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Abstract

Discriminative training for speech recognition aims to mmize the errors caused by the
generative models. It is often formulated as an optimizagicoblem involving the refer-
ences and the competing hypotheses. While discriminateitig can improve recog-
nition performance, it comes with a few drawbacks. Firsg dfptimization problem is
difficult to solve due to the complex objective functions.isTkeads to the need of heuris-
tics and smoothing techniques for optimization. Seconsirahinative training is time
consuming since it can take days or weeks to finish on largesgs

The goal of this thesis is to reformulate the optimizatioaljpems of discriminative
training, so that we can develop better optimization atpans which are more efficient.
Our methods are based on Lagrange relaxation which we ddheadifficult optimization
problems into simpler convex problems. Our proposed géredaBaum-Welch (GBW)
algorithm is a generalization of the Baum-Welch (BW) algoritéuna the extended Baum-
Welch (EBW) algorithm. Through the GBW framework, we discovelirgeresting con-
nection between EBW and information theory. This inspire®ukevelop better and faster
EBW variants, including the recursive EBW algorithm and statal EBW algorithm.

By using the same framework of GBW, we propose generalizediais@ative feature
transformation (GDFT) algorithm which transforms the dosmised maximum likelihood
regression (CMLLR) to perform feature space discriminatrantng. We compare our
GDFT with the state-of-the-art feature space maximum mutdi@rmation (fMMI), and
show that GDFT is competitive in accuracy and runs much faste

Based on our proposed algorithms, we introduce single passirdinative training
which aims to extract as much improvement as possible by alhbying process the
data once. Our experiments show that single pass trainimg@lo&in 80-90% of the im-
provement available in the standard discriminative tragrprocedure. All our proposed
algorithms are evaluated on large scale speech recogsitgiams.
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Abbreviations

ASR Automatic Speech Recognition
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CMLLR Constrained Maximum Likelihood Linear Regression
DFE Discriminative Feature Extraction

DFT Discriminative Feature Transformation

EBW Extended Baum-Welch
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MLLR Maximum Likelihood Linear Regression
MMI Maximum Mutual Information
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RDFT Region Dependent Feature Transformation

RDLT Region Dependent Linear Transformation

rEBW Recursive Extended Baum-Welch

SAT Speaker Adaptive Training

SEBW Statistical Extended Baum-Welch

TransTac Spoken Language Communication and Translatider8yer Tactical Use
VTLN Vocal Tract Length Normalization

WER Word Error Rate
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Chapter 1
Introduction

Discriminative training is one of the major topics in speeebognition research. Suc-
cessful applications of discriminative training, esplgithe improvement to large scale
systems, have continued to draw a lot of researcher’s aiteimt the past 20 years.

The fundamental assumption of discriminative trainingasdxd on the model imper-
fectness, which causes conventional maximum likelihood)(Bpproaches to be subop-
timal in terms of classification accuracy. In the case of speecognition, the acoustic
model, i.e. the hidden Markov model (HMM), is known to be irreat in many ways for
modeling human speech. For instance, the first order asgamgptd the independent out-
put assumption, are desirable from the computational atdstal point of view, but they
are not realistic to the data that we would like to model. Hgtice ML approach may not
give the best performance. As a result, researchers haveshegying alternative model
parameter estimation techniques like discriminativentreg which aims at minimizing the
recognition error directly.

In general, discriminative training can be roughly dividetb three parts: the recog-
nition error function, the optimization algorithm and thedel that receives optimization.
The goal of discriminative training is to optimize the mogatameters such that the recog-
nition error is minimized on the train data.

In discriminative training, the recognition error is ofterpressed as different forms



of objective functions that involve the reference and thapeting hypotheses. These ob-
jective functions can be considered as some smoothed mersfavord error rate (WER)
which are suitable for optimization. Notable discriminattraining examples include, but
are not limited to, maximum mutual information (MMI) [Vahev et al. (1997)], minimum
phone error (MPE) [Povey (2003)] and minimum classificagoror (MCE) [Juang et al.
(1997)]. These discriminative training algorithms optaiemthe HMM parameters for their
smoothed recognition error functions (mutual informatiphone error). These functions
are often more complicated than the log likelihood functised in the ML approach.
Thus, the optimization procedures are also more time comguand often require care-
ful tuning. While early discriminative training researcltéses on the HMM, researchers
later investigated the possibility of applying discrimtine training to other areas like fea-
ture extraction [Biem et al. (2001) ; Mak et al. (2002)], feattransformation [Povey et al.
(2005) ; Povey (2005) ; Zhang et al. (2006a) ; Zhang et al. §BYI0 speaker adaptation
[Gunawardana and Byrne (2001) ; Wang and Woodland (2004])Juasupervised training
[Yu et al. (2007)]. Encouraging results have been reportetiheave pushed the research
on discriminative training.

While discriminative training is useful to improve speechagnition performance, it
comes with a few drawbacks. Due to the complicated objeétimetions, the optimiza-
tion is difficult and the existing optimization algorithmfien involve a lot of heuristics and
tuning. Another drawback of discriminative training is ¥ery long training time, since
in addition to estimating the parameters based on the refese discriminative training
also needs to consider the competing hypotheses. As a,rimufiractice and the imple-
mentation of discriminative training is often consideredbe difficult and challenging.

The goal of this thesis is to propose a family of optimizatadgorithms which are
simple and efficient for both model space and feature spaceidinative training. When
tuning and using some heuristics become necessary, theethdxehind the algorithms
should explain the meaning of the tuning parameters, areltg® users some basic ideas
about how to tune properly instead of trial and error.



1.1 Optimization for Discriminative Training

This section aims to provide a brief introduction about tpé&mization problem of dis-
criminative training for acoustic modeling, and explairtspyguch optimization is difficult.
A more detailed discussion will follow in chapter 2.

Discriminative training is often formulated as an optintiaa problem which targets
at minimizing the recognition error. Although word errote@WER) is the target function
to be minimized, the function is non-differentiable and simiooth which makes direct op-
timization difficult. Instead, discriminative training tqmizes a smoothed approximation
of WER. One possible choice is the maximum mutual informabtivi(). Consider

P(X|W;0)P(W)
% S P(XIW 6)P(W)

F(X,0) =1 (1.2)
where X = x1,x,,...,2z7 IS an observation sequence withframes;# represents the
set of model parameters to be optimizéd;is the reference word sequence for The
denominator represents all possible word sequences asitigeting hypotheses. Maxi-
mizing the functionf is the same as maximizing the empirical mutual informatietween
X andW. Intuitively speaking, this objective function aims to ke@e likelihood of the
reference intact and at the same time, reduces the likalibbthe competing hypotheses.
As a result, the optimized model will less likely be confusdth the wrong hypotheses
and has a better chance to perform recognition correctly.

Optimization of f is not trivial. Assuming) refers to the HMM parameters which
include the Gaussian means and covariances, the objeatieéidn is not concave with
respect tad. As a result, the solution from optimizing is not guaranteed to be global
optimal. Another difficulty of this optimization problemtise unbounded issue. Assuming
there is one Gaussian which only appears in the denominBiber.optimization problem
for this particular Gaussian would become a minimum liketiti problem. The solution
of the minimum likelihood problem is not bounded becausedepkthe likelihood zero,
either the mean of the Gaussian has to be infinitely far anay fthe input feature or
the covariance has to be zero; both cases are undesiraldenénal, if the denominator
count of a Gaussian is higher than its numerator count,ggéts the unbounded issue,
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and therefore, the optimization is difficult.

1.2 Proposed Research

For our research, we reformulate the optimization problémngliscriminative training,
and propose new optimization algorithms based on Lagrasiggation [Boyd and Van-
denberghe (2004)]. In which we relax the difficult optimirat problems into simpler
convex problems. We propose the generalized Baum-Welch (GBywjitam for model
space discriminative training, and the generalized disotive feature transformation
(GDFT) for feature space discriminative training. The GBWaaithm generalizes the
Baum-Welch (BW) and the extended Baum-Welch (EBW) algorithm folHNThe GBW
formulation shows that the heuristics and the smoothingrieies used by the EBW algo-
rithm can be expressed as some distance based regularietie optimization problem.
This formulation also reveals an interesting connectiamvben the EBW algorithm and
information theory, and inspires better EBW variants. Basethe GBW framework, the
GDFT algorithm transforms the constrained maximum likadith regression (CMLLR)
algorithm to perform feature space discriminative tragnilts formulation shows efficient
ways to combine model space and feature space discrimaragiming.

1.3 Thesis Organization

In chapter 2, we discuss the existing methods for discritivedraining which include
the objective functions and the optimization algorithmsHdIM. We also compare some
of the feature space discriminative training algorithmslate. We describe the baseline
ASR systems and used the data sets for experiments in cl@apberchapter 4, we pro-
pose the GBW algorithm for model space discriminative tragrand we show that both
Baum-Welch (BW) algorithm and the extended Baum-Welch (EBW) &lgyorare special
cases of GBW. In addition, we show how the GBW formulation ca l® better vari-
ants of the EBW algorithm. Chapter 5 is about our feature spesoeiminative training

4



algorithm, GDFT. We explore how GDFT can be efficiently ineggd with model space

discriminative training. We also compare GDFT with the estat the art feature space
discriminative training algorithms and study differerditing procedures. Based on the
proposed optimization algorithms, we discuss how to perfsingle pass discriminative

training in chapter 6, Chapter 7 is about the future work aedtinclusions.






Chapter 2

Background

2.1 Discriminative Objective Functions for Speech Recog-
nition

The acoustic model, HMM, is always optimized for some oliyediunctions during train-
ing. As a generative model, maximizing the likelihood on tren set is the standard
approach and when a Gaussian distribution is used as stési@mprobability, the log
likelihood can be expressed as,

Fai(0) = > log P(XO|W;;6)
1 ) i - ‘
= 33N —Sul){Dlog(2m) + log S| + (o - )5 @l — py))
it g

where IV, is the reference word sequence of thén utterance in the train set with
frames;0 represents the HMM parameters which includes the meanngetg and the
covariance matricesy;); X® = {2, ... z{"} is the observation of theth utterance
and each featuref@ is a D-dimensional feature vectot; () is the posterior probability
of choosing theg-th Gaussian distribution at tinte

Maximizing the likelihood functionf’,,, can be done by the Baum-Welch (BW) al-
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gorithm [Baum et al. (1970), Welch (2003)] which utilizes tepectation-Maximization
(EM) algorithm. More details will be given in section 2.2.8ince F;;, contains some
terms which are not related to the optimizatiodpén auxiliary functior() is used instead
to represent the likelihood during training,

Q) = Z () {log 2] + (2 — 5)' S5 (2 — )} - (2.1)

We removed the utterance indejust for simplicity. This auxiliary function can be con-
sidered as a negative log likelihood function. Thus, miging ¢ on @ is equivalent to
maximizing Fr..

2.1.1 Maximum Mutual Information (MMI)

As mentioned, HMM is not a correct model for the human speeth,so ML estima-
tion is not optimal in terms of classification or recognitiaccuracy. To optimize for the
recognition performance, one can optimize the posteriobaility, P(1W|X;0), since
the Bayes decision rule states that the classifier would aehiee minimum error if it
makes decision based on the posterior probability. By the 8ayle, the posterior can be
decomposed into:

P(X|W)P(W)
P(X)
PX[W)P(W)

= S, P WPV (2:2)

PW]X)

whereP(X|W) is the likelihood given by the HMM for speech recognitid?;IV') is the
prior and it is the language model (LM) for speech recognitio

During recognitiong is fixed so that”(.X ) is a constant. Hence, it can be ignored and
the recognizer would search for a hypothddissuch thatP(W|X) « P(X|W)P(WW)
is maximized. However, in training) is not fixed, soP(X) should also be considered
during optimization.

Optimizing# for the posterior probability is also known as maximum muicirma-

8



tion estimation because the empirical mutual informatgexpressed as,

PXW)P(W)
(W, X
A 12D
1
= P(W|X) x Tk (2.3)
Given P(IW) is uniformly distributed, 575 is a constant, so maximizing the posterior

probability is equivalent to maximizing the mutual infortiaa.

Although the denominator of equation 2.2 considers all ipbssvord sequences, in
practice, it is approximated by an N-best list or a lattice.eWVhsing lattices to represent
competing hypotheses, a path which represents the retereadded to the lattice if this
path is missing from the lattice. One can consider the &t an HMM with a directed
acyclic topology. In such a case, the objective functionlmasimplified as

F]V[M[(e) = logPT(X,O)—logPC(X,H) (24)

whereP, is the likelihood of the referencé’. is the likelihood of the lattice with reference
path attached. The prior probabilities lik&1/) and P(1W’) are removed since we assume
they are uniformly distributed. However, discriminativaining in practice often uses
a unigram language model instead of a uniform one. Hencelikbiéhood should be
adjusted according to the priors and it should be taken daiwydhe forward algorithm
when computingog P, andlog P.. In sum, maximizing®,, s IS equivalent to maximizing
the posterior probability and the mutual information.

It is important to note that the first term &f,,,; is the same as);;, which is the like-
lihood of the reference. The second termFaf,,; represents the competing hypotheses.
As a result, MMI is computationally more expensive than the &pproach since it needs
to first generate a set of competing hypotheses, and sed¢@nobjective function involves
more terms compared to the ML objective function.

2.1.2  Minimum Phone Error (MPE)

As a discriminative objective function, MMI considers adimpeting hypotheséd”’ equal
and aims to improve the overall performance on the trainté@tvever, speech recognition

9



is often evaluated by word error rate (WER) or phone error rAER), which considers
every token in the hypotheses. As a result, one may arguectimpeting hypotheses
should not be considered equal, but one should look at tloe eate of each individual

competitor. This brings the interest to derive a discrimugaobjective function which

can evaluate the error at a finer degree. Minimum phone eBEE( [Povey (2003)] is

one of the most popular discriminative objective functiemslate, which optimizes the
phone error.

The objective function of MPE is defined as,
> wr P(X|W50) P(W]) AW/, Wi)
FMPE(H) = Z it . / ’
~ Yy PXW0)P(W))

i 7

(2.5)

where A(W/, W,;) computes a raw phone accuracy for the competing hypotfiESisn
the referencéV; which is thei-th utterance in the train set. Compared to MMI which
numerator is the reference, the numerator of MPE consist$ pbssible word sequences
weighed by their phone accuracy. The MPE objective funatemmbe further rewritten as,
Fupe(0) = ) > PW/|X;:0) AW/, W), (2.6)
whereP(W/|X; 6) is the model-based posterior probability of the word seqaé¥i.

The MPE objective function is very flexible in the sense thataan use word error
instead of phone error. This is known as minimum word erroW(i). However, previous
research found that MPE often outperforms MWE [Povey (2003)]

2.1.3 Minimum Classification Error (MCE)

MCE was originally proposed for multiple category classiiima problem where it opti-
mizes a smoothed error rate based on isolated tokens [Judngadagiri (1992)]. Later,
it was generalized to optimize the string level error foresgerecognition [Juang et al.
(1997)]. Similar to MMI, the MCE objective function is based the reference and the
competing hypotheses. However, MCE defines a distance negasur

P(X|W;0)
[% Zz’]\il,WﬁéW Pi(X|W;; 0)]

10

d(X,0) = log (2.7)
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where N is the number of competitors. To simulate the decision rulend decoding,
d(X,6) > 0 implies incorrect classification. Based on this distancesues the MCE
objective function is defined as,

1

Fuce(f) = 1 + exp—(ed(X,0)+b)

(2.8)

which uses a sigmoid function to simulate the zero-one ifleason count. The advantage
of using the sigmoid function is to filter the outliers. As tgeadient of the sigmoid
function approaches zero whdnh— —oc or d — oo, the sigmoid function allows the
optimization to focus on the instances that can be corraottdad of some very wrong
or problematic utterances. The parameteendb can be tuned to control the shape of
the sigmoid function. Hence, it can control the rate of thimojzation and region that the
optimization should focus on. Optimization of MCE is basedycadient descent, and it is
known as the generalized probabilistic descent. Howet#sr,dnd Deng (2008)] showed
that it is possible to restructure the MCE objective funcsach that it becomes a rational
function which can be optimized by the extended Baum-Wel@&Walgorithm.

2.1.4 Boosted Maximum Mutual Information (BMMI)

Proposed by [Povey et al. (2008)], BMMI is an extension to tHdIMbjective function.
The BMMI objective function is defined as,

P(X|W;0)P(W)
Yo P(X|W0)P(W) exp(—b x AW, W))

FB]V[M[(8> = lOg (29)

whereb is a tunable parameter called boosting factor [Povey e2@D)]. Similar to the
MPE objective function, BMMI uses an accuracy functidrto evaluate the competing
hypotheses. However, this scaling is only applied on then@mator statistics. According
to [Saon and Povey (2008), it can be shown that BMMI is conmetdelarge margin
training.

The implementation of BMMI is very simple: one may subtraa #toustic scores
(i.e. log likelihood) in the lattice by x A(W’, W) during the forward backward pass to
obtain the adjusted posterior probability, then the redtessame as the MMI training. As
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shown in [Povey et al. (2008)], BMMI outperforms MMI and is dfeetive as MPE for
both model space and feature space training. Both BMMI and MBE@nsidered to be
state-of-the-art in discriminative training.

