that it depends on the
number of neighbors as well as their proximity. As we discussed earlier, a density measure

3.3 The Density-Sensitive Paired Sampling 33

itself cannot fully capture the information content of a point in terms of the amount of
surprise we would get if we knew the true label. The conditional entropy of the unknown
label y given the instance x and the model w is:

ET (Y | x,w) = −
∑
y

P (y | x,w) logP (y | x,w) (3.24)

It measures the amount of information (uncertainty) of the discrete random variable Y ,
and is maximum when P (y | x,w) = 1

|Y | , where |Y | is the number of values that the class
variable Y can get. For binary problems, i.e., y ∈ {−1,+1}, we have the following equality:

arg max
i∈Iu

ET (Yi | xi, w) = arg max
i∈Iu

{ min
yi∈{±1}

{P (yi | xi, w)}} (3.25)

We adopted this equation for the experiments reported in this section. For multi-class
problems, the conditional entropy can be equivalently used. Since we do not know the true
model w, we used its approximation ŵ from the logistic regression classifier trained with
the data seen up to the present point. Finally, we propose using an uncertainty weighted
density measure:

p̂(x) =
∑
k∈Nx

exp(−‖x− xk‖2) ∗ min
yk∈{−1,+1}

{P (yk | xk, ŵ)} (3.26)

For simplicity, we leave out the normalization constant since we are interested in the relative
density rather than the absolute density. Equation 3.26 captures both the density of a
given point and also the information content of its neighbors. Furthermore, each neighbor’s
contribution to the density score is weighed by its uncertainty; hence it reduces the effect
of the neighbors at which the current learner has high confidence. Formally, we define the
utility U(i, j) of a pair of points as the sum of the density estimate for each point. By the
definition of Nx, it includes the point x in consideration. Hence, Equation 3.26 includes the
uncertainty of the point itself, miny∈{−1,+1}{P (y | x,w)}, as a summand with weight equals
to exp(−‖x − x‖2) = 1. We propose to give more flexibility to that uncertainty term by
introducing a regularization coefficient. It quantifies a trade-off of the information content
of an instance with the proximity weighted information content of its neighbors. This allows
us to define the utility function as follows:

U(i, j) = log{p̂(xi) + p̂(xj)} =

log
{ ∑
k 6=i∈Nxi

exp(−‖xi − xk‖2) ∗ min
yk∈{±1}

{P (yk | xk, ŵ)}

+
∑

r 6=j∈Nxj

exp(−‖xj − xr‖2) ∗ min
yr∈{±1}

{P (yr | xr, ŵ)}

+ s ∗ (min
yi∈{±1}

{P (yi | xi, ŵ)}+ min
yj∈{±1}

{P (yj | xj , ŵ)})
}

(3.27)

34 Chapter 3: Active Learning for Classification

Note xi and xj are treated separately in the last summand where s is the regularization
constant. We tried a range of values from 1 to 3 for s on another dataset that is not reported
in this paper. Different values did not effect the results in any significant way; hence we
picked s = 2 which is reasonable given the restriction on the size of the neighborhood.
Equation 3.27 is substituted into Equation 3.22 to get the final score S(i, j). Thus, our
strategy is to select instances for labeling that have the largest score:

{i∗, j∗} = arg max
i 6=j∈Iu

S(i, j) = arg max
i 6=j∈Iu

‖xi − xj‖2 ∗ U(i, j) (3.28)

The pseucode of the algorithm is given as Algorithm 2.

Algorithm 2 Paired Sampling
Input: Data (X, y) = {(x1, y1), ..., (xm, ym)}
Output: Logistic Regression Classifier
Program
Compute the distance matrix D
for all (xi, xj) ∈ X do

Dij = 1
ρ

{
ln(1 + minp∈Pi,j

∑|p|−1
k=1 (eρ‖pk−pk+1‖ − 1))

}
end for
Apply MDS to D to obtain the data in MDS space (X̃, y) = {(x̃1, y1), ..., (x̃m, ym)}
Divide the data into training set T and unlabeled set U s.t. (X̃, y) = T ∪ U
repeat

Train logistic regression on T to get P (y | x̃, ŵ)
for all i 6= j ∈ Iu do

Compute S(i, j) = ‖x̃i − x̃j‖2 ∗ U(i, j) using Equation 3.27
end for
Pick {i∗, j∗} = arg maxi 6=j∈Iu S(i, j)
Update T = T ∪ {(x̃i∗ , yi∗), (x̃j∗ , yj∗)} and
Iu = Iu − {i∗, j∗}

until stopping criterion

3.3.3 Experimental Evaluation

We conducted a set of experiments in order to evaluate our method on six benchmarks,
details of which can be found in Table 3.3.3. We compared our proposed method with four
other strategies:

1. Most Uncertain: We rank the unlabeled points according to their uncertainty, i.e.,
miny{P (y | x, ŵ)} (via Equation 3.19), in descending order. Then, we select the top
two points with the most uncertainty.

3.3 The Density-Sensitive Paired Sampling 35

Data Breast Heart Flare Face Glass2 g50c
Size 277 270 1066 2500 163 550
+/- 0.413 0.800 1.234 1 1.144 1
Dim 9 13 13 400 9 50

Table 3.2: Properties of the datasets used in Paired Sampling

2. Density Only: It differs from the proposed method by considering only the proximity
of the neighbors for computing the density.

3. Representative Sampling [Xu et al., 2003]: We used a similar implementation ex-
plained in the previous section except that the centroids of the two largest clusters are
chosen to be labeled. Also, penalty factor C in SVM, and k in clustering are optimized
minimizing the test error to obtain the best possible performance2.

4. Random Sampling

For each dataset, we conducted 10 runs. For each run, we randomly picked just 2 instances,
one from each class, to form the initial training set. This number is usually larger for many
active learning studies including [Nguyen and Smeulders, 2004; Schein and Ungar, 2005].
We left the remaining data as the unlabeled pool. We ran each active learning method for 20
iterations and at each iteration we selected 2 instances to label. Hence, we actively sampled
40 instances in total. We note that the scoring function S(i, j) needs to be computed for
each pair of unlabeled points, which takes O(|Iu|2) time per iteration. In order to reduce
the computational cost, we rank the unlabeled points from most to least uncertain.The top
p% is selected and pairwise scores are computed for this subset. The algorithm then picks
instances to label from this representative subset of unlabeled data. This is only enforced
on the Flare and Face datasets by setting p% to 30% and 20%, respectively. Every time a
new pair of samples is added to the training set, the classifier is re-trained and evaluated on
the remaining unlabeled portion of the data. At each iteration, we reported the error of the
active sampling method. We averaged those results over 10 runs for comparison.

Figure 3.6 shows the results on the UCI Breast data comparing five methods. Our
method has the steepest decrease as well as the lowest final error rate which is very close to
the optimal achieved using the entire training data. Figure 3.7 shows the results on four of
the remaining datasets. We only show three methods in each graph to ease visual legibility.
The top two graphs in Figure 3.7 compare our method against uncertainty sampling and
representative sampling, whereas the bottom two graphs compare it against the density only
version and representative sampling. Our method outperforms the others on each data. The
density only version performs slightly better than our method for the initial iterations on

2Parameter tuning minimizing the test error has only been used for representative sampling. Parameters in
other methods are tuned as explained.

36 Chapter 3: Active Learning for Classification

2 8 16 24 32 40
Labeled Data Size

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
la

ss
ifi

ca
tio

n
Er

ro
r

Proposed Method
Most Uncertain
Density Only
Random
Representative Sampling

Breast

Figure 3.6: Results on UCI Breast data. The solid horizontal line indicates the 10-fold
cross-validation error using the entire data as the training data.

2 10 18 26 34 42
Labeled Set Size

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
at

io
n

E
rr

or

Proposed Method

Most Uncertain

Representative Sampling

Face

2 10 18 26 34 42
Labeled Set Size

0

0.1

0.2

0.3

0.4

C
la

ss
if

ic
at

io
n

E
rr

or

Proposed Method

Most Uncertain

Representative Sampling

Artificial g50c

2 10 18 26 34 42
Labeled Set Size

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
at

io
n

E
rr

or

Proposed Method

Density Only

Representative Sampling

Heart

2 10 18 26 34 42
Labeled Set Size

0.3

0.35

0.4

0.45

0.5

0.55

C
la

ss
if

ic
at

io
n

E
rr

or

Proposed Method

Density Only

Representative Sampling

Flare-Solar

Figure 3.7: Results on four different datasets

3.3 The Density-Sensitive Paired Sampling 37

Table 3.3: Comparison of five different active learners on all datasets
Data Proposed Method Most Uncertain Density Only Representative Random

Breast 5 0.278 (-24.6%) 0.334 (-9.04%) 0.293 (-20.5%) 0.380 (+2.9%) 0.369

Breast 11 0.264 (-20%) 0.285 (-13.6%) 0.297 (-10%) 0.347 (+5.1%) 0.330

Breast 17 0.249 (-18.8%) 0.269 (-12.3%) 0.264 (-14%) 0.302 (-1.6%) 0.307

Heart 5 0.213 (-18.3%) 0.245 (-6.1%) 0.220 (-15.7%) 0.216 (-17.2%) 0.261

Heart 11 0.198 (-4.3%) 0.208 (+0.4%) 0.220 (+6.2%) 0.205 (-0.9%) 0.207

Heart 17 0.166 (-13.5%) 0.164 (-14.5%) 0.219 (+14%) 0.20 (+4.1%) 0.192

Flare 5 0.465 (+5.2%) 0.454 (+2.7%) 0.454 (+2.7%) 0.478 (+8.1%) 0.442

Flare 11 0.394 (-1.6%) 0.451 (+10%) 0.422 (+2.9%) 0.417 (+1.7%) 0.410

Flare 17 0.366 (-8.7%) 0.449 (+11.9%) 0.401 (0%) 0.393 (-1.9%) 0.401

Face 5 0.350 (-1.9%) 0.468 (+31%) 0.420 (+17.6%) 0.313 (-12.3%) 0.357

Face 11 0.210 (-23.3%) 0.312 (+13.8%) 0.287 (+4.7%) 0.252 (-8%) 0.274

Face 17 0.151 (-32.5%) 0.196 (-12.5%) 0.189 (-15.6%) 0.202 (-9.8%) 0.224

Glass2 5 0.339 (-11%) 0.442 (+16%) 0.392 (+2.8%) 0.326 (-14.4%) 0.381

Glass2 11 0.317 (-7%) 0.341 (0%) 0.324 (-4.9%) 0.31 (-9%) 0.341

Glass2 17 0.266 (-8.9%) 0.292 (0%) 0.275 (-5.8%) 0.30 (+2.7%) 0.292

g50c 5 0.169 (-46.3%) 0.242 (-23.1%) 0.187 (-40.6%) 0.241 (-23.4%) 0.315

g50c 11 0.110 (-37.8%) 0.136 (-23.1%) 0.128 (-27.6%) 0.168 (-5%) 0.177

g50c 17 0.079 (-34.1%) 0.094 (-21.6%) 0.102 (-15%) 0.139 (+15.8%) 0.120

Flare-Solar, and similarly representative sampling performs slightly better on early iterations
on Face detection. But our method readily achieves significantly better performance on
both cases as more data is sampled. A more thorough comparison of all methods on six
datasets is given in Table 3.3.3. In Table 3.3.3, we show the error rates for each method
at three different points in iteration: 5th, 11th and 17th iterations. The first column in
Table 3.3.3 shows the dataset and the corresponding iteration at which the error rates are
compared. The percentage error reduction against the random sampling baseline is given
in parenthesis. Lowest error rates are given in bold. Our method wins on the majority of
the cases. Whenever it loses, there is only a slight difference between our method and the
winner so our method is still comparable on cases where it is not the best.

We see that our method is the best on all except few cases. To quantify this, we did a
2-sided paired t-test at the 95% confidence level on the entire reported operating range to
test the hypothesis that our method has significantly lower error than each of its competitors.
Thus, it was tested against each method separately and the corresponding p-values were
recorded. Our method always performed significantly better (p < 0.001) than the density
only version on all datasets. It also outperformed most uncertain with p < 0.001 on all
except the Heart data where p < 0.05. It outperformed random sampling on Flare with

38 Chapter 3: Active Learning for Classification

p < 0.05, on Face with p < 0.01 and with p < 0.001 on the rest. Moreover, it outperformed
representative sampling with p < 0.001 on Breast, Flare, g50c, and with p < 0.05 on Face
whereas both are comparable on Glass2 and Heart datasets. However, Table 2 shows that
our method improves more steeply and wins in the later iterations on these two datasets.
When we only compared the errors for the last 10 iterations on Glass2 and Heart, then our
method wins with p < 0.05 and p < 0.001, respectively.

We also conducted another set of experiments to evaluate the cluster assumption. We re-
ran our method without transforming the data. In other words, we computed the Euclidean
pairwise distances in the original input space, and selected the instances to label according
to Equation 3.28. It performed worse than or comparable with our original method. On
Heart and g50c they both did equally well. In fact, the average absolute difference between
the errors of the two methods on Heart data is 0.016± 0.009, and 0.01± 0.005 on g50c data.
On Glass2, Flare, Face and Breast datasets the untransformed version is outperformed by
our method with p < 0.001 significance.

3.4 Chapter Conclusions

Ensemble techniques are effective in supervised learning tasks in machine learning literature.
We have demonstrated in this chapter that it is also very effective in active learning tasks
especially if the right techniques are merged at the right granularity. The first ensemble
technique, DUAL, investigated robust combinations of uncertainty and density information.
Empirical evaluation demonstrates that, in general, this approach leads to more effective
sampling than strong state-of-the-art baselines. Xu et al. also propose a hybrid approach to
combine representative sampling and uncertainty sampling. Their method, however, only
applies to SVMs and only tracks the better performing strategy rather than outperforming
both individual strategies. Baram et al. also reports comparable performance for COMB to
the best individual sampling strategy, but it is sometimes marginally better, and sometimes
marginally worse and hence is not consistently the best performer. Our performance, on the
contrary, exceeds that of the individually best sampling strategy in most cases by statistically
significant margins. Hence, DUAL clearly goes beyond COMB in terms of lower classification
error and faster convergence. Furthermore, our framework is general enough to fuse active
learning methods that exhibit differentiable performance on the whole operating range. It
can also be easily generalized to multi-class problems: one can estimate the error reduction
globally or per-class using class-weighted or instance-weighted average, and then use the
same cross-over criterion.

The main contributions of DUAL are in estimating the error of one method using the
labeled data selected by another, and robustly integrating their outputs when one method
is dominant (Equation 3.14 vs. Equation 3.15). Directions for future work might include
generalization of DUAL using a relative success weight across multiple (more than two)

3.4 Chapter Conclusions 39

strategies, maximizing ensemble diversity [Melville and Mooney, 2003; Melville and Mooney,
2004; Baram et al., 2003]. Moreover, investigation of better methods for estimating the
cross-over, such as estimating a smoothed version of ∂ε̂

∂xt
rather than a local-only version

might be necessary to build more robust systems.

The second half of this chapter deals with exploring a proximity-weighted conditional-
entropy-based criterion for active learning. Our contributions are two-fold: First, our
technique combines the density, uncertainty and dissimilarity-across-classification-boundary
strategies into a unified framework. Second, it uses a density-sensitive distance metric to
measure the dissimilarity between pairwise instances, maximizing the likelihood of sampling
both sides of a decision boundary in a totally unsupervised process. Distances of points
within the same cluster are reduced while those from different clusters are dominated by
the inter-cluster distances. Our empirical results in various domains demonstrate that our
method outperforms others in terms of both error reduction and fewer number of labeling
queries required to obtain a certain level of accuracy. One drawback of the proposed method
is the time complexity of the data transforming process that it prohibits the application to
very large datasets. Future work could address efficiency improvements, for instance by
extending kd-trees and by computing a k-nearest-neighbor fanout graph, vs the full graph.
Moreover, extensions to other probabilistic classifiers, such as Gaussian Processes and to
different kernels might lead to valuable further developments.

Chapter 4

Active Learning for Rank Learning

4.1 Introduction

Classification problems are not the only examples where active sampling can help greatly
reduce the labeling effort. Dynamic ranking-based problems also require lots of training
examples together with their corresponding permutations. For instance, search engines must
rank results for each query; review and recommendation sites rank competing products;
Netflix ranks movie preferences based on prior user selections and feedback; Amazon
ranks books based on collaborative filtering; service recommendation sites rank providers
based on match to user requests, price, quality or reliability as judged by others, and
geographical distance to the user. Obtaining the ordered preferences of the customers or
the relevance judgments of web documents given queries is an extremely time-consuming
and expensive task. While we have discussed in the previous chapter that this constitutes
a serious problem for classification, it is even a bigger issue in the ranking domain. In
ranking, the target domain is the set of permutations and hence it is more costly to acquire
a complete preference order rather than absolute class labels.

Learning to rank has recently drawn broad attention among machine learning re-
searchers [Joachims, 2002; Freund et al., 2003; Cao et al., 2006]. The ranking task is
to induce a mapping (ranking function) from a predefined set of instances to a set of
partial (or total) orders. Rank learning thus far has mostly been applied to improving
document retrieval, where a global ordering of documents is constructed based on the
relevance scores of each document to each given query. Like many other supervised learning
tasks, this requires a human expert to carefully examine the documents in order to assign
relevance-based permutations. Considering the size and time complexity of the rank labeling
process, it becomes crucial to design methods that will considerably reduce the labeling
effort without significantly sacrificing ranking accuracy. As previous chapter discusses, active

41

42 Chapter 4: Active Learning for Rank Learning

learning paradigm helps reduce the labeling effort, sometimes by orders of magnitude, via
incrementally sampling from an unlabeled pool of instances and requesting the labels (or
rank decisions) of the selected ones with the goal of maximizing the information value to
the learning function. Active learning approaches studied in the context of classification
generally aim to minimize the error rate; hence do not take into account the rank oder
which is essential in ranking tasks (e.g. an error at the top of the rank order is more
consequential than one further down). Moreover, ranking problems, especially in document
retrieval, often deal with very skewed data distributions with relevant data being a small
minority of the total data. In this chapter, we try to address these issues by proposing two
active sampling methods for rank learning in the context of document retrieval.

First section describes an active sampling method for SVM rank learning [Joachims,
2002] (RankSVM in short). SVMs are regarded as good rankers, which is a claim theoreti-
cally justified by [Steck, 2007], since they implicitly optimize a ranking quality measure,
namely the area under the ROC curve (AUC). More specifically, Steck shows that minimizing
hinge loss is an accurate approximation for maximizing AUC. Our method relies on this
relationship but goes well beyond it by presenting a robust loss estimation that is crucial for
typically highly skewed ranking datasets.

The second section proposes a sampling framework for RankSVM [Joachims, 2002] and
RankBoost [Freund et al., 2003] based on maximizing the estimated loss differential over
unlabeled data. The proposed framework considers the capacity of an unlabeled example
to update the current model if rank-labeled and added to the training set. We define this
capacity as a function that estimates the error of a ranker introduced by the addition of a
new example. The capacity function takes different forms in RankSVM and RankBoost due
to different formulations of the corresponding ranking function. However, in both cases,
the goal is to select samples which are estimated to produce a faster convergence to the
true ranking. Experimental results indicate a significant advantage favoring both sampling
strategies over strong baselines on real-life corpora.

4.2 Active Learning via Optimizing AUC

4.2.1 Motivation

Before we start explaining the details of our algorithm, we recapitulate the relationship
between the AUC and the hinge rank loss as proposed by [Steck, 2007]. Understanding
this relationship is essential in building our RankSVM active sampling method since we
rely on it as a theoretical justification for our loss minimization framework. The hinge loss
of a real-valued classifier is defined as LH =

∑N
i=1[1− yi(ci − ϑ)]+. ci ∈ R is the classifier

output, yi ∈ {−1,+1} are the binary class labels, ϑ is the real-valued decision threshold,
and N is the total number of training instances. [.]+ denotes the positive part, i.e. [a]+ = a

4.2 Active Learning via Optimizing AUC 43

if a > 0, and 0 otherwise. Let the classifier outputs ci be sorted in ascending order, i.e. the
smallest output value is assigned the lowest rank. Then, the rank version of the standard
hinge loss proposed by [Steck, 2007] becomes:

LHR =
N∑
i=1

[
1
2
− yi(ri − ϑ̄)]+ (4.1)

ri is the rank of the data point xi, ϑ̄ is the rank threshold defined as ϑ̄ = max{ri : ci ≤ ϑ}+ 1
2

which is half way between two neighboring rank positions where one belongs to the
positive(negative) class, and the other belongs to the other class. Note that LHR increases
linearly in ri tracking the standard hinge loss in ci.

The AUC measure is equivalent to the probability that a randomly chosen member of
class +1 will have a smaller estimated probability of belonging to class −1 than a randomly
chosen member of class −1 [Hand and Till, 2001]. Moreover, AUC is equivalent to the
Wilcoxon-Mann-Whitney test statistic [Mann and Whitney, 1947; Wilcoxon, 1945]; thus it
can be written in terms of pairwise comparison of ranks:

A =
1

n+n−

n+∑
j=1

n−∑
i=1

I(r+
j > r−i) (4.2)

where I is the indicator function where I(a) = 1 if a is true, and 0 otherwise. n+ and n−

denote the number of positive(relevant) and negative(nonrelevant) examples, respectively.
Steck shows that AUC can be written in terms of the hinge rank loss defined in Equation 4.1
as follows [Steck, 2007]:

A ≥ 1− LHR − C
n+n−

(4.3)

where C is a constant, independent of the rank order (see [Steck, 2007] for further details).
The hinge rank loss is the decisive term in the lower bound on the AUC. Hence, minimizing
the hinge rank loss guarantees maximizing the AUC. Similarly, the bipartite ranking error
R adopted by [Rajaram et al., 2007] is directly coupled with the AUC; i.e. R = 1−AUC.
Hence, effectively reducing the bipartite loss guarantees an increase in the AUC. This is
supported empirically in Section 4.2.3 where both our method and the bipartite ranking
loss based method of [Rajaram et al., 2007] improve the AUC.

4.2.2 SVM Active Learning for Ranking

Relying on the relationship between the hinge rank loss and the AUC, we propose selecting
examples that will minimize the expected hinge rank loss in order to maximize rank-
learning as measured by the AUC. Expected loss minimization has been studied before for

44 Chapter 4: Active Learning for Rank Learning

active learning, but in classification [Donmez et al., 2007; McCallum and Nigam, 1998;
Nguyen and Smeulders, 2004], rather than in ranking. Unfortunately, active sampling
designed for classification error cannot directly apply to the ranking scenario. Ranking loss
is based on the relative position of the entities instead of the absolute class label. The rank
position of an error matters significantly since the top of the ordered list is more important
than the bottom. Moreover, it is crucial to take into account the data skew typical in ranking
datasets when designing sampling algorithms for ranking. In this section, we describe a loss
minimization algorithm for active learning in ranking to address these issues.

The expected loss minimization criterion requires each unlabeled example to be tested
separately in order to calculate the expected future error if it were chosen for a rank-
label. Clearly, this is not efficient for large datasets. Nguyen and Smeulders [2004]
proposed selecting the examples that have the largest contribution to the current es-
timated error instead of choosing the sample that produces the smallest future error;
s = arg maxi∈IU Ey|x[(yi − ŷi)2 | xi] where IU is the set of indices of the unlabeled data.
We adopt a similar approach but our selection criterion is based on the hinge rank loss
rather than the typical loss functions used for classification such as the squared loss. The
optimization problem for SVM Rank Learning [Cao et al., 2006; Joachims, 2005] can be
written as a loss minimization problem as follows:

LH =
l∑

i=1

[1− zi〈w, x(1)
i − x(2)

i 〉]+ (4.4)

plus a complexity penalty 1. x(1)
i and x

(2)
i correspond to one relevant and one nonrele-

vant example, respectively, for a given query (we omit the query subindex for notational
simplicity). zi = +1 if x(1)

i � x(2)
i , and zi = −1 otherwise. By algebraic reformulations:

LH =
l∑

i=1

[1− zi〈w, x(1)
i 〉+ zi〈w, x(2)

i 〉]+

LH =
l∑

i=1

[(1− y(1)
i 〈w, x(1)

i 〉) + (1− y(2)
i 〈w, x(2)

i 〉)− 1]+

1The decision threshold ϑ is typically chosen as 0 without loss of generality.

4.2 Active Learning via Optimizing AUC 45

where y1
i = zi and y2

i = −zi. The rank version of the above loss function then becomes2:

LHR =
l∑

i=1

[(
1
2
− y(1)

i (r(1)
i − ϑ̄)) + (

1
2
− y(2)

i (r(2)
i − ϑ̄))− 1]+

LHR ≤
l∑

i=1

[
1
2
− y(1)

i (r(1)
i − ϑ̄)]+ + [

1
2
− y(2)

i (r(2)
i − ϑ̄)]+ (4.5)

where the rank threshold ϑ̄ is specific to a given query q. Since the RankSVM implementation
takes as input vectors corresponding to individual data points, we use, for convenience, the
right hand side of the above inequality as the loss function instead of Equation 4.4 that uses
pairwise difference vectors. This corresponds to selecting the example pair that has the
largest expected hinge rank loss Ey|x[[1

2 −y
(1)
i (r(1)

i − ϑ̄)]+ +[1
2 −y

(2)
i (r(2)

i − ϑ̄)]+ | (x(1)
i , x

(2)
i)],

where the expectation is taken over the posterior distribution of y given x. However, picking
an optimal pair requires O(n2) comparisons in a set of size n; hence it is impractical for
large-scale ranking applications. Therefore, we proceed with selecting individual example(s)
per query with the largest expected loss. A selected example may not be optimal compared
to the pair selected according to (4.5); however, it is a reasonable choice for performance-
time tradeoff. In fact, our empirical results show that this strategy is quite effective for
learning a good ranker with few labeled instances.

E
[
[
1
2
− yk(rk − ϑ̄)]+ | xk

]
=

P̂ (yk = 1 | xk)[12 − (rk − ϑ̄)]+ + P̂ (yk = −1 | xk)[12 + (rk − ϑ̄)]+ (4.6)

Equation 4.6 favors points with the highest uncertainty. RankSVM optimizes pairwise
preferences, and it may not learn a reasonable decision threshold. Thus, the estimated
decision boundary may not be in correspondence with the true rank threshold. This bias
may not affect the ranking performance as long as the correct order is obtained. However, it
presents a larger problem in the active-learning-to-rank context. The most uncertain points
in ranking problems can be considered as the points whose rankings are closest to the rank
threshold. This corresponds to multiple thresholds in a multi-level rating scenario with
uncertain points being specific to each threshold. Therefore, the rank threshold should
define the decision boundary. In order to simulate this effect, we propose a normalized rank

2The transformation from Equation 4.4 to 4.5 is possible when the data has binary relevance judgments,
which is the case for the majority of the benchmark test collections including ones used in this work.

46 Chapter 4: Active Learning for Rank Learning

distance measure and incorporate it into Equation 4.6 to obtain the following:

E
[
[
1
2
− yk(rk − ϑ̄)]+ | xk

]
=
{
P̂ (yk = 1 | xk)

[1
2 − (rk − ϑ̄)]+
|rmin − ϑ̄|

(1− η)+

P̂ (yk = −1 | xk)
[1
2 + (rk − ϑ̄)]+
|rmax − ϑ̄|

η

}
(4.7)

where rmin = 1 and rmax = |IUq | since the most relevant examples have the highest rank
and vice versa. |IUq | denotes the size of the unlabeled set for the query q. The normalization
in Equation 4.7 regularizes the effect of the points that are ranked further below in the
rank order, and those ranked at the top. Generally, the number of points that are ranked
above the threshold would be small since there are only a handful of positive(relevant)
examples compared to the large amount of negative(non-relevant) examples in tasks such as
document retrieval. Without normalization, the points with rank rk > ϑ̄ have little chance
of being selected since the rank distance rk − ϑ̄ is small. Dividing both distances by their
maximum renormalizes them into the same scale, favoring a more balanced estimation.
0 < η < 1 is a trade-off parameter that controls the weight of the examples on either side of
the rank threshold. Setting η > 0.5 gives more weight to the examples that are mistakenly
ranked above the threshold but are in fact negative(nonrelevant). We tuned the η parameter
on a small dataset not reported in this paper and that resulted in fixing η at 0.6. Better
tuning on a validation set could further improve our results. The outline of our selection
algorithm is given in Algorithm 3.

Algorithm 3 Active Sampling using Hinge Rank Loss
Input: Labeled data Lb, Unlabeled data Un, # rounds T
Output: A ranking function f(x) = 〈w, x〉
Program
for all t = 1 : T do

Learn a ranking function f on Lb
Rank the examples xk ∈ Un in ascending order acc. to f(xk)
Estimate their posterior, i.e. P̂ (yk | xk)
Select the top l examples, Un(l), when sorted in descending order w.r.t.:

x∗ = arg maxx P̂ (yk = 1 | xk) [1
2
−(rk−ϑ̄)]+

|rmin−ϑ̄|
(1− η) + P̂ (yk = −1 | xk) [1

2
+(rk−ϑ̄)]+

|rmax−ϑ̄|
η

Remove x∗ from Un and update Lb = Lb+ {x∗, y∗}
end for

The class probability P̂ (yk | xk) in step 3 of Algorithm 3 can be estimated by fitting a
sigmoid to the ranking function output:

P̂ (yk | xk) =
1

1 + exp(−yk ∗ f(xk))
(4.8)

4.2 Active Learning via Optimizing AUC 47

In this paper, we propose a simple method to construct a calibrated estimate for the posterior
class distribution. First, we propose a way to estimate the rank threshold ϑ̄ and then we
use it to calibrate the posterior. We assume that the true ranking function maximizes the
score difference between the lowest ranked relevant and the highest ranked non-relevant
examples. We sort the data in ascending order of rank scores and compute the absolute
difference of the scores of two neighboring examples. The threshold is then chosen as
summarized in Algorithm 4.

Algorithm 4 Posterior Calibration
Input: a ranking function f , unlabeled data Un
Output: the posterior class distribution P̂ (y | x)
1. Sort the examples x ∈ Un acc. to f(x) to obtain a rank order, i.e. x1 ≺ x2 ≺ ... ≺ xrmax
2. Compute |f(xi)− f(xi+1)| ∀i = 1, 2, ..., rmax − 1
3. The threshold then becomes: ˆ̄ϑ = arg maxi=1,...,rmax−1 |f(xi)− f(xi+1)|
4. P̂ (y | x) = 1

1+exp(−y∗f(x)+f(x ˆ̄ϑ
))

Now we can calibrate the estimate in Equation 4.8 by adding the output score of the
instance whose rank is equal to the estimated threshold, i.e.

P̂ (yk | xk) =
1

1 + exp(−yk ∗ f(xk) + f(x ˆ̄ϑ
))

(4.9)

We substitute the above estimate into Equation 4.7 for active instance selection. Now, it
should be clear that Equation 4.7 favors points with the highest uncertainty with respect to
the current ranker. This is consistent with many other active sampling methods proposed for
classification in which uncertainty-based selection criterion plays an effective role [Donmez
et al., 2007; Tong and Koller, 2000; Xu et al., 2003], although none of them has previously
adopted a normalized uncertainty-based criterion for rank-learning.

4.2.3 Experimental Evaluation

In order to assess the effectiveness of our active-sampling method, we used the Learning
to Rank (LETOR) Benchmark dataset [Liu et al., 2007]. We report results of our studies
on the TREC 2003 and TREC 2004 topic distillation tasks [Craswell et al., 2003; Craswell
and Hawking, 2004] in LETOR, namely TD2003 and TD2004. The relevance assessments
are binary and created by human judges. There are 44 features for each document-query
pair. In our evaluation, we used query-based normalization into the [0, 1] interval for the
features, as suggested by the producers of the LETOR [Liu et al., 2007] package. There are
50 and 75 queries, each with ∼ 1000 documents, in TD2003 and TD2004, respectively. The
percentage of relevant documents is 1% in TD2003 and 0.6% in TD2004. The TD2003 and

48 Chapter 4: Active Learning for Rank Learning

TD2004 datasets come with standard train and test splits divided into 5 folds. In each fold,
we randomly picked 11 documents (one relevant and 10 non-relevant) for each query from
the given training data to construct the initial labeled set. The remaining training data is
used as the unlabeled set. Each sampling method selects l = 5 unlabeled instances per query
at each round. Then, the selected instances are labeled and added to the current training
set. The performance of the ranker is re-evaluated on the testing data. This procedure is
repeated for 20 iterations on every fold, and the averaged results are reported.

We tested the performance of our method (denoted by LossMin) against four baselines:
the entropy-based sampling method of [Rajaram et al., 2007] (denoted by Entropy), the
uncertainty sampling heuristic of [Yu, 2005] (denoted by Uncertain), the divergence-based
sampling strategy of [Amini et al., 2006] (denoted by Diverse), and random sampling
(denoted by Random). Entropy method [Rajaram et al., 2007] samples the most confusing
instances for the current ranker which are identified via estimating the bipartite ranking
error [Freund et al., 2003] that counts an error each time a relevant instance is ranked lower
than an irrelevant one. The selection mechanism of [Yu, 2005] favors the most ambiguous
set of samples (data pairs that are closest in the rank scores and thus most ambiguous) with
respect to the current ranker. Diverse method selects samples exhibiting maximal divergence
(disagreement) between the current hypothesis and a randomized one [Amini et al., 2006].
We report AUC, Mean Average Precision (MAP) and Normalized Discounted Cumulative
Gain (NDCG) as the evaluation measures. The NDCG measure was evaluated at the 10th

rank cut-off. The performance at the beginning is the same for all methods since they start
with the same initial random samples. The ranking implementation in SVMLight [Joachims,
1999] was used with a linear kernel and default parameter settings. Figure 4.1
shows the performance comparison on the TD2004 and TD2003 datasets. Our method
outperforms the others on both datasets. In fact, these results are significant (p < 0.0001
on TD2003 and p < 0.001 on TD2004 w.r.t. MAP and NDCG10) according to a two-sided
paired t-test at the 0.95 confidence conducted over the entire operating range. Furthermore,
we can order the methods according to the significance of the results with respect to three
evaluation metrics. We denote p < 0.01 significance level by �, p < 0.05 significance by
>, and indifference by ≈. For MAP score, LossMin � Entropy � Diverse � Uncertain
on TD2004, and LossMin � Entropy � Uncertain � Diverse on TD2003 dataset. For
NDCG10, LossMin� Entropy� Diverse ≈ Uncertain on TD2004, and LossMin� Entropy
� Uncertain > Diverse on TD2003. Finally for AUC, LossMin > Entropy > Diverse �
Uncertain, and LossMin ≈ Entropy� Uncertain > Diverse on TD2004 and TD2003 datasets,
respectively. Unfortunately, the uncertainty sampling and the divergence-based sampling
have low performance. Uncertainty sampling selects instances with the most similar scores,
but ignores the fact that examples with the same rank label are likely be assigned similar
scores. However, such examples do not provide any additional information to the rank
learner, leading to a poor performance. A similar behavior is also observed by [Amini et
al., 2006]. On the other hand, the low performance of the divergence-based sampling is

4.2 Active Learning via Optimizing AUC 49

0 5 10 15 20
0.25

0.3

0.35

0.4

0.45

M
A

P

LossMin

Entropy

Diverse

Uncertain

TD04

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

M
A

P

LossMin

Entropy

Diverse

Uncertain

TD03

0 5 10 15 20
0.3

0.35

0.4

0.45

0.5

N
D

C
G

10

0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

N
D

C
G

10

0 5 10 1515 20
0.92

0.94

0.96

0.98

A
U

C

0 5 10 15 20
0.77

0.79

0.81

0.83

0.85

A
U

C

Figure 4.1: Average results on TD2004 (left figure) and TD2003 (right figure). X-axis
shows the # of iterations. 5 instances per query are selected per round.

perhaps due to the heavy dependence of this algorithm to a sufficiently large initial training
set. Divergence-based sampling divides the initial training set into folds and a ranking
function is trained on each fold. These functions are not reliable when the training set size is
small, which is the case in our empirical setting. Our method, on the other hand, effectively
increases the performance even starting with minimal labeled data, which makes it quite
useful for many ranking applications that otherwise would require extensive labeling effort,
such as document retrieval. We also conducted a final comparison which demonstrates the
superiority of our method against random sampling. Our method also gradually increases
the AUC on both datasets. This supports the theoretical claim that our method optimizes the
AUC metric by sampling the instances that have the largest effect on the expected hinge rank

50 Chapter 4: Active Learning for Rank Learning

Table 4.1: Performance and Selection Time Comparison. Iter: the # of iterations. LossMin:
the proposed method, Ent: entropy-based method, Diverse: Divergence-based sampling, Un:
maximum-uncertainty sampling. Time: training time + ranking time + instance selection
time.

