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Abstract

Discriminative training for speech recognition aims to minimize the errors caused by the
generative models. It is often formulated as an optimization problem involving the refer-
ences and the competing hypotheses. While discriminative training can improve recog-
nition performance, it comes with a few drawbacks. First, the optimization problem is
difficult to solve due to the complex objective functions. This leads to the need of heuris-
tics and smoothing techniques for optimization. Second, discriminative training is time
consuming since it can take days or weeks to finish on large systems.

The goal of this thesis is to reformulate the optimization problems of discriminative
training, so that we can develop better optimization algorithms which are more efficient.
Our methods are based on Lagrange relaxation which we convert the difficult optimization
problems into simpler convex problems. Our proposed generalized Baum-Welch (GBW)
algorithm is a generalization of the Baum-Welch (BW) algorithmand the extended Baum-
Welch (EBW) algorithm. Through the GBW framework, we discover an interesting con-
nection between EBW and information theory. This inspires usto develop better and faster
EBW variants, including the recursive EBW algorithm and statistical EBW algorithm.

By using the same framework of GBW, we propose generalized discriminative feature
transformation (GDFT) algorithm which transforms the constrained maximum likelihood
regression (CMLLR) to perform feature space discriminative training. We compare our
GDFT with the state-of-the-art feature space maximum mutual information (fMMI), and
show that GDFT is competitive in accuracy and runs much faster.

Based on our proposed algorithms, we introduce single pass discriminative training
which aims to extract as much improvement as possible by onlyallowing process the
data once. Our experiments show that single pass training can obtain 80-90% of the im-
provement available in the standard discriminative training procedure. All our proposed
algorithms are evaluated on large scale speech recognitionsystems.
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ASR Automatic Speech Recognition
BW Baum-Welch
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RDFT Region Dependent Feature Transformation
RDLT Region Dependent Linear Transformation
rEBW Recursive Extended Baum-Welch
SAT Speaker Adaptive Training
sEBW Statistical Extended Baum-Welch
TransTac Spoken Language Communication and Translation System for Tactical Use
VTLN Vocal Tract Length Normalization
WER Word Error Rate
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Chapter 1

Introduction

Discriminative training is one of the major topics in speechrecognition research. Suc-

cessful applications of discriminative training, especially the improvement to large scale

systems, have continued to draw a lot of researcher’s attention in the past 20 years.

The fundamental assumption of discriminative training is based on the model imper-

fectness, which causes conventional maximum likelihood (ML) approaches to be subop-

timal in terms of classification accuracy. In the case of speech recognition, the acoustic

model, i.e. the hidden Markov model (HMM), is known to be incorrect in many ways for

modeling human speech. For instance, the first order assumption and the independent out-

put assumption, are desirable from the computational and statistical point of view, but they

are not realistic to the data that we would like to model. Hence, the ML approach may not

give the best performance. As a result, researchers have been studying alternative model

parameter estimation techniques like discriminative training which aims at minimizing the

recognition error directly.

In general, discriminative training can be roughly dividedinto three parts: the recog-

nition error function, the optimization algorithm and the model that receives optimization.

The goal of discriminative training is to optimize the modelparameters such that the recog-

nition error is minimized on the train data.

In discriminative training, the recognition error is oftenexpressed as different forms
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of objective functions that involve the reference and the competing hypotheses. These ob-

jective functions can be considered as some smoothed versions of word error rate (WER)

which are suitable for optimization. Notable discriminative training examples include, but

are not limited to, maximum mutual information (MMI) [Valtchev et al. (1997)], minimum

phone error (MPE) [Povey (2003)] and minimum classificationerror (MCE) [Juang et al.

(1997)]. These discriminative training algorithms optimize the HMM parameters for their

smoothed recognition error functions (mutual information, phone error). These functions

are often more complicated than the log likelihood functionused in the ML approach.

Thus, the optimization procedures are also more time consuming and often require care-

ful tuning. While early discriminative training research focuses on the HMM, researchers

later investigated the possibility of applying discriminative training to other areas like fea-

ture extraction [Biem et al. (2001) ; Mak et al. (2002)], feature transformation [Povey et al.

(2005) ; Povey (2005) ; Zhang et al. (2006a) ; Zhang et al. (2006b)], speaker adaptation

[Gunawardana and Byrne (2001) ; Wang and Woodland (2004)], and unsupervised training

[Yu et al. (2007)]. Encouraging results have been reported and have pushed the research

on discriminative training.

While discriminative training is useful to improve speech recognition performance, it

comes with a few drawbacks. Due to the complicated objectivefunctions, the optimiza-

tion is difficult and the existing optimization algorithms often involve a lot of heuristics and

tuning. Another drawback of discriminative training is thevery long training time, since

in addition to estimating the parameters based on the references, discriminative training

also needs to consider the competing hypotheses. As a result, the practice and the imple-

mentation of discriminative training is often considered to be difficult and challenging.

The goal of this thesis is to propose a family of optimizationalgorithms which are

simple and efficient for both model space and feature space discriminative training. When

tuning and using some heuristics become necessary, the theories behind the algorithms

should explain the meaning of the tuning parameters, and give the users some basic ideas

about how to tune properly instead of trial and error.
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1.1 Optimization for Discriminative Training

This section aims to provide a brief introduction about the optimization problem of dis-

criminative training for acoustic modeling, and explains why such optimization is difficult.

A more detailed discussion will follow in chapter 2.

Discriminative training is often formulated as an optimization problem which targets

at minimizing the recognition error. Although word error rate (WER) is the target function

to be minimized, the function is non-differentiable and notsmooth which makes direct op-

timization difficult. Instead, discriminative training optimizes a smoothed approximation

of WER. One possible choice is the maximum mutual information(MMI). Consider

F (X, θ) = log
P (X|W ; θ)P (W )

∑

W ′ P (X|W ′; θ)P (W ′)
(1.1)

whereX ≡ x1, x2, . . . , xT is an observation sequence withT frames;θ represents the

set of model parameters to be optimized;W is the reference word sequence forX; The

denominator represents all possible word sequences as the competing hypotheses. Maxi-

mizing the functionf is the same as maximizing the empirical mutual information between

X andW . Intuitively speaking, this objective function aims to keep the likelihood of the

reference intact and at the same time, reduces the likelihood of the competing hypotheses.

As a result, the optimized model will less likely be confusedwith the wrong hypotheses

and has a better chance to perform recognition correctly.

Optimization off is not trivial. Assumingθ refers to the HMM parameters which

include the Gaussian means and covariances, the objective function is not concave with

respect toθ. As a result, the solution from optimizingf is not guaranteed to be global

optimal. Another difficulty of this optimization problem isthe unbounded issue. Assuming

there is one Gaussian which only appears in the denominator.The optimization problem

for this particular Gaussian would become a minimum likelihood problem. The solution

of the minimum likelihood problem is not bounded because to keep the likelihood zero,

either the mean of the Gaussian has to be infinitely far away from the input feature or

the covariance has to be zero; both cases are undesirable. Ingeneral, if the denominator

count of a Gaussian is higher than its numerator count, it triggers the unbounded issue,

3



and therefore, the optimization is difficult.

1.2 Proposed Research

For our research, we reformulate the optimization problemsfor discriminative training,

and propose new optimization algorithms based on Lagrange relaxation [Boyd and Van-

denberghe (2004)]. In which we relax the difficult optimization problems into simpler

convex problems. We propose the generalized Baum-Welch (GBW) algorithm for model

space discriminative training, and the generalized discriminative feature transformation

(GDFT) for feature space discriminative training. The GBW algorithm generalizes the

Baum-Welch (BW) and the extended Baum-Welch (EBW) algorithm for HMM. The GBW

formulation shows that the heuristics and the smoothing techniques used by the EBW algo-

rithm can be expressed as some distance based regularization in the optimization problem.

This formulation also reveals an interesting connection between the EBW algorithm and

information theory, and inspires better EBW variants. Based on the GBW framework, the

GDFT algorithm transforms the constrained maximum likelihood regression (CMLLR)

algorithm to perform feature space discriminative training. Its formulation shows efficient

ways to combine model space and feature space discriminative training.

1.3 Thesis Organization

In chapter 2, we discuss the existing methods for discriminative training which include

the objective functions and the optimization algorithms for HMM. We also compare some

of the feature space discriminative training algorithms todate. We describe the baseline

ASR systems and used the data sets for experiments in chapter3. In chapter 4, we pro-

pose the GBW algorithm for model space discriminative training and we show that both

Baum-Welch (BW) algorithm and the extended Baum-Welch (EBW) algorithm are special

cases of GBW. In addition, we show how the GBW formulation can lead to better vari-

ants of the EBW algorithm. Chapter 5 is about our feature space discriminative training

4



algorithm, GDFT. We explore how GDFT can be efficiently integrated with model space

discriminative training. We also compare GDFT with the state of the art feature space

discriminative training algorithms and study different training procedures. Based on the

proposed optimization algorithms, we discuss how to perform single pass discriminative

training in chapter 6, Chapter 7 is about the future work and the conclusions.
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Chapter 2

Background

2.1 Discriminative Objective Functions for Speech Recog-

nition

The acoustic model, HMM, is always optimized for some objective functions during train-

ing. As a generative model, maximizing the likelihood on thetrain set is the standard

approach and when a Gaussian distribution is used as state emission probability, the log

likelihood can be expressed as,

FML(θ) =
∑

i

log P (X(i)|Wi; θ)

=
∑

i

∑

t

∑

j

−
1

2
γt(j){D log(2π) + log |Σj| + (x

(i)
t − µj)

′Σ−1
j (x

(i)
t − µj)}

whereWi is the reference word sequence of thei-th utterance in the train set withT

frames;θ represents the HMM parameters which includes the mean vectors (µj) and the

covariance matrices (Σj); X(i) ≡ {x
(i)
1 , . . . , x

(i)
T } is the observation of thei-th utterance

and each featurex(i)
t is aD-dimensional feature vector;γt(j) is the posterior probability

of choosing thej-th Gaussian distribution at timet.

Maximizing the likelihood function,FML, can be done by the Baum-Welch (BW) al-
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gorithm [Baum et al. (1970), Welch (2003)] which utilizes theExpectation-Maximization

(EM) algorithm. More details will be given in section 2.2.1.SinceFML contains some

terms which are not related to the optimization ofθ, an auxiliary functionQ is used instead

to represent the likelihood during training,

Q(θ) =
∑

t

∑

j

γt(j){log |Σj| + (xt − µj)
′Σ−1

j (xt − µj)} . (2.1)

We removed the utterance indexi just for simplicity. This auxiliary function can be con-

sidered as a negative log likelihood function. Thus, minimizing Q on θ is equivalent to

maximizingFML.

2.1.1 Maximum Mutual Information (MMI)

As mentioned, HMM is not a correct model for the human speech data, so ML estima-

tion is not optimal in terms of classification or recognitionaccuracy. To optimize for the

recognition performance, one can optimize the posterior probability, P (W |X; θ), since

the Bayes decision rule states that the classifier would achieve the minimum error if it

makes decision based on the posterior probability. By the Bayes rule, the posterior can be

decomposed into:

P (W |X) =
P (X|W )P (W )

P (X)

=
P (X|W )P (W )

∑

W ′ P (X|W ′)P (W ′)
(2.2)

whereP (X|W ) is the likelihood given by the HMM for speech recognition;P (W ) is the

prior and it is the language model (LM) for speech recognition.

During recognition,θ is fixed so thatP (X) is a constant. Hence, it can be ignored and

the recognizer would search for a hypothesisW such thatP (W |X) ∝ P (X|W )P (W )

is maximized. However, in training,θ is not fixed, soP (X) should also be considered

during optimization.

Optimizingθ for the posterior probability is also known as maximum mutual informa-
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tion estimation because the empirical mutual information is expressed as,

I(W,X) =
P (X|W )P (W )

P (X)P (W )

= P (W |X) ×
1

P (W )
. (2.3)

Given P (W ) is uniformly distributed, 1
P (W )

is a constant, so maximizing the posterior

probability is equivalent to maximizing the mutual information.

Although the denominator of equation 2.2 considers all possible word sequences, in

practice, it is approximated by an N-best list or a lattice. When using lattices to represent

competing hypotheses, a path which represents the reference is added to the lattice if this

path is missing from the lattice. One can consider the lattice as an HMM with a directed

acyclic topology. In such a case, the objective function canbe simplified as

FMMI(θ) = log Pr(X; θ) − log Pc(X; θ) . (2.4)

wherePr is the likelihood of the reference;Pc is the likelihood of the lattice with reference

path attached. The prior probabilities likeP (W ) andP (W ′) are removed since we assume

they are uniformly distributed. However, discriminative training in practice often uses

a unigram language model instead of a uniform one. Hence, thelikelihood should be

adjusted according to the priors and it should be taken care off by the forward algorithm

when computinglog Pr andlog Pc. In sum, maximizingFMMI is equivalent to maximizing

the posterior probability and the mutual information.

It is important to note that the first term ofFMMI is the same asFML which is the like-

lihood of the reference. The second term ofFMMI represents the competing hypotheses.

As a result, MMI is computationally more expensive than the ML approach since it needs

to first generate a set of competing hypotheses, and second, the objective function involves

more terms compared to the ML objective function.

2.1.2 Minimum Phone Error (MPE)

As a discriminative objective function, MMI considers all competing hypothesesW ′ equal

and aims to improve the overall performance on the train set.However, speech recognition
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is often evaluated by word error rate (WER) or phone error rate (PER), which considers

every token in the hypotheses. As a result, one may argue thatcompeting hypotheses

should not be considered equal, but one should look at the error rate of each individual

competitor. This brings the interest to derive a discriminative objective function which

can evaluate the error at a finer degree. Minimum phone error (MPE) [Povey (2003)] is

one of the most popular discriminative objective functionsto date, which optimizes the

phone error.

The objective function of MPE is defined as,

FMPE(θ) =
∑

i

∑

W ′

i
P (X|W ′

i ; θ)P (W ′
i )A(W ′

i ,Wi)
∑

W ′

i
P (X|W ′

i ; θ)P (W ′
i )

, (2.5)

whereA(W ′
i ,Wi) computes a raw phone accuracy for the competing hypothesisW ′

i on

the referenceWi which is thei-th utterance in the train set. Compared to MMI which

numerator is the reference, the numerator of MPE consists ofall possible word sequences

weighed by their phone accuracy. The MPE objective functioncan be further rewritten as,

F ′
MPE(θ) =

∑

i

∑

W ′

i

P (W ′
i |X; θ)A(W ′

i ,Wi) , (2.6)

whereP (W ′
i |X; θ) is the model-based posterior probability of the word sequenceW ′

i .

The MPE objective function is very flexible in the sense that we can use word error

instead of phone error. This is known as minimum word error (MWE). However, previous

research found that MPE often outperforms MWE [Povey (2003)].

2.1.3 Minimum Classification Error (MCE)

MCE was originally proposed for multiple category classification problem where it opti-

mizes a smoothed error rate based on isolated tokens [Juang and Katagiri (1992)]. Later,

it was generalized to optimize the string level error for speech recognition [Juang et al.

(1997)]. Similar to MMI, the MCE objective function is based on the reference and the

competing hypotheses. However, MCE defines a distance measure,

d(X, θ) = log
P (X|W ; θ)

[ 1
N

∑N
i=1,Wi 6=W P η(X|Wi; θ)]

1

η

(2.7)
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whereN is the number of competitors. To simulate the decision rule during decoding,

d(X, θ) ≥ 0 implies incorrect classification. Based on this distance measure, the MCE

objective function is defined as,

FMCE(θ) =
1

1 + exp−(ad(X,θ)+b)
, (2.8)

which uses a sigmoid function to simulate the zero-one classification count. The advantage

of using the sigmoid function is to filter the outliers. As thegradient of the sigmoid

function approaches zero whend → −∞ or d → ∞, the sigmoid function allows the

optimization to focus on the instances that can be correctedinstead of some very wrong

or problematic utterances. The parametersa andb can be tuned to control the shape of

the sigmoid function. Hence, it can control the rate of the optimization and region that the

optimization should focus on. Optimization of MCE is based ongradient descent, and it is

known as the generalized probabilistic descent. However, [He and Deng (2008)] showed

that it is possible to restructure the MCE objective functionsuch that it becomes a rational

function which can be optimized by the extended Baum-Welch (EBW) algorithm.

2.1.4 Boosted Maximum Mutual Information (BMMI)

Proposed by [Povey et al. (2008)], BMMI is an extension to the MMI objective function.

The BMMI objective function is defined as,

FBMMI(θ) = log
P (X|W ; θ)P (W )

∑

W ′ P (X|W ′; θ)P (W ′) exp(−b × A(W ′,W ))
. (2.9)

whereb is a tunable parameter called boosting factor [Povey et al. (2008)]. Similar to the

MPE objective function, BMMI uses an accuracy functionA to evaluate the competing

hypotheses. However, this scaling is only applied on the denominator statistics. According

to [Saon and Povey (2008), it can be shown that BMMI is connected to large margin

training.