2.2 Optimization Algorithms for Hidden Markov Model
(HMM)

This section focuses on optimization algorithms for HMM. Bégin with the BW algo-
rithm, which provides ML estimation, then the EBW algorithrhioh can optimize the
HMM for different discriminative objective functions.

2.2.1 Baum-Welch Algorithm (BW)

HMM contains hidden state sequences which are not direbdgwvable. Hence, it is not
trivial to optimize the likelihood of a HMM with observableth, X. Consider,

log P(X|0) = log()_ P(X,S;0))
S

= log()_ P(X|S;0)P(S)), (2.10)
S

whereS is an hidden state sequence of HMM. Since the complete letiikod P( X, S; 6)
is expressed as a summation within a log function, it is diffito decouple the likelihood
and the prior probabilities and this makes optimizatiofidit.

To handle this problem, the BW algorithm [Baum et al. (1970)]dv¢2003)], which
is based on the EM algorithm, does not optimize the log liledd,log P(X|0), directly.
Instead, it optimizes the complete log likelihodd(.X, S;#). By the rule of total proba-
bility,

log P(X,S;0) = logP(S|X;60)+log P(X;0)
= log P(X;0) = logP(X,S;0)—logP(S|X;0). (2.11)

12



Then, assuming we have a new set of HMM parameté@nd we take expectation with
respect toS, conditional on a giverX andé, we have

ES|X,9 [10g P(X, 6’)] ES\X,G[IOg P(X, S, Ql)l E5|X79 [log P(S|X, 6/>]
Q0,0 H(6,0")
with three componentd: (X, 0'), Q(0,0") andH (0, ¢').

(2.12)

L(X,0)

The expected log likelihood terni,( X, §'), can be easily simplified,
Esixollog P(X;0)] = ) log P(X;6)P(S|X,6)
S

= log P(X;0')>  P(S|X,0)
S
= log P(X;6') (2.13)
which is equivalent to the log likelihood of the observabdd¢ad

Consider thed function,
H(0,0") = EgxpllogP(S|X;0)]
= ) log P(S|X;0)P(S|X;0)
S
< > log P(S|X;0)P(S|X;0)
- ;(9,9). (2.14)

H(0,0") < H(#,0) is true due to the Jensen’s inequality and it plays a key rothke BW
and the EM algorithm.
The @ function is known as the auxiliary function. Given equat@®Ad3 and equa-
tion 2.14, consider,
L(Xa (9/) - L(X7 9) = Q(G, 6/> - Q(ea 6) - (H(Q, 6/) - H(ev 6))

This implies L(X,0") > L(X,0) if and only if Q(0,6') > Q(6,6). Hence, one can
optimize the auxiliary functiod) instead ofL.
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Optimizing the@ function is easier since it no longer has the variable cogpksue
as shown in equation 2.10. Consider,

m@z;x@(@,&’) = FEgxgllog P(X, S;0")]
= ) _P(S|X;0)log P(X, ;0
S

= ) P(S]X;0)(log P(X|S;0') +log P(S;6')) . (2.16)
S

Given an initial modeb, we can search fat' such that) is maximized. We can obtain
the BW update equations for continuous density HMM by takimgpartial derivative of
@ with respect to the means and covariances and set them to zero

) e
SEW 2@z, (2.18)

Sl
2.2.2 Extended Baum-Welch Algorithm (EBW)

The EBW algorithm aims to derive an HMM update equation sintitathe BW algo-
rithm, but optimizing for some discriminative objectivenfttion. In the work conducted
by [Gopalakrishnan et al. (1989, 1991)], an algorithm iseligped to optimize rational
objective functions for the discrete HMM. Since most disgnative objective functions
are rational functions, the algorithm can perform discniative training. The algorithm
is based on the Baum-Eagon inequality for polynomials. Tleerh states that given a
polynomial, f(x), with non-negative coefficients and real variablgssuch that;; > 0
andzj z;; = 1, the transformation,

(2.19)

T(xi) =

guaranteeg (7'(z)) > f(x).

This theory is useful for discrete HMM optimization sinceoperates on a domain
of discrete probability distributionszf; > 0 and_;z;; = 1) and the likelihood of
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discrete HMM can be easily expressed as such polynomial. edery discriminative
objective functions are rational functions which are na tigpe of functions that the
Baum-Eagon inequality is dealing with. To handle this probl¢Gopalakrishnan et al.
(1989)] suggested given a rational functidn) = % such that:(z) andd(z) are poly-
nomials fulfilling the constraints of Baum-Eagon inequalibye can optimizey(z) =
n(x) — r(zo)d(x) instead ofr(x) directly (wherez, represents some initial value oj.
The reason is firsg(zy) = 0, hence, if there exists such thatg(z) > g(xy) = 0, it
implies,

g(x) >0
= n(z) —r(zg)d(z) >0
= % —r(xo) >0
= r(x) —r(x) > 0. (2.20)

As a result, one can work on the polynomiglr) instead of the rational function(x).
However, the coefficients af(z) may no longer be non-negative which is required by the
Baum-Eagon inequality. Therefore, one can modify equati®@ B,

2ij( g (2) + D)
>, wii(gs () + D)

and it can be shown that as long Asis large enough, wher® is a finite positive real
number, the transformatiofi, still guaranteeg(7p(z)) > g(x) [Gopalakrishnan et al.
(1989)]. Finally, the update equations for discrete HMM e¥hoptimizes for any rational
objective functionR, are,

Tp(wj) (2.21)

[
|
=
=
Q
o
ol

(2.22)

-
' Zk bz‘k(g)i

wherea;; is the transition probability from stateo statej; b;;, is the emission probability
of output labelt while being at state; R is any rational objective function which can be
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any discriminative objective function in section 20lrepresents the current parameters of
the discrete HMM.

Based on the work by [Gopalakrishnan et al. (1989, 1991)]atherithm is extended
for continuous density HMM with Gaussian mixtures [Normianand Morgera (1991)].
The idea is to use infinitely many discrete distributionsppraximate a Gaussian distri-
bution. Figure 2.1 is an illustration to explain the approation [Normandin and Morgera
(2991)].

Figure 2.1: A figure showing the use of discrete distribugitbm approximate a Gaussian
distribution.

Given the interval widthA, is small and restricting the discrete distributions to be
consistent to the Gaussian distribution they are appraxigathe work in [Normandin
and Morgera (1991)] derives an update equation for contisutensity HMM and these
equations are later known as the EBW update equations:

EBW _ Zt ’YI(])xt - Zt 71?(])%5 + DJ'M?

[ = - o , (2.23)
! 2o (G) =2 ) + Dy

seow _ 2 )T = L G)n + DG GG emw pewiy g
’ Yo (d) = 22 () + D; 7o

wherey” andx’ are the mean and covariance of the previous iteration arsliherscript:
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andc denotes whether the posterior probability or the obseymdielongs to the numerator
(reference) or the denominator (competitor) respectively

Unlike the update equations of discrete HMM which the camsfa is some finite
number, in the formulation of [Normandin and Morgera (199the value ofD is related
to the interval widthA. WhenA tends to zeroD goes to infinity. Hence, the work in
[Normandin and Morgera (1991)] concludes that these uptatations are not guaranteed
to converge. However, recent studies [He and Deng (2008)jddhat it is possible to
prove EBW'’s convergence given a finite

Since then, the EBW algorithm has shown to be effective in avipig large scale
speech recognition systems [Valtchev et al. (1997); Wowtiznd Povey (2000); Povey
and Woodland (2001); Povey (2003)]. However, one remaipiodplem is how to set the
D-term in the EBW update equations. While the convergence privom [Normandin
and Morgera (1991)] and [He and Deng (2008)] do not give angledime about tuning,
this D value is often tuned empirically. One common heuristic psgal by [Povey and
Woodland (2001)], is setting), to be the maximum of i) twice the value necessary to keep
the covariance of thg¢-th Gaussian to be positive definite, or, #)times the denominator
occupancy, wher&' is tuned empirically and its value is often between one arad tw

Another technique which is also often applied to EBW is thenbething [Povey and
Woodland (2002); Povey (2003)]. I-smoothing can be comsidl@s using a prior over the
parameters of each Gaussian distribution. For the origisaloothing, the prior is based
on ML statistics and the EBW update equations are extended as,

i Gme = () 4+ Dyt + Tt

S Do) =X )+ D+ ’ (229
5, = Ll - ¥ VEli)ae, + Dy(25 + i) + (S} + ™)
2 ) =2k + D+
oy (2.26)

wherey" andx}'* are ML estimates of the mean and covariancg-tif Gaussian using

the statistics collected in the current iteratianjs a tuning parameter for I-smoothing
which needs to be tuned empirically. In most cases set to 100 for MMI-based objective
functions orr is set to 50 for MPE objective function. I-smoothing is natilied to using
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ML statistics. As shown in [Povey et al. (2008)], when MPE or BMs used, one can
also use MMl statistics, or the statistics from the previterstion to perform I-smoothing.
It can further improve the performance of discriminativarimg.

2.2.3 Gradient Ascent and Its Relation to the EBW Algorithm

Before EBW was proposed, discriminative training was peréatmsing gradient descent.
Gradient ascent can be performed by computing the gradi¢im @bjective function with
respect to the model parameters to be optimized. For exangpbgtimize the acoustic
model for the MMI objective function, one can compute thedggat for mean,

OF vt 0
= Z% — 1) = Y I e — ) (2.27)
t
and the gradient for covariance,
OFn 0
= log P.(X;%;) — log P.(X;3;
82] az]( Og 7'( ) J) Og C( ) J))

= O 5 ) )5
RO - e ) ) (228)

Then, we obtain the update equations for gradient ascehti&c et al. (1997)],

N A
Fia = gt 31y ) Z% xt+z W (J 9))jal (2.29)
Jjd ¢
~ >\0'
0iq = Ujd“LFZ% Z%
jd ¢
- 200 %) Z% Tt) i
t
+ Y (0 G) =) — o) - (2.30)
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wheregi;q andc}]?d are thed-th dimension of the updatedth Gaussian distribution respec-
tively.

In [Schiiter et al. (1997)], it was discovered that by choosing appate learning
rates,\, and),,

2

o*
N _ Tia (2.31)
g S (G) = 2o ) + Dy
204(1
A, = J (2.32)

2 G) = v G) + Dy
whereD; is the Gaussian specific constant used in the EBW algorithranTihe update
equations for gradient ascent are very close to the EBW upgdpatations,

i@ we = 5 () + Dy

. , : 2.33
i > () — 206 ) + Dy (2:59)
52— > )wd = 32 v ()ai + Di(ofa + e) B o ) (2.34)
! 27 0) =26 + D S
t It t It J

where the mean update equation is the same as the EBW updateoacand the covari-
ance update equation has an extra teim — /i;q)°.

2.3 From Model Space to Feature Space Discriminative
Training

Discriminative training is not only applicable to HMM optination. Previous studies

have shown that discriminative training can also optimiee features to improve recog-
nition performance. Feature space discriminative trgiigin be roughly divided into two

types: one type focuses on the feature extraction procekarasther type is about feature
transformation.

Discriminative feature extraction (DFE) optimizes comeots in the feature extrac-
tion process for some discriminative objective functidkkeIMCE. In [Biem and Katagiri
(1993, 1994); Mak et al. (2002, 2003)], the filter-bank isimied for MCE using gradi-
ent descent, and the optimized features was found to bdieé&c improving recognition
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performance of smaller tasks like TIDIGITS [Leonard (1984nd Aurora [Pearce and
Hirsch (2000)] corpora.

Another type of feature space discriminative training teonfknown as the discrimina-
tive feature transformation (DFT) methods. DFT leaves #a&ture extraction process the
same but applies some discriminatively optimized tramsé&dion on the features. Popu-
lar DFT techniques include feature space MPE/MMI (fMPE/NJ§Rovey et al. (2005);
Povey (2005); Povey et al. (2008)], and region dependetnife@ransformation (RDFT)
[Zhang et al. (2006a,b)]. These techniques have proven éffbetive on improving large
scale speech recognition tasks.

2.3.1 Feature Space MPE/MMI (fMPE/MMI)

fMPE/MMI ! discriminative training algorithm performs linear tramshation on the fea-
ture vectors, and the transformation is optimized for theBEX\NEMI objective function.
The basic form of fMPE/MMI [Povey et al. (2005)] is formuldtas

Zt = Tt + Mlht s (235)

wherez, is the original feature at time and we assume the feature space dimension is
D; h; is the Gaussian posterior vector computed by a Gaussiamumirtodel (GMM)

on featurer,; M, is a linear transform which is optimized for MMI/MPE usingaglient
ascent and, is the transformed feature vector. The GMM, either traimedifthe data or
induced from the acoustic model, determines which transfashould be applied to the
feature vectors.

The paper by [Zhang et al. (2006a)] shows that equation 28%e rewritten as,
Z% (i + by) _mZ% (2.36)

whereb; is a D-dimensional bias corresponding to th#h row of M;; (i) is the pos-
terior probability of Gaussian at timet. From this point of view, we can consider the

11 would like to thank George Saon who spent a great deal of teaehing me the theoretical and
practical details of fMPE/MMI.
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transformation of fMMI/MPE consists of a set of biases to Hdet to the features, and
the weights;y, (i), is determined by the GMM during recognition.

While this basic form of fMPE/MMI can improve the recognitiperformance, the
feature transform in fMPE/MMI is extended to incorporatereteatures. One proposed
extension is mean offset features [Povey (2005)]. It is donexpanding the vectadr; so
that it does not only contain the posterior probabilities ddgo the mean-offset features,
i.e. h, is now redefined as:

he = By (1) — (1) /o1 (1), 1(2:(2) — p(2)) /01(2), -
572, 72(2e(1) = p2(1))/02(1), 72 (24(2) — p2(2))/02(2), .
5y, v (@ (1) — v (1)) /on (1), v (24(2) — p (2 ))/O'N( ),---}’-

Although the number of parameters increases as the dinreasiq increases/; is now
N(D + 1)-dimension whereV is the number of mixtures in the GMM), it was found
fMPE/MMI with this extension requires fewer mixtures in &M (which leads to fewer
biases). While the original fMPE/MMI needs hundreds of tlemds mixtures, the new
fMPE/MMI only needs a few thousands mixtures [Povey (200%}jerefore, the number
of parameters remains tractable for training.

Another extension to fMMI/MPE is context training. In addit to the main transform,
M, there is another layer of transformation for the featurAfter applying the main
transform,M;, to the mean offset feature's, we obtain the offset vectors,

Y = Mlht. (237)

Then, we apply the context transforiy,

F

2 = Tt Y Morayesa (2.38)
f=—F

wherez, is thed-th dimension of the final feature vecter, M, ;4 represents thg-th
row andd column of M.

The context transform)/; is optimized for the MMI/MPE objective function like the
main transform. It is important to note that since bath and M, are optimized using
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gradient ascent. They cannot be both zero matrices igisatice otherwise, the gradients
of M, and M, are always zero. To handle this situatidd, is initialized as a zero matrix,
while M is initialized in a way that the frames closer to the centamie get more weights
compared to the frames further away. For example, consiglexrisimple case that the
context window has a size df1 frame, M, can be initialized as

1 1
2 2
1,...,1
My, = 1 1 (2.39)
2 2

size of D

which consists 08 rows andD columns. This transform performs context expansion and
produces the final feature vectass In general, the context matriX/, should have F +1
rows andD columns.

The last extension to fMMI/MPE described in [Povey (2008)biock transformation.
Effectively, it is having multiple context and main transfes. Suppose we have blocks
of transforms, it means,

y o= Mh, (2.40)

K F
1
Ztd = g+ Z Z ?Mi(f,d)yf—‘rf,d . (241)
k=1 f=—F
In addition, the factor- can be merged intd/} and optimized together, Hence, we have
the final fIMMI/MPE equation for computing the features,

K F
G = Tt Y Y MU (2.42)

k=1 f=—F
Although the sum of linear transforms is equivalent to using single linear transform,
in practice, using multiple transforms improves the perfance of fMPE/MMI. The ini-
tialization remains the same far* and A/% except all entries id/} needs to add a small
random numbers to make sure that the transforms will not gost@ame direction during
the gradient ascent.
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The training procedure of fMPE/MMI is iterative and eachratéon involves three
passes on the data [Povey (2005)]. The first pass collectdiBE&MMI statistics. This
statistics are called indirect statistics which are regpliio augment the gradients. More
details on this subject will be discussed in section 2.3.8e $econd pass collects the
fMPE/MMI statistics for the purpose of performing gradiesicent on the main and the
context transforms. The final pass is performing ML updatdhHe HMM using the new
features from the second pass. The whole process is repeatetimes. After the fea-
tures are optimized for MPE/MMI objective function, one ¢arther improve recognition
performance by using the model space MPE/MMI.