Time (cpu-sec) MAP
Iter

LossMin Ent Diverse Un LossMin Ent Diverse Un
1.347 1.347 1.347 1.347 0.184 0.184 0.184 0.184 0
1.977 45.234 36.072 1.947 0.219 0.183 0.190 0.194 1
2.003 48.576 39.127 1.953 0.201 0.204 0.171 0.191 2
2.038 52.865 41.973 1.968 0.221 0.222 0.183 0.189 3
2.110 55.038 44.665 2.001 0.226 0.228 0.160 0.186 4

loss, and thereby on maximizing the expected AUC score. A similar monotonic improvement
is also apparent for the MAP and NDCG@10 metrics, indicating that they might be well
correlated with the AUC. On the other hand, Entropy method achieves comparable AUC
score to ours even though our method has significantly better MAP and NDCG scores. This is
not a very surprising result since the Entropy method is suited for the bipartite ranking loss
R, which is inversely correlated with the AUC, i.e. R = 1−AUC. But, the main advantage
of our method is to use the normalized rank distance resulting in a more balanced selection
for the highly skewed datasets. This sampling favors the mistakenly ranked instances at the
top of the ordered list, hence boosts the metrics sensitive to the high ranks, such as MAP
and NDCG.

Table 4.1 summarizes the average results on TD2003 dataset. It shows the results for
the first 5 iterations and evaluate the MAP scores and the average selection time for each
method. The selection time is calculated as the time period each algorithm spends to train
the rank learner on the current labeled set, and then to assign scores to the unlabeled
examples and finally to select new instances to be labeled. Our method achieves greater
learning efficiency with modest computation time in comparison with the other baselines.
Particularly, our method has very similar performance to that of the entropy-based method
for the early iterations despite the greater complexity of the latter. Nevertheless, our method
reaches a significantly better final performance.

4.3 Optimizing Estimated Loss Reduction for Active Sampling

4.3.1 Motivation

This section introduces our motivation for focusing on maximizing the estimated loss
differential which forms the basis of the underlying sampling framework. Roy and McCallum

4.3 Optimizing Estimated Loss Reduction for Active Sampling 51

2001 argue that an optimal active learner is the one that asks for the labels of the examples
that, once incorporated into training, would result in the lowest expected error on the test
set. The expected error on the test set can be estimated using the posterior distribution
P̂Lb(y | x) of class labels estimated from the training set using some loss function L

EP̂Lb =
∫
x
L(P (y | x), P̂Lb(y | x))P (x) (4.10)

Their aim is then to select the point x∗ such that when added to the training set with a
chosen label y∗, the classifier trained on the new set {Lb+ (x∗, y∗)} would have less error
than any other candidate x.

∀(x, y)EP̂Lb+(x∗,y∗)
≤ EP̂Lb+(x,y)

(4.11)

Since the true label y∗ is unknown, the expectation calculation is carried out by calculating
the estimated error for each possible label y ∈ Y , and then taking the average weighted
by the current learner’s posterior P̂Lb(y | x). The naive implementation of this method
would be quite inefficient and almost intractable on large datasets. Roy and McCallum
2001 address this problem using fast updates for a Naive Bayes classifier. Although efficient
re-training procedures are available for some other learners such as SVMs [Cauwenberghs
and Poggio, 2000], it would still be infeasible for ranking tasks, especially considering the
interactive nature of ranking systems. In this paper, we propose a method to estimate how
likely the addition of a new example will result in the lowest expected error on the test set
without any re-training on the enlarged training set. Our method is based on the likelihood
of an example to change the current hypothesis significantly. There are a number of reasons
why we believe this is a reasonable indicator for estimating that error:

• Adding a new data point to the labeled set can only change the error on the test set if
it changes the current learner.

• The more significant that change, the greater chance to learn the true hypothesis
faster.

• We note that a big change in the current hypothesis might not always lead to better
generalization. However, as more data is sampled and the hypothesis gets closer to
the truth, it is less likely that a single outlier could hurt the performance noticeably.

In the following sections, we briefly review the RankSVM and the RankBoost algorithms
and propose a novel active learning method for each.

4.3.2 SVM Rank Learning

Assume f ∈ F is a linear function, i.e. f(x) = 〈~w, x〉, that satisfies

xi � xj ⇔ 〈~w, xi〉 > 〈~w, xj〉

52 Chapter 4: Active Learning for Rank Learning

The SVM model targeting this problem can be formulated as a Quadratic Optimization
problem:

min
~w

1
2
‖~w‖2 +B

∑
ξij subject to 〈~w, xi〉 ≥ 〈~w, xj〉+ 1− ξij , ξij ≥ 0 ∀i, j

The above optimization can be equivalently written by re-arranging the constraints and
substituting the trade-off parameter B for λ = 1

2B as follows:

min
~w

K∑
k=1

[
1− zk

〈
~w, x1

k − x2
k

〉]
+

+ λ‖~w‖2 (4.12)

where [.]+ indicates the standard hinge loss. x1 − x2 is a pairwise difference vector whose
label z is positive, i.e., z = +1 if x1 � x2 and z = −1 otherwise. K is the total number
of such pairs in the training set. Finally, a ranked list is obtained by sorting the instances
according to the output of the ranking function in descending order.

4.3.3 Active Sampling for RankSVM

Let us consider a candidate example x ∈ Un, where Un is the set of unlabeled examples.
Assume x is incorporated into the labeled set with a rank label y ∈ Y . We denote the
total loss on the instance pairs that include x by a function of x and ~w, i.e. NL(x, ~w) =∑Jy

j=1 [1− zj 〈~w, xj − x〉]+ where Jy is the number of examples in the training set with a
different label than the label y of x. For instance, Jy is the number of negative(non-relevant)
examples in the training set if y is assumed to be positive(relevant), and vice versa. The
objective function to be minimized by RankSVM then becomes:

min
~w

{
λ‖~w‖2 +

K∑
k=1

[
1− zk

〈
~w, x1

k − x2
k

〉]
+

+NL(x, ~w)
}

(4.13)

Assume ~w∗ is the solution to the optimization in Equation 4.12, and it is unique. Burges
and Crisp 2000 show the necessary and sufficient conditions for the uniqueness of the SVM
solution. There are only rare cases where uniqueness does not hold, thus it is a rather
safe assumption to make. Since we do not actually re-run the optimization problem on
the enlarged data, we restrict ourselves to the current solution (hypothesis) ~w∗. Instead of
re-optimizing, we estimate the effect of adding each candidate instance on the training loss
using the current solution to tell how much incorporating x into the labeled set is likely to
change the current hypothesis. First, let us consider two cases.

4.3 Optimizing Estimated Loss Reduction for Active Sampling 53

1. Assume ~w∗ = arg min~wNL(~w, x)
Then, ~w∗ is also the solution to the optimization problem in Equation 4.13, combining
the assumption with ~w∗ being the solution to Equation 4.12. That means, adding x
to the training set would not change the current hypothesis. From an active learning
point of view, this example is useless since the learning algorithm is indifferent to its
inclusion.

2. Assume ~w∗ 6= arg min~wNL(~w, x)
This is the situation where the current solution could be different if that example x
were incorporated into training. The magnitude of the difference depends on the
magnitude of the deviation of NL(~w∗, x) from its optimal value, min~wNL(~w, x).

We now study the second case in more detail. Let ~̂w be the weight vector that minimizes
NL(~w, x), i.e. ~̂w = arg min~wNL(~w, x). Then, as the difference ‖~w∗ − ~̂w‖ increases it
becomes less likely that ~w∗ is optimal for Equation 4.13. In other words, the current solution
~w∗ is in most need of updating in order to compensate for the loss on the new pairs. Let us
write ~̂w in terms of ~w∗ as follows:

~̂w = ~w∗ −∆w

Minimizing NL(~w, x) requires working with the hinge loss, the direct optimization of which
is difficult due to the discontinuity of the derivative. However, it can still be solved using a
gradient-descent-type algorithm3.

Recall the objective function to be minimized:

min
~w
NL(~w, x) = min

~w

Jy∑
j=1

[1− zj 〈~w, xj − x〉]+ (4.14)

The derivative of the above equation with respect to ~w at a single point xj , ∆~wj , is:

∆~wj =

{
0 if zj 〈~w, xj − x〉 ≥ 1
−zj(xj − x) if zj 〈~w, xj − x〉 < 1

(4.15)

We substitute ~w in Equation 4.15 for the current weight vector ~w∗ to estimate how the
solution of Equation 4.14 deviates from it, i.e. ‖~w∗ − ~̂w‖ = ‖∆~w‖. We can now write the
magnitude of the total derivative as a function of x and the rank label y as follows:

g(x, y) = ‖∆~w‖ =
∑
j

‖∆~wj‖ (4.16)

=
Jy∑
j=1

{
0 if zj 〈~w∗, xj − x〉 ≥ 1
‖ − zj(xj − x)‖ if zj 〈~w∗, xj − x〉 < 1

3For a detailed discussion on solving SVM rank learning using gradient descent, see [Cao et al., 2006].

54 Chapter 4: Active Learning for Rank Learning

g(x, y) estimates how likely the current hypothesis is to be updated to minimize the loss
introduced as a result of the addition of the example x with the rank label y. Thus, we use
this function to estimate the ability of each unlabeled candidate example to change the
current learner if incorporated into training. Since the true labels of the candidate examples
are unknown, we use the current learner to estimate the true label probabilities. Then, we
can take the expectation of g(x, y) by taking the weighted sum over the current posterior
P̂ (y | x) for all y ∈ Y . Among all the unlabeled examples, we choose the one with the
highest value for that expectation:

x∗ = arg max
x∈U

∑
y∈Y

P̂ (y | x)g(x, y) (4.17)

= arg max
x∈U

{
P̂ (y = 1 | x)g(x, y = 1) + P̂ (y = −1 | x)g(x, y = −1)

}
(4.18)

4.3.4 RankBoost Learning

RankBoost is a boosting algorithm designed for ranking problems. Like all algorithms
in boosting family, RankBoost learns a weak learner on each round, and maintains a
distribution Dt over the ranked pairs, X ×X, to emphasize the pairs whose relative order
is the hardest to learn. An outline of the algorithm is given in Algorithm 5. Zt is a
normalization constant, and the final ranking is a weighted sum of the weak rankings
H(x) =

∑T
t=1 αtht(x). For more details and theoretical discussion see [Freund et al.,

2003].

Algorithm 5 RankBoost
Input: initial data distribution D1 over X × X
for t = 1 to T do

Train a weak learner on Dt

Obtain the weak ranking ht : X 7→ R
Choose a weight αt ∈ R for ht
Dt+1(x1, x2) = Dt(x1,x2)exp(−αt(ht(x1)−ht(x2)))

Zt
end for

4.3.5 Active Sampling for RankBoost

This section introduces a similar method for active sampling for the RankBoost algorithm
[Freund et al., 2003]. Consider a candidate point x ∈ Un and assume it is merged into the
training set with rank label y ∈ Y. Unlike RankSVM, RankBoost algorithm does not directly

4.3 Optimizing Estimated Loss Reduction for Active Sampling 55

operate with an optimization function. But the ranking loss with respect to the distribution
at time t can be written as: ∑

x1,x2

Dt(x1, x2)I(H(x2) ≥ H(x1)) (4.19)

where I is defined to be 1 if the predicate holds and 0 otherwise. Hence, this is a sum over
misranked pairs, assuming x1 � x2. The distribution at time T + 1 can be written as:

DT+1(x1, x2) = D1(x1, x2)
exp(H(x2)−H(x1))∏

t Zt
(4.20)

The initial distribution term D1 can be dropped without loss of generality, assuming it is
uniform (which is reasonable given the fact that we do not have prior information about
the data). Similarly to RankSVM, we would like to estimate how much the current ranking
function would change if the point x were in the training set. We estimate this deviation by
the difference in the ranking loss after enlarging the current labeled set with each example
x ∈ Un. The ranking loss on the enlarged set with respect to the distribution DT+1 is:

∑
x1,x2

exp(H(x2)−H(x1))∏
t Zt

I(H(x2) ≥ H(x1))+

∑
xj ,x

exp(H(xj)−H(x))∏
t Zt

I(H(xj) ≥ H(x)) (4.21)

Note that the rank label y of x is assumed to be positive (relevant) with x � xj in this
case. We have a similar calculation for the case where y is assumed to be negative (non-
relevant). We adopt the distribution DT+1 because 1) it can easily be written in terms of
the final ranking function, 2) it contains information about which pairs remain the hardest
to determine after the iterative weight updates. Then, the difference in the ranking loss
between the current and the augmented set simply becomes:

∆L(x, y = 1) =
∑
xj ,x

exp(H(xj)−H(x))∏
t Zt

I(H(xj) ≥ H(x)) (4.22)

This difference indicates how much the current ranking function needs to be modified to
compensate for the loss incurred by including this example. Note that I(x ≥ 0) ≤ ex for
∀x ∈ R [Freund et al., 2003]. Therefore, the upper bound on ∆L can be written as:

∆L(x, y = 1) ≤
∑
xj ,x

exp(2(H(xj)−H(x)))∏
t Zt

(4.23)

56 Chapter 4: Active Learning for Rank Learning

∆L(x, y = −1) can be similarly bounded, e.g. ∆L(x, y = −1) ≤∑x,xm
exp(2(H(x)−H(xm)))Q

t Zt
.

Now, the loss difference can be estimated by taking the expectation over the possible rank
labels of x with respect to the current ranker’s posterior, P̂ (y | x):

EP̂ (∆L(x)) = P̂ (y = 1 | x)∆L(x, y = 1) + P̂ (y = −1 | x)∆L(x, y = −1) (4.24)

Note the similarity with Equation 4.17 in the SVM case. Finally, we select the instance x that
has the highest expected loss differential, e.g. x∗ = arg maxxEP̂ (∆L(x)). For notational
clarity, we take the maximum over the upper bound in Equation 4.23 as follows:

x∗ = arg max
x∈U

{
P̂ (y = 1 | x)(

∑
xj ,x

exp(2(H(xj)−H(x))))

+ P̂ (y = −1 | x)(
∑
x,xm

exp(2(H(x)−H(xm))))
}

(4.25)

For simplicity, we leave out the normalization constant
∏
t Zt since we are interested in the

relative expectation rather than the absolute expectation.

4.3.6 Final Selection

The sample selection in both RankSVM and RankBoost requires estimating a posterior label
distribution. We adopt a sigmoid function to estimate that posterior in the SVM case, as
suggested by [Platt, 1999]:

P̂ (y | x) =
1

1 + exp(−y ∗ f(x) +K)

where f(x) is the real-valued score of the ranking algorithm, and K is a constant for
calibrating the estimate. K is tuned on a separate corpus not used for evaluation in this
paper. The final ranking in RankBoost is a sum of weak learners with the corresponding
weights. When the weights are too small (or too large), the posterior gets close to the
extreme (either 0 or 1) regardless of the example. Hence, we normalize the RankBoost
output dividing by the maximum possible rank score without changing the rank order:

P̂ (y | x) =
1

1 + exp(−y ∗ H(x)PT
t=1 αt

+K)

Note maxxH(x) = maxx
∑T

t=1 αtht(x) =
∑T

t=1 αt since the weak learner ht(x) in Rank-
Boost is a {0,1}-valued function defined on the ordering information provided by the
corresponding feature [Freund et al., 2003].

4.3 Optimizing Estimated Loss Reduction for Active Sampling 57

1 5 10 15 20 25

rounds

0.1

0.15

0.2

0.25

0.3

M
A

P

DiffLoss

Margin

Random

RankSVM

1 5 10 15 20 25

rounds

0.1

0.15

0.2

0.25

M
A

P

DiffLoss

Margin

Random

RankBoost

1 5 10 15 20 25

rounds

0.1

0.2

0.3

0.4

N
D

C
G

@
10

DiffLoss

Margin

Random

1 5 10 15 20 25

rounds

0.15

0.2

0.25

0.3

0.35

N
D

C
G

@
10

DiffLoss

Margin

Random

Figure 4.2: Comparison of different active learners on TD2003. The horizontal line indicates
the performance when the entire training data is used. Only ∼ 15% of the training data is
actively labeled in total by each method.

4.3.7 Experimental Evaluation

We used the same datasets, namely TD2003 and TD2004, as we used for the experiments in
Section 4.2. Figures 4.2 and 4.3 plot the performance of the proposed method (denoted by
DiffLoss), and as comparative baselines, the margin-based sampling and random sampling
strategies on TD2003 and TD2004 datasets. DiffLoss has a clear advantage over margin-
based and random sampling in all cases with respect to different evaluation metrics. The
differences over the entire operating range are also statistically significant (p < 0.0001)
according to a two-sided paired t-test at 95% confidence level. DiffLoss especially achieves
30% relative improvement over the margin-based sampling for RankSVM on TD2003 dataset.

The horizontal line in each figure indicates the performance if all the training data was
used, which we call the “optimal” performance. The performance of DiffLoss for RankBoost
is comparable to the “optimal” on TD2003 and TD2004 datasets. In case of RankSVM,
DiffLoss is close to the “optimal” on TREC 2003, and outperforms it on TREC 2004 dataset.

58 Chapter 4: Active Learning for Rank Learning

1 5 10 15 20 25

rounds

0.25

0.3

0.35

0.4

M
A

P

DiffLoss

Margin

Random

RankSVM

1 5 10 15 20 25

rounds

0.25

0.3

0.35

0.4

M
A

P

DiffLoss

Margin

Random

RankBoost

1 5 10 15 20 25

rounds

0.3

0.35

0.4

0.45

0.5

N
D

C
G

@
10

DiffLoss

Margin

Random

1 5 10 15 20 25

rounds

0.3

0.35

0.4

0.45

0.5

N
D

C
G

@
10

DiffLoss

Margin

Random

Figure 4.3: Comparison of different active learners on TD2004. The horizontal line indicates
the performance when the entire training data is used. Only ∼ 15% of the training data is
actively labeled in total by each method.

More precisely, DiffLoss using RankSVM reaches the optimal performance (even surpassing
it on TD2004) after 10 rounds of labeling on average (labeling 5 documents per query at
each round). DiffLoss using RankBoost, on the other hand, reaches 95% and 90% of the
optimal performance on MAP and NDCG@10, respectively on TD2004 dataset after 10
rounds. This suggests that carefully chosen samples might lead to a higher level of accuracy
than blindly using large amounts of training data. This is an important development over
traditional supervised rank learning since it not only reduces the expensive labeling effort,
but also may lead to greater generalization power.

4.4 Chapter Conclusions

Rank learning is a more complicated task than classification since it requires learning a
complete (or partial) ordering of data rather than finding absolute class assignments. The

4.4 Chapter Conclusions 59

target domain of a set of permutations is more complex than that of absolute classes.
Hence, it is even more crucial to select the most informative instances to be labeled (or
ordered) to learning a ranking model with fewer training examples. This chapter is devoted
to two novel active sampling frameworks for rank learning. The main contribution of
the first method, LossMin, lies in estimating the expected normalized loss minimization.
The normalization yields a more balanced estimation, which is essential in highly skewed
datasets, as typical in document retrieval. Experimental results offer that LossMin works well
in practice, successfully learning a ranking function with many fewer labeling requests than
the competitive baselines. There are open questions regarding potential future directions.
While LossMin optimizes for AUC, it significantly improves two other popular IR evaluation
metrics, namely MAP and NDCG@10. Studying the relationship between AUC and these
measures might be useful for developing sampling strategies that directly optimize these
measures.

Our second contribution considers the magnitude of the change in a ranking function
resulting from an addition of a new labeled instance. Our framework efficiently estimates
the risk of the ranking function after adding a new instance with all possible labels. The
samples with the largest expected loss differential are selected to maximize the degree of
fast learning. Empirical analysis shows that the proposed framework significantly reduces
the required number of labeled examples to learn an accurate ranking function.

For both strategies, ranking problems with a complete order pose further challenges.
Eliciting human judgments concerning complete orders is even more time-consuming and
costly. Even when only a partial (relative) order of a set of points is acquired, deciding the
set of points to be judged remains an important open research question.

Chapter 5

From Active to Proactive Learning

5.1 Introduction

We cannot emphasize enough how acquiring class labels or ranking preferences requires
extensive effort while unlabeled data is often available in abundance. Thus far, we have
discussed the active learning paradigm which attempts to optimize performance by selecting
the most informative instances to label. Informativeness is defined in various ways (e.g.
maximal expected improvement in prediction). We have described in detail novel machine
learning approaches for active sampling in classification and rank learning problems.

However, traditional active learning relies on unrealistic assumptions, including our
previous work. These assumptions have largely been ignored in the previous literature.
Chapter 1 discusses these assumptions and explains the consequences at great length. We
will not rehearse them here; instead, we will focus on the new machine learning paradigm,
proactive learning. As discussed, proactive learning bridges the gap between traditional
active learning and many practical problems. The main purpose of proactive learning is to
reach out the appropriate predictor(s) with the appropriate query at the appropriate cost.
This chapter takes a first step towards dealing with predictors having various characteristics
including fallibility, reluctance and cost-variability. In the following chapters, we purely
concentrate on fallible predictors and learning in the absence of ground truth labels.

In this chapter, we formulate the problem as inherently a decision-theoretic problem,
and focus on three scenarios. These scenarios are designed to explore different predictor
types in a multi-predictor setting, i.e. predictors reluctant to give answers, predictors that
charge non-uniform cost, and fallible predictors that might provide wrong answers. We
assume that each of these properties can be defined as a function of the query difficulty,
i.e. the level of difficulty to classify the sampled instance. Each scenario analyzes a single
property; i.e. reluctance, non-uniform cost and fallibility. In multi-predictor proactive

61

62 Chapter 5: From Active to Proactive Learning

sampling, it is crucial to select the optimal data instance(s) to be queried as well as the
optimal predictor. We achieved promising results on benchmark classification datasets
by transforming the problem into expected utility maximization. We further assume a
pre-defined and fixed budget; hence, the task becomes a constraint optimization problem.
The results demonstrate the effectiveness of joint sampling of the optimal predictor-example
pair as compared to sampling with respect to a single predictor.

5.2 Predictor and Instance Selection

In this section, we present a proactive learning method to select the optimal predictor
instance pair for classification problems. Hence, the objective is to find the most informative
instance to be labeled and the most appropriate and cost-effective predictor to elicit the label.
We focus on three scenarios embodying the notion of multiple predictors with differing
properties and costs. Let us begin by explaining “Scenario 1”.

5.2.1 Scenario 1: Reluctance

In this scenario, we assume there exists one reliable predictor and one reluctant predictor.
The reliable predictor gives an answer every time it is invoked with a query, and the answer
is always correct. The reluctant predictor, on the other hand, does not always provide an
answer, but when it answers it does so correctly. The probability of getting an answer from
the reluctant predictor depends on the difficulty of the classification task. Not surprisingly,
they charge different fees: the reliable predictor is more expensive than the reluctant one.
We experimented with various cost combinations to simulate different real-world situations,
with results in Section 5.3.

Rather than fixing the number of instances to sample, as in standard active learning,
proactive learning fixes a maximum budget envelope since instances and predictors may
have variable costs. Now, let us formulize the problem step by step as a joint optimization
of which instance(s) to sample and which predictor to use to purchase their labels. The
objective is to maximize the information gain under a pre-defined budget:

maximize E[V (S)] subject to B

where B is the budget, S is the set of instances to be sampled, and E[V (S)] is the expected
value of information of the sampled data to the learning algorithm. V (S) is a value
function that can be replaced with any active selection criterion. For instance, it could
be the estimated uncertainty of the current learning function at S, or a density weighted
uncertainty score, or the estimated error on the unlabeled data if S is labeled and added to
the training set.

5.2 Predictor and Instance Selection 63

The above equation can be rewritten by incorporating the budget constraint into the
objective function:

max
S⊆Un

E[V (S)]− ζ(
∑
k

tk ∗ Ck) s.t.
∑
k

tk ∗ Ck ≤ B ,
∑
k

tk = |S|

where the subscript k ∈ K denotes the chosen predictor from the set of predictors, K, and
ζ is the parameter controlling the relative importance of maximizing the information and
minimizing the cost. For simplicity, we assumed ζ = 1 in this paper. Ck and tk indicate the
cost of the chosen predictor and the number of times it is invoked, respectively. Un is the set
of unlabeled examples, |S| is the total size of the sampled set1. Although this formulation
is appealing, there is a major drawback. It is at best difficult to optimize directly due to
the fact that the maximization is over the entire set of potential sampling sequences, an
exponentially large number. However, the learning function is updated with each additional
example, which affects which examples will be sampled in the future, though we can only
calculate this effect after we know which examples are chosen and labeled. Thus, we cannot
decide all the points to be sampled at once. A tractable alternative is a greedy approximation
that will perform the optimal strategy at each round where only a single example or a small
batch of examples is sampled. Now, let us see below how the greedy approach works:

(x∗, k∗) = arg max
x∈Un,k∈K

(Ek[V (x)]− Ck) (5.1)

Ek[V (x)] is the expected value of information of the example xwith respect to corresponding
predictor k. For the remainder of this chapter, we adopted the density-sensitive sampling
method described in Section 3.3. The only difference is that we adopt Euclidean distance
instead of a density-sensitive distance metric and sample a single instance at a time instead
of sampling in pairs.

U(xi) = log
{

min
yi∈{±1}

{P (yi | xi, ŵ)}}+∑
k 6=i∈Nxi

exp(−‖xi − xk‖22) ∗ min
yk∈{±1}

{P (yk | xk, ŵ)}
}

(5.2)

This results in faster computation while giving comparable performance; hence, we can
focus more on the predictor selection.

We extend (5.1) by incorporating the probability of receiving an answer and obtain the
following2:

(x∗, k∗) = arg max
x∈Un,k∈K

(P (ans | x, k) ∗ V (x)− Ck) (5.3)

1The extension of this formulation to more than two predictors is straightforward.
2The expectation is equal to the actual value of information for the reliable predictor since P (ans |

x, reliable) = 1 for all x.

64 Chapter 5: From Active to Proactive Learning

Our goal in this scenario is to attain the maximum gain under the budget constraint. If
both predictors were reliable, then the most cost-effective solution would be to use the
cheapest predictor for every query. However, the cheapest predictor may not respond to
every request, especially when the query is difficult. We define a utility score, U(x, k), which
is a function of the predictor k and the data point x:

U(x, k) = P (ans | x, k) ∗ V (x)− Ck (5.4)

When the utility is defined as above, it is often necessary to normalize the scores and the
costs into the same range. In order to avoid the normalization, we re-define the utility of an
example given the predictor as the information value of that example at unit cost:

U(x, k) =
P (ans | x, k) ∗ V (x)

Ck
where k ∈ K (5.5)

The difference between (5.4) and (5.5) is that the latter always yields non-negative utilities
whereas the former allows negative values. A similar utility function for label acquisition at
unit cost is also adopted by [Melville et al., 2005].

Unfortunately, there do not exist real-world datasets that have ground truth informa-
tion on the reliability (in this case, P (ans | x, k)) of the labeling source (e.g. predictor,
annotator). Therefore, we simulate the reliability as follows. We assume the amount of
labeled training data available to a predictor determines its knowledge (expertise). For
instance, the reliable (perfect) predictor resembles a system that has been trained on the
entire dataset so it has perfect knowledge on each and every data point. Unlike the perfect
predictor, a reluctant predictor has access only to a small portion of the data; therefore, it is
not knowledgeable for every point. Whenever it encounters an ambiguous data point to
classify, it becomes reluctant to provide an answer. We train a classifier on a small random
subset of the entire data to obtain a posterior class distribution P (y | x). For its simplicity
and probabilistic nature, we adopted logistic regression in our experiments to calculate the
class posterior. The class posterior is then used for measuring uncertainty, miny∈Y P (y | x),
where Y is the set of target labels. We assume that the chance of obtaining an answer from
the reluctant predictor is low when the uncertainty is high and vice versa. We explain how
we design the reluctance in Section 5.3.1 in more detail.

In order to calculate the utility as shown in Equation 5.5, we need to know the answer
probability of the reluctant predictor. However, it is unrealistic to be given each predictor’s
knowledge level and response characteristics apriori, so we estimate these properties in a
discovery phase. First, we cluster the unlabeled data using kmeans clustering [Hartigan
and Wong, 1979]. The number of clusters depends on the pre-defined budget available
for this phase and the cost of the reluctant predictor. Second, for each cluster, we inquire
the label of the data point closest to the centroid. The number of successful inquiries (i.e.
the number of data points that we obtain the labels of) varies depending on the reluctance

5.2 Predictor and Instance Selection 65

of the predictor 3. We hypothesize that if the predictor does not provide the label of a
data point then it is unlikely to provide the labels for the nearby points since we assume
that similar points share similar posterior class probabilities. Therefore, it is reasonable
to estimate the answer probability of the reluctant predictor by inquiring the labels of the
cluster centroids.

For each cluster, if we obtain the label of the centroid, then we increase the answer
probability of the points in this cluster. Similarly, we decrease the answer probability of
the points in the clusters whose centroids we did not obtain the labels of. This step can
be regarded as a belief propagation step. If we receive the label of a centroid, then we
propagate our belief in receiving a label to similar points and vice versa. Initially, we assume
the answer probability for each unlabeled point is 0.5, which indicates a random guess.
Then, we adopt the following update to estimate the answer probability of each point so that
it changes as a function of the proximity of the point to the cluster centroid and predictor
responsiveness:

P̂ (ans | x, reluctant) =
0.5
Z
∗ exp

(
h(xct , yct)

2
ln
maxd − ‖xct − x‖
‖xct − x‖

)
∀x ∈ Clt (5.6)

where Z is a normalization constant. xct is the centroid of the cluster Clt that includes x.
h(xc, yc) ∈ {1,−1} is an indicator function which is equal to 1 when we receive the label
yc for the centroid xc, and −1 otherwise. ‖xc − x‖ is the Euclidean distance between the
cluster centroid xc and the point x, and maxd := maxxć,x ‖xć − x‖ is the maximum distance
between any cluster centroid and data point.

We substitute the estimated answer probability into the utility function, i.e. Û(x, k) =
P̂ (ans|x,k)∗V (x)

Ck
. The joint sampling of the predictor-example pair can now be performed as

shown in Algorithm 6.

The algorithm works in rounds till the budget is exhausted. Each round corresponds to
a single label acquisition attempt where sampling persists until obtaining a label. One
important point to note here is that we need to restrain from spending too much on a single
attempt by adaptively penalizing the reluctant predictor every time it refuses to answer. At
any given round, if the algorithm chooses the reluctant predictor and does not receive an
answer, the utility of remaining examples with respect to this predictor decreases by the
amount spent thus far at this round:

Û(x, reluctant) =
P̂ (ans | x, reluctant) ∗ V (x)

Cround

where Cround is the amount spent thus far in the given round. This penalization only
applies to the reluctant predictor since the reliable predictor always provides the label.

3We experimented with varying reluctance levels for a thorough investigation.

66 Chapter 5: From Active to Proactive Learning

Algorithm 6 Scenario 1: Reluctance
Input: a classifier f , labeled data Lb, unlabeled data Un, entire budget B, clustering budget
BC < B, two predictors, each with a cost Ck, k ∈ K = {reliable, reluctant}
Output: f
- Cluster Un into p = BC/Creluctant clusters
- Let xct be the data point closest to its cluster centroid, ∀t = 1, ..., p
- Query the label yct for each cluster centroid xct
- Identify {xc1 , ..., xcg} for which we obtain the labels
- Estimate P̂ (ans | x, reluctant) via Equation 5.6
- Update Lb = Lb ∪ {xct , yct}gt=1, Un = Un \ {xct , yct}gt=1

- cost spent so far CT = BC
while CT < B do

- Train f on Lb
- Initialize the cost of this round Cround = 0 and the set of queried examples Q = {}
- ∀k ∈ K,x ∈ Un estimate utility Û(x, k)
repeat

1. Choose k∗ = arg maxk∈K maxx∈Un\Q{Û(x, k)}
2. Choose x∗ = arg maxx∈Un\Q{Û(x, k∗)}
3. Update Cround = Cround + Ck∗

4. Q = Q ∪ {x∗}
5. Query the label y∗ with probability P (ans | x∗, k∗)

until label y∗ is obtained
- Update CT = CT + Cround
- Update Lb = Lb ∪ (x∗, y∗) and Un = Un \ (x∗, y∗)

end while

Algorithm 6 selects the maximum utility examples. This framework leads to an incremen-
tally optimal solution in the sense that the most useful data is sampled at the minimum
cost.

5.2.2 Scenario 2: Fallibility

In real-world, there might also be fallible predictors which answer each query, but the
credibility of the answer is questionable. We simulate this setting by two predictors; one
reliable and one unreliable predictor. The reliable predictor is the perfect predictor that
always provides the correct answer to any query. The unreliable predictor in this scenario is
fallible that it may provide the wrong label for a given example, depending on the difficulty.
Specifically, if an example approaches the decision boundary, the probability of correct
classification approaches 0.5 (random guess). The probability of acquiring a correct label,

5.2 Predictor and Instance Selection 67

Algorithm 7 Scenario 2: Fallibility
Input: a classifier f , labeled data Lb, unlabeled data Un, entire budget B, clustering budget
BC < B, two predictors, each with a cost Ck, k ∈ K = {reliable, fallible}
Output: f
- Cluster Un into p = BC/Cfallible clusters
- Let xct be the data point closest to its cluster centroid, ∀t = 1, ..., p
- Query the label yct for each cluster centroid xct
- Identify {xc1 , ..., xch} for which the fallible predictor has high confidence
- Estimate P̂ (correct | x, fallible)
- Update Lb = Lb ∪ {xct , yct}ht=1, Un = Un \ {xct , yct}ht=1

- cost spent so far CT = BC
while CT < B do

1. Train f on Lb
2. ∀k ∈ K,x ∈ Un Û(x, k) = P̂ (correct|x,k)∗V (x)

Ck

3. Choose k∗ = arg maxk∈K maxx∈Un{Û(x, k)}
4. Choose x∗ = arg maxx∈Un{Û(x, k∗)}
5. Update CT = CT + Ck∗

6. Update Lb = Lb ∪ (x∗, y∗) and Un = Un \ (x∗, y∗) where y∗ is the correct label with
probability P (correct | x∗, k∗)

end while

P (correct | x, fallible) is modeled the same way as in “Scenario 1”. The solution we propose
is similar to the method introduced for “Scenario 1”, with slight variations. For instance,
the learning method receives a random label for the queried example x with probability 1−
P (correct | x, fallible). Moreover, we use the clustering step exploiting the fallible predictor
to estimate the correctness probability P (correct | x, fallible). Similar to the previous
scenario, we inquire the labels of the cluster centroids. Unlike the reluctant predictor,
the fallible predictor provides the label together with its confidence. The confidence is
its posterior class probability for the provided label, P (y | x). If the class posterior is
within an uncertainty range, then we decide not to use the provided label since it is likely
to be noisy (See Section 5.3.1 for details). We decrease the correctness probability for
the points in the cluster whose centroid has a class posterior in the uncertainty range.
We increase the correctness probability for the points in the clusters with highly confident

centroids; i.e. P̂ (correct | x, fallible) = 0.5
Z ∗exp

(
h̃(xct ,yct)

2 ln maxd−‖xct−x‖
‖xct−x‖

)
∀x ∈ Clt where

h̃(xct , yct) = −1 if P (y | xct) is in the uncertainty range, and 1 otherwise. The pseudocode
of the algorithm is given in Algorithm 7.

68 Chapter 5: From Active to Proactive Learning

5.2.3 Scenario 3: Non-uniform Cost

Thus far, we have only considered the settings where a uniform fee is charged for every
query by a predictor, although each predictor may charge differently. Fraud detection in
banking transactions is a good example for this setting. The customer records are saved
in the bank database so it takes the same amount of time and effort, hence the same cost,
to look up any entry in the database. On the contrary, it is possible that the costs are
distributed non-uniformly over the set of instances. For instance in text categorization, it
might be relatively easy for an annotator to categorize a web page; hence the cost is modest.
On the other hand, assigning a book into a category incurs a considerable reading time and
therefore cost. Another example of a non-uniform cost scenario is medical diagnosis. Some
diseases such as herpes are easy to diagnose. Such diagnoses are not costly since there
is usually a major definitive symptom, i.e. outbreak of blisters on the skin. On the other
hand, diagnosing hepatitis can be very costly since it may require blood and urine tests, CT
scans, or even a liver biopsy. In “Scenario 3”, we explore the problem of deciding which
instances to query for the labels when label acquisition cost varies with the instance. We
assume two predictors one of which has a uniform and fixed cost for each query whereas
the other charges according to the task difficulty. We further assume that these predictors
always provide an answer and both are perfectly reliable in their answers.

