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Abstract
Natural Language Generation (NLG) is the field of study that aims to endow

agents with the ability to generate language to satisfy any stated communicative
goal (CG). Today, NLG systems that converse (e.g., Meena) and co-author (e.g.,
Gmail SmartCompose) with humans aren’t just deployable, but a familiar part of
net-equipped societies. Models underlying today’s systems e.g., T5 [142], based
on neural architectures like Transformers [180], are “end-to-end" in terms of their
structure and overall learning process.

Notwithstanding these rapid strides, emerging work points to concerns about
aspects of NLG model outputs such as commonsense plausibility [102], local coher-
ence [127], and global coherence [90] that arise under their respective generation
settings. In this thesis, we identify and characterize six such generation settings that
present challenges for learning suitable end-to-end models when applied sans any
setting-specific changes.

In some of these settings, the CG specifies an unusual, esoteric set of constraints
for the outputs to satisfy, e.g., being phonetically difficult. Gold output examples,
each of which is a commonly accepted creatively coined artifact e.g., the tongue
twister She sells seashells on the seashore are hard to curate, leading to low-count,
small datasets (e.g., ≈ 400 for tongue twister generation). Feasible learning in spite
of such low data needs setting-driven changes to the learning process.

In other instances of these settings, the CG requires the output to satisfy, in addi-
tion to typical requirements like fluency, complex aspects or properties in relation to
the input such as creating commonsense plausible combinations of input concepts for
the Commongen setting [102]. Generating to satisfy these aspects needs a particularly
knowledge-rich interpretation of the input. However, the aspects in question are too
wide-ranging in scope, making such specification impractical — Thus, the CG is in
some sense “partially specified". Moreover, the training data, though not low-count,
is still at a scale insufficient to acquire the knowledge tabula rasa. It is hence needed
to bridge this knowledge gap by incorporating explicit sources of knowledge into the
learning process such as, e.g., augmenting input via grounding in another modality
for Commongen [46].

Some instances of these settings may even constitute a challenging blend of
the above two classes, with unusual output constraints married with a knowledge-
intensive output-input relationship mandated by the CG e.g., Generating sarcastic
comments about an input short story.

We show how each setting benefits from a specific, setting-inspired intervention
in the end-to-end nature of the NLG model architecture and learning process to design
a final, improved NLG system that viably generate outputs satisfying the CG.

The sheer diversity of linguistic form means there will always arise new, data-
deficient NLG settings that involve unusual constraints, underspecified CGs or other
challenging configurations of CG, output and input. This thesis illustrates a general
method for addressing such situations systematically. We sketch a general recipe
outlining how to design such interventions.
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Chapter 1

Introduction

The old order changeth yielding place to

new;

And God fulfills himself in many ways,

Lest one good custom should corrupt the

world.

Lord Alfred Tennyson

The old that is strong does not wither,

Deep roots are not reached by the frost.

JRR Tolkien

1.1 Motivation

Natural Language Generation (NLG) is a field of study which aims to endow machines with the

ability to generate human language to satisfy a stated communicative goal (CG). The CG can

encompass given input information, constraints on the output, and a multitude of other components

and specifications. NLG is a subfield of Natural Language Processing (NLP), and is often seen as

a dual to Natural Language Understanding (NLU). Solving NLG is a key prerequisite to realizing

the overall goal of building an “AI-Complete" machine.

Notwithstanding the steady progress made in recent years by models instantiating the end-to-

end trainable neural NLG pipeline (that we shall also refer to as E2EN2PP), emerging work points

to concerns about aspects of their outputs, both in isolation as well as in the way they relate to
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their input and other CG components. Such aspects include, inter alia, commonsense plausibility

[102], local coherence [127], and global coherence [90]. This growing body of work underscores

the importance of identifying families of settings and situations where state-of-the-art models

instantiating the E2EN2PP cannot be deployed in direct fashion with satisfactory results.

Motivated by this, through this thesis, we aim to identify and characterize that present

challenges for learning suitable end-to-end models.

In some of these settings, the CG specifies an unusual, esoteric set of constraints for the outputs

to satisfy, e.g., being phonetically difficult. Gold output examples, each of which is a commonly

accepted creatively coined artifact e.g., the tongue twister She sells seashells on the seashore are

hard to curate, leading to low-count, small datasets (e.g., ≈ 400 for tongue twister generation).

Feasible learning in spite of such low data needs setting-driven changes to the learning process.

In other instances of these settings, the CG requires the output to satisfy, in addition to

typical requirements like fluency, complex aspects or properties in relation to the input such as

creating commonsense plausible combinations of input concepts for the Commongen setting

[102]. Generating to satisfy these aspects needs a particularly knowledge-rich interpretation of the

input. However, the aspects in question are too wide-ranging in scope, making such specification

impractical — Thus, the CG is in some sense “partially specified". Moreover, the training data,

though not low-count, is still at a scale insufficient to acquire the knowledge tabula rasa. It

is hence needed to bridge this knowledge gap by incorporating explicit sources of knowledge

into the learning process such as, e.g., augmenting input via grounding in another modality for

Commongen [46].

Some instances of these settings may even constitute a challenging blend of the above two

classes, with unusual output constraints married with a knowledge-intensive output-input relation-

ship mandated by the CG e.g., Generating sarcastic comments about an input short story.

The rest of the introduction is organized as follows:

First, we provide a set of definitions for the main terms employed in the thesis.

Next, in total, we present six concrete instances of these classes: We show how each setting

benefits from a specific, setting-inspired intervention in the end-to-end nature of the NLG model

architecture and learning process to design a final, improved NLG system that viably generate

outputs sufficiently satisfying the CG. We sketch out a general recipe outlining how to design

such interventions. The sheer diversity of linguistic form means there will always arise new,

data-deficient NLG settings that involve unusual constraints, underspecified CGs or other barriers

complicating the learning process. Through this thesis, we illustrate a general method for

addressing such situations systematically.
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Finally, we present a short summary encapsulating this chapter, and an Appendix with

additional terminology and figures.

1.2 Terms & Definitions

1.2.1 Preliminaries & Guiding Principles (Generic Definitions)

1. Grammar, Grammaticality & Fluency:
A grammar is a set of rules of the form Σ∗ → Σ∗, defined over an alphabet of symbols

Σ = NT ∪ T , where NT are the non-terminal symbols and T are the terminal symbols.

We call a piece of text grammatical or say that it possesses grammaticality if it can be generated

by the grammar of English, or the language under question. Note, however, that it is an almost

impossible task to write a grammar for an entire existing, sui-generis language which handles

all sentences/phenomena seen in that language, though even the earliest grammarians like

Panini [153] have made attempts at this. As a result, when we say grammatical what we

mean is that the piece of text would be considered acceptable by most native speakers of the

language when they are asked so, and is hence also sometimes called acceptability. A related

but slightly different notion is that of fluency — note that the slight difference here arises

from the well-studied competence (acceptability) vs performance (fluency) distinction [121] in

linguistics — i.e text is fluent is if it sounds like a natural text you would hear from a native

speaker of the language — such texts of course would be largely grammatical , but it would

also exclude grammatical sentences which are meaningless i.e., they are so implausible that it

is hard to assign them a meaning, even an abstract or imaginative one e.g., Chomsky’s famous

example Colorless green ideas sleep furiously.

2. Language Model:
A language model (LM) defines a probability distribution P (s) over all possible word (or

subword/character, depending on modelling choice and task etc.,) sequences s ∈ S, where S is

the Kleene closure of the vocabulary V .

Many LM architectures are factored in left-to-right fashion P (s) = Π
i=|s|
i=2 Pnext(wi|si−11 ), where

Pnext is the next-word distribution and si−1i is the subsequence of the first (i− 1) elements of

s. Note that there also exist other formulations, e.g., whole sentence language models [154].

3. Transducer
A transducer is a model fθ() : V ∗in×X → V ∗out which can accept an input sequence string sinp ∈
V ∗in from an input vocabulary Vin, where ∗ is the Kleene closure and θ are the transducer’s
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parameters, along with other potential inputs/parts of the communicative goal (themselves

symbolic or continuous) xin ∈ X , and output a sequence sout ∈ V ∗out. The transduction

function can be written as xout = fθ(sin, xin)

Any NLG model basically functions as a transducer at inference time/test-time (taking in the

communicative goal and returning the output sequence), though the internal representations,

learning process and architecture can vary significantly.

When X = ϕ and and Vin ⊂ Vout, it becomes possible to use any left-to-right factored language

model architecture as a transducer. This is since one can now feed in sin as the first few tokens

of a segment to function as a “prompt" to the language model (this part is “teacher forced"

running of the model, i.e., since the sequence is predetermined, the language model is only fed

the sequence under question) and then predict out sout using the language model using some

decoding method (see §2 for more). Note that the typical traditional view in NLG requires

X to always be non-empty since the host system invoking the NLG model always has atleast

something computed which it needs to convey to the model.

Transducer models which have two roughly separatable modules can be called Seq2Seq or

encoder-decoder models. The first module, or the encoder is for representing sin in some

symbolic or continuous intermediate form h (Note that h could even be a sequence or set of

things, e.g., a set of vectors). The second module uses h to then generate sout — this module is

known as the decoder. The term Seq2Seq is also often used in a wider sense for any neural

transducer and not just the particular form above. Seq2Seq models where the decoder uses

some internal form of attention mechanism [5] are also described as attentional.

4. Infilling
Intuitively, infilling refers to the process of using a learnt model to perform “fill in the blanks"

i.e., predicting a masked out token (usually using a special character e.g., [MASK]) given its

surrounding context. Depending on the model architecture and training, this might involve

the entire left and right contexts or subsets of them (e.g., only the left context for left-to-right

language models).

5. Systemic Functional Linguistics
Systemic Functional Linguistics (SFL) was a theory devised by the linguist M.A.K. Halliday

in the 1970s [60] SFL categorizes subgoals or subparts of the communicative goal into three

metafunctional categories:

(a) Ideational Goals: These subgoals pertain to the author’s state of mind; their knowledge,

memory and experience about the various states of the world (factual, physical etc.,) inter

alia .
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(b) Interpersonal Goals: These subgoals pertain to the relationship between the speaker and

the listener/addressee. It also subsumes subgoals pertaining to the medium of transmission,

or the individual physical / emotional states of the addressee

(c) Textual Goals: These subgoals pertain to choices in terms of the order of presentation

of information in the text, the subset of textual surface forms employed, and the internal

structure and packaging of the text in terms of its constituent sentences, phrases, words

and other elements.

6. Rhetorical Goals
The non-textual subgoals of the wider communicative goal, namely those which can be

categorized under the Ideational and Interpersonal metafunctions are also sometimes referred

to as Rhetorical Goals.

1.2.2 Defining a NLG System

Having laid out preliminaries, guiding principles, and other generic definitions, we shall now

define a NLG system and associated concepts.

Communicative Goal (CG)

The overall goal which the output of the NLG system must satisfy in order for the process of

generation, and consequently the model, to be deemed successful. This also includes all the

information which the NLG model needs to modify, process and condition on while generating its

output.

It is common to characterize and address certain parts (or subgoals) of the CG as controls,

input and style(s) etc., though the choice of these parts is highly subjective in nature — for

example, for a movie review, the sentiment is considered part of the “input" when doing formality

transfer, but is considered a “control/style" when doing sentiment transfer.

Subtasks

The subtasks of natural language generation are a conceptual decomposition of the activities to

be performed to generate a text, given a CG. They may also be thought of as subgoals to be

accomplished before the overall CG has been achieved.

1. Content Selection:
Before generating the sentences and words, it is necessary to decide “What all to say?" out of
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all the potential things which suitably fit the communicative goal. The set of these choices is

called content selection.

2. Content Ordering:
Having decided what to say, it is necessary to decide “In what order?" the selected pieces

of information from content selection would be presented in. The process of chooosing

this is content ordering. Collectively with content selection, the two are also referred to as

Macroplanning or Sentence Planning. This can be heavily dependent on the rhetorical goals

(roughly speaking, extra-textual goals; see §6 for a complete description) e.g., For a Twitter

thread, it might be required to place more retweetable and topically high-coverage content

earlier on.

3. Sentence Aggregation:
This subtask pertains to the breaking up and packaging of the content to present into sentences,

according to the broad order decided in Content Ordering.

4. Lexicalization:
This subtask refers to the choice of which word forms to broadly use in each sentence. Note that

some subdecisions maybe left unspecified for the latter stages, especially Surface Realization.

5. Referring Expression Generation:
Referring Expression Generation, a.k.a. Refex Generation, is the choice of expressions, or

refexes to point to various entities, events or other item types while mentioning them at each

point in the generation. (this can include pieces of the generated output itself i.e., discourse

segments e.g., as in “In our earlier argument, . . . ")

6. Surface Realization:
Also referred to simply as Realization, this refers to the final, explicit generation of the output

text, resolving all the partially specified elements from earlier stages, as well as filling in

remaining gaps based on syntactic, co-occurrence based, prosodic and other considerations.

Though there is a natural ordering and sequence to the subtasks based on their typical mutual

dependency, and that is the order in which we shall present them, they need not always be

performed in that order, though the Classical NLG Pipeline which we shall describe in 1.3.3

makes a best attempt to do so. For instance, for many a CG, Referring Expression Generation

might be entirely independent of Lexicalization. For some others, it may be very closely tied to

syntax (e.g., in pro-drop languages like Spanish) (and hence would need to be revised) during

Surface Realization.
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End-to-End Neural NLG Pseudo Pipeline

End-to-End Neural NLG Pseudo Pipeline or E2EN2PP refers to the canonical neural architecture

for NLG based on the Seq2Seq paradigm, where one or more encoders first encode the CG. Next,

the encoder representations are aggregated or functionally transformed in various ways. Finally, a

decoder network uses any of the encoder representations to compute the probability/loss functions

based additionally off the gold output (at training time) or to generate the output text at test-time

using some inference/search procedure or sampling method.

Note that the Seq2Seq paradigm in general, and our characterization of it here in particular,

though general enough to include many paradigms of neural architectures, do not cover all of

them exhaustively — particular exceptions being VAEs, GANs, Energy-Based Models etc. We

leave performing a similar study on these models with a generalization of our framework, as we

do in this thesis, as a point for future work.

Concept-To-Text-Generation Tasks

These are tasks where the CG requires generating a pertinent output of one or a few sentences,

given a largely unstructured or semi-structured collection of “concepts" as an input. We will also

refer to the input in such tasks as concept set or input concept set. Commongen [102] (where

the task is to generate a single sentence describing a situation involving all the given concepts)

and WebNLG [54] (where the task is to describe a sequence of SVO triples) are two prominent

examples of this family of tasks.

1.3 Contributions & Structure

Having defined the supporting terms and concepts, we now proceed to describe in detail the

data-deficient NLG settings we motivated in §1.1 through studying a total of six such instance

settings. Each instance summary also includes a brief description of the associated Intervention
to the E2EN2PP.

The rest of this thesis is split into two parts — Setting Instances (see §II) and Conclusion

(see §III). Part §II is further subdivided into chapters, each of which present a new generation

setting which require interventions to the end-to-end nature of the E2ENLPP. We shall present

six chapters in Part §II . This shall be followed by some concluding thoughts and a sketch of

future directions in Part §III.

9



September 7,2022

1.3.1 Part II: Setting Instances

Preface

A large fraction of natural language consists of a stream of fluent, plausible-sounding and topically

consistent text intended to communicate the author’s underlying message while adhering to certain

basic constraints such as media constraints, interpersonal norms and the Gricean maxims.

However, some settings deviate from this characterization. A smaller, though significant,

fraction of natural language also abounds with creative devices of expression e.g., metaphors,

idioms, tongue twisters, portmanteaus and personification. Through use of these devices, the

author can more actively engage the reader and fulfill other subgoals beyond mere communication

such as being memorable, persuasive etc.

A truly AI-complete NLG system with abilities close to a human speaker must also be capable

of performing in settings where it is required to generate one of these specific devices e.g.,

generating a tongue twister given a short textual prompt or a set of keywords, as we shall discuss

in Chapter 4. Instead of merely proposing a collection of idiosyncratic expressive devices and

associated settings each with their own completely unique method, we in this thesis aim to provide

a single overarching approach and methodology to address them all in parallel ways, thereby

providing a template for also addressing future unusual expressive devices of a similar nature.

For many NLG settings, the input is employed by the CG to merely provide the direct, basic

textual context or “bounding box" within which generation takes place, with the CG in addition

specifying/laying out the remaining conditions and constraints an output should satisfy, either

explicitly or inductively through the choice and diversity of training examples provided. This

includes common settings such as abstractive summarization, where the input document provides

the overall content, while the rest of the CG explicitly specifies the constraints on the summary

such as length/style (tweet vs headline?) and additional controls (such as a question in query-based

summarization).

However, there do exist some atypical settings deviating from this characterization as well.

In these settings, the CG specifications require using, interpreting and representing the input

in greater detail. In these settings, the CG requires the output to satisfy, in addition to typical

requirements like fluency and input fidelity, complex aspects or properties in relation to the input

e.g., creating commonsense plausible combinations of input concepts for the Commongen setting

[102], which we shall study in Chapter 6.

Generating to satisfy such complex aspects in relation to the output needs a particularly
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knowledge-rich interpretation of the input. In an ideal scenario, one would expect this knowledge

to be specified in the CG itself, in the form of additional symbolic machinery it develops to

further ground the input w.r.t the desired aspect, such as through rules, knowledge graphs or other

symbolic information. Notions such as commonsense plausibility and relevance towards game

pragmatics maybe too vast and wide-ranging to encode or represent by these traditional means,

whether in terms of the size of the symbolset needed or the count of interactions and dependencies

the symbols would have to encode. For instance, consider having to define explicitly the game

pragmatics of chess. One may, with some difficulty, define the game rules e.g., what constitutes a

valid move, special moves (castling and en passant), end conditions etc. However, it would be an

even more intractable pursuit to define the game’s conventions e.g., typical opening moves, terms

used to describe pairwise piece configurations (developed and blocked) etc.

A complementary, implicit way the CG can specify some NLG settings is inductively i.e

through the nature and diversity of input/output pairs provided for training. However, for the

class of settings we study, the training data, though not low-count, is still at a scale insufficient to

acquire the requisite extent of knowledge tabula rasa.

Thus, for this class of settings, the CG is in some sense “partially specified". It is hence needed

to bridge this knowledge gap by explicitly incorporating another approximate knowledge source

into the learning process by intervening in the E2EN2PP.

Here, we enlisted two aspects with respect to which a generation setting can deviate from the

typical in terms of their CG, thus making end-to-end learning difficult. These two aspects are by

no means the only ones on which a setting may exhibit atypical behaviour in terms of its CG.

Defining Properties

A first defining property of such generation settings is the complex, challenging combination of

output constraints and output-input relationship specifications required in the CG.

For some settings, this takes the form of an unusual or esoteric set of output constraints

specified by the CG. e.g., for tongue twisters, the constraint that the output should be “hard to say"

i.e., constitute a phonetically difficult sequence of phonemes, which we further study in Chapter

4. The CG constraints in this class of settings also often entails thinking about a deeper layer of

representation beyond the words (and letters) and sentences themselves, such as for the above

case, the phonetics.

For some other settings, this takes the form of a complex input-output relationship that must

satisfy a knowledge-intensive notion e.g., for Commongen, which we further study in Chapter 6,
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the constraint that the output sentence must describe a commonsense plausible situation based on

the input concepts.

A second defining property of such generation settings is the data & knowledge availability.

For some settings, we only have a small size of training data available. This can naturally

arise from the low count of widely known creative artifacts in that phenomenon which were

ever creatively coined and came to garner wide acceptance. For some settings, even the few

examples available are deficient and require imputation, such as e.g., in the setting of generating a

personification-endowed sentence from a source sentence which originally lacks personification,

which we study in Chapter 3. Here, at training time, we only have access to individual sentences

which already exhibit personification e.g., My alarm clock yells at me every morning — we lack

access to paired examples of de-personified sentences and their personified counterparts.

A final defining property of these settings is the recipe through which one can overcome the

paucity of training data and construct a viable NLG model whose outputs sufficiently satisfy the

CG.

For some settings, especially those with an available external knowledge source, this is

achieved by means of an intervention explicitly incorporating the available knowledge source into

the learning process or model architecture. We study examples of this kind of intervention in

Chapters 6 and 7.

For some other settings, especially those with an esoteric collection of CG output contraints

and the absence of additional knowledge sources, this requires modifying the typical E2EN2PP

pipeline by means of a intervention incorporating motivation from a “creative story" underlining

the setting i.e., an underlying theory/schematic model that characterize how a typical human

speaker might have performed the creative phenomenon.

Consider, for instance, the setting of generating a portmanteau given a pair of root words,

which we shall further study in Chapter 4. A portmanteau is a blend of the two root words that

sounds lexically and phonetically like a typical English word, while at the same time being a

useful shorthand, i.e., reminiscent of the root words. The creative story here would involve the

human speaker utilizing two internal congitive models in unison – A first model acquired from the

English vocabulary of which candidate character sequences are word-like, and a second model

which checks whether the root words are “guessable" given a character sequence. Inspired by

this, the intervention we perform here involves a Bayesian-style refactoring from the typical,

forward factored model P(y|x) to a Noisy Channel Style Model P(x|y)P(y). We can now enforce a

“sounding word-like" bias by using English vocabulary word lists to pretrain prior P(y), much

akin to the speaker’s first model from the creative story. Furthermore, the P(x|y) more directly
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captures the aspect of the portmanteau y being reminiscent of the root words x, akin to the

speaker’s second internal model.

To summarize, each chapter/setting can be characterized in terms of three defining properties.

1. CG Definition/Constraints
2. Data & Knowledge Availability
3. Intervention: This intervention could involve incorporating elements of inductive bias, either

from the “creative story" we described earlier, or the additional knowledge sources available,

or even both when both are available.

Chapter Outline

This part of our thesis contains six chapters.

• Chapter 2: Portmanteau Generation

• Chapter 3: Personification Generation

• Chapter 4: Tongue Twister Generation

• Chapter 5: Style Transfer To Shakespearize Modern English

• Chapter 6: VisCTG: Improving Plausibility for Commongen Through Retrieve-
Caption-Generate

• Chapter 7: Viable Content Selection and Refex Generation Through Pragmatic Back-
off For Chess Commentary Generation

First, in Chapter 2, we explore the setting of portmanteau generation. Portmanteaus are a

creative word formation phenomenon where two words blend to form a new word, with a meaning

derived from but distinct to their original meanings e.g., wiki + etiquette→ wikiquette, fashion +

fascism→ fashism.

• CG Definition/Constraints: Given two root words, form a single word neologism i.e. a

blend that is

1. Lexically and phonetically “word-like"

2. Is an effective shorthand i.e., is reminiscent of and faithful to root words

• Data & Knowledge Availability: We have access to ≈ 400 examples of portmanteaus

along with their root words.

• Intervention: We first form an intuition for how intervene based on an underlying “creative

story". The creative story here would involve the human speaker utilizing two internal
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congitive models in unison – A first model acquired from the English vocabulary of which

candidate character sequences are word-like, and a second model which checks whether the

root words are “guessable" given a character sequence.

1. Bayesian refactoring from a forward factored model P(y|x) to Noisy Channel Style

model P(x|y)P(y)

2. Enforcing the “sounding word-like" bias from the CG constraint as well as the speaker’s

first cognitive model from the creative story by pretraining the prior P(y) on all character

sequences corresponding to English vocabulary word types.

Specifically, the intervention to the E2E NLG pipeline required here, is fleshed out in Figure

1.7.

This work on its completion was accepted for publication as a short paper at EMNLP 2017. The

respective publication is [50].

Next, in Chapter 3, we study the setting of personification generation. A personification is

a figure of speech that endows inanimate entities with properties and actions typically seen as

requiring animacy.

• CG Definition/Constraints: Given a literal source sentence lacking prior personification,

introduce personification by assigning an inanimate entity animacy-requiring attributes/roles.

This CG constraint points to the importance of the deeper layer of underlying dependency

structure in the target-side, personified sentences.

• Data & Knowledge Availability: As training data, we only have access to ≈ 350 examples

of target-side, personified sentences. Note that this data, besides being low count, is also

incomplete in terms of the typical source-target parallel data used to train end-to-end models

— we lack access to source-side, depersonified input sentences.

• Intervention: We first hypothesize a creative story based on a TOPIC-ATTRIBUTE

relationship between the TOPIC, which is an inanimate entity and its animacy-requiring

ATTRIBUTE, which is a dependent based on the dependency structure. This TOPIC-

ATTRIBUTE structure is illustrated through examples in Figure 1.3.

Based on this creative story, we devise a two-step intervention to the E2EN2PP corpus

curation and consequently, the overall training process.

1. Devising a “de-personification" pipeline to construct noisy source-side inputs xnoisy

which replace the animacy-requiring portions of the sentence with equivalent animacy-

agnostic ones. using off-the-shelf dependency parsing, commonsense knowledge bases
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Figure 1.1: Overview of the de-personification pipeline.

and pre-trained BART infilling followed by a 3-component candidate heuristic to enforce

loss of ATTRIBUTE animacy, whilst preserving fluency and meaning

2. Using the constructed, pseudo-parallel pairs to finetune a well-pretrained transduction

model checkpoint, e.g., BART or T5.

Specifically, the intervention to the E2EN2PP corpus curation and overall training process

required here, is fleshed out through Figures 1.1 and 1.2 respectively. The de-personification

pipeline shown in Figure 1.1 is in turn based on the underlying TOPIC-ATTRIBUTE

schematic model/“creative story" depicted through examples in Figure 1.3.

This chapter on its completion was submitted as a long paper to COLING 2022 and is currently

under review.

Moving further, in Chapter 4, we study the setting of tongue twister generation from short

prompts/keywords. Tongue twisters are meaningful sentences that are difficult to pronounce e.g.,

She sells seashells on the seashore. The process of automatically generating tongue twisters is

challenging since the generated utterance must satisfy two constraints at once: phonetic difficulty

and semantic meaning. Furthermore, phonetic difficulty is itself hard to characterize and is

expressed in natural tongue twisters through a heterogeneous mix of several phenomena such as

alliteration and homophony.

• CG Definition/Constraints: Given a short textual or keyword prompt, generate a complet-

ing sequence of graphemes such that it

1. Forms a fluent, meaningful sentence

2. Is also articulatorily difficult i.e., forms a sequence of phonemes that is “hard to say".

• Data & Knowledge Availability: The coining of a novel, unique tongue twister that
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Figure 1.2: Overall model pipeline after intervention for the setting in Chapter 3 . The left part of
the diagram shows the atypical corpus curation process, which represents an intervention to the
E2EN2PP. Instead of using naturally available parallel data, which is missing in this setting, an
Automatic De-personification Pipeline, further described in Figure 1.1 is used to construct noisy
inputs (de-personified sentences). The right part of the diagram shows the training and generation
process.
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ATTRIBUTE Type Example

Noun The planet earth is our mother.
Verb My alarm clock yells at me to

get out of bed every morning.
Adjective Justice is blind and, at times, deaf.

Figure 1.3: Examples of different variations of personification with their respective AT-
TRIBUTES and TOPICS, as proposed by our TOPIC-ATTRIBUTE formulation (TOPICS in red
and ATTRIBUTES in blue).

spreads sufficiently to become normative and well-recognized is rare, hence making them

a long-tailed linguistic phenomena [120]. As training data, we only have access to ≈ 644

examples of tongue twisters including their accompanying prompts.

• Intervention: We first hypothesize a creative story. Consider the idealized scenario where

we have a "articulatory model" that a) maps voicing and place and manner of articulation

to the phones being produced and b) based on this grounding can quantify the articulatory

difficulty of producing a sequence of phones. Assuming access to this idealized model, one

could deconstruct the process of generating a tongue twister as sampling a sequence of

preferably difficult, i.e. distant phone-phone transitions starting with an initial sequence

of one or more phones. However, there are impediments that make realizing such an

idealized model considerably intractable. Firstly, the dictionary of fundamental sounds

at the granularity we use in practice, i.e. at the level of phonemes, does not neatly map

to particular points of the palate [94]. Secondly, a tongue twister as per its definition

is not merely a difficult to pronounce sequence of phonemes — but also one that maps

to a meaningful and fluent sequence of words. How one can maintain this property in

conjunction with the process of sampling difficult transitions from the articulatory model’s

space is not immediately clear.

However, one answer, could lie with using strong pretrained models such as GPT-2, which

are already primed to generate fluent and meaningful completions in grapheme space. If

only we had a way to make them phonetically aware, they could be finetuned towards

phonetic hardness. Based on this intuition, we devise a two-step intervention to the typical

E2EN2PP training process.

1. At training time, instead of finetuning GPT-2 in grapheme-to-grapheme (G2G) mode
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Figure 1.4: Overview of the phoneme-aware, scaffolded training mechanism in the post-
intervention “PANCETTA" model from Chapter 4. Note how the typical Grapheme-to-grapheme
mode is the one used for actual inference, with the other three modes serving as training-time only
“scaffolding", making the model phoneme-aware and biased towards phonetic hardness.

alone, as would be typical, we heterogenously finetune it to generate either of phoneme/-

grapheme completions from prompts in either of phoneme/grapheme form.

2. At inference time, use grapheme-to-grapheme (G2G) mode to infer from learnt model.

The other 3 finetuning modes (G2P, P2G,G2G) merely served as a training-time, “scaf-

folding" mechanism.

Specifically, the intervention to the E2EN2PP training process required here, is fleshed out

through Figure 1.4.

This work on its completion was submitted as a long paper to EMNLP 2022 and is currently

under review.

In Chapter 5, we address the aspect of controlling diachronic register, which is expressed

primarily through lexico-phrasal means. Specifically, we explore the task of transferring the style

of a given sentence authored in contemporary English, such as e.g. I am in a rush, to the style

of William Shakespeare, who wrote in the Early Modern English prevalent in Elizabethan times,

such as e.g., I stand on sudden haste.

• CG Definition/Constraints: Given an English source sentence, transduce it lexico-syntactically

to sound like Early Modern English while preserving the source’s original meaning.

• Data & Knowledge Availability: We have access to ≈ 10000 parallel source-target pairs.

This is an order of magnitude lower than the typical counts of parallel data used to train

strong machine translation models. Additionally, we have access to a knowledge source: a

noisy, sparse lexicon of ≈ 1000 source→ target lexical correspondences, e.g., thou→ you.

• Intervention:
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1. Tying together the source and target side embedding spaces after forming a unified

vocabulary. The shared embedding space is now pretrained on a combination of the

source and target-side sentences.

2. Incorporating pairwise lexical knowledge into the E2EN2PP pipeline through incorporat-

ing pairwise constraints such as e.g., thou→ you into the shared, pretrained embedding

space

This work on its completion was accepted as a long paper at the EMNLP 2017 Workshop on

Stylistic Variation. The respective publication is [76].

Next, in Chapter 6 we study the Commongen [102] setting, where the CG is to generate a

sentence constructing a commonsense plausible situation from a given set of input concepts.

Data & Knowledge Availability: We first identify several critical issues in baseline model gener-

ated outputs for this task, like poor plausibility, inadequate lexical relationships, and incomplete

arguments etc. We posit that properties specific to the textual modality, such as the Gricean maxim

of Quantity and the Zipfian nature of concept occurrence, could indeed have a marked negative

downstream effect on the NLG model’s learning for CommonGen. We posit that using the visual

modality as an External Knowledge Source could be advantageous. We devise an Intervention
that augments the input concepts by drawing information from the visual modality to help dampen

this negative effect.

Intervention: Specifically, the intervention we devise to the E2EN2PP is the addition of an Input

Expansion Layer between the Input and the Embedding Layer. Before passing the input string to

the Embedding Layer, the Input Expansion Layer symbolically augments it with the captions of

retrieved relevant images. Figure 1.9 illustrates our intervention.

A work based on this chapter was accepted as a long paper at AAAI 2022 [45].

Finally, in Chapter 7, we study the NLG setting where the CG requires generating a short,

interesting natural language commentary sentence for each chess game move during gameplay.

We show how S2S models simply based on a E2EN2PP suffer from the common response

problem [36] and fail to produce commentary that is even at the level of a template based baseline.

We posit that this arises from the inability to acquire tabula rasa the pragmatic knowledge necessary

to understand the input game state.

We posit that using game libraries such as pychess, which can extract and enlist pragmatically

pertinent piece attributes and inter-piece interactions, as an External Knowledge Source could

be advantageous.

We devise an Intervention that includes an additional Pragmatic Interpretation Layer to
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discretely featurize the board states using the pychess game library, essentially backing off to

pragmatic game knowledge to viably declutter the input states, thereby simplifying the under-

standing and overcoming the microplanning and macroplanning issues observed. The devised

intervention in the E2EN2PP that needs to be done can be seen in Figure 1.8.

A work based on this chapter was accepted as a long paper at ACL 2018 [77].

1.3.2 Summary of Chapter

In summary, this chapter first started out by motivating the need to study NLG settings where the

E2EN2PP in its typical form proves insufficient, and that require interventions to the E2EN2PP to

overcome the challenging CG and lack of data. After laying out the basic terms and definitions, it

then illustrated the range of such settings by summarizing six specific instances, each summary

also enclosing a brief description of the required intervention to the E2EN2PP. The description of

the intervention within each class, is presented following a common “recipe" or guiding thought

process. The individual chapters which follow will now flesh out each instance in complete detail.

1.3.3 Appendix

Additional Terms & Definitions

Below, we lay out additional terms and definitions to further support the ones we already covered

earlier in the chapter.

1. Finite State Automatons
An automaton is a finite-memory (or one-step memory) accept-reject mechanism that can take

in a sequence of symbols from some symbolset Σ as input. Internally, the automaton consists

of a i) set of states ii) transition arcs between states which are traversed based on the current

input symbol read iii) start and end states ; note that these are from the existing states and may

themselves overlap

Symbol sequences which on being read by the automaton take it to one of its stop states are

said to be accepted by the automaton. Every automaton has a corresponding CFG associated

with it. These automatons are also known as Finite State Automatons (FSAs).

A generalization of FSA is that of pushdown automata, which are also provided with a stack of

potentially unbounded length.

Finite State Transducers (FSTs) are FSAs which can also emit output symbols during transitions

(or after reaching an input state, depending on how one may define it)
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In Chapter 2, we will see FSTs being employed by one of the baseline approaches.

2. Decoding
Decoding refers to the algorithm which finally uses a learnt NLG model to produce the output

given an instance of the communicative goal (or “input" instance, if we assume the rest of the

communicative goal to remain fixed for the “task") .

3. Gricean Maxims
The four Gricean maxims of Quality, Quantity, Manner and Relation are four general guide-

lines relating the pragmatics of the speaker and their actual utterance; implicitly followed by

most human speakers (though sometimes violated intentionally, e.g., for humour) They are

sometimes together also referred to as The Cooperative Principle.

(a) Maxim of Quantity: Be as informative as is required; but not any more. The phenomenon

of implicature is often an outcome of this maxim.

(b) Maxim of Quality: Do not say what you don’t believe in; or what you believe in but

think the evidence is insufficient.

(c) Maxim of Relation: Be as relevant as possible.

(d) Maxim of Manner: Be as clear, unambiguous, simple as you can while conveying the

information you intend to.

Medium Constraints

These are constraints relating to the medium of transmission between the speaker and the listener,

rather than their individual states or intents, or their pairwise relationship. Nonetheless, as per

the three-way SFL classification, these would constraints would be classified under interpersonal

goals, barring those which are explicitly tied to the text itself (e.g., using a maximum of 280

characters), in which case they would (also) be classified as textual goals

Controls

A control is a variable or a property defined over any text, which is specified as a part of the CG

to hold necessarily a particular range or subset of values for the target text. The set of all controls

specified in the CG are sometimes simply referred to as controls. This could include for example,

properties like the number of sentences, token length, or even continuous values such as entropy of

the word distribution. This can also encompass properties defined by way of functions or models,

such as estimators of text simplicity, or perplexity according to some pretrained language model.
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Listener

Also referred to variously as the Addressee or the Target or the Audience, this refers to the

individual or group of people who will finally read or listen to the generated text.