2.3.2 Region Dependent Feature Transformation (RDFT)

Region dependent feature transformation (RDFT) [Zhang €R806a,b)] is similar to
fMPE/MMI in the sense that it uses a GMM to divide the featupace into different
regions, and each region has its own specific transform. Tia feature of RDFT is
defined as a weighted average of all region specific features,

2t = Z’Yt(l)fz(xﬂ - (2.43)

When the transformation is linear, this form of RDFT is callegion dependent linear
transformation (RDLT). The final features are computed by,

2 = Z Yo (i) (Aszy + b;) (2.44)

where A; is the transformation matrix optimized for MPE/MMI objeai Compared to
equation 2.36 of fMPE/MMI, RDLT is a more general form of fMREYII, since it con-
sists of the transformation matrices;, in addition to the biases. Similar to fMPE/MMI,
RDLT can also perform context training. In such a casebecomes a projection matrix
to project the concatenated feature supervectors bacletie#ture space. The supervec-
tors may also contain the posterior features like fMPE/MMigeded. For optimization,
RDLT uses a quasi-Newton algorithm which uses gradientim&dion to approximate the
Hessian matrix for performing update like Newton method.
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The work in [Zhang et al. (2006b)] shows fMPE/MMI with meariset features can
be rewritten as a form of RDLT. To simplify the discussion, #ughors assume no context
training. Then, by defining,

Y = [n@),. @) (2.45)
0 = [ —m)STY, (N (e — ) S5 (2.46)

one can reorganize the equation 2.35 into,
2y = 1y + Moy + Myy, | (2.47)

which breaks the transformy/ into two parts: M, and M,. M, is a transform applied
to the mean-offset features and its dimensioa ¥s Nd; M, is a transform applied to the
posterior features and its dimensionlis N. Since> " | v,(i) = 1, we can further rewrite

equation 2.47 as,
N

a o=zt Y (WOMPOST (e — ) + 1) M)

=1

N
Z (I + MOS Yz, + (MY — MOS ,)] (2.48)

whereM."” is thei-th d x d block of M, and " is thei — th column of M,

[Zhang et al. (2006b)] concludes that this can be considasesl constrained version
of RDLT which restricts the transform in equation 2.44 to be,

A = T+MOY%! (2.49)
by = M — MOS "y, (2.50)

In sum, RDLT can be considered as a more general form of fMPE/MM

2.3.3 Optimization and Indirect Statistics for IMPE/MMI and RDLT

Optimization for fIMPE/MMI and RDLT is performed by gradiergaent or quasi-Newton
method. However, instead of using the gradient to updatéettare transforms, all gradi-
ents are augmented by a term called indirect statisticsgyPetwal. (2005)]. In this section,
we describe what this means from the optimization perspecti

24



To simplify the discussion, we assume that we use the gradestent for optimiza-
tion, and MM for the discriminative objective function. L@yw be the auxiliary function
which represents the negative MMI objective function, i.e.

Qnmmi Z Z Y (m)[log [Sm| 4 (2t — pm) S0, (26 — pim)]
Z Z Ve (m)og |Sm| + (2 — ) St (2 = )] - (2.51)

Minimizing Quwm is equivalent to maximizing the mutual information, ands the final
feature vector which is also a function of the feature tramst that we are optimizing.
Also, we assume that we use a context window of sizéframes andx blocks of trans-
forms. To perform gradient descent, we need to compute gt with respect to the
main transform)/{ and the context transform/y,

(8 > Z(a ) Z ‘
= ME B (2.52)
k 2,(f+Fi) t+f,j
OMT /i) : Oz )y /=
(2 > (7 ) k
_ uE (2.53)
OM; (f+Fyi) ¢ 0z i a

o direct
%“2“ = ST S e ) — Y () (2 ) (2.54)

m

direct
QMMI

where (—™.); represents the-th element of in the vector- QMM' and the index(, j)
represents the row and the column of the correspondlngtmatrl

The gradients in equation 2.52 and 2.53 are called diretstita. However, instead
of using these gradients to update the feature transfohmgradients are augmented by,

OQuw _ OQur | OFaa™ (2.55)
OMF ort T ToME '
OQuw _ OQuwi  OF ™ (2.56)
OME oME T OME '
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where

0 i’\r)lﬁ/ilrlect o i’\r/ll('e/ilrlect F .
( OMY ) N Z <T) Z My (y+ may Pt 1.4 (2.57)
1 (7".7) t t if:—F
(5’ :\?I(l]\l/ilﬁem> Z <8 m/ilrlect> . o58)
MMl _ S |
OM; (f+Fy) ; 0z ; t+
an’l'r'eCt Vi (m)  0Qum OQmmi
0z S ) O 2, ) (@59)

Equation 2.57 and 2.58 are derived by assuming the meanshancbvariances in the
acoustic model are functions of the feature transforms,th@dunctions are the BW up-
date equations, i.e.

= M (2.60)
> i (m)
Zt 7T (m)ztzé /
Y = S — Mkl - (2.61)
> (m)
To compute the indirect statistics in equation 2.57 and,2v&8need to compute
aQ — r r
S = nznﬂz i m)z = 3ot m)z = (3 2k (m) = 3 (m) (2.62)
m t
aQMMI 1 1 -1
- Z% ST =) (2.63)

whererx is the acoustic model scale which is often the inverse of tamgar factor [Povey
(2003)], and,

Sy, = 27 Z% Jazy =2 7 (m ztum+2% m) i) (2.64)
7Vt 7

Se = Zv Z% )z —2 ) yf(m Ztum+2% m) fimfth,) (2.65)
t t

Note that some entries in equation 2.57 and 2.58, inclufing, >, 7/ (m), require the
statistics of the whole train set. As a result, one has toopert standard EBW pass to col-
lect such statistics before computing the gradients forEXMAMI. A standard EBW pass
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is sufficient since it collects statistics IKE, v;/“(m), 32,7/ (m)z, 32,71/ (m)z2),
which are sufficient to reconstruct the indirect statistinang the gradient computation.

It is important to note that the gradient used in fMPE/MMI swmts of two compo-
nents: direct statistics and indirect statistics. In whtble indirect statistics consists of the
indirect gradient for meané’%), and the indirect gradient for covariancé%%). Since
the gradients are summed together, it implies that the tbgeftinction of IMPE/MMI is
a multi-objective function. Hence, when one claims fMMI gng MMI as the objective
function, in fact, there are three MMI objective functiomsthe optimization problem:
the standard MMI objective function, the MMI objective fuiom which treats means as
functions of the feature transforms, and another MMI olyeciunction which treats co-
variances as functions of the feature transforms. Withangesargument, since RDLT also
uses indirect statistics when it computes the gradientscan argue RDLT also optimizes
a multi-objective function.

Once the gradient is computed, we can perform gradient dessing these update
equations,

aF‘MMI

k o k k
ML(z‘,j) = Ml,(i,j) + Vl,(i,j)W (2.66)
9 Z?]
0F
k . k k MMI
My = My + Vz,(i,j)W (2.67)
(8,0
where
1 o)
Vg = (2.68)
7 £y (plf,ij + nlfzg)
1
2
ij) T . 2.69
Vi E2(p§,ij + nl2f7ij) ( )

o, is the average standard deviation of the Gaussians in thentwcoustic model in the
i-th dimensiony, andv, are the learning rates fdd; and M, respectivelyp,; andn,; are
computed by accumulating the positive parts and the negp#vts ofg—ﬁ respectively.

The learning rates are controlled by the parameftgrand > which need to be tuned.
According to [Povey (2005)]F; and E, are adjusted so that no more than 10% of the
paramters on the-th iteration are on the opposite side of the value omthe-th iteration
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from the value on the — 1-th iteration. This heuristic is to prevent possible diarge
during optimization. This is also known as the smooth updatkit can only be applied
starting from the second EM iteration.
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Chapter 3

Baseline Automatic Speech Recognition
Systems

We describe the baseline transcription systems used faradireg different discriminative
training algorithms in this chapter. These systems are fawilarge scale DARPA evalua-
tions. The systems include an Iraqi Arabic ASR system, a F&R system and a Modern
Standard Arabic (MSA) ASR system. The Iragi and the Fardiesys are developed for
the DARPA Spoken Language Communication and TranslatioreBy&br Tactical Use
program (TransTac) while the MSA ASR system is developethe DARPA Global Au-
tonomous Language Exploitation program (GALE).

The goal of the DARPA TransTac program is to develop effectreal-time, field
portable, two-way speech-to-speech translation systemarfglish and some low resource
languages like Iragi Arabic and Farsi. The program aims t@ld@ a system which can
facilitate communication between US military personnal arforeign language speaker.
Hence, the system is mainly designed for domains like forogeption, medical screening
and civil affairs. Due to the limited domain and low resouyrte vocabulary size for this
system is around 6k0 which is relatively small. The tramstasystem consists of three
components: a speech recognition module, a machine ttemstaodule and a speech
synthesis module. The CMU team built systems for both the PR&gym and laptop
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platform. In this program, the CMU team competed with RaythB&MN Technologies
[Choi et al. (2008)], SRI International [Riesa et al. (2006)§idBM [Cui et al. (2008)].
For the experiments described in this thesis, we focus opdini®rmance of the speech
recognition module for the laptop system.

The goal of the DARPA GALE program is to develop and deploy thpability to
automatically absorb, analyze and interpret huge volumep@ech and text in modern
standard Arabic and Mandarin Chinese, and make them awaiialal monolingual native
speaker of English. The domain includes broadcast news avatitast conversations
from various radio and TV channels. Compared to the Transysiems, the domain
of this task is broader and we have larger amount of data,ehe¢he vocabulary size is
over 700k. Also, while the TransTac system is designed fal-timme communication,
the GALE system is an offline system aiming for high recognitaccuracy. As a result,
it allows a higher real-time factor and adopting a multigpdecoding strategy. In this
program, the CMU team is part of the Rosetta team led by IBM [Kaigg et al. (2011)].
In this thesis, we focus on the performance of the MSA ASResydor the CMU GALE
system.

3.1 Iragi ASR System

Iragi Arabic is the spoken form of Arabic used by the peoplérad in everyday conver-
sations. It is different from the MSA used in written commation. Since Iraqi Arabic is
normally not written, a transcription convention is defingdier the TransTac program for
the purpose of data collection. Throughout the programt 6@ hours of Iragi speech
data are collected and transcribed which consists of overrfollion words in the tran-
scription.

Our Iragi ASR system is a single pass, speaker adaptiversystech runs at real-
time [Bach et al. (2007)]. Since itis a single pass decodinggss, speaker adaptation is
performed incrementally, which uses the previous hypabés unsupervised adaptation.
Speaker statistics can be reset if the user changes. Sysetdgation is performed using
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constrained maximum likelihood linear regression (CMLLR)J&lakis et al. (1995)] and
maximum likelihood linear regression (MLLR) [Leggetter aMdodland (1995)] to adapt
the acoustic model. Gaussian selection is used to speect etdoding process to make
sure the ASR system runs at real-time.

The acoustic model of the Iragi ASR system is a 3-state teftght sub-phonetically
tied semi-continuous HMM-based recognizer composed oD thtext dependent tri-
phone models. Each model consists of a mixture of 64 Gaussaiatie most, where the
exact number of mixtures is determined by a merge-andisailiting algorithm. Semi-tied
covariance [Gales (1999)] and speaker adaptive trainia@lao performed. This acoustic
model is trained with 450 hours of Iragi Arabic 16kHz speeeatadncluding data sets
from Appen/BBN, Cepstral, IBM/DLI Pendleton, and Marine Acacstinc. The speech
data is represented by the first 13 Mel Frequency Cepstral Cieeffs (MFCC) and power
with a 10ms frame-shift and a 20ms Hamming window, togeth#r approximations of
the first and second derivatives. Frames with a context winoliosize +7 are concate-
nated to form supervectors and linear discriminant analfidDA) is applied to project
the supervectors back to the dimensionality of 42 coefftsielm sum, this is the acoustic
model for the ML system used in all the experiments.

Under the TransTac program, a pronunciation dictionaryrasviged by LDC. How-
ever, the dictionary only cover roughly half of the words eppng in the train set. A
standard CART-based technique is applied [Black et al. (1998)ich is an automatic
grapheme/phoneme alignment technique, to find initialnatignt. Hence, the letter-to-
sound rules could be built without any knowledge of the tel@@guage, and construct the
pronunciation dictionary used for building the ASR system.

The language model (LM) for Iragi ASR is a trigram model usmgdified Kneser-
Ney smoothing. The training set consists of 4.5M words iditig data from the transcrip-
tion of the audio training data. The system selects 62k wdeaypas its search vocabulary
and it is based on frequency counts. The OOV rate is arour?d @rDthe official test sets
under the TransTac program. While increasing the vocabusias/can reduce the OOV
rate, it also increases run-time which is very importanttfos system. As a result, we
keep this 62k vocabulary size to balance the run-time and G/
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To evaluate the performance of this Iragi ASR system, wehes@itansTac Iragi Jun08
offline open set as the development set and the TransTacN@8 offline open set as
the unseen test set. Each of these test set consists of onefioagi audio data in total.
The test sets include in domain conversations betweendingfieakers and Iragi Arabic
speakers. We only evaluate the performance on the Iragoport

3.2 Farsi ASR System

The Farsi acoustic model has the same topology as the IraRi gyStem [Hsiao et al.

(2006)]. It is trained with about 110 hours of Farsi 16kHzexgedata collected by Ap-

pen, DLI, and University of Southern California. The acoustiodel consists of 3000

context dependent models, each has at most 64 Gaussiartsis/d&termined by merge-
and-split training. The acoustic model is bootstrappethftbe Iraqgi acoustic model. The
two phones of Farsi not covered by the Iraqgi phone set aralimgd by phones of the

same phone category. After this phone mapping a first Fandegbindependent acoustic
model is bootstrapped from the Iraqgi acoustic model. Thet Farsi context independent
system is used to force-align all the data. Based on theseareed alignments, we ini-

tialize a second context independent system. Then, we @ddoeconstruct the polyphone
decision tree and the context dependent acoustic mode¢spfbmunciation dictionary is

constructed in the same way as the Iragi ASR system and th&deaxtraction process
remains the same as the Iraqi ASR system as well.

The language model is a trigram model using modified Knessr-#inoothing, and
is trained with 900K words. The vocabulary size is around 38Kds, which consists
of all available words in the provided training transcigois under the DARPA TransTac
program. The OOV rate is around 2.8% on the official Trans@atdet.

To evaluate the performance of this Farsi ASR system, wehgséransTac Farsi Jul07
offline open set as the test set. This test set consists ofamehFarsi audio data in total.
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3.3 Modern Standard Arabic ASR System

The Modern Standard Arabic (MSA) ASR system is developedHerDARPA GALE
Speech-to-Text evaluation [Noamany et al. (2007), Nattgsat al., Metze et al. (2010)].
Unlike the Iragi ASR system, this system is optimized fologaation performance without
the real-time constraint.

This Arabic system is trained on approximately 1150 hoursrahing data, taken
from the GALE P2 and P3 sets using both a vowelized, and anwalized dictionary.
The training data provides manual segmentation and spehisters, while for the testing
data, clusters have been generated automatically.

For feature extraction, we compute power spectral featusegy an FFT with a 10ms
frame-shift and a 16ms Hamming window from the 16kHz audional. We use 13 MFCC
per frame and perform cepstral mean and variance normalizah a cluster basis, fol-
lowed by vocal tract length normalization (VTLN) [Lee and R@$996)]. To incorporate
dynamic features, we concatenate 15 adjacent MFCC fratni@sand project 195 dimen-
sional features into a 42 dimensional space using LDA tansf After LDA, we apply
semi-tied covariance and speaker adaptive training.

For the development of our GMM based context dependent dconsdels, we apply
an entropy-based polyphone decision tree to cluster thgppohes with context width
+2. The system uses 6000 phonetically tied quinphones withogst 150 Gaussians per
state, assigned using merge and split training, with diaboovariance matrices.

During decoding, automatic speaker clustering of manusdlymented audio is per-
formed. Segments are clustered into speaker-specifiectugsing Bayesian Information
Criterion (BIC) to enable cluster-specific adaptation and radization [Jin and Schultz
(2004)].

The language model is trained from a variety of sources. Triabi& Gigaword corpus
distributed by LDC is the major text resource for languagedeting. In addition, we
harvested transcripts from Al-Jazeera, Al-Akhbar, and #&thElyom, as described in
[Noamany et al. (2007)]. Acoustic transcripts from FBIS, TBTGALE broadcast news
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(BN) and broadcast conversations (BC) are also used. The tataber of words in the
corpus amounted to 1.1 billion. The final LM is a 4-gram LM w@&B82M n-grams and
737K words in the vocabulary.

Arabic is a phonetic language with close correspondenceedest its letters and sounds.
However, vowels are generally missing from the written MS8wels are added when the
native speaker reads the text and as a result, one would agwddict the vowels if he
wants to model the vowels in the pronunciation. In our systembuilt both unvowlized
and vowelized systems. The pronunciation dictionary isegaied using grapheme-to-
phoneme rules. The unvowelized system contains 37 phortes3vapecial phones for
silence, non-speech events and non-verbal effects suobs#ations. We preprocess the
text by mapping the 3 shapes of the grapheme for glottal stbpee shape at the begin-
ning of the word since these are frequently miss-transdriblis approach gives improve-
ments in perplexity and final WER in our previous experimeRts.the vowelized system,
we use the Buckwalter morphological analyzer and LDC Aratse bank to predict the
vowels and construct the vowelized pronunciation dictigna

The decoding process has three passes: 1) unvowelizedespedkpendent (Un-
vowSl) decoding, 2) unvowelized speaker adaptive (Unvoyuxoding using the Unvow
S| hypotheses for adaptation, and 3) vowelized speaketiad{powSA) decoding using
the Unvow SA hypotheses for adaptation. In addition, a soralbwelized speaker adap-
tive system using only 50 hours of training data is built (0Ww®A 50-hr). The purpose of
building this system is to quickly test the performance dfiedent configurations of some
discriminative training algorithms. This system uses tiput from the UnvowSI system
to perform speaker adaptation. Figure 3.1 illustrates thki4pass ASR system for MSA.