In order to simulate the variable-cost (non-uniform) predictor, we model the cost of
each example x as a function of the posterior class distribution P (y | x). We use the class
posterior calculated similarly in the previous scenarios. The non-uniform cost Cnon−unif (x)
per instance is then defined as follows:

Cnon−unif (x) = 1− maxy∈Y P (y | x)− 1/|Y|
1− 1/|Y|

The cost increases as the instance approaches the decision boundary and vice versa. In other
words, the predictor charges based on how valuable the instance is to the learner. This may
not be the case in the real world, but this sets up a more challenging decision in terms of
the utility-cost trade-off. The utility score in this scenario is calculated as the difference
between the information value and the cost instead of the information value per unit cost4.
This is to avoid infinitely large utility scores as a result of the division by small ε-cost. Thus,
the revised utility score per predictor is given as follows:

U(x, unif) = V (x)− Cunif (5.7)

U(x, non− unif) = V (x)− Cnon−unif (x)

where Cunif is the fixed cost of the uniform-cost predictor. The pseudocode of the algorithm
is given in Algorithm 8. Note that there is no clustering phase in Algorithm 8 since

4In general, if the cost and information value are not assessed in the same units, then they can be normalized
into the same range.

5.3 Experimental Evaluation 69

we assume we know the cost of every instance, which is realistic for many real-world
applications.

Algorithm 8 Scenario 3: Non-uniform Cost
Input: a classifier f , labeled data Lb, unlabeled data Un, entire budget B, two predictors,
each with a cost Ck, k ∈ K = {unif, non− unif}
Output: f
cost spent so far CT = 0
while CT < B do

1. Train f on Lb
2. ∀k ∈ K,x ∈ Un calculate U(x, k) via Equation 5.7.
3. Choose k∗ = arg maxk∈K maxx∈Un{U(x, k)}
4. Choose x∗ = arg maxx∈Un{U(x, k∗)}
5. Update CT = CT + Ck∗

6. Update Lb = Lb ∪ (x∗, y∗), Un = Un \ (x∗, y∗)
end while

5.3 Experimental Evaluation

5.3.1 Setup for All Three Scenarios

In order to simulate the reliability of the labeling source (predictor), we assume that a
perfectly reliable predictor resembles by a classifier trained on the entire data. An unreliable
predictor, then, resembles a classifier trained on only a small subset of the entire data. Hence,
we randomly sampled a small subset from each dataset and trained a logistic regression
classifier on this sample to output a posterior class distribution that represents an unreliable
predictor. Then, we identified the instances whose class posterior falls into the uncertainty
range, i.e. miny P (y | x) ∈ [0.45, 0.5], assuming y ∈ {0, 1}. This range is used to filter the
instances that the reluctant predictor does not answer or the fallible predictor outputs a
random label. One can argue that the same effect can be achieved by randomly picking
such instances. However, our simulation forces a trade-off between the reliability and the
information value of an instance since uncertain instances are generally informative for
active learners. In order to cover a wider spectrum, we varied the percentage of instances
that fall into the uncertainty range [45%, 5%]. The second column in Table 5.1 shows
the different percentages used in our experiments. The cost of the unreliable predictor
is inversely proportional to its reliability. We choose higher cost ratios for the fallibility
scenario since receiving a noisy label should be penalized more than receiving no label at
all. The tradeoff between cost and unreliability is crucial to have an incentive to choose
between predictors rather than exploiting a single one. See Table 5.1 for details.

70 Chapter 5: From Active to Proactive Learning

Table 5.1: Predictor properties and costs. BC is the clustering budget, B is the entire budget.
Uncertain % is the percentage of the uncertain data points. Cost Ratio is the ratio of the
cost of the unreliable predictor to the cost of the reliable one.

Scenario Uncertain % Cost Ratio BC B

Scenario 1
45-55% 1:3 20

30055-60% 1:4 30
65-70% 1:5 50

Scenario 2
45-55% 1:5 20

30055-60% 1:6 30
65-70% 1:7 50

The other case we need to simulate is the uniform and non-uniform cost predictors. The
cost of each instance for the variable-cost predictor is defined as a function of the class
posterior, i.e. Cnon−unif (x) = 1− maxy∈Y P (y|x)−1/|Y|

1−1/|Y| . This indicates a positive relationship
between the difficulty of classifying an instance with its cost, which is realistic for many
real-world situations. The cost of labeling each instance is known to the learning algorithm.
Thus, we do not need any clustering phase in Scenario 3. We choose the cost of the uniform-
cost predictor within the range of instance costs for the variable-cost predictor. Hence, the
costs will be comparable in the same range. We varied the fixed cost such that there is
always an incentive to choose between predictors instead of fully exploiting a single one.

We compared our method against sampling with randomly chosen predictors and
sampling with a single predictor. Each baseline samples the cluster centroids initially for a
fair comparative analysis. However, only our method estimates the predictor unreliability to
help sampling the optimal predictor-example pair.

All the results reported are averaged over 10 runs. At each run, we start with one
randomly chosen labeled example from each class. The rest of the data is considered
unlabeled. The learner selects one example at each iteration to be labeled, and the learning
function is tested on the remaining unlabeled set once the label is obtained. The learner
pays the cost of each queried example regardless of whether a label is obtained. To show
the effectiveness of each method, the learning curves display the classification error versus
the data elicitation cost. The budget is fixed at 300 in Scenario 1 and 2, and at 20 in
Scenario 3. A small budget is enough for the latter since the cost of individual instances
can be very small depending on the posterior probability. We have observed that 20 is
more than enough to reach a desirable accuracy in this scenario. The clustering budget,
on the other hand, varies according to the unreliability, but is the same for each baseline
under the same scenario (See Table 5.1). The number of clusters, though, is determined
by dividing the clustering budget by the cost of the predictor used during this phase. The
unreliable predictor is used in our method and the unreliable-predictor baselines for the

5.3 Experimental Evaluation 71

Table 5.2: Overview of Datasets. +/- is the positive/negative ratio. Dim is the dimensional-
ity.

Data Face Spambase Adult VY-letter
Size 2500 4601 4147 1550
+/- 1 0.65 0.33 0.97
Dim 400 57 48 16

initial clustering phase. Thus, they obtain the same labeled data during this step, which
results in the same error rate. The random predictor baseline uses a fixed number of clusters,
but for each cluster centroid it randomly chooses the predictor to invoke and continues until
the clustering sub-budget exhausts.

5.3.2 Datasets

We study the performance of the proposed methods on various real-world benchmark
datasets. The face detection dataset [Pham et al., 2002] has a total number of 393360
images, which we used a random subsample of size 2500 as in Section 3.3. UCI-Letter is
another image dataset for recognizing English capital letters where we labeled the letter V
as the positive class and the letter Y as the negative class. This is one of the most ambiguous
pairs in the data. The Spambase and the Adult datasets are also popular datasets available
from the UCI Machine Learning Repository [Newman et al., 1998]. The Spambase data
contains 4601 instances and 57 condition attributes. It is used to classify emails as spam
and non-spam. Most of the attributes indicate whether a certain word or character appears
frequently in emails. For the Adult dataset, we adopted the smaller version constructed for
the IJCNN 2007 Workshop on Agnostic Learning [agn, 2007]. This version has 48 features
and 4147 instances in total. The task of Adult data is to discover high revenue people from
the census bureau. A summary of datasets is provided in Table 5.2.

5.3.3 Results

We conducted a thorough analysis to examine the performance of our method under various
conditions. Due to the lack of existing work that is directly comparable, we compared
our method against active sampling with randomly chosen predictors and active sampling
with a single predictor. We denote our method of jointly optimizing predictor and instance
selection Joint, the random sampling of predictors Random. Reliable, Reluctant, and Fallible
refer to the corresponding single predictor baseline.

Before discussing the results, we first clarify why the maximum cost of data elicitation,
shown in Figures 5.1-5.6, differ in various tasks and scenarios. The results are averaged

72 Chapter 5: From Active to Proactive Learning

0 30 60 90 110

Total Cost

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
at

io
n

E
rr

or

Joint

Random

Reliable

Reluctant

Spambase Cost Ratio=1:3

0 60 130 190 250
Total Cost

0.1

0.2

0.3

0.4

0.5
Joint

Random

Reliable

Spambase Cost Ratio=1:4

0 80 130 170 210
Total Cost

0.1

0.2

0.3

0.4

0.5
Joint

Random

Reliable

Spambase Cost Ratio=1:5

Figure 5.1: Performance Comparison for Scenario 1 (Reluctance) on the Spambase dataset.
The cost ratio is indicated above each plot.

over 10 runs for each experiment. At each run, the total number of iterations to spend the
entire budget may differ depending on how the budget is allocated between predictors.
In order to take the average of the results, we rely on the minimum number of iterations
attained over 10 runs for each experiment. This ensures that all runs equally contribute to
the average. This also results in different maximum elicitation costs smaller than the budget
for different experiments. Nevertheless, the Joint strategy outperforms the others even after
spending only a small amount in most cases.

Figure 5.1 shows the results for the reluctance scenario on the Spambase dataset. Each
plot indicates a different cost ratio. Our method outperforms the others on every case while
the performance gap increases with the cost ratio. The cost ratio denotes the relative price
of each predictor against the other, i.e. the ratio of the cost of the unreliable predictor to
the cost of the reliable one. This is largely because the predictor differences leave more
room for improvement via predictor selection in the latter case. When the unreliability gets
higher, the reluctant predictor tends to spend almost the entire budget on a single label
acquisition attempt. This leads to acquiring only a small amount of labeled data; hence, its
poor performance. As a result, we do not report the reluctant predictor baseline except in
its best case, the 1 : 3 cost ratio.

Figures 5.2 and 5.3 show the comparison between Joint and the other baselines for
Scenario 1 on the Adult and VY-Letter datasets, respectively. For the Adult dataset, Joint
outperforms the others when the cost ratio is 1 : 3 while it tracks the best performer for the
other cost ratios. Generally, Joint tracks the best performer when the best performer is a
clear winner for the entire operating range. This pattern is also evident in Figure 5.3 for the
cost ratio 1 : 3. For the other cost ratios, Joint significantly outperforms the other baselines

5.3 Experimental Evaluation 73

0 30 50 80 100

Total Cost

0.2

0.3

0.4

0.5

0.6

C
la

ss
if

ic
at

io
n

E
rr

or

Joint

Random

Reliable

Reluctant

Adult Cost Ratio=1:3

0 60 120 180 240

Total Cost

0.2

0.3

0.4

0.5

0.6
Joint

Random

Reliable

Adult Cost Ratio=1:4

0 80 130 180 220 260
Total Cost

0.2

0.3

0.4

0.5

0.6
Joint

Random

Reliable

Adult Cost Ratio=1:5

Figure 5.2: Performance Comparison for Scenario 1 (Reluctance) on the Adult dataset. The
cost ratio is indicated above each plot.

0 60 120 180 230

Total Cost

0

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
at

io
n

E
rr

or

Joint

Random

Reliable

Reluctant

VY-Letter Cost Ratio=1:3

0 60 110 150 200 240

Total Cost

0.1

0.2

0.3

0.4

0.5
Joint

Random

Reliable

VY-Letter Cost Ratio=1:4

0 80 130 180 230 280
Total Cost

0.1

0.2

0.3

0.4

0.5
Joint

Random

Reliable

VY-Letter Cost Ratio=1:5

Figure 5.3: Performance Comparison for Scenario 1 (Reluctance) on the VY-Letter dataset.
The cost ratio is indicated above each plot.

on the VY-Letter dataset.

Figure 5.4 compares the performances for Scenario 2 on the VY-Letter dataset. The
Fallible predictor in this scenario performs poorly when the relative cost ratio is high. As
shown in Table 5.1, the cost ratio increases with the number of unreliable instances. In
other words, a higher cost ratio indicates a more unreliable predictor. Thus, the Fallible
predictor may increase the classification error with more labeled data since the labels are
increasingly likely to be noisy. This pattern is especially evident in Figure 5.4 for the cost

74 Chapter 5: From Active to Proactive Learning

Table 5.3: Results on different datasets for two scenarios. Cost column shows the total cost
spent to reach the corresponding error rate. The best result on each row is given in bold.

Error Rate

Scenario Dataset & Cost Ratio Cost Joint Random Reliable Unreliable

Scenario 1 Face & 1:4

60 0.195 0.294 0.347 0.188
120 0.179 0.275 0.261 0.192
180 0.144 0.201 0.163 0.178
240 0.119 0.137 0.118 0.168

Scenario 2

Face & 1:5

70 0.250 0.294 0.468 0.343
130 0.233 0.298 0.298 0.271
190 0.165 0.330 0.193 0.250
250 0.152 0.215 0.153 0.233

Spambase & 1:7

70 0.285 0.335 0.264 0.369
120 0.243 0.328 0.289 0.373
170 0.185 0.311 0.279 0.357
220 0.151 0.281 0.262 0.337

Adult & 1:6

70 0.334 0.386 0.302 0.363
130 0.309 0.358 0.295 0.362
190 0.288 0.300 0.284 0.350
250 0.269 0.278 0.281 0.342

ratio 1 : 7. On the other hand, Joint strategy is quite effective for reducing the error in this
scenario, indicating that it is capable of reducing the risk of introducing noisy data through
strategic selection between predictors.

We present the rest of the results in Table 5.3. We selected a representative cost ratio for
each dataset. The values in bold correspond to the winning methods. Joint wins frequently
(i.e. 10 out of 16) and is a close runner-up for the cases where it does not achieve the best
result.

Figure 5.6 presents the evaluation results when the cost varies non-uniformly across
the set of instances. We experimented with different assignments of the fixed cost, each
of which is a function of the average instance cost, denoted avg, for the non-uniform cost
predictor. We present two representative assignments for each dataset: Cost1:= avg/1.5
and Cost2:= avg/2. The remaining cost values are not included since they are similar to
those reported here. On the Face and the Spambase datasets, Joint is the best performer
throughout the full operating range. Moreover, Joint predominantly outperforms the others
on the VY-letter dataset. The performance difference between Joint and each baseline is also
statistically significant based on a paired two-sided t-test (p < 0.01). For the Adult dataset,

5.4 Chapter Conclusions 75

0 50 100 150 200 260
Total Cost

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
at

io
n

E
rr

or

Joint

Random

Reliable

Fallible

VY-Letter Cost Ratio=1:5

0 60 110 160 210 260
Total Cost

0.1

0.2

0.3

0.4

0.5
Joint

Random

Reliable

Fallible

VY-Letter Cost Ratio=1:6

0 80 130 180 230
Total Cost

0.1

0.2

0.3

0.4

0.5
Joint

Random

Reliable

Fallible

VY-Letter Cost Ratio=1:7

Figure 5.4: Performance Comparison for Scenario 2 (Fallibility) on the VY-Letter dataset.
The cost ratio is indicated above each plot.

both cost cases performed equivalently; there was no opportunity for “Joint” to optimize
further and thus was not reported.

In order to investigate if the initial clustering phase helps all the baselines, we re-ran
each baseline excluding the clustering step. In this case, there is no separate clustering
budget; hence, the entire budget is spent in rounds for data elicitation. Figure 5.5 compares
each baseline with the clustering restriction on the Spambase dataset for Scenario 1. Every
baseline significantly benefits from clustering, with the biggest boost in improvement
occurring for the Reluctant predictor. Hence, both the baselines and the “Joint” strategy
benefit from the diversity-based sampling via clustering in their initial steps. Without
pre-clustering, the Reluctant predictor is prone to spend too much on a single elicitation
attempt due to unsuccessful labeling requests. It can, however, maximize the chance of
receiving a label through diversity sampling during the clustering step instead of getting
stuck in one round for a single label.

5.4 Chapter Conclusions

This chapter focused on proactive learning to overcome the unrealistic assumptions of
active learning. We introduced three scenarios that analyze the effect of multiple imperfect
predictors with differing properties and costs on selective sampling. The proposed methods
formulated in a decision-theoretic framework rely on expected utility maximization across
predictor-instance pairs. The empirical results demonstrate the effectiveness of this approach
against random predictor selection and exploitation of a single predictor, even the best one.

76 Chapter 5: From Active to Proactive Learning

0 30 60 90 110

Total Cost

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
la

ss
if

ic
at

io
n

E
rr

or

w/o Clustering

w/ Clustering

Reluctant Oracle

0 30 60 90 110

Total Cost

0.1

0.2

0.3

0.4

0.5

w/o Clustering

w/ Clustering

Reliable Oracle

0 30 60 90 110

Total Cost

0.2

0.25

0.3

0.35

0.4

0.45

0.5

w/o Clustering

w/ Clustering

Random Oracle

Figure 5.5: Change in performance of each baseline with and without clustering on Spam-
base. The type of baseline is given in the title. The cost ratio is 1:3.

In the chapters that follow, we focus our attention on learning with multiple imperfect
predictors which make labeling mistakes. The challenge is that we assume the absence
of both gold standard labels and a perfectly reliable predictor against which to compare
the outputs of the noisy ones. In particular, we consider predictor accuracy estimation
and predictor selection with no apriori information. We address these problems in two
cases one of which deals with stationary predictor accuracies whereas the other explicitly
models the time-varying accuracies. Finally, the last chapter formulates the predictor risk
estimation as an optimization problem with theoretical guarantees and propose a very
effective unsupervised way to train classifiers without any labeled data whatsoever.

5.4 Chapter Conclusions 77

A

A

A

A

A
A A A A A

0 5 10 14 18
0

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
a
ti

o
n

 E
rr

o
r

JointA A

Random
Fixed-Cost
Variable-Cost

a) Spambase Cost Structure 1

A

A

A

A

A
A A

0 3 7 10 13
Total Cost of Data Elicitation

0

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
a
ti

o
n

 E
rr

o
r

JointA A

Random
Fixed-Cost
Variable-Cost

b) Spambase Cost Structure 2

A

A

A

A
A

A
A A A

0 4 8 12 17
0

0.1

0.2

0.3

0.4

0.5
C

la
ss

if
ic

a
ti

o
n

 E
rr

o
r

JointA A

Random
Fixed-Cost
Variable-Cost

a) Face Cost Structure 1

A

A

A
A

A
A

A A

0 3 6 10 14
Total Cost of Data Elicitation

0

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
a
ti

o
n

 E
rr

o
r

JointA A

Random
Fixed-Cost
Variable-Cost

b) Face Cost Structure 2

A

A
A

A
A

A
A

A

A

0 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

C
la

ss
if

ic
a
ti

o
n

 E
rr

o
r

JointA A

Random
Fixed-Cost
Variable-Cost

a) VY-Letter Cost Structure 1

A

A

A

A

A A

A

0 4 8 12
Total Cost of Data Elicitation

0

0.1

0.2

0.3

0.4

0.5
C

la
ss

if
ic

a
ti

o
n

 E
rr

o
r

JointA A

Random
Fixed-Cost
Variable-Cost

b) VY-Letter Cost Structure 2

Figure 5.6: Comparison of different algorithms under non-uniform cost structures (Scenario
3) on Spambase, Face and V-Y Letter datasets, respectively. a) (Top panel) Fixed-Cost
predictor has Cost1 b) (Bottom Panel) Fixed-Cost predictor has Cost2.

Chapter 6

Joint Predictor Accuracy Estimation
and Predictor Selection

6.1 Introduction

Chapter 5 takes a first step introducing predictors with differing properties. It analyzes
reluctance, fallibity and variable cost in predictors via simple scenarios including one
perfectly reliable and one unreliable predictor. However, these scenarios are somewhat
restrictive since it may not always be possible to have access to a perfect predictor. Instead,
we may be given multiple (k > 2) predictors without any apriori information about their
accuracies or the ground truth labels. Then, it becomes essential to make inference about
the predictors when there is no ground truth to compare their outputs. From this chapter on,
we focus on a more specific challenge which deals with learning with multiple noisy (fallible)
predictors in the absence of gold standard labels. In many machine learning applications,
obtaining labels for the training data might introduce noise. Supervised learning algorithms
aim at maximizing the classification accuracy based on a set of training instances. The
maximum accuracy achieved depends strongly on the quality of the labels. Working with
multiple predictors (labelers), the quality of annotations is questionable. The question
is, then, whether we can estimate the labeling accuracy of each predictor explicitly with
unlabeled data and use these estimates to select the predictor(s) with the highest accuracy.
This chapter addresses exactly such a challenge which we study in two different conditions.
The first deals with the predictors whose accuracies are stationary with respect to time.
The second case considers the situation when the predictor accuracies vary with time. For
instance, a doctor may not be cognizant of a new disease and thus mislabel, or a scientist
can learn from lab experience and thus improve. Fatigue and/or practice effects can also
cause time variance in predictor’s labeling accuracy. If the predictors are computer systems
continuously re-trained with a constant stream of data, then one might expect changes in

79

80 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

the predictors’ accuracy with new data. When the predictors are evaluated on the test data
drawn from the same distribution as the training data, predictors’ generalization power is
most likely to improve over time. However, when the training and test data are drawn from
different distributions the predictors’ test accuracy might fluctuate.

In both stationary and non-stationary cases, predictor accuracy estimation requires a
degree of exploration as well as exploitation. In the former case, the goal is to acquire predic-
tor and label knowledge through repeated trials, balancing the exploration vs. exploitation
tradeoff, by first favoring the former and moving gradually to increasing exploitation. In the
first section, we report the first work with such properties. We adopt the Interval Estimation
(IE) learning [Kaelbling, 1990; Moore and Schneider, 1995] as a building block for our
framework. IE attempts to estimate the confidence interval on the expected response of
an action and then selects the action with the highest upper confidence interval. In our
problem, taking an action corresponds to selecting a predictor to query for labeling. We use
the responses of the predictors to evaluate the performance of each predictor. Therefore,
inclusion of inferior predictors can dramatically slow convergence. To overcome this issue,
we propose a thesholding mechanism (IEThresh) - to filter out inferior predictors early in
the process. This helps to narrow down the set of potentially good predictors and improves
the estimation accuracy with many fewer exploratory trials.

To solve the problem in the non-stationary case, we present a novel algorithm based
on sequential Bayesian estimation in Section 6.3. The sequential Bayesian estimation
framework continuously and selectively tracks the accuracy of each predictor and selects
the top quality one(s) at each time step. We assume each time step corresponds to a single
example to be labeled. This framework also allows aggregating the observed labels to predict
the true label for the given example. The experimental analysis shows the effectiveness of
our approach for 1) improving the quality (reducing noise) of the labeled data, 2) tracking
the accuracy drift of multiple predictors in the absence of ground truth, and 3) consistently
identifying the low-quality predictors and reducing their effect in learning. We assume the
predictor accuracy changes gradually over time without abrupt large shifts. However, we
analyze the increased rate of change and report its effect on the performance. We conclude
with high confidence that our method is relatively robust to higher variations, as supported
by the empirical evaluation.

6.2 A Multi-armed Bandit Approach in Stationary Conditions

6.2.1 Motivation

Interval Estimation learning, like many other multi-armed bandit problems, requires an
appropriate reward function. The reward of each predictor is directly related to whether
the predictor makes a labeling mistake or not. Unfortunately, an exact calculation of the

6.2 A Multi-armed Bandit Approach in Stationary Conditions 81

reward function is impossible since the true label is unknown. A natural way to estimate the
true label is to take the majority vote among the predicted labels from multiple predictors.
Throughout the chapter, we assume an individual predictor accuracy is better than random
guess, i.e. > 0.5 in the binary case, and the predictors’ outputs are conditionally independent
given the true label. Under this assumption, it is unlikely that all predictors make a labeling
mistake at the same time; hence, the majority label is a close approximation to the true label.
The method is robust to occasional errors by the majority vote method as demonstrated on
several benchmark datasets. We add random noise to real-life datasets to simulate a set
of predictors in addition to two datasets annotated with real labelers [Snow et al., 2008].
For the simulated-error cases, we varied the predictor accuracies to show that our method
IEThresh can detect the most accurate ones even among a uniform or skewed mix of good
and bad predictors.

6.2.2 Interval Estimation Learning

Our multi-predictor active sampling method, IEThresh, builds upon Interval Estimation (IE)
learning [Kaelbling, 1990; Moore and Schneider, 1995] which is useful for addressing the
exploration vs. exploitation tradeoff. IE has been used extensively in reinforcement learning
for action selection and in stochastic optimization problems. We first explain IE and then
discuss how we extend it to learn the best predictor(s) to query, favoring exploration in
the early phases and exploitation (least error-prone predictor selection) with increasing
frequency. The goal of IE is to find the action a∗ yielding the highest expected reward r(a)
with as few samples as possible; i.e. a∗ = arg maxaE[r(a) | a]. The true expected reward is
unknown and must be estimated from observed samples. Before each selection, IE estimates
a standard upper confidence interval for the mean reward of each action using the sample
mean and standard deviation of rewards received so far using that action:

UI(a) = m(a) + t
(n−1)
α
2

s(a)√
n

(6.1)

where m(a) is the sample mean for a, s(a) is the sample standard deviation for a, n is
the number of samples observed from a, and t(n−1)

α
2

is the critical value for the Student’s
t-distribution with n− 1 degrees of freedom at the α/2 confidence level.

IE then selects the action with the highest upper confidence interval. The reason is
that such an action has a high expected reward and/or a large amount of uncertainty in
the reward. If an action has large uncertainty, it indicates that the action has not been
taken with sufficient frequency to yield reliable estimates. Selecting this action performs
exploration which will increase IE’s confidence in its estimate and has the potential of
identifying a high reward action. Selecting an action with a high expected reward performs
exploitation. Initially, the intervals are large due to the uncertainty of the reward estimates

82 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

and action choices tend to be explorative. Over time, the intervals shrink and the choices
become more exploitative. IE automatically trades off these two. α is a parameter that
weights exploration more strongly when it is small and exploitation more strongly when it
is large. α = 0.05 is a common reasonable choice.

6.2.3 Interval Estimate Threshold (IEThresh)

The IE algorithm described above can be adapted to work with multiple noisy predictors.
Taking an action corresponds to selecting a predictor to ask for a label in our active learning
framework, assuming we have already selected an instance to label. We select the instance
to label via uncertainty sampling [Lewis and Gale, 1994]. We adopt a logistic regression
classifier to obtain posterior class probabilities P (y | x). The most uncertain instance
according to the posterior class distribution is selected for labeling:

x∗ = arg max
x

(1− max
y∈{1,0}

P (y | x)) (6.2)

One also needs to estimate a reward function for each predictor based on the labels received.
The reward of each predictor should be related to the true label for the queried instance,
which is not known. Hence, we need a mechanism to estimate the true label. We use a
majority vote among multiple, possibly noisy predictors to infer the true label – which will
be correct often, but not always. We propose the following reward function r̂ : K → {0, 1}
as a mapping from the set of predictors K to a binary value. It is 1 if the predictor agrees
with the majority label ȳ, and 0 otherwise.

r̂(j) =

{
1 if yj = ȳ

0 otherwise
(6.3)

This reward estimate requires sampling some or all predictors to take the majority vote.
Its accuracy depends on how well the majority vote represents the true label. When the
individual predictor quality is high, the majority vote is a close estimate of the true label
since it is unlikely that a majority of the predictors make a mistake on the same instance
due to the better-than-random assumption. We propose to adopt a threshold on the upper
interval to 1) filter out the less reliable predictors from the majority voting, 2) reduce the
labeling cost and 3) compute the reliability estimates more efficiently. Given k predictors,
we select each predictor a that has an upper bound UI(a) (Equation 6.1) larger than some
fraction of the maximum bound at time t:

St = {a|UI(a) >= ε ∗max
a

UI(a)} (6.4)

where St is the set of selected predictors to be queried for labeling. 0 < ε < 1 is a parameter
tuned on a separate dataset that is not used in the experiments.1 We smooth the confidence

1We note that a more sophisticated tuning could further improve the results, but our experimental results
indicate that a reasonable threshold works quite effectively.

6.2 A Multi-armed Bandit Approach in Stationary Conditions 83

Table 6.1: Properties of six datasets used in the experiments. All are binary classification
tasks with varying sizes.

Dataset Size +/- Ratio Dimensions
image 2310 1.33 18

mushroom 8124 1.07 22
spambase 4601 0.65 57
phoneme 5404 0.41 5
ringnorm 7400 0.98 20
svmguide 3089 1.83 4

interval estimates by initially giving each predictor a reward of 1 and 0. At the first iteration,
they have the same upper bound and all predictors are selected. As the bounds tighten,
underperforming predictors are filtered out and the reliable ones are selected for labeling.
The upper bound can be high because there is either little information about the predictor
(high variance) or the entire interval is high and the predictor is good (high mean). It is
possible that a previously filtered-out predictor will be selected again if the upper bounds
of the remaining predictors lower sufficiently. We give below an outline of how IEThresh
works:

1. Initialize samples for each predictor with rewards 1 and 0

2. Fit a logistic regression classifier to labeled data Lb

3. Pick the most uncertain unlabeled instance x∗ for labeling (Eqn. 6.2)

4. Compute the upper confidence interval for each predictor (Eqn. 6.1)

5. Choose all predictors St within ε of the maximum upper confidence interval (Eqn. 6.4)

6. Compute the majority vote ȳ of the selected predictors St

7. Update labeled data Lb = Lb ∪ {x∗, ȳ}

8. Add calculated rewards (Eqn. 6.3) to the samples for St

9. Repeat 2-8

Our empirical evaluation indicates that IEThresh is very effective in filtering out the less
reliable predictors early in the process and continues to sample the more reliable ones. Next,
we describe our experimental results in detail.

84 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

0 200 400 600 800 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

or

mushroom

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200 1400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

or

image

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200 1400 1600
0.2

0.25

0.3

0.35

0.4

0.45

Number of oracle queries

E
rr

or

phoneme

IEThresh
Repeated
Random

0 200 400 600 800 1000
0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of oracle queries

E
rr

o
r

ringnorm

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200 1400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

o
r

spambase

IEThresh
Repeated
Random

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of oracle queries

E
rr

o
r

svmguide

IEThresh
Repeated
Random

Figure 6.1: Average classification error vs. total number of predictor queries on six bench-
mark datasets. Number of predictors is k = 10 and the predictor accuracies are selected
uniformly at random within the range [.5, 1]. The solid curve indicates IEThresh in all
graphs. The differences are statistically significant based on a two-sided paired t-test at 95%
confidence level.

6.2 A Multi-armed Bandit Approach in Stationary Conditions 85

Table 6.2: The size and the annotator accuracies for each AMT dataset.
Data Size Annotator Accuracies

TEMP 190 0.44, 0.44, 0.54, 0.92, 0.92, 0.93
RTE 100 0.51, 0.51, 0.58, 0.85, 0.92

0.5 0.6 0.7 0.8 0.9
0

50

100

150
image

True Oracle Accuracy

#T
im

es
 S

el
ec

te
d

0.5 0.6 0.7 0.8 0.9
0

50

100

150
phoneme

True Oracle Accuracy

#T
im

es
 S

el
ec

te
d

Figure 6.2: Number of times each predictor is queried vs. the true predictor accuracy. Each
predictor corresponds to a single bar. Each bar is multicolored where each color shows the
relative contribution. Blue corresponds to the first 10 iterations, green corresponds to an
additional 40 iterations and red corresponds to another additional 100 iterations. The bar
height shows the total number of times an predictor is queried for labeling by IEThresh
during first 150 iterations.

6.2.4 Experimental Evaluation

We conducted a thorough analysis on eight benchmark datasets from [Newman et al., 1998;
Rätsch et al., 2001; Snow et al., 2008]. Six of these datasets are classification problems with
characteristics given in Table 6.1. If the dataset was not originally binary, we converted
it using random partitioning into two classes as described in [Rätsch et al., 2001]. We
partition each of these datasets into 70%/30% train/test splits. For each dataset, the initial
labeled set includes one true positive and one true negative instance so that each method
has the same initial performance before active learning. The rest of the training set is used
as the unlabeled pool. We compared IEThresh with two baselines: asking all the predictors
as introduced in [Sheng et al., 2008] (we refer it as Repeated), and asking a randomly
chosen predictor (which is referred as Random). Each time an unlabeled instance is selected
by the active learner, a label is generated according to the true accuracy q of the selected
predictors(s), i.e. the true label y ∈ {1, 0} is assigned with probability q and 1−y is assigned
with probability 1 − q. If more than one predictor is chosen, then the majority vote is

86 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

0 200 400 600 800 1000
0.2

0.25

0.3

0.35

0.4

Number of oracle queries

E
rr

or

ringnorm

IEThresh
Repeated
Random

0 200 400 600 800 1000
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of oracle queries

E
rr

o
r

ringnorm

IEThresh
Repeated
Random

0 200 400 600 800 1000
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of oracle queries

E
rr

or

ringnorm

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200 1400
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of oracle queries

E
rr

o
r

ringnorm

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of oracle queries

E
rr

o
r

ringnorm

IEThresh
Repeated
Random

Figure 6.3: Average classification error vs. total number of predictor queries on ringnorm
dataset. For the top left figure, accuracy ∈ [.8, 1] for kgood = 5 predictors and accuracy
∈ [.5, .7] for the remaining kbad = 5 predictors. kgood decreases down to 1 and kbad increases
up to 9 from left to right, top to bottom.

6.2 A Multi-armed Bandit Approach in Stationary Conditions 87

assigned as the label for that instance (ties are broken randomly). We set the total number
of predictors to k = 10. After labeling, the instance is added to the training set and the
classifier is re-trained on the enlarged set. The classifier is tested on the separate test set
every time a new instance is added, and the classification error is reported. The results are
averaged over 100 runs.

The remaining two datasets in our experiments are from the natural language un-
derstanding tasks introduced in [Snow et al., 2008]. This collection was created using
Amazon’s Mechanical Turk (AMT) for data annotation. AMT is an online tool where remote
workers are paid to complete small labeling and annotation tasks. We selected two binary
tasks from this collection: the textual entailment recognition (RTE) and temporal event
recognition (TEMP) tasks. In the former task, the annotator is presented with two sentences
for each question. He needs to decide whether the second sentence can be inferred from
the first. The original dataset contains 800 sentence pairs with a total of 165 annotators
who contributed to the labeling effort. The latter task involves recognizing the temporal
relation in verb-event pairs. The annotator decides whether the event described by the
first verb occurs before or after the second. The original dataset contains 462 pairs with a
total of 76 annotators. For both datasets, the quality (accuracy) of annotators are measured
by comparing their annotations with the gold standard labels. Unfortunately, most of the
annotators completed only a handful of tasks. Therefore, we selected a subset of these
annotators for each dataset such that each annotator has completed at least 100 tasks. They
have differing accuracies ranging from as low as 0.44 to over 0.9. Due to the lack of a large
amount of data, we selected only the instances for which all annotators provided an answer,
to enable our method to select one, several or all the annotators, and to have consistent
baselines. The annotator accuracies and the size on each dataset is reported in Table 6.2.

We again compared our method IEThresh against Repeated and Random baselines on
these two datasets. We randomly selected 50 instances from each dataset to be used by
IEThresh as training data to infer estimates for the annotator accuracies. The remaining
instances are held out as the test set. At the end of the training, the annotator with the best
estimated accuracy is chosen to be employed on the test set. The total number of queries are
then calculated as a sum of the number of queries issued during training and the number of
queries issued to the chosen annotator during testing. Repeated and Random baselines do
not need a training phase since they do not change their annotator selection mechanism via
learning. Hence, they are directly evaluated on the test set. The total number of queries
is the number of test instances for the Random baseline whereas it is the number of test
instances times the number of annotators for the Repeated baseline.

Figure 6.1 compares three methods on six datasets with simulated predictors. The true
accuracy of each predictor in Figure 6.1 is drawn uniformly at random from within the
range [.5, 1]. The figure reports the average classification error with respect to the total
number of predictor queries issued by each method. IEThresh is the best performer in all
six datasets except in svmguide data IEThresh and Random performs comparably with each

88 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

Table 6.3: Relative Performance Comparison on RTE dataset. The last column indicates the
total number of queries issued to predictors by each method. IEThresh performs accurately
with a moderate labeling effort as opposed to intensive labeling by Repeated.

Method Accuracy # Queries
IEThresh 0.92 297
Repeated 0.6 250
Random 0.64 50

Table 6.4: Relative Performance Comparison on TEMP dataset. The last column indicates the
total number of queries issued to predictors by each method. IEThresh performs accurately
with a moderate labeling effort as opposed to intensive labeling by Repeated.

Method Accuracy # Queries
IEThresh 0.92 265
Repeated 0.95 840
Random 0.71 140

other. In ringnorm and spambase datasets, IEThresh initially performs slightly worse than
the other methods, indicating that predictor reliability requires more sampling in these
two datasets. But, after the estimates are settled (which happens in ∼ 200 queries), it
outperforms the others, with especially large margins in spambase dataset. The results
reported are statistically significant based on a two-sided paired t-test.