The implementation of BMMI is very simple: one may subtract the acoustic scores

(i.e. log likelihood) in the lattice byb × A(W ′,W ) during the forward backward pass to

obtain the adjusted posterior probability, then the rest isthe same as the MMI training. As
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shown in [Povey et al. (2008)], BMMI outperforms MMI and is as effective as MPE for

both model space and feature space training. Both BMMI and MPE are considered to be

state-of-the-art in discriminative training.

2.2 Optimization Algorithms for Hidden Markov Model

(HMM)

This section focuses on optimization algorithms for HMM. Webegin with the BW algo-

rithm, which provides ML estimation, then the EBW algorithm which can optimize the

HMM for different discriminative objective functions.

2.2.1 Baum-Welch Algorithm (BW)

HMM contains hidden state sequences which are not directly observable. Hence, it is not

trivial to optimize the likelihood of a HMM with observable data,X. Consider,

log P (X|θ) = log(
∑

S

P (X,S; θ))

= log(
∑

S

P (X|S; θ)P (S)), (2.10)

whereS is an hidden state sequence of HMM. Since the complete log likelihoodP (X,S; θ)

is expressed as a summation within a log function, it is difficult to decouple the likelihood

and the prior probabilities and this makes optimization difficult.

To handle this problem, the BW algorithm [Baum et al. (1970); Welch (2003)], which

is based on the EM algorithm, does not optimize the log likelihood,log P (X|θ), directly.

Instead, it optimizes the complete log likelihood,P (X,S; θ). By the rule of total proba-

bility,

log P (X,S; θ) = log P (S|X; θ) + log P (X; θ)

⇒ log P (X; θ) = log P (X,S; θ) − log P (S|X; θ) . (2.11)
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Then, assuming we have a new set of HMM parameters,θ′ and we take expectation with

respect toS, conditional on a givenX andθ, we have

ES|X,θ[log P (X; θ′)]
︸ ︷︷ ︸

L(X, θ′)
=

ES|X,θ[log P (X,S; θ′)]
︸ ︷︷ ︸

Q(θ, θ′)
−

ES|X,θ[log P (S|X; θ′)]
︸ ︷︷ ︸

H(θ, θ′)
(2.12)

with three components:L(X, θ′), Q(θ, θ′) andH(θ, θ′).

The expected log likelihood term,L(X, θ′), can be easily simplified,

ES|X,θ[log P (X; θ′)] =
∑

S

log P (X; θ′)P (S|X, θ)

= log P (X; θ′)
∑

S

P (S|X, θ)

= log P (X; θ′) (2.13)

which is equivalent to the log likelihood of the observable data.

Consider theH function,

H(θ, θ′) = ES|X,θ[log P (S|X; θ′)]

=
∑

S

log P (S|X; θ′)P (S|X; θ)

≤
∑

S

log P (S|X; θ)P (S|X; θ)

= H(θ, θ) . (2.14)

H(θ, θ′) ≤ H(θ, θ) is true due to the Jensen’s inequality and it plays a key role in the BW

and the EM algorithm.

The Q function is known as the auxiliary function. Given equation2.13 and equa-

tion 2.14, consider,

L(X, θ′) − L(X, θ) = Q(θ, θ′) − Q(θ, θ) − (H(θ, θ′) − H(θ, θ))

= Q(θ, θ′) − Q(θ, θ) − (+ve∆) . (2.15)

This impliesL(X, θ′) ≥ L(X, θ) if and only if Q(θ, θ′) ≥ Q(θ, θ). Hence, one can

optimize the auxiliary functionQ instead ofL.
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Optimizing theQ function is easier since it no longer has the variable coupling issue

as shown in equation 2.10. Consider,

max
θ′

Q(θ, θ′) = ES|X,θ[log P (X,S; θ′)]

=
∑

S

P (S|X; θ) log P (X,S; θ′)

=
∑

S

P (S|X; θ)(log P (X|S; θ′) + log P (S; θ′)) . (2.16)

Given an initial modelθ, we can search forθ′ such thatQ is maximized. We can obtain

the BW update equations for continuous density HMM by taking the partial derivative of

Q with respect to the means and covariances and set them to zero,

µBW
j =

∑

t γt(j)xt
∑

t γt(j)
(2.17)

ΣBW
j =

∑

t γt(j)xtx
′
t

∑

t γt(j)
− µjµ

′
j . (2.18)

2.2.2 Extended Baum-Welch Algorithm (EBW)

The EBW algorithm aims to derive an HMM update equation similar to the BW algo-

rithm, but optimizing for some discriminative objective function. In the work conducted

by [Gopalakrishnan et al. (1989, 1991)], an algorithm is developed to optimize rational

objective functions for the discrete HMM. Since most discriminative objective functions

are rational functions, the algorithm can perform discriminative training. The algorithm

is based on the Baum-Eagon inequality for polynomials. The theory states that given a

polynomial,f(x), with non-negative coefficients and real variablesxij such thatxij ≥ 0

and
∑

j xij = 1, the transformation,

T (xij) =
xij(

∂f
∂xij

(x))
∑

j xij(
∂f

∂xij
(x))

, (2.19)

guaranteesf(T (x)) ≥ f(x).

This theory is useful for discrete HMM optimization since itoperates on a domain

of discrete probability distributions (xij ≥ 0 and
∑

j xij = 1) and the likelihood of
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discrete HMM can be easily expressed as such polynomial. However, discriminative

objective functions are rational functions which are not the type of functions that the

Baum-Eagon inequality is dealing with. To handle this problem, [Gopalakrishnan et al.

(1989)] suggested given a rational functionr(x) = n(x)
d(x)

such thatn(x) andd(x) are poly-

nomials fulfilling the constraints of Baum-Eagon inequality, one can optimizeg(x) =

n(x) − r(x0)d(x) instead ofr(x) directly (wherex0 represents some initial value ofx).

The reason is firstg(x0) = 0, hence, if there existsx such thatg(x) > g(x0) = 0, it

implies,

g(x) > 0

⇒ n(x) − r(x0)d(x) > 0

⇒ n(x)
d(x)

− r(x0) > 0

⇒ r(x) − r(x0) > 0 . (2.20)

As a result, one can work on the polynomialg(x) instead of the rational functionr(x).

However, the coefficients ofg(x) may no longer be non-negative which is required by the

Baum-Eagon inequality. Therefore, one can modify equation 2.19 to,

TD(xij) =
xij(

∂f
∂xij

(x) + D)
∑

j xij(
∂f

∂xij
(x) + D)

, (2.21)

and it can be shown that as long asD is large enough, whereD is a finite positive real

number, the transformation,TD, still guaranteesg(TD(x)) ≥ g(x) [Gopalakrishnan et al.

(1989)]. Finally, the update equations for discrete HMM which optimizes for any rational

objective function,R, are,

âij =
aij(

∂R
∂aij

(θ) + D)
∑

j aij(
∂R
∂aij

(θ) + D)

b̂ik =
bik(

∂R
∂bik

(θ) + D)
∑

k bik(
∂R
∂bik

(θ) + D)
(2.22)

whereaij is the transition probability from statei to statej; bik is the emission probability

of output labelk while being at statei; R is any rational objective function which can be
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any discriminative objective function in section 2.1;θ represents the current parameters of

the discrete HMM.

Based on the work by [Gopalakrishnan et al. (1989, 1991)], thealgorithm is extended

for continuous density HMM with Gaussian mixtures [Normandin and Morgera (1991)].

The idea is to use infinitely many discrete distributions to approximate a Gaussian distri-

bution. Figure 2.1 is an illustration to explain the approximation [Normandin and Morgera

(1991)].

Figure 2.1: A figure showing the use of discrete distributions to approximate a Gaussian

distribution.

Given the interval width,∆, is small and restricting the discrete distributions to be

consistent to the Gaussian distribution they are approximating, the work in [Normandin

and Morgera (1991)] derives an update equation for continuous density HMM and these

equations are later known as the EBW update equations:

µEBW
j =

∑

t γ
r
t (j)xt −

∑

t γ
c
t (j)xt + Djµ

0
j

∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

, (2.23)

ΣEBW
j =

∑

t γ
r
t (j)xtx

′

t −
∑

t γ
c
t (j)xtx

′

t + Dj(Σ
0
j + µ0

jµ
0′

j )
∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

− µEBW
j µEBW ′

j (2.24)

whereµ0 andΣ0 are the mean and covariance of the previous iteration and thesuperscriptr
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andc denotes whether the posterior probability or the observation belongs to the numerator

(reference) or the denominator (competitor) respectively.

Unlike the update equations of discrete HMM which the constant D is some finite

number, in the formulation of [Normandin and Morgera (1991)], the value ofD is related

to the interval width∆. When∆ tends to zero,D goes to infinity. Hence, the work in

[Normandin and Morgera (1991)] concludes that these updateequations are not guaranteed

to converge. However, recent studies [He and Deng (2008)] found that it is possible to

prove EBW’s convergence given a finiteD.

Since then, the EBW algorithm has shown to be effective in improving large scale

speech recognition systems [Valtchev et al. (1997); Woodland and Povey (2000); Povey

and Woodland (2001); Povey (2003)]. However, one remainingproblem is how to set the

D-term in the EBW update equations. While the convergence proofs from [Normandin

and Morgera (1991)] and [He and Deng (2008)] do not give any guideline about tuning,

this D value is often tuned empirically. One common heuristic proposed by [Povey and

Woodland (2001)], is settingDj to be the maximum of i) twice the value necessary to keep

the covariance of thej-th Gaussian to be positive definite, or, ii)E times the denominator

occupancy, whereE is tuned empirically and its value is often between one and two.

Another technique which is also often applied to EBW is the I-smoothing [Povey and

Woodland (2002); Povey (2003)]. I-smoothing can be considered as using a prior over the

parameters of each Gaussian distribution. For the originalI-smoothing, the prior is based

on ML statistics and the EBW update equations are extended as,

µ̂j =

∑

t γ
r
t (j)xt −

∑

t γ
c
t (j)xt + Djµ

0
j + τµML

j
∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj + τ

, (2.25)

Σ̂j =

∑

t γ
r
t (j)xtx

′
t −

∑

t γ
c
t (j)xtx

′

t + Dj(Σ
0
j + µ0

jµ
0′

j ) + τ(ΣML
j + µML

j µML′

j )
∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj + τ

− µ̂jµ̂j (2.26)

whereµML
j andΣML

j are ML estimates of the mean and covariance ofj-th Gaussian using

the statistics collected in the current iteration;τ is a tuning parameter for I-smoothing

which needs to be tuned empirically. In most cases,τ is set to 100 for MMI-based objective

functions orτ is set to 50 for MPE objective function. I-smoothing is not limited to using
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ML statistics. As shown in [Povey et al. (2008)], when MPE or BMMI is used, one can

also use MMI statistics, or the statistics from the previousiteration to perform I-smoothing.

It can further improve the performance of discriminative training.

2.2.3 Gradient Ascent and Its Relation to the EBW Algorithm

Before EBW was proposed, discriminative training was performed using gradient descent.

Gradient ascent can be performed by computing the gradient of the objective function with

respect to the model parameters to be optimized. For example, to optimize the acoustic

model for the MMI objective function, one can compute the gradient for mean,

∂FMMI

∂µj

=
∂

∂µj

(log Pr(X; µj) − log Pc(X; µj))

=
∑

t

γr
t (j)Σ

−1
j (xt − µj) −

∑

t

γc
t (j)Σ

−1
j (xt − µj) , (2.27)

and the gradient for covariance,

∂FMMI

∂Σj

=
∂

∂Σj

(log Pr(X; Σj) − log Pc(X; Σj))

=
1

2

∑

t

γr
t (j)[Σ

−1
j − Σ−1

j (xt − µj)(xt − µj)
′Σ−1

j ]

−
1

2

∑

t

γc
t (j)[Σ

−1
j − Σ−1

j (xt − µj)(xt − µj)
′Σ−1

j ] ./ (2.28)

Then, we obtain the update equations for gradient ascent [Schlüter et al. (1997)],

µ̃jd := µjd +
λµ

σ2
jd

[
∑

t

γr
t (j)xt −

∑

t

γc
t (j)xt +

∑

t

(γr
t (j) − γc

t (j))µjd] (2.29)

σ̃2
jd := σjd +

λσ

2σ4
jd

[
∑

t

γr
t (j)x

2
t −

∑

t

γc
t (j)x

2
t

− 2(
∑

t

γr
t (j)xt −

∑

t

γc
t (j)xt)µjd

+
∑

t

(γr
t (j) − γc

t (j))(µ
2
jd − σ2

jd)] . (2.30)
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whereµ̃jd andσ̃2
jd are thed-th dimension of the updatedj-th Gaussian distribution respec-

tively.

In [Schlüter et al. (1997)], it was discovered that by choosing appropriate learning

rates,λµ andλσ,

λµ =
σ2

jd
∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

(2.31)

λσ =
2σ4

jd
∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

, (2.32)

whereDj is the Gaussian specific constant used in the EBW algorithm. Then, the update

equations for gradient ascent are very close to the EBW updateequations,

µ̃jd =

∑

t γ
r
t (j)xt −

∑

t γ
c
t (j)xt + Djµjd

∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

(2.33)

σ̃2
jd =

∑

t γ
r
t (j)x

2
t −

∑

t γ
c
t (j)x

2
t + Dj(σ

2
jd + µ2

jd)
∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

− µ̃2
jd + (µjd − µ̃jd)

2 (2.34)

where the mean update equation is the same as the EBW update equation and the covari-

ance update equation has an extra term(µjd − µ̃jd)
2.

2.3 From Model Space to Feature Space Discriminative

Training

Discriminative training is not only applicable to HMM optimization. Previous studies

have shown that discriminative training can also optimize the features to improve recog-

nition performance. Feature space discriminative training can be roughly divided into two

types: one type focuses on the feature extraction process and another type is about feature

transformation.

Discriminative feature extraction (DFE) optimizes components in the feature extrac-

tion process for some discriminative objective function like MCE. In [Biem and Katagiri

(1993, 1994); Mak et al. (2002, 2003)], the filter-bank is optimized for MCE using gradi-

ent descent, and the optimized features was found to be effective in improving recognition
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performance of smaller tasks like TIDIGITS [Leonard (1984)] and Aurora [Pearce and

Hirsch (2000)] corpora.

Another type of feature space discriminative training is often known as the discrimina-

tive feature transformation (DFT) methods. DFT leaves the feature extraction process the

same but applies some discriminatively optimized transformation on the features. Popu-

lar DFT techniques include feature space MPE/MMI (fMPE/MMI) [Povey et al. (2005);

Povey (2005); Povey et al. (2008)], and region dependent feature transformation (RDFT)

[Zhang et al. (2006a,b)]. These techniques have proven to beeffective on improving large

scale speech recognition tasks.

2.3.1 Feature Space MPE/MMI (fMPE/MMI)

fMPE/MMI 1 discriminative training algorithm performs linear transformation on the fea-

ture vectors, and the transformation is optimized for the MPE/MMI objective function.

The basic form of fMPE/MMI [Povey et al. (2005)] is formulated as

zt = xt + M1ht , (2.35)

wherext is the original feature at timet and we assume the feature space dimension is

D; ht is the Gaussian posterior vector computed by a Gaussian mixture model (GMM)

on featurext; M1 is a linear transform which is optimized for MMI/MPE using gradient

ascent andzt is the transformed feature vector. The GMM, either trained from the data or

induced from the acoustic model, determines which transforms should be applied to the

feature vectors.

The paper by [Zhang et al. (2006a)] shows that equation 2.35 can be rewritten as,

yt =
∑

i

γt(i)(xt + bi) = xt +
∑

i

γt(i)bi (2.36)

wherebi is a D-dimensional bias corresponding to thei-th row of M1; γt(i) is the pos-

terior probability of Gaussiani at time t. From this point of view, we can consider the

1I would like to thank George Saon who spent a great deal of timeteaching me the theoretical and

practical details of fMPE/MMI.
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transformation of fMMI/MPE consists of a set of biases to be added to the features, and

the weights,γt(i), is determined by the GMM during recognition.

While this basic form of fMPE/MMI can improve the recognitionperformance, the

feature transform in fMPE/MMI is extended to incorporate more features. One proposed

extension is mean offset features [Povey (2005)]. It is doneby expanding the vectorht so

that it does not only contain the posterior probabilities but also the mean-offset features,

i.e. ht is now redefined as:

ht ≡ [5γ1, γ1(xt(1) − µ1(1))/σ1(1), γ1(xt(2) − µ1(2))/σ1(2), . . . ,

5γ2, γ2(xt(1) − µ2(1))/σ2(1), γ2(xt(2) − µ2(2))/σ2(2), . . . ,

5γN , γN(xt(1) − µN(1))/σN(1), γN(xt(2) − µN(2))/σN(2), . . .]′ .