The MSA ASR system is evaluated using the GALE developmethiezaluation test
sets. In this thesis, dev07, dev08 and dev09 are used asvbepiment sets and eval09
and a subset of dev10 are used as the unseen test sets. Alldbesets consist of mixtures
of BN and BC data collected from various sources as shown ie @il The development
sets including dev07, dev08, and dev09 contain roughly twihitee hours of audio data
while eval09 has around five to six hours of data. The testest|0, has over five hours
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Figure 3.1: The overview of the MSA ASR system.

of data but a three hours subset is selected for evaluation.

Table 3.2 summarizes the ASR systems described in thisehajé evaluate the per-
formance of different discriminative training algorithimis these systems in later chapters.
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Test sets Sources

dev07 ABUDHABI ALAM ALJZ ARABIYA DUBAISCO
IRAQIYAH KUWAITTV LBC SCOLA SYRIANTV
dev08 ALAM ALHIWAR ALHURRA ALJZ ALMANAR

ALURDUNYA ARABIYA DUBAISCO IRAQIYAH KUWAITTV
LBC OMANTYV SAUDITV SCOLA SYRIANTV

dev09 ABUDHABI ALAM ALBAGHDADIA ALFAYHA ALHIWAR
ALHURRA ALJZ ALURDUNYA ARABIYA DUBAI IRAQIYAH
LBC OMANTV SAUDITV SCOLA YEMENTV

eval09 ABUDHABI ALAM ALBAGHDADYA ALFAYHA ALHIWAR
ALHURRA ALJZ ALSHARQIYA ALURDUNYA ARABIYA
DUBAI IRAQIYAH LBC SAUDITV SAWA
SCOLA SYRIANTV YEMENTV

dev10 ABUDHABI ALAM ALBAGHDADYA ALHIWAR ALHURRA
ALJZ ARABIYA IRAQIYAH LBC SCOLA
SYRIANTV SAWA YEMENTV

Table 3.1: Sources of the GALE development and evaluatistrsts.

Iragi ASR | Farsi ASR | Vow MSA ASR | Unvow MSA ASR
Train data 450 hr 110 hr 1100 hr 50 hr
System type SA, 1-pass| Sl, 1-pass SA, 3-pass SA, 2-pass
Vocab size 62k 33k 737k 737k
Adaptation | Incremental None Batch Batch
# Gaussiang 308k 112k 867k 52k
LM 3-gram 3-gram 4-gram 4-gram
oov ~2.0% ~2.8% ~0.7% ~0.7%

Table 3.2: Description of the Iraqgi, Farsi and MSA ASR sysiem
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Chapter 4

Generalized Baum-Welch Algorithm
(GBW)

4.1 Introduction

We describe the Generalized Baum Welch (GBW) algorithm in thapter which was

first introduced in [Hsiao et al. (2009)]. In chapter 1 and 2, discussed the optimiza-
tion problem of discriminative training. The difficulty cas from the complicated non-
convex objective function and the unbounded issue. In tpter, we propose the GBW
algorithm and show that by transforming the optimizatioaljpem, we can handle both
problems. The formulation of GBW shows that both BW and EBW aigors are special

cases of GBW, and it also reveals an interesting connectitwele® information theory

and the EBW algorithm. The GBW algorithm helps us to understhadeuristics used
in the EBW algorithm, and based on these insights, we canaeWstter variants of the
EBW algorithm.
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4.2 Bounding the Solution by Limiting Likelihood Changes

As discussed in section 1.1, optimizing the log likelihoaifliedence functionF’ in equa-
tion 1.1 can be unbounded to some parameters. However, wadckess this unbounded
issue easily by transforming the objective function in dgguml.1 into,

G(X7 9) = |QT‘(X7 0) - Crl + ‘QC(X7 0) - Cc| (41)

where(, and(. are the negative log likelihood of the reference and the aimg hy-
pothesis respectively (see equation 2(I);andC. are the chosen target values that we
want@, and(. to achieve respectively. The competing hypothesis is oiipresented by

a lattice. and the lattice is often complemented with a pladi tepresents the reference.
This is a practice that is known to improve the performancdisériminative training as
shown in [Valtchev et al. (1997)]. However, for simplicityg just call@).. the competitor.

For this particular example, we choose the target valuds that(),. (X, 0) > C, and
Q.(X,0) < C.. As a result, by minimizing the functio&, we are maximizing the log
likelihood difference between the reference and the comgpebut we only want it to
achieve the target values that we have chosen. In generdlaveemultiple files and each
file has possibly multiple competitors. Hence, the formalatan be generalized as,

G(X,0) = Z |Qi(X,0) — Cif . (4.2)

Note that this formulation is very flexible. We can represeférences and competi-
tors at different granularity levels, sin¢g can be a likelihood function at utterance or
lattice level, or it can be a likelihood function for a worccar a phone arc in the lat-
tice. Generally speaking, we can have multiple terms fagrexice and competitors and
each term has its own target valug, It is also important to note that when each term
corresponds to a word arc or a phone arc, not every term had egportance because
of different posterior probabilities in the lattice. To et this, one may add a weighting
factor for each term or scale the target values. The fornshags/n here, however, assume
that each term represents either a whole utterance (refyen a lattice (competitor) for
simplicity.
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In addition, we can add a regularization function in ordecaatrol the optimization.
Let R(6,6°) be a regularization function wit#f as the backoff model. Then, the objective
function becomes,

G(X.0) =) |Qi(X,0) = Ci + R(0,0°) (4.3)

Although the functionG in equation 4.3 remains to be non-convex, this formulation
has an obvious advantage over the original problem — theundsal issue no longer exists
sinceGG must be larger than or equal to zero. One easy way to definathet tvalues is
to encourage higher likelihood for the reference and lowkelihood for the competing
hypotheses. This scheme is equivalent to MMI estimation.

4.3 Lagrange Relaxation

To minimize the functiorz, we may first transform the problem to,

mign Y€+ R(0,60°)
e > C; —Qi(X,0) Vi,

whereg; is a slack variable for théth term in equation 4.3. This optimization problem is
equivalent to the original unconstrained problem in equati.3. We call this the primal
problem of the GBW algorithm.

For simplicity, we first show the formulation for optimizirtige mean vectors, and this
formulation uses Mahalanobis distance as the regulavizditinction on the means. The
primal problem becomes,

min i€ +>_ Dillns = i1,
J
st ¢ > QZ(X, ,u) —C; Vi
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whereD; is a Gaussian specific constant to control the weight of thelagization term;
,LL? is the mean vector that we want GBW to backoff to, and it is agglta be the model
from the previous EM iteration.

We can then construct the Lagrangian dual for the primallprobThe Lagrangian is
defined as,

LP(e, e, ) = ZQ — Zai<6i — Qi(X, ) + Cy)
— Zﬁz(ﬁz — Ci + Qi(X, 1))

+ 3 Dilly - I, (4.5)
J

where{«;} and{s;} are the Lagrange multipliers for the first and the second fsedro
straints of the primal problem in equation 4.4. The Lagranglual is then defined as,

LY (0. B) = inf L], (c.pr.00. ) (4.6)

Now, we can differentiaté” w.r.t. ; ande. Hence,

oLP ) 4.7)
861'
= Z(ai — ﬂi)(—227§(j>zj_l<xt — 1))
4 t
+ D2(55 (y — 15)) - (48)

By setting them to zero, it implies,

and,

>l = Bi) D2, vi(g)wy + Dy
>oilai = Bi) 32,7 () + Dy
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which is the GBW update equation for the mean vectors.

BW algorithm is a special case of GBW, since if we disable theleggation (O = 0)
and setalh = 1 andg = 0 for all references and = 5 = 0.5 for all competitors, we get

[ = Zieref Do %f (j)%
! Zieref Zt Y (J)

which is the BW update equation. EBW is also a special case of Giawe if we set
a = 1andg = 0 for all references, and = 0 and = 1 for all competitors, the GBW
update equation becomes EBW update equation,

;= D icret 2ot V)Tt — D icoom 2o Vi ()Tt + DJMJ
’ Zz‘eref Zt Yi(d) — Zz@com Zt 'Vt( )+ D;

One should note that this result implies theterm used in the EBW algorithm can be con-
sidered as a regularization function using Mahalanobisdi® between the mean vectors
of the new and the backoff model. The meaning is well repriesken

(4.11)

(4.12)

If the optimization is performed on the covariance, the rficdiion to the primal prob-
lemis

min 61+2D ) (9551 + log [35])

Then, we have this Lagrangiah?,
LP(e,S,a,8) = Zez Zaz € — Qi(X, %) + Cj)
- Zﬁz e — Ci + Qi(X, X))
+ ZD pOS T (S0
+ log|Zj|). (4.14)
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We then differentiate thé&” w.r.t. the covariance,

oL el eele
oy = (=B ) - BT
t

%

+ Dy =SS = S Y ey (4.15)

whereS;; = (x; — p;)(x; — p;)’. Then by setting it to zero, we obtain the GBW update
equation for covariance,

Ej = \Ilj(a76)

Zi(aifﬁi)Zt'Yg(j)xt$2+Dj(ZQ+MQMQ,) )
S @B S iOD Mk (4.16)

which is also a generalization of BW and EBW. Instead of solwimg independent opti-
mization problems, one may use the} and{/} obtained from the first problem as the
solution for the second problem to compute the covariantieis. procedure assumes that
the solutions of the two problems are similar and we adost phocedure in our exper-
iments. One should also note that the formulation of GBW canriporate I-smoothing
[Povey (2003)] similarly by adding another regularizatterm. For Gaussian means, the
optimization problem with I-smoothing becomes,

G(X 1) = D 1Qu(X, 1) = Cil + Y Dyllpy — I3, + > 7llwy — wil5,  (4.17)
i J j

and the corresponding update equation becomes,

o Ez(al - ﬁl) Zt ’YZ(J)%& + Dj,ug-) + T/L?
. Zz(az_ﬁz) zt’)/z(j)-f-Dj-i-T

For covariance, we have,

G(X, %) = Y QX %) = Ci| + Y Di(udS; ul + tr(S951) + log | 51)
i J

(4.18)

+ > TS b + (2555 + log [34) (4.19)
J

and the update equation,

o _ Xiloi = B) B vt + Dy + uguf) + 755 + )
’ 2o = B) 22 (G) + Dy +7
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where;* andX® are the backoff mean and covariance used by I-smoothing;hadan
be the ML estimate, MMI estimate or the model from the presi&M iteration; is a
tunable parameter which controls the importance of I-simagt

GBW is the same as BW and EBW that it is based on the EM algorithmeder, the
M-step of GBW is now replaced by solving a dual problem to estithe Lagrange multi-
pliers, so we can use equation 4.10 and equation 4.16 toxdb&aHMM parameters. The
dual problem is formulated by plugging equation 4.9, 4.10 4116 into the Lagrangian.
Assuming we are optimizing the mean vectors, we have
max LP(a,B) = (i = 3:)(Qi — C))

st.Vi o +8 =1
This dual problem can be solved by gradient ascent. By takanyative w.r.t. the La-

grange multipliers, we obtain the gradients.

oL”
0ai N

Qi —C; (4.21)

Whenq; is updated3; can be obtained using the constraint- 3; = 1.

Finally, figure 4.1 summarizes the whole process of transfoy the original opti-
mization algorithm using Lagrange relaxation.

4.4 GBW, EBW and Information Theory

We showed that EBW is a special case of GBW and the D-term in EBWeaxpressed
as some regularization to the optimization problem. In tastpthisD; constant is set
by some heuristics, saly x v4.,, Which is tuned empirically and’ is often set to some
value between one and two [Povey (2003)]. The formulatio®GBiV now justifies the
heuristics from a theoretical point of view. Because from dp&imization problem in
equation 4.4 and equation 4.13, the regularization is ogmmgful if the dynamic range
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nonconvex,

F(X,0) =log P.(X;0) — log P.(X; 0) unbounded,
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Figure 4.1: The process of transforming the problem usirgrdsage relaxation.

of the regularization term is comparable to the transforfaiddl objective function. In
such a case, th®, constant has to be proportional to the occupancy county.say ..
Hence, GBW explains why a heuristic like x ~. is desirable to determine the values of
D;. In section 4.4.2, we discuss why is preferred overy, and also whyE is preferred

to be larger than or equal to one.

4.4.1 Recursive EBW/GBW Algorithm (rEBW/GBW)

The GBW algorithm also gives another interesting insightuattloe EBW algorithm. It
states that the D-term in the EBW algorithm comes from somemiie-based regular-
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ization. In fact, GBW further explains that such regulaiimats based on a well known
similarity measure between two probability distributiphne. KL divergence.

In [Hsiao and Schultz (2011)], we combine the optimizationhtems for solving
mean vectors and covariance matrices into one single probée have,

‘ D, )
?E%ZQ +> 7](||Mj — 15l + (2757 + log [55])
: j

The regularization function is the KL-divergence frovp(1.}, ¥9) to N(y;, ;). Then, we
put back the terms that are removed by differentiation,

KLOVIN) = 5l — s, + (57
— log|z—?| — D] (4.23)
P ’
where D is the dimension of the feature vector. It is important toentitat the term
Mgzj—lug is moved from the mean optimization problem to the covaeaogtimization
problem. This term is part of the Mahalanobis distance bdisippears when we differ-
entiate the objective function with respect to the meanorscthence, it remains in the

covariance problem as shown in equation 4.13.

Equation 4.22 and 4.23 show that the D-term in the EBW updaiteten comes from
the KL-divergence. Without affecting the solution of thetiopzation problem, we use
cross entropy as the regularization function,

CH(No||N) = H(Ng) + KL(Ngl|| V) . (4.24)
This does not alter the solution because the entropy of tbldfiiaGaussianV,
1
H(Ny) = 3 log((2me)P|Z|) (4.25)

is not related to the mean and covariance that we are optigiiZihe function (N,) is
derived from differential entropy and details are ava#aibl Ahmed and Gokhale (1989).
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In this setting, cross entropy measures the average nurhbis cequired to encod’
given [\, is the true distribution. This is reasonable for regulararasince cross entropy
increases wheV moves too far away from the backoff Gaussign However,N, in the
EBW algorithm is either the ML model or the model from the poas EM iteration. In
most cases)V, is inferior and it is not the true distribution. While the trdistribution is
unknown, we can look for a better Gaussian for the backofbpse.

In the first attempt, we suggest we can treat the EBW/GBW updat&tiens as some
recurrence relations. The M-step of the EBW algorithm bemoameiterative procedure,

it _ 22il@ = B) 35 7 ()a + D

S Yoo —B)> 7))+ Dy (4.26)
mtl Yol —06) >, ’V,f(j)xtx; + Dj(Z;” +/L§”,u;”/) N
b2y 1= S (i —B) 3,7 (G) + Dy — W + 1 + (4.27)

where ;i"* ''and 7t ! are the Gaussian parameters of the + 1)-th iteration, which
depend on the parameters on theth iteration; If we perform only one iteration, it is the
same as the standard EBW/GBW algorithm. If we perform two itemat it is like we are
using the Gaussian computed from standard EBW/GBW algoritharbaskoff parameter.
If we believe the Gaussian computed from the standard EBW/GR)Afri#thm is better
than the original model, we are using a better estimate tgpotenthe cross entropy for
regularization. In this thesis, we use the variableto denote how many M-steps are
performed after each E-step.

The reason for choosing cross entropy instead of KL-diverges to examine the con-
vergence of this recurrence relation, and whether the recce update leads to a smaller
cross entropy. One can compare the cross entropy of sueeéssations since it is mea-
sured by the number of bits. KL-divergence is a relative memand it cannot compare
the results of different iterations. In our previous worKhisiao and Schultz (2011)], we
do not know if equation 4.26 and equation 4.27 may convenggyb found in our exper-
iments that the cross entropy always decreases as theigcoosntinues, which implies
the changes on the Gaussian parameters diminish acrostgoits: Details on this are
available in section 4.6.1, and the convergence condii@vailable in section 4.4.2.

46



We would like to emphasize that the implementation of thevalrecurrence update
equations is very simple. One can perform multiple M-stephe standard EBW/GBW
algorithm to achieve the same result. This incurs negkgédtra computation since the
M-step does not involve data processing. In this thesis,ogad on the effectiveness of
this new EBW algorithm. Hence, we do not test the recursive GBY&rshm, but simply
use GBW as a tool to derive this new recursive EBW algorithm.

4.4.2 Statistical EBW/GBW Algorithm (SEBW/GBW)

1

In the recursive EBW algorithm, the update equation for themseind the covariances
become the recursive equations which allow multiple uplasing the same statistics col-
lected from the E-step. While the number of recursions peréal for the recursive EBW
algorithm is determined empirically, the recurrence eigmatan be solved analytically,
which implies there is a more systematical way to determme to update the parame-
ters. Consider the recursive mean update equation in equhfié,

mil Zt 7{(])% - Zt %C(J)It + Dj,U;n
! Zt'Y[(j)_Zt%T(j)"’Dj
= Kpl'+ (1 - Ky (4.28)
where
D;
h= Zt %T(]) - t%&c(]) + D; (4.29)
N Zt Vi (J)xe — Zt Vi (J)xe
B S i) (439

It is important to note tha/nj.\’ is the solution ofy; if we disable the regularizatior); =

1l would like to thank Nagesha Venki for his very useful inpoithe recursive EBW/GBW algorithm in
section 4.4.1. The conversation with Venki leads to anoH#W/GBW algorithm to be described in this
section.
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0). Then, we can solve the recurrence equation,

ittt = K+ (1 - K)pd
= pitt -l = K =)
= Wl = A+ K" (4.31)

whereJ; is thed-th element in the mean vectof”.