We also analyzed the effect of filtering less reliable predictors. An ideal filtering mecha-
nism excludes the less accurate predictors early in the process and samples more from the
more accurate ones. In Figure 6.2, we report the number of times each predictor is queried
on image and phoneme datasets. The x-axis shows the true accuracy of each predictor. We
consider the first 150 iterations of IEThresh and count the number of times each predictor
is selected. Each color corresponds to a different time frame; i.e. blue, green and red
correspond to 0th − 10th, 10th − 50th and 50th − 150th iterations, respectively. At first, each
predictor is chosen almost equally since the algorithm explores every possibility to improve
its predictor accuracy estimates. Gradually, we see that less accurate predictors are sampled
with decreasing frequency, as reliance shifts to the more accurate ones.

We further varied distribution of predictor accuracies to challenge IEThresh. Figures 6.3
and 6.4 show the resulting performance of each method on ringnorm and mushroom
datasets. The top left figure on each graph indicates the case with 5 highly fallible predictors
with accuracy level within [.5, .7], and 5 reliable ones with accuracies within [.8, 1] range.
From left to right, top to bottom, the set of predictors becomes more skewed towards the
fallible predictors. The results point out that IEThresh generalizes to work with a wide
range of predictor reliability distributions. Even in the challenging case where there are

6.2 A Multi-armed Bandit Approach in Stationary Conditions 89

0 200 400 600 800 1000 1200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

o
r

mushroom

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

o
r

mushroom

IEThresh
Repeated
Random

0 200 400 600 800 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

or

mushroom

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200 1400
0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

o
r

mushroom

IEThresh
Repeated
Random

0 200 400 600 800 1000 1200 1400
0.25

0.3

0.35

0.4

0.45

0.5

Number of oracle queries

E
rr

or

mushroom

IEThresh
Repeated
Random

Figure 6.4: Average classification error vs. total number of predictor queries on UCI
mushroom dataset. For the top left figure, accuracy ∈ [.8, 1] for kgood = 5 predictors and
accuracy ∈ [.5, .7] for the remaining kbad = 5 predictors. kgood decreases down to 1 and kbad
increases up to 9 from left to right, top to bottom.

90 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

0.55 0.6 0.65 0.7 0.75 0.78
0

100

200

300

400

500

600

700

800

900

1000

Accuracy

N
um

be
r o

f o
ra

cl
e

qu
er

ie
s

image

IEThresh
Repeated
Random

0.55 0.6 0.65 0.7 0.75 0.78
0

100

200

300

400

500

600

700

800

Accuracy

N
um

be
r o

f o
ra

cl
e

qu
er

ie
s

image

IEThresh
Repeated
Random

0.55 0.6 0.65 0.7 0.73
0

50

100

150

200

250

300

350

400

450

Accuracy

N
um

be
r

of
 o

ra
cl

e
qu

er
ie

s

image

IEThresh
Repeated
Random

0.55 0.6 0.65 0.7 0.73
0

100

200

300

400

500

600

Accuracy

N
um

be
r o

f o
ra

cl
e

qu
er

ie
s

image

IEThresh
Repeated
Random

0.55 0.6 0.65 0.7 0.75 0.78
0

200

400

600

800

1000

1200

1400

Accuracy

N
um

be
r o

f o
ra

cl
e

qu
er

ie
s

image

IEThresh
Repeated
Random

Figure 6.5: Total number of predictor queries required to reach a target accuracy is plotted
on UCI image dataset. For the top left figure, accuracy ∈ [.8, 1] for kgood = 5 predictors and
accuracy ∈ [.5, .7] for the remaining kbad = 5 predictors. kgood decreases down to 1 and kbad
increases up to 9 from left to right, top to bottom.

6.2 A Multi-armed Bandit Approach in Stationary Conditions 91

0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

100

200

300

400

500

600

700

800

Accuracy

N
um

be
r o

f o
ra

cl
e

qu
er

ie
s

spambase

IEThresh
Repeated
Random

0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

200

400

600

800

1000

1200

Accuracy

N
um

be
r

of
 o

ra
cl

e
qu

er
ie

s

spambase

IEThresh
Repeated
Random

0.55 0.6 0.65 0.7 0.75 0.8
0

100

200

300

400

500

600

700

800

900

Accuracy

N
um

be
r

of
 o

ra
cl

e
qu

er
ie

s

spambase

IEThresh
Repeated
Random

0.55 0.6 0.65 0.7 0.75
0

200

400

600

800

1000

1200

Accuracy

N
um

be
r

of
 o

ra
cl

e
qu

er
ie

s

spambase

IEThresh
Repeated
Random

0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7
0

200

400

600

800

1000

1200

Accuracy

N
um

be
r

of
 o

ra
cl

e
qu

er
ie

s

spambase

IEThresh
Repeated
Random

Figure 6.6: Total number of predictor queries required to reach a target accuracy is plotted
on UCI spambase dataset. For the top left figure, accuracy ∈ [.8, 1] for kgood = 5 predictors
and accuracy ∈ [.5, .7] for the remaining kbad = 5 predictors. kgood decreases down to 1 and
kbad increases up to 9 from left to right, top to bottom.

92 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

only one or two reliable predictors in a given set, the algorithm is able to detect the good
ones. Figures 6.5 and 6.6 report a similar set of results from a different perspective. The
graphs show the total number of queries required to achieve a target classification accuracy.
IEThresh requires the least number of queries for a given accuracy level for most cases.
Especially when the accuracy targets are high, giving time for IEThresh to stabilize its
predictor accuracy estimates, it can improve classification accuracy without the intensive
labeling effort required by the baselines.

Lastly, we report the results on the RTE and TEMP datasets that have real annotations
from multiple less-than-reliable predictors. Table 6.3 reports the accuracy of each method
on the test set for RTE data with the corresponding number of predictor queries issued. The
accuracy of IEThresh is the same as the accuracy of the single best predictor in this dataset
(See Table 6.2), indicating that IEThresh managed to detect the best predictor during the
training phase. The Repeated labeling and Random baselines perform poorly in this dataset
due to the majority of highly unreliable predictors. Table 6.4 reports the results on the test
set for TEMP data. The Repeated labeling baseline is the marginally-best performer in this
dataset but at a high cost (a large number of queries). On the other hand, IEThresh has a
very close performance to Repeated with much less labeling effort.

6.3 A Sequential Bayesian Estimation Approach in Non-stationary
Conditions

In this section, we describe in detail our estimation and selection framework to learn with
multiple predictors with time-varying accuracies. We start with the underlying particle
filtering algorithm and the specific probabilistic distributions we modeled. Then, we
discuss how to modify this model to estimate the varying accuracy of each predictor and
simultaneously select the most accurate ones. Our framework supports a balance between
exploration and exploitation to achieve estimation accuracy without extensively exploiting
the predictors and incurring associated costs.

6.3.1 Sequential Bayesian Estimation

Particle filtering is a special case of a more general family of models called Bayesian
Sequential Estimation [Arulampalam et al., 2001a]. The Bayesian approach to estimate a
system that dynamically changes is to construct the posterior probability density function
(pdf) of the state of the system based on all information observed up to that point. Inference
on such a system requires at least two models: a model describing the evolution of the
state with time and a model governing the generation of the noisy observations. Once
the state space is probabilistically modeled and the information is updated based on new

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 93

observations, we are provided with a general Bayesian framework to model the dynamics of
a changing system.

The problem of estimating the time-varying accuracy of a predictor can be cast into
the sequential estimation framework. The states of the system correspond to the unknown
time-varying accuracy of the predictor where φt represents the accuracy of the predictor
at time t. The observations are the noisy labels zt output by the predictor according to
some probability distribution governed by the corresponding labeling accuracy φt. In this
problem, it is important to estimate the accuracy every time an observation is obtained.
Hence, it is crucial to have an estimate of the accuracy of each predictor to infer a more
accurate prediction. Or equivalently, the estimation update is required at each step to decide
which predictors to query next. For problems where an estimate is required every time an
observation is made, the sequential filtering approach offers a convenient solution. Such
filters alternate between prediction and update stages. The prediction stage predicts the
next state given all the past observations. The update stage modifies the predicted prior
from the previous time step to obtain the posterior probability density of the state at the
current time.

We design this dynamic system with the following probabilistic models. Let φt denote
the labeling accuracy and it is assumed to change according to the following model:

φt = ft(φt−1,∆t−1)
= φt−1 + ∆t−1 (6.5)

where ∆t is a zero-mean, σ2-variance Gaussian random variable, restricted so that φt never
exceeds 1 (more on this later). ft denotes that the accuracy at the current time step differs
from the previous accuracy by some small amount drawn from a Gaussian distribution. The
mean of the Gaussian is assumed to be zero not to introduce any bias towards increase or
decrease in accuracy. We can easily add a bias, e.g. positive mean µ for predictors who are
expected to improve with experience. However, we prefer fewer parameters and we can
still track the improving sources (more details in Section 6.3.4). We assume σ or at least its
upper bound to be known. We realize that the exact value of σ can be difficult to obtain in
many situations. On the other hand, it is often reasonable to assume the maximum rate of
change of the labeling accuracy is known. We added an analysis testing the sensitivity to
the exact σ in the experiments section 6.3.4. For notational simplicity and concreteness, we
focus on binary classification here; extensions to the multi-category case are straightforward
generalizations to this scheme. Furthermore, the accuracy at any time t is assumed to be
between 0.5 and 1, i.e. any predictor is a weak learner. Thus, the transition probability from
one state to the next follows a truncated Gaussian distribution:

p(φt | φt−1, σ, 0.5, 1) =
1
σβ(φt−φt−1

σ)

Φ(1−φt−1

σ)− Φ(0.5−φt−1

σ)
(6.6)

94 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

where β and Φ are the pdf and cdf of the standard Gaussian distribution, respectively.

The observed variables zj1:t are the sequentially arriving noisy labels generated by
predictor j at the corresponding time steps. We model the noisy label generation with a
Bernoulli distribution given the true label y. In other words, the noisy label zt is a random
variable whose probability conditioned on the accuracy φt at time t and the true label yt is
given as

p(zjt | φjt , yt) = φjt
I(zjt=yt)(1− φjt)I(z

j
t 6=yt). (6.7)

(6.7) requires yt, which is unknown. We use the wisdom-of-the-crowds trick to predict yt.
Specifically, we estimate the probability of the true label yt conditioned on the noisy labels
observed from all the other predictors.

p(zjt | φjt , zJ́(t)
t) =

∑
y∈Y

p(zjt | φjt , yt = y)P (yt = y | zJ́(t)
t) (6.8)

J́(t) is the set of selected predictors at time t such that j /∈ J́(t); hence, zJ́(t)
t = {zst | s ∈

J́(t)}. We compute P (yt = y | zJ(t)
t) using the estimated expected accuracy of the selected

predictors and the estimated P̂t−1(y) (the prior as estimated at time t−1) from the previous
time step.

P (yt = y | zJ(t)
t) =

P̂t−1(y)
∏
s∈J́(t) pÊ[φst−1](z

s
t | y)∑

ý∈Y P̂t−1(y)
∏
s∈J́(t) pÊ[φst−1](z

s
t | y)

(6.9)

We describe how to estimate Ê[φst−1] and P̂ (y) in the next section. Here we focus on
the state space model and how it leads to an estimate of the posterior state distribution
p(φt | z1:t) at any given time t.

The true state sequence φt is modeled as an unobserved Markov process that follows
a first-order Markov assumption. In other words, the current state is independent of all
earlier states given the immediately previous state.

p(φt | φ0, . . . , φt−1) = p(φt | φt−1) (6.10)

Similarly, the observation zt depends only on the current state φt and is conditionally
independent of all the previous states given the current state.

p(zt | φ0, . . . , φt) = p(zt | φt) (6.11)

Figure 6.7 shows the graphical structure of this model. As noted earlier, we are interested
in constructing p(φt | z1:t). It is generally assumed that the initial state distribution p(φ0) is
given. However, in this work, we do not make this assumption and simply adopt a uniform

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 95

Φ
t-1

Φ
t

Φ
t+1

……

z
t-1

z
t

z
t+1

Figure 6.7: The Hidden Markov Model structure for the time-varying accuracy of a predictor.
The state sequence φt is an unobserved first-order Markov process. The observation zt is
dependent only on the current state φt for all t = 1, 2,

(noninformative) prior for p(φ0) where 0.5 < φ0 < 1.2 Suppose that the state distribution
p(φt−1 | z1:t−1) at time t− 1 is available. The prediction stage obtains the pdf of the state at
time step t via the Chapman-Kolmogorov equation[Arulampalam et al., 2001b].

p(φt | z1:t−1) =
∫
φt−1

p(φt | φt−1)p(φt−1 | z1:t−1)dφt−1 (6.12)

where p(φt | φt−1) is substituted with (6.6). Once a new observation zt is made, then (6.12)
is used as a prior to obtain the posterior p(φt | z1:t) at the update stage via Bayes rule.

p(φt | z1:t) =
p(zt | φt)p(φt | z1:t−1)

p(zt | z1:t−1)
(6.13)

where p(zt | φt) is substituted with (6.8) and p(zt | z1:t−1) =
∫
φt
p(zt | φt)p(φt | z1:t−1)dφt.

When the posterior (6.13) at every time step t is assumed to be Gaussian, then Kalman
filters provide optimal solutions to the state density estimation. In cases like ours where the
posterior density is not Gaussian, sequential particle filtering methods are appropriate for
approximating the optimal solution. Next, we review the particle filtering algorithm and
describe how it is modified to tackle our problem.

6.3.2 Particle Filtering for Estimating Time-Varying Predictor Accuracy

The particle filtering algorithm is a technique for implementing sequential Bayesian estima-
tion by Monte Carlo simulations. The underlying idea is to estimate the required posterior

2The results show that the estimation is very effective despite the uninformative prior (See Section 6.3.4 for
more details). However, in cases where such information is available, we anticipate that the results could be
improved even further.

96 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

density function with a discrete approximation using a set of random samples (particles)
and associated weights.

p(φt | z1:t) ∼
N∑
i=1

witδ(φt − φit) (6.14)

where N is the number of particles. As N increases, it can be shown that the above
approximation approaches the true posterior density [Doucet and Crisan, 2002]. wit’s are
called the normalized importance weights, and δ is the Dirac delta function3. The particle
filtering algorithm estimates these weights in a sequential manner. Weights in (6.14) are
approximated as

w̃it ≈
p(φi1:t | z1:t)
π(φi1:t | z1:t)

wit =
w̃it∑N
j=1 w̃

j
t

(6.15)

where π is called the importance density from which the samples φi are generated. This is
because in general we cannot directly sample from the posterior p(φ1:t | z1:t), but rather use
an importance density that we can easily draw the samples from. The algorithm sequentially
samples φit, i = 1, 2, . . . , N , from the importance density and updates the weights wit
to approximate the posterior state distribution. The choice of the importance density is
important and one commonly used and convenient choice is to use the state transition
density p(φt | φt−1) (in our case given in (6.6)), i.e. π(φt | φi1:t−1, z1:t) = p(φt | φt−1). Then,
the weight update equation simplifies to

w̃it ≈
p(zt | φit)p(φit | φit−1)p(φi1:t−1 | z1:t−1)
π(φit | φi1:t−1, z1:t)π(φi1:t−1 | z1:t−1)

=
p(zt | φit)p(φit | φit−1)
π(φit | φi1:t−1, z1:t)

w̃it−1

= p(zt | φit)w̃it−1 for t > 1 (6.16)

where p(zt | φit) is substituted with (6.8). The pseudo-code of the basic filtering algorithm
is given in Figure 6.8.

3

δ(x) = 0, if x 6= 0Z ∞
−∞

δ(x)dx = 1

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 97

1. Sample from the initial distribution φi0 ∼ p(φ0) for i = 1, . . . , N and assign weights
wi0 = 1

N

2. For t > 0, and i = 1, . . . , N

• Draw φit ∼ p(φt | φt−1) using (6.6) and update weights w̃it = p(zt | φit)w̃it−1.

• Normalize the weights wit =
w̃it−1PN
j=1 w̃

j
t−1

and compute N̂e = 1PN
i=1(wit)

2
.

• If N̂e < T , then resample φit ∼ pmf[{wt}] and reassign wit = 1
N

• Update the posterior state density
p(φt | z1:t) =

∑N
i=1w

i
tδ(φt − φit)

3. Update t = t+ 1 and go to step 2.

Figure 6.8: The pseudo-code for the basic filtering algorithm

The resampling step in Figure 6.8 happens only if the vast majority of the samples
have negligible weights; in other words, the estimated effective sample size N̂e falls below
some predefined threshold. The exact value of the threshold is not crucial, the idea is to
detect significantly small weights. This is called the degeneracy problem in particle filters,
and is resolved by resampling using a probability mass function (pmf) over the weights.
The goal of resampling is to eliminate particles with small weights and concentrate on
large ones. It is shown that it is possible to implement this resampling procedure in O(N)
time complexity using order statistics [Ripley, 1987; Carpenter et al., 1999]. We do not
provide more details on this since it is out of the scope of this thesis, but we note that in our
simulations the algorithm hardly needs to resample, largely because the importance density
we adopted (6.6) represents the state transitions well.

6.3.3 Particle Filtering for Predictor Selection

So far, we have focused on estimating the posterior state distribution at any given time t.
Our problem, however, consists of multiple predictors (annotators) where each predictor’s
time-varying accuracy is modeled as a separate state sequence model. Hence, at any time t
we may have multiple noisy observations (labels) from multiple predictors. In this section,
we describe how to select which predictors to query for the labels and how to utilize these
noisy labels to predict the true label and hence estimate the marginal label distribution
P (y).

Our aim is to select potentially the most accurate predictors at each time step. The
sequential estimation framework provides us with an effective tool to achieve this goal.

98 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

First, we approximate the prior pdf of φjt (6.12) ∀j by its discrete version

p(φjt | Zjt−h(j)) =
N∑
i=1

p(φjt | φj,it−h(j))p(φ
j,i
t−h(j) | Zjt−h(j)) (6.17)

where t− h(j) denotes the last time the predictor j is selected, e.g. t− h(j) = t− 1 if the
predictor is queried for labeling at the immediately previous time step. Zjt−h(j) denotes all

the observations obtained from predictor j up to time t − h(j). {φj,it−h(j)}Ni=1 denotes the
sampled accuracy values for the j-th predictor at time t− h(j). Furthermore, we formulate
the change in the labeling accuracy as a Gaussian random walk bounded between 0.5 and 1.
More importantly, the true accuracy of a predictor keeps evolving according to this random
walk regardless of whether it is selected by our method. For computational expediency, we
approximate the state transition probability by truncating the Gaussian distribution once
after h(j) steps instead of after every single step for an unexplored predictor. More formally,
recall (6.5) where the step size ∆t is drawn from a Gaussian ∆t ∼ N (0, σ2). Hence,

φjt = φjt−1 + ∆t−1

= φjt−2 + ∆t−2 + ∆t−1

...

= φjt−h(j) +
h(j)∑
r=1

∆t−r

φjt ∼ N (φjt | φjt−h(j), h(j)σ2, 0.5 < φjt < 1) (6.18)

(6.18) captures our intuition that the more a predictor j goes unexplored (h(j) increases),
the further our belief about its accuracy diverges from the last time it was estimated
(variance h(j)σ2 increases).

Next, we draw samples {φj,it }Ni=1 from the distribution given above in (6.18). We weight
these samples by their corresponding predicted probability (6.17) given what has been
observed up to time t:

bj,it = p(φjt | Zjt−h(j))φ
j,i
t (6.19)

For each j, we sort the weighted samples bj,it in ascending order and find their 95th percentile.
This represents the value of the upper 95th confidence interval for labeler j. We then apply
the IEThresh method in Section 6.2 by selecting all predictors whose 95th percentile is
higher than a predefined threshold T . We denote the set of selected predictors at time t
by J(t). This selection allows us to take the cumulative variance into account and select
the predictors with potentially high accuracies. We tuned the parameter T on a separate

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 99

dataset not reported here. It can further be adjusted according to budget allocated to label
acquisition or to prevent unnecessary sampling especially when the number of predictors is
large.

After the committee J(t) of selected predictors is identified, we observe their outputs zjt
and update the weights wj,it using (6.16) and update the posterior p(φjt | Zjt) using (6.14).
Relying on the posterior accuracy distribution, we compute the estimated expected accuracy
as follows:

E
p(φjt |Z

j
t)

[φjt] =
N∑
i=1

p(φj,it | Zjt)φj,it (6.20)

Finally, we integrate the observed noisy labels from the selected committee to predict the
true label using a map estimate of the estimated posterior distribution:

ŷ
map
t = arg max

y∈Y
P (y | ZJ(t)

t)

= arg max
y∈Y

P̂t−1(y)
∏
j∈J(t)

p
E[φjt]

(zjt | y)

= arg max
y∈Y

P̂t−1(y)
∏
j∈J(t)

E[φjt]
I(zjt=y)

(1− E[φjt])
I(zjt 6=y) (6.21)

We then use the predicted labels to update the marginal label distribution:

P̂t(y = 1) =
1
t

t∑
s=1

ŷmap
s (6.22)

where ŷmap ∈ {0, 1}. Initially, we start with a uniform marginal label distribution.

See Figure 6.9 for an outline of our algorithm, which we name SFilter.

6.3.4 Experimental Evaluation

In this section, we describe the experimental evaluation and offer our observations. We
have tested SFilter from many different perspectives. The predictors are simulated in such a
way that they have different initial labeling accuracies but share the same σ. Furthermore,
each instance that we seek to label corresponds to a single time step; hence, the accuracy
transitions to the next state at every instance. These conditions are true for all experiments
unless otherwise noted.

First, we conducted an evaluation to test how the proposed model behaves with respect
to various degrees of change in accuracy. The degree of this change depends on the variance

100 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

1. Sample from the initial distribution φi0 ∼ p(φ0) for i = 1, . . . , N and assign weights
wi0 = 1

N

2. For t = 1, initialize P̂1(y) = 0.5 and run a single iteration of the basic filtering
algorithm (Figure 6.8) for j = 1, . . . ,K.

3. Initialize h(j) = 1 and Zj1 = {zj1} ∀j = 1, . . . ,K

4. For t > 1, and i = 1, . . . , N

• Compute P̂t(y) acc. to (6.22).

• Draw samples φj,it using (6.17) and estimate the expected accuracy via (6.20)
for j = 1, . . . ,K.

• Select the predictors J(t) to be queried

• For j ∈ J(t)

– Update weights w̃j,it = p(zjt | φj,it)w̃j,it−h(j)

– Normalize the weights wj,it =
w̃j,i
t−h(j)PN

l=1 w̃
j,l
t−h(j)

and compute N̂ej = 1PN
i=1(wj,it)2

.

– If N̂ej is too small, then resample φj,it ∼ pmf[{wjt}] and reassign wj,it = 1
N .

– Update h(j) = t and Zjt = Zjt−h(j) ∪ {zjt }.
– Update the posterior state density
p(φjt | Zjt) =

∑N
i=1w

j,i
t δ(φ

j
t − φj,it).

5. Update t = t+ 1 and go to step 4.

Figure 6.9: Outline of the SFilter algorithm.

of the Gaussian distribution that controls the width of the step size in (6.5). We analyzed
how σ affects the estimation process in terms of the overall quality of the integrated labels
and the total labeling effort. We simulated 10 predictors with varying initial accuracies
but with the same σ for 500 instances. The accuracy of each predictor evolves according
to (6.6) and every selected predictor j ∈ Jt outputs a noisy label zjt . We integrate these
labels to predict the true label via (6.21). Table 6.5 shows the percentage of correct
labels predicted and the number of total predictor queries with the corresponding σ. %-
correct represents the percentage of the correct labelings among all instances m = 500,
i.e. % − correct =

Pm
t=1 I(ŷ

map
t −ytrue

t)
m where ytrue

t is drawn from P (y = 1) = 0.75. Among
the 10 predictors the highest average accuracy is 0.81 whereas the percentage of correct
labels integrated by SFilter is significantly higher, i.e. 0.85. As the variance increases, the

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 101

Table 6.5: Performance measurement of SFilter w.r.t increasing σ values in the presence of
10 predictors.

σ %-correct # queries # instances
0.02 0.858 975 500
0.04 0.846 1152 500
0.06 0.834 1368 500

Table 6.6: Robustness analysis of SFilter against small perturbations in estimated vs. true σ
when the true σ is equal to 0.02. The analysis is performed over 500 instances drawn from
P (y = 1) = .75, where y ∈ {0, 1}

σ %-correct # queries
0.02 0.858 975
0.022 0.854 1015
0.018 0.854 1027
0.016 0.845 1031
0.024 0.848 1082

total number of queries also increases and there is a slight decay in the percentage of
correct labelings. The relatively rapid change of predictor qualities leads to more extensive
exploration to catch any drifts without compromising the overall performance too much. We
have also tested the robustness of the proposed algorithm against small perturbations in σ.
We repeated the above analysis using σ = 0.02 to generate the accuracy drift, but executed
SFilter using slightly different σ values in order to test perturbational robustness. Table 6.6
indicates that SFilter is robust to small noise in σ. The %-correct remains relatively stable
as we add noise to the true σ while the total amount of labeling is only slightly larger.

Next, we analyzed how the variations among the individual predictor qualities affect
the estimation and selection. The first experiment uses the same committee of predictors
(k = 10) as above whose qualities are uniformly distributed between 0.5 and 1. The second
experiment uses a committee where only a few good predictors exists (only 3 predictors
with initial accuracy above 0.8 and the rest below 0.65). We used a fixed σ = 0.02 for both
cases. Table 6.7 shows the effectiveness of SFilter to make correct label predictions with
moderate labeling effort in both cases. The last column in Table 6.7 shows the average
estimated marginal label distribution P̂ (y = 1) where the true marginal is P (y = 1) = 0.75.
Our algorithm is very effective for estimating the unknown label distribution and also
for exploiting the predictors only when they are highly reliable as shown in Figure 6.10.
Figure 6.10 displays the true source accuracy over time and the times the source is selected
by SFilter (denoted by red circles) and when otherwise (denoted by blue circles). We only
report a representative subset out of 10 total sources. Note that SFilter selects the highly
reliable sources in this skewed set at the beginning. When these sources become less reliable,

102 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

Table 6.7: Performance measurement of SFilter for various quality predictors. Uniform
denotes the predictors’ initial accuracies are uniformly distributed. Skewed denotes there
are only a few good predictors while the majority are highly unreliable. P (y = 1) = 0.75.

distribution %-correct # queries P̂ (y = 1)
uniform 0.858 975 0.768
skewed 0.855 918 0.773

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

1 100 200 300 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tru
e

so
ur

ce
 a

cc
ur

ac
y

selected
not selected

Figure 6.10: SFilter selects the sources when they are relatively highly accurate even in the
skewed case where there are only a few good sources to begin with. SFilter also detects
when the initially bad sources become more favorable later and begins exploiting them.

SFilter finds other sources that have become more favorable over time (i.e. lower left corner
in Figure 6.10). Moreover, sources that have relatively low quality throughout the entire
time are hardly selected by SFilter except a few exploration attempts. This is a desirable
behaviour of the algorithm and certainly reduces the labeling effort without hurting overall
performance even with skewed distributions of source accuracies.

We further challenged SFilter with a pathological example to test its robustness against

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 103

0 100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tr
ue

 s
ou

rc
e

ac
cu

ra
cy

selected
not selected

0 100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

tr
ue

 s
ou

rc
e

ac
cu

ra
cy

selected
not selected

Figure 6.11: SFilter is able to detect the consistent increase or decrease in any quality and
adopts quickly by choosing the predictors when they are reliable, though with occasional
exploration attempts.

how the predictors’ accuracies change. We simulated k = 10 predictors with initial accuracies
ranging from 0.51 to 0.94. All the predictors except the best (0.94 accuracy) and the worst
(0.51 accuracy) follow a random walk with the step size drawn from N (0, σ2) where
σ = 0.02. The best predictor consistently gets worse and the worst consistently improves,
both staying within 0.5 and 1 range. As before, P (y = 1) = 0.75. Figure 6.11 displays the
accuracy change of the two predictors with respect to time. The red dots indicate the times
that the corresponding predictor is selected and the blue dots indicate otherwise. Clearly,
SFilter is able to detect the consistent change in the accuracies. We also note that the most
frequently chosen predictors are the ones with relatively high average accuracies. There are
occasional exploration attempts at the low accuracies, but the algorithm detects this and is
able to recover quickly. As a result, the algorithm chooses any undesirable predictor(s) with
very low frequency. Please note that there are times when neither predictors are selected.
This corresponds to the situations where the remaining predictors are selected.

Additionally, we tested the ability of SFilter to track the true accuracy. We tested SFilter
using 4 predictors with the rate of change σ = 0.01 on 1000 instances drawn from a true
label distribution of P (y = 1) = 0.8. We used 5000 particles and we constrained SFilter to
choose all 4 predictors per instance (only for this experiment) to monitor the true and the
estimated accuracy of each predictor at every time step. Figure 6.12 demonstrates how
the estimate of the marginal label distribution P̂ (y = 1) improves over time. Figure 6.13
compares the true and the estimated accuracy of each predictor. The dotted blue line in each
graph corresponds to the estimated expected accuracy while the solid red line corresponds
to the true accuracy. The black line in each graph shows the result of using maximum
likelihood estimation to infer the accuracy assuming accuracy is stationary. This inference

104 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

es
tim

at
e

of
 P

(y
=1

)

Figure 6.12: SFilter’s estimate of the true marginal label distribution P (y = 1) = 0.8
improves over time. In fact, it converges to the true distribution with more samples.

technique proposed in [Donmez et al., 2010c] (and will be described in detail in Chapter 7)
shows very promising results on various test scenarios. However, it is designed to estimate
stationary source accuracies. SFilter, on the other hand, manages to track the trends in the
true accuracy quite well, sometimes with a lag. This is remarkable since neither the initial
qualities nor the true label distribution are known in advance.

Next, we tested SFilter in terms of its effectiveness to create a high quality labeled data
for training a classifier. We took 4 benchmark datasets from the UCI repository [Newman et
al., 1998]. We created k = 10 different simulated predictors with varying initial accuracies
and different changing rates σ. We executed SFilter on each dataset with these predictors
and integrated their output for a final labeling. Later, we trained a logistic regression
classifier on this labeled set and tested the resulting classifier on a separate held-out data.
The gold standard labels for the held-out set are known but used solely to test the classifier
not to adjust the estimation model in any way. We compared the proposed approach with
two strong baselines. One is majority voting (denoted as Majority) where we used all
predictors per instance and assigned the majority vote as the integrated label. The other is
the IEThresh technique introduced in Section 6.2. IEThresh selects a subset of predictors
based on an interval estimation procedure and takes the majority vote of only the selected
predictors. We report on the held-out set the accuracy of the classifier trained on the data
labeled by each method. We report the classifier performance with respect to the number
of queries. Hence, the corresponding size of the labeled examples differs for each method
since each method uses different amount of labeling per instance, i.e. majority voting uses
all annotators to label each instance. The total training size is fixed at 500 examples for

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 105

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

la
b

e
lin

g
 a

cc
u

ra
cy

predictor 1

SFilter
True
MLE

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

la
b

e
lin

g
 a

cc
u

ra
cy

predictor 2

SFilter
True
MLE

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time t

la
b

e
lin

g
 a

cc
u

ra
cy

predictor 3

SFilter
True
MLE

1 250 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

la
b

e
lin

g
 a

cc
u

ra
cy

time t

predictor 4

SFilter
True
MLE

Figure 6.13: Shows how SFilter tracks the true predictor accuracy. Each graph corresponds
to a different predictor. The solid red line indicates the true accuracy of the predictor
whereas the dotted blue line shows the expected accuracy estimated by SFilter. This is the
result of a single run, though highly typical. SFilter is able to track the tendency of the true
accuracy quite well with occasional temporal lags.

each dataset. The other properties of the datasets are given in Table 6.84. Figure 6.14
displays the performance of our algorithm SFilter and two baselines on four UCI datasets.
The initial predictor accuracies range from as low as 0.53 to as high as 0.82. SFilter is
significantly superior over the entire operating range; i.e. from small to large numbers of
predictor queries. The differences are statistically significant based on a two-sided paired
t-test (p < 0.001). The horizontal black line in each plot represents the test accuracy of a

4‘ada’ is a different version of the ‘adult’ dataset at UCI repository. This version is generated for the agnostic
learning workshop at IJCNN ’07, available at http://clopinet.com/isabelle/Projects/agnostic/index.html

106 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

Table 6.8: Properties of the UCI datasets. All are binary classification problems.
dataset test size dimension +/- ratio
phoneme 3782 5 0.41
spambase 3221 57 0.65
ada 4562 48 0.33
image 1617 18 1.33

classifier trained with the gold standard labels. SFilter eventually reaches the gold standard
level, suggesting that it generates a clean training data with minimal noise. Majority voting
is the worst performer since it uses all predictors for every single instance; thus makes
a larger number of labeling requests even for a small number of instances. IEThresh is
the second best performer after SFilter. However, neither baselines take the time-varying
accuracy into account and wastes labeling effort due to low quality predictors. Our method
adapts to the change in predictor accuracies and filters the unreliable ones leading to a
more effective estimation.

Finally, we are interested in testing the proposed framework on a different situation. It
is often problematic to estimate the error rate (or accuracy) of a classifier in the absence
of gold standard labels. In addition, consider classifiers that are re-trained (or modified)
as additional instances become available. This situation might arise in a number of real-
life scenarios. Consider spam filters. They need to be re-trained in an online fashion as
new emails arrive. Web pages or blogs are other good examples of constantly growing
databases. Any web page classifier needs to be modified to accomodate for the newly
created web pages. Another example is autonomous agents that need to learn continuously
from their environments and their performance will be changing with new discoveries
of their surroundings. However, such learners might not always improve with additional
data. The new stream of data might be noisy, generating confusion for the learners and
causing a performance drop. Hence, capturing the time-varying quality of a learner while
maintaining flexibility in terms of the direction of the change becomes crucial to adopt to
this non-stationary environment.

To study this phenomenon, we evaluated the performance of SFilter on a face recognition
dataset [Pham et al., 2002] introduced in earlier chapters. We randomly divided the whole
dataset into 3 mutually exclusive subsets. One contains 100 labeled images to train 5
classifiers. The other subset contains 500 unlabeled images to test them. The last subset is
held out for validation. We trained 5 linear SVM classifiers as follows. For each classifier,
we used a separate randomly chosen subset of 100 images as the initial training set. We
systematically increased each training set size to 100, by adding random label noise so that
the classifiers do not necessarily improve with more data. The average accuracy of classifiers
are {0.70, 0.73, 0.78, 0.83, 0.84}. We executed SFilter, IEThresh and Majority voting on 500
test images to predict their labels. We then trained another classifier on the predicted labels

6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions 107

200 400 600 800 1000 1200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

number of labelings

te
st

 a
cc

u
ra

cy

ada

SFilter
IEThresh
Majority
Gold

200 400 600 800 1000 1200

0.65

0.7

0.75

0.8

0.85

number of labelings

te
st

 a
cc

u
ra

cy

image

SFilter
IEThresh
Majority
Gold

200 300 400 500 600 700 800 900 1000 1100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

number of labelings

te
st

 a
cc

u
ra

cy

phoneme

SFilter
IEThresh
Majority
Gold

200 400 600 800 1000 1200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of labelings

te
st

 a
cc

u
ra

cy

spambase

SFilter
IEThresh
Majority
Gold

Figure 6.14: Measuring predicted label quality by training and testing a classifier on 4 UCI
datasets by all three methods. The y-axis indicates the accuracy of the classifier on the test
set, and the x-axis indicates the number of predictor queries. The horizontal line shows the
performance of a classifier trained on the gold standard labels.

by each method. Figure 6.15 compares the performance of SFilter against IEThresh and
Majority voting. SFilter significantly outperforms other baselines in this task and reaches
a level of performance close to that of using gold standard labels. Again, gold labels are
solely used to measure the performance of classifiers, and not for learning.

108 Chapter 6: Joint Predictor Accuracy Estimation and Predictor Selection

100 200 300 400 500 600 700 800 900
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of labelings

te
st

 a
cc

ur
ac

y

face recognition

SFilter
IEThresh
Majority
Gold

Figure 6.15: Results using 5 actual classifiers as predictors. The performance of each
classifier varies over time. Their outputs on a test set are used to predict the true labels. A
meta-classifier is trained using these labels and tested on a held-out set for performance
evaluation. The predicted labels obtained by SFilter are significantly more effective in
improving the data quality.

6.4 Chapter Conclusions

This chapter addresses the challenging task of jointly estimating predictor accuracy and
predictor selection in stationary and non-stationary cases. In Section 6.2, we proposed
IEThresh as an effective solution that naturally incorporates the exploration vs. exploitation
tradeoff. The main advantage of IEThresh is to filter out less reliable predictors as early as
possible, which boosts the performance. Our empirical evaluation indicates that IEThresh is
more effective than the naive counterparts such as using all predictors or a random one,
which were reported in the recent literature. Even under challenging conditions where the
number of reliable predictors is low or some predictors are worse than random, IEThresh
is capable of estimating the best predictor(s) through selective sampling and updating
accuracy estimates.