Classical NLG Pipeline (CNP) & Its Stages

Note that the CG itself can be thought of as the “zeroth stage" of this pipeline.

1. Macroplanning:
This stage deals with the discourse level, i.e., the level where sentences are elements; also

sometimes called the macrostructure or the macro level. This stage handles the Content

Selection and Content Organization subtasks.

2. Microplanning:
This stage deals with the sentence level, i.e., the level where words/phrases are elements;

also sometimes called the microstructure or the micro level. This stage handles the Sentence

Aggregation, Lexicalization and Referring Expression Generation subtasks.

3. Surface Realization:
This stage handles the sole final subtask — i.e., the identically named Surface Realization.

4. Need for an Overarching Rhetorical Goals Layer
To satisfy the rhetorical (sub) goals within the wider CG, which are by definition not textual in

nature, the NLG model needs to potentially factor them in at each of the subtasks in the CNP .

However, in its most basic form, the CNP only allows the CG as an input at its topmost stage,

i.e., Macroplanning, from whence it can only affect the bottom stages through the content and

order choices made at the topmost stage. This condition is naturally too restrictive and limiting.

It is for this reason that we introduce an overarching “Rhetorical Goals Layer" (depicted as a

vertically oriented cylinder in Figure 1.5) which provides access to all rhetorical goals as well

as any of their intermediate states as one traverses down the CNLP.

We borrow the idea for such a layer from [71].

Control and Transfer tasks

Controllable generation tasks [132, 137] are generation tasks with a 2-part CG.

1. A content-based or textual goal, often simply called the input or content. For instance, in

controllable infobox-to-biography generation this would simply be the Wikipedia Infobox. For

each unique test-time example, the input remains fixed.
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2. Ensemble of one or more content-orthogonal/non-content goals (interpersonal and ideational

goals, if one follows the Systemic Functional Linguistics terminology). These goals, or the

means by which these goals are achieved, are also sometimes referred to as styles. Example

control variables for controllable infobox-to-biography generation could be audience literacy,

biography length etc. The control goals can each take on two or more discrete values, and can

be dynamically varied by the user at test-time.

Transfer tasks are controllable generation tasks where the input is a fully-realized text with an

initial or default configuration of control variables. They are sometimes also referred to as style

transfer tasks.
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Intervention Diagrams

Figure 1.5: An illustration of how the Classical NLG Pipeline or CNP would work in action
for an actual generation task and input example. Here, the task is to summarize the given input
news article to within 280 characters. In addition to the classical components, we also include an
overarching “Rhetorical Goals" layer, shown as a cylinder, which is seen in certain architectures
such as that of [71]. The necessity of having such a layer for any reasonably realistic system is
explained in §6. Having such a layer becomes a necessity for most real-world NLG tasks, since
not all aspects of the communicative goal specifications deal with content (Recall the textual,
ideational and interpersonal meta-function categorization from Halliday’s Systemic Functional
Theory [62], which we also discuss in §5)
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Figure 1.6: An illustration of how End-to-End Neural NLG Pseudo-Pipeline or E2EN2PP would
work in action for an actual generation task and input example. Here, the task is to summarize
the given input news article to within 280 characters. Note that this is a Pseudo-Pipeline, since
the layers do not correspond to subtasks of NLG; moreover, they cannot be learnt or updated
independently.
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Figure 1.7: An illustration of how the End-to-End Neural NLG Pseudo-Pipeline or E2EN2PP
fleshed out in Figure 1.6 would work in action for an actual generation task and input example,
after incorporating the Intervention in Chapter 2. Here, the task is to summarize the given input
news article to within 280 characters. The forward E2EN2PP here merely acts as a candidate
generator, with the three new introduced components — Prior Estimator, Backward Model and
Reranker producing the final output distribution used to generate the Final Output (by reranking
candidates)
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Figure 1.8: An illustration of how the E2EN2PP fleshed out in Figure 1.6 would work in action
for the actual generation task and input example, after incorporating the Intervention in Chapter
7. Here, the task is to summarize the given input news article to within 280 characters. The
pragmatic knowledge store here has additional knowledge about what would be apt referring
expression preferences which the Pragmatic Interpretation Layer which it then uses to mark out
redundant referring expressions which ought to be modified.
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Figure 1.9: An illustration of how the E2EN2PP fleshed out in Figure 1.6 would work in action
for the actual generation task and input example, after incorporating the Intervention in Chapter
6. Here, the task is to summarize the given input news article to within 280 characters. The text
marked out in carrot-red in the Final Output , i.e., dedocked is clearly picked up by the model
from the caption-expanded portion of the input (also marked in carrot-red)

28



September 7,2022

Part II

Setting Instances
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Chapter 2

Portmanteau Generation
(EMNLP 2017)

For instance, take the two words "fuming"

and "furious". Make up your mind that

you will say both words, but leave it

unsettled which you will say first . . . if you

have the rarest of gifts, a perfectly

balanced mind, you will say "frumious".

Lewis Carroll, Hunting Of The Snark

Portmanteaus are a creative word formation phenomenon where two words blend to form

a new word, with a meaning derived from but distinct to their original meanings e.g., wiki +

etiquette→ wikiquette, fashion + fascism→ fashism. In this chapter, we study the NLG setting of

portmanteau generation given two root words. In terms of applications, portmanteau generation

[32] can find potential use as a lower-level submodule in creative generation tasks.

The CG Definition/Constraints for this setting are: Given two root words, form a single

word neologism i.e. a blend that is

1. Lexically and phonetically “word-like"

2. Is an effective shorthand i.e., is reminiscent of and faithful to root words

We outline and describe our Data & Knowledge Availability scenario in §2.5. We have

access to only ≈ 400 examples of portmanteaus along with their root words.

We posit an underlying Creative Story for our setting in §2.1. Based on this creative story,

we devise a two-step Intervention to the E2EN2PP learning process:
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1. Bayesian (also known as noisy channel style) refactoring from a forward factored model P(y|x)

to Noisy Channel Style model P(x|y)P(y)

2. Enforcing the “sounding word-like" bias from the CG constraint as well as the speaker’s first

cognitive model from the creative story by pretraining the prior P(y) on all character sequences

corresponding to English vocabulary word types.

Specifically, the intervention to the E2E NLG pipeline required here is fleshed out in Figure 2.1.

As a result of the intervention, we devise character-level, noisy channel style neural sequence-

to-sequence (S2S) methods for the setting of portmanteau generation that are easily trainable,

language independent, and do not explicitly use additional phonetic information. Besides the

forward factored model, our experiments also find our approach to be superior to a state-of-the-art

FST-based baseline with respect to ground truth accuracy and human evaluation.

Figure 2.1: An illustration of how the End-to-End Neural NLG Pseudo-Pipeline or E2EN2PP
fleshed out in Figure 1.6 would work in action for our actual generation task and input example,
after incorporating the Intervention described in this Chapter. The forward E2EN2PP here merely
acts as a candidate generator, with the three new introduced components — Prior Estimator,
Backward Model and Reranker producing the final output distribution used to generate the Final
Output (by reranking candidates)
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Figure 2.2: A sketch of our BACKWARD, noisy-channel model. The attentional S2S model with
bidirectional encoder gives P (x|y) and next-character model gives P (y), where y (spime) is the
portmanteau and x = concat(x(1), “;”,x(2)) are the concatenated root words (space and time).

2.1 Introduction

Portmanteaus (or lexical blends [2]) are novel words formed from parts of multiple root words in

order to refer to a new concept that can’t otherwise be expressed concisely. Portmanteaus have

become frequent in modern-day social media, news reports and advertising, one popular example

being Brexit (Britain + Exit). [134]. These are found not only in English but many other languages

such as Bahasa Indonesia [30], Modern Hebrew [7, 10] and Spanish [135]. Their short length

makes them ideal for headlines and brandnames. [49].

Some languages such as Japanese also have portmanteau-like structures, albeit with fairly

regular rules of formation, removing the need for a machine learning based approach. However,

for English, unlike better-defined morphological phenomena such as inflection and derivation,

portmanteau generation is not a typical regular phenomenon with a well-agreed upon set of rules1.

For instance, [163] state that the composition of the portmanteau from its root words depends on

several factors, two important ones being maintaining prosody and retaining character segments

from the root words, especially the head.

Creative Story

Motivated by prior work such as that of [163] described above we posit an idealized scheme for

how a human speaker might construct a portmanteau given two root words. The creative story we

posit involves the human speaker utilizing two internal cognitive models in unison: A first model

acquired from the English vocabulary of which candidate character sequences are word-like, and

1This does not imply that one cannot come up with a set of rules by observing a sufficient number of portmanteau
examples - but one is more likely to see a larger number of violations of these rules for newer examples than one
would if portmanteaus were a regular phenomenon in the English language e.g pluralization.
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a second model which checks whether the root words are “guessable" given a character sequence.

Earlier Approaches

An existing work by [32] aims to solve the problem of predicting portmanteaus using a multi-tape

FST model, which is data-driven, unlike prior approaches. Their methods rely on a grapheme to

phoneme converter, which takes into account the phonetic features of the language, but may not

be available or accurate for non-dictionary words, or low resource languages.

Contributions

Prior works, such as [42], have demonstrated the efficacy of neural approaches for morphological

tasks such as inflection. We hypothesize that such neural methods can (1) provide a simpler and

more integrated end-to-end framework than multiple FSTs used in the previous work, and (2)

automatically capture features such as phonetic similarity through the use of character embeddings,

removing the need for explicit grapheme-to-phoneme prediction. To test these hypotheses, in

this chapter, we devise a neural S2S model to predict portmanteaus given the two root words,

specifically making 3 major contributions:

• We devise an S2S model that attends to the two input words to generate portmanteaus, and

an additional improvement that leverages noisy-channel-style modelling to incorporate a

language model over the vocabulary of words (§4.3.1).
• Instead of using the model to directly predict output character-by-character, we use the

features of portmanteaus to exhaustively generate candidates, making scoring using the

noisy channel model possible (§2.4).
• We curate and share a new and larger dataset of 1624 portmanteaus (§2.5).

In Experiments (§2.8), our model performs better than the baseline [32] on both objective and

subjective measures, demonstrating that such methods can be used effectively in a morphological

task.

2.2 Related Work

Özbal and Strapparava [126] generate new words to describe a product given its category and

properties. However, their method is limited to hand-crafted rules as compared to our data driven

approach. Also, their focus is on brand names. Hiranandani et al. have devised an approach to

recommend brand names based on brand/product description. However, they consider only a
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limited number of features like memorability and readability. Smith et al. [167] devise an approach

to generate portmanteaus, which requires user-defined weights for attributes like sounding good.

Generating a portmanteau from two root words can be viewed as a S2S problem. Recently, neural

approaches have been used for S2S problems [174] such as MT. Ling et al. [106] and Chung et al.

[23] have shown that character-level neural sequence models work as well as word-level ones for

language modelling and MT. Zoph and Knight [198] devise S2S models for multi-source MT,

which have multi-sequence inputs, similar to our case.

2.3 Models

This section describes our neural models.

2.3.1 Forward Architecture

Under our first devised architecture, the input sequence x = concat(x(1), “;”,x(2)), while the

output sequence is the portmanteau y. The model learns the distribution P (y|x).
The network architecture we use is an attentional S2S model [5]. We use a bidirectional

encoder, which is known to work well for S2S problems with similar token order, which is

true in our case. Let
−−−−→
LSTM and

←−−−−
LSTM represent the forward and reverse encoder; eenc() and

edec() represent the character embedding functions used by encoder and decoder. The following

equations describe the model:

h
−→enc
0 =

−→
0 , h

←−enc
|x| =

−→
0

h
−→enc
t =

−−−−→
LSTM(henc

t−1, eenc(xt))

h
←−enc
t =

←−−−−
LSTM(henc

t+1, eenc(xt))

henc
t = h

−→enc
t + h

←−enc
t

hdec
0 = henc

|x|

hdec
t = LSTM(hdec

t−1, [concat(edec(yt−1), ct−1)])

pt = softmax(Whs[concat(hdec
t , ct)] + bs)

The context vector ct is computed using dot-product attention over encoder states. We choose

dot-product attention because it doesn’t add extra parameters, which is important in a low-data

scenario such as portmanteau generation.
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ati = dot(hdect , henci ), αt = softmax(at)

ct =

i=|x|∑
i=1

αt
ih

enc
i

In addition to capturing the fact that portmanteaus of two English words typically sound

English-like, and to compensate for the fact that available portmanteau data will be small, we

pretrain the character embeddings on English language words. We use character embeddings

learnt using an LSTM language model over words in an English dictionary,2 where each word is

a sequence of characters, and the model will predict next character in sequence conditioned on

previous characters in the sequence.

2.3.2 Backward Architecture

The second devised model uses Bayes’s rule to reverse the probabilities P (y|x) = P (x|y)P (y)
P (x)

to

get argmaxy P (y|x) = argmaxy P (x|y)P (y). Thus, we have a reverse model of the probability

P (x|y) that the given root words were generated from the portmanteau and a character language

model P (y). This is a probability distribution over all character sequences y ∈ A∗, where A is

the alphabet of the language. This way of factorizing the probability is also known as a noisy

channel model, which has recently also been shown to be effective for neural MT ([67], [192]).

Such a model offers two advantages

1. The reverse direction model (or alignment model) gives higher probability to those port-

manteaus from which one can discern the root words easily, which is one feature of good

portmanteaus.

2. The character language model P (y) can be trained on a large vocabulary of words in the

language. The likelihood of a word y is factorized as P (y) = Π
i=|y|
i=1 P (yi|yi−11 ), where

yij = yi, yi+1 . . . yj , and we train a LSTM to maximize this likelihood.

2.4 Making Predictions

Given these models, we must make predictions, which we do by two methods

2Specifically in our experiments, 134K words from the CMU Pronouncing dictionary [186].
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Greedy Decoding: In most neural sequence-to-sequence models, we perform auto-regressive

greedy decoding, selecting the next character greedily based on the probability distribution

for the next character at current time step. We refer to this decoding strategy as GREEDY.

Exhaustive Generation: Many portmanteaus were observed to be concatenation of a prefix of

the first word and a suffix of the second. We therefore generate all candidate outputs which

follow this rule. Thereafter we score these candidates with the decoder and output the one

with the maximum score. We refer to this decoding strategy as SCORE.

Given that our training data is small in size, we expect ensembling [15] to help reduce model

variance and improve performance. In this chapter, we ensemble our models wherever mentioned

by training multiple models on 80% subsamples of the training data, and averaging log probability

scores across the ensemble at test-time.

2.5 Dataset

The existing dataset by [32] contains 401 portmanteau examples from Wikipedia. We refer to this

dataset as DWiki. Besides being small for detailed evaluation, DWiki is biased by being from just

one source. We manually collect DLarge, a dataset of 1624 distinct English portmanteaus from

following sources:

• Urban Dictionary3

• Wikipedia

• Wiktionary

• BCU’s Neologism Lists from ’94 to ’12.

Naturally, DWiki ⊂ DLarge. We define DBlind = DLarge −DWiki as the dataset of 1223 examples not

from Wikipedia. We observed that 84.7% of the words in DLarge can be generated by concatenating

prefix of first word with a suffix of the second.

2.6 Baseline

In this section, we concisely discuss the FST-based approach for our task, devised by [32]. We

refer the reader to the original paper for a more detailed exposition.

The baseline approach from [32], illustrated in Figure 2.3, defines a pipeline of FSTs to

progressively transform the root words x(1) and x(2) to the output y. It also requires the root

3Not all neologisms are portmanteaus, so we manually choose those which are for our dataset.
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Figure 2.3: A sketch of the BASELINE FST-based pipeline approach from [32], starting with
the input rood words jogging and juggling to the left, leading to the final output, joggling at the
rightmost end. This approach requires both root words x(1) and x(2) to be present in the CMU
Phonetic Dictionary to get the phonetic sequences for the first step, as shown.

words to have corresponding phoneme sequences based on the CMU Pronouncing Dictionary.

The approach proceeds through the following steps.

1. Get the phoneme sequences of root words x(1) and x(2) from CMU Pronouncing Dictionary

2. FST A pretransforms the individual phoneme sequences before they are merged.

3. FST B, which has two input tapes (one for each root word) generates a merged phoneme

sequence on its “output tape", denoted by PMpron.

4. FST C reads off this phoneme sequence and reconverts it to the space of graphemes/letters,

with the output grapheme sequence being denoted PM ′.

5. Finally, FST D and FST E1,2 each do a round of successive "post-processing" of sorts,

converting PM ′ → PM ′′ and PM ′ → PM ′′ respectively. FST E1,2 has three input tapes,

since it also reads in the two root words as inputs in addition to the current portmanteau

sequence PM ′′.

6. The final, output portmanteau produced by FST is denoted PM ′′′.

The first disadvantage of this approach is its dependence on converting root words to their

phoneme sequences explicitly, which requires their presence in the CMU Pronouncing Dictionary.

Though this is not an issue for root words in the DWiki, which are all covered by the dictionary,

we find 6.36% of the root words in DBlind missing from CMU Phonetic Dictionary.

2.7 Evaluation Measures

We assess models automatically using two distinct evaluation measures.

1. Matches: This is a 0-1 (i.e., binary/boolean) measure that checks whether, for a given example,
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Model Attn Ens Init Search Matches Distance

BASELINE - - - - 45.39% 1.59

FORWARD

✓ × × GREEDY 22.00% 1.98
✓ × ✓ GREEDY 28.00% 1.90
✓ × × BEAM 13.25% 2.47
✓ × ✓ BEAM 15.25% 2.37
✓ × × SCORE 30.25% 1.64
✓ × ✓ SCORE 32.88% 1.53
✓ ✓ ✓ SCORE 42.25% 1.33
✓ ✓ × SCORE 41.25% 1.34
× × ✓ SCORE 6.75% 3.78
× × × SCORE 6.50% 3.76

BACKWARD

✓ × × SCORE 37.00% 1.53
✓ × ✓ SCORE 42.25% 1.35
✓ ✓ ✓ SCORE 48.75% 1.12
✓ ✓ × SCORE 46.50% 1.24
× × ✓ SCORE 5.00% 3.95
× × × SCORE 4.75% 3.98

Table 2.1: 10-Fold Cross-Validation results, DWiki. Attn, Ens, Init denote attention, ensembling,
and initializing character embeddings respectively.

the string form of the predicted output y exactly matches that of the gold output ygold.

2. Distance: This measure corresponds to the Levenshtein edit distance [97] between the string

form of the predicted output y and that of the gold output ygold. Levenshtein edit distance

between two strings a and b is defined as the shortest sequence of character edits (inser-

tions+deletions+replacements) needed to transform a into b. Intuitively, this allows a relaxed,

smoother comparison between y and ygold compared to Matches. Furthermore, this allows

more sensitivity to some divergence from ygold, allowing a candidate output to receive partial

credit for resembling but not exactly matching ygold.

2.8 Experiments

In this section, we show results comparing various configurations of our model to the baseline FST

model of [32] (BASELINE). Models are evaluated using exact-matches (Matches) and average

Levenshtein edit-distance (Distance) w.r.t. ground truth.

2.8.1 Objective Evaluation Results

In Experiment 1, we follow the same setup as [32]. DWiki is split into 10 folds. Each fold model

uses 8 folds for training, 1 for validation, and 1 for test. The average (10 fold cross-validation

style approach) performance metrics on the test fold are then evaluated. Table 5.3 shows the

results of Experiment 1 for various model configurations. We get the BASELINE numbers from

[32]. Our best model obtains 48.75% Matches and 1.12 Distance, compared to 45.39% Matches

and 1.59 Distance using BASELINE.
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Model Attn Ens Init Search Matches Distance
BASELINE - - - - 31.56% 2.32

FORWARD

✓ × ✓ SCORE 25.26% 2.13
✓ × × SCORE 24.93% 2.32
✓ ✓ × SCORE 31.23% 1.98
✓ ✓ ✓ SCORE 28.94% 2.04

BACKWARD

✓ × ✓ SCORE 25.75% 2.14
✓ × × SCORE 25.26% 2.17
✓ ✓ × SCORE 31.72% 1.96
✓ ✓ ✓ SCORE 32.78% 1.96

Table 2.2: Results on DBlind (1223 Examples). In general, BACKWARD architecture performs
better than FORWARD architecture.

Figure 2.4: Attention matrices while generating slurve from slider;curve, and bennifer from
ben;jennifer respectively, using Forward model. ; and . are separator and stop characters. Darker
cells are higher-valued

For Experiment 2, we seek to compare our best approaches from Experiment 1 to the BASE-

LINE on a large, held-out dataset. Each model is trained on DWiki and tested on DBlind. BASE-

LINE was similarly trained only on DWiki , making it a fair comparison. Table 2.2 shows the

results4. Our best model gets Distance of 1.96 as compared to 2.32 from BASELINE.

We observe that the Backward architecture performs better than Forward architecture, con-

firming our hypothesis in §2.3.2. In addition, ablation results confirm the importance of attention,

and initializing the word embeddings. We believe this is because portmanteaus have high fidelity

towards their root word characters and its critical that the model can observe all root sequence

characters, which attention manages to do as shown in Fig. 5.2.

4For BASELINE [32], we use the model from http://leps.isi.edu/fst/step-all.php
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Performance on Uncovered Examples

The set of candidates generated before scoring in the approximate SCORE decoding approach

sometimes do not include the ground truth. Some such uncovered examples are precise+exactly

→ prezactly and puke+extravaganza→ pukestravaganza. This holds true for 229 out of 1223

examples in DBlind. We compare the FORWARD approach along with a GREEDY decoding strategy

to the BASELINE approach for these examples.

Both FORWARD+GREEDY and the BASELINE get 0 Matches on these examples. The Dis-

tance for these examples is 4.52 for BASELINE and 4.09 for FORWARD+GREEDY. Further, a

spot checked inspection for a randomly chosen subsample also confirms example outputs from

both the approaches to be of comparable quality. Hence, we see that one of our approaches

(FORWARD+GREEDY) stands at par with the BASELINE even for these examples.

2.8.2 Significance Tests

Since our dataset is still small relatively small (1223 examples), it is essential to verify whether

BACKWARD is indeed statistically significantly better than BASELINE in terms of Matches.

In order to do this, we use a paired bootstrap5 comparison [91] between BACKWARD and

BASELINE in terms of Matches. BACKWARD is found to be better (gets more Matches) than

BASELINE in 99.9% (p = 0.999) of the subsets.

Similarly, BACKWARD has a lower Distance than BASELINE by a margin of 0.2 in 99.5%

(p = 0.995) of the subsets.

2.8.3 Subjective Evaluation and Analysis

On inspecting outputs, we observed that often output from our system seemed good in spite of

high edit distance from ground truth. Such aspect of an output seeming good is not captured

satisfactorily by measures like edit distance. To compare the errors made by our model to the

baseline, we designed and conducted a human evaluation task on AMT.6 In the survey, we show

human annotators outputs from our system and that of the baseline. We ask them to judge which

alternative is better overall based on following criteria: 1. It is a good shorthand for two original

words 2. It sounds better. We requested annotation on a scale of 1-4. To avoid ordering bias,

we shuffled the order of two portmanteau between our system and that of baseline. We restrict

5We average across M = 1000 randomly chosen subsets of DBlind, each of size N = 611 (≈ 1223/2)
6We avoid ground truth comparison because annotators can be biased to ground truth due to its existing popularity.
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Input FORWARD BACKWARD BASELINE G.TRUTH

shopping;marathon shopparathon shoathon shon shopathon
fashion;fascism fashism fashism fashism fashism
wiki;etiquette wikiquette wiquette wiquette wikiquette
clown;president clowident clownsident clownt clownsident
car;hijack carjack carjack cack carjack
dialectical;materialism dialerialism dialerialism dialism dialerialism
tinder;disaster tinter tindersaster tindisaster tindisaster
data;broadcasting datasting doadcasting dating datacasting
back;acronym backronym bacronym bacronym backronym
britain;regret bregret brigret bregret bregret
social;entertainer socialtainer sociartainer sentertainer socialtainer
chopstick;fork chopstork chopfork chork chork
happy;harmonius happonius happonius hharmonius happymonius
flexible;vegetarian flexarian flexetarian flegetarian flexitarian
laughter;orgasm lauggasm laughtergasm lasm laughgasm
frequency;recency frecency frecency frecency frecency
tender;enterpreneur tenpreneur tendereneur tenterpreneur tenderpreneur
fall;halloween falloween falloween falloween falloween
frisbee;golf frolf frisbolf frolf frolf
hitler;hillary hitlary hitlery hitlery hitlery
trump;economics trumpics trumponomics trumics trumponomics
flirtation;relationship flirtionship flirtationship flirtationship flirtationship
next;yesterday nexterday nesterday nexterday nexterday
lobster;monstrosity lobstrosity lonstrosity lobstrosity lobstrosity
global;english glonglish globlish glish globlish
puke;extravaganza pukaganza pukaganza puextravaganza pukestravaganza
beverage;avalanche bevalanche beveranche bavalanche bevelanche
excited;dimmer excimmer excimmer excitedimmer excimmer
phone;amnesia phonesia phonesia phonesia phonesia
camera;phone came camphone camphone camphone
bored;ordinary bordinary bordinary bordinary bordinary
precise;exactly prexactly prexactly prexactly prezactly

Table 2.3: Example outputs from different models. Outputs are from best peforming configurations
of the models. G.TRUTH denotes the ground truth portmanteau.

annotators to be from Anglophone countries, have HIT Approval Rate > 80% and pay 0.40$ per

HIT (5 Questions per HIT). We had 2 annotations per question and considered each annotation as

a separate judgement, without doing per-example aggregation. Nevertheless, the two annotations

showed a reasonably high Pearson correlation of 0.6191.

As seen in Table 2.4, output from our system was labelled better by humans as compared

to the baseline 58.12% of the time. Table 2.3 shows outputs from different models for a few

examples.
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Judgement Percentage of total

Much Better (1) 29.06
Better (2) 29.06
Worse (3) 25.11

Much Worse (4) 16.74

Table 2.4: AMT annotator judgements on whether our system’s proposed portmanteau is better or
worse compared to the baseline

2.9 Conclusion

In this chapter, we explored a data-deficient setting involving NLG as a creative process at the

lexical and phonetic level.

We had access to only ≈ 400 examples of portmanteaus along with their root words. Thus, we

had the poor Data & Knowledge Availability characteristic of this class of settings being present.

We first hypothesized an underlying Creative Story (see §2.1 for more). Based on this creative

story, we devised an Intervention to the typical E2EN2PP learning process to change the learning

process in two step. The first step involved a Bayesian refactoring to make the model distribution

structure closer to the Creative Story. The second involved an unsupervised pretraining step to

better learn the prior component of this distribution.

Specifically, we devised a noisy channel style, neural NLG system to model portmanteau

generation. Our experiments show the efficacy of devised system in predicting portmanteaus

given the root words. Our methods can be learnt without using external phonetic resources, and

learn from existing list of portmanteaus and word types.

We conclude that pretraining character embeddings on the English vocabulary helps the model.

When we additionally incorporate a character-level next-character prediction module pretrained

on word types through a prior, we are able to outperform both:

a) earlier state-of-the-art models based on explicit phonetic knowledge from [32].

b) Non-Bayesian, forward factored and non-pretrained "direct" neural approaches.

This shows that the Intervention performed to the E2EN2PP as shown in Figure 2.1, leading

to a departure from its end-to-end nature, was indeed justified and benefited end-task performance.

Through human evaluation we show that our model’s predictions compare favourably to

the baseline. We have also released our dataset and code7 to encourage further research on the

phenomenon of portmanteaus. An obvious extension to our work is to try similar models on

multiple languages.

7https://github.com/vgtomahawk/Charmanteau-CamReady
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Chapter 3

Personification Generation
(Under Review @ COLING 2022)

As for me —there is another partner

waiting for me, a teacher whom I knew

long ago — his name is solitude.

Iris Murdoch — The Green Knight

Know the grave doth gape for thee thrice

wider than for other men.

William Shakespeare — Henry IV

A personification is a figure of speech that endows inanimate entities with properties and

actions typically seen as requiring animacy. In this chapter, we study the NLG setting of personifi-

cation generation. To this end, we formulate PINEAPPLE: Personifying INanimate Entities by

Acquiring Parallel Personification Data for Learning Enhanced Generation.

The CG Definition/Constraints for this setting are: Given a literal source sentence lacking

prior personification, introduce personification by assigning an inanimate entity animacy-requiring

attributes/roles e.g., My alarm clock yells at me every morning, where the inanimate alarm clock

is assigned as the agent of the animate agent-requiring verb yells. This CG constraint points to the

importance of the deeper layer of underlying dependency structure in the target-side, personified

sentences.

We outline and describe in detail our Data & Knowledge Availability scenario in §3.2.

As training data, we only have access to ≈ 350 examples of target-side, personified sentences.
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Note that this data, besides being low count, is also incomplete in terms of the typical source-

target parallel data used to train end-to-end models This is since we lack access to source-side,

depersonified input sentences.

We posit an underlying Creative Story for our setting in §3.2.1, inspired by similar theories

underlying the creation of similes. Based on this creative story, we devise a two-step intervention

to the E2EN2PP corpus curation and consequently, the overall training process.

1. Devising a “de-personification" pipeline in §3.2.2 to construct noisy source-side inputs xnoisy

which replace the animacy-requiring portions of the sentence with equivalent animacy-agnostic

ones. using off-the-shelf dependency parsing, commonsense knowledge bases and pre-trained

BART infilling followed by a 3-component candidate heuristic to enforce loss of ATTRIBUTE

animacy, whilst preserving fluency and meaning

2. Using the constructed, pseudo-parallel pairs to finetune a well-pretrained transduction model

checkpoint, e.g., BART or T5.

Specifically, the intervention to the E2EN2PP corpus curation and overall training process

required here is fleshed out through Figures 3.3 and 1.2 respectively. The de-personification

pipeline shown in Figure 3.3 is in turn based on the underlying TOPIC-ATTRIBUTE schematic

model/“creative story".

We demonstrate the usefulness of our pseudo-parallel corpus by training a seq2seq model to

personify a given literal input. Both automatic and human evaluations show that fine-tuning with

PersonifCorp leads to significant gains in personification-related qualities such as animacy and

interestingness. A detailed qualitative analysis also highlights key strengths and imperfections

of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative

personifications that enhance the overall appeal of a sentence.

3.1 Introduction

Personification is the attribution of animate actions or characteristics to an entity that is inherently

inanimate. Consider, for example, the sentence “The stars danced playfully in the moonlit

sky.” Here, the vibrance of the stars (something inanimate) is being likened to dancing playfully,

which is a distinctly animate action. By allowing readers to construct clearer mental images,

personifications enhance the creativity of a piece of text [12, 35, 47].

Being able to automatically identify and generate personifications is important for multiple

reasons. First, humans naturally use personifications when communicating. When we say
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Figure 3.1: Overall PINEAPPLE model pipeline. The left part of the diagram shows the corpus
creation process, while the right part of the diagram shows the training and generation process.

something like “My phone has died,” or “My car is not cooperating,” to a dialogue system, it is

important that the dialogue system understands the intended meaning behind these personifications.

If these systems interpret personifications literally, they may fail in several downstream tasks (e.g.,

classification) since their understanding is incorrect. Being able to generate personifications also

allows dialogue agents and language models to be more creative and generate more figurative

sentences. Personification generation has additional applications such as AI-assisted creative

writing, since machine-generated figures of speech have been shown to enhance the interestingness

of written text [19].

Despite previous success in generating other figures of speech such as similes [18], metaphors

[171], hyperboles [178], irony [179], and sarcasm [63, 73], personification generation is relatively

underexplored. One key challenge is that personifications do not have an explicit syntactic structure

unlike similes which use ‘like’ or ‘as’. They are also not as loosely-defined as metaphors. Rather,

a personification requires identifying an inanimate subject together with actions or descriptions

which are commonly used on animate subjects. These steps are challenging and require our

models to understand commonsense concepts including animacy.

In line with exploring the task of personification generation, we present three main contribu-

tions: (1) We curate a dataset, PersonifCorp, of diverse personification examples from various
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sources. (2) We formulate a method called PINEAPPLE to automatically de-personify personi-

fications and create a parallel corpus of personification data along with their literalizations. (3)

Given our parallel corpus, we train a seq2seq model to personify given text. We conduct automatic

and human evaluation and qualitative analysis of the generated outputs.

3.2 Datasets

We curate a dataset called PersonifCorp of 511 personifications, with 236 coming from a publicly

available open-sourced list1 and 275 manually-filtered personifications extracted from the Deja

dataset [22]. The Deja dataset is an image-captioning dataset containing a “figurative” subset

of size 6000, of which 4.1% of the captions are labelled as personifications. We extract these

personifications and combine them with our existing list to form the final PersonifCorp dataset.

3.2.1 Characterizing Personifications

We define the elements of personification, an analogue to what was previously done for similes

[18, 122]. While similes could be decomposed into very granular structures and well-defined

elements, the unstructured nature of personifications prevents us from directly defining such

fine-grained elements for personifications. Rather, we define two main high-level elements, the

TOPIC (a noun phrase that acts as logical subject) and the ATTRIBUTE (the distinctly animate

action or characteristic that is being ascribed to the TOPIC). Figure 3.2 shows examples of how

these TOPICS and ATTRIBUTES can relate to each other.

3.2.2 Automatic Parallel Corpus Construction

In order to train a seq2seq model to generate high-quality personifications, we need pairs of

personifications along with their corresponding literalizations. However, the literalization process

may take several human-hours, which is impractical for large datasets. We therefore formulate

PINEAPPLE, a three-stage automatic de-personification process, where we first identify all valid

TOPIC-ATTRIBUTE pairs, then generate multiple candidates to replace the ATTRIBUTE of each

TOPIC. Lastly, we select the most appropriate candidate in terms of animacy, fluency, and meaning

preservation. These steps are further detailed individually below:

1https://www.kaggle.com/datasets/varchitalalwani/figure-of-speech
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ATTRIBUTE Type Example

Noun The planet earth is our mother.
Verb My alarm clock yells at me to

get out of bed every morning.
Adjective Justice is blind and, at times, deaf.

Figure 3.2: Examples of different types of personification ATTRIBUTES (TOPICS in red and
ATTRIBUTES in blue).

TOPIC-ATTRIBUTE Extraction. To identify the TOPICS and ATTRIBUTES, we consider

the dependency parse tree of a sentence and the part-of-speech (POS) tags of each of its words.

Given the tree, we extract all the nouns/pronouns which have edges pointing into it with the

nominal subject label, together with the corresponding parent nodes. For instance, in the sentence

“The stars danced in the night sky”, the word ‘danced’ is a parent of the word ‘stars’, with the

nominal subject edge relationship. We can thus identify ‘stars’ as the TOPIC and ‘danced’ as the

ATTRIBUTE. In more complex scenarios, we may need to perform some additional merging to deal

with compound multi-word TOPICS and ATTRIBUTES, as well as any additional modifiers. More

specifically, using the POS tags, we identify all words tagged as negation modifiers, possession

modifiers, nominal modifiers, adjectival complements, and objects of prepositions, and words

tagged as determiners and parts of compound phrases.2 After extracting these nodes, they are

iteratively merged with their parents in the dependency parse tree, and the merging process is

performed repeatedly until no more merges are possible. The final TOPIC-ATTRIBUTE pairs are

then identified using the nominal subject edge relationship as previously described. Examples of

the merging process can be found in Appendix 3.7.1.