Equation 4.31 implies that the ratig plays an important role on the solution of the
recursive equation. If{ > 1, asm — oo, uj' goes to infinity as well, which means
there is no solution. However, if < K < 1, u7' converges tcpj.‘[i asm — oo, which
implies as the recursion continues, the effect of the regaton diminishes. IfK < 0,
it is unable to predict the result pf"*. However, in the context of discriminative training,
the heuristics that are used to set the valu®@pfvould prevent < 0. Itis interesting to
note that if the numerator count and the denominator coen¢quivalentx’ = 1 as long
asD,; > 0, which implies the solution must converge. However, thiy fb@ a rare case.

Assuming thatD; = £, ~7f(j) andE = 2 which is a commonly used heuristics to
set the value oD,

_ 221& %C(])
B SR IS Ser R (4.32)

In this case X’ > 1 if and only if the numerator count is strictly smaller thae thenomi-
nator count. As discussed in chapter 2, this is known to ittt Gaussian appears more
often as the competitor, the optimization problem becomieshmum likelihood problem
which is unbounded. In sum, this can be considered as anatiyeto prove at some
condition, the optimization problem would have a solutibnegularization is disabled.
Another important implication of this finding is that it eqohs why the standard EBW
usesD; = E) ,7f(j) instead ofD; = E ), ~/(j) for the heuristics. It is because if
we use the numerator count to compug, there is no guarantee that > 0 which the
solution may be diverged. To guarantee tRat- 0, we need to use the denominator count
andE > 1. This conclusion supports the heuristics we have been tdisirgBW, though
such heuristics was determined empirically instead ofd@rmulated mathematically.
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The solution to the recursive equations inspires us thatamederive another EBW
algorithm. As mentioned, the value &f plays an important role to determine whether
a Gaussian needs regularization. In that case, one may eisaltre of K’ to classify the
Gaussians into two category: one with regularization ¢~ 0) and one without); =
0). The idea of this variant of EBW algorithm is, if the numeratount dominates, it
meansk is small and one can update the Gaussian more aggressivelyevdr, if the
denominator count dominates, it meakisis large and one should update the Gaussian
in a more conservative way. The valuelgfis computed for each Gaussian. Hence, this
variant of the EBW algorithm would consider the numerator dedominator statistics to
perform the update. Therefore, this EBW algorithm is namatissical EBW algorithm
(SEBW). In general, sEBW would classify the Gaussians in theisttbmodel into/V
classes sorted by the value 8t The classes with smallét will perform more recursive
updates, the classes with larg€rwill perform less updates. The exact number of classes
and the range of each class would need to be tuned empiricalis general form of
sEBW algorithm, however, would need much tuning since we nee@cide the number
of classes and also the upper bound and the lower bouAdfof each class. In this thesis,
we focus on the simplest form where we only have two classeswth regularization
which is like the standard EBW, and another without reguéiim, which is equivalent to
performing infinite numbers of recursions for rEBW.

4.5 Convergence Condition of EBW and GBW

The optimization technique we use for GBW is known as Lagraexation [Boyd and
Vandenberghe (2004)], since it converts a primal probletm a&ndual problem. In theory,
the dual problem is always a convex problem (maximizing @dirobjective function here)
[Boyd and Vandenberghe (2004)]. Note that when strong dudbes not hold, which
means the optimal value of the dual can only serve as a stuaribound to the primal
objective, there is no guarantee that the solution obtafred the dual is primal optimal.
We can only consider this technique as a relaxation method.

Consider wherD — oo and this term dominates the objective function, strongitiual
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occurs and GBW is guaranteed to converge in this case. Alththwégsolution is simply the
backoff model, this behavior is the same as EBW. Howeverngaaroblem and a finit®,

if the solution of GBW is equivalent to BW or EBW, it can be shown GB/guaranteed
to converge for this specific problem. One should also naethie D constant in GBW is
related to the target valueS, If these target values are set more aggressively, thatys ve
high likelihood for reference and very low likelihood forrapeting hypotheses, GBW is
very likely to reduce to EBW (but it is possible to construdifeial cases that GBW does
not reduce to EBW). However, in such a case,cbéthe primal problem becomes larger,
and thereforeD has to be larger for regularization to be effective. Hentthpagh we
claim GBW must converge when it reduces to EBW, this case isvalgunt to saying GBW
must converge whep — oc.

4.6 Experiments

We evaluated the performance of GBW, EBW, rEBW and sEBW on thed,Feagi and
MSA ASR system. Detailed system description is availablehiapter 3.

4.6.1 Experiments on GBW

We first compared the performance of GBW and EBW on the Farsi ASEs. MMI
objective was chosen for optimization. The target valuegwselected based on the model
used in the E-step, and they were set to be 5% to 20% highettibdag likelihood of the
references, and 5% to 20% lower of the competitors. In thedy;sve performed four
iterations of gradient ascent to update the dual varialBlesn the dual variables, we then
reestimated the Gaussian parameters. No regularizatrsnmmothing was used for GBW
in this experiment.

The results in Figure 4.2 show that GBW without regularizaamd smoothing can
improve the baseline ML system (BW-ML). When the target valresclose to the scores
of the ML model, GBW obtains less improvement which is reabtmaince the training
is closer to the ML training in those settings. However, i tiarget values are set too
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Figure 4.2: Performance of GBW without regularization onTh@nsTac Farsi July 2007
open set. The percentage represents how far the targes\aieiset based on the baseline
model.

aggressively, the training may not converge since reqatan is disabled. In sum, this
experiment verifies the basic framework of GBW of optimizihg tmodels towards the
target values even without using any regularization. Orctvdrary, EBW does not work
when there is no regularization nor smoothing and it justugas the model.

When GBW is performed with regularization and smoothing, oae initialize the
dual parameters such that GBW is the same as BW or EBW at the eginGBW
without regularization cannot be initialized as EBW sincaéy corrupt the model at the
first iteration. One should note that although the dual mobis a convex problem and
the initialization is not important, GBW is still under the Elvamework and different
starting points may yield different results. Another isssigvhen GBW is initialized as
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EBW, we have to first perform EBW for one iteration and use thadehto perform the E-
step for the GBW at the beginning. This ensures the dual paessnematch the Gaussian
parameters of the model used in the E-step. It is always the i€ave initialize GBW as
BW because we use an ML model to perform the E-step.

Figure 4.3 compares the performance of EBW and GBW with diffeiratialization.
In this experiment, regularization is enabled and the tavgkies for GBW are always
set to be 10% higher likelihood for references and 10% lovetihood for the competi-
tors. The likelihood is computed using the ML model and thigeavalues do not change
during the optimization. As shown, when GBW is initializedBBW, GBW has simi-
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Figure 4.3: Performance of BW, EBW and GBW on the TransTac Fahgi2D07 open
set.

lar performance compared to EBW. GBW with EBW initializatioheves 47.2% WER
while EBW reaches 47.0% WER. GBW with BW initialization lags behEBW at the
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earlier stages of the training since GBW is close to ML at thgirbeng, but GBW can
obtain the comparable performance of EBW at the end (47.6% WER).

In sum, GBW can perform model space discriminative trainikg EBW. The per-
formance of GBW is comparable to EBW and GBW allows regulamzetd be disabled.
The purpose of these experiments is to validate the formafl@&BW. While GBW does
not have any practical advantage compared to EBW, we will sélee next section that
the variants of EBW derived from GBW can improve the perforneaoicdiscriminative
training.

4.6.2 Experiments on EBW and rEBW

We then evaluated the performance of the proposed rEBW #igoion the Farsi, Iraqi
and MSA ASR system. Table 4.1 contains the time needed fdr EAtiteration of the
EBW algorithm. The time was measured by using 20 cores rurinipgrallel and each
core had similar performance to the Intel Xeon X5355 settiess6GHz. It demonstrated
discriminative training is very expensive. It is importdaatnote that although the train
set of the MSA system is only two to three times of the Iragteyss, the time needed
for performing discriminative training on the MSA systemsignificantly longer. The
reason is both the Farsi and the Iragqi ASR systems are mealdystems. As a result, they
employ aggressive pruning which also gives sparser lattidewever, the MSA system is
an offline system and hence, the lattices are much denseth&experiments, the Farsi
system used the TransTac JulO7 Farsi open set as the unsesegttd he Iraqgi system used
the TransTac Jun08 open set as dev set, and Nov08 open set @ssten test set. The
MSA system used GALE dev07/08/09 as dev sets, and eval09 tmmndeahours subset of
dev10 as the unseen test sets.

We first investigated how the recurrence update equatidestahe performance of
the new EBW algorithm. We compared the EBW algorithm with défe number of M-
steps per EM iteration using the recurrence equation 4.@@&y. Both EBW algorithms
optimize the acoustic model for the BMMI objective functidile used the Iragi system to
analyze the performance. In this experiment, we tried upto EM iterations and for each
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Farsi ASR | Iragi ASR | MSA ASR
~2 hours | ~12 hours| ~5 days

Table 4.1: The time required for each EBW iteration on the iFtnagi and MSA ASR
systems.

EM iteration, we performed a fixed number of M-steps from anfour (M = 1,2, 3, 4).

Figure 4.4 shows that if we perform more M-steps per EM iteratthe system can
achieve the best performance at earlier iterations. Homegeshown in Figure 4.5, per-
forming multiple M-steps may also cause overfitting to ocearlier than the standard
EBW algorithm as the training becomes more aggressive. Wherewerm two M-steps
per EM iteration (/ = 2), we got32.7% WER which is almost the same as t526%
WER of standard EBWAN/ = 1) with only half the training time. We also tried the stan-
dard EBW algorithm with a grid search of learning rate (E tghinn the model update
equation 4.10 and 4.1@); controls the weight of the regularization. This value iseoft
computed by a heuristics and it is the maximumibk » °, 47 (j), or twice the value re-
quired to keep the covariance positiveis often set to two and it is also our setting for all
EBW algorithms except the one with grid search. The grid semsrperformed based on
the WER of the test set, which we find the b&sin the rang€1.0, 3.0]. Therefore, itis an
oracle experiment. The purpose of this oracle experimetat ilsvestigate if the standard
EBW algorithm, in the optimal case, can converge as fast agroposed EBW algorithm.
Our results showed the opposite, and it implied our methodegul. Figure 4.6 shows the
reduction in average cross entropy for each M-step perfdrihbe cross entropy is com-
puted after the first EM iteration shown in figure 4.4 and itisraged across all Gaussian
distributions in the acoustic model. This result shows thatcross entropy is decreasing
so it implies the changes in the Gaussian parameters ardedseasing.

Based on these results, we studied whether our proposed rE@Within causes ac-
curacy degradation as a tradeoff for faster convergence coifgared the performance
of the rEBW algorithm with the standard version on our FarsRABaqi ASR and MSA
ASR systems. In this experiment, the rEBW algorithm perfatriveo M-steps for each
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Figure 4.4: Performance of EBW algorithm with different nuamlof M-steps per EM
iteration. This experiment is performed on the TransTa®8upen set using the Iraqi
ASR system.

E step (/ = 2). In total, two EM iterations were performed. The standaBW\Ealgo-
rithm performed four EM iterations and one M-step per E-gt&p= 1). Therefore, the
execution time of the rEBW algorithm is only half of the stardigersion. Table 4.2, 4.3
and 4.4 showed the performance of the Farsi, Iragi and MSA sy&Rems respectively.

The results suggested that our proposed rEBW algorithm daievacthe same WER
as the standard EBW algorithm. Among these eight test setirea tifferent systems,
the difference in WER is never more thar2% absolute. Therefore, the gain in speed
is a clear advantage of the rEBW algorithm. Table 4.1 showatlttte standard EBW
algorithm needs 20 days to train the MSA system, while the rEBYdrithm needs only
10 days to achieve the same WER, which is a big advantage.
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Farsi Jul07 open
BWhr 50.2%
EBWy—4 45.6%
EBWy—o 45.5%

Table 4.2: The WER of the Farsi ASR system on the Jul07 open set.

Jun08 open | Nov08 open
BWr, 37.0% 35.2%
EBW -4 32.6% 30.6%
EBWy— 32.7% 30.8%

Table 4.3: The WER of the Iragi ASR system on the Jun08 and Nop@a sets.

devO7 | dev08 | dev09 | eval09 | dev10

BWyr | 13.7% | 15.5% | 20.4% | 15.1% | 16.5%
EBWy—1 | 11.7% | 14.0% | 18.6% | 13.3% | 14.6%
EBWy—s | 11.9% | 14.0% | 18.5% | 13.2% | 14.5%

Table 4.4: The WER of the MSA ASR system on the GALE dev07/08@%@nd eval09
test sets.
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Figure 4.5: Increase of the BMMI objective function compat@the BMMI score of the
ML model on the Iraqi train set.

4.6.3 Experiments on EBW and sEBW

We then evaluated the performance of the SEBW algorithm oriréiog and MSA ASR
system. To apply the sSEBW algorithm, one needs to classifysdngssians into different
categories based on the ratig, where

D,
Zt%r(]) - t'th(J) + D .
As described in section 4.4.2,(f < K < 1, the Gaussian is in good condition that the
solution of the optimization problem exists even if the lagaation is disabled, meaning

regularization is needed. However, the fact that a solugxists does not imply such
solution is a good solution as it is still possible that thennegularized solution may

K =

57



48

46

Average Cross Entropy
»
N

w
oo

36

34
0 5 10 15 20 25 30
Number of M-steps

Figure 4.6: Decrease in average cross entropy implies teges on the Gaussian param-
eters diminish for each M-step.

suffer from the overfitting issue. As a result, SEBW uses astiokl, L, such that as long
as the ratids of the Gaussian falls into the ranffe L], regularization will be disabled for
that Gaussian. If{ is outside the range, we update the Gaussian like the sthidaN
algorithm. The threshold needs to be tuned empirically.

Table 4.5 shows the performance of EBW and sEBW on the Iraqi8Jte¥d set with
different thresholds. In this experiment, both EBW and sEBWnaoge for the BMMI
objective function. The result shows that the sEBW algorigtightly improves perfor-
mance by choosing the threshdldproperly. Although regularization is disabled for only
very few Gaussians, it does affect the performance of theesys

On the unseen test sets, however, we do not see significardverpent as shown in
Table 4.6 for the Iraqi system and Table 4.7 for the largeeskEA ASR system. On the
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L # Gauw/ D=0 | WER
EBW | 0.0 0.0% 32.6%
sEBW | 0.25 0.03% 32.5%
sEBW | 0.375 0.13% 32.3%
seEBW | 0.5 0.43% 32.3%
seEBW | 0.75 3.68% 32.6%
sEBW | 1.0 43.71% 39.8%

Table 4.5: WER of EBW, and sEBW on the TransTac Iragi Jun08 opaiuation.

Jun08 | Nov08

ML-BW 37.0% | 35.2%
BMMI-EBW | 32.6% | 30.6%
BMMI-seEBW | 32.3% | 30.5%

Table 4.6: WER of EBW, and SEBW on the TransTac Iraqi test sets.

dev07 | dev09 | eval09 | devl0

ML-BW 13.7% | 20.4% | 15.1% | 16.5%
BMMI-EBW | 11.7% | 18.6% | 13.3% | 14.6%
BMMI-sEBW | 11.7% | 18.4% | 13.3% | 14.6%

Table 4.7: WER of EBW and sEBW on the GALE MSA test sets.
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MSA ASR system, we also tuned the threshold.dfased on the dev sets ahdvas0.5

in our experiments. It is not surprising to see little impFment since the heuristics for
discriminative training are tuned based on empirical appines and believed to be near
optimal.
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Chapter 5

Generalized Discriminative Feature
Transformation (GDFT)

5.1 Introduction

In this chapter, we introduce our proposed feature spacemimative training algorithm
named generalized discriminative feature transformdiDFT) [Hsiao and Schultz (2009),
Hsiao et al. (2010)]. GDFT transforms the optimization peotof constrained maximum
likelihood linear regression (CMLLR) [Digalakis et al. (199%sales (1998)] in a way
similar to the GBW algorithm in chapter 4. The process of tiamsing the optimiza-
tion problem is shown in Figure 4.1 and it is also applicabléSDFT. Therefore, the
transformed CMLLR can optimize for some discriminative @lijee function instead of
likelihood. While CMLLR is a model space transformation teigiue originally designed
for speaker adaptation, it can be shown that CMLLR’s transébion is equivalent to a
feature space transformation [Gales (1998)]. Hence, CMLiRI$o known as feature
MLLR. In this chapter, we first review CMLLR and explain why iteguivalent to a fea-
ture transformation. Then, we show the formulation of GDIR@ axplain how it can be
applied to feature space discriminative training.
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5.2 CMLLR and Feature Transformation

CMLLR is a widely used speaker adaptation algorithm. CMLLR@ens linear transfor-
mation on the Gaussian means and covariances, and regta¢tansforms to be the same
for mean and covariance. That is,

o = Hp—d (5.1)

A

Y = H'SH, (5.2)
whereH andd are the rotation matrix and the bias to be optimized for iledd respec-

tively. For CMLLR, the auxiliary function is defined as,

Q(H.d) = ZZ% Jlog(|H'SH|) + (v, — Hyy + d) (H'S;H) ™ (2, — Hpy + d)]
— ZZ% Ylog(|H'S;H|) + (¢ — Hp; + d) H'S;VHY (2 — Hpy + d)]

_ ZZ% log(I41) +log(| )

+ (H Vay+ HVd— ) S (H e+ H V' d — py)]
= ZZ% log(|=;]) — log(|A]*) + (W¢ — ) S (WG — )], (5.3)

whered = H-V, b= H-VdandW = [A;b]; (, = [x}; 1]’ is the augmented feature vector.
This formula is the auxiliary function or the negative lokglihood function for CMLLR.