In Section 6.3, we addressed the same problem in the non-stationary case that goes
beyond consistent predictor quality. The proposed framework constantly monitors and
estimates the expected behavior of each predictor while simultaneously choosing the best
possible predictors for labeling each instance. The framework relies on a Hidden Markov
Model (HMM) structure to represent the unknown sequence of changing accuracies and
the corresponding observed predictor outputs. We adopted Bayesian particle filtering to
make inference in such a dynamic system. Particle filters estimate the state distribution
by sets of weighted samples and perform Bayes filter updates according to a sequential

6.4 Chapter Conclusions 109

sampling procedure. The key advantage of particle filters is their capacity to represent
arbitrary probability densities whereas other Bayesian filters such as Kalman filters can only
handle unimodal distributions and hence not well-suitable for our problem. Furthermore,
we have proposed a variant of the basic filtering method to infer the expected accuracy of
each predictor and use it as a guide to decide which ones to query at each time step. The
proposed approach, SFilter, chooses the potentially good predictors based on their expected
accuracies at each time step. In general high quality labelers are queried more frequently
than the low-quality labelers. Moreover, it tracks reliably the true labeling accuracy over
time.

The effectiveness of the proposed framework is demonstrated by thorough evaluation.
For instance, we have shown that our data labeling process is robust to the choice of σ
which governs the rate of the accuracy change. We have further shown that it is also robust
to the distribution of the initial predictor accuracies. The algorithm is able to detect the
most reliable predictors regardless of the reliability distribution. Additionally, our analysis
demonstrates the ability of SFilter to generate high quality labels for a training data for
which only multiple noisy annotations exist. This result is powerful in the sense that even
though SFilter is provided with noisy labels generated from dynamically changing sources, it
can label the data reliably. This is particularly useful for many practical applications where
labeled data with minimal noise is essential to build reliable systems.

There are a number of potential future directions for expanding the research reported
here. The rate of change σ of the state is assumed to be known (or at least its bound is
known). To relax this assumption, one needs to estimate σ (which could potentially be
different for different predictors). This is a harder problem but necessary to be solved to
be applicable in a wider range of problems. To make the problem even more challenging,
one can assume σ decreases over time, i.e. a decreasing function of time, if the predictors
are assumed to learn with time. Another direction is to condition the probability of making
a labeling mistake on the data instance, or at least the region of the instance space which
contains the instance. Then, it is crucial to estimate this probability for a representative
subset of the input space and generalize to the entire space. Another direction is to relax
the assumption that the noise generation is uncorrelated. It is possible that the predictors
make correlated errors as noted by [Sheng et al., 2008]. This is a more challenging task
since the correlation parameters need to be estimated together with the noise probabilities.
Lastly, we assumed that the cost of labeling is the same for each predictor in this chapter.
However, it is likely that more accurate predictors cost more than the less accurate ones. In
such cases a decision-theoretic utility model would be central. These are interesting and
challenging problems for future research in proactive learning to let it reach more practical
application scenarios.

Chapter 7

Unsupervised Estimation of
Classification and Regression Risks

7.1 Introduction

Thus far, we have studied joint estimation of predictor accuracies and predictor selection.
In this chapter, we approach the problem from a different perspective. We formulate the
problem as risk estimation of multiple predictors without using any labeled data and narrow
our focus solely on risk estimation rather than predictor selection. The motivation for the
risk estimation framework is an ambitious one. Generally, supervised machine learning
algorithms aim to minimize an empirical risk estimate on the training data to obtain a
predictor with a desirable generalization power. In the absence of labeled data, unsupervised
risk estimation becomes crucial. If the risk can accurately be estimated using unlabeled
data, then a classifier can be trained to minimize this estimate instead of a supervised
alternative. With this goal in mind, we systematically tackle the problem by first dealing
with a straightforward risk function, namely the 0-1 risk, and then extending this work
to more general risk involving continuous loss functions such as log-loss. We propose a
maximum likelihood estimator for both risks which we prove to be statistically consistent.
Our empirical evaluation supports the theoretical claims and indicates the effectiveness of
the proposed approach on both synthetic and real-world datasets.

In this chapter, we focus on the first framework and describe the methodology and the
analysis in detail. In the following chapter, we move to the discussion of more general risk
estimation and how it can be adopted to build classifiers with no labeled data. We start
with introducing some preliminary concepts and notation before explaining the estimation
framework in detail.

Assuming a joint distribution p(x, y) and a loss function L(y, ŷ), a predictor f : X → Y

111

112 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

is characterized by an expected loss or risk function

R(f) = E p(x,y){L(y, f(x))}. (7.1)

If L is chosen such that L(y, ŷ) = I(y 6= ŷ) where I(A) = 1 if A is true and 0 otherwise, and
X = Rd, Y = {1, . . . , l}, the resulting risk is known as the 0-1 risk or simply the classification
error rate

R(f) = P (f predicts the wrong class). (7.2)

In regression we may have X = Y = R, and L(y, ŷ) = (y − ŷ)2. The resulting risk is the
mean squared error

R(f) = E p(x,y)(y − f(x))2. (7.3)

We consider the case where we are provided with k predictors fi : X → Y, i = 1, . . . , k
(k ≥ 1) whose risks are unknown. Our main goal is to estimate the risks R(f1), . . . , R(fk)
without using any labeled data whatsoever. The estimation of R(fi) is rather based on an
estimator R̂(fi) that uses unlabeled data x(1), . . . , x(n) iid∼ p(x). A secondary task that we
consider is obtaining effective schemes for combining k predictors f1, . . . , fk in a completely
unsupervised manner to make predictions on the true label y.

In the absence of true labels, there is no ground truth that guides us in estimating the
risks. Hence, consistent unsupervised risk estimation is a very challenging task. However, as
we show in this chapter, if the marginal p(y) is known it is possible in some cases to obtain
a consistent estimator for the risks using only unlabeled data i.e.,

lim
n→∞

R̂(fi ;x(1), . . . , x(n)) = R(fi) with probability 1, i = 1, . . . , k.

We explore the statistical consistency together with the asymptotic variance of the risk
estimators and their dependency on n (amount of unlabeled data), k (number of predictors),
and R(f1), . . . , R(fk) (risks). We also demonstrate that the proposed estimation technique
works well in practice on both synthetic and real world data.

The assumption that p(y) is known seems restrictive, but there are plenty of cases
where it holds. Examples include medical diagnosis (p(y) is the well known marginal
disease frequency), handwriting recognition/OCR (p(y) is the easily computable marginal
frequencies of different English letters), regression model for life expectancy (p(y) is the well
known marginal life expectancy tables). In these and other examples p(y) is obtained from
extremely accurate histograms. In cases where it is not known, the consistency results may
not hold. However, we have conducted an analysis to measure the effect of misspecifications
of p(y) on the estimation accuracy. Section 7.5 contains the details of the analysis, we note
here that small perturbations do not affect the results significantly, especially when p(y) is
over-specified.

7.2 Unsupervised Risk Estimation Framework 113

The collaborative nature of this diagnosis is especially useful for multiple predictors
as the predictor ensemble {f1, . . . , fk} diagnoses itself. However, our framework is not
restricted to a large k and works even for a single predictor with k = 1. It may further be
extended to the case of active learning where classifiers are queried for specific data and
hence not all predictors output an answer all the time.

7.2 Unsupervised Risk Estimation Framework

In addition to the preliminaries presented in Section 7.1, we further require that the
predictors f1, . . . , fk are stochastic i.e. their prediction ŷ = fi(x) (conditioned on x) is
a random variable. This is possible if the predictors are probabilistic i.e., fi models a
conditional distribution qi and predicts y′ with probability qi(y′|x).

As mentioned previously our goal is to estimate the risk associated with classification
or regression models f1, . . . , fk based on unlabeled data x(1), . . . , x(n) iid∼ p(x). The testing
marginal and conditional distributions p(x), p(y|x) may differ from the distributions used at
training time for the different predictors. In fact, each predictor may have been trained on
a completely different training distribution, or may have been designed by hand with no
training data whatsoever. We consider the predictors as black boxes and do not assume any
knowledge of their modeling assumptions or training processes.

We define a parameter vector θ ∈ Θ which characterizes the risks R(f1), . . . , R(fk) i.e.
R(fj) = gj(θ) for some function gj : Θ→ R, j = 1, . . . , k. θ is our main parameter which is
estimated from data by connecting it to the conditional probabilities pj(y′|y), j = 1, . . . , k
which are the probabilities that the j-predictor emits prediction y′, conditioned on the
true value being y. In other words, θ governs the distribution that generates the noisy
outputs. We propose to estimate the risks using a plug-in estimate R̂(fj) = gj(θ̂) where θ̂ is
obtained by maximizing the observed likelihood over the unlabeled data. We thus obtain
the following estimator

R̂(fj ; ŷ(1), . . . , ŷ(n)) = gj(θ̂mle(ŷ(1), . . . , ŷ(n))), j = 1, . . . , k

θ̂mle(ŷ(1), . . . , ŷ(n)) = arg max
θ

`(θ ; ŷ(1), . . . , ŷ(n))

`(θ ; ŷ(1), . . . , ŷ(n)) =
n∑
i=1

log pθ(ŷ
(i)
1 , . . . , ŷ

(i)
k)

=
n∑
i=1

log
∫
Y
pθ(ŷ

(i)
1 , . . . , ŷ

(i)
k |y(i))p(y(i)) dµ(y(i))

where ŷ(i) def= (ŷ(i)
1 , . . . , ŷ

(i)
k) and ŷ

(i)
j

def= fj(x(i)).

(7.4)

(7.5)

(7.6)

114 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

The integral in (7.6) is over the unobserved label y(i) associated with x(i). It should be a
continuous integral

∫∞
y(i)=−∞ for regression and a finite summation

∑l
y(i)=1 for classification.

For notational simplicity we maintain the integral sign for both cases with the understanding
that it is over a continuous or discrete measure µ, depending on the topology of Y. Note
that (7.6) and its maximizer are computable without any labeled data. All that is required
are the classifiers (as black boxes), unlabeled data x(1), . . . , x(n), and the marginal label
distribution p(y).

Besides being a diagnostic tool for the predictor accuracy, θ̂mle can be used to effectively
aggregate f1, . . . , fj to predict the label of a new example xnew, assuming the predictors’
outputs f1(xnew), . . . , fj(xnew) are conditionally independent given the true label y:

ŷnew = arg max
y∈Y

pθ̂mle(y | f1(xnew), . . . , fk(xnew))

= arg max
y∈Y

p(y)
k∏
j=1

pθ̂mle
j

(fj(xnew) | y). (7.7)

As a result, our framework may be used to combine existing classifiers or regression models
in a completely unsupervised manner.

There are three important research questions concerning the above framework. First,
what are the statistical properties of θ̂mle and R̂ (consistency, asymptotic variance)? Second,
how can we efficiently solve the maximization problem (7.5)? And third, how does the
framework work in practice? We address these three questions in Sections 7.3, 7.4, 7.5
respectively, We devote the rest of the current section to examine some important special
cases of (7.5)-(7.6) and consider some generalizations in the next section.

7.2.1 Non-Collaborative Estimation of the Risks

In the non-collaborative case we estimate the risk of each one of the predictors f1, . . . , fk
separately. This reduces the problem to that of estimating the risk of a single predictor,
which is repeated k times for each one of the predictors. We thus assume in this subsection
the framework (7.4)-(7.6) with k = 1 with no loss of generality. For simplicity we denote the
single predictor by f rather than f1 and denote g = g1 and ŷ(i) = ŷ

(i)
1 . The corresponding

simplified expressions are

R̂(f ; ŷ(1), . . . , ŷ(n)) = g(θ̂mle(ŷ(1), . . . , ŷ(n))) (7.8)

θ̂mle(ŷ(1), . . . , ŷ(n)) = arg max
θ

n∑
i=1

log
∫
Y
pθ(ŷ(i)|y(i))p(y(i)) dµ(y(i)) (7.9)

where ŷ(i) = f(x(i)).

We consider below several important special cases.

7.2 Unsupervised Risk Estimation Framework 115

Classification

Assuming l labels Y = {1, . . . , l}, the classifier f defines a multivariate Bernoulli distribution
pθ(ŷ|y) mapping the true label y to ŷ

pθ(ŷ|y) = θŷ,y. (7.10)

where θ is the stochastic confusion matrix or noise model corresponding to the classifier f .
In this case, the relationship between the risk R(f) and the parameter θ is

R(f) = 1−
∑
y∈Y

θyy p(y). (7.11)

Equations (7.10)-(7.11) may be simplified by assuming a symmetric error distribution
[Cover and Thomas, 2005], meaning that either the true label is output with probability θ,
or any incorrect label is output with equal probability 1−θ

l−1 when there are l labels.

pθ(ŷ|y) = θI(ŷ=y)

(
1− θ
l − 1

)I(ŷ 6=y)

(7.12)

R(f) = 1− θ (7.13)

where I is the indicator function and θ ∈ [0, 1] is a scalar corresponding to the classifier
accuracy. Estimating θ by maximizing (7.9), with (7.10) or (7.12) substituting pθ completes
the risk estimation task.

In the simple binary case l = 2,Y = {1, 2} with the symmetric noise model (7.12) the
loglikelihood

`(θ) =
n∑
i=1

log
2∑

y(i)=1

θI(ŷ
(i)=y(i))(1− θ)I(ŷ(i) 6=y(i))p(y(i)). (7.14)

may be shown to have the following closed form maximizer

θ̂mle =
p(y = 1)−m/n
2p(y = 1)− 1

. (7.15)

where m def= |{i ∈ {1, . . . , n} : ŷ(i) = 2}|. The estimator (7.15) works well in practice and
is shown to be a consistent estimator in the next section (i.e., it converges to the true
parameter value when p(y) is non-uniform and θ > 0.5). In cases where the symmetric
noise model (7.12) does not hold, using (7.15) to estimate the classification risk may be
misleading. For example, in some cases (7.15) may be negative. In these cases, using the
more general model (7.10) instead of (7.12) should provide more accurate results. We
discuss this further from theoretical and experimental perspectives in Sections 7.3, and 7.5
respectively.

116 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

Regression

Assuming a regression equation

y = ax+ ε, ε ∼ N(0, τ2)

and an estimated regression model or predictor ŷ = a′x we have

ŷ = a′x = a′a−1(y − ε) = θy − θε
where θ = a′a−1. Thus, in the regression case the distribution pθ(ŷ|y) and the relationship
between the risk and the parameter R(f) = g(θ) are

pθ(ŷ|y) = (2πθ2τ2)−1/2 exp
(
−(ŷ − θy)2

2θ2τ2

)
(7.16)

R(f |y) = bias 2(f) + Var (f) = (1− θ)2y2 + θ2τ2 (7.17)

R(f) = θ2τ2 + (1− θ)2E p(y)(y
2). (7.18)

Note that we consider regression as a stochastic estimator in that it predicts the model to be
y = a′x+ ε or y|x ∼ N(a′x, τ2).

Assuming p(y) = N(µy, σ2
y), we have

pθ(ŷ(i)) =
∫

R
pθ(ŷ(i)|y)dy = (2πθ2τ22πσ2

y)
−1/2

∫
R

exp
(
−(ŷ − θy)2

2θ2τ2
− (y − µy)2

2σ2
y

)
dy

(7.19)

=
1

θ
√

2π(τ2 + σ2
y)

exp

(
(ŷ(i))2

2θ2τ2

(
σ2
y

σ2
y + τ2

− 1

)
+

µ2
y

2σ2
y

(
τ2

σ2
y + τ2

− 1
)

+
ŷ(i)µy

θ
(
τ2 + σ2

y

))
(7.20)

where we used the following lemma in the last equation.

Lemma 1 (e.g., [Papoulis, 1984]).∫ ∞
−∞

Ae−Bx
2+Cx+D dx = A

√
π

B
exp

(
C2/4B +D

)
(7.21)

where A,B,C,D are constants that do not depend on x.

In this case the loglikelihood simplifies to

`(θ) = −n log
(
θ
√

2π(τ2 + σ2
y)
)
−
(∑n

i=1(ŷ(i))2

2(τ2 + σ2
y)

)
1
θ2

+

(
µy
∑n

i=1 ŷ
(i)

τ2 + σ2
y

)
1
θ
− n µ2

y

2(σ2
y + τ2)

(7.22)

7.2 Unsupervised Risk Estimation Framework 117

which can be shown to have the following closed form maximizer

θ̂mle = −µy
∑n

i=1 ŷ
(i)

2n(τ2 + σ2
y)
±
√√√√(µy∑n

i=1 ŷ
(i)
)2

4n2(τ2 + σ2
y)

2 +
∑n

i=1(ŷ(i))2

n(τ2 + σ2
y)

(7.23)

where the two roots correspond to the two cases where θ = a′/a > 0 and θ = a′/a < 0.

A straightforward generalization to the multivariate case is y = Ax+ ε where y, x are
vectors, A is the matrix of regression parameters, and ε ∼ N(0, σ2

yI). An estimated model
using a matrix B instead of A can be written as ŷ = Bx = Θ(y − ε) with Θ = BA−1

which leads to ŷ|y ∼ N(Θy, σ2
yΘΘ>). The task remains estimating the regression risk by

estimating Θ from observed data ŷ(1), . . . , ŷ(n).

Noisy Gaussian Channel

In this case our predictor f corresponds to a noisy channel taking a real valued signal
y as input and yielding its noisy version ŷ as output. The aim is to estimate the mean
squared error or noise level R(f) = E ‖y − ŷ‖2. In this case the distribution pθ(ŷ|y) and the
relationship between the risk and the parameter R(f) = g(θ) are

pθ(ŷ|y) = (2πθ2)−1/2 exp
(
−(ŷ − y)2

2θ2

)
(7.24)

R(f |y) = Epθ(ŷ|y)‖y − ŷ‖2 = V arpθ(ŷ|y)(ŷ) = θ2 (7.25)

R(f) = θ2E p(y)(y). (7.26)

The loglikelihood and other details in this case are straightforward variations on the
linear regression case described above. We therefore concentrate in this chapter on the
classification and linear regression cases.

As mentioned above, in both classification and regression, estimating the risks for
k ≥ 2 predictors rather than a single one may proceed by repeating the optimization
process described above for each predictor separately. That is R̂(fj) = gj(θ̂mle

j) where
θ̂mle

1 , . . . , θ̂mle
k are estimated by maximizing k different loglikelihood functions. In some

cases the convergence rate to the true risks can be accelerated by jointly estimating the
risks R(f1), . . . , R(fk) in a collaborative fashion. Such collaborative estimation is possible
under some assumptions on the statistical dependency between the noise processes defining
the k predictors. We describe below such an assumption followed by a description of more
general cases.

118 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

7.2.2 Collaborative Estimation of the Risks: Conditionally Independent Pre-
dictors

Previously, we have analyzed estimating the risks of k predictors through maximizing (7.6)
for each predictor separately. If the predictors are known to be conditionally independent
given the true label i.e. pθ(ŷ1, . . . , ŷk|y) =

∏
j pθj (ŷj |y) the loglikelihood (7.6) simplifies to

`(θ) =
n∑
i=1

log
∫
Y

k∏
j=1

pθj (ŷ
(i)
j |y(i))p(y(i)) dµ(y(i)), where ŷ

(i)
j = fj(x(i)) (7.27)

and pθj above is (7.10) or (7.12) for classification and (7.16) for regression. Maximizing
the loglikelihood (7.27) jointly over θ1, . . . , θk results in estimators R̂(f1), . . . , R̂(fk) that
converge to the true value faster than the non-collaborative MLE (7.9) (See Section 7.5 for
more details). Equation (7.27) does not have a closed form solution neither in classification
nor in regression cases; hence, it requires the use of iterative optimization techniques.

We note that the conditional independence assumption may not hold in every case. We
propose a more general formulation for conditionally dependent predictors in the following
section. However, we argue that the conditional independence of the predictors is a much
weaker condition than the independence of the predictors which is very unlikely to hold. In
our case, each predictor fj has its own stochastic noise operator Tj(r, s) = p(ŷ = r|y = s)
(regression) or matrix [Tj]rs = pj(ŷ = r|y = s) (classification) where T1, . . . , Tk may be
arbitrarily specified. In particular, some predictors may be similar e.g., Ti ≈ Tj , and some
may be different e.g., Ti 6≈ Tj . The conditional independence assumption that we make in
this subsection is that conditioned on the latent label y the predictions of the predictors
proceed stochastically according to T1, . . . , Tk in an independent manner.

Figure 7.1 displays the loglikelihood functions `(θ) for three different dataset sizes
n = 100, 250, 500. As the size n of the unlabeled data grows the curves become steeper and
θ̂mle
n approach θtrue. Figure 7.2 displays a similar figure for k = 1 in the case of regression.

In the case of regression (7.27) involves an integral over a product of k + 1 Gaussians,

7.2 Unsupervised Risk Estimation Framework 119

0.5 0.6 0.7 0.8 0.9 1

n=100

n=250

n=500

−450−400

−3
50

−350

−350

−350

−330

−330

−330 −330

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Figure 7.1: A plot of the loglikelihood functions `(θ) in the case of classification for k = 1
(left, θtrue = 0.75) and k = 2 (right, θtrue = (0.8, 0.6)>). The loglikelihood was constructed
based on random samples of unlabeled data with sizes n = 100, 250, 500 (left) and n = 250
(right) and p(y = 1) = 0.75. In the left panel the y values of the curves were scaled so their
maxima would be aligned. For k = 1 the estimators θ̂mle (and their errors |θ̂mle − 0.75|)
for n = 100, 250, 500 are 0.6633 (0.0867), 0.8061 (0.0561), 0.765 (0.0153). As additional
unlabeled examples are added the loglikelihood curves become steeper and their maximizers
become more accurate and closer to θtrue.

0.2 0.25 0.3 0.35 0.4

−10
−0.6

−10
−0.5

−10
−0.4

−10
−0.3

θ

lo
gl

ik
el

ih
oo

d

n=500
n=10

Figure 7.2: A plot of the loglikelihood function `(θ) in the case of regression for k = 1 with
θtrue = 0.3, τ = 1, µy = 0 and σy = 0.2. As additional unlabeled examples are added the
loglikelihood curve become steeper and their maximizers get closer to the true parameter
θtrue resulting in a more accurate risk estimate.

120 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

assuming that y ∼ N(µy, σ2
y). In this case the integral in (7.27) simplifies to

pθ(ŷ
(i)
1 , . . . , ŷ

(i)
k) =∫ ∞

−∞

 k∏
j=1

1
θjτ
√

2π
e
−
“
ŷ

(i)
j −θjy

(i)
”2
ffi

2θ2
j τ

2

 1
σy
√

2π
e
−(y(i)−µy)2

.
2σ2
y dy(i)

=
1

τk(
√

2π)
k+1

σy
∏k
j=1 θj

∫ ∞
−∞

exp

−1
2

(y(i) − µy
σy

)2

+
k∑
j=1

(
y(i)

τ
− ŷ

(i)
j

τθj

)2
 dy(i)

=

∫∞
−∞ exp

(
−1

2

(
1
σ2
y

+ k
τ2

)
(y(i))2 +

(
µy
σ2
y

+
∑k

j=1

ŷ
(i)
j

τ2θj

)
y(i) − 1

2

(
µ2
y

σ2
y

+
∑k

j=1

(ŷ
(i)
j)2

τ2θ2
j

))
τk(
√

2π)
k+1

σy
∏k
j=1 θj

=

√
π
[

1
2

(
1
σ2
y

+ k
τ2

)]−1/2

τk(
√

2π)k+1σy
∏k
j=1 θj

exp


(
µy
σ2
y

+
∑k

j=1

ŷ
(i)
j

τ2θj

)2

2
(

1
σ2
y

+ k
τ2

) −
k∑
j=1

(ŷ(i)
j)2

2τ2θ2
j

− µ2
y

2σ2
y

 (7.28)

where the last equation was obtained using Lemma 1 concerning Gaussian integrals.

7.2.3 Collaborative Estimation of the Risks: Conditionally Correlated Predic-
tors

In some cases the conditional independence assumption made in the previous subsection
does not hold and the factorization (7.27) is violated. In this section, we discuss how to
relax this assumption in the classification case. A similar approach may also be used for
regression. We omit the details here due to notational clarity.

There are several ways to relax the conditional independence assumption. Most popular,
perhaps, is the mechanism of hierarchical loglinear models for categorical data [Bishop et al.,
1975]. For example, generalizing our conditional independence assumption to second-order
interaction log-linear models we have

log p(ŷ1, . . . , ŷk|y) = αy +
l∑

i=1

βi,ŷi,y +
∑
i<j

γi,j,ŷi,ŷj ,y (7.29)

where the following ANOVA-type parameter constraints are needed [Bishop et al., 1975]

0 =
∑
ŷi

βi,ŷi,y ∀i, y (7.30)

0 =
∑
ŷi

γi,j,ŷi,ŷj ,y =
∑
ŷj

γi,j,ŷi,ŷj ,y ∀i, j, y.

7.2 Unsupervised Risk Estimation Framework 121

The β parameters in (7.29) correspond to the first order interaction between the vari-
ables ŷ1, . . . , ŷk, conditioned on y. They correspond to the θi in the independent formulation
(7.10)-(7.12). The γ parameters capture second order interactions which do not appear in
the conditionally independent case. Indeed, setting γi,j,ŷi,ŷj ,y = 0 resumes the independent
models (7.10)-(7.12).

In the case of classification, the number of degrees of freedom or free unconstrained
parameters in (7.29) depends on whether the number of classes is 2 or more and what
additional assumptions exist on β and γ. For example, assuming that the probability of fi, fj
making an error depends on the true class y but not on the predicted classes ŷi, ŷj results in
a k + k2 parameters. Relaxing that assumption but assuming binary classification results in
2k + 4k2 parameters. The estimation and aggregation techniques described in Section 7.2.2
work as before with a slight modification of replacing (7.10)-(7.12) with variations based
on (7.29) and enforcing the constraints (7.30).

Equation (7.29) captures two-way interactions but cannot model higher order inter-
actions. However, higher order interaction models are straightforward generalizations of
(7.29) culminating in the full loglinear model which does not make any assumption on
the statistical dependency of the noise operators T1, . . . , Tk. However, as we weaken the
assumptions underlying the loglinear models and add higher order interactions the number
of parameters increases adding to the difficulty in estimating the risks R(f1), . . . , R(fk).

In our experiments on real world data (see Section 7.5), it is often the case that maxi-
mizing the loglikelihood under the conditionally independent assumption (7.27) provides
adequate accuracy and there is no need for the more general (7.29)-(7.30). Nevertheless,
we include here the case of loglinear models as it may be necessary in some situations.

7.2.4 Extensions to Missing Values

Occasionally, some predictors are unable to provide their output over specific data points.
That is assuming a dataset x(1), . . . , x(n) each predictor may provide output on an arbitrary
subset of the data points {fj(x(i)) : i ∈ Sj}, where Sj ⊂ {1, . . . , n}, j = 1, . . . , k.

Although the reasons may vary, i.e. different parts of the unlabeled data are unavailable
to all preditors but some due to privacy reasons, computational cost, expertise area, etc.,
this situation is commonly referred as a missing value situation. We proceed in this case
by defining indicators βji denoting whether predictor j is available to emit fj(x(i)). The
risk estimation proceeds as before with the observed likelihood modified to account for the

122 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

missing values:

θ̂mle
n = arg max

θ
`(θ)

`(θ) =
n∑
i=1

log
∑

r:βri=0

∫
Y
pθ(ŷ

(i)
1 , . . . , ŷ

(i)
k) dµ(ŷ(i)

r) (7.31)

=
n∑
i=1

log
∑

r:βri=0

∫∫
Y2

pθ(ŷ
(i)
1 , . . . , ŷ

(i)
k |y(i))p(y(i)) dµ(ŷ(i)

r)dµ(y(i))

where pθ may be further simplified using the non-collaborative approach, or using the
collaborative approach with conditional independence or loglinear model assumptions.
The different variations concerning missing values and non-collaborative or collaborative
estimation with conditionally independent or correlated noise processes can all be combined
in different ways to provide the appropriate likelihood function. This provides substantial
modeling flexibility.

7.3 Statistical Analysis of θ̂mle
n and R̂(fj)

In this section we consider the statistical behavior of the estimator θ̂mle
n defined in (7.5)

and the risk estimator R̂(fj) = gj(θ̂mle) defined in (7.4). The analysis is conducted under
the assumption that the vectors of observed predictors outputs ŷ(i) = (ŷ(i)

1 , . . . , ŷ
(i)
k) are iid

samples from the distribution

pθ(ŷ) = pθ(ŷ1, . . . , ŷk) =
∫
Y
pθ(ŷ1, . . . , ŷk|y)p(y) dµ(y).

7.3.1 Consistency

We start by investigating whether estimator θ̂mle in (7.5) converges to the true param-
eter value. More formally, strong consistency of the estimator θ̂mle

n = θ̂(ŷ(1), . . . , ŷ(n)),
ŷ(1), . . . , ŷ(n) iid∼ pθ0 is defined as strong convergence of the estimator to θ0 as n → ∞
[Ferguson, 1996]

lim
n→∞

θ̂mle
n (ŷ(1), . . . , ŷ(n)) = θ0 with probability 1. (7.32)

In other words as the number of samples n grows, the estimator will surely converge to the
true parameter θ0 governing the data generation process.

Assuming that the risks R(fj) = gj(θ) are defined using continuous functions gj , strong
consistency of θ̂mle implies strong convergence of R̂(fj) to R(fj). This is due to the

7.3 Statistical Analysis of θ̂mle
n and R̂(fj) 123

fact that continuity preserves limits. Indeed, as the gj functions are continuous in both
the classification {(7.11) and (7.13)} and regression {(7.18) and (7.26) } cases, strong
consistency of the risk estimators R̂(fj) reduces to strong consistency of the estimators θ̂mle.

It is well known that the maximum likelihood estimator is often strongly consistent.
Consider, for example, the following theorem.

Proposition 1 (e.g., [Ferguson, 1996]). Let ŷ(1), . . . , ŷ(n) iid∼ pθ0 , θ0 ∈ Θ. If the following
conditions hold

1. Θ is compact (compactness)
2. pθ(ŷ) is upper semi-continuous in θ for all ŷ (continuity)
3. There exists a function K(ŷ) such that E pθ0

|K(ŷ)| <∞ (boundedness)
and log pθ(ŷ)− log pθ0(ŷ) ≤ K(ŷ) ∀ŷ ∀θ

4. For all θ and sufficiently small ρ > 0, sup|θ′−θ|<ρ pθ′(ŷ) is (measurability)
measurable in ŷ

5. pθ ≡ pθ0 ⇒ θ = θ0 (identifiability)

then the maximum likelihood estimator is strongly consistent i.e., θ̂mle → θ0 as n→∞ with
probability 1.

Note that pθ(ŷ) in the proposition above corresponds to
∫
Y pθ(ŷ|y)p(y) dµ(y) in our

framework. That is the MLE operates on the observed data or predictor output ŷ(1), . . . , ŷ(n)

that is sampled iid from the distribution pθ0(ŷ) =
∫
Y pθ0(ŷ|y)p(y) dµ(y).

Of the five conditions above, the last condition of identifiability is the only one that
is truly problematic. The first condition of compactness is trivially satisfied in the case of
classification. In the case of regression it is satisfied assuming that the regression parameter
and model parameter are finite and a 6= 0 as the estimator θ̂mle will eventually lie in a
compact set. The second condition of continuity is trivially satisfied in both classification and
regression as the function

∫
Y pθ(ŷ|y)p(y) dµ(y) is continuous in θ once ŷ is fixed. The third

condition is trivially satisfied for classification (finite valued y). In the case of regression
conditions 1,2 (compactness and semi-continuity) allow the substitution of the quantifier ∀θ
with a particular value θ′ ∈ Θ chosen such that the logarithm difference is maximum. Then,
this maximum value with respect to the worst case θ′ may be used as the bound K. The
expectation of the difference of the log terms converges to the KL divergence, which is never
∞ for Gaussian distributions or its derivatives. The fourth condition of measurability follows
as pθ is specified in terms of compositions, summations, multiplications, and point-wise
limits of well-known measurable functions.

The fifth condition of identifiability states that if pθ(ŷ) and pθ0(ŷ) are identical as
functions i.e., they are identical for every value of ŷ, then necessarily θ = θ0. This condition
does not hold in general and needs to be verified in each one of the special cases.

We start with establishing consistency in the case of classification where we rely on a

124 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

symmetric noise model (7.12). The non-symmetric case (7.10) is more complicated and
is treated afterwards. We conclude the consistency discussion with an examination of the
regression case.

Consistency of Classification Risk Estimation

Proposition 2. Let f1, . . . , fk be classifiers fi : X → Y , |Y| = l, with conditionally independent
noise processes described by (7.12). If the classifiers are weak learners i.e., 1/l < R(fi) < 1
and p(y) is not uniform the unsupervised collaborative diagnosis model is identifiable.

Corollary 1. Let f1, . . . , fk be classifiers fi : X → Y with |Y| = l and noise processes described
by (7.12). If the classifiers are weak learners i.e., 1/l < R(fi) < 1, and p(y) is not uniform the
unsupervised non-collaborative diagnosis model is identifiable.

Proof: Proving identifiability in the non-collaborative case proceeds by invoking Proposi-
tion 2 (whose proof is given below) with k = 1 separately for each classifier. The conditional
independence assumption in Proposition 2 becomes redundant in this case of a single
classifier, resulting in identifiability of pθj (ŷj) for each j = 1, . . . , k

Corollary 2. Under the assumptions of Proposition 2 or Corollary 1 the unsupervised maximum
likelihood estimator is consistent i.e.,

P
(

lim
n→∞

θ̂mle
n (ŷ(1), . . . , y(n)) = (θtrue

1 , . . . , θtrue
k)

)
= 1.

Consequentially, assuming that R(fj) = gj(θ), j = 1, . . . , k with continuous gj we also have

P
(

lim
n→∞

R̂(fj ; y(1), . . . , y(n)) = R(fj), ∀j = 1, . . . , k
)

= 1.

Proof: Proposition 2 or Corollary 1 establishes identifiability, which in conjunction with
Proposition 1 proves the corollary.

Proof: (for Proposition 2) We prove identifiability by induction on k. In the base case of
k = 1, we have a set of l equations, corresponding to i = 1, 2 . . . l,

pθ(ŷ1 = i) = p(y = i)θ1 +

∑
j 6=i

p(y = j)

 (1− θ1)
(l − 1)

= p(y = i)θ1 + (1− p(y = i))
(1− θ1)
(l − 1)

=
θ1(lp(y = i)− 1) + 1− p(y = i)

(l − 1)

7.3 Statistical Analysis of θ̂mle
n and R̂(fj) 125

from which we can see that if η 6= θ and p(y = i) 6= 1/l then pθ(ŷ1) 6= pη(ŷ1). This proves
identifiability for the base case of k = 1.

Next, we assume identifiability holds for k and prove that it holds for k + 1. We do so
by deriving a contradiction from the assumption that identifiability holds for k but not for
k + 1. We denote the parameters corresponding to the k labelers by the vectors θ, η ∈ [0, 1]k

and the parameters corresponding the additional k + 1 labeler by θk+1, ηk+1.

In the case of k classifiers we have

pθ(ŷ1, . . . , ŷk) =
l∑

i=1

pθ(ŷ1, . . . , ŷk|y = i)p(y = i) =
l∑

i=1

G(Ai, θ)

where

G(Ai, θ) def= p(y = i)
∏
j∈Ai

θj ·
∏
j 6∈Ai

(1− θj)
(l − 1)

.

Ai def= {j ∈ {1, 2..., k} : ŷj = i}.
Note that the A1, . . . ,Al form a partition of {1, . . . , k} i.e., they are disjoint and their union
is {1, . . . , k}.

In order to have unidentifiability for the k + 1 classifiers we need that (θ, θk+1) 6=
(η, ηk+1) implies p(θ,θk+1)(ŷ1, . . . , ŷk+1) = p(η,ηk+1)(ŷ1, . . . , ŷk+1) ∀{ŷ1, . . . , ŷk+1}. That is,
the following l equations (corresponding to ŷk+1 = 1, 2, . . . , l) must hold for any ŷ1, . . . , ŷk
which corresponds to any partition A1, . . . ,Al

θk+1G(A1, θ) +
(1− θk+1)

(l − 1)

∑
i 6=1

G(Ai, θ) = ηk+1G(A1, η) +
(1− ηk+1)

(l − 1)

∑
i 6=1

G(Ai, η)

θk+1G(A2, θ) +
(1− θk+1)

(l − 1)

∑
i 6=2

G(Ai, θ) = ηk+1G(A2, η) +
(1− ηk+1)

(l − 1)

∑
i 6=2

G(Ai, η)

...