Candidate Generation. Once the TOPIC-ATTRIBUTE pairs have been identified, we then

determine which TOPICS are inanimate. To achieve this, we need some type of commonsense

notion of what constitues animacy. We use COMET [14] to tap into the commonsense knowledge

present in large-scale knowledge graphs such as ConceptNet [168]. Although ConceptNet has no

explicit notion of animacy, it has certain edge relations that we can leverage to design a proxy

metric. More specifically, we use the IsA relation to design a custom IsAPerson animacy metric.

If the TOPIC of our sentence refers to an animate entity, then we expect its IsA relation score with

2The spaCy library was used to extract the dependency tree and POS tags.
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Figure 3.3: Overview of the PINEAPPLE de-personification pipeline.

Original Personification Result After De-Personifying
How far that little candle throws its beams! How far that little candle can spread its beams!
A book is a fragile creature, it suffers the wear of
time, it fears rodents, the elements and clumsy
hands.

A book is fragile, it can break from the wear of
time, it can be eaten by rodents, the elements
and clumsy hands.

The camera loves her since she is so pretty. The camera is always on her since she is so
pretty.

Any trust I had for him walked right out the door. Any trust I had for him had gone right out the
door.

The full moon peeped through partial clouds. The full moon was visible through partial clouds.
Opportunity was knocking at her door. Opportunity was knocking at her door.
The killing moon will come too soon. The killing moon will be here too soon.

Table 3.1: Example outputs of the PINEAPPLE de-personification pipeline. The ATTRIBUTES

are highlighted in blue for both the original personifications, as well as the de-personified output
sentences. The last two rows contain negative examples where the process does not successfully
de-personify the input.

the word ‘human’ to be relatively low.3 The IsAPerson metric is hence defined as follows: given

a TOPIC, we compute and average its IsA scores to various words that are synonymous or very

closely related to ‘human’, such as ‘person’, ‘man’, and ‘woman’. We call this set of ‘human’-

related words the HUMANSET. The construction and full list of words in the HUMANSET can be

found in Appendix 3.7.2. The average of these ConceptNet scores is then our final IsAPerson

animacy score.

Phrases whose IsAPerson animacy score exceeds a certain threshold 4 are considered animate;

3For the COMET ConceptNet graph, lower scores correspond to better matches.
4We use a threshold of 7.0 for the IsAPerson animacy metric. IsAPerson scores < 7.0 are considered animate,

while scores ≥ 7.0 are considered inanimate. More details regarding the selection of this threshold can be found in
Appendix 3.7.3.
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otherwise, they are considered inanimate. Since our goal is to de-personify a sentence, we can

safely discard all the animate TOPICS, as these need no further de-personification. Rather, we

focus on the inanimate TOPICS because the segment we want to de-personify most likely occurs

in the TOPIC-ATTRIBUTE pairs whose TOPIC is inanimate. Once we identify all such inanimate

TOPIC-ATTRIBUTE pairs, we mask out the ATTRIBUTE of each of them with <mask>, then

use a pre-trained BART model [99] to generate the top k = 10 candidates for each mask using

beam search with a beam size of 10. The goal of this process is to replace a possibly animate

action/characteristic with candidates that are inanimate.

Candidate Selection. Given k = 10 candidate replacement ATTRIBUTES, we now select the

most ideal replacement based on three metrics: animacy, fluency, and meaning preservation.

1. Animacy – We want the replacement ATTRIBUTE to be inanimate; otherwise we would

just be replacing an animate ATTRIBUTE with another animate ATTRIBUTE. We define

the animacy of a TOPIC-ATTRIBUTE pair as difference between the affinity for a human

(Ahuman,ATT) to do/possess the ATTRIBUTE, and the affinity for the given TOPIC (ATOPIC,ATT)

to do/possess the ATTRIBUTE. We use COMET’s ConceptNet relations to compute these

affinities; specifically, we use the CapableOf relation. To approximate Ahuman,ATT, we

compute the average CapableOf score between the given ATTRIBUTE and all words in our

previously defined HUMANSET. To compute ATOPIC,ATT, we compute the CapableOf score

between the TOPIC and its ATTRIBUTE. The final animacy score of a TOPIC-ATTRIBUTE pair

is defined as the differenceAhuman,ATT−ATOPIC,ATT. If there are multiple TOPIC-ATTRIBUTE

pairs, we consider the average animacy of all pairs.

2. Fluency – The de-personified sentences should be grammatically correct and sound natural.

To measure for fluency, we use BART’s generation scores (i.e. sum of individual token

logits in the generated output).

3. Meaning Preservation – It is important that the de-personified sentence does not stray too

far from the meaning of the original personification. We use BERTScore [197] between the

de-personified and original sentences to measure meaning preservation.

We design a composite scoring metric comprised of the aggregate scores from these 3 metrics.

Due to scaling differences, we consider the log of the animacy score. To account for the fact

that lower animacy scores imply less animate TOPIC-ATTRIBUTE pairs (which is desirable in

de-personification), we take the negative of the animacy. More precisely, we define our candidate
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score Si for candidate i as

Si = α · (− log(Sanim.)) + β · Sflue. + γ · Smean.

where α, β, γ are parameters. 5

Once Si is computed for all candidates, we select the candidate with the highest composite

score as our final de-personified sentence. A diagram of the entire PINEAPPLE pipeline is

shown in Figure 3.3, and example outputs can be found in Table 3.1.

3.2.3 Test Data Construction

While automatically generated pairs of personifications and literal de-personifications may greatly

assist with training, these may not necessarily be accurate for testing. Rather, it would be more

ideal during testing if we have ground-truth human-annotated data. To mimic our task at hand, we

gather a list of non-personified English sentences.6 We then select two annotators who are native

English speakers currently enrolled in a university with English as a medium of instruction. These

annotators were instructed to manually personify these sentences to create ground-truth reference

personifications. The final PersonifCorp test split has 72 literal + personified sentence pairs.

3.3 Experimental Setup

3.3.1 Methods

Below we outline the three models we consider, with two of them being naive baselines (COMET

and Baseline-BART) that we simply use on PersonifCorp’s test set, and the third (Finetuned-

BART) being our formulated model trained on PersonifCorp.

1. COMET: We extract the TOPIC-ATTRIBUTE pairs and identify the inanimate TOPICS using

the methods detailed in §3.2.2. Instead of generating candidate replacements using BART

like in §3.2.2, we generate candidates by considering the top k = 10 results for a given

TOPIC using COMET’s ConceptNet IsCapable relation (if the original ATTRIBUTE is a

verb) or HasProperty relation (if adjective or adverb). To incorporate a notion of animacy,

5We use α = 1, β = 1, γ = 1. Details about the tuning and selection of α, β, γ can be found in Appendix 3.7.3.
6https://github.com/tuhinjubcse/SimileGeneration-EMNLP2020#

set-up-data-processing-for-simile
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we use the previously defined ATTRIBUTE animacy Ahuman,ATT and select the candidate

with highest animacy as our final replacement.

2. Baseline-BART (BL-BART): We imitate the process outlined for the COMET baseline,

except we use a pretrained BART model to generate the candidates instead of using COMET.

All other steps (TOPIC-ATTRIBUTE extraction and candidate selection) remain the same.

3. PINEAPPLE-BART (PA-BART): We fine-tune a BART model by supplying the Per-

sonifCorp train split literal de-personified sentences (from the PINEAPPLE pipeline) as

inputs, and the original ground-truth personifications as target outputs. This is trained as a

seq2seq task. During generation, we use beam search. Further details are outlined in §3.3.3.

3.3.2 Evaluation

We consider both automatic evaluation metrics (§3.3.2) and human evaluation (§3.3.2).

Automatic Evaluation

For each model in §3.3.1, we evaluate its generated outputs on PersonifCorp’s test split using

each of the following automatic evaluation metrics:

1. BLEU [128]: We use BLEU to ensure that the generations do not greatly differ from the

inputs. We compute the BLEU score of each generated output with the literal inputs (for

meaning preservation), as well as the ground-truth reference personifications.

2. BERTScore [196]: BERTScore measures how semantically related two sentences are, and

is generally more robust than BLEU. We compute the BERTScore of each generated output

with the inputs, as well as the ground-truth reference personifications.

3. Fluency: To approximately measure the fluency of a sentence, we use generation (log-

perplexity) losses of each output using the GPT-2 language model [139].

4. Animacy: We are interested in how personified the generated output is. We use the same

animacy metric used for candidate selection in §3.2, which is a combination of how animate

the ATTRIBUTE is, as well as how inanimate the TOPIC is. More precisely, this is defined as

Ahuman,ATT −ATOPIC,ATT, where the A animacy scores are previously defined in §3.2.
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Human Evaluation

The human evaluation was conducted using paid annotators on Amazon Mechanical Turk (AMT).

Annotators were from Anglophone countries with > 97% approval rate.7 Each test example was

evaluated by exactly 2 annotators. For each test example, we first generate outputs using each of

the methods outlined in §3.3.1. Corresponding to this test instance, we then create an AMT task

page (a HIT), presenting the input literal sentence and each of the method outputs (in randomized

order) for annotation along five aspects of text quality.

Specifically, annotation was elicited for the following metrics: (1) Personificationhood (“To

what extent does the new sentence contain a personification?”), (2) Appropriateness (“Do

the personified nouns, verbs, adjectives, adverbs sound mutually coherent and natural?”), (3)
Fluency (“Does it sound like good English with good grammar?”), (4) Interestingness (“How

interesting and creative a rephrasing of the original sentence is the personified sentence?”), and

(5) Meaning Preservation (“Do the entities, their actions, interactions, and the events appear

and relate to each other in the same way as in the original sentence?”). Each metric was scored

on a Likert scale, with 1 being the lowest and 5 being the highest.

For Interestingness, we observed poor agreement scores amongst the AMT annotators.8 Hence,

for this aspect, we instead used a curated group of known, in-person annotators: a cohort of three

native English-speaking students from an American university. Amongst these annotators, we

observe a considerably higher agreement, with a Krippendorff α value of 0.5897. For selecting

this cohort from a slightly larger pool of candidates, we assessed their performance on a short

qualification test of basic English literary skills and knowhow. The final cohort chosen each

scored 85% or higher on this test. Further details are in Appendix 3.8.3.

3.3.3 Implementation Details

The PersonifCorp training corpus was randomly split into a training and validation split with an

80-20 ratio. We fine-tune a BART-base model with 139M parameters using a learning rate of 2e-5

and a batch size of 4. Training was done for 20 epochs and 400 warmup steps, and model/epoch

selection was performed based on the lowest validation loss. For generating the outputs, decoding

was done using beam search with a beam size of 10. Additional details can be found in Appendix

3.9.
7More details about the human eval are in Appendix 3.8.1.
8Further details on inter-annotator agreement scores can be found in Appendix 3.8.2.
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BLEU BERTScore
Input Gold Input Gold Fluency ↓ Animacy

Human Annotation 0.172 1.000 0.749 1.000 5.264 0.332
COMET 0.127 0.128 0.655 0.569 6.366 -2.028

BL-BART 0.132 0.133 0.728 0.617 4.573 0.106
PA-BART 0.153 0.160 0.748 0.636 5.460 0.679

Table 3.2: Average automatic evaluation results. The best-scoring method for each metric is
highlighted in bold. Higher scores are better for all metrics except for fluency.

Personificationhood Appropriateness Fluency Interestingness Meaning Preservation
Human Annotation 3.763 4.175 4.138 3.667 3.913

COMET 3.525 3.563 3.738 1.801 3.550
BL-BART 3.500 3.938 4.188 2.006 3.750
PA-BART 3.738 4.000 4.138 2.782 3.875

Table 3.3: Average human evaluation results. The best-scoring method for each metric is high-
lighted in bold.

3.4 Results and Analysis

3.4.1 Automatic Evaluation Results

Table 3.2 reports the automatic evaluation results for each of the metrics detailed in §3.3.2. We

observe that our PA-BART model performs best across all automatic metrics except for fluency,

where BL-BART performs best. The difference in performance is most significant in the Animacy

metric, which is the key metric that quantifies the degree to which a sentence is personified. This

confirms that indeed, our formulated PINEAPPLE method is successful in training a model to

personify text.

Our PA-BART model also performs well for both BLEU and BERTScore, scoring better than

the COMET and BART baselines, and coming second only to the human-written personifications.

Lastly, with regards to fluency, the BL-BART model outperforms the PA-BART model. This is

likely because when considering GPT-2 likelihood, it may unfavorably penalize creative sentences

with personifications since these are naturally less common in regular text. As an example, the

sentence “The stars danced playfully” (GPT-2 loss = 7.02) would be deemed significantly less

fluent than the sentence “The stars twinkled brightly” (GPT-2 loss = 5.24), even though they

are both valid sentences with similar meanings. This argument is further supported by the fact

that even the reference human-generated personifications received a lower fluency score than

the BL-BART outputs. Further, literal sentences are indeed typically more fluent overall than

personifications since they express the meaning literally. Nevertheless, we are still interested in the
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other qualities being measured by fluency: Is the sentence coherent? Does it make unnecessary

grammatical errors? In this regard, the fluency of PA-BART remains quite good. It is significantly

better than the fluency of the COMET personifications and only slightly worse than the fluency of

the human-written personifications.

3.4.2 Human Evaluation Results

Human evaluation results are reported in Table 3.3. Out of the five human evaluation metrics, the

most pertinent metric to the personification generation task is Personificationhood, as this metric

explicitly tries to quantify the presence and overall quality of personifications. In this metric,

our PA-BART model performs significantly better than both baselines and is only slightly worse

than the human reference personifications. This indicates that PA-BART is very successful in

generating personifications that humans are able to detect and understand.

Aside from measuring the presence of personifications, we also want to measure more fine-

grained qualities of these personifications. This is done by considering the Appropriateness and

Interestingness scores. In Interestingness, PA-BART significantly outperforms both baselines

but is worse than human annotations, while in Appropriateness, PA-BART slightly outperforms

BL-BART and is slightly worse than human annotations. Overall, we can conclude that the

personifications generated by PA-BART are of good quallity: the ATTRIBUTES match up well with

the TOPICS, and they are overall very creative. This is further exemplified through the qualitative

examples explored in §3.4.3.

Observations from Meaning Preservation and Fluency are very similar to those from the

BLEU/BERTScore/Fluency metrics in the automatic evaluations. For Meaning Preservation,

PA-BART performs best among all models, and only slightly trails human references. Meanwhile,

for fluency, BL-BART was ranked the most fluent, outperforming both PA-BART and the human

references. As discussed previously, this is likely due to the fact that literal sentences are generally

perceived to be more fluent than personifications.

3.4.3 Qualitative Analysis

Table 3.4 contains a list of color-coded qualitative examples for each method. In Figure 3.2,

we previously outlined three main types of personification TOPIC-ATTRIBUTE pairs, namely the

cases where ATTRIBUTE is a noun, a verb, and an adjective. The first three examples in Table 3.4

demonstrate the capacity of our PA-BART model to capture all three cases. In the first example,

the literal verb in “your phone rings out loud” is replaced with the more appropriate animate verb
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Method Text

Literal Input You are at a business dinner with your boss when your phone rings out loud (ex.1)
Human Ref You are at a business dinner with your boss when your phone starts singing out loud
COMET You are at a business dinner with your boss when your phone beep out loud
BL-BART You are at a business dinner with your boss when your phone rings and you answer out loud
PA-BART You are at a business dinner with your boss when your phone yells out loud

Literal Input In most horror settings, silence is key. (ex.2)
Human Ref In most horror settings, silence is the protagonist.
COMET In most horror settings, silence scary.
BL-BART In most horror settings, silence is preferred.
PA-BART In most horror settings, silence is a ghost.

Literal Input Her relationships with family and friends are very difficult (ex.3)
Human Ref Her relationships with family and friends behave very unusually
COMET Her relationships with family and friends serious
BL-BART Her relationships with family and friends have always been strong.
PA-BART Her relationships with family and friends are very lonely

Literal Input Then there weren’t any more parties as the house became silent (ex.4)
Human Ref Then there weren’t any more parties as the house kept mum.
COMET Then there weren’t any more parties as the house build.
BL-BART Then there weren’t any more parties as the house fell into disrepair.
PA-BART Then there were no more parties as the house lamented.

Literal Input It was a moonless nights, the air was still and the crickets were silent (ex.5)
Human Ref It was a moonless nights, the air was asleep and the crickets were silent
COMET It cold outside a moonless nights, the air cold outside still and the crickets noisy
BL-BART It was a moonless nights, the air was still and the crickets were calling.
PA-BART It was one of those moonless nights, the air was tired and the crickets were silent

Literal Input The sound hit Frank loud enough to make your ear hurt (ex.6)
Human Ref The sound slapped Frank loud enough to make your ear hurt
COMET The sound echo Frank loud enough to make your ear sense sound
BL-BART The sound of Frank Sinatra is loud enough to make your ear ring.
PA-BART The sound clapped loud enough to make your ear cry

Table 3.4: Qualitative examples for personification: literal input, human writing, COMET, BL-BART, and
PA-BART. More can be found in Appendix 3.10.

in “your phone yells out loud.” In the second, “silence is key” is replaced with a noun in “silence

is a ghost”, while in the third example, the literal adjective “very difficult” is replaced with the

animate adjective “very lonely”. These examples illustrate the generative flexibility of our model

and its capacity to generate diverse outputs with different parts-of-speech.

We also observe that the outputs for PA-BART generally capture the meaning of the original

text (and surrounding context) more accurately than the other baselines. In fact, the personi-

fications greatly enhance the expressiveness of some of these sentences. In the first example,

PA-BART replaces ‘rings’ with ‘yells’, while COMET replaces it with ‘beeps’, and BL-BART

leaves ‘rings’ unchanged and just adds more details. Given the context of the sentence, we see

that ‘yells’ is more appropriate, expressive, and consistent with the context. A similar argument

can be made for most of the other examples in the table: for the third example, PA-BART replaces

57



September 7,2022

the literal “very difficult” with the much more animate and expressive “very lonely”, which

is a suitable word to describe a relationship. In the fourth example, the BL-BART model is

able to successfully capture the meaning of “the house became silent” with “the house fell into
disrepair”. Although the meaning is correct, “fell into disrepair” is more literal and does not

contain a personification. Compare this with the PA-BART’s choice to replace “the house became
silent” with “the house lamented”, which fits with the overall context (“Then there were no

more parties...”), and also greatly enhances creativity by invoking the vivid image of lamentation.

Meanwhile, in the fifth example, BL-BART personifies “the crickets were silent” with “the

crickets were calling”. However, this shift completely changes the meaning, so it is a rather

poor choice of personification. In contrast, PA-BART rewrites “the air was still” as “the air was

tired”, which is a reasonable personification that is consistent with the imagery in the sentence

(“moonless nights”, “crickets were silent”). Hence, we see that PA-BART can generate creative

and meaningful personifications, while simultaneously staying true to the spirit of the sentence.

We also point out that our model is not limited to single-word substitutions. Rather, it

considers a holistic view of the entire sentence and modifies key segments as necessary. This

allows PA-BART to handle compound phrases well: consider, for instance, the one-to-many-word

substitution of ‘key’−→ ‘a ghost’ (example 2), and the many-to-one-word substitution of “became

silent” −→ “lamented” (example 4). More importantly, PA-BART is also able to simultaneously

generate personifications in two disjoint parts of the sentence, as seen in the last example: “The

sound clapped loud enough to make your ear cry.” Here, there are two personifications in “sound

hit” −→ “sound clapped”, and “ear hurt” −→ “ear cry”.

This last example also demonstrates the imperfection of our method. Although the model is

able to generate two personifications, it loses a component of the original sentence because the

recipient of the action (‘Frank’) has disappeared. This same issue of meaning or information loss

is present in example 2, where our model’s output of “silence is a ghost”, while a personification,

actually contradicts the original text “silence is key”. BL-BART’s output of “silence is preferred”,

while not a personification, correctly preserves the original meaning, as does the human reference

of “silence is the protagonist”. This suggests that the model may still need some improvements

with balancing creativity and semantic preservation. Other possible weaknesses are outlined in

§3.6.
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Novelty and Diversity Analysis

We randomly sample 30 examples from the PA-BART generations- and manually identify the

parts of the sentences that were personified, as well as the animate ATTRIBUTES used to personify

the TOPICS. Among the 30 examples, there were 27 unique ATTRIBUTES, and only 3 repeats.

Additionally, there were 9 examples which generated completely new ATTRIBUTES that were

never before seen in the training set, which demonstrates that the model is able to sufficiently

capture the essence of a personification, rather than just blindly memorizing ATTRIBUTES from

the training data.

3.5 Related Work

We present the linguistic underpinnings behind the TOPIC-ATTRIBUTE framework used in this

chapter and explore how other types of figures of speech are generated. We also explore what

makes personification generation so challenging.

Linguistic Motivations. Personifications traditionally do not have clearly defined classifi-

cations. In fact, even within the linguistic community, the definition of a personification is not

always very clear-cut [39, 61]. A study by Long [108] examines the personification structure

“nonhuman subject + predicate verb (used for humans only) + others,” as well as the structure

“others + predicate verb (used for humans only) + nonhuman object + others.” We generalize

and repackage these concepts, renaming the subject as the TOPIC and the predicate verb as the

ATTRIBUTE. In doing so, we are able to capture more general notions of animacy beyond just

verbs.

Metaphor and Simile Generation. A lot of studies on metaphors have focused on identifica-

tion using techniques like word sense disambiguation [11], topic modeling [65, 172], dependency

structures [75], and semantic analysis [70]. In terms of generation, early systems have explored

grammar rules [55], while more recently, large language models have greatly aided in metaphor

generation. Most notably, Stowe et al. [171] generate metaphors by considering conceptual map-

pings between certain domains and verbs. Chakrabarty et al. [19] further build on this by creating

a parallel corpus of metaphors and training a large language model to perform the generation.

We also note here that the two aforementioned studies already cover personifications to a

certain extent. However, these studies considered personifications as subtypes of metaphors. Some

of the methods used may not generalize well to other types of personifications. Our study is the

first to focus specifically on generating personifications.
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For generating similes, Chakrabarty et al. [18] formulate using style-transfer models with

COMET commonsense knowledge to generate similes. The study similarly creates a parallel

corpus and trains a seq2seq model to perform the generation.

Personifications. There are currently few studies that specifically work on personifications.

Gao et al. [52] detect personifications as a subtype of metaphors, but not as its own figure of

speech. Generation is largely unexplored. We believe this is likely because personifications are

generally more difficult to define and categorize. Furthermore, because several sources simplify

personifications to fall under metaphors [19? ], there is also a lack of personification-specific

datasets.

3.6 Conclusion

In this chapter, we studied the setting of personification generation. To facilitate this study, we

curated a dataset of personifications and formulated the PINEAPPLE method to automatically

de-personify text.

The dataset we curated only had ≈ 350 examples of target-side, personified sentences. Thus,

we had the poor Data & Knowledge Availability characteristic of this class of settings being

present, not just in the number but also through the incomplete nature of parallel examples

We first hypothesize an underlying Creative Story based on the elements of personification (see

§3.2.1 for more). Specifically, we posit a TOPIC-ATTRIBUTE relationship between the TOPIC,

which is an inanimate entity and its animacy-requiring ATTRIBUTE, which is a dependent based

on the dependency structure. This TOPIC-ATTRIBUTE structure is illustrated through examples

in Figure 3.2.

Based on this creative story, we devised an Intervention to the typical E2EN2PP corpus curation

process (see §3.2.2 for more) to impute source-side inputs. Specifically, this was accomplished

through a “de-personification" pipeline to construct noisy source-side inputs xnoisy which replace

the animacy-requiring portions of the sentence with equivalent animacy-agnostic ones. using

off-the-shelf dependency parsing, commonsense knowledge bases and pre-trained BART infilling

followed by a 3-component candidate heuristic to enforce loss of ATTRIBUTE animacy, whilst

preserving fluency and meaning

Using the imputed pseudo-parallel corpus thus constructed, PersonifCorp, we trained a seq2seq

model (BART) to generate creative personifications. Through automatic, human, and qualitative

evaluation, we demonstrated that these personifications make sentences more interesting and

enhance the text’s overall appeal. Our finetuned model successfully does this while maintaining a
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high level of fluency and meaning perservation.

Some weaknesses of our model include failing to personify more complex sentence structures,

as well as occasionally failing to preserve the exact meaning of the original sentence. We also

believe that our model still has room to grow in terms of the diversity of personifications being

generated. A promising future direction would be to explore possible ways to acquire more control

over which parts of the sentence are being personified or what types of personifications are being

generated.
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3.7 Appendix A: De-Personification Pipeline

3.7.1 Dependency Tree Merging Example

Figure 3.4 contains an example of the merging process that was described in the TOPIC-ATTRIBUTE

extraction step in §3.2. As outlined in §3.2, edge relations to iteratively merge are negation modi-

fiers, possession modifiers, nominal modifiers, adjectival complements, and objects of prepositions,

as well as words tagged as determiners and parts of compound phrases. The priority order for

merging is as follows: 1) compound phrases, 2) nominal modifiers, 3) possession modifiers, 4)

negation modifiers, 5) determiners, 6) objects of prepositions, 7) adjectival complements.

3.7.2 Human-Related Words

In §3.2, we defined the IsAPerson animacy metric as the average of the IsA scores between

the TOPIC and various words that are very closely related to ‘human’. We called this set the

HUMANSET. The words contained in HUMANSET are as follows: {“person”, “human”, “man”,

“woman”, “human being”, “boy”, “girl”}.

These words were empirically selected by considering a list of synonyms of the word ‘person’

and checking the IsA relation COMET scores with the word ‘human’. All of the above words

have IsA scores with ‘person’ of less than 5.10.

3.7.3 Parameters and Thresholds

IsAPerson Threshold. For the IsAPerson animacy score, we use a threshold of 7.0. IsAPerson

scores < 7.0 are considered animate, while scores ≥ 7.0 are considered inanimate. This threshold

was selected empirically using words known to be animate and words known to be inanimate.

Words tested include “she” (5.31), “person” (6.41), “moon” (8.743), “opportunity” (9.488), “stars”

(8.717), “joe” (5.804), “jane” (4.976), “the police officer” (6.462), “my friend” (6.805), “my new

iphone” (10.055). From these observations, we observe that all animate words have an IsAPerson

score of < 7.0, while all inanimate objects have a score of ≥ 7.0. We hence conclude that 7.0 is a

suitable threshold.

Candidate Selection Composite Score Parameters. For the α, β, γ used in the composite

score for candidate selection, we use values of α = 1, β = 1, γ = 1. This was selected for

two reasons. First, all of the score values had largely similar scales (logarithmic), so setting

α, β, γ to a larger value like 2 or 3 would disproportionately favor a certain metric, which is not
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Metric Spearman
Correlation

Krippendorff α

Personificationhood 0.0934 0.0250
Appropriateness 0.1660 0.1778

Fluency 0.0050 0.0942
Interestingness 0.6160 0.5898

Meaning Preservation 0.0389 0.2558

Table 3.5: Inter-annotator agreement scores.

what we desire. Second, we experimented with using values such as 0.8, 1.2, and 1.5, but the

generated de-personifications were either very similar or slightly worse than the default setting of

α = 1, β = 1, γ = 1. A possible future direction would be to explore possible values of α, β, γ

more thoroughly, but for this dataset, we stick to the simple case of α = 1, β = 1, γ = 1.

3.8 Appendix C: Evaluation Details

3.8.1 Human Evaluation Setup

A total of 20 unique AMT annotators participated in the study for fluency, appropriateness, and

meaning preservation, each performing 4.0 HITs on average. Annotators were compensated 1.12$

per HIT, each of which was designed to take <6 mins on average.

22 unique AMT annotators participated in the second, separate study for personificationhood,

each performing 4.36 HITs on average. Annotators were compensated 0.56$ per HIT, each of

which was designed to take <2 mins on average.

For the interestingness study, the details regarding annotator background and selection can be

found in §3.3.2 and Appendix 3.8.3.

The html templates including instructions, questions and other study details corresponding

to both these AMT studies can be found in the templates/ subfolder of our code submission

zip, with the names fluency_appropriateness_ meaningPreservation.html and

personificationhood.html respectively.

3.8.2 Inter-Annotator Agreement Scores

Each generated input instance and its respective model outputs are labelled by two distinct

annotators. To measure inter-annotator agreement, we use Spearman correlation and Krippendorff

α, as reported in Table 3.5.

To get the Spearman correlation point value for a given aspect and test instance, we compute

mean pairwise Spearman correlation between the aspect values assigned to the corresponding
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model outputs by every pair of annotators. Specifically, we use the scipy.stats implementation to

compute this. 9

For Krippendorff α, we treat each human evaluation aspect as an ordinal quantity. Specifically,

we use the implementation provided by the python library krippendorff 0.5.1.10

3.8.3 English Assessment Test for Annotators

From the native English-speaking university student annotators who enrolled to participate in our

Interestingness study, we first elicited answers to an English assessment test, as mentioned in

§3.3.2.

The assessment test comprised of 12 questions spanning multiple question types testing the

examinee’s grasp of the use and distinction between various figures of speech, basic literary

general knowledge, and verbal reasoning skills. A spreadsheet file containing this test can be

found with the name LiteratureTest.xlsx under the Templates/ subfolder of our code submission

.zip file.

The final annotators used for our interestingness study were chosen from those who got 11 or

more of the 12 questions on the English assessment test correct, hence scoring at least 85% on the

test.

3.9 Appendix B: Implementation Details

The BART-base model was trained using a learning rate of 2e-5. This was by conducting a

hyperparameter search over the values {1e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4} and selecting the

model/epoch based on lowest validation loss. The same process was done to select a batch size of

4 using a hyperparameter search over values {2,4,8,16}. Training was done for 20 epochs and 400

warmup steps. The Adam optimizer was used, and inputs were truncated to a maximum length of

64 tokens (using BART’s subword tokenization).

Training was done on Google Colaboratory environments using V100 GPUs. For the BART-

base model, a single training loop of 20 epochs takes approximately 10 minutes to complete.

9https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
spearmanr.html

10https://pypi.org/project/krippendorff/
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Method Text

Literal Input The news hit me hard. (ex.7)
Human Ref The news punched me hard.
COMET The news report event late me hard.
BL-BART The news hit me hard.
PA-BART The news pounded me hard.

Literal Input Panic is sweeping through the streets contagiously. (ex.8)
Human Ref Panic is driving around the streets contagiously.
COMET Panic is result through the streets contagiously.
BL-BART Panic is running through the streets contagiously.
PA-BART Panic runs through the streets contagiously.

Literal Input In the dead of summer, in Ohio, the clothes felt hot and humid. (ex.9)
Human Ref In the dead of summer, in Ohio, the clothes seemed to be sweating themselves.
COMET In the dead of summer, in Ohio, the clothes fit and humid.
BL-BART In the dead of summer, in Ohio, the clothes we wear can be hot and humid.
PA-BART In the dead of summer, in Ohio, the clothes complained and humid.

Literal Input Streaks of electricity zipped through the air, swirling around and around dangerous (ex.10)
Human Ref Streaks of electricity cackled through the air, swirling around and around dangerous.
COMET Streaks of electricity stain carpet through the air, swirling around and around dangerous.
BL-BART Streaks of electricity were shooting through the air, swirling around and around the building.
PA-BART Streaks of electricity danced around and around dangerous.

Literal Input The sun is nowhere to be found, and the streets are eerily quiet (ex.11)
Human Ref The sun seems to be on leave, and the streets are eerily quiet.
COMET The sun down, and the streets full of traffic.
BL-BART The sun, and the streets.
PA-BART The sun refuses to be found, and the streets are polite

Literal Input The wind blew through me fast. (ex.12)
Human Ref The wind stampeded through me fast.
COMET The wind howl through me fast.
BL-BART The wind was going through me fast.
PA-BART The wind ran me fast.

Table 3.6: Additional qualitative examples for personification outputs: literal input, human writing,
COMET, BL-BART, and PA-BART.

3.10 Appendix D: Additional Examples

Table 3.6 is an extension of Table 3.4 and contains additional qualitative examples of the genera-

tions.
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Figure 3.4: Step-by-step example of the merging process for TOPIC-ATTRIBUTE identification.
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Chapter 4

Tongue Twister Generation
(Under Review @ EMNLP 2022)

I have a sift of sifted thistles and unsifted

thistles because I’m a thistle sifter.

George VI — The King’s Speech

A tongue twister is a sentence that is both articulatorily difficult (i.e. colloquially speaking,

hard to say or "twisting". The process of automatically generating tongue twisters is challenging

since the generated utterance must satisfy two conditions at once: phonetic difficulty and semantic

meaning. Furthermore, phonetic difficulty is itself hard to characterize and is expressed in natural

tongue twisters through a heterogeneous mix of phenomena such as alliteration and homophony. In

this chapter, we devise a set of related approaches named PANCETTA: Phoneme Aware Neural

Completion to Elicit Tongue Twisters Automatically. We leverage phoneme representations

to capture the notion of phonetic difficulty, and we train language models to generate original

tongue twisters on two proposed sub-settings. To do this, we curate a dataset called TT-Corp,

consisting of existing English tongue twisters. Through automatic and human evaluation, as well

as qualitative analysis, we show that PANCETTA generates novel, phonetically difficult, fluent,

and semantically meaningful tongue twisters.

In this chapter, we study the Constrained Creative NLG setting of tongue twister generation

from prompts. Specifically, we study two sub-settings — the first with textual prompts and the

second with keywords as prompt.

The CG Definition/Constraints for this setting are: Given a short textual or keyword prompt,

generate a completing sequence of graphemes such that it:
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1. Forms a fluent, meaningful sentence

2. Is also articulatorily difficult i.e., forms a sequence of phonemes that is “hard to say".

We outline and describe in detail our Data & Knowledge Availability scenario in §4.2. The

coining of a novel, unique tongue twister that spreads sufficiently to become normative and well-

recognized is rare, hence making them a long-tailed linguistic phenomenon [120]. As training

data, we only have access to ≈ 644 examples of tongue twisters including their accompanying

prompts.

We posit an underlying Creative Story for our setting in §4.1.1 , based on the intuition of a

“articulatory model". Based on this intuition, we devise a two-step Intervention to the typical

E2EN2PP training process, as detailed in §4.3.1 and illustrated in Figure 4.1.

1. At training time, instead of finetuning GPT-2 in grapheme-to-grapheme (G2G) mode alone, as

would be typical, we finetune it to generate either of phoneme/grapheme completions from

prompts in either of phoneme/grapheme form.

2. At inference time, use grapheme-to-grapheme (G2G) mode to infer from learnt model. The

other 3 finetuning modes (G2P, P2G,G2G) merely served as a training-time, “scaffolding"

mechanism.

4.1 Introduction

A tongue twister is a sentence that is both articulatorily difficult (i.e. colloquially speaking, hard

to say or "twisting" while at the same time being meaningful and fluent. Some examples of tongue

twisters are shown in Table 4.1.

Together with riddles, rhymes, fables, and other such creative artifacts, tongue twisters were

historically often employed as a vehicle for early transmission of native language diction, grammar,

and vocabulary to children, through parent-child interaction, playtime activity, and kindergarten

instruction [1, 114]. Tongue twisters have also been used as experimental aides for research

studies of speech production in cognitive science and related disciplines, both amongst healthy

speakers and those with speech and auditory disorders such as dysarthia [83]. They are also

used as pedagogic aids in speech therapy and treatment of speech disorders, and psychological

disorders relating to public speaking and elocution [152]. An example of this was in a scene1 from

The King’s Speech (2010), where George VI repeats a tongue twister during therapy to reduce his

stutter. Lastly, they find use as teaching aides for English diction in EFL (English as a Foreign

1https://youtu.be/7WJts0gKCRM?t=53
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Figure 4.1: Overview of the phoneme-aware training in the PANCETTA model.