Although the number of parameters increases as the dimension of ht increases (ht is now

N(D + 1)-dimension whereN is the number of mixtures in the GMM), it was found

fMPE/MMI with this extension requires fewer mixtures in theGMM (which leads to fewer

biases). While the original fMPE/MMI needs hundreds of thousands mixtures, the new

fMPE/MMI only needs a few thousands mixtures [Povey (2005)]. Therefore, the number

of parameters remains tractable for training.

Another extension to fMMI/MPE is context training. In addition to the main transform,

M1, there is another layer of transformation for the features.After applying the main

transform,M1, to the mean offset features,ht, we obtain the offset vectors,

yt = M1ht . (2.37)

Then, we apply the context transform,M2,

ztd = xtd +
F∑

f=−F

M2,(f,d)yt+f,d (2.38)

whereztd is thed-th dimension of the final feature vectorzt; M2,(f,d) represents thef -th

row andd column ofM2.

The context transform,M2 is optimized for the MMI/MPE objective function like the

main transform. It is important to note that since bothM1 andM2 are optimized using

21



gradient ascent. They cannot be both zero matrices initially since otherwise, the gradients

of M1 andM2 are always zero. To handle this situation,M1 is initialized as a zero matrix,

while M2 is initialized in a way that the frames closer to the center frame get more weights

compared to the frames further away. For example, considering a simple case that the

context window has a size of±1 frame,M2 can be initialized as

M2 =









1
2
, . . . , 1

2

1, . . . , 1
1

2
, . . . ,

1

2
︸ ︷︷ ︸

size of D









(2.39)

which consists of3 rows andD columns. This transform performs context expansion and

produces the final feature vectorszt. In general, the context matrix,M2 should have2F +1

rows andD columns.

The last extension to fMMI/MPE described in [Povey (2005)] is block transformation.

Effectively, it is having multiple context and main transforms. Suppose we haveK blocks

of transforms, it means,

yk
t = Mk

1 ht (2.40)

ztd = xtd +
K∑

k=1

F∑

f=−F

1

K
Mk

2,(f,d)y
k
t+f,d . (2.41)

In addition, the factor1
K

can be merged intoMk
2 and optimized together, Hence, we have

the final fMMI/MPE equation for computing the features,

ztd = xtd +
K∑

k=1

F∑

f=−F

Mk
2,(f,d)y

k
t+f,d . (2.42)

Although the sum of linear transforms is equivalent to usingone single linear transform,

in practice, using multiple transforms improves the performance of fMPE/MMI. The ini-

tialization remains the same forMk
1 andMk

2 except all entries inMk
2 needs to add a small

random numbers to make sure that the transforms will not go tothe same direction during

the gradient ascent.
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The training procedure of fMPE/MMI is iterative and each iteration involves three

passes on the data [Povey (2005)]. The first pass collects theMPE/MMI statistics. This

statistics are called indirect statistics which are required to augment the gradients. More

details on this subject will be discussed in section 2.3.3. The second pass collects the

fMPE/MMI statistics for the purpose of performing gradientascent on the main and the

context transforms. The final pass is performing ML update for the HMM using the new

features from the second pass. The whole process is repeatedfour times. After the fea-

tures are optimized for MPE/MMI objective function, one canfurther improve recognition

performance by using the model space MPE/MMI.

2.3.2 Region Dependent Feature Transformation (RDFT)

Region dependent feature transformation (RDFT) [Zhang et al.(2006a,b)] is similar to

fMPE/MMI in the sense that it uses a GMM to divide the feature space into different

regions, and each region has its own specific transform. The final feature of RDFT is

defined as a weighted average of all region specific features,

zt =
∑

i

γt(i)fi(xt) . (2.43)

When the transformation is linear, this form of RDFT is called region dependent linear

transformation (RDLT). The final features are computed by,

zt =
∑

i

γt(i)(Aixt + bi) , (2.44)

whereAi is the transformation matrix optimized for MPE/MMI objective. Compared to

equation 2.36 of fMPE/MMI, RDLT is a more general form of fMPE/MMI, since it con-

sists of the transformation matrices,Ai, in addition to the biases. Similar to fMPE/MMI,

RDLT can also perform context training. In such a case,Ai becomes a projection matrix

to project the concatenated feature supervectors back to the feature space. The supervec-

tors may also contain the posterior features like fMPE/MMI if needed. For optimization,

RDLT uses a quasi-Newton algorithm which uses gradient information to approximate the

Hessian matrix for performing update like Newton method.
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The work in [Zhang et al. (2006b)] shows fMPE/MMI with mean offset features can

be rewritten as a form of RDLT. To simplify the discussion, theauthors assume no context

training. Then, by defining,

γt = [γt(1), . . . , γt(N)]′ (2.45)

δt = [γt(1)(xt − µ1)
′Σ−1′

1 , . . . , γt(N)(xt − µN)′Σ−1′

N ]′ , (2.46)

one can reorganize the equation 2.35 into,

zt = xt + Maδt + Mbγt , (2.47)

which breaks the transformM into two parts:Ma andMb. Ma is a transform applied

to the mean-offset features and its dimension isd × Nd; Mb is a transform applied to the

posterior features and its dimension isd×N . Since
∑N

i=1 γt(i) = 1, we can further rewrite

equation 2.47 as,

zt = xt +
N∑

i=1

(γt(i)M
(i)
a Σ−1

i (xt − µi) + γt(i)M
(i)
b )

=
N∑

i=1

γt(i)[(I + M (i)
a Σ−1

i )xt + (M
(i)
b − M (i)

a Σ−1
i µi)] . (2.48)

whereM
(i)
a is thei-th d × d block ofMa andM

(i)
b is thei − th column ofMb.

[Zhang et al. (2006b)] concludes that this can be consideredas a constrained version

of RDLT which restricts the transform in equation 2.44 to be,

Ai = I + M (i)
a Σ−1

i (2.49)

bi = M
(i)
b − M (i)

a Σ−1
i µi . (2.50)

In sum, RDLT can be considered as a more general form of fMPE/MMI.

2.3.3 Optimization and Indirect Statistics for fMPE/MMI and RDLT

Optimization for fMPE/MMI and RDLT is performed by gradient ascent or quasi-Newton

method. However, instead of using the gradient to update thefeature transforms, all gradi-

ents are augmented by a term called indirect statistics [Povey et al. (2005)]. In this section,

we describe what this means from the optimization perspective.
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To simplify the discussion, we assume that we use the gradient descent for optimiza-

tion, and MMI for the discriminative objective function. Let QMMI be the auxiliary function

which represents the negative MMI objective function, i.e.

QMMI =
∑

t

∑

m

γr
t (m)[log |Σm| + (zt − µm)′Σ−1

m (zt − µm)]

−
∑

t

∑

m

γc
t (m)[log |Σm| + (zt − µm)′Σ−1

m (zt − µm)] . (2.51)

Minimizing QMMI is equivalent to maximizing the mutual information, andzt is the final

feature vector which is also a function of the feature transforms that we are optimizing.

Also, we assume that we use a context window of size±F frames andK blocks of trans-

forms. To perform gradient descent, we need to compute the gradient with respect to the

main transform,Mk
1 and the context transform,Mk

2 ,

(
∂Qdirect

MMI

∂Mk
1

)

(i,j)

=
∑

t

(
∂Qdirect

MMI

∂zt

)

i

F∑

f=−F

Mk
2,(f+F,i)ht+f,j (2.52)

(
∂Qdirect

MMI

∂Mk
2

)

(f+F,i)

=
∑

t

(
∂Qdirect

MMI

∂zt

)

i

yk
t+f,i (2.53)

∂Qdirect
MMI

∂zt

=
∑

m

γr
t (m)Σ−1

m (zt − µm) −
∑

m

γc
t (m)Σ−1

j (zt − µm) ,(2.54)

where(
∂Qdirect

MMI
∂zt

)i represents thei-th element of in the vector
∂Qdirect

MMI
∂zt

and the index(i, j)

represents the row and the column of the corresponding matrices.

The gradients in equation 2.52 and 2.53 are called direct statistics. However, instead

of using these gradients to update the feature transforms, the gradients are augmented by,

∂QMMI

∂Mk
1

=
∂Qdirect

MMI

∂Mk
1

+
∂F indirect

MMI

∂Mk
1

(2.55)

∂QMMI

∂Mk
2

=
∂Qdirect

MMI

∂Mk
2

+
∂F indirect

MMI

∂Mk
2

(2.56)
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where
(

∂Qindirect
MMI

∂Mk
1

)

(i,j)

=
∑

t

(
∂Qindirect

MMI

∂zt

)

i

F∑

f=−F

Mk
2,(f+F,i)ht+f,j (2.57)

(
∂Qindirect

MMI

∂Mk
2

)

(f+F,i)

=
∑

t

(
∂Qindirect

MMI

∂zt

)

i

yk
t+f,i (2.58)

∂Qindirect
MMI

∂zt

=
∑

m

γr
t (m)

∑

t′ γ
r
t′(m)

(
∂QMMI

∂µm

+ 2
∂QMMI

∂Σm

(zt − µm)) . (2.59)

Equation 2.57 and 2.58 are derived by assuming the means and the covariances in the

acoustic model are functions of the feature transforms, andthe functions are the BW up-

date equations, i.e.

µm =

∑

t γ
r(m)zt

∑

t γ
r
t (m)

(2.60)

Σm =

∑

t γ
r(m)ztz

′
t

∑

t γ
r
t (m)

− µmµ′
m . (2.61)

To compute the indirect statistics in equation 2.57 and 2.58, we need to compute

∂QMMI

∂µm

= κΣ−1
m (

∑

t

γr
t (m)zt −

∑

t

γr
t (m)zt − µm(

∑

t

γr
t (m) − γc

t (m))) (2.62)

∂QMMI

∂Σm

=
κ

2
(
∑

t

γr
t (m))(Sr

mΣ−1
m Σ−1

m − Σ−1
m )

−
κ

2
(
∑

t

γc
t (m))(Sc

mΣ−1
m Σ−1

m − Σ−1
m ) (2.63)

whereκ is the acoustic model scale which is often the inverse of the grammar factor [Povey

(2003)], and,

Sr
m =

1
∑

t γ
r
t (m)

(
∑

t

γr
t (m)ztz

′
t − 2

∑

t

γr
t (m)ztµ

′
m +

∑

t

γr
t (m)µmµ′

m) (2.64)

Sc
m =

1
∑

t γ
c
t (m)

(
∑

t

γc
t (m)ztz

′
t − 2

∑

t

γc
t (m)ztµ

′
m +

∑

t

γc
t (m)µmµ′

m) (2.65)

Note that some entries in equation 2.57 and 2.58, includingSr, Sc,
∑

t γ
r
t (m), require the

statistics of the whole train set. As a result, one has to perform a standard EBW pass to col-

lect such statistics before computing the gradients for fMPE/MMI. A standard EBW pass
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is sufficient since it collects statistics like
∑

t γ
r/c
t (m),

∑

t γ
r/c
t (m)zt,

∑

t γ
r/c
t (m)ztz

′
t,

which are sufficient to reconstruct the indirect statisticsduring the gradient computation.

It is important to note that the gradient used in fMPE/MMI consists of two compo-

nents: direct statistics and indirect statistics. In which, the indirect statistics consists of the

indirect gradient for means (∂QMMI
∂µm

), and the indirect gradient for covariances (∂QMMI
∂Σm

). Since

the gradients are summed together, it implies that the objective function of fMPE/MMI is

a multi-objective function. Hence, when one claims fMMI is using MMI as the objective

function, in fact, there are three MMI objective functions in the optimization problem:

the standard MMI objective function, the MMI objective function which treats means as

functions of the feature transforms, and another MMI objective function which treats co-

variances as functions of the feature transforms. With the same argument, since RDLT also

uses indirect statistics when it computes the gradients, one can argue RDLT also optimizes

a multi-objective function.

Once the gradient is computed, we can perform gradient descent using these update

equations,

Mk
1,(i,j) := Mk

1,(i,j) + νk
1,(i,j)

∂FMMI

∂Mk
1,(i,j)

(2.66)

Mk
2,(i,j) := Mk

2,(i,j) + νk
2,(i,j)

∂FMMI

∂Mk
2,(i,j)

(2.67)

where

ν1
(i,j) =

σi

E1(pk
1,ij + nk

1,ij)
(2.68)

ν2
(i,j) =

1

E2(pk
2,ij + nk

2,ij)
. (2.69)

σi is the average standard deviation of the Gaussians in the current acoustic model in the

i-th dimension;ν1 andν2 are the learning rates forM1 andM2 respectively.pij andnij are

computed by accumulating the positive parts and the negative parts of∂F
∂M

respectively.

The learning rates are controlled by the parametersE1 andE2 which need to be tuned.

According to [Povey (2005)],E1 andE2 are adjusted so that no more than 10% of the

paramters on then-th iteration are on the opposite side of the value on then−2-th iteration
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from the value on then − 1-th iteration. This heuristic is to prevent possible divergence

during optimization. This is also known as the smooth updateand it can only be applied

starting from the second EM iteration.
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Chapter 3

Baseline Automatic Speech Recognition

Systems

We describe the baseline transcription systems used for evaluating different discriminative

training algorithms in this chapter. These systems are built for large scale DARPA evalua-

tions. The systems include an Iraqi Arabic ASR system, a Farsi ASR system and a Modern

Standard Arabic (MSA) ASR system. The Iraqi and the Farsi systems are developed for

the DARPA Spoken Language Communication and Translation System for Tactical Use

program (TransTac) while the MSA ASR system is developed forthe DARPA Global Au-

tonomous Language Exploitation program (GALE).

The goal of the DARPA TransTac program is to develop effective, real-time, field

portable, two-way speech-to-speech translation system for English and some low resource

languages like Iraqi Arabic and Farsi. The program aims to develop a system which can

facilitate communication between US military personnel and a foreign language speaker.

Hence, the system is mainly designed for domains like force protection, medical screening

and civil affairs. Due to the limited domain and low resource, the vocabulary size for this

system is around 6k0 which is relatively small. The translation system consists of three

components: a speech recognition module, a machine translation module and a speech

synthesis module. The CMU team built systems for both the PDA platform and laptop
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platform. In this program, the CMU team competed with RaytheonBBN Technologies

[Choi et al. (2008)], SRI International [Riesa et al. (2006)] and IBM [Cui et al. (2008)].

For the experiments described in this thesis, we focus on theperformance of the speech

recognition module for the laptop system.

The goal of the DARPA GALE program is to develop and deploy the capability to

automatically absorb, analyze and interpret huge volumes of speech and text in modern

standard Arabic and Mandarin Chinese, and make them available to a monolingual native

speaker of English. The domain includes broadcast news and broadcast conversations

from various radio and TV channels. Compared to the TransTac systems, the domain

of this task is broader and we have larger amount of data, hence, the vocabulary size is

over 700k. Also, while the TransTac system is designed for real-time communication,

the GALE system is an offline system aiming for high recognition accuracy. As a result,

it allows a higher real-time factor and adopting a multi-pass decoding strategy. In this

program, the CMU team is part of the Rosetta team led by IBM [Kingsbury et al. (2011)].

In this thesis, we focus on the performance of the MSA ASR system for the CMU GALE

system.

3.1 Iraqi ASR System

Iraqi Arabic is the spoken form of Arabic used by the people ofIraq in everyday conver-

sations. It is different from the MSA used in written communication. Since Iraqi Arabic is

normally not written, a transcription convention is definedunder the TransTac program for

the purpose of data collection. Throughout the program, over 500 hours of Iraqi speech

data are collected and transcribed which consists of over four million words in the tran-

scription.

Our Iraqi ASR system is a single pass, speaker adaptive system which runs at real-

time [Bach et al. (2007)]. Since it is a single pass decoding process, speaker adaptation is

performed incrementally, which uses the previous hypotheses for unsupervised adaptation.

Speaker statistics can be reset if the user changes. Speakeradaptation is performed using
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constrained maximum likelihood linear regression (CMLLR) [Digalakis et al. (1995)] and

maximum likelihood linear regression (MLLR) [Leggetter andWoodland (1995)] to adapt

the acoustic model. Gaussian selection is used to speed up the decoding process to make

sure the ASR system runs at real-time.