It also shows that model transformation is equivalent touieatransformation as long as
one subtract®g(|A|?) from the log likelihood computation. This feature transfiation

is similar to how fMPE/MMI and RDLT transform the features ept CMLLR optimizes
for the likelihood instead of a discriminative objectivenfiion.

When context expansion and mean offset features are not tieedransformation
matrix of fIMMI/MPE is always square and identity, hence, fMMPE can be considered
as a model space transformation technidug((/|?) = 0). In contrast, RDLT is not a
model space technique unless the likelihood computatiadjissted as CMLLR.

However, when there is more than one regression class, dhigersion from model
space to feature space may be more complicated. It deperusioiine regression classes
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are defined. The original CMLLR assigns transforms to the &aus [Digalakis et al.
(1995)] and this assignment is predefined and fixed duringtatian. In such a case,
each feature vector is needed to be transformed by différam$forms depending on the
Gaussian that we are evaluating. While this is complicatetliaefficient, we propose
to assign transforms based on the feature vectors like fMRE/and RDLT. Given an
incoming feature vector, we use a GMM to determine whichsfam we are going to
use and update the features. This idea has been explored fbLRlh [Kozat et al.
(2006)] for speaker adaptation. The only difference is BBX~T only allows one and
only one transform to be assigned to each feature vectaadsif a weighted sum using
posterior probability. In section 5.5, we discuss in detaihy GDFT has such constraint.
In any case, this scheme is equivalent to performing modestormation using a different
transform for each feature vector. This is the approach wd ter GDFT and later on, we
will see this is very similar to fMPE/MMI and RDLT training.

We are interested in an approach similar to CMLLR, since as a&ehspéce technique,
we have an option to update the transforms and the Gaussiameters simultaneously,
and it gives flexibility to the training procedure. If concemt updates of transformation
parameters and Gaussian parameters are possible, it snipiewe can significantly re-
duce the total time for training. Also, we want the transfation to be optimized for an
effective discriminative objective function like fMMI/MP to improve recognition per-
formance. In addition, we also want the transformation tdelss restrictive like RDLT.
Therefore, we propose GDFT as a feature space discrimgn@#ining algorithm.

5.3 GDFT and Lagrange Relaxation

Similar to the approach we used in the GBW algorithm (see figukg we first set up the
optimization problem for discriminative training on thadiar transformiy = [A4; 0],

Minimizing F' is the same as performing MMI optimization. However, opzation of '
is not trivial since the solution can be unbounded. Instdaobtimizing F directly, we
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transform the problem as the GBW algorithm to limit the chanigehe likelihood,

= Z QW) = Ci (5.5)

where(; is the chosen target value @fas discussed in section 4.1.

Then, we show how to optimize equation 5.5. We would like tmirel the readers
that part of the formulation is closely related to CMLLR andders are encouraged to
read appendix C of [Gales (1998)] for more details. To mimmdr, we first transform the
problem to,

min i€
6> Ci —Qi(W) Vi, (5.6)

wheree represents slack variables ant an utterance index. This is equivalent to the
original problem in equation 5.5 without constraints. W# ttas as the primal problem
for GDFT .

We can then construct the Lagrangian dual for the primallprobThe Lagrangian is
defined as,

LP (e, W, a, B) ZGZ Za, € W)+ C)
Zﬁu Ci + Q(W)) (5.7)

where{a;} and{;} are the Lagrange multipliers for the first and the second fsedro
straints of the primal problem in equation 5.6. The Lagranglual is then defined as,
L”(a, B) = inf L"(e,W. v, 9) (5.8)

Now, we can differentiaté” w.r.t. ¢ andW which includes the rotation matrit and
the biash. Hence,

.,
aaii e l—ai— 5 (5.9
oOL? 0Q;

o > (- ﬂz)aﬁ/- (5.10)

i
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By setting% to zero, it implies,
o+ 0 =1 Vi. (5.112)

. . . . 8LP
Assuming the covariance matrices are all diagonal, we therpatey- row by row,

oL” Qi P
= 3= _—_T (d) _ () 5.12
wherewy, refers tod-th row of W; p; = [ca1,---,can, 0] is the extended cofactor row
vector of A (¢;; = cof(4;5)) , and,
1 .
G = a; — f3; — HE e 5.13
D= 803 2 3 niied (5.13)
1 o
KD = 3 (= B) D —mia ) MU (5.14)
i j Jd t

D DI IHOR (5.15)

% t

To solve%j = 0, we can use the same method as CMLLR by first solving this
quadratic equation faf,

GOy + 5p GO T =0 . (5.16)
Then we can apply this update equation,
wg = (0pg + ED)GD-1 (5.17)

UpdatinglV is an iterative process like CMLLR since the cofactors demendther rows.
As a result, we need to apply equation 5.17 on the whole tamsition several times and
recompute the cofactors until it converges. It is importantote that GDFT reduces to
CMLLR if o; = 1 andg; = 0 for all references and,; = 3, = 0.5 for all competitors.

Equation 5.12 to 5.17 show hoW can be computed if the Lagrange multipliefs3,
are known. In other wordg}’ in equation 5.17 is a function ef and/3. To estimate the
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multipliers, we need to construct the dual problem from tlagrangian (equation 5.7).
This can be done by integrating equation 5.11 and 5.17 intatemn 5.7. Thus, we obtain,

LP(o, 8) =Y (a; — B)(Q:i(W*) = C) (5.18)

7

whereWW* is a function ofa and 5 computed by equation 5.17. Then, we can formulate
the dual problem,

rgaﬁx LP(a, ) = Z(Oéi — Bi)(Qi(W™) — )

st.Vi a;+08 =1
o, B >0.

This dual problem is convex and it can be solved easily witidgnt ascent. While the
gradient formula can be complicated, the following appmadion is good enough in gen-
eral,

oL
o = QW) — G (5.19)

Similar to GBW, GDFT does not fulfill the strong duality condit. As a result, the solu-
tion of the dual problem may not be primal optimal. One cary @oinsider this approach
as a relaxation approach which we relax a non-convex probitora convex one.

5.3.1 Regularization for GDFT

In chapter 2 and 4, we discuss the importance of regulanizaind smoothing for model
space discriminative training. The need of regularizatioring optimization is due to the
objective functions. However, regularization is not thagbly explored for feature space
discriminative training. While there are many smoothindniteques or heuristics available
for the EBW algorithm, there are not many techniques desifmefIPE/MMI or RDLT
except a heuristics of setting the learning rate for gradiescent [Povey et al. (2005)].

In this section, we show how the formulation of GDFT can beeded to incorporate
regularization and how this regularization can improve GDA&dding regularization to
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feature transformation is not new. In [Saon et al. (2009)4rge margin based semi-tied
covariance (STC) method is developed. In that algorithmgalegization scheme similar
to GDFT is proposed. What separated the approach by [Saon(20@B)] and GDFT is
that the regularization of GDFT is based on a distance medier GBW and it is made
explicit in the optimization problem.

AssumingW? = [AY%1°] is the backoff transform that we want to regularize in the
optimization of GDFT, we can modify the GDFT objective fuoctinfo,

GV) = Y 1Qi(IW) — G + L IIW — WOl (520

and modify the GDFT primal problem in equation 5.6 into,

min 3,6+ 2W - WO

where||IW —TV°| | is the Frobenius norm betwe&r and¥® andD is a tuning parameter
to control to significance of the regularization term. Theitaagian then becomes,

L Wa,B) = 3 e= 3 ailes = QW) +C) = 3 files = Ci+ Qi(W))

= Zei — Zai(ei - QW)+ C)) — 262(61 —Ci +Qi(W))

= ZQ — Zai(ei - QW)+ C)) — 262(61 —Ci +Qi(W))

b g ) g — )y (5.22)
d

wherew, andw) represent th@-th row of W and1/° respectively.
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Same as the original GDFT, we differentiate this Lagrangiar. ¢ and set it to zero.
Then we obtain,

ai+pB=1 Vi. (5.23)

For %, we need to assume all covariance matrices are diagonaChKELR or the

original GDFT. We compute the partial derivative row by row,

oLP dQ;
= B2 4D —
awd zi:(az ﬁz)awd + (wd wd)
= 12wy (GD 4 DI — (KD + Dul)
paw
= 1P, GO ) (5.24)
Pawy
where
GY = g9 4 DI (5.25)
D = kD4 Dyl . (5.26)

After that, we can follow the rest of the equations in the iy GDFT to solve forV/.

This is an interesting finding since adding regularizat@&DFT only requires little
modification to GDFT. The only changes to the formulation lzo®s we compute> and
k. The additional computation is negligible. Also, by addiig<  to GG, as long as D is
large enough, it help&' to have enough rank for inversion and this also reduces lpessi
numerical issues. There are many possible choic88%fThe simplest case is the identity
matrix, /. Other possible choices include ML estimates, MMI estimatethe transform
from the previous iteration. Th® parameter serves as the same purpose apitezm
used in the EBW and GBW algorithm and we apply the same hew,iscD = E X ..
When there are more than one regression classes, we haveaiee for each transform,
which is like oneD value for each Gaussian in EBW or GBW.

5.3.2 Context Training for GDFT

As described, GDFT performs linear transformation on traguiee vectors directly. In
contrast, fIMMI/MPE and RDLT can exploit the information aedile in the features within
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a context window, and also high dimensional posterior featu The linear transforms
trained by fMMI/MPE and RDLT project the high dimensional ti&@s to the original

feature space. The projection can be considered as someofoi@ature selection and
it is optimized for some discriminative objective functioklVe propose an optimization
algorithm for GDFT to perform a similar function, which ale GDFT to exploit the

information available in different features.

Suppose we try to estimate a projection matrix
D
=>_1Qi(P) = Cil + [P = P[5, (5.27)
where

ZZ% (Pye — 1) S5 (Pys — py) (5.28)

which is an auxiliary function to represent negative loglikood; P° is the backoff pro-
jection. The projection matriX’ projects the high dimensional featugeto the orig-
inal feature space.y; can be constructed using the original featuye For example,

Yy = [@_p,..., 7, ..., 2, p, 1] Wherey, is a supervector constructed by stacking the
features within a context window af ' frames. While there are many different ways to
constructy,, this paper focuses on the context features.

Similar to GBW and GDFT, we use Lagrange relaxation to solwegqgn 5.27. First,
we construct an equivalent constrained optimization gnobl

. D
min 2 +5 1P =PIk

Then, we can setup the Lagrangian,

Lp(ﬁ,/l,Oé,ﬁ) = Zez Zaz € +C)
+ EHP—POH%J. (530
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where{«;} and{g;} are the Lagrange multipliers for the first and the second fsebr-
straints of the optimization problem in equation 5.29.

Now, we can differentiaté » w.r.t. P ande, and set them to zero, it implies,
For the projection, we need to solve the equation in a rowelymanner,

o S o B2 DRy PY)

oF 4 OFy
= D (i —B)> Z’yf(j)ai%(lgdyt — Wjd)Ye
- —~ =
+ D(P;—PY). J
Finally, we obtain,
Py = k"G (5.32)
whereP; is thed-th row of P, and,
¢ = Sa-5)3] Uid S i)y + DI (5.33)
i j t
B = 3 (e = 8) 305 D i + DP (5.34)
i jooJd ¢

Similar to fMMI/MPE, the feature vectors are first transf@unusing the main trans-
forms,W. Then, the features are stacked to form supervectors angplgtae projection
as described in equation 5.32 to retrieve the final featuctovg in the feature space.

During training, the projection and the main transforms epémized jointly. Al-
though we can have multiple projections, we choose to hagearjection transform and
multiple main transforms like fMMI/MPE. For fMMI/MPE, only0% of the training data
is assigned to train the projection matrix. The reason igéwgnt the projection simply
scales the transformed features [Povey (2005)]. We ademdme procedure for GDFT,
which only 10% of the data is assigned to train the projection. In additmadlving the
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issues mentioned in [Povey (2005)], this also greatly spegdhe training process since
for 90% of the data, GDFT operates on the low dimensional featusespmputing>¢ and
k* are much more efficient than computitgj andk¢. One should note that this proce-
dure does not benefit IMMI/MPE in terms of computation sind®df/MPE uses gradient
descent and the computation of the gradient must involvéigtedimensional features.

5.3.3 Training Procedure of GDFT

GDFT can be considered as a discriminative version of CMLLREh@ugh the transforms
are applied on the features, GDFT can still be consideredvasda| space technique. The
question is how GDFT should be integrated into the modetitngiprocess.

One can consider GDFT as a feature transformation technikpidMPE/MMI and
RDLT. In such a case, we can use the conventional approachhwi@dirst optimize the
features. Once the features are optimized, we perform napaele discriminative training
to optimize the acoustic model. Another way to look at it issidering GDFT as a model
space technique like CMLLR. One may first optimize the HMM pagters, then the
model transforms. Or we may treat the transforms and thesgauparameters as a single
parameter set and optimize them jointly. In sum, there aleast three possible training
procedures.

GDFT is under the EM algorithm framework. While the E-step a@m the same as
CMLLR, the M-step is now replaced by solving a convex dual peobl To speed up the
process, like GBW, we perform one iteration of gradient asaethe dual problem to
obtain the transforms, then we repeat another EM iteration.

5.4 Comparison onthe Computational Complexity of GDFT
and fMPE/MMI

Feature space discriminative training is known to be onb®fhtost expensive process for
discriminative training [Povey et al. (2005), Zhang et ab@6a)]. The design of GDFT
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considers computational cost as one of the most importatdrand aims to achieve
good recognition accuracy with low computational cost. His section, we compare the
computational cost of GDFT and fMMI.

There are two areas which we can compare the computatiosalofdGDFT and
fMMI: the feature transformation process and the stagsticcumulation process. For
feature transformation, both GDFT and fMMI uses a GMM to gisshe feature vectors
to the feature transforms. The difference is GDFT assigadehature to one and only
one feature transform and fMMI generates the mean offséeposfeatures as discussed
on section 2.3. For simplicity, we focus on the feature tr@amsation part which GDFT
transforms the features by,

v = A+ (5.35)
w = Pyl (5.36)

and fMMI transforms the features by,
Yk = MFh, (5.37)

F
Ztd = T+ Z ZMi(f-&-F,d)yf—&-fa (5.38)
f=—F k

wherey!" is the supervector of stackingF frames centered by,.

Computingy; for GDFT needsD(D?) time whereD is the dimension of the feature
vector z;, while fMMI needsO(N K D?) to compute ally® where N is the number of
Gaussians in the GMM anH is the number of blocks for block update. However, since
h; is sparse, so the actual computation for fMMI should(ed K D?) where A is the
average number of active Gaussians after the GMM evaluation

For the final feature vectot,, GDFT needs to perform a projection usifRgo project
yl to D dimension. Therefore, GDFT need¥ F D?) time to computez; from y, and
the total time is als@(FD?). For fMMI, computingz; from y, needsO(DFK), so the
total time isO(AK D? + FK D) which should be similar to GDFT'®(F D?) in normal
configuration setup.
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For the statistics accumulation process, GDFT needs to etendy, &, G¢ and k
as shown in equation 5.25, 5.26, 5.33, 5.34 respectivelyceSihe time for computing
the G-matrices dominates the overall computation, we only neambhsider the time for
computingG. Recall that

¢ = Y= 50 SA()GG + DI
j o Jd o

(]

One can precompute

i 1 il

Tiq = (i — B) Z 52 Z%(J) (5.39)
jooJd oy

which costsO(7'J D) time whereT is the length of the utterance adds the number of

Gaussians appeared in the reference and the competitdecdnte;. Then, oncéfgjd is

computed, we can accumulat€ by,

G = G TG (5.40)
t

which costsO (T D?) time. As a result, the time for computing® is O(T'D? + TJD).
However, there aré® G-matrices, therefore, the total time for computiidgs O(T'D? +
TJD). Itis notO(T'D? + T.JD?) becausd},;, does not need to be recomputedimes.

For GZ, the way to compute the cost is the same ex«i%ats computed ony” which is

2(F + 1) x D dimensional. As a result, the cost for computifijis O(TF?D* + T'JD)
where+F' is the width of the context window. In practice, the cost fdDES is lower
because only 10% of the data will be assigned to train theegbmtansform, while for
90% of the data, GDFT operates on the low dimension featur@fas the complexity of
O(TD? + TJD). Also, theG-matrices are symmetric, therefore, one can further reduce
the cost by half in practice.