Task Input Tongue Twister Tongue Twister (Phoneme)

TT-Prompt
A good
cook

A good cook could cook as many
cookies as a good cook who could
cook cookies.

@ gUd kUk kUd kUk æz mEni
kUki:z æz @ gUd kUk hu: kUd
kUk kUki:z.

Chubby
jugglers

Chubby jugglers juggling oranges
jovially.

tS2bi dZ2g@lRz dZ2g@lIN
Or@ndZ@z dZoUveIli.

Does the Does the rapid rabid rabbit wrap it? d2z D@ ræp@d ræbId ræb@t ræp
It?

TT-Keyword
shoes, dog If a dog chews shoes, whose shoes does

he choose?
If @ dOg tSu:z Su:z, hu:z Su:z d2z hi:
tSu:z?

blood,
death

Bad dead bed-bugs bleed bug blood. bæd dEd bEd-b2gz bli:d b2g
bl2d.

king,
art,
wall

A truly rural frugal ruler’s mural was
on the wall.

@ tru:li rUr@l fru:g@l ru:lRz
mjUr@l wA:z A:n D@ wOl.

Table 4.1: Example inputs and target outputs for both the TT-Prompt and TT-Keyword sub-settings,
along with the phoneme representations of the tongue twisters.

Language) instructional settings [138].

The coining of a novel, unique tongue twister that spreads sufficiently to become normative and

well-recognized is rare, hence making them a long-tailed linguistic phenomena [120]. However,

they are not limited to English, and are found across the world’s languages, e.g., Persian ("Shish

sikh jigar sikhi shi shezar.") [74] and French ("Cinq chiens chassent six chats.")

4.1.1 The Articulatory Model

Consider the idealized scenario where we have an "articulatory model" that a) maps voicing and

place and manner of articulation to the phones being produced and b) based on this grounding can
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quantify the articulatory difficulty of producing a sequence of phones.

Assuming access to this idealized model, one could deconstruct the process of generating a

tongue twister as sampling a sequence of preferably articulatorily difficult (distant) phone-phone

transitions starting with an initial sequence of one or more phones (that could come from a prompt,

or be chosen uniformly, based on the sub-setting).

However, there are two impediments that make realizing such an idealized model intractable.

Firstly, reasonably quantifying the articulatory difficulty, whether of individual phone-phone

transitions or of entire phone sequences is non-trivial and challenging. Secondly, a tongue twister

as per its definition is not merely a difficult to pronounce sequence of phonemes — but also one

that maps to a meaningful and fluent sequence of words. How one can maintain this property in

conjunction with the process of sampling difficult transitions from the articulatory model’s space

is unclear.

One potential way articulatory difficulty could be operationalized would be in terms of average

numbers of speech errors in representative tongue twisters. If such information would be available,

one could estimate a model that scores the extent of speech errors for any arbitrary phoneme

sequence. However, atleast at the time of this work’s experiments, we do not have a suitable

dataset of tongue twisters with speech error information available. Moreover, as we already

discussed, even the unannotated dataset of tongue twisters we have access to is rather small in

size, and hence maybe insufficient to reliably estimate such a scoring model.

4.1.2 Challenges & Contributions

The automatic generation of tongue twisters has largely been unexplored. This task is challenging

because it requires being able to model phonetic difficulty of various syllables and tokens, that is

not something that existing language models are trained to do. To achieve this, we have to work

in the phoneme space. Phonemes have previously been used to aid in speech recognition [173]

and rhyme generation [69]. We hypothesize that by working with phonemes, we will be able to

model and generate patterns that characterize phonetic difficulty.

Tongue twisters go beyond relatively simpler phonetic phenomena such as alliteration, since

they employ a heterogeneous mix of strategies based on such phenomena [79] including alliteration

itself (she sells seashells), use of homophonic words/subwords (sells/-shells, she/sea-), and

alternating between similar start phonemes for tokens (s and sh), sometimes even using these

co-operatively within the same example to create the cumulative effect of articulatory difficulty.

Our contributions are as follows: (1) We curate a dataset, TT-Corp, of diverse tongue twisters.
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(2) We present two new sub-settings (TT-Prompt and TT-Keyword) for automatic tongue twister

generation, and we design and evaluate simple baselines for these tasks. (3) We formulate a

phoneme-aware method called PANCETTA, that models and generates coherent and phoneti-

cally difficult phrases by taking phonemes into account. We show that PANCETTA generates

higher-quality tongue twisters through both automatic and human evaluations and qualitative

analysis of the outputs.

4.2 Sub-settings and Dataset

4.2.1 Sub-settings

We formulate two sub-settings for automatic tongue twister generation. We call these tasks

TT-Prompt and TT-Keyword, and they are detailed below:

1. Generating tongue twisters from prompts (TT-Prompt): Given a few words to start a

sentence, the goal is to complete the sentence in a coherent way such that the resulting generation

is a tongue twister. Prompts can be of varying lengths. Examples of this task can be found in

Table 4.1.

2. Generating tongue twisters from keywords (TT-Keyword): Given a set of keywords, the

goal of this task is to generate a coherent tongue twister that incorporates the semantics of the

keywords. The set of keywords can be of varying sizes. These keywords do not necessarily have

to appear verbatim and do not necessarily have to appear in order. Examples of this task can be

found in Table 4.1.

4.2.2 TT-Corp Dataset

We curate a dataset of 644 unique English tongue twisters into a dataset called TT-Corp. These

tongue twisters are compiled from various sources, ranging from blog posts to English learning

websites. A more detailed list of these sources and data processing details can be found in

Appendix 4.8.

We also create a non-tongue twister version of each input in TT-Corp, that will later be used

to explore style transfer models (§4.3.1) and to train a phonetic difficulty classifier (§4.3.2). This

is done through synonym replacement. First, we determine the parts-of-speech of all the words in

the sentence and identify the nouns, verbs, and adjectives.2 We then use WordNet [43] to generate

2The spaCy library was used to extract the POS tags.
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Tongue Twister Non-TT Version
There was a little witch which switched from
Chichester to Ipswich. (ex.1)

There was a small enchantress which exchanged
from Chichester to Ipswich.

He wanted to desert his dessert in the desert.
(ex.2)

He desired to abandon his sweet in the desert.

Tie a tight knot in the shape of a nought. (ex.3) Bind a taut gnarl in the form of a zero.

Table 4.2: Examples of the synonym replacement process to generate non-tongue twister versions
of the tongue twisters in TT-Corp. Different colors are used to indicate which words are replaced
by their synonyms.

a list of synonyms for each of these nouns, verbs, and adjectives, and we select the highest ranked

replacement that shares the same part-of-speech. Examples of this process are shown in Table 4.2.

One key advantage of this synonym replacement process is that it can replace a word according

to its part-of-speech and function in the sentence. In the second example in Table 4.2, the word

"desert" appears twice — first as a verb (which is replaced with "abandon"), and again as a

noun (which is not replaced). However, this synonym replacement process does not take the

context of the words into account. In the third example in Table 4.2, while the individual synonym

replacements make sense on their own, the final sentence sounds quite unnatural. For our purposes,

however, this is not a significant issue: we do not need the replacement sentences to be absolutely

perfect, as the quality of the ground-truth tongue twister is more important. This will be explained

further when we use this parallel dataset in §4.3.2.

4.3 Methodology

As this is a new task, there are no existing methods that can easily generate novel tongue twisters.

The main challenge is how to incorporate phonetic difficulty into our generations. To do so, we

formulate two baseline and two phoneme-aware models, that are applicable to both the TT-Prompt

and TT-Keyword sub-settings (see Table 4.3).

4.3.1 Models

1. Grapheme-based Methods (g2g) — We treat tongue twister generation as a seq2seq task,

where the prompt (for TT-Prompt) or keywords (for TT-Keyword) is the input, and the tongue

twister is the target output. The intuition is that by fine-tuning using these tongue twisters, the

model can implicitly acquire a notion of phonetic difficulty. We fine-tune GPT-2 and GPT-J using
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Figure 4.2: Overview of PANCETTA-P pipeline.

the inputs "([X]=[Y])", where [X] represents the prompt/keywords, and [Y] represents the tongue

twister.

2. Style Transfer Methods — Given a prompt or a set of keywords, we first use GPT-2 to

generate a sentence which is not necessarily a tongue twister. This is easy for prompts since

GPT-2 is trained to do causal LM. For TT-Keyword, since GPT-2 is not trained to generate a

sentence from keywords, we first train a GPT-2 model for this task. We sample 10,000 sentences

from WikiText-103 [116] and extract their keywords using KeyBERT [58]. We then fine-tune

GPT-2 using an "([X]=[Y])" template as described in the g2g methods. Here, [X] represents the

keywords, and [Y] represents the WikiText sentence.

We then attempt to convert these generated natural sentences into tongue twisters. We treat

this as a seq2seq task and train a seq2seq model using our parallel dataset. During training, we

use the non-TT versions as inputs and the tongue twisters as the ground truth target outputs. We

use BART and T5 models for this seq2seq task.

3. PANCETTA-P (Phoneme) — For the previous g2g models, the fine-tuning was done only

using graphemes. Because graphemes are not always representative of pronunciation, we hypoth-

esize that it may be difficult for such models to capture information regarding the pronunciation.

If we instead had a generative model that works in the phoneme space, then we could fine-tune

this model on the tongue twister phonemes and hope that it can better capture these phonetic cues.

We first pretrain a GPT-2 model to perform causal LM generation for phonemes. Pretraining

is done using the WikiText datasest: we first convert all the WikiText sentences into their IPA

phoneme representations and train a GPT-2 model on it.3 For TT-Keyword, instead of training a

causal LM on regular phoneme sentences, we train to generate from keywords, using the ([X]=[Y])

3The deep-phonemizer Python package was used for g2p transliteration.
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template previously described. While there are multiple g2p phonemization toolkits, there are

no readily available p2g toolkits that work well. Hence, we train our own p2g model. We treat

this as a seq2seq translation task, once again using WikiText. We train a BART model with the

phonemes as the inputs and the graphemes as the target outputs. Once both the p2p generation

and the p2g translation models are trained, we then fine-tune the p2p models on the tongue twister

phonemes (all steps similar to g2g), then use the p2g model to retrieve the grapheme representation

of the outputs. Lastly, since there is no capitalization in the phoneme space, we have to fix to

capitalization of the generated outputs. We use the FastPunct library for this.4 (Note: unlike the

previous g2g methods, we only use GPT-2 (and not GPT-J) for PANCETTA-P because GPT-J

is too large to pre-train in a reasonable fashion.)

4. PANCETTA-J (Joint) — One drawback of PANCETTA-P is that because we do our

own pre-training on the phoneme space, we are not able to leverage the existing pre-training

of large language models. In order to leverage both the phoneme representations and the pre-

training of GPT, we formulate PANCETTA-J. This is similar to g2g, but instead of only

training with the template ([X]=[Y]), we train with 4 different templates, representing 4 different

modalities. Specifically, we train with the templates ([PK_G]=[TT_G]), <[PK_P]=[TT_P]>,

[[TT_G]=[TT_P]], and {[TT_P]=[TT_G]}, where PK represents the prompts/keywords, TT

represents the tongue twisters, G represents the grapheme representation, and P represents the

phoneme representation. These 4 modalities represent g2g, p2p, g2p, and g2g respectively. Here,

the surrounding brackets function similar to separator tokens that indicate the modality for the

model.

At test time, the model can be directly decoded using g2g mode without requiring phoneme

information. We hypothesize that the phonetic structures learned during training time can serve as

an effective "scaffold" — being used explicitly only during finetuning time [175].

4.3.2 Evaluation Metrics

Automatic Evaluation

As described in §4.1, a good tongue twister needs to satisfy two notions: it needs to be both

difficult to pronounce, as well as semantically coherent. To evaluate the "tongue twisterness" of

our generations, we consider these two notions separately.

1. Phonetic Difficulty: We fine-tune a pretrained BERT-base classifier to differentiate between

4https://github.com/notAI-tech/fastPunct
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Method Name Models Used Description Phoneme
Representation

Leverage Pretraining

Grapheme-based Methods GPT-2, GPT-J g2g ✗ ✓

Style Transfer Methods BART, T5 g2g + g2g ✗ ✓

PANCETTA-P GPT-2, BART g2p + p2p + p2g ✓ ✗

PANCETTA-J GPT-2, GPT-J
g2g, p2p, g2p, p2g

(only g2g during test-time)
✓ ✓

Method Name Example
Grapheme-based Methods She sells→ She sells seashells on the seashore.

Style Transfer Methods She sells→ She sells things on the beach. → She sells seashells on the seashore.
PANCETTA-P She sells→ Si: sElz→ Si: sElz si:SElz A:n D@ si:SOr→ She sells seashells on the

seashore.
PANCETTA-J She sells→ She sells seashells on the seashore.

She sells seashells on the seashore. → Si: sElz si:SElz A:n D@ si:SOr.
Si: sElz si:SElz A:n D@ si:SOr. → She sells seashells on the seashore.
Si: sElz→ Si: sElz si:SElz A:n D@ si:SOr.

Table 4.3: Summary of the models discussed in §4.3.1, along with some examples.

tongue twisters and regular sentences. To train this model, we use the parallel dataset of tongue

twister and non-TT pairs as described in §4.2.2. We specifically use these tongue twister and

non-TT pairs so that the model specifically learns to classify based on phonetic difficulty rather

than things such as semantics. However, as mentioned in §4.2.2, the replacement sentences may

sometimes sound unnatural. To ensure that the classifier learns to differentiate tongue twisters

instead of picking up on these false signals, we augment our dataset with additional negative

(non-TT) examples consisting of 500 sentences randomly sampled from WikiText. Rather than

directly training on the sentences, we first convert the sentences to a phoneme representation and

train a classifier on the phonemes.

2. Fluency: We not only want phonetically difficult sentences; they must also be fluent and

coherent. To measure this, we use the generation (log-perplexity) losses from a pretrained GPT-2.

3. Keyword Relevance (only for TT-Keyword): In TT-Keyword, we want to ensure that the

generated tongue twister is semantically similar to the keywords used. To measure this, we use the

BERT embedding of keywords and compare it with the embedding of the target sentence. More

specifically, we use the BERTScore [197] between the generated sentence and the "sentence"

consisting of the keywords separated by commas.

We do not use metrics based on reference matching with the reference/gold outputs. This is

because tongue twister generation from prompts/keywords is inherently a creative task with high

output diversity and a large subspace of valid outputs.
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Human Evaluation

The human evaluation metrics are very similar to the ones in §4.3.2. These are as follows: (1)

Phonetic Difficulty ("How hard is the sentence to pronounce? To get a better sense of the

difficulty, try saying the sentence out loud, quickly, and multiple times.") and (2) Fluency ("Does

it sound like good English with good grammar?"). Further details about the evaluation process

can be found in §4.4.2.

4.4 Experimental Setup

4.4.1 Implementation Settings

Prompt / Keyword Extraction: To extract prompts for TT-Prompt, we simply consider the first

three words of each sentence by checking for the whitespace character. To extract keywords for

TT-Keyword, we use the KeyBERT library [58], that returns keywords ranked by their cosine

similarity scores to the entire sentence itself. For each sentence, we consider the top 5 keywords

as our set of keywords. Not all sentences have 5 keywords; some may have less. In these cases,

we just take all the keywords.

Dataset splits: We split TT-Corp into a training-validation-test split with a 70-15-15 ratio. We

use the same splits across all models and across both TT-Prompt and TT-Keyword sub-settings, as

well as for training the phonetic difficulty classifier.

GPT-2 fine-tuning (g2g, PANCETTA-P, PANCETTA-J): We use the pre-trained GPT2-

base (124M params.) and fine-tune for 5 epochs with a learning rate of 5e-5 and 100 warmup

steps.

BART pre-training ( PANCETTA-P): Here, we train the p2g model. We pre-train BART-

base (139M params.) on WikiText-103 phonemes. We split WikiText into train-validation-test

splits of 80-10-10. The final training set has size 523k. Training was done for 20 epochs with

batch size of 16, an initial learning rate of 5e-4, and a weight decay of 0.1 with a cosine scheduler.

BART & T5 fine-tuning (Style Transfer): We fine-tune BART-large (406M params.) &

T5-large (737M params.) for 30 epochs with a batch size of 16, learning rate of 2e-5, and 400

warmup steps.

GPT-J fine-tuning (g2g, PANCETTA-J): Because GPT-J is too large (6B parameters) and

occupies too much memory, we instead use a compressed version of GPT-J 5, that incorporates

5https://huggingface.co/hivemind/gpt-j-6B-8bit
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TT-Prompt TT-Keyword
Method Phon. Difficulty Fluency ↓ Phon. Difficulty Fluency ↓ Keyword Relevance

g2g (GPT-2) 0.774 5.433 0.786 5.224 0.795
g2g (GPT-J) 0.848 5.643 0.856 5.593 0.794

Style Transfer (GPT-2+BART) 0.672 4.356 0.472 3.662 0.783
Style Transfer (GPT-2+T5) 0.631 4.256 0.414 4.309 0.780

PANCETTA-P (GPT-2+BART) 0.794 5.986 0.871 6.596 0.801
PANCETTA-J (GPT-2) 0.785 5.244 0.803 5.058 0.803
PANCETTA-J (GPT-J) 0.866 5.718 0.888 5.169 0.800

Gold Outputs 0.925 5.745 0.925 5.745 0.812

Table 4.4: Automatic evaluation averages for both TT-Prompt and TT-Keyword. The best-scoring
method for each metric is highlighted in bold. Higher scores are better for all metrics except for
fluency.

various techniques such as 8-bit quantization [33] and low-rank adaptation [72]. To fine-tune, we

use 10 epochs, a batch size of 1, and a learning rate of 1e-5.

For GPT-J and GPT-2, generation was done using nucleus sampling with p=1.0 and a tempera-

ture of 0.8. Meanwhile, for BART and T5, generation was done using beam search with a beam

size of 5. More details about the hyperparameter search, runtime, and compute can be found in

Appendix 4.10.

4.4.2 Human Evaluation Settings

Human evaluation was done on Amazon Mechanical Turk (AMT). We selected annotators with

>97% HIT approval rate from Anglophone countries6. In each HIT, we present the generated

outputs for each example in randomized order, and each test example was evaluated by exactly 2

annotators.

We conduct two rounds of annotation, one for TT-Prompt and another for TT-Keyword. Within

each round, we further subdivide annotating GPT-2 experiments and GPT-J experiments. This

is for two key reasons. The first reason is to ensure that we only have one independent variable

and to ensure that the changes in performance are due to the methodologies rather than the size

of the models. (This GPT-2/GPT-J split only applies to g2g and PANCETTA-J models; for

the style-transfer and PANCETTA-P models, we keep the same models for both rounds of

evaluation.) The second reason for subdividing GPT-2 and GPT-J experiments is so that we do not

subject the annotators to information overload from having to annotate too many similar examples.

Owing to the same consideration, we also decided to not perform human evaluation on the Style

Transfer T5 baseline model because we found it very similar to Style Transfer BART.

6More details about the human eval are in Appendix 4.9.
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TT-Prompt TT-Keyword
Method Phonetic Difficulty Fluency Phonetic Difficulty Fluency

g2g (GPT-2) 3.056 3.736 3.847 4.139
Style Transfer (GPT-2+BART) 2.569 3.639 3.500 3.819
PANCETTA-P (GPT-2+BART) 3.528 3.778 3.722 3.764

PANCETTA-J (GPT-2) 3.153 3.764 3.889 3.931
Gold Outputs 3.361 3.931 3.833 4.000
g2g (GPT-J) 3.521 3.979 3.791 3.708

Style Transfer (GPT-2+BART) 3.271 3.75 3.25 3.750
PANCETTA-P (GPT-2+BART) 3.854 3.708 3.833 3.896

PANCETTA-J (GPT-J) 3.708 3.646 3.979 3.604
Gold Outputs 3.750 4.000 4.104 3.729

Table 4.5: Human evaluation averages for TT-Prompt and TT-Keyword. Top method scores for
each metric are bold.

4.5 Results and Analysis

4.5.1 Automatic Evaluation Results

Table 4.4 shows the average results for the metrics outlined in §4.3.2. From the phonetic difficulty

results, we see that our formulated PANCETTA models score higher than the baselines. More

specifically, comparing g2g (GPT-2) (0.774) vs PANCETTA-J (GPT-2) (0.785) and comparing

g2g (GPT-J) (0.848) vs PANCETTA-J (GPT-J) (0.866), we see that incorporating phoneme

representations indeed aids in producing more phonetically difficult sentences. This pattern also

holds true for TT-Keyword, where both GPT-2 and GPT-J see increases in performance after

incorporating phonemes. We also observe that PANCETTA-P performs reasonably well in

phonetic difficulty and has the highest score of the non-GPT-J models for both TT-Prompt and TT-

Keyword. In fact, for TT-Keyword, PANCETTA-P is able to get very close to PANCETTA-J

(GPT-J), which is remarkable, considering that it is only using a GPT-2 model.

Meanwhile, for automatic evaluation of fluency, the style transfer models score better than the

other models. This is likely because the style transfer models first generate a regular sentence,

then attempt to "tongue twisterize" it. However, this is a difficult task, and there is no guarantee

that the sentence can even be reasonably converted to a tongue twister. Hence, the style transfer

models often fail, which results in no changes being made to the original GPT-generated sentence,

thereby leading to good fluency scores when using perplexity. On the other hand, we see that

PANCETTA-P has the worst perplexity score. However, it is important to note that even the

gold reference tongue twisters score poorly here (around the same scores as our PANCETTA
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models). This further demonstrates that tongue twisters likely are inherently less fluent in terms

of utilizing typical English tokens in standard sequences, thereby resulting in worse perplexity

scores. This shows that perplexity may not be the best measure of fluency for our task, and that

fluency itself may not exactly correlate with the quality of a tongue twister (see §4.5.2 for more).

Lastly, for keyword relevance, most scores are close to each other. The three PANCETTA

models have the three highest scores, indicating that PANCETTA is able to generate difficult

tongue twisters without compromising the task at hand.

4.5.2 Human Evaluation Results

Table 4.5 shows the average results for the human evaluation. As with the automatic evaluations,

we see an increase in phonetic difficulty when we introduce phonemes into the training process.

Comparing g2g (GPT-2) and PANCETTA-J (GPT-2), we see an increase from 3.056 to 3.125

for TT-Prompt and from 3.847 to 3.889 for TT-Keyword. This trend also occurs for GPT-J models.

Despite not being able to leverage existing GPT pre-training, PANCETTA-P also works very

well, outperforming all non- PANCETTA models in all but one setting. These positive results

indicate that incorporating phonetic information is indeed helpful.

In terms of phonetic difficulty, we observe that for TT-Prompt, PANCETTA-P works best for

both GPT-2 and GPT-J, while for TT-Keyword, PANCETTA-J works best for both GPT-2 and

GPT-J. This may be because generating from keywords is generally more difficult than completing

a prompt, so PANCETTA-J benefits from existing pre-training. Meanwhile, in terms of fluency,

g2g methods work best for 2 settings, and PANCETTA-P works best for 2 settings. Tongue

twisters usually use words in creative and unnatural-sounding ways, and this may sometimes

negatively affect fluency, so the "most fluent" sentence may not necessarily be the best tongue

twister. Nevertheless, we want the PANCETTA outputs to still be coherent, which is indeed

the case — all the fluency metrics for PANCETTA models are around 3.7 to 3.8. Overall,

we conclude that PANCETTA significantly improves phonetic difficulty while maintaining a

competitive level of fluency.

4.5.3 Qualitative Analysis

Table 4.6 shows sample generations for both TT-Prompt and TT-Keyword. We observe that both

PAN-P and PAN-J are able to use a wide variety of tongue twister techniques, such as rhyme

(grape/crepe/crate- in ex.1 PAN-P), alliteration (kneadle/knuckle in ex.3 PAN-J), alternating final

sounds (land/lamb in ex.2 PAN-P), alternating initial sounds (six-/sheik in ex.4 PAN-J), and
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repetition. They are also able to generate proper nouns to suit the sentence, such as "Donna"

and "Needles Nood" in ex.3 PAN-P. They can also combine multiple such techniques in a single

tongue twister, such as stick/stock and land/lamb in ex.2 PAN-P.

Comparing this with the baseline methods (g2g and Style T.), we see that the generated

outputs of g2g are decent but usually very short and simple, often relying too much on alliterations.

Meanwhile, the outputs for the style transfer methods are generally not tongue twisters. As

discussed in §4.5.1, this is likely because it commonly fails at fully converting a regular sentence

into a tongue twister.

For TT-Prompt, we obsserve that even with a non-alliterative prompt such as "If you stick"

(ex.2), the PANCETTA models can still generate good tongue twisters, whereas the g2g method

attempts to use repetition but the generated text is not that difficult to pronounce. Meanwhile, for

TT-Keyword, PAN-J is able to incorporate the semantics of the words, rather than just copying the

words themselves: in ex.4, PAN-J replaces "thirty/thieves" in the keywords with "sixty/sheiks".

Lastly, comparing PAN-P and PAN-J, we see that PAN-J sentences generally sound smoother,

while PAN-P sentences sometimes end rather abruptly ("in a farm." in ex.2; "and the Need?" in

ex.3). This is likely because PAN-P is unable to leverage existing GPT pre-training. On the other

hand, this frees up PAN-P to use more diverse tongue twister techniques, such as rhymes (ex.1)

and proper nouns (ex.3) which are less common in PAN-J.

4.6 Related Work

Automatic tongue twister generation is a largely unexplored task. Existing systems mostly use

synonym replacements [194] on existing tongue twisters, which requires a large list of tongue

twisters to begin with and cannot generate novel ones from scratch. Carey [17] generates tongue

twisters using sound vectors, and Joshipura [80] trains an LSTM on a small tongue twister dataset,

but neither are able to produce novel and semantically coherent examples. Furthermore, no

methods currently exist for the TT-Keyword task.

There have been multiple studies on creative generation of various figures of speech such

as similes [18], metaphors [19], and hyperbole [177]. However, these other creative linguistic

constructs don’t require working with another modality in the same way that tongue twister

generation relies on phonemes. Among these creative lingusitic constructs, the closest ones to

tongue twisters would likely be alliterations [69] and poetry [29, 56]. All of these tasks require

the application of phonetics to some extent. However, tongue twister generation goes beyond

alliterations and rhymes; rather it is a mix of all these various techniques. In addition, it differs
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from poetry generation because poetry generation focuses on generating rhythmic verses and

syllables, whereas the main focus of tongue twister generation is on phonetic difficulty.

Using phonemes in language modeling has been previously explored in the speech domain for

automatic speech recognition [8, 173, 188]. In this chapter, we trained a BART model to do p2g

translation. Other existing methods include expectation maximization [89], A* search [28], and

Hidden Markov Models [69].

4.7 Conclusion

In this chapter, we studied the Constrained Creative setting of automatic tongue twister generation,

and explored it under two sub-settings: TT-Prompt and TT-Keyword. To facilitate this study,

we curated a dataset called TT-Corp of English tongue twisters through an extensive search

across various sources. Inspite of our extensive data curation, the dataset we curated only had

≈ 600 tongue twisters. Thus, we had the poor Data & Knowledge Availability that is a marked

characteristic of this class of settings being present. We first introduced the notion of a “articulatory

model" (see §4.1.1) that served as as the underlying Creative Story.

We then formulated PANCETTA, a training methodology that incorporates phoneme repre-

sentations. We implemented two variants: PANCETTA-P (Phoneme), which trains a phoneme-

based language model, and PANCETTA-J (Joint), which jointly incorporates both phoneme-level

information and grapheme-level information during training time. Through empirical results

and qualitative evaluations, we showed that incorporating phonemes as facilitated through our

Intervention is indeed helpful in producing effective tongue twisters that are harder to pronounce

while staying fluent.

While PANCETTA works well at generation, the generation process lacks interpretability.

This is most notable when looking at the phonetic difficulty classifier. Currently, the classifier

simply takes an input sentence and outputs a score; it does not identify and separately score

elements of phonetic difficulty or come up with an explicit decomposition. We believe that such

explicit decomposition can be very useful in the future for understanding more about tongue

twisters and the "articulatory model" discussed in §4.1.
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4.8 Appendix A: Additional Details — Dataset Collection

4.8.1 Sources

We curate our tongue twisters from a heterogeneous mix of online sources, including but not

limited to the ones listed below:

1. University of Arkansas

2. The r/tonguetwister Subreddit

3. Various AskReddit threads

4. Mondly.com

5. Uebersetzung

6. Marcus Stuart’s LOL Tongue Twisters book

7. Language Avenue

8. Bilingual Monkeys

9. Pun.me

10. ESL

11. Sweetrhymes

12. EngVid

13. IvyPanda

4.8.2 Vetting

We then perform the following filtering steps to retain only a collection of high-quality dataset

examples:

• Remove near-repetitive examples to ensure each example is unique

• Remove excessively short or meaningless examples lacking sentence structure, e.g., blue

blood, bad blood

• Remove poems or rhymes

• Remove examples containing offensive words, racism, gender bias or other harmful and

malicious language of any nature, to prevent models learnt from this data from further

ingraining or amplifying such phenomena.
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4.9 Appendix B: Evaluation Details

4.9.1 Human Evaluation Setup

To prevent annotator judgements for one attribute from inadvertently influencing the other, we

conduct the studies for soliciting Fluency and Phonetic Difficulty scores separately.

Averaging over the 4 settings described in §4.4.2 ( TT-Keyword/TT-Prompt × GPT-2/GPT-J),

a total of 20 unique AMT annotators participated in the study for Fluency, each performing 3.6

HITs on average. Annotators were compensated $0.56 per HIT, each of which was designed to

take < 2 mins on average.

Averaging over the 4 settings, 16.51 unique AMT annotators participated in the second,

separate study for Phonetic Difficulty, each performing 4.36 HITs on average. Annotators were

compensated $0.56 per HIT, each of which was designed to take < 2 mins on average.

The html template including instructions, questions, and other details can be found in a file

named template.html in our code submission zip.

4.9.2 Inter-Annotator Agreement (IAA) Scores

See Table 4.7 for IAA scores. To get the Spearman correlation point value for a given aspect

and test instance, we compute mean pairwise Spearman correlation between the aspect values

assigned to the corresponding model outputs by every pair of annotators. Specifically, we use the

scipy.stats implementation to compute this.7

For Krippendorff α, we treat each human evaluation aspect as an ordinal quantity. Specifically,

we use the implementation provided by the python library krippendorff 0.5.1.8

4.10 Further Implementation Details

In §4.4.1, we detailed the hyperparameters used for pre-training BART, as well as for fine-tuning

GPT-2, GPT-J, BART, and T5. We conduct a hyperparameter search to check which values led to

the best performance. For learning rate, we tried {1e-6, 5e-6, 1e-5, 2e-5, 2e-5, 1e-4}; for batch

size, we tried {2,4,8,16}; and for number of epochs, we tried {2, 5, 10, 20}. These search bounds

were selected based on known commonly-used values for these models. We start with a baseline

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
spearmanr.html

8https://pypi.org/project/krippendorff/
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model of lr=2e-5, bsz=8 and 10 epochs, and individually change each setting to investigate its

effect on performance. One trial was conducted per hyperparameter setting. We use a maximum

sequence length of 256. In terms of other hyperparameters, we mostly used default values which

are known to work for these models. This includes the warmup steps and learning rate decays,

which we detail in §4.4.1. (Note: the above hyperparameter search settings are for fine-tuning. We

could not do an extensive hyperparameter search for pre-trainig due to time constraints. We ran

pre-training twice to test the effect of learning rate 1e-4 vs. 5e-4, and ultimately selected 5e-4.)

Model selection was done based on the epoch with the best validation loss. We report the best

validation losses for each training process below: GPT-2 pre-training=0.77, GPT-2 fine-tuning

(TT-Prompt)=1.08, GPT-2 fine-tuning (TT-Keyword) =0.95, GPT-J fine-tuning (TT-Prompt)=1.23,

GPT-J fine-tuning (TT-Keyword)=1.19, BART-fine-tuning (TT-Keyword) = 1.31, BART-fine-

tuning (TT-Prompt) = 1.30, T5-fine-tuning (TT-Keyword) = 1.45, T5-fine-tuning (TT-Prompt) =

1.52.

All training was done on Google Colaboratory environments using V100 GPUs with 16GB

memory. Pre-training GPT-2 for the p2p model took 90 minutes per epoch, and pre-training BART

for the p2g model took 70 minutes per epoch. In terms of fine-tuning on TT-Corp, GPT-2 takes

around 1 minute per epoch, GPT-J around 2 minutes per epoch, BART around 1 minute per epoch,

and T5 around 1 minute per epoch.

4.11 Additional Qualitative Examples

In §4.5.3, we only report the best performing models for each of the methods. In Table 4.8, we

extend this to all models for all the methods. We also provide a few more examples for both

TT-Prompt and TT-Keyword.
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Method Text
Inputs (ex.1) The pirates pirated ...
Gold out. The pirates pirated private property.
g2g The pirates pirated the pepper pot.
Style T. The pirates pirated more than $50 million in online gambling in 2013.
PAN-P The pirates pirated a little grape crepe. The pirate dread cratered a little.
PAN-J The pirates pirated the paired prince with a pair of paired pistols.

Inputs (ex.2) If you stick ...
Gold out. If you stick a stock of liquor in your locker, it is slick to stick a lock upon your

stock or some joker who is slicker is going to trick you of your liquor if you fail
to lock your liquor with a lock?

g2g If you stick two sticks together, you get two sticks tied together.
Style T. If you stick with the same line, you have different things going for you.
PAN-P If you stick a stock of land in a lamb and a lamb in a farm.
PAN-J If you stick a stock stick on the stock stick you stick, who’s going to stick it on

the stock stick you stick?

Method Text
Inputs (ex.3) needles, noodles, kneadle, don, need
Gold out. I don’t need your needles to kneadle noodles.
g2g One noodle needs a kneeler to lean on
Style T. Near the end of his reign, Leiblau had to send a delegate to Parliament, to support

his friend King Gules of Northumbria.
PAN-P If Donna Needles Need, who is Needles Nood, and the Need?
PAN-J Don’t kneadle a knuckle with a knuckle needle!

Inputs (ex.4) thieves, thankful, thanked, thirty, thursday
Gold out. The thirty-three thankful thieves thought that they thanked the other thirty-three

thankful thieves throughout Thursday.
g2g The thieve thanked the thankful thief on Thursday.
Style T. Thanked by Thnx for the idea, I thought it was an idea that I wanted to do a

spoof of Thankful Thankful and Thnx.
PAN-P Thankful thieves thought that they thought they thrilled the throne throughout

Thursday.
PAN-J These sixty sheiks sent these thousand and sixty sheiks sixty sheiks thanking

them for shouting these sixty sheiks sixty shouts on Thursday.

Table 4.6: Qualitative examples for both TT-Prompt (first 2 examples) and TT-Keyword (last 2 examples).
We report only the best performing model based on phonetic difficulty from automatic evaluations for
each type (in brackets): literal input, gold output, g2g (GPT-J), Style Transfer (BART), PANCETTA-P

(GPT-2+BART), and PANCETTA-J (GPT-J). Additional examples can be found in Appendix 4.11.
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Metric Spearman
Correlation

Krippendorff α

Phonetic Difficulty 0.071 0.092
Fluency 0.006 0.043

Table 4.7: Inter-annotator agreement scores.
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Method Text

Inputs (ex.1) The pirates pirated ...
Gold out. The pirates pirated private property.
g2g (GPT2) The pirates pirated the property.
g2g (GPTJ) The pirates pirated the pepper pot.
Style T. (BART) The pirates pirated more than $50 million in online gambling in 2013.
Style T. (T5) The pirates pirated more than $50 million in online gambling in 2013, according to a government-backed

study.
PAN-P The pirates pirated a little grape crepe. The pirate dread cratered a little.
PAN-J (GPT2) The pirates pirated the music and the Roman river carried the criminals off.
PAN-J (GPTJ) The pirates pirated the paired prince with a pair of paired pistols.