θk+1G(Al, θ) +
(1− θk+1)

(l − 1)

∑
i 6=l

G(Ai, θ) = ηk+1G(Al, η) +
(1− ηk+1)

(l − 1)

∑
i 6=l

G(Ai, η). (7.33)

We consider two cases in which (θ, θk+1) 6= (η, ηk+1): (a) θ 6= η, and (b) θ = η, θk+1 6=
ηk+1. In the case of (a) we add the l equations above which marginalizes ŷk+1 out of
pθ(ŷ1, . . . , ŷk, ŷk+1) and pη(ŷ1, . . . , ŷk, ŷk+1) to provide

l∑
i=1

G(Ai, θ) =
l∑

i=1

G(Ai, η) (7.34)

126 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

which together with θ 6= η contradicts the identifiability for the case of k classifiers.

In case (b) we have from the l equations above

θk+1G(At, θ) +
1− θk+1

l − 1

(
l∑

i=1

G(Ai, θ)−G(At, θ)
)

= ηk+1G(At, η) +
1− ηk+1

l − 1

(
l∑

i=1

G(Ai, η)−G(At, η)

)

for any t ∈ {1, . . . , l} which simplifies to

0 = (θk+1 − ηk+1)

(
lG(At, θ)−

l∑
i=1

G(Ai, θ)
)

(7.35)

As we assume at this point that θk+1 6= ηk+1 the above equality entails

lG(At, θ) =
l∑

i=1

G(Ai, θ). (7.36)

We show that (7.36) cannot hold by examining separately the cases p(y = t) > 1/l and
p(y = t) < 1/l. Recall that there exists a t for which p(y = t) 6= 1/l since the proposition
requires that p(y) is not uniform.

If p(y = t) > 1/l we choose At = {1, . . . , k} and obtain

lp(y = t)
k∏
j=1

θj =
∑
i 6=t

p(y = i)
k∏
j=1

1− θj
l − 1

+ p(y = t)
k∏
j=1

θj

(l − 1)p(y = t)
k∏
j=1

θj = (1− p(y = t))
k∏
j=1

1− θj
l − 1

p(y = t)
k∏
j=1

θj =
(1− p(y = t))

(l − 1)

k∏
j=1

1− θj
l − 1

which cannot hold as the term on the left hand side is necessarily larger than the term on
the right hand side (if p(y = t) > 1/l and θj > 1/l). In the case of p(y = t) < 1/l we choose

7.3 Statistical Analysis of θ̂mle
n and R̂(fj) 127

As = {1, . . . , k} where s 6= t to obtain

lp(y = t)
k∏
j=1

1− θj
l − 1

=
∑
i 6=s

p(y = i)
k∏
j=1

1− θj
l − 1

+ p(y = s)
k∏
j=1

θj

(lp(y = t)− p(y 6= s))
k∏
j=1

1− θj
l − 1

= p(y = s)
k∏
j=1

θj

which cannot hold as the term on the left hand side is necessarily smaller than the term on
the right hand side (if p(y = t) < 1/l and θj > 1/l).

Since we derived a contradiction to the fact that we have k-identifiability but not k + 1
identifiability, the induction step is proven which establishes identifiability for any k ≥ 1.

The conditions asserted above that p(y) 6= 1/l and 1/l < R(fi) < 1 are intuitive. Con-
sider three classifiers f1, f2, f3 with conditionally independent noise processes where f1, f2

are relatively accurate and f3 is relatively inaccurate. Observing the sequence of triplets
of predicted labels over the unlabeled data {(f1(x(i)), f2(x(i)), f3(x(i))) : i = 1, . . . , n} we
notice that for each triplet the first two values tend to agree with each other while the last
one tends to disagree. The straighforward conclusion is that f1 and f2 are relatively accurate
while f3 is not. However, it seems likely that another solution is also possible: f1 and f2 are
relatively inaccurate while f3 is accurate. The only way we can rule out this possibility is
by assuming that the classifiers are more accurate than chance. In this case the classifiers
tend to be more accurate than to make mistakes and the two symmetric alternatives can be
resolved. Similarly, for a case with a uniform p(y) and k = 1 we cannot distinguish from the
data due to symmetry whether θi = α or θi = 1− α.

In the case of the non-collaborative estimation for binary classification with the non-
symmetric noise model, the matrix θ in (7.10) is a 2× 2 matrix with two degrees of freedom
as each row sums to one. In particular we have θ11 = pθ(ŷ = 1|y = 1), θ12 = pθ(ŷ = 1|y = 2),
θ21 = pθ(ŷ = 2|y = 1), θ22 = pθ(ŷ = 2|y = 2) with the overall risk R(f) = 1 − θ11p(y =
1)− θ22p(y = 2). Unfortunately, the matrix θ is not identifiable in this case and neither is
the scalar parameter θ11p(y = 1) + θ22p(y = 2) that can be used to characterize the risk.

We can, however, obtain a consistent estimator for θ (and therefore for R(f)) by first
showing that the parameter θ11p(y = 1) − θ22p(y = 2) is identifiable and then taking the
intersection of two such estimators.

Lemma 2. In the case of the non-collaborative estimation for binary classification with the
non-symmetric noise model and p(y) 6= 0, the parameter θ11p(y = 1) − θ22p(y = 2) is
identifiable.

128 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

Proof: For two different parameterizations θ, η we have

pθ(ŷ = 1) = p(y = 1)θ11 + (1− p(y = 1))(1− θ22) (7.37)

pθ(ŷ = 2) = p(y = 1)(1− θ11) + (1− p(y = 1))θ22 (7.38)

and

pη(ŷ = 1) = p(y = 1)η11 + (1− p(y = 1))(1− η22) (7.39)

pη(ŷ = 2) = p(y = 1)(1− η11) + (1− p(y = 1))η22. (7.40)

Equating the two Equations (7.37) and (7.39) we have

p(y = 1)(θ11 + θ22) + 1− p(y = 1)− θ22 = p(y = 1)(η11 + η22) + 1− p(y = 1)− η22

p(y = 1)θ11 − (1− p(y = 1))θ22 = p(y = 1)η11 − (1− p(y = 1))η22

p(y = 1)θ11 − p(y = 2)θ22 = p(y = 1)η11 − p(y = 2)η22

Similarly, equating Equation (7.38) and Equation (7.40) also results in p(y = 1)θ11 − p(y =
2)θ22 = p(y = 1)η11 − p(y = 2)η22. As a result, we have

pθ ≡ pη ⇒ p(y = 1)θ11 − p(y = 2)θ22 = p(y = 1)η11 − p(y = 2)η22.

The above lemma indicates that we can use the maximum likelihood method to obtain
a consistent estimator for the parameter θ11p(y = 1) − θ22p(y = 2). Unfortunately the
parameter θ11p(y = 1) − θ22p(y = 2) neither has a clear probabilistic interpretation nor
does directly characterize the risk. As the following proposition shows we can obtain a
consistent estimator for the risk R(f) if we have two populations of unlabeled data drawn
from distributions with two distinct marginals p1(y) and p2(y).

Proposition 3. Consider the case of the non-collaborative estimation of binary classification
risk with the non-symmetric noise model. If we have access to two unlabeled datasets drawn
independently from two distributions with different marginals i.e.

x(1), . . . , x(n) iid∼ p1(x) =
∑
y

p(x|y)p1(y)

x′(1), . . . , x′(m) iid∼ p2(x) =
∑
y

p(x|y)p2(y)

we can obtain a consistent estimator for the classification risk R(f).

Proof: Operating the classifier f on both sets of unlabeled data we get two sets of
observed classifier outputs ŷ(1), . . . , ŷ(n), ŷ′(1), . . . , ŷ′(m) where ŷ(i) iid∼ ∑y pθ(ŷ|y)p1(y) and

7.3 Statistical Analysis of θ̂mle
n and R̂(fj) 129

ŷ′(i)
iid∼ ∑y pθ(ŷ|y)p2(y). In particular, note that the marginal distributions p1(y) and p2(y)

are different but the parameter matrix θ is the same in both cases as we operate the same
classifier on samples from the same class conditional distribution p(x|y).

Based on Lemma 2 we construct a consistent estimator for p1(y = 1)θ11 − p1(y = 2)θ22

by maximizing the likelihood of ŷ(1), . . . , ŷ(n). Similarly, we construct a consistent estimator
for p2(y = 1)θ11 − p2(y = 2)θ22 by maximizing the likelihood of ŷ′(1), . . . , ŷ′(m). Note that
p1(y = 1)θ11 − p1(y = 2)θ22 and p2(y = 1)θ11 − p2(y = 2)θ22 describe two lines in the 2-D
space (θ11, θ22). Since the true value of θ11, θ22 represent a point in that 2-D space belonging
to both lines, it is necessarily the intersection of both lines (the lines cannot be parallel since
their linear coefficients are distributions which are assumed to be different).

As n and m increase to infinity, the two estimators converge to the true parameter values.
As a result, the intersection of the two lines described by the two estimators converges to
the true values of (θ11, θ22) thus allowing reconstruction of the matrix θ and the risk R(f).

Clearly, the conditions for consistency in the asymmetric case are more restricted than
in the symmetric case. However, situations such as in Proposition 3 are not necessarily
unrealistic. In many cases it is possible to identify two unlabeled sets with different
distributions. For example, if y denotes a medical condition, it may be possible to obtain two
unlabeled sets from two different hospitals or two different regions with different marginal
distribution corresponding to the frequency of the medical condition.

As indicated in the previous section, the risk estimation framework may be extended
beyond non-collaborative estimation and collaborative conditionally independent estimation.
In these extensions, the conditions for identifiability need to be determined separately, in a
similar way to Corollary 1. A systematic way to do so may be obtained by noting that the
identifiability equations

0 = pθ(ŷ1, . . . , ŷk)− pη(ŷ1, . . . , ŷk) ∀ŷ1, . . . , ŷk

is a system of polynomial equations in (θ, η). As a result, demonstrating lack of identifiability
becomes equivalent to obtaining a solution to a system of polynomial equations. Using
Hilbert’s Nullstellensatz theorem we have that a solution to a polynomial system exists if
the polynomial system defines a proper ideal of the ring of polynomials [Cox et al., 2006].
As k increases the chance of identifiability failing decays dramatically as we have a system
of lk polynomials with 2k variables. Such an over-determined system with substantially
more equations than variables is very unlikely to have a solution.

These observations serve as both an interesting theoretical connection to algebraic
geometry as well as a practical tool due to the substantial research in computational
algebraic geometry. See [Sturmfels, 2002] for a survey of computational algorithms and
software associated with systems of polynomial equations.

130 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

Consistency of Regression Risk Estimation

In this section, we prove the consistency of the maximum likelihood estimator θ̂mle
n in the

regression case. As in the classification case our proof centers on establishing identifiability.

Proposition 4. Let f1, . . . , fk be regression models fi(x) = a′ix with y ∼ N(µy, σ2
y), y = ax+ε.

Assuming that a 6= 0 the unsupervised collaborative estimation model assuming conditionally
independent noise processes (7.27) is identifiable.

Corollary 3. Let f1, . . . , fk be regression models fi(x) = a′ix with y ∼ N(µy, σ2
y), y = ax+ ε.

Assuming that a 6= 0 the unsupervised non-collaborative estimation model (7.27) is identifiable.

Proof: Proving identifiability in the non-collaborative case proceeds by invoking Proposi-
tion 4 (whose proof is given below) with k = 1 separately for each regression model. The
conditional independence assumption in Proposition 4 becomes redundant in this case of a
single predictor, resulting in identifiability of pθj (ŷj) for each j = 1, . . . , k.

Corollary 4. Under the assumptions of Proposition 4 or Corollary 3 the unsupervised maximum
likelihood estimator is consistent i.e.,

P
(

lim
n→∞

θ̂mle
n (ŷ(1), . . . , y(n)) = (θtrue

1 , . . . , θtrue
k)

)
= 1.

Consequentially, assuming that R(fj) = gj(θ), j = 1, . . . , k with continuous gj we also have

P
(

lim
n→∞

R̂(fj ; y(1), . . . , y(n)) = R(fj), ∀j = 1, . . . , k
)

= 1.

Proof: Proposition 4 or Corollary 3 establish identifiability, which in conjunction with
Proposition 1 completes the proof.

Proof: (of Proposition 4).

We will proceed, as in the case of classification, with induction on the number of
predictors k. In the base case of k = 1 we have derived pθ1(ŷ1) in Equation (7.19).
Substituting in it ŷ1 = 0 we get

Pθ1(ŷ1 = 0) =
1

θ1

√
2π(τ2 + σ2

y)
exp

(
µ2
y

2σ2
y

(
τ2

σ2
y + τ2

− 1
))

Pη1(ŷ1 = 0) =
1

η1

√
2π(τ2 + σ2

y)
exp

(
µ2
y

2σ2
y

(
τ2

σ2
y + τ2

− 1
))

. (7.41)

The above expression leads to θ1 6= η1 ⇒ pθ1(ŷ1 = 0) 6= pη1(ŷ1 = 0) which implies
identifiability.

7.3 Statistical Analysis of θ̂mle
n and R̂(fj) 131

In the induction step we assume identifiability holds for k and we prove that it holds
also for k+ 1 by deriving a contradiction to the assumption that it does not hold. We assume
that identifiability fails in the case of k + 1 due to differing parameter values i.e.,

p(θ,θk+1)(ŷ1, . . . , ŷk, ŷk+1) = p(η,ηk+1)(ŷ1, . . . , ŷk, ŷk+1) ∀ŷj ∈ R j = 1, . . . , k + 1 (7.42)

with (θ, θk+1) 6= (η, ηk+1) where θ, η ∈ Rk. There are two cases which we consider sepa-
rately: (a) θ 6= η and (b) θ = η.

In case (a) we marginalize both sides of (7.42) with respect to ŷk+1 which leads to a
contradiction to our assumption that identifiability holds for k∫ ∞

−∞
p(θ,θk+1)(ŷ1, . . . , ŷk, ŷk+1)dŷk+1 =

∫ ∞
−∞

p(η,ηk+1)(ŷ1, . . . , ŷk, ŷk+1)dŷk+1

pθ(ŷ1, . . . , ŷk) = pη(ŷ1, . . . , ŷk). (7.43)

In case (b) θ = η and θk+1 6= ηk+1. Substituting ŷ1 = · · · = ŷk+1 = 0 in (7.42) (see
(7.28) for a derivation) we have

P(θ,θk+1)(ŷ1 = 0, . . . , ŷk+1 = 0) = P(η,ηk+1)(ŷ1 = 0, . . . , ŷk+1 = 0) (7.44)

or

√
π
[

1
2

(
1
σ2
y

+ k+1
τ2

)]−1/2

τk+1(
√

2π)k+2σyθk+1
∏k
j=1 θj

exp


(
µy
σ2
y

)2

2
(

1
σ2
y

+ k+1
τ2

) − µ2
y

2σ2
y


=

√
π
[

1
2

(
1
σ2
y

+ k+1
τ2

)]−1/2

τk+1(
√

2π)k+2σyηk+1
∏k
j=1 ηj

exp


(
µy
σ2
y

)2

2
(

1
σ2
y

+ k+1
τ2

) − µ2
y

2σ2
y


which cannot hold if θ = η but θk+1 6= ηk+1. This constitutes a contradiction to the
assumption that we have identifiability for k but not for k + 1, which in turn completes the
proof and establishes the identifiability for any k ≥ 1.

7.3.2 Asymptotic Variance

A standard result from statistics is that the MLE has an asymptotically normal distribution
with mean vector θtrue and variance matrix (nJ(θtrue))−1, where J(θ) is the r × r Fisher
information matrix

J(θ) = E pθ{∇ log pθ(ŷ)(∇ log pθ(ŷ))>} (7.45)

132 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

with ∇ log pθ(ŷ) represents the r × 1 gradient vector of log pθ(ŷ) with respect to θ. Stated
more formally, we have the following convergence in distribution as n → ∞ [Ferguson,
1996]

√
n (θ̂mle

n − θ0) N(0, J−1(θtrue)). (7.46)

It is instructive to consider the dependency of the Fisher information matrix, which
corresponds to the asymptotic estimation accuracy, on n, k, p(y), θtrue.

In the case of classification considering (7.12) with k = 1 and Y = {1, 2} it can be
shown that

J(θ) =
α(2α− 1)2

(θ(2α− 1)− α+ 1)2
− (2α− 1)2(α− 1)

(α− θ(2α− 1))2
(7.47)

where α = P (y = 1). As Figure 7.3 (right) demonstrates, the asymptotic accuracy of the
MLE (as indicated by J) tends to increase with the degree of non-uniformity of p(y). Recall
that since identifiability fails for a uniform p(y) the risk estimate under a uniform p(y) is
not consistent. The above derivation (7.47) is a quantification of that fact reflecting the
added difficulty in estimating the risk as we move closer to a uniform label distribution
α→ 1/2 =⇒ J(θ)→ 0 =⇒ J−1(θ)→∞. The dependency of the asymptotic accuracy on
θtrue is more complex, tending to favor θtrue values close to 1 or 0.5. Figure 7.3 (left) displays
the empirical accuracy of the estimator as a function of p(y) and θtrue and shows remarkable
similarity to the contours of the Fisher information (see Section 7.5 for more details on the
experiments). In particular, whenever the estimation error is high the asymptotic variance
of the estimator is high (or equivalently, the Fisher information is low). For instance, the top
contours in the left panel have smaller estimation error on the top right than in the top left.
Similarly, the top contours in the right panel have smaller asymptotic variance on the top
right than on the top left. We thus conclude that the Fisher information provides practical,
as well as theoretical insight into the estimation accuracy.

Similar calculations of J(θtrue) for collaborative classification case or for the regression
case result in more complicated but straightforward derivations. It is important to realize
that consistency is ensured for any identifiable θtrue, p(y). The value (J(θtrue))−1 is the
constant dominating that consistency convergence.

A similar distributional analysis can be derived for the risk estimator. Applying Cramer’s
theorem [Ferguson, 1996] to R̂(fj) = gj(θ̂mle), j = 1, . . . , k and (7.46) we have

√
n(R̂(f)−R(f)) N

(
0,∇g(θtrue)J(θtrue)∇g(θtrue)>

)
(7.48)

where R(f), R̂(f) are the vectors of true risk and risk estimates for the different predictors
f1, . . . , fk and ∇g(θtrue) is the Jacobian matrix of the mapping g = (g1, . . . , gk) evaluated at
θtrue.

7.4 Optimization Algorithms 133

In the case of classification with k = 1 we have R(fj) = 1− θj and the Jacobian matrix
is −1, leading to an identical asymptotic distribution to that of the MLE (7.46)-(7.47)

√
n(R̂(f)−R(f)) N

(
0,
(

α(2α− 1)2

(θ(2α− 1)− α+ 1)2
− (2α− 1)2(α− 1)

(α− θ(2α− 1))2

)−1
)
. (7.49)

7.4 Optimization Algorithms

Recall that we obtained closed forms for the likelihood maximizers in the cases of non-
collaborative estimation for binary classifiers and non-collaborative estimation for one
dimensional regression models. The lack of closed form maximizers in the other cases
necessitates iterative optimization techniques.

One class of technique for optimizing nonlinear loglikelihoods is the class of gradient
based methods. Techniques in this class such as gradient descent, conjugate gradients, and
quasi Newton methods often have good performance and are easy to derive. The main
difficulty is the derivation of the loglikelihood and its derivatives. For example, in the case
of collaborative estimation of classification (l ≥ 2) with symmetric noise model and missing
values the loglikelihood gradient is

∂`

∂θj
=

n∑
i=1

∑
y(i)

p(y(i))
∑

r:βri=0

∑
ŷ

(i)
r

∏
p6=j hpi(I(ŷ(i)

j = y(i))− θj)((l − 1)θj)I(ŷ
(i)
j =y(i))−1(1− θj)−I(ŷ

(i)
j =y(i))

∑
y(i) p(y(i))

∑
r:βri=0

∑
ŷ

(i)
r

∏k
p=1 hpi

hpi = θ
I(ŷ

(i)
p =y(i))

p

(
1− θp
l − 1

)I(ŷ(i)
p 6=y(i))

. (7.50)

Similar derivations may be obtained in the other cases in a straightforward manner.

An alternative iterative optimization technique for finding the MLE is expectation maxi-
mization (EM). The derivation of the EM update equations is again relatively straightforward.
For example in the above case of collaborative estimation of classification (l ≥ 2) with

134 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

symmetric noise model and missing values the EM update equations are

θ(t+1) = arg max
θ

n∑
i=1

∑
y(i)

∑
r:βri=0

∑
ŷ

(i)
r

q(t)(ŷ(i)
r , y(i))

k∑
j=1

log pj(ŷ
(i)
j |y(i)) (7.51)

=
1
n

n∑
i=1

∑
y(i)

∑
r:βri=0

∑
ŷ

(i)
r

q(t)(ŷ(i)
r , y(i))I(ŷ(i)

j = y(i))

q(t)(ŷ(i)
r , y(i)) =

p(y(i))
∏k
j=1 pj(ŷ

(i)
j |y(i), θ(t))∑

y(i)

∑
r:βri=0

∑
ŷ

(i)
r
p(y(i))

∏k
j=1 pj(ŷ

(i)
j |y(i), θ(t))

.

where q(t) is the conditional distribution defining the EM bound over the loglikelihood
function.

If all the classifiers are always observed i.e., βri = 1 ∀r, i Equation (7.31) reverts to
(7.27), and the loglikelihood and its gradient may be efficiently computed in O(nlk2). In
the case of missing classifier outputs a naive computation of the gradient or EM step is
exponential in the number of missing values R = maxi

∑
r βri. This, however, can be

improved by careful dynamic programming. For example, the nested summations over the
unobserved values in the gradient may be computed using a variation of the elimination
algorithm in O(nlk2R) time.

7.5 Experimental Evaluation

This section is devoted to empirically analyze the proposed framework and its effectiveness
on various scenarios. We start with some experiments demonstrating our framework using
synthetic data. These experiments are designed to examine the behavior of the estimators in
a controlled setting. We then describe some experiments using several real world datasets.
In these experiments we examine the behavior of the estimators in an uncontrolled setting
where some of the underlying assumptions may be violated. Throughout the section, we
consider the mean absolute error (mae) or the `1 error as a metric that measures the
estimation quality unless otherwise noted.

mae(θ̂mle, θtrue) =
1
k

k∑
i=1

∣∣θtrue
i − θ̂mle

i

∣∣ (7.52)

where k is the number of predictors. In the non-collaborative case (which is equivalent to
the collaborative case with k = 1) this translates into the absolute deviation of the estimated
parameter from the true parameter.

7.5 Experimental Evaluation 135

0.
02

0.02

0.02

0.02

0.02

0.
04

0.04 0.04

0.04

0.08
0.08

0.08

θtrue

P
(y

=
1)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

θtrue

P
(y

=
1)

0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0

1

2

3

4

5

6

Figure 7.3: Left: Average value of |θ̂mle
n − θtrue| as a function of θtrue and p(y = 1) for k = 1

classifier and n = 500 (computed over a uniform spaced grid of 15× 15 points). The plot
illustrates the increased accuracy obtained by a less uniform P (y). Right: Fisher information
J(θ) for k = 1 as a function of θtrue and P (y). The asymptotic variance of the estimator is
J−1(θ) which closely matches the experimental result in the left panel.

In Figure 7.3 (left) we display mae(θ̂mle, θtrue) for classification with k = 1 as a function
of θtrue and p(y) for n = 500 simulated data points. The estimation error, while overall
relatively small, decays as p(y) diverges from the uniform distribution. The dependency
on θtrue indicates that the error is worst for θtrue around 0.75 and it decays as |θtrue − 0.75|
increases with a larger decay attributed to higher θtrue. These observations are remarkably
consistent with the developed theory as Figure 7.3 (right) shows by demonstrating the value
of the inverse asymptotic variance J(θ) which agrees nicely with the empirical measurement
in the left panel.

Figure 7.4 (left) contains a scatter plot contrasting values of θtrue and θ̂mle for k = 1
classifier and p(y = 1) = 0.8. The estimator was constructed based on 500 simulated
data points. We observe a symmetric Gaussian-like distribution of estimated values θ̂mle,
conditioned on specific values of θtrue. This is in agreement with the theory predicting
an asymptotic Gaussian distribution for the mle, centered around the true value θtrue. A
similar observation is made in Figure 7.5 (left) which contains a similar scatter plot in
the regression case (k = 1, σy = 1, n = 1000). In both figures, the striped effect is due
to selection of θtrue over a discrete grid with a small perturbation for increased visibility.
Similar plots of larger and smaller n values (not shown) verify that the variation of θ̂mle

around θtrue decreases as n increases. This agrees with the theory that indicates a O(n−1)
rate of decay for the variance of the asymptotic distribution.

Figures 7.4 and 7.5 (right) show the mae(θ̂mle, θtrue) for various k values in classification
and regression, respectively. In classification, θ̂mle was obtained by sampling data from

136 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

true theta

pr
ed

ic
te

d
th

et
a

10 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

k=1
k=3
k=5
k=10

Figure 7.4: Left: Scatter plot contrasting the true and predicted values of θ in the case of
a single classifier k = 1, p(y = 1) = 0.8, and n = 500 unlabeled examples. The displayed
points were perturbed for improved visualization and the striped effect is due to empirical
evaluation over a discrete grid of θtrue values. Right: mae(θ̂mle, θtrue) as a function of the
number of unlabeled examples for different number of classifiers (θtrue

i = p(y = 1) = 0.75)
in the collaborative case. The estimation error decreases as more classifiers are used due to
the collaborative nature of the estimation process.

1 1.1 1.2 1.3 1.4 1.5 1.6

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

true theta

pr
ed

ic
te

d
th

et
a

20 40 60 80 100 120 140 160 180 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

k=1
k=5
k=10

Figure 7.5: Left: Scatter plot contrasting the true and predicted values of θ in the case of a
single regression model k = 1, σy = 1, and n = 1000 unlabeled examples. The displayed
points were perturbed for improved visualization and the striped effect is due to empirical
evaluation over a discrete grid of θtrue values. Right: mae(θ̂mle, θtrue) as a function of the
number of unlabeled examples for different number of regression models (θtrue

i = σy = 1)
in the collaborative case. The estimation error decreases as more regression models are
used due to the collaborative nature of the estimation process.

7.5 Experimental Evaluation 137

50 100 150 200
0

0.05

0.1

0.15

0.2

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

collaborative vs. non−collaborative estimation for k=10

Figure 7.6: Comparison of collaborative and non-collaborative estimation for k = 10
classifiers. mae(θ̂mle, θtrue) as a function of n is reported for θtrue

i = 0.75 ∀ki and P (y = 1) =
0.75. The colored lines represent the estimation error for each individual classifier and the
solid black line represents the collaborative estimation for all classifiers. The estimation
converges to the truth faster in the collaborative case than in the non-collaborative case.

p(y = 1) = 0.75 = θtrue
i ,∀i. In regression, the data was sampled from the regression

equation with θtrue
i = 1 and p(y) = N(0, 1). In both cases, the mae error decays with n as

expected from the consistency proof and with k as a result of the collaborative estimation
effect.

To further illustrate the effect of the collaboration on the estimation accuracy, we
estimated the error rates individually (non-collaboratively) for 10 predictors and compared
their mae to that of the collaborative estimation case in Figure 7.6. This shows that each of
the classifiers have a similar mae curve when non-collaborative estimation is used. However,
all of these curves are higher than the collaborative mae curve (solid black line in Figure 7.6)
demonstrating the significant improvement of the collaborative estimation.

We compare in Figure 7.7 the proposed unsupervised estimation framework with su-
pervised estimation that takes advantage of labeled information to determine the classifier
accuracy. We conducted this study using equal number of examples for both supervised and
unsupervised cases. Clearly, this is an unfair comparison if we assume that labeled data is
unavailable or is difficult to obtain. The unsupervised estimation does not perform as well
as the supervised version especially in general. Nevertheless, the unsupervised estimation
accuracy improves significantly with the increasing number of classifiers and finally reaches
the performance level of the supervised case due to collaborative estimation.

138 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

10 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of examples

m
ae

 o
f t

he
 e

st
im

at
ed

 a
cc

ur
ac

y

supervised k=1
unsupervised k=1

10 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of examples

m
ae

 o
f t

he
 e

st
im

at
ed

 a
cc

ur
ac

y

supervised k=3
unsupervised k=3

10 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of examples

m
ae

 o
f t

he
 e

st
im

at
ed

 a
cc

ur
ac

y

supervised k=5
unsupervised k=5

10 50 100 150 200
0

0.05

0.1

0.15

0.2

Number of examples

m
ae

 o
f t

he
 e

st
im

at
ed

 a
cc

ur
ac

y

supervised k=10
unsupervised k=10

Figure 7.7: Comparison of supervised and unsupervised estimation for different values
of classifiers with k = 1, 3, 5, 10. Supervised estimation uses the true labels to determine
the accuracy of the classifiers whereas in the unsupervised case the estimation proceeds
according to the collaborative estimation framework. Despite the fact that the supervised
case uses labels the unsupervised framework reaches similar levels by increasing the number
of classifiers.

In Figure 7.8 we report the effect of misspecification of the marginal p(y) on the
estimation accuracy. More specifically, we generated synthetic data using a true marginal
distribution but estimated the classifier accuracy on this data assuming a misspecified
marginal. Generally, the estimation framework is robust to small perturbations while
over-specifying tends to hurt less than under-specifying (misspecification closer to uniform
distribution).

Figure 7.9 shows the mean prediction accuracy for the unsupervised predictor combina-
tion scheme in (7.7) for synthetic data. The left panel displays classification accuracy and
the right panel displays the regression accuracy as measured by 1− 1

m

∑m
i=1(ŷnew

i − ynew
i)2.

The graphs show that in both cases the accuracy increases with k and n in accordance with
the theory and the risk estimation experiments. The parameter θtrue

i was chosen uniformly

7.5 Experimental Evaluation 139

10 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

P(y=1)=0.85
P(y=1)=0.8
P(y=1)=0.75
P(y=1)=0.7
P(y=1)=0.65

10 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

P(y=1)=0.85
P(y=1)=0.8
P(y=1)=0.75
P(y=1)=0.7
P(y=1)=0.65

Figure 7.8: The figure compares the estimator accuracy assuming that the marginal p(y) is
misspecified. The plots draw mae(θ̂mle, θtrue) as a function of n for k = 1 and θtrue = 0.75
when P true(y = 1) = 0.8 (left) and P true(y = 1) = 0.75 (right). Small perturbations in
P true(y) do not affect the results significantly; interestingly over-specifying P true(y = 1)
leads to more accurate estimates than under-specifying (misspecification closer to uniform
distribution)

in the range (0.5, 1), and P (y = 1) = 0.75 for classification and θtrue
i = 0.3, p(y) = N(0, 1)

in the case of regression.

We also experimented with the natural language understanding dataset introduced in
[Snow et al., 2008]. This data was created using the Amazon Mechanical Turk (AMT) for
data annotation. We selected two binary tasks from this dataset which we explained in the
previous chapter: the textual entailment recognition (RTE) and temporal event recognition
(TEMP) tasks. For the former task, the original dataset contains 800 sentence pairs with
a total of 165 annotators. For the latter task , the original dataset contains 462 pairs and
76 annotators. In both cases, most of the annotators have completed only a handful of
tasks. Therefore, we selected a subset of these annotators for each task such that each
annotator has completed at least 100 problems and has differing accuracies. The datasets
contain ground truth labels which are used solely to calculate the annotator accuracy and
not used at all during the estimation process. For efficiency, we selected only the instances
for which all annotators provide an answer. This resulted in n = 100, 190 for RTE and TEMP,
respectively.

In Figure 7.10 we display mae(θtrue, θ̂mle) for these datasets as function of n for different
values of k. These plots generated from real-world data show similar trend to the synthetic
experiments. The estimation errors decay to 0 as n increases and generally tend to decrease
as k increases. This correspondence is remarkable since two of the labelers have worse than
random accuracy and since it is not clear whether the conditional independence assumption

140 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

20 40 60 80 100 120 140 160 180 200
0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y
of

 th
e

pr
ed

ic
tio

n
fo

r
yne

w

Number of noisy observations

k=3
k=5
k=10

20 40 60 80 100 120 140 160 180 200
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of noisy observations

A
cc

ur
ac

y
of

 th
e

pr
ed

ic
tio

n
fo

r
yne

w

k=3
k=5
k=10

Figure 7.9: Mean prediction accuracy for the unsupervised predictor combination scheme in (7.7)
for synthetic data. The left panel displays classification accuracy and the right panel displays the
regression accuracy as measured by 1 − 1

m

∑m
i=1(ŷnew

i − ynew
i)2. The graphs show that in both

cases the accuracy increases with k and n in accordance with the theory and the risk estimation
experiments.

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

k=3
k=4
k=5

10 40 70 100 130 160 190
0

0.05

0.1

0.15

0.2

0.24

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

k=3
k=4
k=5

Figure 7.10: mae(θ̂mle, θtrue) as a function of n for different number of annotators k
on RTE (left) and TEMP (right) datasets. Left: n = 100, P (y = 1) = 0.5 and
θtrue = {0.85, 0.92, 0.58, 0.5, 0.51}. Right: n = 190, P (y = 1) = 0.56 and θtrue =
{0.93, 0.92, 0.54, 0.44, 0.92}. The classifiers were added in the order specified.

actually holds in reality for these datasets. Nevertheless, the collaborative estimation error
behaves in accordance with the synthetic data experiments and the theory. This shows that
the estimation framework is robust to the breakdown of the assumption that the classifier
accuracy must be higher than random choice. Also, whether the conditional independence
assumption holds or not is not crucial in this case.

7.5 Experimental Evaluation 141

We further experimented with classifiers trained on different representations of the same
dataset and estimated their error rates. We adopted the Ringnorm dataset generated by
[Breiman, 1996]. Ringnorm is a 2-class artificial dataset with 20 dimensions where each
class is drawn from a multivariate normal distribution. One class has zero mean and a
covariance Σ = 4I where I is the identity matrix. The other class has unit covariance and a
mean µ = (2√

20
, 2√

20
, . . . , 2√

20
). The total size is 7400. We created 5 different representations

of the data by projecting it onto mutually exclusive sets of principal components obtained
by Principal Component Analysis (PCA). We trained an SVM classifier (with 2-degree
polynomial kernel) [Vapnik, 2000; Joachims, 1999] on samples from each representation
while holding out 1400 examples as the test set resulting in a total of 5 classifiers. We tested
each of the 5 classifiers on the test set and used their outputs to estimate the corresponding
parameters. The true labels of the test set examples were used as ground truth to calculate
the mae of the mle estimators.

The mae curves for this dataset appear in Figure 7.11 as a function of the number n
of unlabeled examples. When all classifiers are highly accurate (upper left panel), the
collaborative unsupervised estimator is reliable, see Figure 7.11(a). With a mixture of weak
and strong classifiers (upper right panel), the collaborative unsupervised estimator is also
reliable. This is despite the fact that some of the weak classifiers in Figure 7.11(b) have
worse than random accuracy which violates the assumptions in the consistency proposition.
This shows again that the estimation framework is robust to occasional deviations from the
requirement concerning better than random classification accuracies. On the other hand,
as most of the classifiers become worse (bottom row), the accuracy of the unsupervised
estimator decreases, in accordance with the theory developed in Sections 7.3.2 (recall the
Fisher information contour plot).

Our experiments thus far assumed the symmetric noise model (7.12). Despite it not
being always applicable for real world data and classifiers, it did result in good estimation
accuracy in some of the cases described thus far. However, in some cases this assumption is
grossly violated and the more general noise model is needed (7.10). For this reason, we
conducted two experiments using real world data assuming the more general (7.10).

The first experiment concerned domain adaptation [Blitzer et al., 2007] for Amazon’s
product reviews in four different product domains: books, DVDs, electronics and kitchen
appliances. Each domain consists of positive (y = 1) and negative (y = 2) reviews with
p(y = 1) = 0.75. The task was to estimate the error rates of classifiers (linear SVM
[Vapnik, 2000; Joachims, 1999]) that are trained on 300 examples from one domain
but tested on other domains. The mae values for the classification risks are displayed in
Figure 7.12 with the columns indicating the test domain. In this case, the unsupervised
non-collaborative estimator outperforms the collaborative estimator due to violation of the
conditional independence assumption. Both unsupervised estimators perform substantially
better than the baseline estimator that uses the training error on one domain to predict

142 Chapter 7: Unsupervised Estimation of Classification and Regression Risks

0 200 400 600 800 1000 1200 1400
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

TrueTheta = [0.82 0.84 0.82 0.88 0,83]

(a) Strong classifiers

0 200 400 600 800 1000 1200 1400
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

TrueTheta = [0.47 0.74 0.47 0.75 0.81]

(b) A mixture of strong and weak classifiers

0 200 400 600 800 1000 1200 1400
0.13

0.132

0.134

0.136

0.138

0.14

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

TrueTheta = [0.66 0.66 0.71 0.78 0.79]

(c) Mostly weak classifiers

0 200 400 600 800 1000 1200 1400
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Number of unlabeled examples

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

TrueTheta = [0.58 0.47 0.50 0.45 0.60]

(d) Very weak classifiers

Figure 7.11: mae(θtrue, θ̂mle) as a function of the test set size on the Ringnorm dataset.
p(y = 1) = 0.47, and θtrue is indicated in the legend in each plot. The four panels represent
mostly strong classifiers (upper left), a mixture of strong and weak classifiers (upper right),
mostly weak classifiers (bottom left), and mostly very weak classifiers (bottom right). The
figure shows that the framework is robust to occasional deviations from the assumption
regarding better than random guess classification accuracy (upper right panel). However, as
most of the classifiers become weak or very weak, the collaborative unsupervised estimation
framework results in worse estimation error.

testing error on another domain.