The acoustic model of the Iraqi ASR system is a 3-state left-to-right sub-phonetically

tied semi-continuous HMM-based recognizer composed of 7000 context dependent tri-

phone models. Each model consists of a mixture of 64 Gaussians at the most, where the

exact number of mixtures is determined by a merge-and-splittraining algorithm. Semi-tied

covariance [Gales (1999)] and speaker adaptive training are also performed. This acoustic

model is trained with 450 hours of Iraqi Arabic 16kHz speech data including data sets

from Appen/BBN, Cepstral, IBM/DLI Pendleton, and Marine Acoustics Inc. The speech

data is represented by the first 13 Mel Frequency Cepstral Coefficients (MFCC) and power

with a 10ms frame-shift and a 20ms Hamming window, together with approximations of

the first and second derivatives. Frames with a context window of size±7 are concate-

nated to form supervectors and linear discriminant analysis (LDA) is applied to project

the supervectors back to the dimensionality of 42 coefficients. In sum, this is the acoustic

model for the ML system used in all the experiments.

Under the TransTac program, a pronunciation dictionary is provided by LDC. How-

ever, the dictionary only cover roughly half of the words appearing in the train set. A

standard CART-based technique is applied [Black et al. (1998)], which is an automatic

grapheme/phoneme alignment technique, to find initial alignment. Hence, the letter-to-

sound rules could be built without any knowledge of the target language, and construct the

pronunciation dictionary used for building the ASR system.

The language model (LM) for Iraqi ASR is a trigram model usingmodified Kneser-

Ney smoothing. The training set consists of 4.5M words including data from the transcrip-

tion of the audio training data. The system selects 62k vocabulary as its search vocabulary

and it is based on frequency counts. The OOV rate is around 2.0% on the official test sets

under the TransTac program. While increasing the vocabularysize can reduce the OOV

rate, it also increases run-time which is very important forthis system. As a result, we

keep this 62k vocabulary size to balance the run-time and OOVrate.
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To evaluate the performance of this Iraqi ASR system, we use the TransTac Iraqi Jun08

offline open set as the development set and the TransTac IraqiNov08 offline open set as

the unseen test set. Each of these test set consists of one hour of Iraqi audio data in total.

The test sets include in domain conversations between English speakers and Iraqi Arabic

speakers. We only evaluate the performance on the Iraqi portion.

3.2 Farsi ASR System

The Farsi acoustic model has the same topology as the Iraqi ASR system [Hsiao et al.

(2006)]. It is trained with about 110 hours of Farsi 16kHz speech data collected by Ap-

pen, DLI, and University of Southern California. The acoustic model consists of 3000

context dependent models, each has at most 64 Gaussians which is determined by merge-

and-split training. The acoustic model is bootstrapped from the Iraqi acoustic model. The

two phones of Farsi not covered by the Iraqi phone set are initialized by phones of the

same phone category. After this phone mapping a first Farsi context independent acoustic

model is bootstrapped from the Iraqi acoustic model. This first Farsi context independent

system is used to force-align all the data. Based on these new forced alignments, we ini-

tialize a second context independent system. Then, we proceed to construct the polyphone

decision tree and the context dependent acoustic models. The pronunciation dictionary is

constructed in the same way as the Iraqi ASR system and the feature extraction process

remains the same as the Iraqi ASR system as well.

The language model is a trigram model using modified Kneser-Ney smoothing, and

is trained with 900K words. The vocabulary size is around 33Kwords, which consists

of all available words in the provided training transcriptions under the DARPA TransTac

program. The OOV rate is around 2.8% on the official TransTac test set.

To evaluate the performance of this Farsi ASR system, we use the TransTac Farsi Jul07

offline open set as the test set. This test set consists of one hour of Farsi audio data in total.
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3.3 Modern Standard Arabic ASR System

The Modern Standard Arabic (MSA) ASR system is developed forthe DARPA GALE

Speech-to-Text evaluation [Noamany et al. (2007), Nallasamy et al., Metze et al. (2010)].

Unlike the Iraqi ASR system, this system is optimized for recognition performance without

the real-time constraint.

This Arabic system is trained on approximately 1150 hours oftraining data, taken

from the GALE P2 and P3 sets using both a vowelized, and an unvowelized dictionary.

The training data provides manual segmentation and speakerclusters, while for the testing

data, clusters have been generated automatically.

For feature extraction, we compute power spectral featuresusing an FFT with a 10ms

frame-shift and a 16ms Hamming window from the 16kHz audio signal. We use 13 MFCC

per frame and perform cepstral mean and variance normalization on a cluster basis, fol-

lowed by vocal tract length normalization (VTLN) [Lee and Rose (1996)]. To incorporate

dynamic features, we concatenate 15 adjacent MFCC frames (±7) and project 195 dimen-

sional features into a 42 dimensional space using LDA transform. After LDA, we apply

semi-tied covariance and speaker adaptive training.

For the development of our GMM based context dependent acoustic models, we apply

an entropy-based polyphone decision tree to cluster the polyphones with context width

±2. The system uses 6000 phonetically tied quinphones with atmost 150 Gaussians per

state, assigned using merge and split training, with diagonal covariance matrices.

During decoding, automatic speaker clustering of manuallysegmented audio is per-

formed. Segments are clustered into speaker-specific clusters using Bayesian Information

Criterion (BIC) to enable cluster-specific adaptation and normalization [Jin and Schultz

(2004)].

The language model is trained from a variety of sources. The Arabic Gigaword corpus

distributed by LDC is the major text resource for language modeling. In addition, we

harvested transcripts from Al-Jazeera, Al-Akhbar, and Akhbar Elyom, as described in

[Noamany et al. (2007)]. Acoustic transcripts from FBIS, TDT-4, GALE broadcast news
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(BN) and broadcast conversations (BC) are also used. The total number of words in the

corpus amounted to 1.1 billion. The final LM is a 4-gram LM with692M n-grams and

737K words in the vocabulary.

Arabic is a phonetic language with close correspondence between its letters and sounds.

However, vowels are generally missing from the written MSA.Vowels are added when the

native speaker reads the text and as a result, one would need to predict the vowels if he

wants to model the vowels in the pronunciation. In our system, we built both unvowlized

and vowelized systems. The pronunciation dictionary is generated using grapheme-to-

phoneme rules. The unvowelized system contains 37 phones with 3 special phones for

silence, non-speech events and non-verbal effects such as hesitations. We preprocess the

text by mapping the 3 shapes of the grapheme for glottal stopsto one shape at the begin-

ning of the word since these are frequently miss-transcribed. This approach gives improve-

ments in perplexity and final WER in our previous experiments.For the vowelized system,

we use the Buckwalter morphological analyzer and LDC Arabic tree bank to predict the

vowels and construct the vowelized pronunciation dictionary.

The decoding process has three passes: 1) unvowelized speaker independent (Un-

vowSI) decoding, 2) unvowelized speaker adaptive (UnvowSA) decoding using the Unvow

SI hypotheses for adaptation, and 3) vowelized speaker adaptive (VowSA) decoding using

the Unvow SA hypotheses for adaptation. In addition, a smallunvowelized speaker adap-

tive system using only 50 hours of training data is built (UnvowSA 50-hr). The purpose of

building this system is to quickly test the performance of different configurations of some

discriminative training algorithms. This system uses the input from the UnvowSI system

to perform speaker adaptation. Figure 3.1 illustrates the multi-pass ASR system for MSA.

The MSA ASR system is evaluated using the GALE development and evaluation test

sets. In this thesis, dev07, dev08 and dev09 are used as the development sets and eval09

and a subset of dev10 are used as the unseen test sets. All these test sets consist of mixtures

of BN and BC data collected from various sources as shown in table 3.1. The development

sets including dev07, dev08, and dev09 contain roughly two to three hours of audio data

while eval09 has around five to six hours of data. The test set,dev10, has over five hours
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Figure 3.1: The overview of the MSA ASR system.

of data but a three hours subset is selected for evaluation.

Table 3.2 summarizes the ASR systems described in this chapter. We evaluate the per-

formance of different discriminative training algorithmson these systems in later chapters.
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Test sets Sources

dev07 ABUDHABI ALAM ALJZ ARABIYA DUBAISCO

IRAQIYAH KUWAITTV LBC SCOLA SYRIANTV

dev08 ALAM ALHIWAR ALHURRA ALJZ ALMANAR

ALURDUNYA ARABIYA DUBAISCO IRAQIYAH KUWAITTV

LBC OMANTV SAUDITV SCOLA SYRIANTV

dev09 ABUDHABI ALAM ALBAGHDADIA ALFAYHA ALHIWAR

ALHURRA ALJZ ALURDUNYA ARABIYA DUBAI IRAQIYAH

LBC OMANTV SAUDITV SCOLA YEMENTV

eval09 ABUDHABI ALAM ALBAGHDADYA ALFAYHA ALHIWAR

ALHURRA ALJZ ALSHARQIYA ALURDUNYA ARABIYA

DUBAI IRAQIYAH LBC SAUDITV SAWA

SCOLA SYRIANTV YEMENTV

dev10 ABUDHABI ALAM ALBAGHDADYA ALHIWAR ALHURRA

ALJZ ARABIYA IRAQIYAH LBC SCOLA

SYRIANTV SAWA YEMENTV

Table 3.1: Sources of the GALE development and evaluation test sets.

Iraqi ASR Farsi ASR Vow MSA ASR Unvow MSA ASR

Train data 450 hr 110 hr 1100 hr 50 hr

System type SA, 1-pass SI, 1-pass SA, 3-pass SA, 2-pass

Vocab size 62k 33k 737k 737k

Adaptation Incremental None Batch Batch

# Gaussians 308k 112k 867k 52k

LM 3-gram 3-gram 4-gram 4-gram

OOV ∼2.0% ∼2.8% ∼0.7% ∼0.7%

Table 3.2: Description of the Iraqi, Farsi and MSA ASR systems.
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Chapter 4

Generalized Baum-Welch Algorithm

(GBW)

4.1 Introduction

We describe the Generalized Baum Welch (GBW) algorithm in this chapter which was

first introduced in [Hsiao et al. (2009)]. In chapter 1 and 2, we discussed the optimiza-

tion problem of discriminative training. The difficulty comes from the complicated non-

convex objective function and the unbounded issue. In this chapter, we propose the GBW

algorithm and show that by transforming the optimization problem, we can handle both

problems. The formulation of GBW shows that both BW and EBW algorithms are special

cases of GBW, and it also reveals an interesting connection between information theory

and the EBW algorithm. The GBW algorithm helps us to understandthe heuristics used

in the EBW algorithm, and based on these insights, we can develop better variants of the

EBW algorithm.
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4.2 Bounding the Solution by Limiting Likelihood Changes

As discussed in section 1.1, optimizing the log likelihood difference functionF in equa-

tion 1.1 can be unbounded to some parameters. However, we canaddress this unbounded

issue easily by transforming the objective function in equation 1.1 into,

G(X, θ) = |Qr(X, θ) − Cr| + |Qc(X, θ) − Cc| (4.1)

whereQr andQc are the negative log likelihood of the reference and the competing hy-

pothesis respectively (see equation 2.1);Cr andCc are the chosen target values that we

wantQr andQc to achieve respectively. The competing hypothesis is oftenrepresented by

a lattice. and the lattice is often complemented with a path that represents the reference.

This is a practice that is known to improve the performance ofdiscriminative training as

shown in [Valtchev et al. (1997)]. However, for simplicity,we just callQc the competitor.

For this particular example, we choose the target values such thatQr(X, θ) > Cr and

Qc(X, θ) < Cc. As a result, by minimizing the functionG, we are maximizing the log

likelihood difference between the reference and the competitor, but we only want it to

achieve the target values that we have chosen. In general, wehave multiple files and each

file has possibly multiple competitors. Hence, the formulation can be generalized as,

G(X, θ) =
∑

i

|Qi(X, θ) − Ci| . (4.2)

Note that this formulation is very flexible. We can representreferences and competi-

tors at different granularity levels, sinceQ can be a likelihood function at utterance or

lattice level, or it can be a likelihood function for a word arc or a phone arc in the lat-

tice. Generally speaking, we can have multiple terms for reference and competitors and

each term has its own target value,Ci. It is also important to note that when each term

corresponds to a word arc or a phone arc, not every term has equal importance because

of different posterior probabilities in the lattice. To reflect this, one may add a weighting

factor for each term or scale the target values. The formulasshown here, however, assume

that each term represents either a whole utterance (reference) or a lattice (competitor) for

simplicity.
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In addition, we can add a regularization function in order tocontrol the optimization.

Let R(θ, θ0) be a regularization function withθ0 as the backoff model. Then, the objective

function becomes,

G(X, θ) =
∑

i

|Qi(X, θ) − Ci| + R(θ, θ0) (4.3)

Although the functionG in equation 4.3 remains to be non-convex, this formulation

has an obvious advantage over the original problem – the unbounded issue no longer exists

sinceG must be larger than or equal to zero. One easy way to define the target values is

to encourage higher likelihood for the reference and lower likelihood for the competing

hypotheses. This scheme is equivalent to MMI estimation.

4.3 Lagrange Relaxation

To minimize the functionG, we may first transform the problem to,

min
ǫ,θ

∑

i ǫi + R(θ, θ0)

s.t. ǫi ≥ Qi(X, θ) − Ci ∀i

ǫi ≥ Ci − Qi(X, θ) ∀i ,

whereǫi is a slack variable for thei-th term in equation 4.3. This optimization problem is

equivalent to the original unconstrained problem in equation 4.3. We call this the primal

problem of the GBW algorithm.

For simplicity, we first show the formulation for optimizingthe mean vectors, and this

formulation uses Mahalanobis distance as the regularization function on the means. The

primal problem becomes,

min
ǫ,µ

∑

i ǫi +
∑

j

Dj||µj − µ0
j ||

2
Σj

s.t. ǫi ≥ Qi(X,µ) − Ci ∀i

ǫi ≥ Ci − Qi(X,µ) ∀i , (4.4)
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whereDj is a Gaussian specific constant to control the weight of the regularization term;

µ0
j is the mean vector that we want GBW to backoff to, and it is assumed to be the model

from the previous EM iteration.

We can then construct the Lagrangian dual for the primal problem. The Lagrangian is

defined as,

LP
m(ǫ, µ, α, β) =

∑

i

ǫi −
∑

i

αi(ǫi − Qi(X,µ) + Ci)

−
∑

i

βi(ǫi − Ci + Qi(X,µ))

+
∑

j

Dj||µj − µ0
j ||

2
Σj

(4.5)

where{αi} and{βi} are the Lagrange multipliers for the first and the second set of con-

straints of the primal problem in equation 4.4. The Lagrangian dual is then defined as,

LD
m(α, β) = inf

ǫ,µ
LP

m(ǫ, µ, α, β) (4.6)

Now, we can differentiateLP
m w.r.t. µ andǫ. Hence,

∂LP
m

∂ǫi

= 1 − αi − βi (4.7)

∂LP
m

∂µj

=
∑

i

(αi − βi)
∂Qi

∂µj

+ Dj
∂

∂µj

||µj − µ0
j ||

2
Σj

=
∑

i

(αi − βi)(−2
∑

t

γi
t(j)Σ

−1
j (xt − µj))

+ Dj2(Σ−1
j (µj − µ0

j)) . (4.8)

By setting them to zero, it implies,

αi + βi = 1 ∀i (4.9)

and,

µj = Φj(α, β) =

∑

i(αi − βi)
∑

t γ
i
t(j)xt + Djµ

0
j

∑

i(αi − βi)
∑

t γ
i
t(j) + Dj

, (4.10)
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which is the GBW update equation for the mean vectors.

BW algorithm is a special case of GBW, since if we disable the regularization (D = 0)

and set allα = 1 andβ = 0 for all references andα = β = 0.5 for all competitors, we get

µj =

∑

i∈ref

∑

t γ
i
t(j)xt

∑

i∈ref

∑

t γ
i
t(j)

, (4.11)

which is the BW update equation. EBW is also a special case of GBW,since if we set

α = 1 andβ = 0 for all references, andα = 0 andβ = 1 for all competitors, the GBW

update equation becomes EBW update equation,

µj =

∑

i∈ref

∑

t γ
i
t(j)xt −

∑

i∈com

∑

t γ
i
t(j)xt + Djµ

0
j

∑

i∈ref

∑

t γ
i
t(j) −

∑

i∈com

∑

t γ
i
t(j) + Dj

. (4.12)

One should note that this result implies theD-term used in the EBW algorithm can be con-

sidered as a regularization function using Mahalanobis distance between the mean vectors

of the new and the backoff model. The meaning is well represented.