Inputs (ex.2) If you stick ...
Gold out. If you stick a stock of liquor in your locker, it is slick to stick a lock upon your stock or some joker who is

slicker is going to trick you of your liquor if you fail to lock your liquor with a lock?
g2g (GPT2) If you stick a weight silky liquor on your wrist, you should stick a weight silky liquor on your inner wrist.
g2g (GPTJ) If you stick two sticks together, you get two sticks tied together.
Style T. (BART) If you stick with the same line, you have different things going for you.
Style T. (T5) If you stick with the same line, you have different things going for yout.
PAN-P If you stick a stock of land in a lamb and a lamb in a farm.
PAN-J (GPT2) If you stick a stock of liquor in your locker it is slick to put a lock on your stock.
PAN-J (GPTJ) If you stick a stock stick on the stock stick you stick, who’s going to stick it on the stock stick you stick?

Inputs (ex.3) I saw Susie ...
Gold out. I saw Susie sitting in a shoe shine shop.
g2g (GPT2) I saw Susie sitting on the sofa with a big black basket of biscuits.
g2g (GPTJ) I saw Susie sitting on a buttercup.
Style T. (BART) I saw Susie and then she came and took me to the kitchen where we cleaned.
Style T. (T5) I saw Susie and then she came and took me to the kitchen where we cleaned up and we started talking

about the new dog," she recalled.
PAN-P I saw Susie sitting on a seasawe horse. and I saw haunted houses.
PAN-J (GPT2) I saw Susie sitting in a speck of sheared sheep’s sheep’s sheep’s sheep skin.
PAN-J (GPTJ) I saw Susie sitting on a butter bucket with a black butter bucket sat on her butter bucket.
Inputs (ex.4) needles, noodles, kneadle, don, need
Gold out. I don’t need your needles to kneadle noodles.
g2g (GPT2) Don’s dirt feet meet your earrings at the bottom of the dirt cany bore trail.
g2g (GPTJ) One noodle needs a kneeler to lean on
Style T. (BART) Near the end of his reign, Leiblau had to send a delegate to Parliament, to support his friend King Gules of

Northumbria.
Style T. (T5) Near the end of his reign, Leiblau had to send a delegate to Parliament, to support his friend King Gules of

Northumbria.
PAN-P If Donna Needles Need, who is Needles Nood, and the Need?
PAN-J (GPT2) If you crave a soft chew toy, buy a chew toy that needs to chew.
PAN-J (GPTJ) Don’t kneadle a knuckle with a knuckle needle!

Inputs (ex.5) thieves, thankful, thanked, thirty, thursday
Gold out. The thirty-three thankful thieves thought that they thanked the other thirty-three thankful thieves throughout

Thursday.
g2g (GPT2) Twelve thieves today took sixty dollars from Thies’ birthday party.
g2g (GPTJ) The thieve thanked the thankful thief on Thursday.
Style T. (BART) Thanked by Thnx for the idea, I thought it was an idea that I wanted to do a spoof of Thankful Thankful

and Thnx.
Style T. (T5) Thanked by Thnx for the idea, I thought it was an idea that I wanted to do a spoof of Thankful Thankful

and Thnx, so it went to the video website, Twitter, and did some research on a T shirt.
PAN-P Thankful thieves thought that they thought they thrilled the throne throughout Thursday.
PAN-J (GPT2) I’m grateful tonight for thanking the valiant brave thieves.
PAN-J (GPTJ) These sixty sheiks sent these thousand and sixty sheiks sixty sheiks thanking them for shouting these sixty

sheiks sixty shouts on Thursday.

Table 4.8: Additional qualitative examples for both TT-Prompt (first 3) & TT-Keyword (last 3): literal
input, gold output, g2g (GPT-2), g2g (GPT-J), Style Transfer (BART), Style Transfer (T5), PANCETTA-P

(GPT-2+BART), PANCETTA-J (GPT-2), and PANCETTA-J (GPT-J).
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Chapter 5

Stylistic Surface Transduction To
Shakespearize Modern English
(EMNLP 2017’WS)

Most of us in speaking and writing

English use only one pronoun of address;

we say ‘you’ to many persons and ‘you’ to

one person. The pronoun ‘thou’ is

reserved, nowadays, to prayer and naive

poetry, but in the past it was the form of

familiar address to a single person. At that

time ‘you’ was the singular of reverence

and of polite distance, and also the

invariable plural.

R.Brown & A. Gilman, ‘The Pronouns of

Power & Solidarity’, 1960

As users get ever more habituated to using, interacting and even co-authoring with NLG

systems, there is increasing expectation on them to exhibit consistent personality [170] and also

be accomodative [166] towards user preferences and situation of use. Together, one can think

of these as aspects of target style. Hence, NLG systems should be able to transfer their content

to match aspect values for each aspect of target style. From the perspective of Halliday’s SFL,

style transfer can be seen as having the changing of extra-textual aspects as its communicative

goal, while keeping the textual aspect constant. These aspects could be either interpersonal or
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ideational in nature. Diachronic register of language is one example of an interpersonal aspect,

being determined by the author of a text as well as the historical period in which the author resides.

Specifically, the term diachronic refers to the perspective of language as a changing variable that

evolves through chronos i.e., time. The diachronic register of a language simply denotes its state

at a given period in history. For instance, consider the two variants I stand on sudden haste and

I am in a rush. Though a native English speaker would likely understand both, and understand

both of these to means the same thing in ideational terms, they would certainly find the first one a

strange way of conveying the same idea, and rightly so, for it is how Shakespeare originally said

it, with the latter one being a Modern English paraphrase from Sparknotes.com.

In this chapter, we study the NLG setting of transferring the style of a given sentence authored

in contemporary English e.g., I am in a rush, to the style of William Shakespeare, who wrote in

the Early Modern English prevalent in Elizabethan times, such as e.g., I stand on sudden haste.

The CG Definition/Constraints for this setting are: Given an English source sentence,

transduce it lexico-syntactically to sound like Early Modern English while preserving the source’s

original meaning.

In terms of Data & Knowledge Availability, we have access to≈ 15,000 parallel source-target

pairs, as detailed in §5.2. This is an order of magnitude lower than the typical counts of parallel

data used to train strong machine translation models using attentional sequence-to-sequence

transducers [5]. However, additionally, we also have access to a noisy, sparse dictionary Lpairwise

of ≈ 1000 source→ target lexical correspondences, e.g., thou→ you, fetches→ excuses etc.

We first posit a Creative Story in §5.1.1, detailing how a human speaker would use underlying

surface realization correspondences and shared linguistic structure when doing this task. This

creative story in turn motivates the Interventions below:

i) We explicitly provide source→ target surface realization correspondences to our model through

incorporating Lpairwise into word representations. The “word representation" here is the shared,

jointly pretrained space in which both source and target words are embedded; we also empirically

show that having a shared embedding space is better than having separate ones, as also that joint

pretraining is beneficial.

ii) We also intervene into the model architecture, equipping its decoder with the ability to copy

over words from the source sentence besides generating them from the vocabulary.

Specifically, we explore automated methods to transfer text from modern English to Shake-

spearean English using a neural model with pointers to enable copy action. To ameliorate the

deficient learning of embeddings due to a limited amount of parallel data, we pretrain embeddings

of words by leveraging Lpairwise mapping Shakespearean words to modern English words as well
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as additional text. Our methods achieve a BLEU score of 31+, an improvement of ≈ 6 points

over the strongest baseline. We publicly release our code to foster further research in this area. 1

5.1 Introduction

Given a source text, human speakers/authors/content moderators often morph it using a variety

of lexical and grammatical transformations, adjusting the degree of formality, usage of catchy

phrases, and other such stylistic changes. Their non-textual subgoals are, for example, to make it

more appealing. For instance, assuming a “make more appealing" subgoal, different text styles

appeal to different target user segments [157] [88] [159]. Millenials may find text using social

media slang to be more appealing, while middle-aged New Yorkers may find the inclusion of

Yiddish and Italian slang to be so. Thus there is a need to effectively adapt text to different target

styles. However, manually transforming text to a desired style can be a tedious process.

There have been increased efforts towards machine assisted text content creation and editing

through automated methods for summarization [155], brand naming [66], text expansion [169],

etc. However, there is a dearth of automated solutions for adapting text quickly to different styles.

We consider the problem of transforming text written in modern English text to Shakepearean style

English. For the sake of brevity and clarity of exposition, we henceforth refer to the Shakespearean

sentences/side as Original and the modern English paraphrases as Modern.

Unlike more traditional domain or style transfer settings e.g., formality, our task is distin-

guished by the fact that the two styles employ diachronically disparate registers of English — one

style uses the contemporary language while the other uses Early Modern English 2 from the Eliza-

bethan Era(1558-1603). Although Early Modern English is not classified as a different language

(unlike Old English and Middle English), it does have novel words (acknown and belike), novel

grammatical constructions (two second person forms: thou (informal) and you (formal) [16]),

semantically drifted senses (e.g., fetches is a synonym of excuses) and non-standard orthography

[143]. Additionally, there is a domain difference since the Shakespearean play sentences are from

a dramatic screenplay whereas the parallel modern English sentences are meant to be simplified

explanation for high-school students.

1https://github.com/harsh19/Shakespearizing-Modern-English
2https://en.wikipedia.org/wiki/Early_Modern_English
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No Type Text

1
MODERN Oh my, my bones ache so much
ORIGINAL Fie, how my bones ache !
COPY fie, how my bones ache !
SIMPLES2S you’ll be, sir, what the bones are tired .
STAT Oh my, my bones ache so much .

2
MODERN I am in a rush .
ORIGINAL I stand on sudden haste .
COPY i stand on sudden haste .
SIMPLES2S i’m stand right here .
STAT I am in a Fly

3
MODERN Give my compliments to your lady
ORIGINAL Commend me to thy lady
COPY commend me to your lady
SIMPLES2S give my regards to your lady
STAT give my praises to your lady

4
MODERN Showing mercy by pardoning killers only causes more murders .
ORIGINAL Mercy but murders, pardoning those that kill .
COPY mercy but murders, those those who kill us .
SIMPLES2S but except the murders to those murders to kill you .
STAT of mercy by pardoning killers causes more dire.

5
MODERN Holy Saint Francis, this is a drastic change !
ORIGINAL Holy Saint Francis, what a change is here !
COPY holy saint francis, what a change is here !
SIMPLES2S it’s the holy flute, what’s the changed !
STAT Holy Saint Francis, this is a drastic change !

6
MODERN was that my father who left here in such a hurry ?
ORIGINAL Was that my father that went hence so fast ?
COPY was that my father that went went so fast ?
SIMPLES2S was that my father was so that ?
STAT was that my father that left here in such a haste ?

7
MODERN Give me one kiss and I’ll go down .
ORIGINAL One kiss, and I’ll descend .
COPY one kiss me, and I’ll descend .
SIMPLES2S one kiss,and I come down .
STAT Give me a kiss, and I’ll go down .

8
MODERN then the window lets day in, and life goes out the window .
ORIGINAL Then, window, let day in and life out .
COPY then, window out, and day life .
SIMPLES2S then she is just a life of life, let me life out of life .
STAT then the window will let day in, and life out .

Table 5.1: Examples from dataset showing modern paraphrases (MODERN) from the learning
resource Sparknotes.com of few sentences from Shakespeare’s plays (ORIGINAL). We also show
transformation of modern text to Shakespearean text from our models (COPY, SIMPLES2S and
STAT).
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5.1.1 Creative Story

Consider how an idealized human speaker, for example, a native English speaking high school

student with a basic familarity of reading literary fiction would go about accomplishing the task.

Perhaps, the speaker would already have a working familiarity with Early Modern English having

read Shakespeare in the past. If not, they would first familiarize themselves with the dialect by

skimming through a few pairs of Shakespeare’s sentences and their modern English explanations.

They would also skim through some entries of Lpairwise to disambiguate any frequent, confusing

Early Modern English words they would have run into, as also to quickly familiarize themselves

with the range of Early Modern English words which have either gone our of use or diverged away

in form and meaning. Having acquired a basic internal cognitive model of Early Modern English

and how it relates back to today’s English, the speaker would now get down to their assigned task

of style transferring new sentence examples to Early Modern English. A rough analogy within a

machine learning setup would be a pretraining step that learns a shared space where word types

from the set union of Early Modern and Modern English vocabularies are jointly embedded.

Given a new sentence in contemporary English, the speaker would read through it and identify

for focussing particular words and phrases which are: a) Critical to preserving the meaning and

likely to remain unchanged e.g., key action verbs like marched, named entities such as Wormwood

Forest etc, and b) Likely to require changes while transferring to Early Modern English e.g. the

word excuses or new age idioms such as like a tracer bullet. Having carefully read the sentence,

they would now actually rewrite it into Early Modern English, directly copying over certain

segments (such as those identified in point a) earlier), while replacing and rewriting some others

(such as those identified in point b)). A rough analogy to this step within a machine learning

setup would be a sequence-to-sequence transducer equipped with a copy/pointer component

[116], whose decoder can choose between: a) Directly copying over words from the input source

sentence, and b) Generating words afresh from the entire vocabulary

5.1.2 Prior Approaches

Some prior work in this domain leverages a language model for the target style, achieving

transformation either using phrase tables [190] or by inserting relevant adjectives and adverbs

[157]. Such works have limited scope in the type of transformations that can be achieved. Firstly,

it is difficult for human curated canned phrase table resources to cover the combinatorially

increasing number of phrase pairs. Secondly, phrase tables cannot take context into account
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when doing phrase→ phrase replacements. Moreover, statistical and rule MT based systems do

not provide a direct mechanism to a) share word representation information between source and

target sides b) incorporating constraints between words into word representations in end-to-end

fashion. Neural sequence-to-sequence models, on the other hand, provide such flexibility. They

provide direct mechanisms to handle all of these — Sharing source and target embeddings to

share word-representation information, pretraining to leverage external information, and adding

constraints to word representations using [41].

5.1.3 Contributions

In this chapter, our main contributions are as follows:

• We use a sentence level sequence to sequence neural model with a pointer network com-

ponent to enable direct copying of words from input. We demonstrate that this method

performs much better than prior phrase translation based approaches for transforming

Modern English text to Shakespearean English.

• We leverage a dictionary providing mapping between Shakespearean words and modern

English words to retrofit pre-trained word embeddings. Incorporating this extra information

enables our model to perform well in spite of small size of parallel data.

The rest of the chapter is organized as follows. We first provide a brief analysis of our dataset

in (§5.2). We then elaborate on details of our methods in (§5.3, §5.4, §5.5, §5.6). We then discuss

experimental setup and baselines in (§5.7). Thereafter, we discuss the results and observations in

(§5.8). We conclude with discussions on related work (§5.9) and future directions (§5.10).

5.2 Dataset

Our dataset is a collection of line-by-line modern paraphrases for 16 of Shakespeare’s 36 plays

(Antony & Cleopatra, As You Like It, Comedy of Errors, Hamlet, Henry V etc.) from the

educational site Sparknotes3. This dataset was compiled by Xu et al. [189, 190] and is freely

available on github.4 14 plays covering 18,395 sentences form the training data split. We kept

1218 sentences from the play Twelfth Night as validation data set. The last play, Romeo and Juliet,

comprising 1462 sentences, forms the test set.

3www.sparknotes.com
4http://tinyurl.com/ycdd3v6h
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Original Modern

# Word Tokens 217K 200K
# Word Types 12.39K 10.05K
Average Sentence Length 11.81 10.91
Entropy (Type.Dist) 6.15 6.06
∩Word Types 6.33K

Table 5.2: Dataset Statistics

5.2.1 Examples

Table 5.1 shows some parallel pairs from the test split of our data, along with the corresponding

target outputs from some of our models. Copy and SimpleS2S refer to our best performing

attentional S2S models with and without a Copy component respectively. Stat refers to the best

statistical machine translation baseline using off-the-shelf GIZA++ aligner and MOSES. We

can see through many of the examples how direct copying from the source side helps the Copy

generates better outputs than the SimpleS2S. The approaches are described in greater detail in

(§5.3) and (§5.7).

5.2.2 Analysis

Table 5.2 shows some statistics from the training split of the dataset. In general, the Original side

has longer sentences and a larger vocabulary. The slightly higher entropy of the Original side’s

frequency distribution indicates that the frequencies are more spread out over words. Intuitively,

the large number of shared word types indicates that sharing the representation between Original

and Modern sides could provide some benefit.

5.3 Method Overview

The Overall architecture of our system is shown in Figure 5.1. We use a bidirectional LSTM to

encode the input modern English sentence. Our decoder side model is a mixture model of RNN

module amd pointer network module. The two individual modules share the attentions weights

over encoder states, although it is not necessary to do so. The decoder RNN predicts probability

distribution of next word over the vocabulary, while the pointer model predicts the probability

distribution over words in input. The two probabilities undergo a weighted addition, the weights

themselves computed based on previous decoder hidden state and the encoder outputs.
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Figure 5.1: Depiction of our overall architecture (showing decoder step 3). Attention weights
are computed using previous decoder hidden state h2, encoder representations, and sentinel
vector. Attention weights are shared by decoder RNN and pointer models. The final probability
distribution over vocabulary comes from both the decoder RNN and the pointer network. Similar
formulation is used over all decoder steps

Let x,y be the some input - output sentence pair in the dataset. Both input x as well as

output y are sequence of tokens. x = x1x2...xTenc , where Tenc represents the length of the input

sequence x. Similarly, y = y1y2...yTdec
. Each of xi, yj is a token from the vocabulary.

5.4 Token embeddings

Each token in vocabulary is represented by a M dimensional embedding vector. Let vocabulary

V be the union of modern English and Shakepearean vocabularies i.e. V = Vshakespeare ∪ Vmodern.

Eenc and Edec represent the embedding matrices used by encoder and decoder respectively

( Eenc, Edec ∈ R|V |×M ). We consider union of the vocabularies for both input and output

embeddings because many of the tokens are common in two vocabularies, and in the best

performing setting we share embeddings between encoder and decoder models. Let Eenc(t),

represent encoder side embeddings of some token t. For some input sequence x, Eenc(x) is given

as (Eenc(x1), Eenc(x2), ...).

5.4.1 Pretraining of embeddings

Learning token embeddings from scratch in an end-to-end fashion along with the model greatly

increases the number of parameters. To mitigate this, we consider pretraining of the token
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embeddings. We pretrain our embeddings on all training sentences. We also experiment with

adding additional data from the Penn Tree Bank (PTB) [113] for better learning of embeddings.

Additionally we leverage a dictionary mapping tokens from Shakespearean English to modern

English.

We consider four distinct strategies to train the embeddings. In the cases where we use external

text data, we first train the embeddings using both the external data and training data, and then for

the same number of iterations on training data alone, to ensure adaptation. Note that we do not

directly use off-the-shelf pretrained embeddings such as GloVe [133] and Word2Vec [118] since

we need to learn embeddings for novel word forms (and also different word senses for extant

word forms) on the Original side.

Plain

This method is the simplest pre-training method. Here, we do not use any additional data, and

train word embeddings are trained on the union of Modern and Original sentences.

PlainExt

In this method, we add all the sentences from the external text source (PTB) in addition to

sentences in training split of our data.

Retro

We leverage a dictionary L of approximate Original→Modern word pairs [189, 190], crawled

from shakespeare-words.com, a source distinct from Sparknotes. We explicitly add the

two 2nd persons and their corresponding forms (thy, thou, thyself ,etc.) which are very frequent

but not present in L. The final dictionary we use has 1524 pairs. Faruqui et al. [41] proposed

a retrofitting method to update a set of word embeddings to incorporate pairwise similarity

constraints. Given a set of embeddings pi ∈ P , a vocabulary V , and a set C of pairwise

constraints (i, j) between words, retrofitting tries to learn a new set of embeddings qi ∈ Q to

minimize the following objective:

f(Q) = δ

i=|V |∑
i=1

(pi − qi)
2
+ ω

∑
(i,j)∈C

(qi − qj)
2 (5.1)
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We use their off-the-shelf implementation 5 to encode the dictionary constraints into our pretrained

embeddings, setting C = L and using suggested default hyperparameters for δ, ω and number of

iterations.

RetroExt

This method is similar to Retro, except that we use sentences from the external data (PTB) in

addition to training sentences.

We use None to represent the settings where we do not pretrain the embeddings.

5.4.2 Fixed embeddings

Fine-tuning pre-trained embeddings for a given task may lead to overfitting, especially in scenarios

with small amount of supervised data for the task [111]. This is because embeddings for only a

fraction of vocabulary items get updated, leaving the embeddings unchanged for many vocabulary

items. To avoid this, we consider fixed embeddings pretrained as per the procedures described

earlier. While reporting results in Section (§5.8), we separately report results for fixed (FIXED)

and trainable (VAR) embeddings, and observe that keeping embeddings fixed leads to better

performance.

5.5 Method Description

In this section we give details of the various modules in the devised neural model.

5.5.1 Encoder model

Let
−−−−−−→
LSTMenc and

←−−−−−−
LSTMenc represent the forward and reverse encoder. h

−→enc
t represent hidden

state of encoder model at step t (h
−→enc
t ∈ RH). The following equations describe the model:

h
−−→enc
0 =

−→
0 ,h

←−−enc
|x| =

−→
0 (5.2)

h
−−→enc
t =

−−−−−−→
LSTMenc(h

enc
t−1, Eenc(xt)) (5.3)

h
←−−enc
t =

←−−−−−−
LSTMenc(h

enc
t+1, Eenc(xt)) (5.4)

henc
t = h

−−→enc
t + h

←−−enc
t (5.5)

5github.com/mfaruqui/retrofitting
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5.5.2 Attention

Let hdec
t represent the hidden state of the decoder LSTM at step t. Let Edec(yt−1) represent the

decoder side embeddings of previous step output. We use special START symbol at t = 1.

We first compute a query vector, that is a linear transformation of hdec
t−1. A sentinel vector

s ∈ RH is concatenated with the encoder states to create Fatt ∈ R(Tenc+1)×H , where Tenc represents

the number of tokens in encoder input sequence x. A normalized attention weight vector αnorm is

computed. The value g, which corresponds to attention weight over the sentinel vector, represents

the weight given to the decoder RNN module while computing output probabilties.

q = hdec
t−1 Wq Wq ∈ RH×H (5.6)

Fatt = concat(henc
1..Tenc

, s) Fatt ∈ R(Tenc+1)×H (5.7)

αi =

H∑
j=1

(tanh(F
(ij)
att qj)) + bi αi,bi ∈ R (5.8)

αnorm = softmax(α) αnorm ∈ RTenc+1 (5.9)

β = αnorm
1,2,...,Tenc

β ∈ RTenc (5.10)

g = αnorm
Tenc+1 g ∈ R (5.11)

5.5.3 Pointer model

As noted earlier, a pair of corresponding Original and Modern sentences have significant vocabu-

lary overlap. Moreover, there are lot of proper nouns and rare words that might not be predicted by

a sequence to sequence model. To rectify this, pointer networks have been used to enable copying

of tokens from input directly [116]. The pointer module provides location based attention, and

output probability distribution due to pointer network module can be expressed as follows:

PPTR
t (w) =

∑
xj=w

(βj) (5.12)

5.5.4 Decoder RNN

Summation of encoder states weighed by corresponding attention weights yields the context

vector. Output probabilities over vocabulary as per the decoder LSTM module are computed as

follows:
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ct =

Tenc∑
i=1

βi h
enc
i (5.13)

hdec
t = LSTM(hdec

t−1, [concat(Edec(yt−1), ct)]) (5.14)

PLSTM
t = softmax(Wout[concat(hdec

t , ct)] + bout) (5.15)

During training, we feed the ground truth for yt−1, whereas while making predictions on test data,

predicted output from previous step is used instead.

5.5.5 Output prediction

Output probability of a token w at step t is a weighted sum of probabilities from decoder LSTM

model and pointer model given as follows:

Pt(w) = g × PLSTM
t (w) + (1− g)× PPTR

t (w) (5.16)

P PTR
t (w) takes a non-zero value only if w occurs in the input sequence, otherwise it is 0.

Forcing g = 0 would correspond to not having a Copy component, reducing the model to a plain

attentional S2S model, that we refer to as SimpleS2S.

5.6 Loss functions

Cross entropy loss is used to train the model. For a data point (x,y) ∈ D and predicted probability

distributions Pt (w) over the different words w ∈ V for each time step t ∈ {1, . . . , Tdec}, the loss

is given by

−
Tdec∑
t=1

log p
(
Pt (yt)

)
(5.17)

Sentinel Loss (SL): Following from work by [116], we consider additional sentinel loss. This

loss function can be considered as a form of supervised attention. Sentinel loss is given as follows:
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−
Tdec∑
t=1

log(g(t) +
∑
xj=yt

(β
(t)
j )) (5.18)

Note that the above formulation of sentinel loss is also taken from [116]. We report the results

demonstrating the impact of including the sentinel loss function (+SL).

5.7 Experiments

In this section we describe the experimental setup and evaluation criteria used.

5.7.1 Preprocessing

We lowercase sentences and then use NLTK’s PUNKT tokenizer [87] to tokenize all sentences

into their constituent words (tokens). The Original side has certain characters like æ that are not

extant in today’s English language. We map these characters to the closest equivalent character(s)

used today (e.g., æ→ ae)

5.7.2 Baseline Methods

As-it-is

Since both source and target side are English, just replicating the input on the target side is a valid

and competitive baseline, producing a BLEU of 21+.

Dictionary

Xu et al. [190] provide a dictionary mapping between large number of Shakespearean and modern

English words. We augment this dictionary with pairs corresponding to the 2nd person thou (thou,

thy, thyself ) since these common tokens were not present.

Directly using this dictionary to perform word-by-word replacement is another admittable

baseline. As was noted by Xu et al. [190], this baseline actually performs worse than As-it-is. This

could be due to its performing aggressive replacement without regard for word context. Moreover,

a dictionary cannot easily capture one-to-many mappings as well as long-range dependencies.6

6thou-thyself and you-yourself
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Off-the-shelf SMT

To train statistical machine translation (SMT) baselines, we use publicly available open-source

toolkit MOSES [92], along with the GIZA++ word aligner [125], as was done in [190]. For

training the target-side LM component, we use the lmplz toolkit within MOSES to train a 4-gram

LM. We also use MERT [125], available as part of MOSES, to tune on the validation set.

For fairness of comparison, it is necessary to use the pairwise dictionary and PTB while

training the SMT models as well. The most obvious way for this is to use the dictionary and PTB

as additional training data for the alignment component and the target-side LM respectively. We

experiment with several SMT models, ablating for the use of both PTB and dictionary. In 5.8, we

only report the performance of the best of these approaches.

5.7.3 Evaluation

Our primary evaluation metric is BLEU [128]. We compute BLEU using the freely available and

very widely used perl script7 from the MOSES decoder.

We also report PINC [20], a metric which originates from paraphrase evaluation literature and

evaluates how much the target side paraphrases resemble the source side. Given a source sentence

s and a target side paraphrase c generated by the system, PINC(s,c) is defined as

PINC(s, c) = 1−
1

N

n=N∑
n=1

|Ngram(c, n) ∩Ngram(s, n)|
|Ngram(c, n)|

where Ngram(x, n) denotes the set of all n-grams of length n in sentence x, and N is the

maximum length of ngram considered. We set N = 4. Higher the PINC, greater the novelty

of paraphrases generated by the system. Note, however, that PINC does not measure fluency of

generated paraphrases. Moreover, it cannot be used to compare against references. Hence, it

rewards all changes similarly irrespective of their fluency as well as adequacy, merely proportional

to the extent of ngrams edited. As a result, it can merely be used as an auxiliary metric.

Limitations of Current Metrics

We acknowledge that BLEU and PINC are both deficient in various aspects, e.g., not considering

higher order ngrams, being insensitive to paraphrasing and near-synonymy, being incapable

of assigning partial credit for non-exactly matching string forms etc. Evaluation metrics that

7http://tinyurl.com/yben45gm
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compare the embedding representations of generated and gold standard sentences would have

been more appropriate for this purpose. More definitively, a thorough evaluation of the generated

sentences on fluency, semantic correctness and other typical aspects of text quality by skilled

human annotators capable of reading and understanding Shakespearean English would have been

ideal.

5.7.4 Training and Parameters

We use a minibatch-size of 32 and the ADAM optimizer [86] with learning rate 0.001, momentum

parameters 0.9 and 0.999, and ϵ = 10−8. All our implementations are written in Python using

Tensorflow 1.1.0 framework.

For every model, we experimented with two configurations of embedding and LSTM size: S

(128-128), ME (192-192) and L (256-256). Across models, we find that the ME configuration

performs better in terms of highest validation BLEU. We also find that larger configurations

(384-384 and 512-512) fail to converge or perform very poorly.8 Here, we report results only for

the ME configuration for all the models. For all our models, we picked the best saved model over

15 epochs that has the highest validation BLEU.

5.7.5 Decoding

At test-time we use greedy decoding to find the most likely target sentence.9 We also experiment

with a post-processing strategy that replaces UNKs in the target output with the highest aligned

(maximum attention) source word. We find that this gives a small jump in BLEU of about 0.1-0.2

for all neural models.10 Our best model, for instance, gets a jump of 0.14 to reach a BLEU of

31.26 from 31.12.

5.8 Results

The results in Table 5.3 confirm most of our hypotheses about the right architecture for this task.

• Copy component: We can observe from Table 5.3 that the various Copy models each

outperform their SimpleS2S counterparts by at least 7-8 BLEU points.

8This is expected given the small parallel data
9Empirically, we observed that beam search does not give improvements for our task

10Since effect is small and uniform, we report BLEU before post-processing in Table 5.3
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• Retrofitting dictionary constraints: The Retro configurations generally outperform their

corresponding Plain configurations. For instance, our best configuration Copy.Yes.RetroExtFixed

gets a better BLEU than Copy.Yes.PlainExtFixed by a margin of at least 11.

• Sharing Embeddings: Sharing source and target side embeddings benefits all the Retro

configurations, although it slightly deteriorates performance (about 1 BLEU point) for some

of the Plain configurations.

• Fixing Embeddings: Fixed configurations always perform better than corresponding Var

ones (save some exceptions). For instance, Copy.Yes.RetroExtFixed get a BLEU of 31.12

compared to 20.95 for Copy.Yes.RetroExtVar. Due to fixing embeddings, the former has

just half as many parameters as the latter (5.25M vs 9.40M)

• Effect of External Data: Pretraining with external data Ext works well along with

retrofitting Retro. For instance, Copy.Yes.RetroExtFixed gets a BLEU improvement of

2+ points over Copy.Yes.RetroFixed

• Effect of Pretraining: For the SimpleS2S models, pre-training adversely affects BLEU.

However, for the Copy models, pre-training leads to improvement in BLEU. The simplest

pretrained Copy model, Copy.No.PlainVar has a BLEU score 1.8 higher than Copy.No.NoneVar.

• PINC scores: All the neural models have higher PINC scores than the statistical and

dictionary approaches, which indicate that the target sentences produced differ more from

the source sentences than those produced by these approaches.

• Sentinel Loss: Adding the sentinel loss does not have any significant effect, and ends up

reducing BLEU by a point or two, as seen with the Copy+SL configurations.

5.8.1 Qualitative Analysis

Table 5.1 presents model outputs for some test examples. In general, the Copy model outputs

resemble the ground truth more closely compared to SimpleS2S and Stat. In some cases, it faces

issues with repetition (Examples 4 and 6) and fluency (Example 8).

Figure 5.2 shows the attention matrices from our best Copy model (Copy.Yes.RetroExtFixed)

and our best SimpleS2S model (SimpleS2S.Yes.Retrofixed) respectively for the same input test

sentence. Without an explicit Copy component, the SimpleS2S model cannot predict the words

saint and francis, and drifts off after predicting incorrect word flute.
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Model Sh Init BLEU PINC

AS-IT-IS - - 21.13 0.0
DICTIONARY - - 17.00 26.64
STAT - - 24.39 32.30

SIMPLES2S

× NoneV ar 11.66 85.61
× PlainV ar 9.27 86.52
× PlainExtV ar 8.73 87.17
× RetroV ar 10.57 85.06
× RetroExtV ar 10.26 83.83
✓ NoneV ar 11.17 84.91
✓ PlainV ar 8.78 85.57
✓ PlainF ixed 8.73 89.19
✓ PlainExtV ar 8.59 86.04
✓ PlainExtF ixed 8.59 89.16
✓ RetroV ar 10.86 85.58
✓ RetroF ixed 11.36 85.07
✓ RetroExtV ar 11.25 83.56
✓ RetroExtF ixed 10.86 88.80

COPY

× NoneV ar 18.44 83.68
× PlainV ar 20.26 81.54
× PlainExtV ar 20.20 83.38
× RetroV ar 21.25 81.18
× RetroExtV ar 21.57 82.89
✓ NoneV ar 22.70 81.51
✓ PlainV ar 19.27 83.87
✓ PlainF ixed 21.20 81.61
✓ PlainExtV ar 20.76 83.17
✓ PlainExtF ixed 19.32 82.38
✓ RetroV ar 22.71 81.12
✓ RetroF ixed 28.86 80.53
✓ RetroExtV ar 20.95 81.94
✓ RetroExtF ixed 31.12 79.63

COPY+SL

× NoneV ar 17.88 83.70
× PlainV ar 20.22 81.52
× PlainExtV ar 20.14 83.46
× RetroV ar 21.30 81.22
× RetroExtV ar 21.52 82.86
✓ NoneV ar 22.72 81.41
✓ PlainV ar 21.46 81.39
✓ PlainF ixed 23.76 81.68
✓ PlainExtV ar 20.68 83.18
✓ PlainExtF ixed 22.23 81.71
✓ RetroV ar 22.62 81.15
✓ RetroF ixed 27.66 81.35
✓ RetroExtV ar 24.11 79.92
✓ RetroExtF ixed 27.81 84.67

Table 5.3: Test BLEU results. Sh denotes encoder-decoder embedding sharing (No=×,Yes=✓)
. Init denotes the manner of initializing embedding vectors. The -Fixed or -Var suffix indicates
whether embeddings are fixed or trainable. COPY and SIMPLES2S denote presence/absence of
Copy component. +SL denotes sentinel loss.
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Figure 5.2: Attention matrices from a Copy (left) and a simple S2S (right) model respectively on
the input sentence “Holy Saint Francis, this is a drastic change!" . < s > and < /s > are start
and stop characters. Darker cells are higher-valued.

5.9 Related Work

There has been a small amount of prior work on style adaptation. Xu et al. [190] use phrase

table based statistical machine translation to transform text to target style. In contrast, our method

is an end-to-end trainable neural network. Saha Roy et al. [157] leverage different language

models based on geolocation and occupation to align a text to specific style. However, their

work is limited to addition of adjectives and adverbs. Our method can handle more generic

transformations including addition and deletion of words.

Pointer networks [183] allow the use of input-side words directly as output in a neural S2S

model, and have been used for tasks like extractive summarization [160] [195] and question

answering [185]. However, pointer networks cannot generate words not present in the input. A

mixture model of recurrent neural network and pointer network has been shown to achieve good

performance on language modeling task [116].

S2S neural models, first devised by [174], and enhanced with a attention mechanism by

[5], have yielded state-of-the-art results for machine translation (MT), summarization [155], etc.