For fMMI, the statistics accumulation process involves ¢benputation of the gradi-
ents of the main transform\/; and the context transform. For simplicity, we ignore the
costs of the extra BMMI pass for computing the indirect stassand the ML update for
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fMMI. Then, to compute the gradient @f/;,

OQpmer! IQMeN
<8M{€ (i,4) - ; 0z .fZ_FMZ(erF,i)htJrf,j

1 f—

o direct _ c o
o PRHUID=ICE TR PEHUDD R CEITHE

direc
&gtmt can be precomputed for the whole utterance and the totalisi®ér’.J D). For the

0
rest, we can take the advantage thats sparse, hence, we only need to accumulate the
statistics as long &s. f ; is non-zero. Then, the computing costigA x 2(F +1) x K x

D x D) = O(AKF D?*). For M,, computing the cost is straightforward,

(3Qﬁ/i|r|\ﬁ|ct) _ Z (aQﬁ/ilrﬁft) oy
= . ) Ytiri
oM; (f+Fi) ¢ 9z /;

)

(5.41)

so the total cost i©®(TAKFD + TJD). Same as GDFT, 10% of the data is assigned to
train M, while for 90% of the data is assigned to traif .

For most of the data (90%), we comp&@€I'D? + T'JD) andO(TAKFD?* +TJD)
for the runtime of GDFT and fMMI. Sincé® is around 40, it is going to be much smaller
than A x K x F for the setting suggested in [Povey (2005)] whé&fe= 9 and F' = 8.
Therefore, GDFT runs faster than fMMI. It is important to @dhat the slowest case for
GDFT which computes the statistics for the context tramsf@@ (7' F?D? + T'JD)) is
slower than the average case for fMM)(I"AK F'D? + T'JD)). Hence, ad’ increases,
the speed advantage of GDFT would diminish.

For memory usage, GDFT uses significantly more memory th&BNIMI. The rea-
son is GDFT requires to store tif@-matrices which have the dimension @f D?) for
the main transforms an@ (72 D?) for the context transform. As a result, GDFT needs
O(N D*+F?*D?) space to store the statistics. Compared to GDFT, fMPE/MMécho¢ re-
quire to store thé&/-matrices. Since fMPE/MMI uses gradient ascent, the memexqyire-
ment is the same as the model size. Hence, fMPE/MMI only néBdéK D + FK D)
space to store the statistics which is significantly smaéian GDFT.
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5.5 Limitations of the GDFT Framework

Compared to fMPE/MMI and RDLT, GDFT has lower computationatc®ne of the rea-
sons comes from the CMLLR framework which has an efficient byrow update equa-
tion. However, this framework also imposes some constirGDFT that makes it diffi-
cult to adopt the posterior features or other high dimeraditeatures used by fMPE/MMI
or RDLT.

Suppose we would like to use the posterior features, whidmnsestead of assigning
one and only one transform for each frame, we assign muttigtesforms weighted by the
posterior probability distribution. Then, we would comgtie transformed featurg, by

N
Y = Z Ye(n)(Anz + by) (5.42)

where~;(n) is the posterior probability at time of n-th Gaussian in the GMM which
is used by GDFT, fMPE/MMI and RDLT. However, this change wontdlonger fit into
the CMLLR/GDFT framework which requires the transformatidnhe feature vectors is
equivalent to the model transformation as shown in equé&titn5.2 and 5.3.

If we relax the constraint and formulate GDFT as a pure feattansformation tech-
nique, we need to solve a similar but different optimizatmwoblem. For simplicity, we
demonstrate the difficulties of solving the maximum likeldidl problem if the features are
transformed by equation 5.42. The reason is if problemsrogben solving%—g =0, the
same problems will also affect the solution of solving(a; — @)% = 0. Consider the
auxiliary function,

Q = 2.0 w0 = )= (= 1)
= > Z Y ()OO 7e(n) (Anze + bn) — 1) S5 O () (Any + by) — p15)
: ) ) (5.43)

where minimizing( is equivalent to maximizing the likelihood. Now, we diffeteate
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with respect ta4,,,
a /
Q - ZZ% )28 Z Ye(n) (Anze + bn) — p15) 7} (5.44)
n=1

and we need to solv§A—n = 0. For CMLLR or GDFT, we solve this problem row-by-
row because by doing s&;; ! becomes a scalar if the model uses diagonal covariance.
Therefore, we can move the parameter of interdsto the left hand side of the formula
and move the rest to the right hand side to derive the closed #mlution. However,

we can no longer do that in this scenario, sinteis in the linear sum with the other
transforms and we cannot derive a closed form solution likdeCRlor GDFT.

This problem does not implg;% = 0 cannot be solved analytically. As mentioned,
although A, is in the linear sum, one can still solve it by setting up aeysof linear
equations. However, the size of the linear system can be $inge we haveV x D(D +
1) parameters, it means the system Bas D(D + 1) equations which would become
intractable if we have more than a few hundred transforms.

A more practical way to solve the problem is to modify the fatation in section 5.3.2,
which we derive the formulas to allow GDFT to perform conteaining. Instead of using
equation 5.42 to perform feature transformation, we moiti&equation into,

zt = (D, %(1), % (2)a), 7e(2), - (N, 1(N)) (5.45)
P = [Ai;bi;...; An; by (5.46)
w = Pz, (5.47)

wherez is a supervector constructed by stacking 1]’ x 4;(n) forn =1,2,..., N and
PisaD by N x D(D+1) projection matrix. In this case, thgcomputed by equation 5.47
is equivalent to the one computed by equation 5.42. Howgherdifference is we only
have one projection matri®¥ to estimate instead of having multiple transforms. In this
case, the auxiliary function becomes,

Q = ZZ%(}')(%—uj)’Efl(yt—uj)
= ZZ% (Pl — ) S (P = pyy) (5.48)
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Then, we can differentiat@ with respect taP,
Z Z% )25 (P — py)ad (5.49)

Finally, we need to soIvé% = (. To do so, we assunie; is diagonal, then we can derive
a row-by-row update equation. L&Y, be thed-th row of P, then,

oQ )
- STt - o
0P, o

:&zz% ) = )

As aresult,
Py = kiGgit (5.50)
where
1 ,
GLo= DD mli) 'y (5.51)
t J
N\ Mg ’
ko= D> ml) s (5.52)

By transforming the problem like GBW and GDFT, we obtain theegahzed version of
the update equation,

Py = kyGyt (5.53)
where
o1 ,
Gy = D (=B Y ) gway (5.54)
( t g J
N '
Ky = D (= B) ) Y ) e (5.55)

This formulation is very flexible because we can have a clésed update equation
regardless of how we construct the supervectors. Howédwedrawback is if the supervec-
tor has very high dimension, computing t¥ematrices is expensive. For context training,
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since only 10% of the data is applied, the cost is limited fbuposterior features, one has
to collect the statistics over the whole train set which candry expensive. In sum, while
the framework allows GDFT to use posterior features or diigdr dimension features like
fMPE/MMI and RDLT, the computational cost is expensive. Agsult, we focus on the
low dimension features and the context training for GDFT.

5.6 Experiments on GDFT

We evaluated the performance of GDFT on the Iragi ASR systedththe MSA ASR
system. In the experiments, we study the how regularizatiahcontext training affects
the performance of GDFT. We also compare the performanceD#f TGand fMMI and
also the combining the model space discriminative trainiDgtailed system description
is available in chapter 3.

5.6.1 Experiments on GDFT about Regularization

Table 5.1 is the comparison of GDFT using different configjare using the Iraqi ASR
system. The training in this experiment only consists ofueaspace training and the
acoustic model is the ML model. For GDFT, the regularizapanameter is set from
zero to two. From the results, we observed that reguladaallows GDFT to use more
transforms. The performance of GDFT without regularizatiegraded the accuracy when
there were 1024 transforms and the training failed for 2@di@sforms. However, with reg-
ularization, GDFT continued to improve the ML baseline witbre than 1024 transforms.
In this experiment, GDFT with regularization achieved 35 \WER with 2048 transforms,
which is better than the ML baseline with 1.3% absolute improent.

In the experiment, we also explored how the regularizatemameterF’, might affect
the performance of GDFT. When there were 1024 transforms, TORiEh regularization
had the same WER @6.1% for different £ from one to two. Similarly, when there were
2048 transforms, GDFT could outperform the baseline systiéma WER 0f35.7% for
E = 1. From the results, we observed that the performance of GD&net sensitive to
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Training proc. | E | # transforms | WER
ML - - 37.0
GDFT 0.0 16 36.7
GDFT 0.0 1024 38.5
GDFT 0.0 2048 -
GDFT 1.0 16 36.7
GDFT 1.0 1024 36.1
GDFT 1.5 1024 36.2
GDFT 2.0 1024 36.2
GDFT 1.0 2048 35.7
GDFT 1.5 2048 35.8
GDFT 2.0 2048 35.9
GDFT 1.0 4096 35.9

Table 5.1: WER(%) of GDFT with and without regularization o ttev set (TransTac
Jun08 open set).
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the choice ofF’ which means tuning should be easy.

5.6.2 Experiments on GDFT about Context Training

In this experiment, we investigated how the size of the caniendow might affect the
performance of GDFT. We used the unvowelized MSA 50-hr sydtetest different con-
figurations.

Window | +40 | £3 | £5 | &7 | +9
GDFT | 18.9| 18.9| 18.6| 18.5| 18.8

Table 5.2: WER(%) of GDFT on the GALE dev07 test set for the Un&izshr MSA
system. The ML baseline is 19.8% WER.

Table 5.2 shows the performance of GDFT with context windbwifferent size. In
this experiment, GDFT optimized for the BMMI objective fuimet and it used 1024 trans-
forms. The acoustic model was the ML model. GDFT achieveté&st performance when
the window size was seven which concatenat&drames to construct the supervector and
then projected it back to the original feature space usiagtimtext projection transform.
The result showed that context training could improve thdopmance of GDFT. How-
ever, when model space discriminative training was appiiedhe acoustic model, the
difference became smaller. In this particular system, GR#ihout context training plus
BMMI model space training gave 17.6% WER while GDFT with conteaining plus
BMMI gave 17.4% WER.

5.6.3 Experiments on GDFT and fMMI

In section 5.4, we compare the computational complexity BiF& and fMMI. While
the analysis may help evaluating the efficiency of running=Gand fMMI, it ignores the
implementation details which may greatly affect the corapiahal cost. Hence, we would
like to perform some benchmarks to compare the actual refamGDFT and fMMI. We
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test GDFT and fMMI using different configurations and see Isome configurations like
the window size and block update may affect the speed anc:tiognition accuracy. For
the experiment, we used the Iraqi ASR system to evaluatdgbethms. Both GDFT and
fMMI had 2048 transforms. For simplicity, we only consideétée gradient computation
part for fMMI and ignored the costs for collecting indiret¢asstics and the ML model
update. For timing, the benchmark was done by performing GIMMI on the whole
Iraqi train set using 20 cores aR2.66GHz.

window | block | pruned?| time/iter | WER
fMMI +7 9 no ~5 days | 35.2%
fMMI +7 9 yes ~4 days | 35.4%
fMMI +7 1 yes ~2 days | 35.7%
fMMI +0 9 yes ~2 days | 36.4%
fMMI +0 1 yes ~1day | 36.5%
GDFT +7 - yes ~lday | 35.7%
GDFT +0 - yes | ~0.5day| 35.8%

Table 5.3: Comparison on the runtime and the recognitionop@idnce of fMMI and
GDFT. The WER is computed on the TransTac Iragi JunO8 opennskthe runtime is
measured on the 450-hr train set.

Table 5.3 shows the runtime and the recognition performannckfferent configura-
tions of GDFT and fMMI. In the table, the column “pruned?” meaf yes, each frame can
only be assigned to one and only one transform, which is redqdor GDFT. The default
setting of fMMI on this parameter is no since fMMI uses postefeatures, therefore,
each frame can be assigned to multiple transforms dependitige posterior probability
distribution. The results in table 5.3 basically show ttreg posterior feature, the con-
text expansion and the block update all contribute to théopmance of fMMI. However,
enabling all these features also increases the compuhtiost. In contrast, GDFT can
achieve good performance if runtime is a concern. As showtherexperiment, GDFT
can outperform fMMI in terms of recognition accuracy if welypallow at most one day
per iteration. However, if we allow more training time, fMMan outperform GDFT if all
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features are enabled.

main transform context transform

fMMI | O(TAKFD? +TJD) | OTAKFD + T.JD)
GDFT| O(TD?+TJD) O(TF2D? + T.JD)

Table 5.4: Computation complexity of fMMI and GDFT for accuating statistics.

main transform context transform

fMMI |  O(NKD) O(FKD)
GDFT| O(ND?) O(F2D?)

Table 5.5: Memory requirement of fMMI and GDFT for accumurlgtstatistics.

In section 5.4, we analyze the computational complexity 8fF& and fMMI. Ta-
ble 5.4 and 5.5 summarize the complexity and the memory rexapeint for accumulating
the statistics for GDFT and fMMI. It is interesting to seetttiae runtime of GDFT with
window size+7 is similar to the runtime of pruned fMMI with only context tneng or
only block update. The reason is for some utterances, ifdtieds are big, the runtime
is dominated by the terr@(7'.J D), since.J, which is the number of Gaussians appeared
in the lattice, can be huge. In this case, the runtime of GDRA fMMI can be similar.
Another reason is when we compute thenatrices for GDFT, say equation 5.54, it can be
computed by simply one function call using ATLAS BLAS [WhalaydaPetitet (2005)].
ATLAS BLAS is a highly optimized libraries for linear algelicaperations, which helps
lowering the computational cost of GDFT. In sum, GDFT hasdatieantage in terms of
computational cost from both theoretical and implemeatatispects compared to fMMI.
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5.6.4 Experiments on Combining Model Space and Feature Space
Discriminative Training

Then, we study the performance of combining feature spaderardel space discrimi-
native training. For feature space discriminative tragniwe compare fMMI and GDFT,
while for model space discriminative training, we use EBW sBBW. The focus of these
experiments are on the conventional training proceducasesdo not use rEBW for these
experiments. The performance of fast discriminative trgjrcombining feature space and
model space discriminative training will be addressed iaptér 6. In these experiments,
both fMMI and GDFT used a context window of siz€/ and fMMI had nine blocks of
transforms. GDFT used the transforms from the previous ERiion to perform backoff.
All discriminative training algorithms reported in thisc$i®n optimized the models for the
BMMI objective function.

Figure 5.1 shows the performance of different training pchees using fMMI/GDFT
and/or BMMI. The common strategy of combining feature spau# rmodel space dis-
criminative training is first performing feature space disinative training to optimize
the features. Then, model space discriminative trainingeisormed on the optimized
features [Povey et al. (2005); Povey (2005)]. As shown infidpgre, using feature space
discriminative training such as GDFT or fMMI can improve theerall performance. It
is interesting to see that although fMMI outperforms GDFTited feature level, where
GDFT gives 35.7% WER and fMMI gives 35.2% WER, the performancansost the
same after model space discriminative training where GBBMMI gives 31.9% WER
and fMMI—BMMI gives 31.8% WER. We also tried to combine GDFT, fMMI and BMMI
together. In which, we performed GDFT first, then fMMI and fip&MMI. This is de-
noted by GDFTF=fMMI —BMMI in figure 5.1 and the WER of this training procedure is
31.4% which slightly improves the procedures of using onBF3 or fMMI.

Table 5.6 shows the performance of using the SEBW algorithiliszsissed in sec-
tion 4.4.2 for the combined feature space and model spacgrdisative training proce-
dure. In this experiment, the threshold for SEBW is tuned @ndévelopment set, i.e.
TransTac Iragi Jun08 open set, using the model space digatitre training only. Details
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Figure 5.1: Performance of different ways to combine GDMMi with BMMI on the
TransTac Iraqi Jun08 open set.

of the tuning process is available in section 4.6.3. Fronréselts, although the SEBW
algorithm does not significantly improve the recognitionfpenance, the best system
uses the sEBW algorithm combined with GDFT, fMMI and BMMI triai@. This system
achieves 31.2% WER on the Jun08 open set and 29.8% WER on thenudee08 open
set.
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Jun08 open | Nov08 open
ML 37.0% 35.2%
BMMI-EBW 32.6% 30.6%
BMMI-sEBW 32.3% 30.5%
fMMI —BMMI-EBW 31.8% 30.0%
fMMI —BMMI-sEBW 31.6% 30.0%
GDFT—BMMI-EBW 31.9% 30.0%
GDFT—BMMI-sEBW 31.7% 30.0%
GDFT—fMMI —BMMI-EBW 31.4% 29.9%
GDFT—fMMI —BMMI-sEBW 31.2% 29.8%

Table 5.6: WER(%) of different discriminative training pracees and different EBW
algorithms on the TransTac Iragi JunO8/Nov08 open sets.
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Chapter 6

Towards Single Pass Discriminative
Training for Speech Recognition

6.1 Introduction

As discussed in previous chapters, discriminative trginghan expensive but effective
process to improve recognition accuracy for ASR system I&hgthy training time is
often due to the huge amount of data required to build a higlopeance system. Also, as
long as "there is no data like more data” remains true, onda&@see that discriminative
training will dominate the development time for an ASR systeThis is not desirable
since the cost of discriminative training may eventuallgeed the available processing
power and it may hinder the researchers to exploit the \iytualimited amount of data
to improve an ASR system.