In the second experiment using (7.10) we estimated the risk (non-collaboratively) of
20 one vs. all classifiers (trained to predict one class) on the 20 newsgroup data [Lang,
1995]. The train set size was 1000 and the unlabeled data size was 15000. In this case the
unsupervised non-collaborative estimator returned extremely accurate risk estimators. As a
comparison, the risk estimates obtained from the training error are four times larger than
the unsupervised MLE estimator (See Figure 7.12).

7.6 Chapter Conclusions 143

book dvd kitchen electronics 20newsgroup
training error 0.22 0.23 0.26 0.30 0.028
non-collaborative 0.04 0.04 0.08 0.06 0.006
collaborative 0.10 0.10 0.09 0.08 n/a

Figure 7.12: mae(θ̂mle, θtrue) for the domain adaptation (n = 1000, p(y = 1) = 0.75) and
20 newsgroup (n = 15, 000, p(y = 1) = 0.05 for each one-vs-all data). The unsupervised
non-collaborative estimator outperforms the collaborative estimator due to violation of the
conditional independence assumption. Both unsupervised estimators perform substantially
better than the baseline training error rate estimator. In both cases the results were averaged
over 50 random train test splits.

7.6 Chapter Conclusions

We have demonstrated a framework to estimate classification and regression risks for
multiple predictors. Our approach uses exclusively unlabeled data and knowledge of p(y)
whereas vast majority of risk estimation methods are supervised; i.e., cross validation [Duda
et al., 2001], bootstrap[Efron and Tibshirani, 1997], and others [Hand, 1986]. We prove
statistical consistency in the unsupervised case and derive the asymptotic variance. Our
experiments on synthetic data demonstrate the effectiveness of the framework and verify
the theoretical results. Experiments on real world data show robustness to underlying
assumptions. The framework may be applied to estimate additional quantities in an
unsupervised manner, including noise level in noisy communication channels [Cover and
Thomas, 2005] and error rates in structured prediction problems.

The difference of the work described here and the work described at the previous chapter
is that the error estimator θ̂mle can be used to effectively aggregate predictors f1, . . . , fj to
predict the label of unlabeled instances. Although IEThresh and SFilter have unsupervised
ways to combine multiple noisy output for a final prediction, they lack the theoretical
guarantees of the maximum likelihood estimation. Nevertheless, consistent estimators
require knowledge of p(y). For the cases when this information is unavailable or that the
predictors have time-varying accuracies IEThresh or SFilter provide novel solutions.

Chapter 8

Unsupervised Margin-Based Risk
Estimation

8.1 Introduction

Thus far, we have focused on accuracy and risk estimation and predictor selection. These
estimation techniques yield other benefits such as predicting the true labels and so on.
However, we are also interested in a more fundamental research question: Is it possible
to partition the data according to the classes without any labeled data? This is a very
ambitious goal as well as a very profound one. Assuming this partitioning leads to very
good correlation with the true classes, it will be extremely useful in practice (predict
the labels without any training data) and will also potentially attract many theoretical
contributions from the field. This last chapter of the thesis is devoted to the proposal of an
unsupervised way to achieve this goal without using a single labeled example whatsoever.
This challenging task is possible through estimating a margin-based risk function (instead
of 0-1 risk discussed in the previous chapter) using exclusively unlabeled data, assuming
p(y) is known and the class-conditional classifier margin fθ(X) | y is normally distributed.
We prove that the proposed technique is statistically consistent for high-dimensional linear
classifiers and demonstrate it on synthetic and real-world data. Label scarcity is a serious
and well-known problem which we have been discussing throughout the entire thesis.
Active learning, semi-supervised learning and their variations are different approaches to
overcome the labeling burden. The techniques we develop in this chapter introduces a new
paradigm that goes beyond these alternatives in requiring no labels and therefore renders
possible many applications suffering from label scarcity.

Many popular linear classifiers, such as logistic regression, boosting, or SVM, are trained
by optimizing a margin-based risk function. For standard linear classifiers Ŷ = sign

∑
θjXj

145

146 Chapter 8: Unsupervised Margin-Based Risk Estimation

with Y ∈ {−1,+1}, X ∈ Rd the margin is defined as

Y fθ(X) where fθ(X) def=
d∑
j=1

θjXj . (8.1)

Training such classifiers involves choosing a particular value of θ. This is done by minimizing
the risk or expected loss

R(θ) = E p(X,Y)L(Y, fθ(X)). (8.2)

Three popular examples of the loss L are

L1(Y, fθ(X)) = exp (−Y fθ(X)) (8.3)

L2(Y, fθ(X)) = log (1 + exp (−Y fθ(X))) (8.4)

L3(Y, fθ(X)) = (1− Y fθ(X))+. (8.5)

L1 above corresponds to boosting (exponential loss), L2 corresponds to logistic regression
(logloss), and L3 corresponds to SVM (hinge loss).

Since the risk R(θ) depends on the unknown distribution p, it is usually replaced during
training with its empirical counterpart based on a labeled training set

(X(1), Y (1)), . . . , (X(n), Y (n)) iid∼ p (8.6)

leading to the following estimator

θ̂n = arg min
θ

Rn(θ) where

Rn(θ) = E p̃(X,Y)L(Y, fθ(X)) (8.7)

=
1
n

n∑
i=1

L(Y (i), fθ(X(i))). (8.8)

Note, however, that evaluating and minimizing Rn requires labeled data (8.6). As we have
been discussing throughout the entire thesis, obtaining labeled data in certain situations is
a difficult, costly and time-consuming task.

In this chapter we construct an estimator for R(θ) using only unlabeled data, that is
using

X(1), . . . , X(n) iid∼ p (8.9)

instead of (8.6). Our estimator is based on the following observations. When the data is
high dimensional (d→∞) the quantities

fθ(X)|Y = y, y ∈ {−1,+1} (8.10)

8.2 Unsupervised Margin-Based Risk Estimation 147

are often normally distributed (fθ(X) = 〈θ,X〉 as in (8.1)). This phenomenon is supported
by empirical evidence and may also be derived using non-iid central limit theorems. We
then observe that the limit distributions of (8.10) may be estimated from unlabeled data
(8.9) and that these distributions may be used to measure margin-based losses such as
(8.3)-(8.5).

We examine two novel unsupervised applications: (i) estimating margin-based losses in
transfer learning and (ii) unsupervised class partitioning. We investigate these applications
theoretically and also provide empirical results on synthetic and real-world data. Our
empirical evaluation shows the effectiveness of the proposed framework in risk estimation
and class partition without any labeled data.

The consequences of estimating R(θ) without labels are indeed profound. Label scarcity
is a well known problem which has lead to the emergence of semisupervised learning
(learning using a few labeled examples and many unlabeled ones), active learning and
proactive learning. The techniques we develop lead to a new paradigm that goes beyond
these in requiring no labels whatsoever to partition the data according to the classes; hence
to make accurate predictions.

8.2 Unsupervised Margin-Based Risk Estimation

In this section we describe in detail the proposed estimation framework and discuss its
theoretical properties. Specifically, we construct an estimator for R(θ) (8.2) using unlabeled
data (8.9).

Our estimation is based on two assumptions. The first assumption is that the label
marginals p(Y) are known and that p(Y = 1) 6= p(Y = −1). While this assumption may
seem restrictive at first, there are many cases where it holds. See Chapter 7 for a full list
of situations where it is known. We just recapitulate here that there are many examples
where p(Y) is known with great accuracy even if labeled data is unavailable. Nevertheless,
we conducted an analysis to investigate the robustness of our estimation framework to
misspecifications in p(Y). Generally, small deviations result in a small degradation of the risk
estimation quality while the degradation increases with larger deviations. See Section 8.3
for more details.

The second assumption is that the quantity fθ(X)|Y follows a normal distribution. As
fθ(X) is a linear combination of random variables, it is frequently normal when X is high
dimensional. This assumption holds empirically for many high dimensional data (see Sec-
tion 8.2.1). From a theoretical perspective this assumption is motivated by the central limit
theorem (CLT). The classical CLT states that fθ(X) =

∑d
i=1 θiXi is approximately normal for

large d if the data components X1, . . . , Xd are iid. A more general CLT state that fθ(X)|Y is
asymptotically normal if X1, . . . , Xd are independent (not necessary identically distributed).

148 Chapter 8: Unsupervised Margin-Based Risk Estimation

Even more general CLTs state that fθ(X)|Y is asymptotically normal if X1, . . . , Xd are
not independent but their dependency is limited in some way. We examine this issue in
Section 8.2.1.

To derive the estimator we rewrite (8.2) by taking expectation with respect to Y and
α = fθ(X)

R(θ) = E p(fθ(X),Y)L(Y, fθ(X)) (8.11)

=
∑

y∈{−1,+1}

p(y)
∫

R
p(fθ(X) = α|y)L(y, α) dα

= p(y = 1)−
∫

R
p(fθ(X) = α|y = 1)L(1, α) dα

+ p(y = −1)
∫

R
p(fθ(X) = α|y = −1)L(−1, α) dα.

Equation (8.11) involves three terms L(y, α), p(y) and p(fθ(X) = α|y). The loss function
L is known and poses no difficulty. The second term p(y) is assumed to be known (see
discussion above). The third term is normal (assuming a CLT holds cf. Section 8.2.1)

fθ(X) | y =
∑
i

θiXi | y ∼ N(µy, σy)

with parameters µy, σy, y ∈ {−1, 1} that are generally unknown. Note that although we do
not denote it explicitly, µy and σy are functions of θ.

We conclude with estimating µ = (µ1, µ−1) and σ = (σ1, σ−1) by maximizing the
likelihood of the unlabeled data (8.9)

(µ̂(n), σ̂(n)) = arg max
µ,σ

`n(µ, σ) where

`n(µ, σ) =
n∑
i=1

log p(fθ(X(i))) (8.12)

=
n∑
i=1

log
∑
y(i)

p(fθ(X(i)), y(i))

=
n∑
i=1

log
∑
y(i)

p(y(i))pµ
y(i) ,σy(i)

(fθ(X(i))|y(i)).

Note that the loglikelihood (8.12) does not use labeled data (the label y(i) is marginalized
over as it is unknown). Also, the loglikelihood (8.12) parameter is µ = (µ1, µ−1) and
σ = (σ1, σ−1), rather than the parameter θ associated with the classifier. We consider the
latter one as a fixed constant at this point.

8.2 Unsupervised Margin-Based Risk Estimation 149

The estimation problem (8.12) is equivalent to the problem of estimating the means and
variances of a Gaussian mixture model where the label marginals are assumed to be known.
As we show in Section 8.2.2 the estimator (8.12) is consistent, that is limn(µ̂(n), σ̂(n)) =
(µ, σ) as n→∞, leading to the convergence of the plug-in estimate (see Section 8.2.2 for a
proof)

P
(

lim
n→∞

R̂n(θ) = R(θ)
)

= 1 where (8.13)

R̂n(θ) =
∑

y∈{−1,+1}

p(y)×
∫

R
p
µ̂

(n)
y ,σ̂

(n)
y

(fθ(X) = α|y)L(y, α) dα. (8.14)

8.2.1 Asymptotic Normality of fθ(X)|Y

The quantity fθ(X)|Y is essentially a sum of d random variables which for large d is likely to
be normally distributed. We examine below three progressingly more general central limit
theorems which explore conditions for the normality of fθ(X)|Y . We also discuss whether
these theorems are likely to hold in practice for high dimensional data and show empirically
that it is indeed the case for some text and image data.

The original central limit theorem states that
∑d

i=1 Zi is approximately normal for large
d if Zi are iid.

Proposition 5 (de-Moivre). If Zi, i ∈ N are iid with expectation µ and variance σ2 and
Z̄d = d−1

∑d
i=1 Zi then we have the following convergence in distribution

√
d(Z̄d − µ)/σ N(0, 1) as d→∞.

As a result, the quantity
∑d

i=1 Zi (which is a linear transformation of
√
d(Z̄d − µ)/σ) is

approximately normal for large d. This relatively restricted theorem is unlikely to hold in
most practical cases as X1, . . . , Xd are often not iid. Moreover, even if X1, . . . , Xd are iid,
the summands Zi = θiXi are not iid.

A more general CLT by Lindberg does not require that the summands Zi be identically
distributed.

Proposition 6 (Lindberg). For Zi, i ∈ N independent with expectation µi and variance σ2
i ,

and denoting s2
d =

∑d
i=1 σ

2
i , we have the following convergence in distribution as d→∞

s−1
d

d∑
i=1

(Zi − µi) N(0, 1)

if the following condition holds for every ε > 0

lim
d→∞

s−2
d

d∑
i=1

E (Zi − µi)21{|Xi−µi|>εsd} = 0. (8.15)

150 Chapter 8: Unsupervised Margin-Based Risk Estimation

This CLT is more general as it only requires that the data dimensions be independent.
The condition (8.15) is relatively mild and specifies that contributions of each of the Zi
to the variance sd should not dominate it. Nevertheless, the Lindberg CLT is still not
satisfactory as in many cases the data dimensions are dependent.

More general CLTs replace the condition that Zi, i ∈ N be independent with the notion
of m(k)-dependence.

Definition 1. The random variables Zi, i ∈ N are said to be m(k)-dependent if whenever
s− r > m(k) the two sets {Z1, . . . , Zr}, {Zs, . . . , Zk} are independent.

An early CLT for m(k)-dependent RVs is [Hoeffding and Robbins, 1948]. Below is a
slightly weakned version of the CLT in [Berk, 1973].

Proposition 7 (Berk). For each k ∈ N let d(k) and m(k) be increasing sequences and suppose
that Z(k)

1 , . . . , Z
(k)
d(k) is an m(k)-dependent sequence of random variables. If

1. E |Z(k)
i |2 ≤M for all i and k

2. Var (Z(k)
i+1 + . . .+ Z

(k)
j) ≤ (j − i)K for all i, j, k

3. limk→∞ Var (Z(k)
1 + . . .+ Z

(k)
d(k))/d(k) exists and is non-zero

4. limk→∞m
2(k)/d(k) = 0

then
Pd(k)
i=1 Z

(k)
i√

d(k)
is asymptotically normal as k →∞.

Proposition 7 states that under mild conditions the sum of m(k)-dependent RVs is
asymptotically normal. If m(k) is a constant i.e., m(k) = m, m(k)-dependence implies that
a Zi may only depend on its neighboring dimensions. Or in other words, dimensions that
are removed from each other are independent. The full power of Proposition 7 is invoked
when m(k) grows with k relaxing the independence restriction as the dimensionality grows.
Intuitively, the dependency of the summands is not fixed to a certain order, but it cannot
grow too rapidly.

The asymptotic normality of fθ(X)|Y depends on the specific context and should be
determined empirically. In many cases the dimensionality d is high. For example, in the case
of text documents (Xi is the relative number of times word i appeared in the document) d
corresponds to the vocabulary size which is typically a large number in the range 103 − 105.
Similarly, in the case of image classification (Xi denotes the brightness of the i-pixel) the
dimensionality corresponds to the image size and is on the order of 102 − 104.

8.2 Unsupervised Margin-Based Risk Estimation 151

The question of whether such data is m(k)-dependent and whether fθ(X)|Y is normal
can be answered practically. Figure 8.1 answers this question in the affirmative for three
separate datasets containing text and image data. Specifically, the variable fθ(X)|Y is
approximately normal for RCV1 text categorization data [Lewis et al., 2004], MNIST
handwritten digit images (http://yann.lecun.com/exdb/mnist/), and face detection images
described in [Pham et al., 2002]. This holds broadly both for randomly generated θ and for
θ estimated using Fisher’s LDA and logistic regression (top 3 rows). We further observe that
normality holds for θ obtained using regularized logistic regression with a broad range of
regularization parameters governing the amount of sparsity. The distribution of fθ(X)|Y
deviates from normal for radically sparse θ, as evidenced by the histograms of l1 regularized
logistic regression (last row).

Encouraged by this empirical observation and by the theoretical motivations we proceed
in the next section to prove identifiability and unsupervised consistency of the risk estimator,
assuming normality of fθ(X)|Y .

8.2.2 Statistical Consistency

Under the assumptions specified above, in particular that p(y) is known and that fθ(X)|Y is
normal, the plug-in estimator (8.13) is consistent in the unsupervised sense. In other words,
the risk estimator R̂n converges to the true risk as the amount of unlabeled data increases.

We start with proving identifiability of the maximum likelihood estimator (MLE) for a
mixture of two Gaussians with known mixture proportions. Invoking classical consistency
results in conjunction with identifiability we show consistency of the MLE estimator for
(µ, σ) parameterizing the distribution of fθ(X)|Y . Consistency of the estimator R̂n follows.

Definition 2. A parametric family {pα : α ∈ A} is identifiable when pα(x) = pα′(x), ∀x
implies α = α′.

Proposition 8. Assuming known label marginals with p(y = 1) 6= p(y = −1), the Gaussian
mixture family

pµ,σ(x) = p(y = 1)N(x ;µ1, σ
2
1) + p(y = −1)N(x ;µ−1, σ

2
−1) (8.16)

is identifiable.

Proof: It can be shown that the family of Gaussian mixture model with unknown label
marginals (that is p(y) in (8.16) is also a parameter) is identifiable up to a permutation of
the labels y [Teicher, 1963].

We proceed by assuming with no loss of generality that p(y = 1) > p(y = −1). The
alternative case p(y = 1) < p(y = −1) may be handled in the same manner. Using the
result of [Teicher, 1963] we have that if pµ,σ(x) = pµ′,σ′(x) for all x, then (p(y), µ, σ) =

152 Chapter 8: Unsupervised Margin-Based Risk Estimation
RCV1 text data face images

ra
nd

om
θ

(u
ni

fo
rm

di
st

ri
bu

ti
on

)

−5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5

Fi
sh

er
’s

LD
A

lo
g.

re
gr

es
si

on

−5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5 lo
g.

re
gr

es
si

on
(l

2
re

gu
la

ri
ze

d)

lo
g.

re
gr

es
si

on
(l

1
re

gu
la

ri
ze

d)

−5 0 5 −5 0 5 −5 0 5

MNIST handwritten digit images

Figure 8.1: Centered histograms of fθ(X)|Y = 1 overlayed with the pdf of a fitted Gaussian
for multiple θ vectors (five rows: random θi ∼ U(−1/2, 1/2), Fisher’s LDA, logistic regression, l2
regularized logistic regression, and l1 regularized logistic regression-all regularization parameters
were selected by cross validation) and datasets (columns: Reuters RCV1 text data, MNIST digit
images, and face images). The fifteen panels show that even in moderate dimensionality (RCV1:
1000 top words, MNIST digits: 784 pixels, face images: 400 pixels) the assumption that fθ(X)|Y is
normal holds well (except perhaps for l1 regularization in the last row which promotes sparse θ).

8.3 Experimental Evaluation 153

(p(y), µ′, σ′) up to a permutation of the labels. Since permuting the labels violates our
assumption p(y = 1) > p(y = −1) we establish (µ, σ) = (µ′, σ′) which proves identifiability.

Proposition 9. Under the assumptions of Proposition 8 maximizing (8.12) as a function of
(µ, σ) = (µ1, µ−1, σ1, σ−1) provides a consistent estimator for the distributions of fθ(X)|Y = 1
and fθ(X)|Y = −1. In other words, the sequence of MLE estimators (µ̂(n)

1 , µ̂
(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1)

converge as n→∞ to the true parameters values with probability 1.

Proof: The loglikelihood (8.12) is identical to that of a binary Gaussian mixture with
known label marginals which we prove to be identifiable in Proposition 8. Consistency thus
follows from classical MLE theory e.g., chapter 17 of [Ferguson, 1996]. (Recall the full list
of assumptions including identifiability in Chapter 7.)

Proposition 10. Under the assumptions of Proposition 8 and assuming the loss L is given
by one of (8.3)-(8.5), the plug-in risk estimate (8.13) is consistent i.e., R̂n(θ) → R(θ) with
probability 1.

Proof: The plug-in risk estimate R̂n in (8.13) is a continuous function (when L is given by
(8.3), (8.4) or (8.5)) of µ̂(n)

1 , µ̂
(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 (note that µy and σy are functions of θ), which

we denote R̂n(θ) = h(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1).

Using Proposition 9 we have that

lim
n→∞

(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1) = (µtrue

1 , µtrue
−1 , σ

true
1 , σtrue

−1)

with probability 1. Since continuous functions preserve limits we have

lim
n→∞

h(µ̂1, µ̂2, σ̂1, σ̂2) = h(µtrue
1 , µtrue

2 , σtrue
1 , σtrue

2)

with probability 1 which implies convergence limn→∞ R̂n(θ) = R(θ) with probability 1.

8.3 Experimental Evaluation

8.3.1 Application 1: Estimating Risk in Transfer Learning

We consider applying our estimation framework in two ways. The first application, which we
describe in this section, is estimating margin-based risks in transfer learning where classifiers
are trained on one domain but tested on a somewhat different domain. The transfer learning
assumption that labeled data exists for the training domain but not for the test domain
motivates the use of our unsupervised risk estimation. The second application, which we

154 Chapter 8: Unsupervised Margin-Based Risk Estimation

describe in the next section, is more ambitious. It is concerned with class partitioning
without labeled data whatsoever.

In evaluating our framework we consider both synthetic and real-world data. In the
synthetic experiments we generate high dimensional data from two uniform distributions
X|Y = 1 and X|Y = −1 with independent dimensions and certain perscribed p(Y) and
classification difficulty. This controlled setting allows us to examine the accuracy of our
unsupervised logloss risk estimator as a function of n, p(Y), and the classifier accuracy.

Figure 8.2 shows that the relative error in estimating the logloss and hingeloss decreases
with n achieving accuracy of greater than 99% for n > 1000. Interestingly, the figure shows
that the estimation error decreases as the classifiers become more accurate and as p(Y)
becomes less uniform. We found these trends to hold in other experiments as well. In the
case of exponential loss, however, the estimator performed substantially worse. This is likely
due to the exponential dependency of the loss on Y fθ(X) which makes it very sensitive to
outliers.

Figure 8.3 shows the accuracy of logloss estimation for a real world transfer learning
experiment based on the 20-newsgroup data. Following the experimental setup of [Dai et
al., 2007; Nigam, 2001] we trained a classifier (logistic regression) on one 20 newsgroup
classification problem and tested it on a related problem. Specifically, we used the hierar-
chical category structure to generate train and test sets with different distributions (see
Figure 8.3 and [Dai et al., 2007] for more detail). Log-loss estimation was quite effective
with relative accuracy greater than 96% and absolute error of up to only 0.02.

8.3.2 Application 2: Unsupervised Class Partition with Known Class Prior

Our second application is class partition of the unlabeled data using only p(Y). This
partitioning is used to make label predictions. We measure the performance of the predictor
as a function of the unsupervised train set size n, in terms of R̂n (8.13) and in terms of the
supervised logloss estimate Rn (8.8) (labels were used only in evaluation).

More specifically, we consider two algorithms (see Algorithms 9-10) that start with an
initial θ(0) and iteratively construct a sequence θ(1), . . . , θ(T) which steadily improve the
unsupervised logloss estimate (8.13) R̂n(θ(t)) ≤ R̂n(θ(t−1)) t = 1, . . . , T , as computed based
on an unlabeled training set of size n. Although we focus on minimizing unsupervised logloss
estimate, the same techniques may be generalized to other margin-based risk functions such
as hinge loss.

Algorithm 9 adopts a gradient descent-based optimization. At each iteration t, it approx-
imates the gradient vector ∇R̂n(θ(t)) numerically using a finite difference approximation.
Algorithm 10 proceeds by constructing a grid search along every dimension of θ(t) and set
[θ(t)]i to the grid value that minimizes R̂n.

8.3 Experimental Evaluation 155

1000 2500 5000 7500 10000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

acc=0.6
acc=0.7
acc=0.8
acc=0.9

1000 2500 5000 7500 10000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

P(y=1)=0.65
P(y=1)=0.75
P(y=1)=0.85
P(y=1)=0.95

1000 2500 5000 7500 10000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

acc=0.6
acc=0.7
acc=0.8
acc=0.9

1000 2500 5000 7500 10000
0

0.005

0.01

0.015

0.02

0.025

P(y=1)=0.65
P(y=1)=0.75
P(y=1)=0.85
P(y=1)=0.95

Figure 8.2: The dependence of |R̂n − Rn|/Rn for logoss (top) and hingeloss (bottom), based
on synthetic data, on the number of unlabeled examples n and how it changes with the classifier
accuracy (acc) and the label marginal p(Y). The logloss estimation generally decreases nicely with n
(approaching 1% relative error at n = 1000 and decaying further). The estimation error decreases
with the accuracy of the classifier (left) and with non-uniformity of p(Y).

156 Chapter 8: Unsupervised Margin-Based Risk Estimation

Data Rn |Rn − R̂n| |Rn − R̂n|/Rn n p(Y = 1)
sci vs. comp 0.7088 0.0093 0.013 3590 0.8257
sci vs. rec 0.641 0.0141 0.022 3958 0.7484
talk vs. rec 0.5933 0.0159 0.026 3476 0.7126
talk vs. comp 0.4678 0.0119 0.025 3459 0.7161
talk vs. sci 0.5442 0.0241 0.044 3464 0.7151
comp vs. rec 0.4851 0.0049 0.010 4927 0.7972

Figure 8.3: Error in estimating logloss for logistic regression classifiers trained on one 20-newsgroup
classification task and tested on another. We followed the transfer learning setup which may be
referred to for more detail. The train and test sets contained samples from two top categories
in the topic hierarchy but with different subcategory proportions. As a result, the train and test
distributions are similar but not identical. The first column indicates the top category classification
task. The second column indicates the empirical log-loss Rn calculated using the true labels of
the test set (8.8). The third and forth columns indicate the absolute and the relative errors of the
unsupervised logloss estimates. The fifth column n is the test set size and the last column is the label
marginal p(y = 1).

Algorithm 9 Unsupervised Gradient Descent

Input: X(1), . . . , X(n) ∈ Rd, p(Y), step size α
Initialize t = 0, θ(t) = θ0 ∈ Rd

repeat
Compute fθ(t)(X(j)) = 〈θ(t), X(j)〉 ∀j = 1, . . . , n
Estimate (µ̂1, µ̂−1, σ̂1, σ̂−1) by maximizing (8.12)
for i = 1 to d do

Plug-in the estimates into (8.13) to approximate

∂R̂n(θ(t))
∂θi

=
R̂n(θ(t) + hiei)− R̂n(θ(t) − hiei)

2hi
(8.17)

(ei is an all zero vector except for [ei]i = 1)

end for
Form ∇R̂n(θ(t)) = (∂R̂n(θ(t))

∂θ1
, . . . , ∂R̂n(θ(t))

∂θd
)

Update θ(t+1) = θ(t) − α∇R̂n(θ(t)), t = t+ 1
until convergence
Output: θfinal = θ(t)

We tested the two algorithms on two real-world datasets: Reuters RCV1 text categoriza-
tion and MNIST digit recognition datasets. In the case of RCV1 we discarded all but the most
frequent 504 words (after stop-word removal) and represented documents using their tfidf
scores. We experimented on the binary classification task of distinguishing the top category

8.3 Experimental Evaluation 157

1 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R̂train
n (θ)

Rtrain
n (θ)

1 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R̂test
n (θ)

Rtest
n (θ)

1 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

test error

Figure 8.4: Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on RCV1 data. The panels display the performance of the learned classifier in
terms of the unsupervised R̂n and the supervised Rn logloss estimates based on the training set
(left), based on the test set (middle) and the test classification error rate (right). The performance
criteria are plotted as a function of the iteration number of Algorithm 9 (gradient descent). The
figure shows that the algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for more detail.

158 Chapter 8: Unsupervised Margin-Based Risk Estimation

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R̂train
n (θ)

Rtrain
n (θ)

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R̂test
n (θ)

Rtest
n (θ)

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

test error

Figure 8.5: Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on RCV1 data. The panels display the performance of the learned classifier in
terms of the unsupervised R̂n and the supervised Rn logloss estimates based on the training set
(left), based on the test set (middle) and the test classification error rate (right). The performance
criteria are plotted as a function of the iteration number of Algorithm 10 (grid search). The figure
shows that the algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for more detail.

8.3 Experimental Evaluation 159

1 30 60 90 120 150
0

0.5

1

1.5

2

2.5

3

3.5

R̂train
n (θ)

Rtrain
n (θ)

1 30 60 90 120 150
0

0.5

1

1.5

2

2.5

3

3.5

R̂test
n (θ)

Rtest
n (θ)

1 30 60 90 120 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

test error

Figure 8.6: Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on the MNIST data. The panels display the performance of the learned classifier
in terms of the unsupervised R̂n and the supervised Rn logloss estimates based on the training set
(left), based on the test set (middle) and the test classification error rate (right). The performance
criteria are plotted as a function of the iteration number of Algorithm 9 (gradient descent). The
figure shows that the algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for more detail.

160 Chapter 8: Unsupervised Margin-Based Risk Estimation

1 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4

R̂train
n (θ)

Rtrain
n (θ)

1 10 20 30 40
0

0.5

1

1.5

2

2.5

3

R̂test
n (θ)

Rtest
n (θ)

1 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

test error

Figure 8.7: Estimation accuracy of classifiers learned by minimizing the unsupervised logloss
estimate R̂n (8.13) on MNIST data. The panels display the performance of the learned classifier
in terms of the unsupervised R̂n and the supervised Rn logloss estimates based on the training set
(left), based on the test set (middle) and the test classification error rate (right). The performance
criteria are plotted as a function of the iteration number of Algorithm 10 (grid search). The figure
shows that the algorithm obtains a relatively accurate classifier (test set error rate 0.1, and R̂n
decaying similarly to Rn) without the use of a single labeled example. See text for more detail.

8.3 Experimental Evaluation 161

Algorithm 10 Unsupervised Grid Search

Input: X(1), . . . , X(n) ∈ Rd, p(Y), grid-size τ
Initialize t = 0, θ(0)

i ∼ U(−2, 2) for all i
repeat

for i = 1 to d do
Construct τ points grid in the range [θ(t)

i − 4τ, θ(t)
i + 4τ]

Compute the risk estimate (8.13) where all dimensions of θ(t) are fixed except for [θ(t)]i
which is evaluated at each grid point.
Set [θ(t+1)]i to the grid value that minimized (8.13)

end for
Update t = t+ 1

until convergence
Output: θfinal = θ(t)

(positive) from the next 4 top categories (negative) which resulted in p(y = 1) = 0.3 and
199328 samples.

70% of the data was chosen as (unlabeled) training set and the rest was held-out as
a test-set. Figures 8.4-8.5 display the logloss estimates (both the unsupervised R̂n and
the supervised Rn) on the training and test sets as well as the test set error rate on RCV1
data. The class partitions were constructed by Algorithm 9 in the case of Figure 8.4 and by
Algorithm 10 in the case of Figure 8.5.

The results indicate that minimizing the unsupervised logloss estimate is quite effective
that it correlates very well with the partition according to the true classes. Both algorithms
reached test set error rate of 0.1 after 50 iterations (for gradient descent) and 25 iterations
(for grid search). Furthermore the two lines corresponding to the unsupervised R̂n and the
supervised Rn decrease with the number of iterations t for both the train and test set. The
improvement in accuracy and logloss was smoother for the gradient descent than for the
grid search. The gap between the two lines in the case of the gradient descent is a result of
several outliers which affected Rn more than it affected R̂n due to the Gaussian fitting.

In the case of MNIST data, we normalized each of the 28 × 28 = 784 pixels to have 0
mean and unit variance. Our classification task was to distinguish images of the digit one
(positive) from the digit 2 (negative) resulting in 14867 samples and p(Y = 1) = 0.53. We
randomly choose 70% of the data as a training set and and kept the rest as a test set.

Figures 8.6 and 8.7 show the performance of the class partition on the MNIST dataset
using the gradient descent and the grid search algorithms, respectively. The results are
similar to those obtained on the RCV1 dataset. The predicted labels due to partitioning have
test-set classification error rate of 0.1 and the decay of the train-set and test-set estimate
R̂n as a function of the iteration number t closely mirrorred the behavior of the supervised

162 Chapter 8: Unsupervised Margin-Based Risk Estimation

criterion Rn.

8.3.3 Inaccurate Specification of p(Y)

Our estimation framework assumes that the class prior p(Y) is known. In some cases it is not
possible to know p(Y), but rather only an inaccurate estimate of p(Y) may be available. It
is instructive to consider how the performance degrades with the inaccuracy of the assumed
p(Y).

Figure 8.8 displays the performance of the learned classifier for RCV1 data as a function
of the assumed value of p(Y = 1) (correct value is p(Y = 1) = 0.3). We conclude that
knowledge of p(Y) is an important component in our framework but precise knowledge
is not crucial. Small deviations of the assumed p(Y) from the true p(Y) result in a small
degradation of logloss estimation quality and test set error rate. Naturally, large deviation
of the assumed p(Y) from the true p(Y) renders the estimation framework ineffective.

8.4 Chapter Conclusions

We proposed a novel framework for estimating margin-based risks using only unlabeled
data. We showed that it performs well in practice on several different datasets. We derived
a theoretical basis for it by casting it as a maximum likelihood problem for Gaussian
mixture model followed by plug-in estimation. Remarkably, the theory states that assuming
normality of fθ(X) and a known p(Y) we are able to estimate the risk R(θ) without a single
labeled example. Moreover, if we can accurately estimate R(θ) for all θ without labels then
we can also estimate the risk minimizer arg minθ R(θ) which leads to unsupervised training
of logistic regression and SVM.

The potential benefits of the unsupervised class partition are extensive. Costly and
noisy labeling is a serious burden. Hence, researchers have focused on developing methods
to learn with fewer labeled instances, i.e., semi-supervised learning, active and proactive
learning. Unsupervised learning, on the other hand, generally deals with clustering and
grouping the data in the absence of labels. This new paradigm we have introduced
contributes to unsupervised learning by allowing unsupervised estimate of margin-based
risk functions which leads to effective class partiton without any single labeled example.

The normality of fθ(X) | y assumption is quite essential in our unsupervised risk estima-
tion framework. It is required to establish consistent estimators of the risk together with the
knowledge of p(Y). Theoretically, the Central Limit Theorem establishes normality when
the dimensionality d→∞ under progressively less restrictive independence assumptions. In
practice, Figure 8.1 shows whether normality assumption holds regarding different choices
of θ. Luckily, it shows that the normality assumption holds for various different cases except

8.4 Chapter Conclusions 163

for very sparse θ resulting from l1 regularization. In practice, normality needs to be checked
within a context, depending both on the data (X, y) and θ. If this assumption is violated, our
consistency result is no longer valid. Both proposed algorithms (Algorithms 9-10) compute
the risk estimate at each step by maximizing (8.12). Since the risk is estimated iteratively,
the normality assumption should hold for θ found at each step. In other words, fθ(t)(X) | y
should be normally distributed for every θ(t) in the search path. If this assumption is violated
at any step, the risk estimation is not guaranteed to be consistent. Hence, the risk estimator
might be inaccurate resulting an inaccurate class partition. We have observed that one of
the reasons for deviation from normality is having very sparse θ.

What we have pointed out above is a general condition that violates our assumptions and
hence our system might fail to provide the desired class partition. A similar concern arises
due to multiple target partitions with equi-class marginals. Note that the proposed unsuper-
vised training algorithms are deterministic; i.e., given the same input (X(1), . . . , X(n) ∈ Rd

and p(Y)) they will return the same θfinal. Then, one might wonder about the case where
there are alternate partitions of the data with equivalent class priors. In other words,
there might be multiple target functions with the same marginal p(Y) but corresponding
to different partitions of the same data. For instance, assume one wishes to classify his
emails according to two different target functions: fθ1 : X → {spam, non − spam} and
fθ2 : X → {academic, personal} for any X ∈ Rd. Assume that the corresponding marginals
are equal; i.e. p1(y1) = p2(y2) where y1 = spam and y2 = academic and vice versa. If the
task is to estimate the margin-based risk of fθ1(X) and fθ2(X), then our framework yields
consistent estimators given our assumptions hold. If the task is unsupervised training and
the same initial θ0 is adopted for both problems then our system would yield the same
solution θfinal in two cases since the input data to the unsupervised learner is the same.
Hence, the system cannot distinguish between which target function it learns. Algorith-
mically, this problem may be addressed if coupled with semi-supervised learning or active
learning. Minimal labeled data (determined apriori or by active learning) from each target
distribution can be used to establish an initial guess θ0 for two problems. This could then be
used to initialize Algorithms 9-10, which iteratively update it minimizing the risk estimate.
Hence, the resulting class partitions are more likely to resemble the target solution.