In the context of MT, various settings such as multi-source MT [198] and MT with external

information [161] have been explored. Distinct from all of these, our chapter attempts to solve a

Modern English→ Shakespearean English style transformation task. Although closely related to

both paraphrasing and MT, our task has some differentiating characteristics such as considerable

source-target overlap in vocabulary and grammar (unlike MT), and different source and target

language (unlike paraphrasing). [51] have devised a neural sequence-to-sequence solution for

generating a portmanteau (see Chapter 2 for more) given two English root-words. Though their
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task also involves large overlap in target and input, they do not employ any special copying

mechanism. Unlike text simplification and summarization, our task does not involve shortening

content length.

5.10 Conclusion

In this chapter, we studied the Constrained Creative NLG setting of diachronic style transfer from

Modern English to Early Modern English, specifically, the English characteristic of Shakespeare’s

writing.

The dataset we had contained ≈ 15K parallel pairs, an order of magnitude less than the typical

counts of parallel data used to train strong machine translation models [5]. Thus, we had the poor

Data & Knowledge Availability that is a marked characteristic of this Constrained Creative class

of settings being present.

We first hypothesized an underlying Creative Story based on an idealized sketch of how a

human speaker would perform the task (see §5.1.1 for more). Based on this creative story, we

devised Interventions to the typical E2EN2PP pipeline.

Specifically, in this chapter, our recommended approach lead to two major changes in the

typical E2EN2PP pipeline. First, we recommended having a shared representation (embedding)

space for source and target words initially, and pretrained this using a combined corpus of

sentences from either of the sides. Third, we devised a mechanism based on retrofitting [41] to

incorporate pairwise lexical source word→ target word constraints from a dictionary Lpairwise,

into this initial shared representation. This exploits the property of a shared language between

source and target sides, a property likely to be shared by a large number of style transfer tasks.

Second, we recommended using a mixture model of pointing/copying from input words and

generating from the vocabulary to transform Modern English text to Shakespearean style English.

We demonstrated the effectiveness of our devised approach over the baselines. Our experiments

revealed the utility of incorporating input-copying mechanism, and using dictionary constraints

for problems with shared (but non-identical) source-target sides and sparse parallel data. We

released our code publicly to foster further research on stylistic transformations on text. 11 The

work has from release until August 2022 (the time of writing) been positively received by the

community with over 140 citations and 46 publications explicitly using this as a baseline.

Sparknotes also provides similar translations to Modern English for the Anglo-Saxon Age epic

11https://github.com/harsh19/Shakespearizing-Modern-English
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Beowulf 12 (Old English) and the famous monastic devotional chronicle Canterbury Tales (Middle

English). A possible future direction to test the model for styles other than Shakespearean English

would be to develop models to translate to these styles/languages. An additional extension would

be to develop a single unified encoder-decoder model for translation to any diachronic English

style, in the manner of [78], who developed an any-source language to any-target language unified

translation model.

12tinyurl.com/d5ntme7
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Chapter 6

VisCTG: Improving Plausibility for
Commongen Through
Retrieve-Caption-Generate
(AAAI 2022)

We’re already able to see isolated cases

where Cyc is learning things on its own.

Some of the things it learns reflect the

incompleteness of its knowledge and are

just funny. For example, Cyc at one point

concluded that everyone born before 1900

was famous, because all the people that it

knew about and who lived in earlier times

were famous people.

Doug Lenat, speaking to The Austin

Chronicle in 1999, about his

commonsense KB/reasoner Cyc

In this chapter, we study the Commongen [102] setting, where the CG is to generate a sentence

constructing a commonsense plausible situation from a given set of input concepts. Note that

the CG is in some sense “underspecified" since it does not additionally provide any information

e.g., through a knowledge graph or other symbolic means to ground this notion of commonsense
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plausibility.

As an example, consider the input {horse, carriage, draw}. Two potential adequate outputs for

this would be The carriage is drawn by the horse. and The Sun God’s carriage has seven horses

drawing it. (See Table 6.4 for more actual examples from our corpus).

We identify several critical issues in baseline model outputs for this task, like poor common-

sense plausibility, inadequate pairwise lexical relationships, incomplete or missing arguments

and referring expressions, and dullness/lack of specificity. This points to the scale of training

data being insufficient to acquire the notion of commonsense plausibility tabula rasa i.e., in an

inductive fashion. Furthermore, as discussed, the explicit CG is underspecified otherwise and

only specifies a general requirement on the output situation of being commonsense-plausible with

respect to the input concepts.

We build from a fundamental concern as a starting point to posit our ameliorating approach.

Is language as a modality itself sufficient to learn the type of commonsensical pairwise lexical

relationships necessary to microplan more adequate, situation-describing sentences given the

input concept set? If not, why so? And more importantly, if not, how can one address this? Would

incorporating information from another modality help?

The Zipfian nature of language by itself leads to a large number of concepts with relatively

fewer occurrences. For pairwise co-occurrences , this problem compounds even further. However,

a second, more important concern is the well noted phenomenon of reporting bias [57] — wherein

unusual, exceptional and “newsworthy" events, concepts and relationships e.g., bananas being red,

are mentioned more in text corpora compared to their usual, mundane and obvious counterparts

e.g., bananas being yellow. Note that reporting bias here does not refer to any kind of inductive

bias w.r.t. models, but the bias that exists in the medium of text itself in terms of the distribution

of real world events about which text is created i.e. they are “reported" in text.

A third concern is the effect of the Gricean Maxim of Quantity, whereby speakers say only

as much as is necessary, omitting information which the listener is assumed to know from

commonsense. As a result, typical sentences in corpora often omit information about sufficiently

obvious relationships between concepts e.g., plates being atop a table, or boats typically being

afloat on an underlying water body.

We posit that these issues could indeed have a significant effect on the NLG model’s learning

for Commongen, and they indeed make commonsense plausibility with respect to the input as

required by the CG a complex aspect to satisfy.

We posit that incorporating information from another modality such as vision could signifi-

cantly help dampen this effect and serve effectively as an External Knowledge Resource.
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Specifically, we devise and investigate an Intervention that exploits multimodal information

contained in images as an effective method for enhancing the commonsense of large, pretrained

models for text generation. We perform experiments using BART and T5 as base NLG models.

Note, however, that our method is agnostic to the nature of pretrained base architectures used, and

does not exploit any particulars of transformers, masked pretraining or any other specifics of the

BART and T5 architectures. We acknowledge the presence of a vast diversity of base architectures

for generation in the research prior to these both, and use these two simply as a first step in

demonstrating our approach’s efficacy. We call our approach VisCTG: Visually Grounded Concept-

to-Text Generation. VisCTG involves captioning images representing appropriate everyday

scenarios, and using these captions to enrich and steer the generation process.

Specifically, the Intervention we devise to the E2EN2PP is the addition of an Input Expansion

Layer between the Input and the Embedding Layer. Before passing the input string to the

Embedding Layer, the Input Expansion Layer symbolically augments it with the captions of

retrieved relevant images described above. Figure 6.1 illustrates our Intervention.

Figure 6.1: An illustration of how the E2EN2PP fleshed out in Figure 1.6 would work in action
for the actual generation task and input example, after incorporating the Intervention in Chapter
6. Here, the task is to summarize the given input news article to within 280 characters. The text
marked out in carrot-red in the Final Output , i.e dedocked is clearly picked up by the model from
the caption-expanded portion of the input (also marked in carrot-red)

Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model
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performance while successfully addressing aforementioned issues noticed in the baseline genera-

tions.

6.1 Introduction

Large pretrained neural models have seen increasing popularity for NLP tasks and applications.

This includes SOTA text generation models such as BART [98] and T5 [141]. Larger corpora

and better pretraining losses are major reasons driving these gains. However, despite increasing

attention on the commonsense of models through works like COMET [13], studies have shown

that even large pretrained models still struggle with commonsense tasks that humans can reason

through very easily [176]. We believe that there is commonsense information in other modalities

like vision, beyond what is reported [57] in text, which can possibly augment commonsense and

enhance decision-making processes of text generation models.

In this chapter, we show this is true by improving the performance of Transformer-based text

generation models on concept-to-text generation using visual grounding, which we call VisCTG:

Visually Grounded Concept-to-Text Generation. Concept-to-text generation is a high-level formu-

lation of several constrained text generation and data-to-text natural language generation (NLG)

tasks. These are challenging tasks that have seen increasing interest, and involve generating

natural language outputs given certain pre-conditions, e.g., specific words in the outputs, or from a

collection of structured or semi-structured inputs. They typically involve converting a set of inputs

into natural language text. These inputs can normally be thought of as concepts, or high-level

words or structures, that play an important role in the generated text.

Commongen [102] involves generating sentences that effectively describe everyday scenarios

from concepts sets, which are words that must appear in the output. Commongen is challenging

as effective relational reasoning ability using commonsense knowledge is required. Models must

also possess the compositional generalization capabilities to coalesce together different concepts.

Commongen is an effective benchmark for constrained text generation and commonsense as its

task formulation and evaluation methodology are rather broadly applicable.

We experiment on Commongen using BART and T5. An initial analysis (§6.3.1) of baseline

generations shows several issues related to commonsense, specificity, and fluency. We hypothesize

that these can be addressed through image captions (§6.3.2). Images representing everyday

scenarios are commonplace, and typically logical and grounded in commonsense. Captioning

models can also normally produce decent captions for everyday images, which can be used to

guide and enhance the generation process. See Table 6.1 for examples.
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{stand, hold, umbrella, street} {food, eat, hand, bird}

baseline: A holds an umbrella while standing on the street baseline: hand of a bird eating food
capt: a woman walking down a street holding an umbrella capt: a person holding a small bird in their hand
VisCTG: A woman stands on a street holding an umbrella. VisCTG: A bird eats food from a hand.

{cat, bed, pet, lay} {fence, jump, horse, rider}

baseline: A cat is laying on a bed and petting it. baseline: A rider jumps over a fence.
capt: a cat laying on a bed with a stuffed animal capt: a horse is jumping over a wooden fence

VisCTG: A cat laying on a bed being petted. VisCTG: A rider jumps a fence on a horse.

Table 6.1: Examples of retrieved images, associated captions, baseline and VisCTG (our visually grounded
model’s) generations for select concept sets. Note that the images and captions are used as an intermediary
to guide the final generation and thus the final generation need not be faithful to them. E.g. there is nobody
petting the cat in the image or caption, but since the VisCTG output is conditioned on both the concept set
and the caption, it includes being petted.

We use a pretrained image captioning model on MSCOCO captions [105] to caption the

top retrieved images for each concept set (§6.4.1,6.4.2). We use these captions as additional

information to augment inputs to our generation models (§6.4.3). Extensive evaluation (§6.6)

demonstrates that VisCTG improves model performance and commonsense while addressing the

baseline inadequacies.

6.2 Dataset, Models, and Metrics

6.2.1 Commongen Dataset

The original Commongen dataset [102] is made up of 35,141 concept sets (consisting of 3 to 5

keywords each) and 79,051 sentences, split into train, dev, and test splits. Since the original test

set is hidden, we partition the original dev set into new dev and test splits for the majority of our
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Dataset
Stats

TrainCG DevO TestO DevCG TestCG

# concept
sets

32,651 993 1,497 240 360

size = 3 25,020 493 - 120 -
size = 4 4,240 250 747 60 180
size = 5 3,391 250 750 60 180

Table 6.2: Statistics of Commongen dataset splits.

experiments. We do, however, ask the Commongen authors to evaluate our best VisCTG models

on the original test set (more in §6.6). The training set remains the same. We refer to the original

dev and test sets as devO and testO, and these new splits as trainCG, devCG, and testCG. Table 6.2

contains information about these splits. Their relative sizes and distribution of concept set sizes

within each are kept similar to the originals.

6.2.2 Models: T5 and BART

We use pretrained text generation models T5 and BART, both the base and large versions. Both

are seq2seq Transformer models. T5 has strong multitask pretraining. BART is pretrained as

a denoising autoencoder to reproduce original from noised text. We use their HuggingFace

implementations.

We train two seeded versions of each model on trainCG and evaluate their performance on

devO. These serve as the baselines for our experiments. Using the numbers in Lin et al. [102] as

comparison, we validate our implementations. We use the hyperparameters from Lin et al. [102],

beam search for decoding, and select the final epoch as the one reaching maximum ROUGE-2

[103] on the dev split. From Table 6.3, we observe that our re-implementations reach or exceed

reported results in Lin et al. [102] on most metrics.

6.2.3 Evaluation Metrics

We use several evaluation metrics, including those in Lin et al. [102] such as BLEU [128], CIDEr

[181], SPICE [3], and coverage (cov). These (other than cov) assess similarity between human

references and generations. In particular, CIDEr captures a combination of sentence similarity,

grammaticality, saliency, importance, and accuracy. SPICE maps texts to semantic scene graphs

and calculates an F-score over these graphs’ tuples. Lin et al. [102] note that SPICE correlates

highest with human judgment for Commongen. Cov measures the average percentage of input
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Model\Metrics BLEU-4 CIDEr SPICE
Reported BART-large 27.50 14.12 30.00

Reported T5-base 18.00 9.73 23.40
Reported T5-Large 30.60 15.84 31.80

Our BART-base 28.30 15.07 30.35
Our BART-large 30.20 15.72 31.20

Our T5-base 31.00 16.37 32.05
Our T5-large 33.60 17.02 33.45

Table 6.3: Comparing devO performance of our re-implemented models to those in Lin et al. [102]. Bold
represents where we reach/exceed reported numbers. Results averaged over two seeds for our models. Lin
et al. [102] did not report BART-base. See §6.2.3 for metric explanationsfor comparison of all metrics.

concepts covered by the output text in any form.

We also use BERTScore [196] and Perplexity (PPL). BERTScore measures BERT [34]

embeddings similarity between individual tokens, serving as a more semantic rather than surface-

level similarity measure. We multiply by 100 when reporting BERTScore. PPL serves as a

measure of fluency, with lower values representing higher fluency. We use GPT-2 [139] for PPL.

For all metrics other than PPL, higher means better performance.

6.3 Initial Analysis and Motivation

6.3.1 Baseline Model Generations

We conduct an initial analysis of the baseline model outputs, and observe that several lack fluency

and commonsense plausibility. Some are more like phrases than complete, coherent sentences, e.g.

“body of water on a raft". Others miss important words, e.g. “A listening music and dancing in a

dark room" misses a noun before listening. A large portion of generations are generic and bland,

e.g. “Someone sits and listens to someone talk". This may be an instance of the dull response

problem faced by generation models [37, 182], where they prefer safe and frequent responses

independent of input information.

Many generations are also implausible. For example, “body of water on a raft" is implausible

as the phrases “body of water" and “a raft" are coalesced together incorrectly i.e., the roles of

raft and body of water are incorrectly swapped. A similar issue occurs with the {horse, carriage,

draw} example in Table 6.4. At times the models also cannot understand what certain nouns can

do i.e., their affordances e.g. “A dog checking his phone on a pier.". Several other examples of

this can be found in Table 6.4.
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Concept Set Baseline Generation Human Reference
{horse, carriage, draw} horse drawn in a carriage The carriage is drawn by the horse.

{dog, house, eat} A dog eats hay in a house The dog eats food inside the house.
{cow, horse, lasso} A cow is lassoing a horse. A group of men riding horses lassoing a cow.

Table 6.4: Example generations from our baseline models versus human references.

6.3.2 Images and Captions

Images that represent everyday scenarios are quite prevalent for almost any reasonable concept set.

Further, the images are typically grounded in commonsense. For example, searching {cow, horse,

lasso} will result in many images of cowboys riding horses and lassoing cows, rather than the

illogical situation of “A cow is lassoing a horse." described by the baseline generation in Table

6.4. Many everyday images are relatively similar to those in image captioning datasets such as

MSCOCO, so pretrained captioning models should work quite effectively. We thus hypothesize

that using images and their captions to visually ground concept-to-text generation can potentially

deal with issues mentioned in §6.3.1. Retrieved images with corresponding captions generated by

a pretrained image captioning model (see §6.4.2) and final baseline and VisCTG generations for

select concept sets are in Table 6.1.

Textual corpora also suffer from reporting bias [57], where everyday, commonsense albeit “un-

interesting" actions (walking), objects (bench) and facts (bananas are yellow) are underrepresented

compared to real-world frequency, while “newsworthy" actions (murdering), objects (spaceships)

and facts (blue GMO bananas) are exaggerated. This seeps even into large pretrained text models

[164]. Using visual data and models dampens this bias, likely improving the commonsense of

generations.

6.4 Methodology

6.4.1 Image Retrieval

We first obtain images for each concept set in our three splits. Image captioning datasets such as

MSCOCO and Flickr are typically too small and focused to be effective for our purposes since we

must cover numerous different concept sets. Further, a search engine is more generalizable.

We decide to use Google Images. On a sample of concept sets, the retrieved images using

other search engines were inappropriate; they did not incorporate most input keywords nor handle

homonyms well. For example, “sports+fan+watch" yields images of fans watching a sports game
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Figure 6.2: Graph displaying the average coverage (out of 100) by the top NTC captions in aggregate per
concept set.

Augmented Input→ Final Generation

wave fall board surfer <s> a surfer riding a wave on a surfboard→ A surfer is falling off his board into
the waves.
dance stage front crowd <s> a crowd of people watching a man on a stage <s> a man is holding a
microphone in front of a crowd→ A man dances in front of a crowd on stage.
stand hold umbrella street <s> a woman walking down a street holding an umbrella <s> a woman walking
down a street holding an umbrella <s> a girl holding a pink umbrella in a city <s> a man holding an
umbrella in a city <s> a group of people standing under a umbrella→ A group of people standing on a
street holding umbrellas.

Table 6.5: Examples of augmented inputs and final generations for varying values of NTC.

on Google images, but images of hand watches on Bing and DuckDuckGo.

We queried input concept sets by concatenating keywords with plus signs (+), and used

simple-image-scraper1 to obtain URLs of the top 30 results. The image was scraped only if the

URL ended in .png, .jpeg, .jpg, or .gif. The received content was verified to be valid images using

pillow2, otherwise skipped. Retrieved images were typically of high quality and corresponded

well to the concepts. See Table 6.1 for examples.

6.4.2 Image Captioning

After retrieving images, we use a PyTorch-based implementation3 of the FC image captioning

model [110, 151], which generates a caption via an LSTM initialized with a pseudo token obtained

by feeding the image into a deep CNN followed by a linear projection. We use a pretrained FC

1https://pypi.org/project/simple-image-download/
2https://pypi.org/project/Pillow/
3https://github.com/ruotianluo/self-critical.pytorch
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model trained on the MSCOCO dataset with pretrained Resnet-101 image features. As most of

our retrieved images represent everyday scenarios and are relatively similar to those in MSCOCO,

the pretrained model performs quite well. See example captions in Table 6.1.

6.4.3 Caption Selection and Input Augmentation

After we have captions Sc = {c1, c2, ..., cn} for each concept set in all three splits, we reorder

them by descending coverage to the concept set to obtain Sc′ = {c′1, c′2, ..., c′n}. If two captions

are tied for coverage, we keep them in their original search result order. This allows us to select

the captions that have highest coverage and are most relevant.

Since most retrieved images and corresponding captions cover only a fraction of the entire

concept set, and the quality of each varies, we hypothesize that using multiple captions for

generation may lead to more robust and higher-quality outputs with more coverage. The models

may learn to assimilate together information from caption(s) while generating final texts. Hence,

we try experiments using different numbers of top captions within Sc′ , a parameter we call NTC

(Number of Top Captions). We try NTC = 1, 2, 3, 5, 7, 10, and do not go above NTC = 10 as

Figure 6.2 shows that coverage gains from 10→ 30 are minor. Figure 6.2 also illustrates that

captions have relatively low individual coverage, especially compared with outputs from models

trained on Commongen, which is why we do not use them as a baseline.

The captions are concatenated together and onto the concept set using <s> separator tokens.

These serve as augmented inputs to BART and T5. They learn to convert these augmented inputs

to human references during training, and are fed the augmented inputs (corresponding to the value

of NTC) during validation and testing. Some examples of augmented inputs and generations can

be found in Table 6.5.

6.5 Experiments

6.5.1 Model Training and Selection

For training VisCTG models, we mainly follow baseline hyperparameters, barring learning rate

(LR) that is tuned per NTC value, and the maximum encoder length which is chosen depending

on the tokenizer and value of NTC to ensure the entire input sequence can fit onto the encoder.

We train two seeds per model.

For each model, we choose the epoch corresponding to highest ROUGE-2 on devCG, and use
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beam search for decoding. NTC itself is a hyperparameter, so while we train separate versions of

each model corresponding to different NTC values, the final chosen models correspond to the

NTC values that performed best on devCG when averaged over both seeds. We then use the final

chosen models to generate on both testCG and testO, and report the results in §6.6.

6.5.2 Human Evaluation

We conduct two human evaluations: one using Amazon Mechanical Turk (AMT), and one using

an expert linguist. For the AMT study, we ask annotators to evaluate 86 testCG examples per

model. Our evaluation is based on pairwise comparison of VisCTG and baseline model outputs.

We ask human annotators to choose which amongst the two outputs (presented in a random order

per example) has better Overall Quality. There are 3 choices: O1: VisCTG is better, O2: baseline

is better, O3: both are indistinguishable. To aggregate multiple annotations per example, we

find the fraction of responses towards each outcome value as the per-example distribution. We

then find the sample mean of this outcome distribution over all examples. For sample mean and

significance testing, we are interested in the values for O1 vs. O2.

For the expert linguist study, our expert is a native English speaker with a graduate degree

in linguistics from a North American university. The expert is asked to annotate three aspects

for 50 BART-large4 testCG examples: Overall Quality (Overall), Commonsense Plausibility

(Commonsense), and Fluency (Fluency). For all aspects, we have a pairwise-comparison evaluation

setup similar to that for AMT.

6.6 Results and Analysis

Automatic evaluation results on testCG are in Tables 6.6 and 6.7, and results on testO in Table 6.8.5

Graphs displaying BLEU-4, CIDEr, and SPICE (the metrics on the Commongen leaderboard6) on

testCG over different NTC values are in Figure 6.3. Human evaluation results on testCG are in

Tables 6.9 and 6.10. Optimal NTC values for BART-base, BART-large, T5-base, and T5-large are

5, 2, 2, and 1, respectively. These are the VisCTG results reported in the aforementioned tables.

Table 6.11 contains qualitative examples.

4Since this is the best performing VisCTG model - see §6.6.
5Evaluated by the Commongen authors on their hidden test set.
6https://inklab.usc.edu/Commongen/leaderboard.html
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BART-base (NTC = 5) BART-large (NTC = 2)
Metrics Baseline VisCTG p-value Baseline VisCTG p-value

ROUGE-1 43.96±0.03 45.44±0.08 1.58E-05 45.67±0.25 46.91±0.31 1.58E-05
ROUGE-2 17.31±0.02 19.15±0.21 1.58E-05 18.77±0.04 20.36±0.05 1.58E-05
ROUGE-L 36.65±0.00 38.43±0.07 1.58E-05 37.83±0.29 39.23±0.01 1.58E-05
BLEU-1 73.20±0.28 75.65±0.78 6.94E-05 74.45±0.21 78.80±0.28 6.94E-05
BLEU-2 54.50±0.14 59.05±0.07 6.94E-05 56.25±0.78 61.60±0.85 6.94E-05
BLEU-3 40.40±0.14 44.90±0.42 6.94E-05 42.15±0.49 47.00±0.71 6.94E-05
BLEU-4 30.10±0.14 34.10±0.57 3.82E-03 32.10±0.42 36.25±0.78 2.08E-04

METEOR 30.35±0.35 31.95±0.07 6.94E-05 31.70±0.14 34.00±0.14 6.94E-05
CIDEr 15.56±0.10 16.84±0.05 6.94E-05 16.42±0.09 18.35±0.13 6.94E-05
SPICE 30.05±0.07 31.80±0.28 6.94E-05 31.85±0.21 34.60±0.28 6.94E-05

BERTScore 59.19±0.32 61.44±0.02 1.58E-05 59.95±0.29 62.85±0.30 1.58E-05
Coverage 90.43±0.17 90.66±1.39 0.33* 94.49±0.53 96.49±0.24 1.58E-05

PPL 80.39±3.65 72.45±0.79 1.58E-05 80.37±4.51 68.46±5.90 1.58E-05

Table 6.6: Automatic eval results for BART on testCG over two seeds. Bold corresponds to best perfor-
mance on that metric. We include stat sig p-values (from Pitman’s permutation test [136]) for VisCTG
compared to the baseline. Insignificant ones (α = 0.1) marked with *.
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Figure 6.3: BLEU-4, CIDEr, and SPICE on testCG over different values of NTC for BART-base and
T5-base.

6.6.1 Analysis of Automatic Evaluation Results

We see from Tables 6.6 and 6.7 that VisCTG outperforms the baselines on all metrics across

the models on testCG. Performance gains are strong and statistically significant for BART-base,

BART-large, and T5-base. VisCTG appears relatively less effective for T5-large which is the

strongest baseline, and hence improving its performance may be more difficult.

From Table 6.8, we see that VisCTG models substantially outperform corresponding baselines

reported in Lin et al. [102] on testO. T5-base VisCTG outperforms the reported T5-base and large

baselines across metrics, and BART-base VisCTG performs similarly to the reported BART-large

baseline. BART-large VisCTG outperforms the reported baseline, EKI-BART [40], and KG-BART
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T5-base (NTC = 2) T5-large (NTC = 1)
Metrics Baseline VisCTG p-values Baseline VisCTG p-values

ROUGE-1 44.63±0.13 46.26±0.07 1.58E-05 46.32±0.26 46.93±0.22 7.26E-04
ROUGE-2 18.40±0.14 19.78±0.30 1.58E-05 19.59±0.12 20.01±0.23 0.02
ROUGE-L 37.60±0.16 38.91±0.27 1.58E-05 39.20±0.21 39.52±0.43 0.06
BLEU-1 73.60±0.85 76.80±0.28 6.94E-05 77.55±0.35 78.65±0.21 4.65E-03
BLEU-2 57.00±0.71 60.30±0.28 6.94E-05 60.80±0.28 61.55±0.35 0.07
BLEU-3 42.75±0.49 46.25±0.64 6.94E-05 46.50±0.00 47.10±0.57 0.11*
BLEU-4 32.70±0.42 36.10±0.85 6.94E-05 36.20±0.14 36.40±0.28 0.21*

METEOR 31.05±0.49 32.70±0.00 6.94E-05 33.20±0.00 33.65±0.49 0.49*
CIDEr 16.26±0.25 17.65±0.02 6.94E-05 17.79±0.01 17.94±0.25 0.23*
SPICE 31.95±0.07 33.40±0.28 6.94E-05 33.90±0.42 34.55±0.21 0.03

BERTScore 61.40±0.34 62.42±0.17 1.58E-05 62.67±0.09 62.72±0.03 0.34*
Coverage 90.96±1.77 94.48±1.39 1.58E-05 94.40±0.02 95.95±0.45 1.58E-05

PPL 83.04±1.62 77.50±3.86 3.16E-05 81.78±4.63 73.41±4.32 1.58E-05

Table 6.7: Automatic eval results for T5 on testCG over two seeds. Bold corresponds to best performance
on that metric. We include stat sig p-values (from Pitman’s permutation test [136]) for VisCTG compared
to the baseline. Insignificant ones (α = 0.1) marked with *.

[107]. These are SOTA published Commongen BART models that use external knowledge from

corpora and KGs. We show that visual grounding is more effective, and BART-large VisCTG

would place very high on the leaderboard.6 T5-large VisCTG outperforms the reported baseline,

but lags behind the SOTA published RE-T5 [184].

Figure 6.3 shows that as NTC increases, BLEU-4, CIDEr, and SPICE increase to a peak, and

taper off after. This is expected as we saw in Figure 6.2 that the rate of increase of coverage

declines with larger NTC. The latter images and captions are of diminishing quality, and hence

using too many negatively affects model performance.

6.6.2 Analysis of Human Evaluation Results

Table 6.9 shows that VisCTG outperforms the baseline on all four models based on human

annotators (with high IAA). Annotators, on average, prefer VisCTG outputs over baseline outputs

on overall quality, especially for BART-large. Table 6.10 illustrates that VisCTG outperforms the

baseline model for BART-large based on an expert linguist’s perspective. VisCTG outputs are

highly preferred, on average, over the baseline on all three aspects of overall quality, commonsense,

and fluency. This aligns with our automatic results in §6.6.1, where VisCTG outperforms the

baselines across all models.
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Models\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage
T5-base (reported baseline) 14.63 34.56 28.76 18.54 23.94 9.40 19.87 76.67
T5-large (reported baseline) 21.74 42.75 43.01 31.96 31.12 15.13 28.86 95.29

BART-large (reported baseline) 22.02 41.78 39.52 29.01 31.83 13.98 28.00 97.35
EKI-BART [40] - - - 35.945 - 16.999 29.583 -
KG-BART [107] - - - 33.867 - 16.927 29.634 -

RE-T5 [184] - - - 40.863 - 17.663 31.079 -
T5-base VisCTG 22.83 44.98 45.749 34.722 31.809 16.173 28.808 92.92
T5-large VisCTG 23.83 45.76 47.376 36.409 33.012 16.815 29.629 95.54

BART-base VisCTG 21.73 43.43 43.235 32.291 30.86 15.187 27.403 88.98
BART-large VisCTG 23.68 45.07 48.031 36.939 33.215 17.199 29.973 94.86

Table 6.8: Automatic eval results of VisCTG models on testO, evaluated by Commongen authors. We
compare to reported baseline numbers in Lin et al. [102] (they did not evaluate BART-base), and models on
their leaderboard with publications at time of writing that outperform baselines. Their leaderboard reports
BLEU-4, CIDEr, and SPICE. Bold corresponds to best performance (for those three) per model type+size.

Model O1 O2 O3 IAA
BART-base 0.45 0.33 0.22 0.72
BART-large 0.62 0.18 0.20 0.55

T5-base 0.46 0.33 0.21 0.72
T5-large 0.46 0.34 0.20 0.74

Table 6.9: Avg. AMT eval results on testCG for overall quality. O1: VisCTG wins, O2: baseline wins, O3:
both indistinguishable. Bold corresponds to higher fractional outcome between O1 and O2. All results are
statistically significant based on paired two-tailed t-tests and α = 0.1. The inter-annotator agreement (IAA)
is the average direct fractional agreement (where both annotators choose O1 or O2) over all examples. See
§6.5.2 for further details.

Model Aspect O1 O2 O3

BART-large
Overall 0.44 0.24 0.32

Commonsense 0.32 0 0.68
Fluency 0.56 0.12 0.32

Table 6.10: Avg. expert linguist eval results on testCG for BART-large. O1: VisCTG wins, O2: baseline
wins, O3: both indistinguishable. Bold corresponds to higher fractional outcome between O1 and O2 per
aspect. See §6.5.2 for further details.

6.6.3 Qualitative Analysis

Table 6.11 shows several baseline outputs that contain issues from §6.3.1, e.g., incomplete and/or

illogical sentences. Human references are all fluent and logical. VisCTG can usually generate

much higher-quality text than the baselines.

The baseline outputs for ex. 1-2 are phrases lacking arguments, and are illogical for ex. 1-3.
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Using captions, VisCTG successfully adjusts semantic roles of entities, replaces incorrect subjects,

fixes dependency structure, and grounds generations in commonsense. For ex. 1, captions are of

the form “{X} sitting on a chair with {Y}", where {X} is a subject and {Y} an object. VisCTG

output has similar structure, being fluent and logical with higher coverage. The baseline output

also has an incorrect subject of “hands". Our VisCTG output contains an additional entity

(not present in the input set) of “boy" as subject, likely since it is a subject in the captions.

This highlights the usefulness of visual grounding, as the image space can provide additional

commonsense information not present in the text (e.g. toys are associated with children/boys). For

ex. 2, the baseline output treats “hand of a bird" as a single entity, the subject. Captions separate

“bird" and “hand" into two, likely guiding the VisCTG output to do so. For ex. 3, the baseline

misplaces “bus" as subject. Captions are of form “{X} sitting on a bench {Y}", where {X} is

a logical subject and {Y} is an expression. The VisCTG output has this structure, with correct

subject and commonsense, and higher coverage. Overall, we see that visual grounding guides

the model to learn which nouns/subjects can perform which actions (e.g. “hands" cannot sit on a

chair but a “boy" can), which is a major baseline deficiency discussed in §6.3.1.

For ex. 4, the baseline output lacks a subject that the captions contain, likely guiding the

VisCTG output to contain one: “a man". For ex. 5, the baseline output is generic due to uses

of “someone". VisCTG’s output is more specific and refers to “man", likely because the caption

(though not very fitting) includes a “man" subject. Even for captions that fit the concepts less,

structure and fluency can still be exploited.

Overall, we see that the baselines simply try to coalesce together the input concepts into a

form of English syntax, often failing to do so effectively. VisCTG models can produce more

grammatical, fluent, and logical text by exploiting the syntactic and dependency structures of the

captions. Further, the visual grounding improves the commonsense of the generations. The images

inherently capture commonsense by representing everyday scenarios, and this commonsense info

is rarely explicitly included in text. Hence, large text-based models such as our baselines tend to

not know this info, whereas VisCTG models learn it through the grounding.

VisCTG is, however, still a far way off from perfect. For ex. 6, its output is less logical and

lower coverage than the baseline’s. The captions are all simplistic and low coverage; the first is

illogical, and some others are of the form “a bunch of apples {...} on a tree", likely negatively

impacting the generation. Ex. 4’s human reference is creative, which is an area where VisCTG

still lacks in comparison. For ex. 5, while VisCTG edits “someone" to “man", it is unable to

merge the two instances of “man" or adjust the sentence to be more coherent. These weaknesses

are likely because captions tend to be simplistic (due to the captioning model’s training data),
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limiting VisCTG’s ability to make heavier edits. VisCTG, unsurprisingly, appears to depend quite

heavily on the captions, and hence the quality of the images and captioning model.

6.7 Related Work

Constrained Text Generation: There have been several works on constrained text generation.

Miao et al. [117] use Metropolis-Hastings sampling to determine Levenshtein edits per generation

step. Feng et al. [44] devise Semantic Text Exchange to adjust topic-level text semantics.

Data-to-text NLG: E2E-NLG [38] and WebNLG [54] are two popular NLG benchmarks with

structured inputs - meaning representation (MR) and triple sequences, respectively. Montella et al.

[119] use Wiki sentences with parsed OpenIE triples as weak supervision for WebNLG.

Commonsense Injection and Incorporation: One large commonsense knowledge graph (KG)

is COMET, trained on KG edges to learn connections between words and phrases. EKI-BART

[40] and KG-BART [107] use external knowledge (from corpora and KGs) to improve BART’s

performance on Commongen. Distinctly, VisCTG uses visual grounding and shows higher

performance (see §6.6). Visual Commonsense Reasoning (VCR) [193] involves answering

commonsense-related multiple-choice questions about images. Our work uniquely focuses on

injecting commonsense into seq2seq Transformer models like BART and T5 for text generation.

Multimodal Machine Learning and NLP: There has been more work on multimodality, in

areas like representation and video captioning, but little for constrained and data-to-text NLG

[6, 53]. There is work on pretrained multimodal models like ViLBERT [109], which are mainly

encoders that jointly represent images and text rather than seq2seq models, and would be ill-suited

for generation. Further, unlike these models which are pretrained, VisCTG exploits per-example

visual information to fix specific issues for each concept set.

6.8 Conclusion and Future Work

In conclusion, we motivated and explored the use of visual grounding as an External Knowledge

Resource for improving the abilities of Transformer models at the Commongen generation setting.