In this chapter, we combine our proposed work and explore mmoxh improvement
we can achieve from discriminative training if we can practee data only once. We
are interested in single-pass training since when the atrafuhata becomes huge, pro-
cessing the data multiple times using discriminative trggrmay no longer be feasible.
If we only have the resource to process the data once, we wieldo know the best
way to perform discriminative training and how much impnment we can obtain. The
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ultimate question which we would like to ask is if we have mmted amount of data for
some applications, should we perform single-pass disnativie training which can adopt
more data, or perform regular discriminative training whmay provide better statistical
estimation? However, before we can attempt to answer tlastopn, we need to develop
tools to perform single-pass training which is the focushes thapter.

6.2 Incremental Mode and Batch Mode for Discrimina-
tive Training

The idea of performing single-pass discriminative tragnis not new. Researchers have
been investigating single-pass discriminative trainimghie form of online training. In-
stead of updating the model once after collecting the sizisrom the whole train set,
online training allows model update after processing edisrance. Therefore, we would
like to compare our proposed single-pass discriminatigenitng using our fast model
space and feature space discriminative training algogtwith online discriminative train-
ing.

Existing online discriminative training algorithms argef based on stochastic gra-
dient descent [Cheng et al.; Keshet et al. (2011)], since tlaeybe computed for each
utterance to perform model update. In contrast, Baum-WehchBaum-Welch related
algorithms require the statistics for the whole train sétjolv is not suitable for online
training. However, Baum-Welch algorithms can be parakelizasily which is not the
case for online gradient descent since if the model is updatery utterance, there is a
sequential dependency which cannot be parallelized désily et al. (2007)]. Therefore,
batch training like Baum-Welch algorithm is often prefermgden building a large scale
system. As a result, batch mode training remains to be mqualaofor building speech
recognition systems.

Compared to batch training, it is more difficult to incorperaggularization for online
training. As discussed in chapter 4, the performance of EBEMGBW heavily rely on the
D-term which comes from the regularization function in tipgiimization problem, and the
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regularization considers the statistics of the whole tsain In stochastic gradient descent,
it is not trivial to integrate such term as the overall statssare not available. Existing
online algorithms using gradient descent basically om#gplicit regularization function
but rely on the objective function itself to prevent oveliriressues. This may also be the
reason why MCE is more popular than BMMI or MPE for online traghsince MCE has
a sigmoid function to control the overtraining issue [Chehgle Keshet et al. (2011)].

In our work, we would like to take a different approach to ogltraining. Instead of
using gradient descent, we investigate if it is possiblestothe EBW algorithm to perform
online training. In chapter 4, we learn that the D-term corftem the regularization
function. As a result, we can perform the EBW algorithm on $ratches of data and
the model estimated from previous batch of data can be useegtdarize the model
estimation for the next batch. If it works, we want to see hiois version of online training
perform in the case of single-pass training. Since thisiingi procedure process small
batches of data instead of updating the model every utterame call it the incremental
training to avoid confusion. In sum, we want to compare tleadmental mode and the
batch mode of single-pass training and see how much imprenenan be achieved by
processing the data only once.

6.3 EXperiments on Single Pass Discriminative Training

We conducted our experiments on the Iragi and the MSA ASReryst Detailed system
description of both systems is available in chapter 3.

6.3.1 Experiments on Single Pass and Regular Discriminative Train-
ing

We first compared regular discriminative training procedwith the single-pass discrim-
inative training. For both regular and single-pass traniwme used BMMI for model space
discriminative training, and for feature space training wsed fMMI and our proposed
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GDFT. Both fMMI and GDFT had a context window &f7 frames. Performing fMMI fol-
lowed by BMMI training is considered to be the state-of-tinef@ discriminative training.

---ML
-0O- fMMmI

—— fMMI->BMMI
-A-GDFT
A —/— GDFT->BMMI
} —O—BMMI

35.2 -%-' BMMI (M=4)
<)~ GDFT(M=1)+BMMI(M=4) B
XF GDFT(M=1)+BMMI(M=2)
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Figure 6.1: Performance of different training procedurékis experiment is performed
on the TransTac Jun08 open set using the Iragi ASR system.

Figure 6.1 shows that performing fMMI followed by BMMI (fMMEBMMI) achieves
31.8% WER which improves the baseline ML model by 14.1% netatilf we replace
fMMI with GDFT, we get 31.9% WER which is very similar to fMM:BMMI.

Table 6.1 summarizes and compares the performance andrttan for different
training procedures. For single-pass training, we ach8/8% WER by using one EM
iteration of GDFT and one EM iteration of BMMI using the rEBW aftghm with four
M-steps (M=4) per EM iteration. This performance is the sasehe regular BMMI
training without fMMI/GDFT (32.5%), but the regular BMMI tirsing would need four
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passes on the train set instead of one. If we omit the GDFThi®single-pass training,
the performance is 33.2% WER. In sum, our single-pass traiadmgeves 86.5% of the
total improvement available from discriminative trainingf we release the single-pass
constraint and allow two passes of the data, GDFT(M=1)+BM#4R) gives 32.0% WER
at the second EM iteration. This means it obtains 96.1% ofirtiprovement available
in the best training procedure (IMMBMMI). We can see that discriminative training is
very expensive but our proposed training procedure carnicaily reduce the computation
and yet, obtain most of the improvement from discriminatregning.

System WER | # passes | run-time | % of total improv.
ML 37.0% - - 0.0%

BMMI 32.6% 4 2 days 84.6%
GDFT 35.7% 4 4 days 25.0%
GDFT—BMMI 31.9% 4+4 6 days 98.1%
fMMI 35.2% 12 20 days 34.6%
fMMI —BMMI 31.8%| 12+4 22 days 100.0%
BMMI(M=4) 33.2% 1 0.5 day 73.1%
GDFT(M=1)+BMMI(M=4) | 32.5% 1 1 day 86.5%
GDFT(M=1)+BMMI(M=2) | 32.0% 2 2 days 96.2%

Table 6.1: Performance on TransTac Iragi Jun08 open seth@ndib-time for different
training procedures. The run-time was measured on 20 CPY @re2.66GHz using the
TransTac Iraqi 450-hr train set.

Model/GDFT | M=1 | M=2 | M=3 | M=4
ML 35.9% | 35.6% | 35.7% | 35.7%
BMMI(M=4) | 32.5% | 33.0% | 33.1%| 33.0%

Table 6.2: The performance of single pass training withedéht combination of M-steps
for GDFT and BMMI. The experiment is performed on TransTadd@u@pen set.
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Although we only performed one M-step for each EM iteration GDFT in the ex-
periment shown in figure 6.1, we tried the recursive updaté&sdFT as well. Table 6.2
shows the results of using different ways to combine GDFT BNtMI for single-pass
training. When we use the ML model as the acoustic model, wergbs5DFT can bene-
fit from multiple M-steps. However, when we use the BMMI moddH4) as the acoustic
model, multiple M-steps for GDFT would degrade the perfanoe This result is reason-
able since when we train the model and the feature transfiimity using single-pass
training, BMMI is trained on the untransformed data, while ESDassumes the acoustic
model is the ML model. Hence, the mismatch becomes largenwieeperform the recur-
sive update. For single-pass training, we found that thedstsp is one M-step for GDFT
and four M-steps for BMMI.

#iters | JunO8open | NovO8open
ML - 37.0% 35.2%
BMMI 4 32.6% 30.6%
fMMI —BMMI 4+4 31.8% 30.0%
GDFT—BMMI 4+4 31.9% 30.0%
BMMI(M=4) 1 33.2% 31.3%
GDFT(M=1) 1 32.5% 31.0%
+BMMI(M=4)
GDFT(M=1) 2 32.0% 30.5%
+BMMI(M=2)

Table 6.3: The WER of the Iraqi ASR system on the Jun08 and teeamNov08 open
sets.

Table 6.3 and 6.4 show the performance of single-pass dis@tive training on the
Iragi and the MSA speech recognition systems for differest sets. These tables also
show the number of EM iterations used for different trainpngcedures. The time required
for each EM iteration for different algorithms is availalohetable 6.1. In sum, the results
are consistent with the first experiment, which single-geagsing using GDFT and the
rEBW algorithm can achieve the performance of regular full BMMining. If we allow
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#iters | devO7 | dev09 | eval09 | devl10
ML - 13.7% | 20.4% | 15.1% | 16.5%

BMMI 4 | 11.7%] 18.6%| 13.3% | 14.6%
BMMI(M=4) 1 | 12.0%| 18.6% | 13.4% | 14.7%
GDFT(M=1) | 1 | 11.7%] 18.5%| 13.4% | 14.6%
+BMMI(M=4)

Table 6.4: The WER of the Vow 1100hrs 3-pass system on the GAMDH09/10 and
eval09 test sets.

two passes on the data, the performance of our proposed dhistirery close to the full
fMMI and BMMI training.

6.3.2 Experiments on Batch and Online Single Pass Discriminative
Training

Then, we compare batch and incremental single-pass tgaifdatch training means we
update the model only after collecting the statistics fréwa Wwhole train set. For incre-
mental training, we allow model update after processingsaauof the data. One possible
advantage of incremental training over batch training ésdtatistics collected by E-steps
are computed by the model with better accuracy. While fortbatining, the statistics are
only collected by the ML model. To perform incremental tra@) we randomly splitted
the train set of the Iraqi system into four or eight subsetsapfal size. A model update
was performed after processing each subset. We repeatexiteements three times with
different data splits and took the average WER as the redlitts.difference due to data
splits is within the range of-0.2% WER absolute for all the data points we collected.

The results are shown in figure 6.2. In the figure, BMMI incr begresents we per-
form incremental BMMI training which we update the model (M=atter processing each
subset. The variable b specifies how many batches of dataaitatde. BMMI incr b=4
has an WER of 33.4% after processing the whole train set. BMMli &4 is similar to
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BMMI incr b=4 except the statistics accumulate and are nagtrafter processing each
subset. Compared to the original incremental mode, thisepha® has access to more
data at the later stages of the training, but it may suffemfioconsistent statistics col-
lected by the models at different stages. As shown, theitigibecomes unstable at the
later stages of training. This result shows that the firsttegy is better than the second
one. We also compare how the number of batches may affectettiermance. In the
figure, we observe that although with more but smaller batctie performance is better
at the early stages of training, the final performance is hbuthe same. We also tried
12 batches but the training became unstable for both inar&ahmodes. Then, we also
apply feature space discriminative training using GDFT ed'grm incremental training.
GDFT+BMMI incr b=4 uses the strategy of BMMI incr b=4 and it a&yes 33.0% WER.
However, both incremental training algorithms are worsattheir corresponding batch
mode training where BMMI using rEBW with four M-steps (M=4) s WER of 33.2%
while GDFT(M=1)+BMMI(M=4) has an WER of 32.5%.

On the unseen TransTac Nov08 open set, we observe a singfat. trAs shown in
table 6.5, the batch mode single-pass training is bettertthacorresponding incremental
mode training. In sum, the batch training is slightly bettean the incremental training in
the context of single-pass discriminative training.

Jun08open | Nov08open

ML 37.0% 35.2%

BMMI(online) 33.4% 31.7%

BMMI(M=4) 33.2% 31.3%

GDFT 33.0% 31.6%
+BMMiI(online)

GDFT(M=1) 32.5% 31.0%
+BMMI(M=4)

Table 6.5: Comparing the performance of the online and bataersingle pass discrimi-
native training on the Iragi Jun08 and the unseen Nov08 ogisn s
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Chapter 7

Conclusions

7.1 Contributions

We list out the contributions of our thesis work as follows:

e We have proposed the GBW algorithm which is the generalizadiche BW and
EBW algorithm. The formulation of GBW justifies the heuristaosd the smoothing
techniques used in the EBW algorithm from a theoretical @spec

e The GBW framework also explains that the EBW algorithm usesdilergence
as a regularization function. This is a new insight which a$ discovered in the
original formulation of EBW. This finding also inspires bettariants of the EBW
algorithm. In our work, we propose the rEBW and the SEBW alpang.

e Our proposed rEBW algorithm can reduce the time for modelespli&criminative
training by half without any degradation on recognitionw@ecy. The rEBW algo-
rithm can further speed up the training process up to fouegifaster with small
degradation on accuracy.

e We have proposed the GDFT algorithm which generalizes CMLd.R&an perform
feature space discriminative training. In our experiments have found that the
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recognition performance of GDFT is comparable to fMMI but iEDonly requires
around% of the computation needed for fMPE/MMI.

We have extended our previous work on GDFT so that it can parémntext train-
ing like fMPE/MMI.

By combining GDFT and rEBW, we have proposed single pass thatative train-
ing which can achieve most of the improvement from discratire training by
processing the data only once. We also found that by alloworgrocess the data
twice, we could achieve all of the improvement.

We have compared our single pass discriminative trainingy wnline methods.
While both methods only process the data once, single pasigagives better
recognition accuracy.

Our proposed optimization algorithms for discriminatikening can greatly reduce
the time for building ASR systems. This allows us to incogterarger train set if
the amount of available data is unlimited.

We have explained the meanings of indirect statistics ugésl BE/MMI and RDLT
from the aspect of formulating an optimization problem. \Wevged that IMPE/MMI
and RDLT optimize a multi-objective optimization problenhéke insights help re-
searchers to understand the feature space discriminediveng algorithms better.
These issues are not previously discussed in the originarpaf fMPE/MMI and
RDLT.

The formulation of the GBW and GDFT algorithm shows that onecavert many
existing ML based algorithms to optimize for discriminatior other objective func-
tions. While this research only explored converting the BW @MLLR algorithm,
this formulation can be applied to many other algorithms al.wWhus, we created
an overall framework which hosts the traditionally used DJoathms. Further-
more, the overall framework gives insight that helps to tgvdetter solutions to
existing algorithms and tuning.
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7.2 Summary of Results

Using our baseline systems trained on sufficiently largewarhof training data, we have
achieved the following results:

Our experiments showed that the rEBW algorithm can achievesdme WER as the
standard EBW algorithm. Among the eight test sets on thrderdiit systems, the differ-
ence in WER is no more than2% absolute. The key advantage of rEBW is that it only
requires half of the training time compared to the standduVEalgorithm. The rEBW
algorithm can further speed up the training up to four timreetdr. However, this setting
would slightly degrade the recognition accuracy by around2% relative compared to
the standard EBW algorithm.

On the Iragi ASR system, GDFT achieved 4% relative reduction on WER compared
to fMMI which achieved around% relative reduction. However, after BMMI training, the
difference was gone. Both GDFT plus BMM and fMMI plus BMMI gaveand13 —15%
relative WER reduction. However, GDFT only needs one fiftthef¢computation required
for fMMI.

By combining all our proposed algorithms including GDFT a&B%V together with
fMMI and BMMI, we achieved31.2% and29.8% WER for the Iraqi Jun08 and Nov08
open set which are the best numbers for this system in thesth€smpared to the ML
baseline, the relative improvements abe7% and15.3% respectively.

For the single pass discriminative training, we achieved- 12% relative WER re-
duction from discriminative training compared to the ML élse by processing the data
only once. For single pass training, we jointly performedF3tand BMMI using rEBW.
Our single pass training is slightly better than the onlinaéning which gave arount%
relative reduction on WER.
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7.3 Future Challenges and Chances

Our proposed GBW algorithm is a new framework to formulateapegmization problem
for discriminative training. This framework provides ighis which are not discovered in
the original formulation of the EBW algorithm. These insghelp us to develop better
variants of the EBW algorithm like our proposed rEBW and sEBWbathms. While
our focus in this thesis is to speed up discriminative tragnihe idea can be expanded to
improve the recognition performance or perform semi-suiped training.

Under the GBW framework, we find that the EBW algorithm uses Kletience as a
regularization function but it assumes the model from tle¥ious EM iteration as the true
distribution. Our proposed rEBW algorithm exploits this Bygging in a discriminatively
updated model for regularization. However, one can alsg plunodels estimated from
or adapted for some unsupervised data. By doing so, we can gpmgéth a new EBW
algorithm which can combine supervised and unsupervigediig. A similar idea has
been explored in [Cui et al. (2011)] where the researchersgsed a variant of the EBW
algorithm which aims to combine supervised and unsupehdsscriminative training.

The formulation of GDFT context training provides a flexilidlamework to incorpo-
rate new features for GDFT. In the formulation, the projaettis performed on the super-
vectors which construction is arbitrary. For context tiagn we stack features within a
context window to form a supervector. However, one can caosthe supervectors using
posterior features or mean offset features like fMMI/MPEBeTonly drawback is the di-
mension of the supervectors cannot be too high or othertfisegomputational costs are
high. This problem is avoided in context training becaudg arsmall portion of the data
is assigned to train the projection. For other high dimemsideatures like posterior fea-
tures, one may need to apply some dimension reduction methadLDA before using
GDFT.

The framework of GBW and GDFT using Lagrange relaxation caagmtied to many
speech problems. Our proposed formulation can transforedgamithm which originally
optimizes for likelihood to optimize for some discriminadiobjective function. In ad-
dition, an explicit regularization function can be incldde the optimization problem.
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Generally speaking, if we have an ML algorithm which has asetl form solution for
% = 0 where( is the auxiliary function, one can apply the same method us&BW
and GDFT to convert the ML algorithm to optimize for some disinative objective
function as long as we can solye, (co; — @)‘98%' = 0, which is almost the same as the
original problem except we have an additional fagtey — ;). In most cases, we can
derive a generalized version of the algorithm which canmoze for likelihood or some

discriminative objective functions.
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