If the optimization is performed on the covariance, the modification to the primal prob-

lem is

min
ǫ,Σ

∑

i

ǫi +
∑

j

Dj(µ
0
jΣ

−1
j µ0

j + tr(Σ0
jΣ

−1
j ) + log |Σj|)

s.t. ǫi ≥ Qi(X, Σ) − Ci ∀i

ǫi ≥ Ci − Qi(X, Σ) ∀i , (4.13)

Then, we have this Lagrangian,LP
c ,

LP
c (ǫ, Σ, α, β) =

∑

i

ǫi −
∑

i

αi(ǫi − Qi(X, Σ) + Ci)

−
∑

i

βi(ǫi − Ci + Qi(X, Σ))

+
∑

j

Dj(µ
0
jΣ

−1
j µ0

j + tr(Σ0
jΣ

−1
j )

+ log |Σj|) . (4.14)
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We then differentiate theLP
c w.r.t. the covariance,

∂LP
c

∂Σj

=
∑

i

(αi − βi)
∑

t

γi
t(j)(Σ

−1
j − Σ−1

j StjΣ
−1
j )

+ Dj(Σ
−1
j − Σ−1

j Σ0
jΣ

−1
j − Σ−1

j µ0
jµ

0′

j Σ−1
j ) , (4.15)

whereStj ≡ (xt − µj)(xt − µj)
′. Then by setting it to zero, we obtain the GBW update

equation for covariance,

Σj = Ψj(α, β)

=
P

i(αi−βi)
P

t γi
t(j)xtx′

t+Dj(Σ
0

j+µ0

jµ0
′

j )
P

i(αi−βi)
P

t γi
t(j)+Dj

− µjµ
′
j , (4.16)

which is also a generalization of BW and EBW. Instead of solvingtwo independent opti-

mization problems, one may use the{α} and{β} obtained from the first problem as the

solution for the second problem to compute the covariances.This procedure assumes that

the solutions of the two problems are similar and we adopt this procedure in our exper-

iments. One should also note that the formulation of GBW can incorporate I-smoothing

[Povey (2003)] similarly by adding another regularizationterm. For Gaussian means, the

optimization problem with I-smoothing becomes,

G(X,µ) =
∑

i

|Qi(X,µ) − Ci| +
∑

j

Dj||µj − µ0
j ||

2
Σj

+
∑

j

τ ||µj − µb
j||

2
Σj

(4.17)

and the corresponding update equation becomes,

µj =

∑

i(αi − βi)
∑

t γ
i
t(j)xt + Djµ

0
j + τµb

j
∑

i(αi − βi)
∑

t γ
i
t(j) + Dj + τ

. (4.18)

For covariance, we have,

G(X, Σ) =
∑

i

|Qi(X, Σ) − Ci| +
∑

j

Dj(µ
0
jΣ

−1
j µ0

j + tr(Σ0
jΣ

−1
j ) + log |Σj|)

+
∑

j

τ(µb
jΣ

−1
j µb

j + tr(Σb
jΣ

−1
j ) + log |Σj|) (4.19)

and the update equation,

Σj =

∑

i(αi − βi)
∑

t γ
i
t(j)xtx

′
t + Dj(Σ

0
j + µ0

jµ
0′

j ) + τ(Σb
j + µb

jµ
b′

j )
∑

i(αi − βi)
∑

t γ
i
t(j) + Dj + τ

− µjµ
′
j , (4.20)
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whereµb andΣb are the backoff mean and covariance used by I-smoothing, which can

be the ML estimate, MMI estimate or the model from the previous EM iteration;τ is a

tunable parameter which controls the importance of I-smoothing.

GBW is the same as BW and EBW that it is based on the EM algorithm. However, the

M-step of GBW is now replaced by solving a dual problem to retrieve the Lagrange multi-

pliers, so we can use equation 4.10 and equation 4.16 to obtain the HMM parameters. The

dual problem is formulated by plugging equation 4.9, 4.10 and 4.16 into the Lagrangian.

Assuming we are optimizing the mean vectors, we have

max
α,β

LD(α, β) =
∑

i

(αi − βi)(Qi − Ci)

s.t. ∀i αi + βi = 1

αi, βi ≥ 0 .

This dual problem can be solved by gradient ascent. By taking derivative w.r.t. the La-

grange multipliers, we obtain the gradients.

∂LD

∂αi

= Qi − Ci , (4.21)

Whenαi is updated,βi can be obtained using the constraintαi + βi = 1.

Finally, figure 4.1 summarizes the whole process of transforming the original opti-

mization algorithm using Lagrange relaxation.

4.4 GBW, EBW and Information Theory

We showed that EBW is a special case of GBW and the D-term in EBW canbe expressed

as some regularization to the optimization problem. In the past, thisDj constant is set

by some heuristics, sayE × γden, which is tuned empirically andE is often set to some

value between one and two [Povey (2003)]. The formulation ofGBW now justifies the

heuristics from a theoretical point of view. Because from theoptimization problem in

equation 4.4 and equation 4.13, the regularization is only meaningful if the dynamic range
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Figure 4.1: The process of transforming the problem using Lagrange relaxation.

of the regularization term is comparable to the transformedMMI objective function. In

such a case, theDj constant has to be proportional to the occupancy count, sayγr or γc.

Hence, GBW explains why a heuristic likeE × γc is desirable to determine the values of

Dj. In section 4.4.2, we discuss whyγc is preferred overγr and also whyE is preferred

to be larger than or equal to one.

4.4.1 Recursive EBW/GBW Algorithm (rEBW/GBW)

The GBW algorithm also gives another interesting insight about the EBW algorithm. It

states that the D-term in the EBW algorithm comes from some distance-based regular-
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ization. In fact, GBW further explains that such regularization is based on a well known

similarity measure between two probability distributions, i.e. KL divergence.

In [Hsiao and Schultz (2011)], we combine the optimization problems for solving

mean vectors and covariance matrices into one single problem. We have,

min
ǫ,µ,Σ

∑

i

ǫi +
∑

j

Dj

2
(||µj − µ0

j ||Σj
+ tr(Σ0

jΣ
−1
j ) + log |Σj|)

s.t. ǫi ≥ Qi(µ, Σ) − Ci ∀i

ǫi ≥ Ci − Qi(µ, Σ) ∀i . (4.22)

The regularization function is the KL-divergence fromN0(µ
0
j , Σ

0
j) to N(µj, Σj). Then, we

put back the terms that are removed by differentiation,

KL(N0||N) =
1

2
[||µj − µ0

j ||Σj
+ tr(Σ0

jΣ
−1
j )

− log
|Σ0

j |

|Σj|
− D] , (4.23)

whereD is the dimension of the feature vector. It is important to note that the term

µ0
jΣ

−1
j µ0

j is moved from the mean optimization problem to the covariance optimization

problem. This term is part of the Mahalanobis distance but itdisappears when we differ-

entiate the objective function with respect to the mean vectors, hence, it remains in the

covariance problem as shown in equation 4.13.

Equation 4.22 and 4.23 show that the D-term in the EBW update equation comes from

the KL-divergence. Without affecting the solution of the optimization problem, we use

cross entropy as the regularization function,

CH(N0||N) = H(N0) + KL(N0||N) . (4.24)

This does not alter the solution because the entropy of the backoff GaussianN0,

H(N0) =
1

2
log((2πe)D|Σ0|) , (4.25)

is not related to the mean and covariance that we are optimizing. The functionH(N0) is

derived from differential entropy and details are available in Ahmed and Gokhale (1989).
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In this setting, cross entropy measures the average number of bits required to encodeN

givenN0 is the true distribution. This is reasonable for regularization since cross entropy

increases whenN moves too far away from the backoff GaussianN0. However,N0 in the

EBW algorithm is either the ML model or the model from the previous EM iteration. In

most cases,N0 is inferior and it is not the true distribution. While the truedistribution is

unknown, we can look for a better Gaussian for the backoff purpose.

In the first attempt, we suggest we can treat the EBW/GBW update equations as some

recurrence relations. The M-step of the EBW algorithm becomes an iterative procedure,

µm+1
j =

∑

i(αi − βi)
∑

t γ
i
t(j)xt + Djµ

m
j

∑

i(αi − βi)
∑

t γ
i
t(j) + Dj

, (4.26)

Σm+1
j =

∑

i(αi − βi)
∑

t γ
i
t(j)xtx

′
t + Dj(Σ

m
j + µm

j µm′

j )
∑

i(αi − βi)
∑

t γ
i
t(j) + Dj

− µm+1
j µm+1′

j , (4.27)

whereµm+1
j andΣm+1

j are the Gaussian parameters of the(m + 1)-th iteration, which

depend on the parameters on them-th iteration; If we perform only one iteration, it is the

same as the standard EBW/GBW algorithm. If we perform two iterations, it is like we are

using the Gaussian computed from standard EBW/GBW algorithm asa backoff parameter.

If we believe the Gaussian computed from the standard EBW/GBW algorithm is better

than the original model, we are using a better estimate to compute the cross entropy for

regularization. In this thesis, we use the variableM to denote how many M-steps are

performed after each E-step.

The reason for choosing cross entropy instead of KL-divergence is to examine the con-

vergence of this recurrence relation, and whether the recurrence update leads to a smaller

cross entropy. One can compare the cross entropy of successive iterations since it is mea-

sured by the number of bits. KL-divergence is a relative measure and it cannot compare

the results of different iterations. In our previous work in[Hsiao and Schultz (2011)], we

do not know if equation 4.26 and equation 4.27 may converge, but we found in our exper-

iments that the cross entropy always decreases as the recursion continues, which implies

the changes on the Gaussian parameters diminish across iterations. Details on this are

available in section 4.6.1, and the convergence condition is available in section 4.4.2.
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We would like to emphasize that the implementation of the above recurrence update

equations is very simple. One can perform multiple M-steps in the standard EBW/GBW

algorithm to achieve the same result. This incurs negligible extra computation since the

M-step does not involve data processing. In this thesis, we focus on the effectiveness of

this new EBW algorithm. Hence, we do not test the recursive GBW algorithm, but simply

use GBW as a tool to derive this new recursive EBW algorithm.

4.4.2 Statistical EBW/GBW Algorithm (sEBW/GBW)

1

In the recursive EBW algorithm, the update equation for the means and the covariances

become the recursive equations which allow multiple updates using the same statistics col-

lected from the E-step. While the number of recursions performed for the recursive EBW

algorithm is determined empirically, the recurrence equation can be solved analytically,

which implies there is a more systematical way to determine how to update the parame-

ters. Consider the recursive mean update equation in equation 4.26,

µm+1
j =

∑

t γ
r
t (j)xt −

∑

t γ
c
t (j)xt + Djµ

m
j

∑

t γ
r
t (j) −

∑

t γ
r
t (j) + Dj

= Kµm
j + (1 − K)µN

j (4.28)

where

K =
Dj

∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

(4.29)

µN
j =

∑

t γ
r
t (j)xt −

∑

t γ
c
t (j)xt

∑

t γ
r
t (j) −

∑

t γ
c
t (j)

. (4.30)

It is important to note thatµN
j is the solution ofµj if we disable the regularization (Dj =

1I would like to thank Nagesha Venki for his very useful input to the recursive EBW/GBW algorithm in

section 4.4.1. The conversation with Venki leads to anotherEBW/GBW algorithm to be described in this

section.
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0). Then, we can solve the recurrence equation,

µm+1
j = Kµm

j + (1 − K)µN
j

⇒ µm+1
j − µN

j = K(µm
j − µN

j )

⇒ µm
jd = µN

jd + Km (4.31)

whereµm
jd is thed-th element in the mean vectorµm

j .

Equation 4.31 implies that the ratioK plays an important role on the solution of the

recursive equation. IfK > 1, asm → ∞, µm
j goes to infinity as well, which means

there is no solution. However, if0 ≤ K ≤ 1, µm
j converges toµN

jd asm → ∞, which

implies as the recursion continues, the effect of the regularization diminishes. IfK < 0,

it is unable to predict the result ofµm
j . However, in the context of discriminative training,

the heuristics that are used to set the value ofDj would preventK < 0. It is interesting to

note that if the numerator count and the denominator count are equivalent,K = 1 as long

asDj > 0, which implies the solution must converge. However, this may be a rare case.

Assuming thatDj = E
∑

t γ
c
t (j) andE = 2 which is a commonly used heuristics to

set the value ofDj,

K =
2
∑

t γ
c
t (j)

∑

t γ
r
t (j) +

∑

t γ
c
t (j)

. (4.32)

In this case,K > 1 if and only if the numerator count is strictly smaller than the denomi-

nator count. As discussed in chapter 2, this is known to be true if a Gaussian appears more

often as the competitor, the optimization problem becomes minimum likelihood problem

which is unbounded. In sum, this can be considered as anotherway to prove at some

condition, the optimization problem would have a solution if regularization is disabled.

Another important implication of this finding is that it explains why the standard EBW

usesDj = E
∑

t γ
c
t (j) instead ofDj = E

∑

t γ
r
t (j) for the heuristics. It is because if

we use the numerator count to computeDj, there is no guarantee thatK ≥ 0 which the

solution may be diverged. To guarantee thatK ≥ 0, we need to use the denominator count

andE ≥ 1. This conclusion supports the heuristics we have been usingfor EBW, though

such heuristics was determined empirically instead of being formulated mathematically.
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The solution to the recursive equations inspires us that we can derive another EBW

algorithm. As mentioned, the value ofK plays an important role to determine whether

a Gaussian needs regularization. In that case, one may use the value ofK to classify the

Gaussians into two category: one with regularization (Dj > 0) and one without (Dj =

0). The idea of this variant of EBW algorithm is, if the numerator count dominates, it

meansK is small and one can update the Gaussian more aggressively. However, if the

denominator count dominates, it meansK is large and one should update the Gaussian

in a more conservative way. The value ofK is computed for each Gaussian. Hence, this

variant of the EBW algorithm would consider the numerator anddenominator statistics to

perform the update. Therefore, this EBW algorithm is named statistical EBW algorithm

(sEBW). In general, sEBW would classify the Gaussians in the acoustic model intoN

classes sorted by the value ofK. The classes with smallerK will perform more recursive

updates, the classes with largerK will perform less updates. The exact number of classes

and the range of each class would need to be tuned empirically. This general form of

sEBW algorithm, however, would need much tuning since we needto decide the number

of classes and also the upper bound and the lower bound ofK for each class. In this thesis,

we focus on the simplest form where we only have two classes, one with regularization

which is like the standard EBW, and another without regularization, which is equivalent to

performing infinite numbers of recursions for rEBW.

4.5 Convergence Condition of EBW and GBW

The optimization technique we use for GBW is known as Lagrangerelaxation [Boyd and

Vandenberghe (2004)], since it converts a primal problem into a dual problem. In theory,

the dual problem is always a convex problem (maximizing a linear objective function here)

[Boyd and Vandenberghe (2004)]. Note that when strong duality does not hold, which

means the optimal value of the dual can only serve as a strict lower bound to the primal

objective, there is no guarantee that the solution obtainedfrom the dual is primal optimal.

We can only consider this technique as a relaxation method.

Consider whenD → ∞ and this term dominates the objective function, strong duality
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occurs and GBW is guaranteed to converge in this case. Although the solution is simply the

backoff model, this behavior is the same as EBW. However, given a problem and a finiteD,

if the solution of GBW is equivalent to BW or EBW, it can be shown GBWis guaranteed

to converge for this specific problem. One should also note that theD constant in GBW is

related to the target values,C. If these target values are set more aggressively, that is very

high likelihood for reference and very low likelihood for competing hypotheses, GBW is

very likely to reduce to EBW (but it is possible to construct artificial cases that GBW does

not reduce to EBW). However, in such a case, theǫ of the primal problem becomes larger,

and therefore,D has to be larger for regularization to be effective. Hence, although we

claim GBW must converge when it reduces to EBW, this case is equivalent to saying GBW

must converge whenD → ∞.

4.6 Experiments

We evaluated the performance of GBW, EBW, rEBW and sEBW on the Farsi, Iraqi and

MSA ASR system. Detailed system description is available inchapter 3.

4.6.1 Experiments on GBW

We first compared the performance of GBW and EBW on the Farsi ASR system. MMI

objective was chosen for optimization. The target values were selected based on the model

used in the E-step, and they were set to be 5% to 20% higher thanthe log likelihood of the

references, and 5% to 20% lower of the competitors. In the M-step, we performed four

iterations of gradient ascent to update the dual variables.From the dual variables, we then

reestimated the Gaussian parameters. No regularization nor smoothing was used for GBW

in this experiment.

The results in Figure 4.2 show that GBW without regularization and smoothing can

improve the baseline ML system (BW-ML). When the target valuesare close to the scores

of the ML model, GBW obtains less improvement which is reasonable since the training

is closer to the ML training in those settings. However, if the target values are set too
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Figure 4.2: Performance of GBW without regularization on theTransTac Farsi July 2007

open set. The percentage represents how far the target values are set based on the baseline

model.

aggressively, the training may not converge since regularization is disabled. In sum, this

experiment verifies the basic framework of GBW of optimizing the models towards the

target values even without using any regularization. On thecontrary, EBW does not work

when there is no regularization nor smoothing and it just corrupts the model.