We christen our method VisCTG: Visually Grounded Concept-to-Text Generation. Extensive

experiments on BART and T5 showed the efficacy of our devised Intervention and the resultant
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VisCTG method on the Commongen task. Comprehensive evaluation and analysis showed that

VisCTG boosts model performance and commonsense while addressing baseline deficiencies

observed as a byproduct of a) The underspecified (explicit) CG and b) Training data insufficient

to facilitate knowledge acquisition tabula rasa.

Our empirical findings support the hypothesis that relying on language and the CG alone is

insufficent to learn a good NLG model for Commongen and could cause the issues we observed

in our baseline outputs e.g., those in Table 6.4. They also confirm our intuition that incorporating

information from the visual modality as an External Knowledge Resource can in part ameliorate

this insufficiency. Furthermore, they support the case for intervening in the E2ENLP and intro-

ducing an Input Expansion Layer between the Input Layer and Embedding Layer to symbolically

augment the input with captions of retrieved images, as described in Figure 6.1.

In this chapter, we successfully devised an intervention to SOTA pretrained generator models

to improve their microplanning ability, and consequently, their output quality, while accomplishing

the generative commonsense reasoning task a.k.a Commongen [102] task.

Potential future work includes improving image search and captioning, e.g. better selection

of images during retrieval or using a stronger captioning model. Video captioning and image

generation rather than retrieval can also be explored. Further, VisCTG can be investigated for

other data-to-text NLG tasks, e.g. WebNLG.

6.8.1 Broader Takeaways

The broader takeaway from our findings is that in any task where the communicative goal (or

the “input text" part of the communicative goal) leaves gaps w.r.t. the relations amongst different

parts of the input to be filled in a “plausible", commonsensical kind of way, and leaves the notion

of plausibility otherwise unspecified, reporting bias is naturally bound to be a problem for any

model trained on typical natural language corpora. Examples of such input information include

sets of concepts (as in our case), recipes or Wikipedia infoboxes. In such situations, using another

modality (which could be something like images/audio, or even another language) which has

lesser or different reporting bias, to “expand" the underspecified input information is a potential

architectural enhancement to explore in order to improve the microplanning i.e., the plausibility

and internal structure of sentences. Implementing this kind of input “expansion" requires a

mechanism to ground the input into the other modality, and then reground it back. In the case of

concept-to-text generation tasks, the simple nature of the input information and the availability of

well optimized search engines greatly simplifies and streamlines the grounding process, which is
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unlikely to be as straightforward in the general case. Furthermore, even the regrounding process

is simplified due to the presence of well-developed captioning models.

As an example, consider the task of summarizing social media posts from forums/subreddits

related to a religion with its primary mode of religious discourse and scripture being a non-English

one e.g., Islam or Judaism, who have the bulk of their scriptures, commentaries and other resources

in Arabic and Hebrew respectively, which we shall refer to henceforth as the scriptural language.

In this case, one potential architectural enhancement based on the same principle as ours, would

be as follows:

1. Translate the input social media post x to the scriptural language using an off-the-shelf

English→scriptural language translation model.

2. Take the translated input Tscriptural(x) and use it to retrieve similar sentences from any large

corpora of religious texts, commentary, discourse in the scriptural language.

3. Translate back each of the retrieved sentences sicandidate ∈ Retrieve(Tscriptural(x)) to

English using an off-the-shelf scriptural language→English translation model.

4. Just as we did with the captions of retrieved images, augment the input x with the set of top

K most relevant from amongst the back-translated candidates TEnglish(s
i
candidate).

5. Train the models with the now-augmented inputs.

Here, the scriptural language plays the same role as images/visual modality in this chapter. Since

the scriptural language is more likely to have a wider coverage and range of religious terminology,

arguments and text, it would naturally suffer from lesser reporting bias. The English→scriptural

language and scriptural language→English models serve as the grounding and regrounding

mechanisms respectively.

The second takeway from our findings is that they underscore the added potential utility of joint

spaces which embed together different modalities, such as the very recent CLIP representation

[140] from OpenAI. Instead of using retrieval from a search engine as in our case, one can directly

compute cross-modal similarities in this space, e.g., between a given input text and an image.
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(a)

(b)

Figure 6.4: Snapshots of human evaluation: a) instructions seen by annotator and b) an example with
questions.

6.9 Appendices

6.10 Full Re-implementation versus Reported Model Numbers

See Table 6.12 for a full comparison (across all metrics) of our re-implemented Commongen

models compared to the original reported baseline numbers in Lin et al. [102].
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6.11 Pretrained FC Image Captioning Model Details

The image encoder is a pretrained Resnet-101 [150], where the global avg. pooling of the final

convolutional layer output, a vector of dim. 2048, is taken per image. Spatial features are extracted

from the output of a Faster R-CNN [4, 150] with ResNet-101 [64], trained by object and attribute

annotations from Visual Genome [93]. For captioning, the dimensions of LSTM hidden state,

image feature embedding, and word embedding are all set to 512. Please see Luo et al. [110],

particularly Sections 3.3 and 5.1, and Rennie et al. [151], particularly Sections 2 and 5, for more.

6.12 BART and T5 Model Training and Generation Details

T5-large has 770M params, T5-base 220M params, BART-large 406M params, and BART-base

139M params. Two seeded versions of each baseline and VisCTG model are trained. For decoding,

we use beam search with a beam size of 5, decoder early stopping, a decoder length penalty of

0.6, a decoder maximum length of 32, and a decoder minimum length of 1 for all models. We

use a maximum encoder length of 32 for the baselines and for the VisCTG models: up to 160 for

BART and 256 for T5. A batch size of 64 for T5-base and BART-base, 32 for BART-large, and

8 for T5-large is used for training. We 500 warmup steps for BART-large, and 400 for T5-base,

T5-large, and BART-base. All models are trained up to a reasonable number of epochs (e.g. 10

or 20) and early stopping using our best judgment is conducted, e.g. if metrics continuously

drop for several epochs. Learning rates for VisCTG models were determined by trying several

values (e.g. from 1e-6 to 1e-4), and finding ones which result in decent convergence behavior,

e.g. dev metrics increase steadily and reach a maximum after a reasonable number of epochs.

For the final models (e.g. best NTC values for VisCTG), learning rates are (each set consists of

{BART-base,BART-large,T5-base,T5-large}): baselines = {3e-05,3e-05,5e-05,2e-05}, VisCTG =

{1e-05,5e-06,2e-05,2e-05}.

Google Colab instances were used for training, which used either a single V100 or P100 GPU.

Most of the training experiments were performed using a single V100. BART-base models trained

in approx. 1 hour, T5-base models in approx. 1.5 hours, BART-large models in approx. 2 hours,

and T5-large models in approx. 6 hours.
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6.13 Human Evaluation Details

The Amazon Mechanical Turk (AMT) human evaluation was performed through paid annotators

on AMT. Annotators were from Anglophone countries with > 97% approval rate. Each example

was evaluated by up to three annotators. Each AMT task page or HIT contained 2 actual examples

and a “quality-check" example in random order. Specific instructions and a question snippet can

be seen in Figure 6.4.

On every annotation page, we include one randomly chosen “quality-check" example from a

list of such hand-crafted examples, in addition to two actual examples with VisCTG and baseline

outputs. The hand-crafted examples are constructed to have an obviously good and an obviously

bad output pair, and are sourced from Lin et al. [102]. If an annotator answers the quality-check

question wrong (e.g. they choose the obviously bad output), their two remaining actual example

annotations are excluded while compiling results.

The time given for each AMT task instance or HIT was 8 minutes. Sufficient time to read the

instructions, as calibrated by authors, was also considered in the maximum time limit for each

HIT/task. Annotators were paid 98 cents per HIT. The rate of payment ($7.35/hour) exceeds the

minimum wage rate for the USA ($7.2/hour) and hence constitutes fair pay. We neither solicit,

record, request, or predict any personal information pertaining to the AMT crowdworkers.

The expert linguist evaluation included a human subject institutional board protocol and a rate

of payment of $15/hour, also exceeding the minimum wage rate for the USA.

6.14 Further Qualitative Examples

See Table 6.13 for further qualitative examples.
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Method Text
Concept set {sit, chair, toy, hand} (example 1)
Captions a little girl sitting on a chair with a teddy bear <s> a small child sitting on a chair with a

teddy bear <s> a young boy sitting on a chair with a skateboard <s> a man sitting on a
chair with a remote

BART-base-BL hands sitting on a chair
BART-base-
VisCTG

A boy sitting on a chair with a toy in his hand.

Human reference A baby sits on a chair with a toy in one of its hands.
Concept set {food, eat, hand, bird} (example 2)
Captions a bird is perched on a branch with a hand <s> a person holding a small bird in their hand
BART-large-BL hand of a bird eating food
BART-large-
VisCTG

A bird eats food from a hand.

Human reference A small bird eats food from someone’s hand.
Concept set {bench, bus, wait, sit} (example 3)
Captions a man sitting on a bench with a book <s> a person sitting on a bench with a laptop
T5-base-BL A bus sits on a bench.
T5-base-VisCTG A man sits on a bench waiting for a bus.
Human reference The man sat on the bench waiting for the bus.
Concept set {jacket, wear, snow, walk} (example 4)
Captions a young boy in a red jacket is standing in the snow <s> a man in a red jacket is standing in

the snow
BART-large-BL walking in the snow wearing a furry jacket
BART-large-
VisCTG

A man is walking in the snow wearing a jacket.

Human reference Jamie took a walk out into the snow with only a T shirt on and instantly went back inside to
wear his jacket.

Concept set {hold, hand, stand, front} (example 5)
Captions a man holding a pair of scissors in front of a wall
T5-large-BL Someone stands in front of someone holding a hand.
T5-large-
VisCTG

A man stands in front of a man holding a hand.

Human reference A man stands and holds his hands out in front of him.
Concept set {bag, put, apple, tree, pick} (example 6)
Captions a person holding a apple in a tree <s> a bunch of apples are growing on a tree <s> a close

up of a green apple with a tree <s> a bunch of apples are growing on a tree
BART-base-BL A man is putting apples in a bag and picking them up from the tree.
BART-base-
VisCTG

A man puts a bag of apples on a tree.

Human reference I picked an apple from the tree and put it in my bag.

Table 6.11: Qualitative examples for testCG. BL stands for baseline. Concept set refers to the input
keywords and Captions refers to the captions (separated by <s>) used by the VisCTG model for that
particular example to produce its final generation.
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Model\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE BERTScore Cov
Reported BART-large 22.13 43.02 37.00 27.50 31.00 14.12 30.00 - 97.56

Reported T5-base 15.33 36.20 28.10 18.00 24.60 9.73 23.40 - 83.77
Reported T5-Large 21.98 44.41 40.80 30.60 31.00 15.84 31.80 - 97.04

Our BART-base 15.91 36.15 38.30 28.30 30.20 15.07 30.35 58.26 93.44
Our BART-large 17.27 37.32 39.95 30.20 31.15 15.72 31.20 58.58 95.03

Our T5-base 17.27 37.69 41.15 31.00 31.10 16.37 32.05 60.32 94.44
Our T5-large 17.90 38.31 43.80 33.60 32.70 17.02 33.45 61.39 96.26

Table 6.12: Performance of our re-implemented Commongen models on devO compared to the original
numbers reported in Lin et al. [102]. Note that for our models, results are averaged over two seeds, and that
the original authors did not experiment with BART-base or report BERTScore. Bold indicates where we
match or exceed the corresponding reported baseline metric.
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Method Text
Concept set {sunglass, wear, lady, sit}
Captions a woman sitting on a bench with a cell phone <s> a woman sitting on a bench with a book
T5-base-BL A lady sits in a sunglass.
T5-base-VisCTG A lady wearing sunglasses sits on a bench.
Human reference The lady wants to wear sunglasses, sit, relax, and enjoy her afternoon.
Concept set {music, dance, room, listen}
Captions a person is standing in a room with a bed <s> a woman is holding a laptop in a room
BART-large-BL A listening music and dancing in a dark room
BART-large-VisCTG A group of people are dancing and listening to music in a room.
Human reference A boy danced around the room while listening to music.
Concept set {pool, water, slide, slide}
Captions a boat is parked in a water with a boat
T5-large-BL A girl slides into a pool and slides into the water.
T5-large-VisCTG A group of people slide down a slide into a pool of water.
Human reference A boy slides down a bouncy slide into a pool of water.
Concept set {rock, water, stand, body}
Captions a bird sitting on a rock in a body of water
T5-large-BL a body of water standing on rocks
T5-large-VisCTG A man standing on a rock near a body of water.
Human reference A bird standing on a large rock in a body of water.
Concept set {card, deck, shuffle, hand}
Captions a person holding a cell phone in their hand <s> a person holding a pair of scissors in their hand
BART-large-BL a hand shakes a deck of cards
BART-large-VisCTG A man shuffles a deck of cards with his hand.
Human reference A man shuffles a deck of cards in his hands.
Concept set {chase, ball, owner, dog, throw}
Captions a dog is standing in the grass with a frisbee <s> a dog is playing with a frisbee in the grass
T5-base-BL owner throws a ball to his dog during a chase.
T5-base-VisCTG A dog is throwing a ball at its owner.
Human reference The owner threw the ball for the dog to chase after.
Concept set {body, water, bench, sit}
Captions a bench sitting on a beach next to a body of water <s> a man is sitting on a bench with a cell phone <s> a bench

sitting on a of a beach <s> a bench sitting in the middle of a lake <s> woman sitting on a bench with a bird in the
background

BART-base-BL A woman sitting on a bench with water in her body.
BART-base-VisCTG A man sits on a bench near a body of water.
Human reference The woman sat on the bench as she stared at the body of water.
Concept set {bench, sit, talk, phone}
Captions a man sitting on a bench with a cell phone <s> a woman sitting on a bench with a cell phone <s> a man sitting on a

bench with a cell phone <s> a person sitting on a bench with a skateboard <s> a man sitting on a bench with a
laptop

BART-base-BL A man sitting on a bench talking to his phone.
BART-base-VisCTG A man sitting on a bench talking on his cell phone.
Human reference The woman sits on the bench to talk on her daughter on the phone.

Table 6.13: Further qualitative examples for testCG. BL stands for baseline. Concept set refers to the
input keywords and Captions refers to the captions (separated by <s>) used by the VisCTG model for that
particular example to produce its final generation.
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Chapter 7

Viable Content Selection and Refex
Generation Through Pragmatic Backoff For
Chess Commentary Generation
(ACL 2018)

When one shows someone the king in

chess and says: “This is the king”, this

does not tell him the use of this piece —

unless he already knows the rules of the

game up to this last point: the shape of the

king. You could imagine his having learnt

the rules of the game without ever having

been shown an actual piece. The shape of

the chessman corresponds here to the

sound or shape of a word.

Ludwig Wittgenstein, Philosophical

Investigations

In this chapter, we introduce and examine the NLG setting of generating natural language

descriptions of chess game moves. This setting requires the NLG model to learn to select content

from a vast space of possible things to say given the current game state and move. Furthermore,

the model also needs to learn to integrate selected content appropriately with preceding content.
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However, the scale of training data available is insufficient to support acquiring both these abilities

tabula rasa.

Our CG is to generate a short, interesting commentary after a given single move in an ongoing

chess game, given the pre-move and post-move board states as input information. For studying

this setting, we introduce a new large-scale chess commentary dataset and devise methods to

viably generate commentary for individual moves in a chess game inspite of the underspecified CG

and data availability that is insufficient to learn the game pragmatics tabula rasa. The introduced

dataset consists of more than 298K chess move-commentary pairs across 11K chess games.

Consider the various repurcussions that a single move in a chess game engenders. Even a

single move can change many inter-piece relationships and piece states in the game, including

those between pieces that did not themselves change position during the move. (e.g., a black

rook can threaten the white knight once a black knight blocking the horizontal path between them

moved). The NLG model faces three key challenges:

1. What type of comment to make? One can describe the move and the game itself (Move

Description), describe the quality of the move (Move Quality). We assume the desired

comment type to be additionally given as part of the input, and augment our dataset input to

address the same.

2. What to comment on out of the many updated states and relationships so that its interesting

from the game’s perspective? This is related to the content selection subtask that in turn

falls in the macroplanning stage.

3. How to address and refer to the interesting pieces and their relationships in an interesting

way from the game’s perspective? This is related to the referring expression generation

subtask from microplanning.

In order to address challenges 2 and 3, the NLG model encoder has to learn to encode the >28×8

board states in a game-pragmatically sensitive way. Furthermore, it has to accomplish this tabula

rasa, without any prior knowledge of the game’s rules.

Acquiring a game-sensitive, pragmatic understanding of the input state is essential to solve

both the macroplanning and microplanning challenges involved. Performing inadequately on

either of these challenges leads to the trap of generating common or dull language [37, 182], that

would not satisfy the communicative goal. We find that acquiring such an understanding tabula

rasa is too challenging for a typical attentional LSTM-based encoder-decoder model instantiating

E2EN2PP, leading to the common response problem as anticipated, and consequently, inferior

performance to even template based baselines on both automatic and human metrics. Thus,
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characteristic of the class of settings we study in this Part, the extent of training data available

is insufficient to acquire the complex aspect required by the CG tabula rasa. Further, the CG

itself in explicit terms is underspecified, and does not provide additional information about chess

game pragmatics, whether through symbolic means e.g., a knowledge graph enlisting typical

piece-piece configurations, or otherwise.

Hence, there arises a need to incorporate an External Knowledge Source to bridge this

knowledge gap, which in this case takes the form of a game library capable of guiding featurization.

Based on our observations about ouput deficiencies, we devise an alternative model that

includes an additional Pragmatic Interpretation Layer to discretely featurize the board states

using a game library, essentially backing off to pragmatic game knowledge to viably declutter

the input states, thereby simplifying the understanding and overcoming the microplanning and

macroplanning issues observed. Consequently, the model is now able to outperform all baselines,

including the template-based one, on both automatic and human metrics.

The devised Intervention that needs to be done in the E2EN2PP can be seen in Figure 7.1

Through a human study on predictions for a subset of the data that deals with direct move

descriptions, we observe that outputs from our models are rated similar to ground truth commentary

texts in terms of correctness and fluency.
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Figure 7.1: An illustration of how End-to-End Neural NLG Pseudo-Pipeline would work in action
for an actual generation task and input example, after incorporating the Intervention in Chapter 7.
Here, the task is to summarize the given input news article to within 280 characters. Note that
this is a Pseudo-Pipeline, since the layers do not correspond to sub-tasks of NLG; moreover, they
cannot be learnt or updated independently. The specific intervention shown here is the introduction
of a Pragmatic Interpretation Layer that takes in the raw board states and featurizes them into a
collection of discrete game-pertinent features.

7.1 Introduction

A variety of work in NLP has sought to produce fluent natural language descriptions conditioned

on a contextual grounding. For example, several lines of work explore methods for describing

images of scenes and videos [82], while others have conditioned on structured sources like

Wikipedia infoboxes [95]. In most cases, progress has been driven by the availability of large

training corpora that pair natural language with examples from the grounding [104]. One line of

work has investigated methods for producing and interpreting language in the context of a game, a

space that has rich pragmatic structure, but where training data has been hard to come by.

In this chapter, we introduce a new large-scale resource for learning to correlate natural

language with individual moves in the game of chess. We collect a dataset of more than 298K
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chess move/commentary pairs across ≈ 11K chess games from online chess forums. To the best

of our knowledge, this is the first such dataset of this scale for a game commentary generation

task. We provide an analysis of the dataset and highlight the large variety in commentary texts by

categorizing them into six different aspects of the game that they respectively discuss.

Figure 7.2: Move commentary generated from our method (Game-aware neural commentary generation (GAC)) and
some baseline methods for a sample move.

Automated game commentary generation can be a useful learning aid. Novices and experts

alike can learn more about the game by hearing explanations of the motivations behind moves,

or their quality. In fact, on sites for game aficionados, these commentaries are standard features,

speaking to their interestingness and utility as complements to concrete descriptions of the game

boards themselves.

Game commentary generation poses a number of interesting challenges for existing approaches

to language generation. First, modeling human commentary is challenging because human

commentators rely both on their prior knowledge of game rules as well as their knowledge of

effective strategy when interpreting and referring to the game state. Secondly, there are multiple

aspects of the game state that can be talked about for a given move — the commentator’s choice

depends on the pragmatic context of the game. For example, for the move shown in Figure 7.2,

one can comment simply that the pawn was moved, or one may comment on how the check was

blocked by that move. Both descriptions are true, but the latter is most salient given the player’s

goal. However, sometimes, none of the aspects may stand out as being most salient, and the

most salient aspect may even change from commentator to commentator. Moreover, a human

commentator may introduce variations in the way he or she chooses to talk about these aspects,

in order to reduce monotony in the commentary. This makes the dataset a useful testbed for the
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content selection and referring expression sub-skills of NLG.

There has been some, albeit very limited, prior work which has explored game commentary

generation. [101, 156] have explored chess commentary generation, but for lack of large-scale

training data their methods have been mainly based on rules defined manually. [81] have explored

commentary generation for the game of Shogi, proposing a two-step process where salient terms

are generated from the game state and then composed in a language model. In contrast, given

the larger amount of training data available to us, our devised model uses a trainable neural

architecture to predict commentaries given the game state. Our model conditions on semantic and

pragmatic information about the current state and explicitly learns to compose, conjoin, and select

these features in a recurrent decoder module. We perform an experimental evaluation comparing

against baselines and variants of our model that ablate various aspects of our devised architecture.

Outputs on the ‘Move Description’ subset of data from our final model were judged by humans to

be as good as human written ground truth commentaries on measures of fluency and correctness.

7.2 Chess Commentary Dataset

In this section we introduce our new large-scale Chess Commentary dataset, share some statistics

about the data, and discuss the variety in type of commentaries. The data is collected from the

online chess discussion forum gameknot.com, that features multiple games self-annotated with

move-by-move commentary.

The dataset consists of 298K aligned game move/commentary pairs. Some commentaries are

written for a sequence of few moves while others correspond to a single move. For the purpose

of initial analysis and modeling, we limit ourselves to only those data points where commentary

text corresponds to a single move. Additionally, we split the multi-sentence commentary texts to

create multiple data points with the same chess board and move inputs.

What are commentaries about? We observe that there is a large variety in the commentary

texts. To analyze this variety, we consider labelling the commentary texts in the data with a

predefined set of categories. The choice of these categories is made based on a manual inspection

of a sub-sample of data. We consider the following set of commentary categories (Also shown in

Table 7.2):

• Direct move description (MoveDesc2): Explicitly or implicitly describe the current move.

• Quality of move (Quality3): Describe the quality of the current move.
2MoveDesc & ‘Move Description’ used interchangeably
3Quality and ‘Move Quality’ used interchangeably
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Statistic Value
Total Games 11,578
Total Moves 298,008
Average no. of recorded steps in a game 25.73
Frequent Word Types1 39,424
Rare Word Types 167,321
Word Tokens 6,125,921
Unigram Entropy 6.88
Average Comment Length (in #words) 20.55
Long Comments (#words > 5) 230745 (77%)

Table 7.1: Dataset and Vocabulary Statistics

Category Example % in
data

Validation
accuracy

Direct Move
Description

An attack on the queen 31.4% 71%

Move
Quality

A rook blunder. 8.0% 90%

Comparative
At this stage I figured
I better move my knight.

3.7% 77.7%

Planning /
Rationale

Trying to force a way to
eliminate d5 and
prevent Bb5.

31.2% 65%

Contextual
Game Info

Somehow, the game I
should have lost turned
around in my favor .

12.6% 87%

General
Comment

Protect Calvin , Hobbs 29.9% 78%

Table 7.2: Commentary texts have a large variety making the problem of content selection an important challenge in
our dataset. We classify the commentaries into 6 different categories using a classifier trained on some hand-labelled
data, a fraction of which is kept for validation. % data refers to the percentage of commentary sentences in the tagged
data belonging to the respective category.
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• Comparative: Compare multiple possible moves.

• Move Rationale or Planning (Planning): Describe the rationale for the current move, in

terms of the future gameplay, advantage over other potential moves etc.

• Contextual game information: Describe not the current move alone, but the overall game

state, such as possibility of win/loss, overall aggression/defence, etc.

• General information: General idioms and advice about chess, information about players/-

tournament, emotional remarks, retorts, etc.

The examples in Table 7.2 illustrate these classes. Note that the commentary texts are not

necessarily limited to one tag, though that is true for most of the data. A total of 1K comments

are annotated by two annotators. A SVM classifier [130] is trained for each comment class,

considering the annotation as ground truth and using word unigrams as features. This classifier is

then used to predict tags for the train, validation and test sets. For the “Comparative” category, we

found that a classifier with manually defined rules such as presence of word “better” performs

better than the classifier, perhaps due to the paucity of data, and thus we use this instead . As can

be observed in Table 7.2, the classifiers used are able to generalize well on the held out dataset.

Note that we choose to focus on the first three categories given the large amount of variance in

comments from the remaining ones.

7.3 Game Aware Neural Commentary Generations (GAC)

Our dataset D consists of data points of the form (Si,Mi, Gi), i ∈ {1, 2, .., |D|}, where Si

is the commentary text for move Mi and Gi is the corresponding chess game (i.e., its game

history/context). Si is a sequence of m tokens Si1, Si2, ..., Sim. We want to model P (Si|Mi, Gi).

For simplicity, we use only current board (Ci) and previous board (Ri) information from the game.

P (Si|Mi, Gi) = P (Si|Mi, Ci, Ri).

We model this using an end-to-end trainable neural model that models conjunctions of features

using feature encoders. Our model employs a selection mechanism to select the salient features

for a given chess move. Finally a LSTM recurrent neural network [68] is used to generate the

commentary text based on selected features from encoder.
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Figure 7.3: The figure shows some features extracted using the chess board states before (left)
and after (right) a chess move. Our method uses various semantic and pragmatic features of the
move, including the location and type of piece being moved, which opposing team pieces attack
the piece being moved before as well as after the move, the change in score by Stockfish UCI
engine, etc.

7.3.1 Incorporating Pragmatic Knowledge

Past work shows that acquiring pragmatic knowledge is critical for NLG systems [112, 148],

particularly data-to-text NLG systems where the data is . Commentary texts cover a range of

perspectives, including criticism or goodness of current move, possible alternate moves, quality of

alternate moves, etc. To be able to make such comments, the model must learn about the quality of

moves, as well as the set of valid moves for a given chess board state. We consider the following

features to provide our model with necessary information to generate commentary texts (Figure

7.3):

Move features fmove(Mi, Ci, Ri) encode the current move information such as which piece

moved, the position of the moved piece before and after the move was made, the type and position

of the captured piece (if any), whether the current move is castling or not, and whether there was

a check or not.

Threat features fthreat(Mi, Ci, Ri) encode information about pieces of opposite player attack-

ing the moved piece before and after the move, and the pieces of opposite player being attacked

by the piece being moved. To extract this information, we use the python-chess4 library

Score features fscore(Mi, Ci, Ri) capture the quality of move and general progress of the game.

This is done using the game evaluation score before and after the move, and average rank of pawns

of both the players. We use Stockfish evaluation engine to obtain the game evaluation scores. 5

4https://pypi.org/project/python-chess/
5https://stockfishchess.org/about/
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Figure 7.4: The figure shows a model overview. We first extract various semantic and pragmatic
features from the previous and current chess board states. We represent features through embed-
ding in a shared space. We observe that feeding in feature conjunctions helps a lot. We consider a
selection mechanism for the model to choose salient attributes from the input at every decoder
step.

7.3.2 Feature Representation

In our simplest conditioned language generation model GAC-sparse, we represent the above de-

scribed features using sparse representations through binary-valued features gsparse(Mi, Ci, Ri) =

SparseRep(fmove, fthreat, fscore)

For our full GAC model we consider representing features through embeddings. This has the

advantage of allowing for a shared embedding space, which is pertinent for our problem since

attribute values can be shared, e.g., the same piece type can occur as the moved piece as well as

the captured piece. For categorical features, such as those indicating which piece was moved,

we directly look up the embedding using corresponding token. For real valued features such as

game scores, we first bin them and then use corresponding number for embedding lookup. Let

E represent the embedding matrix. Then E[f j
move] represents embeddings of jth move feature,

or in general E[fmove] represents the concatenated embeddings of all move features. Similarly,

E(fmove, fthreat, fscore) represents concatenated embeddings of all the features.
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7.3.3 Feature Conjunctions

We conjecture that explicitly modeling feature conjunctions might improve the performance. So

we need an encoder that can handle input sets of features of variable length (features such as

pieces attacking the moved piece can be of variable length). One way to handle this is by defining

a canonical ordering of the features and consider a bidirectional LSTM encoder over the feature

embeddings. As shown in Figure 7.4, this generates conjunctions of features.

genc = BiLSTM∗({E(fmove, fthreat, fscore))})
Here E() represents the embedding matrix as described earlier and BiLSTM∗ represents a

sequential application of the BiLSTM function. Thus, if there a total of m pragmatics-aware

feature keys and embedding dimension is d, E(fmove, fthreat, fscore) is matrix of m ∗ d. If hidden

size of BILSTM is of size x, then genc is of dimensionality m ∗ x. We observe that different

orderings gave similar performance. We also experimented with running k encoders, each on a

different ordering of the pragmatics-aware features, and then letting the decoder access to each of

the k encodings. This did not yield any significant gain in performance.

The GAC model, unlike GAC-sparse, has some advantages as it uses a shared, continuous

space to embed attribute values of different features, and can perform arbitrary feature conjunctions

before passing a representation to the decoder, thereby sharing the burden of learning the necessary

feature conjunctions. Our experiments confirm this intuition that GAC produces commentaries

with higher BLEU as well as more diversity compared to GAC-sparse.

7.3.4 Decoder

We use a LSTM decoder to generate the sentence given the chess move and the features g. At

every output step t, the LSTM decoder predicts a distribution over vocabulary words taking into

account the current hidden state ht, the input token it, and additional selection vector ct. For

GAC-sparse, the selection vector is simply an affine transformation of the features g. For GAC

model selection vector is derived via a selection mechanism.

ot, h
dec
t = LSTM(hdec

t−1, [concat(Edec(it), ct)])

pt = softmax(Wo[concat(ot, ct)] + bs)

where pt represents th probability distribution over the vocabulary, Edec() represents the decoder

word embedding matrix and elements of Wo matrix are trainable parameters.

Selection/Attention Mechanism: As there are different salient attributes across the different
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chess moves, we also equip the GAC model with a mechanism to select and identify these

attributes. We first transform hdec
t by multiplying it with a trainable matrix Wc, and then take dot

product of the result with each gi.

a
(i)
t = dot(Wc ∗ hdec

t , genci )

αt = softmax(at)

ct =

i=|g|∑
i=1

α
(i)
t genci

We use cross-entropy loss over the decoding outputs to train the model.

7.4 Experiments

We split each of the data subsets in a 70:10:20 ratio into train, validation and test. All our models

are implemented in Pytorch version 0.3.1 [129]. We use the ADAM optimizer [86] with its default

parameters and a mini-batch size of 32. Validation set perplexity is used for early-stopping. At

test-time, we use greedy search to generate the model output. We observed that beam decoding

does not lead to any significant improvement in terms of validation BLEU score.

We employ the BLEU [128] and BLEU-2 [181] scores to measure the performance of the

models. Additionally, we consider a measure to quantify the diversity in the generated outputs.

Note that we are aware of and acknowledge the many limitations of relying on BLEU as a metric

for comment aptness, and use it primarily as an easy and tractable to compute metric during the

model development. For final model comparison, in §7.4.5, we also request human annotations

for multiple aspects of comment validity, which are a much more suitable evaluation approach

than BLEU (though we further enlist and acknowledge this setup’s own limitations in §7.6.1 and

§7.6.2).

Finally, we also conduct a human evaluation study. In the remainder of this section, we discuss

baselines along with various experiments and results.

7.4.1 Baselines

In this subsection we discuss the various baseline methods.

Manually-defined template (TEMP) We devise manually defined templates [144] for ‘Move

Description’ and ‘Move Quality’ categories. Note that template-based outputs tend to be repetitive
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as they lack diversity, drawing from a small, fixed vocabulary and using a largely static sentence

structure. We define templates for a fixed set of cases which cover our data. (For exact template

specifications, refer to Appendix B)

Nearest Neighbor (NN): We observe that the same move on similar board states often leads to

similar commentary texts. To construct a simple baseline, we find the most similar move NMCR

from among training data points for a given previous (R) and current (C) board states and move

M . The commentary text corresponding to NMCR is selected as the output. Thus, we need to

consider a scoring function to find the closest matching data point in training set. We use the Move,

Threat and Score features to compute similarity to do so. By using a sparse representation, we

consider total of 148 Move features, 18 Threat features, and 19 Score features. We use sklearn’s

[131] NearestNeighbor module to find the closest matching game move.

Raw Board Information Only (RAW): The RAW baseline ablates to assess the importance of

our pragmatic feature functions. This architecture is similar to GAC, except that instead of our

custom features A(f(Ri, Ci)), the encoder encodes raw board information of current and previous

board states.

ARAW (Ri, Ci) = [Lin(Ri), Lin(Ci)]

Lin() for a board denotes its representation in a row-linear fashion. Each element of Lin() is a

piece name (e.g., pawn) denoting the piece at that square with special symbols for empty squares.

7.4.2 Comment Category Models

As shown earlier, we categorize comments into six different categories. Among these, in this

chapter we consider only the first three as the amount of variance in the last three categories

indicates that it would be extremely difficult for a model to learn to reproduce them accurately.

The number of data points, as tagged by the trained classifiers, in the subsets ‘Move Description’,

‘Move Quality’ and ‘Comparative’ are 28,228, 793 and 5397 respectively. We consider separate

commentary generation models for each of the three categories. Each model is tuned separately

on the corresponding validation sets. Table 7.3 shows the BLEU and BLEU-2 scores for the

devised model under different subsets of features. Overall BLEU scores are low, likely due to the

inherent variance in NLG tasks such as dialog response generation and data-to-text description

(of which our task is an example) generation tasks, where even adequate outputs sometimes do

not match references due to many possible outputs being adequate for the same input [124]. A
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Figure 7.5: Outputs from various models on a test example from the MoveDesc subset.

precursory examination of the outputs for data points selected randomly from the test set indicated

that they were reasonable. Figure 7.5 illustrates commentaries generated by our models through

an example (a larger list of qualitative examples can be found in Appendix C).

Which features are useful? In general, adding Threat features improves the performance, though

the same is not always true for Score features. One reason for the importance of Threat features

might be that the change in value of a Threat feature often includes comment-worthy events such

as the king coming under check, or going out of check. Learning to detect the activation and

de-activation of a situation where one piece threatens another is challenging in the absence of

Threat features, since the piece being threatened and the piece which is threatening may even both

not be identical to the piece which was immediately moved. Making such inferences would require

the model to not just memorize all the piece positions but also, after each move, to implicitly

compute whether a threat is activated by iterating over all opposing piece pairs.

The changes in Score features may often correspond to subtle changes later in the game tree,

and are perhaps unlikely to immediately trigger the use of specific phrases in resultant commentary.

Furthermore, for lot of cases where they do trigger use of specific phrases, this might be due to

activation or de-activation of threats, or some specific specialities of the move (e.g., Castling)

which is already explicitly captured by the Move and Threat features. This might explain the

observation that addition of Score features does not always improve performance.