Apart from these important considerations, our approach also points at novel questions
for future extensions. What benefit do labels provide over unsupervised training? Can our
framework be extended to semi-supervised learning where a few labels do exist? Can it be
extended to the multiclass (and also multi-label) case and to non-classification scenarios
such as margin based regression or margin based structured prediction? When are the
assumptions likely to hold and how can we make our framework even less resistant to
deviations from them? What would be the benefits of using minimal labeled data to enhance
the learned models, if any? What could we theoretically conclude about the convergence
of our algorithms in the case of multi-label (multiple target functions) scenarios? These
questions and others form new and exciting open research directions for future work.

164 Chapter 8: Unsupervised Margin-Based Risk Estimation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

|R(P (y) 6=0.3)
n − R

(P (y)=0.3)
n |

test error

Figure 8.8: Performance of unsupervised classifier training on RCV1 data (top class vs.
classes 2-5) for misspecified p(Y). The performance of the estimated classifier (in terms of
train set empirical logloss Rn (8.8) and test set error rate measured using held-out labels)
as a function of the amount of deviation between the assumed and true p(Y = 1) (true
p(Y = 1) = 0.3)). The classifier performance is extremely good when the assumed p(Y) is
close to the truth and degrades relatively gracefully with the amount of misspecification.

Chapter 9

Conclusions and Future Directions

9.1 Summary

In this thesis, we presented novel machine learning techniques to address active learning
and proactive learning. In particular, we focused on traditional active learning for classifi-
cation and rank learning problems as well as learning with multiple imperfect predictors
without any apriori information about their qualities such as reliability or reluctance. More
specifically, we focused on estimating the accuracy or the risk of multiple noisy predictors in
the absence of gold standard labels and consequently selecting the most reliable one(s). The
proposed framework is also useful to predict true labels given the accuracy (risk) estimates
and the noisy output of the predictors. Figure 9.1 provides a summary of the techniques
developed during this thesis work, their main functionality (e.g. instance selection, predictor
accuracy estimation, etc.), and the corresponding assumptions made. We hope that it will
give the reader a useful reference for a quick review of the thesis work.

In this thesis, we first introduce two new ensemble methods to actively learn which
instances to label in classification problems. While the objective is to minimize the empirical
risk of the supervised learning algorithm, there are two commonly used approaches to
achieve this goal. One is referred as the uncertainty sampling, which selects the most
ambigious instances for the learner to discriminate. The other is the density-based sampling
which focuses on selecting the most representative samples to boost the learning rate.
First, we proposed DUAL, a dynamic ensemble approach which learns to switch from
density-based sampling to an uncertainty-density ensemble as the classification decision
boundary emerges with increasing accuracy. Several experiments demonstrated that DUAL
outperforms previous state-of-the-art fixed-strategy methods and even fixed ensemble
methods such as [Baram et al., 2003]. Second, we presented another ensemble method for
active learning that combines density-based and uncertainty sampling into a utility function

165

166 Chapter 9: Conclusions and Future Directions

Method Major functionality Assumptions
DUAL instance selection for classifica-

tion
Gaussian mixture model is used
to model data density.

Paired Sampling instance selection for classifica-
tion

Decision boundary should lie in
low density regions and hence
should not cut clusters.

AUC Optimiza-
tion

instance selection for ranking The true ranking function max-
imizes score difference between
the lowest ranked relevant and
the highest ranked non-relevant
instances.

Loss Differential instance selection for ranking The change in the current hypoth-
esis is correlated with the loss of
the learner.

Decision-
Theoretic Proac-
tive Learning

instance and predictor selection Restricted to 2 predictors: one
perfectly reliable (expensive) and
one unreliable (e.g. fallible, re-
luctant but cheap). A pre-defined
and fixed budget is assumed. Un-
reliability of a predictor is a func-
tion of the uncertainty to classify
an instance. Predictors behave
similarly for similar instances.

IEThresh predictor accuracy estimation and
predictor selection

Individual predictor accuracy is
better than random guess and pre-
dictors make uncorrelated errors.

SFilter predictor accuracy estimation
and predictor selection in non-
stationary conditions

Individual predictor accuracy is
better than random guess and pre-
dictors make uncorrelated errors
at every time step. The rate of
change σ of the predictor accu-
racy is known or at least its up-
per bound is known. A first-order
HMM process models the chang-
ing predictor accuracy.

MLE for 0−1 risk 0− 1 risk estimation p(y) is known and the predictors
output the noisy label according
to some probability distribution.
The risk of the predictor is a con-
tinuous function of θ, the parame-
ter that governs the generation of
the noisy labels.

MLE for margin-
based risk

margin-based risk estimation and
unsupervised class partition

p(y) is known. Restricted to
margin-based linear predictors.
The predictor margin fθ(X) | Y
is normally distributed with un-
known mean and variance.

Figure 9.1: A table summary of all the techniques described in this thesis. The left column indicates
the name of the algorithm followed by its major functionality on the middle column. The last column
indicates the assumptions made for the corresponding technique.

9.1 Summary 167

aiming to straddle the decision boundary. The utility function serves as a scoring function
to sample instances that are in the dense regions of the input space as well as have high
uncertainty. Moreover, it favors instances that are likely to have opposite labels to speed up
the learning process. The likelihood of the two data points to have opposite class labels is
measured as a function of their pairwise distance according to a non-Euclidean distance
metric exploiting the natural grouping of the data. The empirical results indicated that this
density-sensitive strategy is quite effective in significantly outperforming the popular active
sampling methods such as uncertainty sampling, representative sampling, and density-based
sampling.

Direct application of the active sampling techniques to rank learning is troublesome
due to a number of factors. First of all, active sampling methods for classification try to
minimize the classification error; hence, do not take into account the rank order which is
crucial in ranking applications. Errors at the top ranks must be penalized more than those
at the bottom. On the other hand, most ranking datasets are drawn from very skewed
distributions where the more relevant items constitute a small minority. Owing to such
factors, it is at best difficult to apply active sampling methods designed for classification to
rank learning problems. We address these issues by proposing two different active rankers.
One of them focuses on minimizing the hinge loss of an SVM-based rank learner, relying
on the fact that minimizing the hinge rank loss (rank version of standard hinge loss) is
an accurate approximation to maximize a ranking quality measure (AUC) [Steck, 2007].
Hence, sampling instances that have the biggest contribution to the hinge rank loss is a step
in the right direction to reduce the hinge loss and hence to increase the AUC. The second
technique we proposed for an active ranker aims to maximize the estimated loss differential
over unlabeled data. The motivation to consider the loss differential is based on efficiently
estimating the change in the expected loss over the test set. The naive implementation to
compute the expected loss of a learner trained on an augmented set with additional labeled
examples is almost intractable for large-scale datasets, typical in ranking applications. Thus,
we propose a very efficient alternative that considers the likelihood of an instance to change
the current hypothesis significantly. This results in a significant change in the version space,
which in turn implies a greater chance to learn the true hypothesis faster. We proposed
two alternative methods to perform loss differential: one for RankSVM and the other for
RankBoost, which are both state-of-the-art rank learning algorithms. The experimental
evaluation on real-life corpora was significantly in favor of both sampling strategies over
strong baselines.

For the remainder of the thesis, we focused on proactive learning, first considering
predictors with differing properties such as reluctance, fallibility and so on, and later dealing
with a more specific case of learning with larger numbers of fallible (noisy) predictors. In
the first case, we presented a decision-theoretic framework which relies on a utility function
to select predictor-instance pairs. The utility is a function measuring the information
value of labeling a particular instance by a particular predictor at unit cost where the

168 Chapter 9: Conclusions and Future Directions

cost is the labeling fee of that predictor. The fee can represent a monetary value if the
predictors are hired human annotators, or it can be the computational time in the case of
algorithmic learners. Our framework is general enough to incorporate any cost function
given the costs are normalized into the same range across the predictors. Additionally, our
framework assumes the quality of an answer from an imperfect predictor depends on the
difficulty of the classification task. We estimated the response characteristics through belief
propagation during a discovery phase, relying on a comparison of the answers with the
ground truth obtained from a perfectly reliable, but more costly predictor. Results were
positive: significant improvement over random predictor selection and over any single
predictor in terms of classification error versus the total labeling cost.

Then, we focused on learning with multiple predictors which make random labeling
mistakes in the absence of gold standard labels. First, we studied estimating the reliability of
the predictors while selecting the best ones along the way. Naturally, this requires a trade-off
between exploration vs. exploitation. We analyzed this problem separately in two cases:
predictors with stationary and time-varying accuracies. For the first condition, we proposed a
simple yet effective approach relying on interval estimation from the reinforcement learning
and the multi-armed bandit literature. The proposed method called IEThresh allowed us
to filter out less reliable predictors early in the learning phase; thus saving substantial
labeling effort and increasing the quality of the labels. A thorough analysis demonstrated
the strength of this technique to identify the best predictors in a highly cost-effective manner.
To solve the problem for non-stationary predictors, we presented a novel method based
on Sequential Bayesian estimation. In particular, we relied on a variant of the particle
filtering algorithm to estimate the expected accuracy of each predictor at each time step via
maintaining a set of weighted samples and updating these weights using Bayes updates. The
estimated accuracies were then used to decide which predictors to query next. Our empirical
analysis showed that our method was capable of tracking the true accuracies reliably over
time while simultaneously selecting the highest quality ones for labeling. Good-quality
labeled data can thus be obtained without extensive labeling queries.

Finally, we introduced an alternative approach to predictor quality estimation based on
a risk estimation framework. We approached the problem using two different risks: 0-1 risk
(aka the classification error) and a more general risk involving margin-based classifiers and
associated continuous loss functions such as logloss. For the first case, we formulated the
problem such that the noisy labels are generated from a distribution governed by a specific
parameter for each predictor. Then, the risk was represented as a continuous function
of this parameter. The risk parameter was estimated by maximizing the likelihood of the
observed data (noisy labels obtained from the predictors) marginalized over the true label
y. We assumed that the marginal label distribution p(y) to be known. Thus, we proved
the maximum likelihood estimator is statistically consistent under mild conditions such as
requiring weak predictors. That is, the estimator converges to the true value as the number
of samples increases. This is a very desirable statistical property since in many applications

9.2 Future Directions 169

enormous amount of unlabeled data is available with little cost. For instance, huge amounts
of unlabeled text are readily available through online data sources such as web pages, news
articles, emails. Thorough empirical evaluation supported the theoretical guarantees and
showed the robustness of the proposed framework against the assumptions.

The other risk estimation framework considers estimating the margin-based risk using
exclusively unlabeled data. The most profound benefit of such a risk estimation is to perform
class partitioning through minimizing the risk estimate obtained over only unlabeled data.
Unlabeled data thus far has been used in semi-supervised learning, active and proactive
learning. Unlabeled data in these tasks serves as a source of information that contains
evidence about hidden class labels. However, we proposed a more significant way unlabeled
data can be adopted, namely to partition the data according to classes requiring no labeled
data. Our estimation framework only requires the label distribution p(y) and the normality
of the margin fθ(X) | y, which is necessary to obtain consistent risk estimators. The
normality assumption has been shown to hold in real-world text and image datasets with
high dimensions, and possible to hold in various other domains. Several experiments on both
synthetic and real-world datasets indicated the effectiveness of the proposed framework.
The unsupervised class partition reached ∼ 90% test accuracy on both popular RCV1 and
MNIST datasets. The test accuracy is calculated on a held-out set for which the labels are
used solely for evaluation. Obtaining such accurate predictions is a remarkable result which
a lot of practical applications suffering from label scarcity can benefit.

9.2 Future Directions

This thesis introduced novel active sampling methods and the new paradigm of proactive
learning to extend active learning to more complex and challenging yet more realistic tasks.
There are many directions for future extensions several of which we examine below.

In terms of active learning, one of the main future directions to pursue is to extend
dynamic ensemble methods. Recall that our method DUAL, while powerful, still suffers from
failure to detect reliably the correct switching point which caused a significant performance
drop. An ideal ensemble method should be able to recognize the right operating range
to apply the right sampling method and adjust appropriately depending on the context.
This requires estimation of the future test error of each method and selecting the one
with the lowest error. One of the main challenges is accurate estimation of this error with
limited labeled data. We hypothesize that the machine learning techniques we developed
for unsupervised risk estimation can be adopted for this goal. However, assumptions such
as better-than-random predictors might be difficult to satisfy or evaluate. Questions such as
these and the frequency of the method switch are important and should be examined as
future research.

170 Chapter 9: Conclusions and Future Directions

Beyond active learning, there are possible venues for application and extension of
the multi-predictor framework. We now discuss these extensions. As discussed earlier,
proactive learning deals with multiple predictors with differing characteristics when no
apriori information is available. We investigated three cases (fallibility, reluctance and
variable-cost) through simple scenarios that involves a perfect oracle. We have not fully
studied all predictor properties; for example, predictors with a specific area of expertise and
how they behave when confronted with problems out of their specialty. Furthermore, we
have not addressed predictors having a combination of these features. Ideally, it is important
to develop a unified framework that can detect the unknown features of each predictor in a
multi-predictor setting and estimate the degree (level) of these features and/or parameters
characterizing them. A divide-and-conquer approach might be particularly useful in this
case. That is, dividing the objective into several smaller and tractable problems and then
merging the solutions with a unified system. In fact, we have developed novel machine
learning methods in the case of fallible predictors to estimate their reliability and make
predictions on the new test examples. Similar techniques could be developed to infer
other predictor features. For instance, reluctance might be represented as a probabilistic
function with a parameter controlling the degree of reluctance. Then, the problem reduces
to estimating this parameter. The situation with multiple features occuring in the same
predictor is more challenging. However, a vector of parameters, each controlling a specific
feature, can be defined and estimated. This idea bears similarity to Bennett’s learning of
indicator functions [Bennett et al., 2005]. A framework that allows sparse representations,
meaning allowing certain features to be inactive, might even be more desirable. Such a
framework will also be flexible to incorporate additional features later on. This could be
a very interesting and exciting direction to pursue further research, both in theory and
practice.

There are further opportunities for future work concerning the noisy predictors. Through-
out the thesis, we have relied on the assumption that the predictors’ outputs are conditionally
independent from each other given the truth, except for the non-collaborative risk estimation
introduced in Chapter 7. The conditional independence assumption is crucial in IEThresh
and the particle filtering algorithms described in Chapter 6 since they rely on some kind of
majority voting scheme to evaluate the predictor’s output. As discussed previously, relaxing
this assumption introduces additional parameters corresponding to the correlation between
the predictors that need to be estimated. A similar concern is related to the assumption
that requires the predictors to be better than random chance. Our experimental results
show that the proposed framework is robust to the violation of this assumption as long
as it is restricted with a small subset of predictors (See Chapter 7). However, we have
not fully examined to what extent the violation of these assumptions would affect the
estimation accuracy or the quality of the predicted labels. Future extensions that address
these concerns will yield great opportunities to apply in more real-life scenarios.

Although we have analyzed the predictors whose response characteristics are functions

9.2 Future Directions 171

of the input space, we have done so in the context of simple scenarios involving a perfectly
reliable oracle to evaluate the unreliable predictors. Addressing this problem in a completely
unsupervised manner with multiple predictors is still an open question. How to represent
the fallibility as a function of the unlabeled data? How to combine the context-dependent
fallibility estimation with active learning to decide the regions of the input space that need
to be exploited to gain the maximum benefit? How to transfer the knowledge learned
across different data distributions? These questions and possibly many others pose great
challenges but also great advantages such as incorporating any predictor with no restrictions
into the picture.

Another important future direction is to consider an ensemble of predictors as referral
networks. That is, when an annotator or expert is queried he has two options: he can
provide an answer for some fee or he can direct the question to someone else who is likely
to be the expert on the subject requiring a small referral fee. In such a system, the goal is to
reduce the total number of referrals and find the right expert directly. A good example to this
situation is medical diagnosis. Doctors might refer the patients to specialists if they cannot
diagnose them or if they need a second opinion. Visiting multiple doctors with different
specialties is likely to increase the chance of a more reliable diagnosis, but at the cost of
spending a lot of money, time and resources. Hospitals could significantly benefit from a
system that automatically identifies the right expert given the patient’s present symptoms
and medical history, instead of the patient going from one doctor to the other. This problem
could be addressed by modeling the expertise area of each predictor and also modeling the
expertise needed to answer a question and then finding the right match between the query
and the predictor. It would be interesting as future work to see a thorough investigation of
this direction from both theoretical and practical perspectives.

Bibliography

[agn, 2007] Agnostic learning vs. prior knowledge challenge and data representation
discovery workshop, 2007. IJCNN ’07. 71

[Ambati et al., 2010] V. Ambati, S. Vogel, and J. Carbonell. Active learning and crowd-
sourcing for machine translation. In LREC ’10, 2010. 2

[Amini et al., 2006] M. Amini, N. Usunier, F. Laviolette, A. Lacasse, and P. Gallinari. A
selective sampling strategy for label ranking. ECML ’06, pages 18–29, 2006. 2, 10, 48

[Arulampalam et al., 2001a] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A
tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing, 50:174–188, 2001. 92

[Arulampalam et al., 2001b] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A
tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing, 50:174–188, 2001. 95

[Baram et al., 2003] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of active learning
algorithms. ICML ’03, pages 19–26, 2003. 9, 23, 38, 39, 165

[Bennett et al., 2005] P. Bennett, S. Dumais, and E. Horvitz. The combination of text
classifiers using reliability indicators. Information Retrieval, 8(1):67–100, 2005. 170

[Berk, 1973] K. N. Berk. A central limit theorem for m-dependent random variables with
unbounded m. The Annals of Probability, 1(2):352–354, 1973. 150

[Bie and Cristianini, 2003] T. De Bie and N. Cristianini. Convex methods for transduction.
In NIPS ’03, 2003. 13

[Bishop et al., 1975] Y. Bishop, S. Fienberg, and P. Holland. Discrete multivariate analysis:
theory and practice. MIT press, 1975. 120

[Blitzer et al., 2007] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification. In Proc. of ACL ’07,
2007. 141

173

174 BIBLIOGRAPHY

[Blum and Mitchell, 1998] A. Blum and T. Mitchell. Combining labeled and unlabeled data
with co-training. COLT ’98, pages 92–100, 1998. 9

[Breiman, 1996] L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460,
Statistics department, University of California, 1996. 141

[Brinker, 2004] K. Brinker. Active learning of label ranking functions. ICML ’04, pages
17–24, 2004. 2, 9, 10

[Burges and Crisp, 2000] C.J.C. Burges and D.J. Crisp. Uniqueness of the svm solution. In
NIPS ’00, pages 223–229, 2000. 52

[Campbell et al., 2000] C. Campbell, N. Cristianini, and A. Smola. Query learning with
large margin classifiers. In ICML ’00, 2000. 30

[Cao et al., 2006] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking
svm to document retrieval. Proceedings of the international ACM SIGIR Conference on
Research and Development in information retrieval (SIGIR’06), pages 186–193, 2006. 41,
44, 53

[Carpenter et al., 1999] J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter
for non-linear problems. In IEEE Proceedings on Radar and Sonar Navigation, 1999. 97

[Cauwenberghs and Poggio, 2000] G. Cauwenberghs and T. Poggio. Incremental and decre-
mental support vector machine learning. In NIPS ’00, pages 409–415, 2000. 51

[Chapelle, 2005] O. Chapelle. Active learning for parzen window classifier. AISTATS ’05,
pages 49–56, 2005. 26, 27, 28

[Cohn et al., 1995] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with
statistical models. Advances in Neural Information Processing Systems, 7:705–712, 1995.
7, 32

[Cover and Thomas, 2005] T. M. Cover and J. A. Thomas. Elements of Information Theory.
John Wiley & Sons, second edition, 2005. 115, 143

[Cox and Cox, 1994] T.F. Cox and M.A. Cox. Multidimensional Scaling. Chapman & Hall,
1994. 27

[Cox et al., 2006] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer,
2006. 129

[Craswell and Hawking, 2004] N. Craswell and D. Hawking. Overview of the trec 2004
web track. Text Retrieval Conference (TREC’04), 2004. 47

BIBLIOGRAPHY 175

[Craswell et al., 2003] N. Craswell, D. Hawking, R. Wilkinson, and M. Wu. Overview of
the trec 2003 web track. Text Retrieval Conference (TREC’03), 2003. 47

[Dai et al., 2007] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In
Proc. of International Conference on Machine Learning, 2007. 154

[Daumé III, 2007] H. Daumé III. Frustratingly easy domain adaptation. In ACL ’07, 2007.
5

[Dekel and Shamir, 2009] O. Dekel and O. Shamir. Good learners for evil teachers. In
Proceedings of the 26th International Conference on Machine Learning, 2009. 12

[Donmez and Carbonell, 2008a] P. Donmez and J. G. Carbonell. Paired sampling in density-
sensitive active learning. International Symposium on Artificial Intelligence and Mathe-
matics, 2008a. 2, 8

[Donmez and Carbonell, 2008b] P. Donmez and J. G. Carbonell. Optimizing estimated loss
reduction for active sampling in rank learning. International Conference on Machine
Learning, ICML ’08, 2008b. 1, 2, 7, 10, 11

[Donmez and Carbonell, 2008c] P. Donmez and J. G. Carbonell. Proactive learning: Cost-
sensitive active learning with multiple imperfect oracles. ACM Conference on Knowledge
and Information Management, CIKM ’08, 2008c. 11

[Donmez and Carbonell, 2009] P. Donmez and J. G. Carbonell. Active sampling for rank
learning via optimizing the area under the roc curve. European Conference on Information
Retrieval, ECIR ’09, 2009. 2, 10

[Donmez et al., 2007] P. Donmez, J.G. Carbonell, and P.N. Bennett. Dual strategy active
learning. Proceedings of the European Conference on Machine Learning, pages 116–127,
2007. 1, 2, 9, 32, 44, 47

[Donmez et al., 2009] P. Donmez, J. G. Carbonell, and J. Schneider. Efficiently learning
the accuracy of labeling sources for selective sampling. In Proceedings of the 15th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’09), pages 259–268,
2009. 4, 12

[Donmez et al., 2010a] P. Donmez, J. G. Carbonell, and J. Schneider. A probabilistic
framework to learn from multiple annotators with time-varying accuracy. In Proceedings
of SIAM Conference on Data Mining (SDM ’10), 2010. 4, 12

[Donmez et al., 2010b] P. Donmez, G. Lebanon, and K. Balasubramanian. Margin-based
classification without labels. Submitted to (ICML ’10), 2010. 5, 13

176 BIBLIOGRAPHY

[Donmez et al., 2010c] P. Donmez, G. Lebanon, and K. Balasubramanian. Unsupervised
estimation of classification and regression error rates. Journal of Machine Learning
Research, 2010. 5, 13, 104

[Doucet and Crisan, 2002] A. Doucet and D. Crisan. A survey of convergence results on
particle filtering for practitioners. IEEE Transactions on Signal Processing, 2002. 96

[Duda et al., 2001] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley
New York, 2001. 143

[Efron and Tibshirani, 1997] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap.
Chapman & Hall, 1997. 143

[Ferguson, 1996] T. S. Ferguson. A Course in Large Sample Theory. Chapman & Hall, 1996.
122, 123, 132, 153

[Fischer et al., 2004] B. Fischer, V. Roth, and J.M. Buhmann. Clustering with the connectiv-
ity kernel. In NIPS ’04, volume 16, 2004. 27

[Freund et al., 1997] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling
using the Query by Committee algorithm. Machine Learning, 28:133–168, 1997. 7

[Freund et al., 2003] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research, 4:933–969,
2003. 41, 42, 48, 54, 55, 56

[Guo and Greiner, 2007] Y. Guo and R. Greiner. Optimistic active learning using mutual
information. In IJCAI ’07, pages 823–829, 2007. 23

[Hand and Till, 2001] D.J. Hand and R.J. Till. A simple generalization of the area under
the roc curve for multiple class classification problems. Machine Learning, pages 171–186,
2001. 43

[Hand, 1986] D. J. Hand. Recent advances in error rate estimation. Pattern Recognition
Letters, 4(5):335–346, 1986. 143

[Hartigan and Wong, 1979] J.A. Hartigan and M.A. Wong. A k-means clustering algorithm.
Applied Statistics, 28(1):100–108, 1979. 64

[Hoeffding and Robbins, 1948] W. Hoeffding and H. Robbins. The central limit theorem
for dependent random variables. Duke Mathematical Journal, 15:773–780, 1948. 150

[Joachims, 1999] T. Joachims. Making large-scale svm learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning.
MIT Press, 1999. 48, 141

BIBLIOGRAPHY 177

[Joachims, 2002] T. Joachims. Optimizing search engines using clickthrough data. Proceed-
ings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’02), 2002. 41, 42

[Joachims, 2005] T. Joachims. A support vector method for multivariate performance
measures. Proceedings of the International Conference on Machine Learning (ICML’05),
pages 377–384, 2005. 44

[Kaelbling, 1990] L. P. Kaelbling. Learning in Embedded Systems. PhD thesis, Department
of Computer Science, Stanford University, 1990. 80, 81

[Lang, 1995] K. Lang. Newsweeder: Learning to filter netnews. In International Conference
on Machine Learning, 1995. 142

[Lewis and Gale, 1994] D. Lewis and W. Gale. A sequential algorithm for training text
classifiers. SIGIR ’94, pages 3–12, 1994. 8, 30, 82

[Lewis et al., 2004] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research, 5:361–397, 2004.
151

[Liere and Tadepalli, 2007] R. Liere and P. Tadepalli. Active learning with committees for
text categorization. AAAI ’97, pages 591–596, 2007. 7

[Liu et al., 2007] T.Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. Letor: Benchmark dataset for
research on learning to rank for information retrieval. LR4IR 2007, in conjunction with
SIGIR 2007, 2007. 47

[Mann and Whitney, 1947] H.B. Mann and D.R. Whitney. On a test whether one of two
random variables is stochastically larger than the other. Annals of Mathematical Statistics,
pages 50–60, 1947. 43

[McCallum and Nigam, 1998] A. McCallum and K. Nigam. Employing em and pool-based
active learning for text classification. ICML ’98, pages 359–367, 1998. 8, 44

[Melville and Mooney, 2003] P. Melville and R. J. Mooney. Constructing diverse classifier
ensembles using artificial training examples. IJCAI ’03, pages 505–510, 2003. 9, 39

[Melville and Mooney, 2004] P. Melville and R.J. Mooney. Diverse ensembles for active
learning. In ICML ’04, pages 584–591, 2004. 23, 39

[Melville et al., 2005] P. Melville, M. Saar-Tsechansky, F. Provost, and R. Mooney. Eco-
nomical active feature-value acquisition through expected utility estimation. KDD ’05
Workshop on Utility-based data mining, 2005. 11, 64

178 BIBLIOGRAPHY

[Moore and Schneider, 1995] A. Moore and J. Schneider. Memory-based stochastic opti-
mization. In Neural Information Processing Systems 8, 1995. 80, 81

[Muslea et al., 2000] I. Muslea, S. Minton, and C. Knoblock. Selective sampling with
naive co-testing: preliminary results. The ECAI-2000 workshop on Machine Learning for
information extraction, 2000. 9

[Newman et al., 1998] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repos-
itory of machine learning databases, 1998. University of California, Irvine, Dept. of
Information and Computer Sciences. 22, 71, 85, 104

[Nguyen and Smeulders, 2004] H.T. Nguyen and A. Smeulders. Active learning with pre-
clustering. ICML ’04, pages 623–630, 2004. 1, 8, 11, 16, 17, 18, 19, 22, 32, 35,
44

[Nigam, 2001] K. Nigam. Using Unlabeled Data for Text Classification. PhD thesis, School of
Computer Science, Carnegie Mellon University, 2001. 154

[Papoulis, 1984] A. Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 1984. 116

[Pham et al., 2002] T. Pham, M. Worring, and A. Smeulders. Face detection by aggregated
bayesian network classifiers. Pattern Recognition Letters, 23, 2002. 71, 106, 151

[Platt, 1999] J. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in Large Margin Classifiers, pages 61–74,
1999. 56

[Rajaram et al., 2007] S. Rajaram, C.K. Dagli, N. Petrovic, and T.S. Huang. Diverse active
ranking for multimedia search. Computer Vision and Pattern Recognition (CVPR ’07),
2007. 2, 43, 48

[Rätsch et al., 2001] G. Rätsch, T. Onoda, and K. R. Muller. Soft margins for adaboost.
Machine Learning, 42(3):287–320, 2001. 22, 85

[Raykar et al., 2009] V. C. Raykar, S. Yu, L. Zhao, A. Jerebko, C. Florin, G. Valadez, L. Bo-
goni, and L. Moy. Supervised learning from multiple experts: Whom to trust when
everyone lies a bit. In Proceedings of the 26th International Conference on Machine
Learning, pages 889–896, 2009. 12

[Ripley, 1987] B. Ripley. Stochastic Simulation. Wiley, New York, 1987. 97

[Roy and McCallum, 2001] N. Roy and A. McCallum. Toward optimal active learning
through sampling estimation of error reduction. ICML ’01, pages 441–448, 2001. 1, 7,
11, 23, 50, 51

BIBLIOGRAPHY 179

[Schein and Ungar, 2005] A.I. Schein and L.H. Ungar. Active learning for multi-class logistic
regression. Learning, 2005. 35

[Schohn and Cohn, 2000] G. Schohn and D. Cohn. Less is more: Active learning with
support vector machines. Proceedings of the International Conference on Machine Learning
(ICML’00), pages 839–846, 2000. 30

[Seung et al., 1992] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee.
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pages
287–294, 1992. 7

[Shen and Zhai, 2005] X. Shen and C. Zhai. Active feedback in ad hoc information retrieval.
SIGIR ’05, pages 59–66, 2005. 8

[Sheng et al., 2008] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? improv-
ing data quality and data mining using multiple, noisy labelers. KDD ’08, pages 614–622,
2008. 12, 85, 109

[Smyth et al., 1994] P. Smyth, U. Fayyad, M. Burl, P. Perona, and P. Baldi. Inferring ground
truth from subjective labelling of venus images. In NIPS ’94, pages 1085–1092, 1994. 12

[Smyth et al., 1995] P. Smyth, U. Fayyad, M. Burl, P. Perona, and P. Baldi. Learning with
probabilistic supervision. Computational Learning Theory and Natural Learning Systems,
3, 1995. 12

[Snow et al., 2008] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast - but
is it good? evaluating non-expert annotations for natural language tasks. EMNLP ’08,
2008. 2, 12, 81, 85, 87, 139

[Steck, 2007] H. Steck. Hinge rank loss and the area under the roc curve. Proceedings of
the European Conference on Machine Learning (ECML’07), pages 347–358, 2007. 10, 42,
43, 167

[Struyf et al., 1997] A. Struyf, M. Hubert, and P. Rousseeuw. Integrating robust clustering
techniques in s-plus. Computational Statistics and Data Analysis, 26:17–37, 1997. 18

[Sturmfels, 2002] B. Sturmfels. Solving Systems of Polynomial Equations. American Mathe-
matical Society, 2002. 129

[Tang et al., 2002] M. Tang, X. Luo, and S. Roukos. Active learning for statistical natural
language parsing. ACL ’02, 2002. 8

[Teicher, 1963] H. Teicher. Identifiability of finite mixtures. The Annals of Mathematical
Statistics, 34(4):1265–1269, 1963. 151

180 BIBLIOGRAPHY

[Tong and Koller, 2000] S. Tong and D. Koller. Support vector machine active learning with
applications to text classification. Proceedings of International Conference on Machine
Learning, pages 999–1006, 2000. 1, 8, 30, 47

[Vapnik, 2000] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, second
edition, 2000. 141

[Wilcoxon, 1945] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics 1,
pages 80–83, 1945. 43

[Xu and Schuurmans, 2005] L. Xu and D. Schuurmans. Unsupervised and semi-supervised
multi-class support vector machines. In AAAI ’05, 2005. 13

[Xu et al., 2003] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang. Representative sampling for
text classification using support vector machines. Proceedings of the European Conference
on Information Retrieval, 2003. 8, 16, 22, 32, 35, 38, 47

[Yu, 2005] H. Yu. Svm selective sampling for ranking with application to data retrieval.
SIGKDD ’05, pages 354–363, 2005. 2, 9, 10, 48

[Zhang and Chen, 2002] C. Zhang and T. Chen. An active learning framework for content-
based information retrieval. IEEE Trans. on Multimedia, 4:260–268, 2002. 8, 32

	1 Introduction
	2 Literature Review
	2.1 Related Work on Active Learning
	2.2 Related Work on Proactive Learning

	3 Active Learning for Classification
	3.1 Introduction
	3.2 The Dual Strategy Active Learning
	3.2.1 Motivation for DUAL Ensemble Approach
	3.2.2 Density Weighted Uncertainty Sampling (DWUS)
	3.2.3 Description of the DUAL Algorithm
	3.2.4 Experimental Evaluation

	3.3 The Density-Sensitive Paired Sampling
	3.3.1 Density-Sensitive Distance Estimation
	3.3.2 Density-Sensitive Paired Sampling
	3.3.3 Experimental Evaluation

	3.4 Chapter Conclusions

	4 Active Learning for Rank Learning
	4.1 Introduction
	4.2 Active Learning via Optimizing AUC
	4.2.1 Motivation
	4.2.2 SVM Active Learning for Ranking
	4.2.3 Experimental Evaluation

	4.3 Optimizing Estimated Loss Reduction for Active Sampling
	4.3.1 Motivation
	4.3.2 SVM Rank Learning
	4.3.3 Active Sampling for RankSVM
	4.3.4 RankBoost Learning
	4.3.5 Active Sampling for RankBoost
	4.3.6 Final Selection
	4.3.7 Experimental Evaluation

	4.4 Chapter Conclusions

	5 From Active to Proactive Learning
	5.1 Introduction
	5.2 Predictor and Instance Selection
	5.2.1 Scenario 1: Reluctance
	5.2.2 Scenario 2: Fallibility
	5.2.3 Scenario 3: Non-uniform Cost

	5.3 Experimental Evaluation
	5.3.1 Setup for All Three Scenarios
	5.3.2 Datasets
	5.3.3 Results

	5.4 Chapter Conclusions

	6 Joint Predictor Accuracy Estimation and Predictor Selection
	6.1 Introduction
	6.2 A Multi-armed Bandit Approach in Stationary Conditions
	6.2.1 Motivation
	6.2.2 Interval Estimation Learning
	6.2.3 Interval Estimate Threshold (IEThresh)
	6.2.4 Experimental Evaluation

	6.3 A Sequential Bayesian Estimation Approach in Non-stationary Conditions
	6.3.1 Sequential Bayesian Estimation
	6.3.2 Particle Filtering for Estimating Time-Varying Predictor Accuracy
	6.3.3 Particle Filtering for Predictor Selection
	6.3.4 Experimental Evaluation

	6.4 Chapter Conclusions

	7 Unsupervised Estimation of Classification and Regression Risks
	7.1 Introduction
	7.2 Unsupervised Risk Estimation Framework
	7.2.1 Non-Collaborative Estimation of the Risks
	7.2.2 Collaborative Estimation of the Risks: Conditionally Independent Predictors
	7.2.3 Collaborative Estimation of the Risks: Conditionally Correlated Predictors
	7.2.4 Extensions to Missing Values

	7.3 Statistical Analysis of nmle and (fj)
	7.3.1 Consistency
	7.3.2 Asymptotic Variance

	7.4 Optimization Algorithms
	7.5 Experimental Evaluation
	7.6 Chapter Conclusions

	8 Unsupervised Margin-Based Risk Estimation
	8.1 Introduction
	8.2 Unsupervised Margin-Based Risk Estimation
	8.2.1 Asymptotic Normality of f(X)|Y
	8.2.2 Statistical Consistency

	8.3 Experimental Evaluation
	8.3.1 Application 1: Estimating Risk in Transfer Learning
	8.3.2 Application 2: Unsupervised Class Partition with Known Class Prior
	8.3.3 Inaccurate Specification of p(Y)

	8.4 Chapter Conclusions

	9 Conclusions and Future Directions
	9.1 Summary
	9.2 Future Directions