When GBW is performed with regularization and smoothing, one can initialize the

dual parameters such that GBW is the same as BW or EBW at the beginning. GBW

without regularization cannot be initialized as EBW since itmay corrupt the model at the

first iteration. One should note that although the dual problem is a convex problem and

the initialization is not important, GBW is still under the EMframework and different

starting points may yield different results. Another issueis when GBW is initialized as
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EBW, we have to first perform EBW for one iteration and use that model to perform the E-

step for the GBW at the beginning. This ensures the dual parameters match the Gaussian

parameters of the model used in the E-step. It is always the case if we initialize GBW as

BW because we use an ML model to perform the E-step.

Figure 4.3 compares the performance of EBW and GBW with different initialization.

In this experiment, regularization is enabled and the target values for GBW are always

set to be 10% higher likelihood for references and 10% lower likelihood for the competi-

tors. The likelihood is computed using the ML model and the target values do not change

during the optimization. As shown, when GBW is initialized asEBW, GBW has simi-
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Figure 4.3: Performance of BW, EBW and GBW on the TransTac Farsi July 2007 open

set.

lar performance compared to EBW. GBW with EBW initialization achieves 47.2% WER

while EBW reaches 47.0% WER. GBW with BW initialization lags behind EBW at the
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earlier stages of the training since GBW is close to ML at the beginning, but GBW can

obtain the comparable performance of EBW at the end (47.6% WER).

In sum, GBW can perform model space discriminative training like EBW. The per-

formance of GBW is comparable to EBW and GBW allows regularization to be disabled.

The purpose of these experiments is to validate the formulasof GBW. While GBW does

not have any practical advantage compared to EBW, we will see in the next section that

the variants of EBW derived from GBW can improve the performance of discriminative

training.

4.6.2 Experiments on EBW and rEBW

We then evaluated the performance of the proposed rEBW algorithm on the Farsi, Iraqi

and MSA ASR system. Table 4.1 contains the time needed for each EM iteration of the

EBW algorithm. The time was measured by using 20 cores runningin parallel and each

core had similar performance to the Intel Xeon X5355 series at 2.66GHz. It demonstrated

discriminative training is very expensive. It is importantto note that although the train

set of the MSA system is only two to three times of the Iraqi system’s, the time needed

for performing discriminative training on the MSA system issignificantly longer. The

reason is both the Farsi and the Iraqi ASR systems are real-time systems. As a result, they

employ aggressive pruning which also gives sparser lattices. However, the MSA system is

an offline system and hence, the lattices are much denser. Forthe experiments, the Farsi

system used the TransTac Jul07 Farsi open set as the unseen test set. The Iraqi system used

the TransTac Jun08 open set as dev set, and Nov08 open set as the unseen test set. The

MSA system used GALE dev07/08/09 as dev sets, and eval09 and athree hours subset of

dev10 as the unseen test sets.

We first investigated how the recurrence update equations affect the performance of

the new EBW algorithm. We compared the EBW algorithm with different number of M-

steps per EM iteration using the recurrence equation 4.26 and 4.27. Both EBW algorithms

optimize the acoustic model for the BMMI objective function.We used the Iraqi system to

analyze the performance. In this experiment, we tried up to four EM iterations and for each
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Farsi ASR Iraqi ASR MSA ASR

∼2 hours ∼12 hours ∼5 days

Table 4.1: The time required for each EBW iteration on the Farsi, Iraqi and MSA ASR

systems.

EM iteration, we performed a fixed number of M-steps from one to four (M = 1, 2, 3, 4).

Figure 4.4 shows that if we perform more M-steps per EM iteration, the system can

achieve the best performance at earlier iterations. However, as shown in Figure 4.5, per-

forming multiple M-steps may also cause overfitting to occurearlier than the standard

EBW algorithm as the training becomes more aggressive. When weperform two M-steps

per EM iteration (M = 2), we got32.7% WER which is almost the same as the32.6%

WER of standard EBW (M = 1) with only half the training time. We also tried the stan-

dard EBW algorithm with a grid search of learning rate (E tuning). In the model update

equation 4.10 and 4.16,Dj controls the weight of the regularization. This value is often

computed by a heuristics and it is the maximum ofE ×
∑

t γ
c
t (j), or twice the value re-

quired to keep the covariance positive.E is often set to two and it is also our setting for all

EBW algorithms except the one with grid search. The grid search is performed based on

the WER of the test set, which we find the bestE in the range[1.0, 3.0]. Therefore, it is an

oracle experiment. The purpose of this oracle experiment isto investigate if the standard

EBW algorithm, in the optimal case, can converge as fast as ourproposed EBW algorithm.

Our results showed the opposite, and it implied our method isuseful. Figure 4.6 shows the

reduction in average cross entropy for each M-step performed. The cross entropy is com-

puted after the first EM iteration shown in figure 4.4 and it is averaged across all Gaussian

distributions in the acoustic model. This result shows thatthe cross entropy is decreasing

so it implies the changes in the Gaussian parameters are alsodecreasing.

Based on these results, we studied whether our proposed rEBW algorithm causes ac-

curacy degradation as a tradeoff for faster convergence. Wecompared the performance

of the rEBW algorithm with the standard version on our Farsi ASR, Iraqi ASR and MSA

ASR systems. In this experiment, the rEBW algorithm performed two M-steps for each
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Figure 4.4: Performance of EBW algorithm with different number of M-steps per EM

iteration. This experiment is performed on the TransTac Jun08 open set using the Iraqi

ASR system.

E step (M = 2). In total, two EM iterations were performed. The standard EBW algo-

rithm performed four EM iterations and one M-step per E-step(M = 1). Therefore, the

execution time of the rEBW algorithm is only half of the standard version. Table 4.2, 4.3

and 4.4 showed the performance of the Farsi, Iraqi and MSA ASRsystems respectively.

The results suggested that our proposed rEBW algorithm can achieve the same WER

as the standard EBW algorithm. Among these eight test sets on three different systems,

the difference in WER is never more than0.2% absolute. Therefore, the gain in speed

is a clear advantage of the rEBW algorithm. Table 4.1 showed that the standard EBW

algorithm needs 20 days to train the MSA system, while the rEBWalgorithm needs only

10 days to achieve the same WER, which is a big advantage.
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Farsi Jul07 open

BWML 50.2%

EBWM=1 45.6%

EBWM=2 45.5%

Table 4.2: The WER of the Farsi ASR system on the Jul07 open set.

Jun08 open Nov08 open

BWML 37.0% 35.2%

EBWM=1 32.6% 30.6%

EBWM=2 32.7% 30.8%

Table 4.3: The WER of the Iraqi ASR system on the Jun08 and Nov08open sets.

dev07 dev08 dev09 eval09 dev10

BWML 13.7% 15.5% 20.4% 15.1% 16.5%

EBWM=1 11.7% 14.0% 18.6% 13.3% 14.6%

EBWM=2 11.9% 14.0% 18.5% 13.2% 14.5%

Table 4.4: The WER of the MSA ASR system on the GALE dev07/08/09/10 and eval09

test sets.
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ML model on the Iraqi train set.

4.6.3 Experiments on EBW and sEBW

We then evaluated the performance of the sEBW algorithm on theIraqi and MSA ASR

system. To apply the sEBW algorithm, one needs to classify theGaussians into different

categories based on the ratio,K, where

K =
Dj

∑

t γ
r
t (j) −

∑

t γ
c
t (j) + Dj

.

As described in section 4.4.2, if0 ≤ K ≤ 1, the Gaussian is in good condition that the

solution of the optimization problem exists even if the regularization is disabled, meaning

regularization is needed. However, the fact that a solutionexists does not imply such

solution is a good solution as it is still possible that the non-regularized solution may
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eters diminish for each M-step.

suffer from the overfitting issue. As a result, sEBW uses a threshold,L, such that as long

as the ratioK of the Gaussian falls into the range[0, L], regularization will be disabled for

that Gaussian. IfK is outside the range, we update the Gaussian like the standard EBW

algorithm. The thresholdL needs to be tuned empirically.

Table 4.5 shows the performance of EBW and sEBW on the Iraqi Jun08 test set with

different thresholds. In this experiment, both EBW and sEBW optimize for the BMMI

objective function. The result shows that the sEBW algorithmslightly improves perfor-

mance by choosing the thresholdL properly. Although regularization is disabled for only

very few Gaussians, it does affect the performance of the system.

On the unseen test sets, however, we do not see significant improvement as shown in

Table 4.6 for the Iraqi system and Table 4.7 for the large scale MSA ASR system. On the
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L # Gau w/ D=0 WER

EBW 0.0 0.0% 32.6%

sEBW 0.25 0.03% 32.5%

sEBW 0.375 0.13% 32.3%

sEBW 0.5 0.43% 32.3%

sEBW 0.75 3.68% 32.6%

sEBW 1.0 43.71% 39.8%

Table 4.5: WER of EBW, and sEBW on the TransTac Iraqi Jun08 open evaluation.

Jun08 Nov08

ML-BW 37.0% 35.2%

BMMI-EBW 32.6% 30.6%

BMMI-sEBW 32.3% 30.5%

Table 4.6: WER of EBW, and sEBW on the TransTac Iraqi test sets.

dev07 dev09 eval09 dev10

ML-BW 13.7% 20.4% 15.1% 16.5%

BMMI-EBW 11.7% 18.6% 13.3% 14.6%

BMMI-sEBW 11.7% 18.4% 13.3% 14.6%

Table 4.7: WER of EBW and sEBW on the GALE MSA test sets.
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MSA ASR system, we also tuned the threshold ofL based on the dev sets andL was0.5

in our experiments. It is not surprising to see little improvement since the heuristics for

discriminative training are tuned based on empirical approaches and believed to be near

optimal.
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Chapter 5

Generalized Discriminative Feature

Transformation (GDFT)

5.1 Introduction

In this chapter, we introduce our proposed feature space discriminative training algorithm

named generalized discriminative feature transformation(GDFT) [Hsiao and Schultz (2009),

Hsiao et al. (2010)]. GDFT transforms the optimization problem of constrained maximum

likelihood linear regression (CMLLR) [Digalakis et al. (1995); Gales (1998)] in a way

similar to the GBW algorithm in chapter 4. The process of transforming the optimiza-

tion problem is shown in Figure 4.1 and it is also applicable to GDFT. Therefore, the

transformed CMLLR can optimize for some discriminative objective function instead of

likelihood. While CMLLR is a model space transformation technique originally designed

for speaker adaptation, it can be shown that CMLLR’s transformation is equivalent to a

feature space transformation [Gales (1998)]. Hence, CMLLR is also known as feature

MLLR. In this chapter, we first review CMLLR and explain why it isequivalent to a fea-

ture transformation. Then, we show the formulation of GDFT and explain how it can be

applied to feature space discriminative training.
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5.2 CMLLR and Feature Transformation

CMLLR is a widely used speaker adaptation algorithm. CMLLR performs linear transfor-

mation on the Gaussian means and covariances, and restrictsthe transforms to be the same

for mean and covariance. That is,

µ̂ = Hµ − d (5.1)

Σ̂ = H ′ΣH , (5.2)

whereH andd are the rotation matrix and the bias to be optimized for likelihood respec-

tively. For CMLLR, the auxiliary function is defined as,

Q(H, d) =
∑

t

∑

j

γt(j)[log(|H ′ΣjH|) + (xt − Hµj + d)′(H ′ΣjH)−1(xt − Hµj + d)]

=
∑

t

∑

j

γt(j)[log(|H ′ΣjH|) + (xt − Hµj + d)′H−1Σ−1
j H−1′(xt − Hµj + d)]

=
∑

t

∑

j

γt(j)[log(|Σj|) + log(|H|2)

+ (H−1′xt + H−1′d − µj)
′Σ−1

j (H−1′xt + H−1′d − µj)]

=
∑

t

∑

j

γt(j)[log(|Σj|) − log(|A|2) + (Wζt − µj)
′Σ−1

j (Wζt − µj)] , (5.3)

whereA ≡ H−1′, b ≡ H−1′d andW ≡ [A; b]; ζt ≡ [x′
t; 1]′ is the augmented feature vector.

This formula is the auxiliary function or the negative log likelihood function for CMLLR.

It also shows that model transformation is equivalent to feature transformation as long as

one subtractslog(|A|2) from the log likelihood computation. This feature transformation

is similar to how fMPE/MMI and RDLT transform the features except CMLLR optimizes

for the likelihood instead of a discriminative objective function.

When context expansion and mean offset features are not used,the transformation

matrix of fMMI/MPE is always square and identity, hence, fMMI/MPE can be considered

as a model space transformation technique (log(|I|2) = 0). In contrast, RDLT is not a

model space technique unless the likelihood computation isadjusted as CMLLR.

However, when there is more than one regression class, this conversion from model

space to feature space may be more complicated. It depends onhow the regression classes
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are defined. The original CMLLR assigns transforms to the Gaussians [Digalakis et al.

(1995)] and this assignment is predefined and fixed during adaptation. In such a case,

each feature vector is needed to be transformed by differenttransforms depending on the

Gaussian that we are evaluating. While this is complicated and inefficient, we propose

to assign transforms based on the feature vectors like fMPE/MMI and RDLT. Given an

incoming feature vector, we use a GMM to determine which transform we are going to

use and update the features. This idea has been explored for CMLLR in [Kozat et al.

(2006)] for speaker adaptation. The only difference is thatGDFT only allows one and

only one transform to be assigned to each feature vector instead of a weighted sum using

posterior probability. In section 5.5, we discuss in details why GDFT has such constraint.

In any case, this scheme is equivalent to performing model transformation using a different

transform for each feature vector. This is the approach we used for GDFT and later on, we

will see this is very similar to fMPE/MMI and RDLT training.

We are interested in an approach similar to CMLLR, since as a model space technique,

we have an option to update the transforms and the Gaussian parameters simultaneously,

and it gives flexibility to the training procedure. If concurrent updates of transformation

parameters and Gaussian parameters are possible, it implies that we can significantly re-

duce the total time for training. Also, we want the transformation to be optimized for an

effective discriminative objective function like fMMI/MPE to improve recognition per-

formance. In addition, we also want the transformation to beless restrictive like RDLT.

Therefore, we propose GDFT as a feature space discriminative training algorithm.

5.3 GDFT and Lagrange Relaxation

Similar to the approach we used in the GBW algorithm (see figure4.1), we first set up the

optimization problem for discriminative training on the linear transform,W ≡ [A; b],

F (W ) = Qr(W ) − Qc(W ) . (5.4)

Minimizing F is the same as performing MMI optimization. However, optimization ofF

is not trivial since the solution can be unbounded. Instead of optimizing F directly, we
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transform the problem as the GBW algorithm to limit the changes in the likelihood,

G(W ) =
∑

i

|Qi(W ) − Ci| , (5.5)

whereCi is the chosen target value ofQ as discussed in section 4.1.

Then, we show how to optimize equation 5.5. We would like to remind the readers

that part of the formulation is closely related to CMLLR and readers are encouraged to

read appendix C of [Gales (1998)] for more details. To minimizeG, we first transform the

problem to,

min
ǫ,W

∑

i ǫi

s.t. ǫi ≥ Qi(W ) − Ci ∀i

ǫi ≥ Ci − Qi(W ) ∀i , (5.6)

whereǫ represents slack variables andi is an utterance index. This is equivalent to the

original problem in equation 5.5 without constraints. We call this as the primal problem

for GDFT .

We can then construct the Lagrangian dual for the primal problem. The Lagrangian is

defined as,

LP (ǫ,W, α, β) =
∑

i

ǫi −
∑

i

αi(ǫi − Qi(W ) + Ci)

−
∑

i

βi(ǫi − Ci + Qi(W )) (5.7)

where{αi} and{βi} are the Lagrange multipliers for the first and the second set of con-

straints of the primal problem in equation 5.6. The Lagrangian dual is then defined as,

LD(α, β) = inf
ǫ,W

LP (ǫ,W, α, β) (5.8)

Now, we can differentiateLP w.r.t. ǫ andW which includes the rotation matrixA and

the biasb. Hence,

∂LP

∂ǫi

= 1 − αi − βi (5.9)

∂LP

∂W
=

∑

i

(αi − βi)
∂Qi

∂W
. (5.10)
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By setting∂LP

∂ǫi
to zero, it implies,

αi + βi = 1 ∀i . (5.11)

Assuming the covariance matrices are all diagonal, we then compute∂LP

∂W
row by row,

∂LP

∂wd

=
∑

i

(αi − βi)
∂Qi

∂wd

= −Γ
pd

pdw′
d

+ wdG
(d) − k(d) , (5.12)

wherewd refers tod-th row of W ; pd = [cd1, . . . , cdn, 0] is the extended cofactor row

vector ofA (cij = cof(Aij)) , and,

G(d) =
∑

i

(αi − βi)
∑

j

1

σ2
jd

∑

t

γi
t(j)ζtζ

′
t (5.13)

k(d) =
∑

i

(αi − βi)
∑

j

1

σ2
jd

µjd

∑

t

γi
t(j)ζ

′
t (5.14)

Γ =
∑

i

(αi − βi)
∑

t

∑

j

γi
t(j) . (5.15)

To solve ∂LP

∂wd
= 0, we can use the same method as CMLLR by first solving this

quadratic equation forδ,

δ2pdG
(d)−1p′d + δpdG

(d)−1k(d)′ − Γ = 0 . (5.16)

Then we can apply this update equation,

wd = (δpd + k(d))G(d)−1 . (5.17)

UpdatingW is an iterative process like CMLLR since the cofactors dependon other rows.