Qual has higher BLEU scores than the other datasets due to smaller vocabulary and lesser

variation in commentary. As can be observed in Table 7.4, Threat features are useful for both

‘Move Quality’ and ‘Move Description’ subsets of data. Adding Score features helps for ‘Move

Quality’ subset. This intuitively makes sense since Score features directly encode proxies for

move quality as per a chess evaluation engine.
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Dataset Features BLEU BLEU-2 Diversity

MoveDesc

TEMP 0.72 20.77 4.43
NN (M+T+S) 1.28 21.07 7.85

RAW 1.13 13.74 2.37
GAC-sparse 1.76 21.49 4.29
GAC (M+T) 1.85 23.35 4.72

Quality

TEMP 16.17 47.29 1.16
NN (M+T) 5.98 42.97 4.52

RAW 16.92 47.72 1.07
GAC-sparse 14.98 51.46 2.63

GAC(M+T+S) 16.94 47.65 1.01

Comparative

NN (M) 1.28 24.49 6.97
RAW 2.80 23.26 3.03

GAC-sparse 3.58 25.28 2.18
GAC(M+T) 3.51 29.48 3.64

Table 7.3: Performance of baselines and our model with different subsets of features as per various
quantitative measures.
( S = Score, M= Move, T = Threat features; ) On all data subsets, our model outperforms the TEMP and
NN baselines. Among devised models, GAC performs better than GAC-sparse & RAW in general. For NN,
GAC-sparse and GAC methods, we experiment with multiple feature combinations and report only the best
as per BLEU scores.

7.4.3 A Single Model For All Categories

In this experiment, we merge the training and validation data of the first three categories and

tune a single model for this merged data. We then compare its performance on all test sentences

in our data. COMB denotes using the best GAC model for a test example based on its original

class (e.g., Desc) and computing the BLEU of the sentences so generated with the ground truth.

GAC-all represents the GAC model learnt on the merged training data.

As can be seen from Table 7.5, this does not lead to any performance improvements. We

investigate this issue further by analyzing whether the board states are predictive of the type of

category or not. To achieve this, we construct a multi-class classifier using all the Move, Threat

and Score features to predict the three categories under consideration. However, we observe

accuracy of around 33.4%, which is very close to the performance of a random prediction model.

This partially explains why a single model did not fare better even though it had the opportunity

to learn from a larger dataset.

Category-aware model (CAT) We observed above that with the considered features, it is not

possible to predict the type of comment to be made, and the GAC-all model results are better than

147



September 7,2022

Dataset Features BLEU BLEU-2 Diversity

MoveDesc
GAC (M) 1.41 19.06 4.32

GAC (M+T) 1.85 23.35 4.72
GAC (M+T+S) 1.64 22.82 4.29

Quality
GAC (M) 13.05 48.37 1.61

GAC (M+T) 14.22 49.57 1.54
GAC(M+T+S) 14.44 51.79 1.48

Comparative
GAC(M) 3.10 19.84 2.88

GAC(M+T) 3.51 29.48 3.64
GAC(M+T+S) 1.15 25.44 3.14

Table 7.4: Performance of the GAC model with different feature sets. ( S = Score, M= Move, T = Threat
features; ) Different subset of features work best for different subsets. For instance, Score features seem to
help only in the Quality category. Note that the results for Quality are from 5-fold cross-validation, since
the number of datapoints in the category is much lesser than the other two.

Dataset Features BLEU BLEU-2 Diversity

All
COMB (M) 2.07 20.13 4.50

COMB (M+T) 2.43 25.37 4.88
COMB (M+T+S) 1.83 28.86 4.33

All
GAC-all(M) 1.69 20.66 4.67

GAC-all(M+T) 1.94 24.11 5.16
GAC-all (M+T+S) 2.02 24.70 4.97

All CAT (M) 1.90 19.96 3.82

Table 7.5: The COMB approaches show the combined performance of separately trained models on the
respective test subsets.

COMB results. Hence, we extend the GAC-all model to explicitly provide with the information

about the comment category. We achieve this by adding a one-hot representation of the category

of the comment to the input of the RNN decoder at every time step. As can be seen in the Table

7.5, CAT(M) performs better than GAC-all(M) in terms of BLEU-4, while performing slightly

worse on BLEU-2. This demonstrates that explicitly providing information about the comment

category can help the model.

7.4.4 Diversity In Generated Commentaries

Humans use some variety in the choice of words and sentence structure. As such, outputs from

rule based templates, which demonstrate low variety, may seem repetitive and boring. To capture

this quantitatively, and to demonstrate the variety in texts from our method, we calculate the

entropy [162] of the distribution of unigrams, bigrams and trigrams of words in the predicted
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outputs, and report the geometric mean of these values. Using only a small set of words in similar

counts will lead to lower entropy and is undesirable. As can be observed from Table 7.3, template

baseline performs worse on the said measure compared to our methods for the ’MoveDesc’ subset

of the data.

7.4.5 Human Evaluation Study

As discussed in the qualitative examples above, we often found the outputs to be good, though

BLEU scores are low. BLEU is known to correlate poorly [124, 146, 187] with human rele-

vance scores for NLG tasks. Hence, we conduct a human evaluation study for the best 2 neural

(GAC,GAC-sparse) and best 2 non-neural methods (TEMP,NN).

Setup: Specifically, annotators are shown a chess move through previous board and resulting

board snapshots, along with information on which piece moved (a snapshot of a HIT6 is provided

in the Appendix D). With this context, they were shown text commentary based on this move and

were asked to judge the commentary via three questions, shortened versions of which can be seen

in the first column of Table 7.6.

We randomly select 100 data points from the test split of ‘Move Description’ category and

collect the predictions from each of the methods under consideration. We hired two Anglophone

(Lifetime HIT acceptance % > 80) annotators for every human-evaluated test example. We

additionally assess chess proficiency of the annotators using proficiency-evaluating questions (not

to be confused with the questions we ask annotators during actual evaluation and annotation)

from the chess-QA dataset by [24]. Within each HIT, we ask two randomly selected proficiency

questions from the chess-QA dataset. Finally we consider only those HITs wherein the annotator

was able to answer the proficiency questions correctly.

Results: We conducted a human evaluation study for the MoveDesc subset of the data. As can be

observed from Table 7.6, outputs from our method attain slightly more favorable scores compared

to the ground truth commentaries. This shows that the predicted outputs from our model are not

worse than ground truth on the said measures. This is in spite of the fact that the BLEU-4 score

for the predicted outputs is only ∼ 2 w.r.t. the ground truth outputs. One reason for slightly lower

performance of the ground truth outputs on the said measures is that some of the human written

commentaries are either very ungrammatical or too concise. A more surprising observation is that

6Human Intelligence Task

149



September 7,2022

Question GT GAC
(M)

GAC
(MT)

GAC
(MTS)

GAC
-sparse TEMP NN

Qn: Is commentary correct for the
given move? (%Yes) 70.4 42.3 64.8 67.6 56.3 91.5 52.1

Qn: Can the move be inferred from
the commentary? (%Yes) 45.1 25.3 42.3 36.7 40.8 92.9 42.3

Fluency (scale of (least)1 - 5(most) )
Mean (Std. dev.)

4.03
(1.31)

4.15
(1.20)

4.44
(1.02)

4.54
(0.89)

4.15
(1.26)

4.69
(0.64)

3.72
(1.36)

Table 7.6: Human study results. Outputs from GAC are in general better than ground truth, NN and GAC-
sparse. TEMP outperforms other methods, though as shown earlier, outputs from TEMP lack diversity.

around 30% of human written ground truth outputs were also marked as not valid for given board

move. On inspection, it seems that commentary often contains extraneous game information

beyond that of move alone, which indicates that an ideal comparison should be over commentary

for an entire game, although this is beyond the scope of the current work.

The inter-annotator agreement for our experiments (Cohen’s κ [27]) is 0.45 for Q1 and 0.32 for

Q2. We notice some variation in κ coefficients across different systems. While TEMP and GAC

responses had a 0.5-0.7 coefficient range, the responses for CLM had a much lower coefficient. In

our setup, each HIT consists of 7 comments, one from each system. For Q3 (fluency), which is on

an ordinal scale, we measure rank-order consistency between the responses of the two annotators

of a HIT. Mean Kendall τ [84] across all HITs was found to be 0.39.

To measure statistical significance of results, we perform bootstrap tests on 1000 subsets of

size 50 with a significance threshold of p = 0.05 for each pair of systems. For Q1, we observe

that GAC(M), GAC(M+T) and GAC(M+T+S) methods are significantly better than baselines

NN and GAC-sparse. We find that neither of GAC(M+T) and GT significantly outperform each

other on Q1 as well as Q2. But we do find that GAC(M+T) does better than GAC(M) on both Q1

and Q2. For fluency scores, we find that GAC(M+T) is more fluent than GT, NN , GAC-sparse,

GAC(M). Neither of GAC(M) and GAC(M+T+S) is significantly more fluent than the other.

7.5 Related Work

Data-to-text NLG research has a long and rich history, with systems ranging from completely

rule-based [26] to learning-based ones [21, 147, 149], which have had both practical successes

[149] and failures [147]. Recently, there have been numerous works that propose text generation

given input information such as structured records, biographies [95], recipes [85, 191], etc. A

key difference between generation given a game state compared to these inputs is that the game

state is an evolving description at a point in a process, as opposed to recipes (that are independent
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of each other), records (which are static) and biographies (which are one per person, and again

independent). Moreover, our devised method effectively uses various types of semantic and

pragmatic information about the game state.

In this chapter, we have introduced a new large-scale data for game commentary generation.

The commentaries cover a variety of aspects like move description, quality of move, and alternative

moves. This leads to a content selection challenge, similar to that noted in [187]. Unlike [187],

our focus is on generating commentary for individual moves in a game, as opposed to game

summaries from aggregate statistics as in their task.

One of the first NLG datasets was the SUMTIME-METEO [149] corpus with ≈ 500 record-

text pairs for technical weather forecast generation. Liang et al. [100] worked on common

weather forecast generation using the WEATHERGOV dataset, that has ≈ 10K record-text pairs.

A criticism of WEATHERGOV is that weather records themselves may have used templates and

rules with optional human post-editing. There have been prior works on generating commentary

for ROBOCUP matches [21, 115]. The ROBOCUP dataset, however, is collected from 4 games

and contains about 1K events in total. Our dataset is two orders of magnitude larger than the

ROBOCUP dataset, and we hope that it provides a promising setting for future NLG research.

7.6 Conclusions

In this chapter, we first introduce and study the NLG setting of chess commentary generation. We

also curate a dataset for this setting. We then motivate and devise Interventions to the E2EN2PP

and resultant methods to perform generation on this dataset. At the outset, we find that our

initial baseline model, that is a typical attentional LSTM-based encoder-decoder framework

instantiating E2EN2PP, is found to lapse into merely generating input-dependent common

responses, underperforming even template-based baselines. The model responses rarely choose the

pertinent and interesting pieces as well as inter-piece relationships to talk about given the current

move. They even fail to simply describe the piece that moved and its initial and final locations, as

evinced by their underperforming even the template-based baseline which follows that simple

strategy. This indicates their deficient performance on the content selection subskill. Furthermore,

even when the responses choose the adequate piece (s) movements, and inter-piece relationships

to describe, they seldom employs rich expressions such as joining the attack, develops his position,

putting in check etc., indicating the model’s deficiency at referring expression generation.

We posited that the aforementioned deficiencies were due to the model’s inability to understand

the game states in the larger pragmatic context of the game. This motivated the need for an External
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Knowledge Source that could enhance the pragmatic context available.

Thus, we devised a method that directly provides knowledge about game pragmatics to its

decoder via backing off to a game-library based discrete pragmatics-aware featurization introduced

as an Intervention in the form of a Pragmatic Interpretation Layer (see §7.3.1 for more details

on the features). This method overcomes aforementioned deficiencies, resulting in a viable

commentary generator outperforming all the baselines, including the template-based one. The

devised Intervention to the E2EN2PP, that causes a departure from the end-to-end nature, is

illustrated in Figure 7.1.

Our devised method effectively utilizes information related to the rules and pragmatics of

the game. A human evaluation study judges outputs from the devised methods to be as good as

human written commentary texts.

Subsequent work [165] has proposed reinforcement learning based game-playing agents

that learn to play board games from scratch, learning end-to-end from both recorded games

and self-play. An interesting point to explore is whether such pragmatically trained game state

representations can be leveraged for the task of game commentary generation.

7.6.1 Concerns/Deficiencies About the Overall Setting and its Evaluation

In this section, we outline and acknowledge limitations posed both by the way our overall CG,

the setting and its experimental setup are framed as well as the accompanying human evaluation.

These limitations restrict the extent to which the pragmatic relevance of the generated comments

is assessed and conforms to its full, real-world form.

Predicting which type of comment to make for a given game situation/move is itself an

important pragmatic consideration a real-world chess commentary system would need to address,

and be assessed on. However, by including the commentary type as a explicitly specified

control/input component, we make our setting and its experimental setup less capable of being

assessed on this front.

Nonetheless, one potential workaround to still assess this aspect during human evaluation

would have been to:

1. Present annotators with all three types of comments for the same input situation

2. Check how closely their preferences over the comment types as ranked along various aspects

correlated with the model’s own “confidences" about the comments it generated for each of the

comment type (with confidence being evaluated by some suitable proxy notion, such as, e.g.,

the model probability of generated comment conditional on the input and respective comment
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type)

Our evaluation setup at the stage of initial writing and publication did not explore this

workaround, and we acknowledge this as a limitation to be addressed.

7.6.2 Limitations w.r.t the Correctness/Aptness Distinction

Our human evaluation setup (see §7.4.5 and Table 7.6 for more ) required annotators to assess

model generated comments along two questions besides mere fluency.

1. Is commentary correct for the given move?

2. Can the move be inferred from the commentary?

These two questions are largely sufficient to assess both correctness and specificity of the

comment given the input situation. However, they are still insufficient at covering the notion of

pragmatic relevance, which goes beyond mere correctness and specificity.

7.6.3 Broader Takeaways

Whenever there is a sharp disparity between the granularity at which the input (or the input portion

of the communicative goal) states information and the granularity at which the output is expected

to operate, one expects a gap between the understanding module and the generation module’s

representations, and the generation module has the added burden of learning to map the more

disparate understanding representation to its own representation.

If filling this gap requires extensive acquisition of commonsense or other forms of knowledge

(such as knowledge which can only be acquired through gameplay as in our case), it is possible

that the above mappings may be deficient. In such a case, to perform NLG subtasks such as

content selection viably (which may otherwise be obstructed), it becomes necessary to devise

some way of converting the input to the right granularity by incorporating this knowledge either

completely or through some heuristics, thus bridging the granularity gap.

Consider the example of generating game summary commentary for sports such as soccer

and American football, given only the various summary scores and highlights tables generated

in aggregate at the end of the game. These tables may contain a wide, heterogenous range of

information, with only limited lexical interpretation offered by the row and column names, which

themselves are domain-specific terms such as Home/Away, Possession, including even acronyms

such as GA (Goals Attempted), etc. Different parts of this information may become pertinent

for different games. For example, Away games are generally harder for visiting teams, and even
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a closely fought draw or loss may entail not entirely negative commentary towards the visiting

team e.g., In a hard fought game, . . . , In a close encounter in harsh conditions, . . . . A NLG

model which attempts to learn the game summary commentary task may have a hard time learning

to select, tabula rasa, the right content by decluttering and combining the appropriate row and

column tuples.

However, if one were to instead introduce a Interpretation layer, like in this chapter, which

first does either or both of the below pre-processing steps would greatly ease the model’s ability

to learn to content select and refer to game information appropriately.

1. Create a large number of game-pertinent, discrete 0-1 or multi-valued features, which it

extracts from the game tables. e.g., a 0-1 feature can be Away games lost with a margin of

only 2 goals

2. Perform preliminary lexicalization which uses simple rules to convert the table cells into

simple lexical statements e.g., Team X had a formation of 4 defenders, 4 midfielders and 2

strikers. These statements can be included as additional parts of the input.

Appendix A: Additional Data Examples

Appendix B: Additional details for methods

Templates

• Move Description: For the Move Description category, we consider following templates:

1. Capture moves : [PLAYERMOVED] captures the [CAPTUREDPIECE] at [FINAL-

SQUARE] using the [PIECEMOVED] at [INITIALSQUARE].

2. Non-Capture moves: [PLAYERMOVED] moves the [PIECEMOVED] from [INITIAL-

SQUARE] to [FINALSQUARE].

3. Castling moves: [PLAYERMOVED] does a castling.

For moves which lead to a CHECK in the resultant board state, an additional putting the king

in check is added to the template. [PLAYERMOVED] (Black/White), [INITIALSQUARE],

[FINALSQUARE], [PIECEMOVED] are filled in based on the move description on the input

side.

• Move Quality: Based on the move score ( as calculated by the chess engine Stockfish) > θ
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Text Categories
Unpins and defends the knight , but it
does n’t matter , as the time is ripe . Desc

He gets fed up and exchanges Queen for Rook . Desc
Rxc3 , I just retake with my queen , whilst if he

attempts defense with the bishop , then after 17.Bd2 ,
Ne4 , 18.Rxc3 , Nxg3 , 19.Rxc6 , Nxh1 , I ’ve won a rook outright .

Desc,Rationale

Preparing to castle , and threatening
now white ’s e pawn for real. Desc

Simply getting my rook off that dangerous diagonal
, and protecting the b pawn . Desc

I throw in a check Desc
Threatening mate with Qxh2 Desc,Quality

A punch drunk move ! Quality
This is not the best move. Quality
The most logical move. Quality
This move is dubious. Quality

The check gains time to support the advance of the a-paw Desc,Quality
maybe Ke1 was better Rationale

I did n’t want to retreat the N and I rejected 11 . Rationale
I wish to both defend the pawn , and threaten indirectly the

black queen , gaining a tempo Rationale

it would suite me better if my opponent made a queenside castling , since
then my advanced pawn on the d-file would assist in a future attack on the king ’s position . Comparative

but better would be nd2 to get the knight in the game , the queen rook , too . Comparitive
i think it would have been better to play nxe5 and maintain a material advantage . Comparitive

although not as effective as the bishop move , even 10.0-0-0 is better than the text ,
though 10 ... bg4 would have been very nasty . Comparitive

fianchettoing , so that when black does complete his development , his b will be on a better diagnol . Comparitive
He doesn’t notice that his Knight is hanging ... GameInfo

Now of course my forces are anchored around the pawns on e3 and h5 , and the black rook
loses his hope of penetrating the white position on the e-file GameInfo

Well, now the game will get interesting soon GeneralInfo
He tries his trick , which of course is noticed GeneralInfo

This is often what I will do , when I ’m playing white. GeneralInfo

Table 7.7: Some commentary texts from each of the six categories. The Categories column lists
those into which the example falls. As pointed out earlier, the category labels are not exclusive
i.e., a text can belong to multiple categories, though texts with more than one category are few in
our dataset. (’Desc’ is shor for ’Move Description’)
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or < θ, one of the following two is generated:

1. A good move.

2. A bad move. The threshold θ is found by tuning it on the validation set to maximize

BLEU. We start from θ = 0.

Appendix C: Qualitative examples

Some qualitative examples are illustrated next:
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Figure 7.6: Example output 1: Move description subset of data.

Figure 7.7: Example output 2: Move description subset of data.

Figure 7.8: Example output 3: Move description subset of data.

Figure 7.9: Example output 4: Move description subset of data.
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Figure 7.10: Example output 5: Move description subset of data.

Figure 7.11: Example output 6: Move description subset of data.

Figure 7.12: Example output 7: Move description subset of data.
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Figure 7.13: Example output 1: Move quality subset of data.

Figure 7.14: Example output 2: Move quality subset of data.

Figure 7.15: Example output 3: Move quality subset of data.

Figure 7.16: Example output 4: Move quality subset of data.
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Figure 7.17: Example output 5: Move quality subset of data.

Figure 7.18: Example output 6: Move quality subset of data.

Figure 7.19: Example output 7: Move quality subset of data.

Figure 7.20: Example output 1: Comparative subset of data.
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Figure 7.21: Example output 2: Comparative subset of data.

Figure 7.22: Example output 3: Comparative subset of data.
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Appendix D: Additional information on AMT experiment

Figure 7.23: AMT (Amazon Mechanical Turk) sample HIT (Human Intelligence Task): Part 1 of
2 : Two chess proficiency questions are asked at beginning of a HIT
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Figure 7.24: AMT (Amazon Mechanical Turk) sample HIT (Human Intelligence Task): Part 2
of 2: 7 sets of questions are asked to judge quality of generated text. Each of the seven texts is
output from a different method.
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Figure 7.25: Commentary text: I develop my bishop to the queen .
An example instance where output commentary from our method was marked as not valid for the
given chess move

Checking chess proficiency of annotators

Our proficiency test questions are chosen from a subset of questions by [24]. Each question

consists of a chess board and a question about the board configuration or game situation. The

paper formulates a range of question types such as enumerating pieces of a type, enumerating

pieces of a player, whether one piece threatens another, and whether the configuration corresponds

to a checkmate or stalemate. For simplicity we stick to only those question types that have binary

answer response.

We classify the question types into Easy and Hard question types. Each annotator is presented

with one Easy and one Hard question at the start of a HIT.
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Part III

Conclusion
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Chapter 8

Conclusion

In this thesis, we identified and characterized a collection of six generation settings that present

challenges for learning suitable end-to-end NLG models.

This thesis described a diverse set of setting-inspired formulations such as pretraining schemes

(Chapters 2 and 5), model refactoring (Chapter 2), new architectural components (Chapter 5),

data imputation (Chapters 3 and 4), unsupervised constraint incorporating procedures (Chapter

5) and input augmentation (Chapter 6). In each of the six NLG settings investigated, we posited

that the respective interventions performed to the E2EN2PPs based on one or more of these

formulations would lead to a final, improved NLG system that viably generate outputs sufficiently

satisfying the CG. For each setting, the ensuing experiments confirmed this hypothesis, showing

the post-intervention NLG system produced outputs which conformed better to the CG compared

to the initial, baseline NLG system which instantiated the E2EN2PP sans any interventions.

8.1 Summary of Contributions

This thesis makes the following key contributions:

1. Chapter 2 studies the setting of generating a portmanteau given its root words. We first sketch

a creative story outlining how a human speaker would utilize two internal cognitive models

based on root word predictability and English-word likeness. Using Bayesian refactoring, we

intervene to modify the simple, character-level Seq2Seq model P (y|x) (FORWARD) into a

noisy channel style model P (x|y)P (y) (BACKWARD), bringing the generation process closer

to the creative story. We also show how the P(y) prior component introduced can be pretrained

using the English vocabulary. Overall, BACKWARD outperforms both FORWARD as well as

phonetic information dependent automata-based baselines from prior art [32], underscoring
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the efficacy of creative story-driven interventions to the E2EN2PP.

Additionally, this chapter also contributed a much-expanded corpus for studying portmanteau

generation, 3 times larger than the existing corpus.

2. Chapter 3 studies introducing personification into a source sentence not exhibiting it already,

by assigning an inanimate entity animacy-requiring attributes/roles. This setting suffers from

incomplete individual training examples, due to absence of parallel depersonified input and

personified output sentence pairs in the wild. We first sketch out a creative story based

on inanimate TOPIC and a animacy-requiring dependent ATTRIBUTE derived from the

dependency structure, motivated by similar theories underlying metaphor formation. Based on

this creative story, we devise a de-personification pipeline (see 1.1 for more) using off-the-shelf

resources; thus constructing noisy, depersonified inputs to facilitate training. Effectively, this

is an intervention to the E2EN2PP based on data imputation.

Additionally, this chapter also introduced a novel generation setting i.e., personification gener-

ation and an associated corpus of ≈ 350 personified sentences. This setting requires thinking

about dependency structure underlying the generated sentence and the commonsense-derived

relations and constraints between the parts related through this structure.

3. Chapter 4 introduces a novel phonetics-aware generation setting i.e., tongue twister generation

and an associated corpus. Tongue twisters are defined as sentences that are meaningful but

articulatorily difficult. Besides the data deficiency (only ≈ 400 examples), an added challenge

to surmount is to finetune pretrained NLG models to sample difficult transitions in phoneme

space while simultaneously maintaining meaningfulness in grapheme space. Overcoming

these challenges, we devise an intervention to the learning process in the form of a novel,

heterogenous training mechanism which instead of finetuning the model in grapheme-to-

grapheme (G2G) mode alone, as would be typical, heterogenously finetunes it to generate

either of phoneme/grapheme completions from prompts in either of phoneme/grapheme form.

4. Chapter 5 studies the setting of diachronically style transferring modern English sentences

to Shakespearean English, given limited parallel data and a noisy, sparse lexicon of ≈ 1000

modern→ Shakespearean word correspondences. We devise a suite of beneficial interventions

exploiting the property of a shared language and the underlying lexico-syntactic nature of the

style transfer. These include i) sharing the source and target word embeddings, ii) introducing

a copy component, and most critically iii) Incorporating the pairwise lexicon by pre-tuning

word representations leveraging the retrofitting algorithm [41].

5. Chapter 6 studies the Commongen [102] setting, where the CG is to generate a plausible

situation-sentence from a given set of input concepts. We posit that properties specific to
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the textual modality, e.g., the Gricean maxim of Quantity and Zipfian nature of concept

occurrence, have a marked negative downstream effect on the NLG model’s learning for

CommonGen, leading to model generated outputs with poor plausibility, inadequate lexical

relationships, and incomplete arguments etc. We devise an intervention through a novel method

to symbolically augment input concepts by drawing information from the visual modality via a

retrieve-and-caption pipeline, to help dampen this negative effect.

6. Chapter 7 introduces the novel setting of generating a short, interesting commentary sentence

for each chess game move during gameplay. We show how S2S models simply based on a

E2EN2PP fail to produce commentary that is even at the level of a template based baseline. We

posit that this arises from inability to acquire tabula rasa the pragmatic knowledge necessary

to understand the game situation. We devise a knowledge-incorporating intervention that

includes an additional “Pragmatic Interpretation" layer to discretely featurize board states

using the pychess library, backing off to pragmatic knowledge to better represent input states,

simplifying their understanding and overcoming microplanning and macroplanning issues

observed in the earlier output. This chapter also contributes a publically available corpus for

this setting to facilitate further research by the community.

8.2 The Creative Aspect in NLG

8.2.1 What is Creatively Generated Language

8.2.2 Creativity in NLG settings

As summarized by a recent work [31], NLG settings can be broadly categorized along three facets

based on how their output relates to the input, as specified by the CG. These three facets are:

1. Abstraction/Compression: Here, the CG merely requires the output to contain an important

subset of the input information/meaning, defined as per some notion of importance. An

example of an almost purely compression based setting is abstractive summarization.

2. Transduction: Here, the CG requires the output to entirely preserve input information while

altering only certain, specific aspects of the input language form. One example of an almost

pure transduction based setting is text simplification.

3. Creation: Here, the CG requires the output to significantly augment or extrapolate information

beyond that stated in the input, while also adhering to CG-level output constraint(s).

Note that most NLG settings need not be purely compressive, transductive or creative. For
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example, continuing a complete story starting from an input prompt requires facets of both

transduction (since the continuation has to be related to the prompt) and creation.

NLG settings with a significant creative facet are characterized by being:

1. Have only smaller datasets available. This is especially true of creative NLG settings associated

with literary and figurative language e.g., tongue twisters and personification. This is because:

(a) Coining of these types of creative artifacts requires significantly more skill on part of the

author compared to regular language.

(b) Furthermore, a creative artifact to become sufficiently known and accepted among lan-

guage speakers (e.g. the tongue twister She sells seashells on the seashore.) which is a

prerequisite to appear in a training corpora, has low probability.

2. Beyond the input, the output also has to adhere to certain global constraints which characterize

the phenomena, as specified in the CG Definition/Constraints. Examples of such constraints

are the output being articulatorily difficult (for tongue twister generation, Chapter 4) and the

output being English word-like (for portmanteau generation, Chapter 2)

3. Harder to learn, especially when the training data available is limited. This is since the model

has to learn an output distribution P(y|x) which is spread over a large support Yvalid(x), there

being many valid outputs y ∈ Yvalid(x) for a given input x. Hence, models during learning

have a tendency to fall into mode collapse [36], i.e., for any input x, they generate y ∈ Ymode,

where Ymode is a set of common, uninteresting outputs that ∈ Yvalid(x)∀x. For instance, we

observed in the chess commentary generation setting how models which attempt to represent

the board states tabula rasa end up producing outputs such as The pawn moved. and The knight

moved..

Amongst the NLG settings we studied, five exhibit a significant creative facet, while one

(Chapter 5) requires a significant mixture of both the creative and transductive facets. For the

reasons stated above, the creative nature of these settings contributed significantly to making them

challenging to learn.

8.3 Limitations

8.3.1 Variation in Language and Dialect

In each of the six settings studied in this thesis, we primarily attempted to generate text that was

contemporary American English, except when the setting specification itself required otherwise.

As recommended by the Bender rule [9], we acknowledge that some of our findings may be
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specific to English, particularly the dominant American dialect. A natural point of inquiry for

future work, would hence be: How well does our hypothesis about these classes of data-deficient

settings generalize to other languages?

Since most of the phenomena we study are universal across languages, we do expect the

devised approaches to transfer reasonably well. However, this will only hold when the necessary

resources are available (e.g. for Commongen in Chapter 6, a collection of images with captions in

that language). Note that some languages may exhibit specificities in which the NLG setting we

study becomes trivial and hence can be said to not arise as a generation problem. For instance,

blending of words is a highly well-defined, regular phenomena similar to inflection for languages

such as Sanskrit, making the portmanteau generation setting studied in Chapter 2 trivial.

8.3.2 Use of Automatic, Reference-Based Metrics

At several points in this thesis, e.g., Chapter 5 , we employ reference-based evaluation using BLEU

or other automatic metrics (such as BERTScore [196] with the reference) both as the primary form

of evaluation during model development and an accompaniement to human evaluation during

final comparison of approaches and architechtures.

We acknowledge that such reference-based automatic evaluation is problematic in several

regards [123], such as sensitivity to paraphrasing and the coverage and quality of references

available [48]. Acquiring a high-quality, high-coverage set of references is particularly difficult

for tasks with a creative aspect such as dialog, story generation and the settings we study in this

thesis. This is because such tasks have a large space of valid responses.

Nevertheless, human evaluation is costly in terms of both money and time, besides being hard

to reproduce. This leaves us with limited choice but to fall back on automatic reference-based

metrics, particularly during model development. A promising alternative for future investigation

are the recently emerging family of model-based, referenceless metrics, which we discuss further

in §8.4.1.

8.4 Future Directions

In this section, we outline possible directions to extend our work in this thesis. These directions

go beyond those already hinted at in the individual Future Work sections concluding each of our

earlier chapters.
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8.4.1 Devising Automatic Metrics for Better Evaluation

Recent work has seen the formulation of several, task-specific “model-based" metrics, such as

UNION [59] for story generation. These metrics contrastively train a model to score references

higher than negative response sets, with the latter being constructed heuristically using task-

specific procedures. For instance, UNION constructs negative responses through reordering

sentences, as well as randomly performing N-gram and sentence-level repetition and substitution.

Once trained, these metrics are capable of performing reference-free automatic evaluation on

test examples based on test examples alone.

However, since these metrics require task-specific strategies to construct the negative set of

responses for training them, they are not readily extensible to new settings like those in this

thesis. Moreover, training the models underlying these metrics is likely to be challenging for the

data-deficient settings we study. Devising and training such metrics for each of the settings herein,

and subsequently revisiting the experiments, remains a point for future investigation.

8.4.2 Settings with Both Rich Constraints and Input Dependence

Through our examples, we saw some settings where the CG placed unusual output constraints

which were challenging to learn (Chapters 2 to 5). We also saw some settings (Chapters 6 and 7)

where the CG required generating outputs which were dependent on the input through a complex

property e.g., commonsense plausibility.

One natural question that hence arises is whether one can construct, identify and study NLG

settings which exhibit complexity along both these aspects. Solving such settings could potentially

be more challenging, since they would require devising interventions that not only incorporate an

underlying creative story, but also incorporating one or more knowledge resources or other means

to bridge the knowledge gap.

An example of such a NLG setting is generating a sarcastic comment about a given story. This

setting is data-deficient since ground truth pairs of stories and sarcastic comments are hard to

curate. This is a Constrained Creative setting since “being sarcastic" is a difficult constraint to

satisfy, requiring generation of a sentence whose literal meaning violates the readers expectations,

leading them to infer the opposite, sarcastic meaning. At the same time, this is also a Knowledge

Deficient setting since the generated comment must also be interesting, adequate and plausible in

the context of the input story.
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8.4.3 Extrinsic Human Evaluation

Most of the annotation studies performed during human evaluation through out work, request

annotators to evaluate model outputs for aspects such as interestingness (Chapter 3), commonsense

plausibility (Chapter 6) and fluency based on their own internal perception of these aspects, primed

by a few study-level instructions and examples. This paradigm of evaluation is canonically referred

to as intrinsic evaluation.

A complementary, arguably more real-world paradigm of evaluation is extrinsic evaluation

[145]. Here, the annotator has to use the inputs and interact with them as part of a larger

downstream process or system. Extrinsic evaluation is especially suitable for creative settings,

since the intrinsic notions required for these settings (e.g. interestingness) are less well-developed

and more subjective in nature across the annotator population than e.g., fluency and grammaticality.

Two potential sub-paradigms of extrinsic evaluation are:

1. Asking annotators to highlight parts of the output that in their view are unsuitable w.r.t the

aspect in question e.g., marking uninteresting parts of the output, or grammatical errors (for

grammaticality), or unusual turns of phrase (for fluency)

2. Designing a HCI interface/application where the annotator has to engage with outputs of

the NLG system in a machine-in-the-loop fashion as a part of using the application as

they naturally would. For instance, one could design a mixed-initiative creative writing

application e.g. to write slogans or stories [25] where the user is provided personification

(Chapter 3) as a co-creative editing option i.e. they can choose to dynamically apply the

model on segments they write as part of authoring the story. The goodness of outputs

w.r.t the aspect can be estimated by measuring the extent to which the annotator uses the

editing option, the extent to which they have to edit their suggestions, and other measures

of co-creativity [96].

8.4.4 Multi-Task Learning Rather Than Incorporate Knowledge

For some settings, the typical recipe we propose to construct an intervention involves incorporating

a resource which can bridge the gap left by the CG and the deficient data w.r.t. the input-output

relationship. For instance, the settings in Chapters 6 and 7 are viably intervened into using

retrieved cross-modality information and python library information respectively.

However, another potential, intuitive way to bridge this knowledge gap could be by pretraining

all or part of the NLG model on other related NLG settings, with the expectation being that the
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model would acquire the required knowledge in the process of being trained for the related task.

For example, for the Commongen setting we study in Chapter 6, pretraining on the entailment

generation NLG task i.e., generating an entailed hypothesis given a premise sentence, could

potentially prove useful. Though this setting is not exactly the same as generating plausible

situations from sets of concept words, it could provide an useful initial grounding on reasoning

about objects and the plausible relationships/affordances they share with respect to each other.

Some natural, follow-up questions would be: Do these kind of conjugate setting pairs exhibit

a common theme or pattern? Given any Knowledge Deficient NLG setting, can we easily identify

suitable conjugate tasks to pretrain our representation?

8.4.5 Discovering Entirely Newer Groups of Challenging NLG Settings

A potential point for future investigation would be characterizing and identifying other groups

of settings not encountered in our thesis chapters, where end-to-end NLG models based on the

E2EN2PP do not directly work well.

One example of such a group are settings which require the NLG model to incorporate

considerations of social commonsense [158] as part of satisfying the communication goal, e.g.

the setting of euphemism generation on-demand. In this setting, the NLG system is provided an

input sentence e.g. They were shocked to discover their school-going daughter was pregnant with

an offending/socially uncomfortable segment marked out e.g., was pregnant. The euphemism

generating system has to rephrase the sentence such that the overall meaning is retained, with the

offending/socially uncomfortable segment being replaced by a related, near-paraphrasatic segment

which is socially more acceptable e.g., a possible good output would be They were shocked to

learn their school-going daughter was in the family way.
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