As a result, we need to apply equation 5.17 on the whole transformation several times and

recompute the cofactors until it converges. It is importantto note that GDFT reduces to

CMLLR if αi = 1 andβi = 0 for all references andαi = βi = 0.5 for all competitors.

Equation 5.12 to 5.17 show howW can be computed if the Lagrange multipliers,α, β,

are known. In other words,W in equation 5.17 is a function ofα andβ. To estimate the
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multipliers, we need to construct the dual problem from the Lagrangian (equation 5.7).

This can be done by integrating equation 5.11 and 5.17 into equation 5.7. Thus, we obtain,

LD(α, β) =
∑

i

(αi − βi)(Qi(W
∗) − Ci) (5.18)

whereW ∗ is a function ofα andβ computed by equation 5.17. Then, we can formulate

the dual problem,

max
α,β

LD(α, β) =
∑

i

(αi − βi)(Qi(W
∗) − Ci)

s.t. ∀i αi + βi = 1

αi, βi ≥ 0 .

This dual problem is convex and it can be solved easily with gradient ascent. While the

gradient formula can be complicated, the following approximation is good enough in gen-

eral,

∂LD

∂αi

≃ Qi(W
∗) − Ci . (5.19)

Similar to GBW, GDFT does not fulfill the strong duality condition. As a result, the solu-

tion of the dual problem may not be primal optimal. One can only consider this approach

as a relaxation approach which we relax a non-convex probleminto a convex one.

5.3.1 Regularization for GDFT

In chapter 2 and 4, we discuss the importance of regularization and smoothing for model

space discriminative training. The need of regularizationduring optimization is due to the

objective functions. However, regularization is not thoroughly explored for feature space

discriminative training. While there are many smoothing techniques or heuristics available

for the EBW algorithm, there are not many techniques designedfor fMPE/MMI or RDLT

except a heuristics of setting the learning rate for gradient descent [Povey et al. (2005)].

In this section, we show how the formulation of GDFT can be extended to incorporate

regularization and how this regularization can improve GDFT. Adding regularization to
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feature transformation is not new. In [Saon et al. (2009)], alarge margin based semi-tied

covariance (STC) method is developed. In that algorithm, a regularization scheme similar

to GDFT is proposed. What separated the approach by [Saon et al. (2009)] and GDFT is

that the regularization of GDFT is based on a distance measure like GBW and it is made

explicit in the optimization problem.

AssumingW 0 ≡ [A0; b0] is the backoff transform that we want to regularize in the

optimization of GDFT, we can modify the GDFT objective function info,

G(W ) =
∑

i

|Qi(W ) − Ci| +
D

2
||W − W 0||2F , (5.20)

and modify the GDFT primal problem in equation 5.6 into,

min
ǫ,W

∑

i ǫi + D
2
||W − W 0||2F

s.t. ǫi ≥ Qi(W ) − Ci ∀i

ǫi ≥ Ci − Qi(W ) ∀i , (5.21)

where||W−W 0||F is the Frobenius norm betweenW andW 0 andD is a tuning parameter

to control to significance of the regularization term. The Lagrangian then becomes,

LP (ǫ,W, α, β) =
∑

i

ǫi −
∑

i

αi(ǫi − Qi(W ) + Ci) −
∑

i

βi(ǫi − Ci + Qi(W ))

+
D

2
||W − W 0||2F

=
∑

i

ǫi −
∑

i

αi(ǫi − Qi(W ) + Ci) −
∑

i

βi(ǫi − Ci + Qi(W ))

+
D

2

∑

i,j

(Wij − W 0
ij)

2

=
∑

i

ǫi −
∑

i

αi(ǫi − Qi(W ) + Ci) −
∑

i

βi(ǫi − Ci + Qi(W ))

+
D

2

∑

d

(wd − w0
d)(wd − w0

d)
′ (5.22)

wherewd andw0
d represent thed-th row ofW andW 0 respectively.
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Same as the original GDFT, we differentiate this Lagrangianw.r.t. ǫ and set it to zero.

Then we obtain,

αi + βi = 1 ∀i . (5.23)

For ∂LP

∂W
, we need to assume all covariance matrices are diagonal likeCMLLR or the

original GDFT. We compute the partial derivative row by row,

∂LP

∂wd

=
∑

i

(αi − βi)
∂Qi

∂wd

+ D(wd − w0
d)

= −Γ
pd

pdw′
d

+ wd(G
(d) + DI) − (k(d) + Dw0

d)

= −Γ
pd

pdw′
d

+ wdG̃
(d) − k̃(d) , (5.24)

where

G̃(d) = G(d) + DI (5.25)

k̃(d) = k(d) + Dw0
d . (5.26)

After that, we can follow the rest of the equations in the original GDFT to solve forW .

This is an interesting finding since adding regularization to GDFT only requires little

modification to GDFT. The only changes to the formulation arehow we computeG and

k. The additional computation is negligible. Also, by addingD × I to G, as long as D is

large enough, it helpsG to have enough rank for inversion and this also reduces possible

numerical issues. There are many possible choices ofW 0. The simplest case is the identity

matrix, I. Other possible choices include ML estimates, MMI estimates or the transform

from the previous iteration. TheD parameter serves as the same purpose as theD-term

used in the EBW and GBW algorithm and we apply the same heuristics, i.e.D = E × γc.

When there are more than one regression classes, we have oneD value for each transform,

which is like oneD value for each Gaussian in EBW or GBW.

5.3.2 Context Training for GDFT

As described, GDFT performs linear transformation on the feature vectors directly. In

contrast, fMMI/MPE and RDLT can exploit the information available in the features within
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a context window, and also high dimensional posterior features. The linear transforms

trained by fMMI/MPE and RDLT project the high dimensional features to the original

feature space. The projection can be considered as some formof feature selection and

it is optimized for some discriminative objective function. We propose an optimization

algorithm for GDFT to perform a similar function, which allows GDFT to exploit the

information available in different features.

Suppose we try to estimate a projection matrixP ,

G(P ) =
∑

i

|Qi(P ) − Ci| +
D

2
||P − P 0||2F , (5.27)

where

Qi(P ) =
∑

t

∑

j

γi
t(j)(Pyt − µj)

′Σ−1
j (Pyt − µj) (5.28)

which is an auxiliary function to represent negative log likelihood;P 0 is the backoff pro-

jection. The projection matrixP projects the high dimensional featureyt to the orig-

inal feature space.yt can be constructed using the original featurext. For example,

yt = [x′
t−F , . . . , x′

t, . . . , x
′
t+F , 1]′ whereyt is a supervector constructed by stacking the

features within a context window of±F frames. While there are many different ways to

constructyt, this paper focuses on the context features.

Similar to GBW and GDFT, we use Lagrange relaxation to solve equation 5.27. First,

we construct an equivalent constrained optimization problem,

min
ǫ,P

∑

i ǫi +
D

2
||P − P 0||2F

s.t. ǫi ≥ Qi(P ) − Ci ∀i

ǫi ≥ Ci − Qi(P ) ∀i . (5.29)

Then, we can setup the Lagrangian,

LP (ǫ, µ, α, β) =
∑

i

ǫi −
∑

i

αi(ǫi − Qi(P ) + Ci)

−
∑

i

βi(ǫi − Ci + Qi(P ))

+
D

2
||P − P 0||2Σj

(5.30)
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where{αi} and{βi} are the Lagrange multipliers for the first and the second set of con-

straints of the optimization problem in equation 5.29.

Now, we can differentiateLP w.r.t. P andǫ, and set them to zero, it implies,

αi + βi = 1 ∀i . (5.31)

For the projection, we need to solve the equation in a row-by-row manner,

∂LP

∂Pd

=
∑

i

(αi − βi)
∂LP

∂Pd

+ D(Pd − P 0
d )

=
∑

i

(αi − βi)
∑

t

∑

j

γi
t(j)

1

σ2
jd

(Pdyt − µjd)yt

+ D(Pd − P 0
d ) .

Finally, we obtain,

Pd = k(d)
y G(d)−1

y (5.32)

wherePd is thed-th row ofP , and,

G(d)
y =

∑

i

(αi − βi)
∑

j

1

σ2
jd

∑

t

γi
t(j)yty

′
t + DI (5.33)

k(d)
y =

∑

i

(αi − βi)
∑

j

µjd

σ2
jd

∑

t

γi
t(j)y

′
t + DP 0

d (5.34)

Similar to fMMI/MPE, the feature vectors are first transformed using the main trans-

forms,W . Then, the features are stacked to form supervectors and we apply the projection

as described in equation 5.32 to retrieve the final feature vectors in the feature space.

During training, the projection and the main transforms areoptimized jointly. Al-

though we can have multiple projections, we choose to have one projection transform and

multiple main transforms like fMMI/MPE. For fMMI/MPE, only10% of the training data

is assigned to train the projection matrix. The reason is to prevent the projection simply

scales the transformed features [Povey (2005)]. We adopt the same procedure for GDFT,

which only10% of the data is assigned to train the projection. In addition to solving the
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issues mentioned in [Povey (2005)], this also greatly speeds up the training process since

for 90% of the data, GDFT operates on the low dimensional features, as computingGd and

kd are much more efficient than computingGd
y andkd

y . One should note that this proce-

dure does not benefit fMMI/MPE in terms of computation since fMMI/MPE uses gradient

descent and the computation of the gradient must involve thehigh dimensional features.

5.3.3 Training Procedure of GDFT

GDFT can be considered as a discriminative version of CMLLR. Although the transforms

are applied on the features, GDFT can still be considered as amodel space technique. The

question is how GDFT should be integrated into the model training process.

One can consider GDFT as a feature transformation techniquelike fMPE/MMI and

RDLT. In such a case, we can use the conventional approach which we first optimize the

features. Once the features are optimized, we perform modelspace discriminative training

to optimize the acoustic model. Another way to look at it is considering GDFT as a model

space technique like CMLLR. One may first optimize the HMM parameters, then the

model transforms. Or we may treat the transforms and the Gaussian parameters as a single

parameter set and optimize them jointly. In sum, there are atleast three possible training

procedures.

GDFT is under the EM algorithm framework. While the E-step remains the same as

CMLLR, the M-step is now replaced by solving a convex dual problem. To speed up the

process, like GBW, we perform one iteration of gradient ascent in the dual problem to

obtain the transforms, then we repeat another EM iteration.

5.4 Comparison on the Computational Complexity of GDFT

and fMPE/MMI

Feature space discriminative training is known to be one of the most expensive process for

discriminative training [Povey et al. (2005), Zhang et al. (2006a)]. The design of GDFT
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considers computational cost as one of the most important factors and aims to achieve

good recognition accuracy with low computational cost. In this section, we compare the

computational cost of GDFT and fMMI.

There are two areas which we can compare the computational cost of GDFT and

fMMI: the feature transformation process and the statistics accumulation process. For

feature transformation, both GDFT and fMMI uses a GMM to assign the feature vectors

to the feature transforms. The difference is GDFT assigns the feature to one and only

one feature transform and fMMI generates the mean offset posterior features as discussed

on section 2.3. For simplicity, we focus on the feature transformation part which GDFT

transforms the features by,

yt = Aixt + bi (5.35)

zt = PyF
t (5.36)

and fMMI transforms the features by,

yk
t = Mk

1 ht (5.37)

ztd = xtd +
F∑

f=−F

∑

k

Mk
2,(f+F,d)y

k
t+f , (5.38)

whereyF
t is the supervector of stacking±F frames centered byyt.

Computingyt for GDFT needsO(D2) time whereD is the dimension of the feature

vectorxt, while fMMI needsO(NKD2) to compute allyk
t whereN is the number of

Gaussians in the GMM andK is the number of blocks for block update. However, since

ht is sparse, so the actual computation for fMMI should beO(AKD2) whereA is the

average number of active Gaussians after the GMM evaluation.

For the final feature vector,zt, GDFT needs to perform a projection usingP to project

yF
t to D dimension. Therefore, GDFT needsO(FD2) time to computezt from yt and

the total time is alsoO(FD2). For fMMI, computingzt from yt needsO(DFK), so the

total time isO(AKD2 + FKD) which should be similar to GDFT’sO(FD2) in normal

configuration setup.
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For the statistics accumulation process, GDFT needs to compute Gd, kd, Gd
y andkd

y

as shown in equation 5.25, 5.26, 5.33, 5.34 respectively. Since the time for computing

theG-matrices dominates the overall computation, we only need to consider the time for

computingG. Recall that

Gd =
∑

i

(αi − βi)
∑

j

1

σ2
jd

∑

t

γi
t(j)ζtζ

′
t + DI

One can precompute

T i
tjd = (αi − βi)

∑

j

1

σ2
jd

∑

t

γi
t(j) (5.39)

which costsO(TJD) time whereT is the length of the utterance andJ is the number of

Gaussians appeared in the reference and the competitor of utterancei. Then, onceT i
tjd is

computed, we can accumulateGd by,

Gd := Gd +
∑

t

T i
tjdζtζ

′
t , (5.40)

which costsO(TD2) time. As a result, the time for computingGd is O(TD2 + TJD).

However, there areD G-matrices, therefore, the total time for computingG is O(TD3 +

TJD). It is notO(TD3 + TJD2) becauseT i
tjd does not need to be recomputedD times.

For Gd
y, the way to compute the cost is the same exceptGd

y is computed onyF
t which is

2(F + 1) × D dimensional. As a result, the cost for computingGd
y is O(TF 2D3 + TJD)

where±F is the width of the context window. In practice, the cost for GDFT is lower

because only 10% of the data will be assigned to train the context transform, while for

90% of the data, GDFT operates on the low dimension features and has the complexity of

O(TD3 + TJD). Also, theG-matrices are symmetric, therefore, one can further reduce

the cost by half in practice.

For fMMI, the statistics accumulation process involves thecomputation of the gradi-

ents of the main transform,M1 and the context transform. For simplicity, we ignore the

costs of the extra BMMI pass for computing the indirect statistics and the ML update for
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fMMI. Then, to compute the gradient ofM1,

(
∂Qdirect

MMI

∂Mk
1

)

(i,j)

=
∑

t

(
∂Qdirect

MMI

∂zt

)

i

F∑

f=−F

Mk
2,(f+F,i)ht+f,j

∂Qdirect
MMI

∂zt

=
∑

m

γr
t (m)Σ−1

m (zt − µm) −
∑

m

γc
t (m)Σ−1

j (zt − µm) .

∂Qdirect
MMI

∂zt
can be precomputed for the whole utterance and the total timeis O(TJD). For the

rest, we can take the advantage thatht is sparse, hence, we only need to accumulate the

statistics as long asht+f,j is non-zero. Then, the computing cost isO(A×2(F +1)×K×

D × D) = O(AKFD2). ForM2, computing the cost is straightforward,

(
∂Qdirect

MMI

∂Mk
2

)

(f+F,i)

=
∑

t

(
∂Qdirect

MMI

∂zt

)

i

yk
t+f,i

(5.41)

so the total cost isO(TAKFD + TJD). Same as GDFT, 10% of the data is assigned to

trainM2 while for 90% of the data is assigned to trainM1.

For most of the data (90%), we compareO(TD3 + TJD) andO(TAKFD2 + TJD)

for the runtime of GDFT and fMMI. SinceD is around 40, it is going to be much smaller

thanA × K × F for the setting suggested in [Povey (2005)] whereK = 9 andF = 8.

Therefore, GDFT runs faster than fMMI. It is important to note that the slowest case for

GDFT which computes the statistics for the context transform (O(TF 2D3 + TJD)) is

slower than the average case for fMMI (O(TAKFD2 + TJD)). Hence, asF increases,

the speed advantage of GDFT would diminish.

For memory usage, GDFT uses significantly more memory than fMPE/MMI. The rea-

son is GDFT requires to store theG-matrices which have the dimension ofO(D2) for

the main transforms andO(F 2D2) for the context transform. As a result, GDFT needs

O(ND2+F 2D2) space to store the statistics. Compared to GDFT, fMPE/MMI does not re-

quire to store theG-matrices. Since fMPE/MMI uses gradient ascent, the memoryrequire-

ment is the same as the model size. Hence, fMPE/MMI only needsO(NKD + FKD)

space to store the statistics which is significantly smallerthan GDFT.
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5.5 Limitations of the GDFT Framework

Compared to fMPE/MMI and RDLT, GDFT has lower computational cost. One of the rea-

sons comes from the CMLLR framework which has an efficient row-by-row update equa-

tion. However, this framework also imposes some constrainton GDFT that makes it diffi-

cult to adopt the posterior features or other high dimensional features used by fMPE/MMI

or RDLT.

Suppose we would like to use the posterior features, which means instead of assigning

one and only one transform for each frame, we assign multipletransforms weighted by the

posterior probability distribution. Then, we would compute the transformed feature,yt by

yt =
N∑

n=1

γt(n)(Anxt + bn) (5.42)

whereγt(n) is the posterior probability at timet of n-th Gaussian in the GMM which

is used by GDFT, fMPE/MMI and RDLT. However, this change wouldno longer fit into

the CMLLR/GDFT framework which requires the transformation of the feature vectors is

equivalent to the model transformation as shown in equation5.1, 5.2 and 5.3.

If we relax the constraint and formulate GDFT as a pure feature transformation tech-

nique, we need to solve a similar but different optimizationproblem. For simplicity, we

demonstrate the difficulties of solving the maximum likelihood problem if the features are

transformed by equation 5.42. The reason is if problems occur when solving∂Q
∂θ

= 0, the

same problems will also affect the solution of solving
∑

i(αi − βi)
∂Qi

∂θ
= 0. Consider the

auxiliary function,

Q =
∑

t

∑

j

γt(j)(yt − µj)
′Σ−1

j (yt − µj)

=
∑

t

∑

j

γt(j)(
N∑

n=1

γt(n)(Anxt + bn) − µj)
′Σ−1

j (
N∑

n=1

γt(n)(Anxt + bn) − µj) ,

(5.43)

where minimizingQ is equivalent to maximizing the likelihood. Now, we differentiateQ
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with respect toAn,

∂Q

∂An

=
∑

t

∑

j

γt(j)2Σ−1
j (

N∑

n=1

γt(n)(Anxt + bn) − µj)x
′
t (5.44)

and we need to solve∂Q
∂An

= 0. For CMLLR or GDFT, we solve this problem row-by-

row because by doing so,Σ−1
j becomes a scalar if the model uses diagonal covariance.

Therefore, we can move the parameter of interest,A, to the left hand side of the formula

and move the rest to the right hand side to derive the closed form solution. However,

we can no longer do that in this scenario, sinceAn is in the linear sum with the other

transforms and we cannot derive a closed form solution like CMLLR or GDFT.

This problem does not imply∂Q
∂An

= 0 cannot be solved analytically. As mentioned,

althoughAn is in the linear sum, one can still solve it by setting up a system of linear

equations. However, the size of the linear system can be hugesince we haveN × D(D +

1) parameters, it means the system hasN × D(D + 1) equations which would become

intractable if we have more than a few hundred transforms.

A more practical way to solve the problem is to modify the formulation in section 5.3.2,

which we derive the formulas to allow GDFT to perform contexttraining. Instead of using

equation 5.42 to perform feature transformation, we modifythe equation into,

xN
t = [γt(1)x′

t, γt(1), γt(2)x′
t, γt(2), . . . , γt(N)x′

t, γt(N)]′ (5.45)

P = [A1; b1; . . . ; AN ; bN ] (5.46)

yt = PxN
t , (5.47)

wherexN
t is a supervector constructed by stacking[x′

t, 1]′ × γt(n) for n = 1, 2, . . . , N and

P is aD byN×D(D+1) projection matrix. In this case, theyt computed by equation 5.47

is equivalent to the one computed by equation 5.42. However,the difference is we only

have one projection matrixP to estimate instead of having multiple transforms. In this

case, the auxiliary function becomes,

Q =
∑

t

∑

j

γt(j)(yt − µj)
′Σ−1

j (yt − µj)

=
∑

t

∑

j

γt(j)(PxN
t − µj)

′Σ−1
j (PxN

t − µj) . (5.48)
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Then, we can differentiateQ with respect toP ,

∂Q

∂P
=

∑

t

∑

j

γt(j)2Σ−1
j (PxN

t − µj)x
N ′

t . (5.49)

Finally, we need to solve∂Q
∂P

= 0. To do so, we assumeΣj is diagonal, then we can derive

a row-by-row update equation. LetPd be thed-th row ofP , then,

∂Q

∂Pd

=
∑

t

∑

j

γt(j)
1

σ2
j

(Pdx
N
t − µjd)x

N ′

t = 0

⇒ Pd(
∑

t

∑

j

γt(j)
1

σ2
j

xN
t xN ′

t ) =
∑

t

∑

j

γt(j)
µjd

σ2
j

xN ′

t .

As a result,

Pd = kd
xG

d−1
x (5.50)

where

Gd
x =

∑

t

∑

j

γt(j)
1

σ2
j

xN
t xN ′

t (5.51)

kd
x =

∑

t

∑

j

γt(j)
µjd

σ2
j

xN ′

t . (5.52)

By transforming the problem like GBW and GDFT, we obtain the generalized version of

the update equation,

Pd = kd
gG

d−1
g (5.53)

where

Gd
g =

∑

i

(αi − βi)
∑

t

∑

j

γi
t(j)

1

σ2
j

xN
t xN ′

t (5.54)

kd
g =

∑

i

(αi − βi)
∑

t

∑

j

γi
t(j)

µjd

σ2
j

xN ′

t . (5.55)

This formulation is very flexible because we can have a closedform update equation

regardless of how we construct the supervectors. However, the drawback is if the supervec-

tor has very high dimension, computing theG matrices is expensive. For context training,
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since only 10% of the data is applied, the cost is limited, butfor posterior features, one has

to collect the statistics over the whole train set which can be very expensive. In sum, while

the framework allows GDFT to use posterior features or otherhigh dimension features like

fMPE/MMI and RDLT, the computational cost is expensive. As a result, we focus on the

low dimension features and the context training for GDFT.

5.6 Experiments on GDFT

We evaluated the performance of GDFT on the Iraqi ASR system and the MSA ASR

system. In the experiments, we study the how regularizationand context training affects

the performance of GDFT. We also compare the performance of GDFT and fMMI and

also the combining the model space discriminative training. Detailed system description

is available in chapter 3.

5.6.1 Experiments on GDFT about Regularization

Table 5.1 is the comparison of GDFT using different configurations using the Iraqi ASR

system. The training in this experiment only consists of feature space training and the

acoustic model is the ML model. For GDFT, the regularizationparameterE is set from

zero to two. From the results, we observed that regularization allows GDFT to use more

transforms. The performance of GDFT without regularization degraded the accuracy when

there were 1024 transforms and the training failed for 2048 transforms. However, with reg-

ularization, GDFT continued to improve the ML baseline withmore than 1024 transforms.

In this experiment, GDFT with regularization achieved 35.7% WER with 2048 transforms,

which is better than the ML baseline with 1.3% absolute improvement.

In the experiment, we also explored how the regularization parameter,E, might affect

the performance of GDFT. When there were 1024 transforms, GDFT with regularization

had the same WER of36.1% for differentE from one to two. Similarly, when there were

2048 transforms, GDFT could outperform the baseline systemwith a WER of35.7% for

E = 1. From the results, we observed that the performance of GDFT was not sensitive to
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Training proc. E # transforms WER

ML - - 37.0

GDFT 0.0 16 36.7

GDFT 0.0 1024 38.5

GDFT 0.0 2048 -

GDFT 1.0 16 36.7

GDFT 1.0 1024 36.1

GDFT 1.5 1024 36.2

GDFT 2.0 1024 36.2

GDFT 1.0 2048 35.7

GDFT 1.5 2048 35.8

GDFT 2.0 2048 35.9

GDFT 1.0 4096 35.9

Table 5.1: WER(%) of GDFT with and without regularization on the dev set (TransTac

Jun08 open set).
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the choice ofE which means tuning should be easy.

5.6.2 Experiments on GDFT about Context Training

In this experiment, we investigated how the size of the context window might affect the

performance of GDFT. We used the unvowelized MSA 50-hr system to test different con-

figurations.

Window ±0 ±3 ±5 ±7 ±9

GDFT 18.9 18.9 18.6 18.5 18.8

Table 5.2: WER(%) of GDFT on the GALE dev07 test set for the Unvow50-hr MSA

system. The ML baseline is 19.8% WER.

Table 5.2 shows the performance of GDFT with context window of different size. In

this experiment, GDFT optimized for the BMMI objective function and it used 1024 trans-

forms. The acoustic model was the ML model. GDFT achieved thebest performance when

the window size was seven which concatenated±7 frames to construct the supervector and

then projected it back to the original feature space using the context projection transform.

The result showed that context training could improve the performance of GDFT. How-

ever, when model space discriminative training was appliedon the acoustic model, the

difference became smaller. In this particular system, GDFTwithout context training plus

BMMI model space training gave 17.6% WER while GDFT with context training plus

BMMI gave 17.4% WER.

5.6.3 Experiments on GDFT and fMMI

In section 5.4, we compare the computational complexity of GDFT and fMMI. While

the analysis may help evaluating the efficiency of running GDFT and fMMI, it ignores the

implementation details which may greatly affect the computational cost. Hence, we would

like to perform some benchmarks to compare the actual runtime for GDFT and fMMI. We
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test GDFT and fMMI using different configurations and see howsome configurations like

the window size and block update may affect the speed and the recognition accuracy. For

the experiment, we used the Iraqi ASR system to evaluate the algorithms. Both GDFT and

fMMI had 2048 transforms. For simplicity, we only considered the gradient computation

part for fMMI and ignored the costs for collecting indirect statistics and the ML model

update. For timing, the benchmark was done by performing GDFT/fMMI on the whole

Iraqi train set using 20 cores at∼2.66GHz.

window block pruned? time/iter WER

fMMI ±7 9 no ∼5 days 35.2%

fMMI ±7 9 yes ∼4 days 35.4%

fMMI ±7 1 yes ∼2 days 35.7%

fMMI ±0 9 yes ∼2 days 36.4%

fMMI ±0 1 yes ∼1 day 36.5%

GDFT ±7 - yes ∼1 day 35.7%

GDFT ±0 - yes ∼0.5 day 35.8%

Table 5.3: Comparison on the runtime and the recognition performance of fMMI and

GDFT. The WER is computed on the TransTac Iraqi Jun08 open set and the runtime is

measured on the 450-hr train set.

Table 5.3 shows the runtime and the recognition performanceof different configura-

tions of GDFT and fMMI. In the table, the column “pruned?” means if yes, each frame can

only be assigned to one and only one transform, which is required for GDFT. The default

setting of fMMI on this parameter is no since fMMI uses posterior features, therefore,

each frame can be assigned to multiple transforms dependingon the posterior probability

distribution. The results in table 5.3 basically show that the posterior feature, the con-

text expansion and the block update all contribute to the performance of fMMI. However,

enabling all these features also increases the computational cost. In contrast, GDFT can

achieve good performance if runtime is a concern. As shown inthe experiment, GDFT

can outperform fMMI in terms of recognition accuracy if we only allow at most one day

per iteration. However, if we allow more training time, fMMIcan outperform GDFT if all

81



features are enabled.

main transform context transform

fMMI O(TAKFD2 + TJD) O(TAKFD + TJD)

GDFT O(TD3 + TJD) O(TF 2D3 + TJD)

Table 5.4: Computation complexity of fMMI and GDFT for accumulating statistics.

main transform context transform

fMMI O(NKD) O(FKD)

GDFT O(ND2) O(F 2D2)

Table 5.5: Memory requirement of fMMI and GDFT for accumulating statistics.

In section 5.4, we analyze the computational complexity of GDFT and fMMI. Ta-

ble 5.4 and 5.5 summarize the complexity and the memory requirement for accumulating

the statistics for GDFT and fMMI. It is interesting to see that the runtime of GDFT with

window size±7 is similar to the runtime of pruned fMMI with only context training or

only block update. The reason is for some utterances, if the lattices are big, the runtime

is dominated by the termO(TJD), sinceJ , which is the number of Gaussians appeared

in the lattice, can be huge. In this case, the runtime of GDFT and fMMI can be similar.

Another reason is when we compute theG matrices for GDFT, say equation 5.54, it can be

computed by simply one function call using ATLAS BLAS [Whaley and Petitet (2005)].

ATLAS BLAS is a highly optimized libraries for linear algebraic operations, which helps

lowering the computational cost of GDFT. In sum, GDFT has theadvantage in terms of

computational cost from both theoretical and implementation aspects compared to fMMI.
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5.6.4 Experiments on Combining Model Space and Feature Space

Discriminative Training

Then, we study the performance of combining feature space and model space discrimi-

native training. For feature space discriminative training, we compare fMMI and GDFT,

while for model space discriminative training, we use EBW andsEBW. The focus of these

experiments are on the conventional training procedures, so we do not use rEBW for these

experiments. The performance of fast discriminative training combining feature space and

model space discriminative training will be addressed in chapter 6. In these experiments,

both fMMI and GDFT used a context window of size±7 and fMMI had nine blocks of

transforms. GDFT used the transforms from the previous EM iteration to perform backoff.

All discriminative training algorithms reported in this section optimized the models for the

BMMI objective function.

Figure 5.1 shows the performance of different training procedures using fMMI/GDFT

and/or BMMI. The common strategy of combining feature space and model space dis-

criminative training is first performing feature space discriminative training to optimize

the features. Then, model space discriminative training isperformed on the optimized

features [Povey et al. (2005); Povey (2005)]. As shown in thefigure, using feature space

discriminative training such as GDFT or fMMI can improve theoverall performance. It

is interesting to see that although fMMI outperforms GDFT atthe feature level, where

GDFT gives 35.7% WER and fMMI gives 35.2% WER, the performance isalmost the

same after model space discriminative training where GDFT→BMMI gives 31.9% WER

and fMMI→BMMI gives 31.8% WER. We also tried to combine GDFT, fMMI and BMMI

together. In which, we performed GDFT first, then fMMI and finally BMMI. This is de-

noted by GDFT→fMMI →BMMI in figure 5.1 and the WER of this training procedure is

31.4% which slightly improves the procedures of using only GDFT or fMMI.

Table 5.6 shows the performance of using the sEBW algorithm asdiscussed in sec-

tion 4.4.2 for the combined feature space and model space discriminative training proce-

dure. In this experiment, the threshold for sEBW is tuned on the development set, i.e.

TransTac Iraqi Jun08 open set, using the model space discriminative training only. Details
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Figure 5.1: Performance of different ways to combine GDFT/fMMI with BMMI on the

TransTac Iraqi Jun08 open set.

of the tuning process is available in section 4.6.3. From theresults, although the sEBW

algorithm does not significantly improve the recognition performance, the best system

uses the sEBW algorithm combined with GDFT, fMMI and BMMI training. This system

achieves 31.2% WER on the Jun08 open set and 29.8% WER on the unseen Nov08 open

set.
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Jun08 open Nov08 open

ML 37.0% 35.2%

BMMI-EBW 32.6% 30.6%

BMMI-sEBW 32.3% 30.5%

fMMI →BMMI-EBW 31.8% 30.0%

fMMI →BMMI-sEBW 31.6% 30.0%

GDFT→BMMI-EBW 31.9% 30.0%

GDFT→BMMI-sEBW 31.7% 30.0%

GDFT→fMMI →BMMI-EBW 31.4% 29.9%

GDFT→fMMI →BMMI-sEBW 31.2% 29.8%

Table 5.6: WER(%) of different discriminative training procedures and different EBW

algorithms on the TransTac Iraqi Jun08/Nov08 open sets.
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Chapter 6

Towards Single Pass Discriminative

Training for Speech Recognition

6.1 Introduction

As discussed in previous chapters, discriminative training is an expensive but effective

process to improve recognition accuracy for ASR systems. The lengthy training time is

often due to the huge amount of data required to build a high performance system. Also, as

long as ”there is no data like more data” remains true, one canforesee that discriminative

training will dominate the development time for an ASR system. This is not desirable

since the cost of discriminative training may eventually exceed the available processing

power and it may hinder the researchers to exploit the virtually unlimited amount of data

to improve an ASR system.

In this chapter, we combine our proposed work and explore howmuch improvement

we can achieve from discriminative training if we can process the data only once. We

are interested in single-pass training since when the amount of data becomes huge, pro-

cessing the data multiple times using discriminative training may no longer be feasible.

If we only have the resource to process the data once, we wouldlike to know the best

way to perform discriminative training and how much improvement we can obtain. The
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ultimate question which we would like to ask is if we have unlimited amount of data for

some applications, should we perform single-pass discriminative training which can adopt

more data, or perform regular discriminative training which may provide better statistical

estimation? However, before we can attempt to answer this question, we need to develop

tools to perform single-pass training which is the focus of this chapter.

6.2 Incremental Mode and Batch Mode for Discrimina-

tive Training

The idea of performing single-pass discriminative training is not new. Researchers have

been investigating single-pass discriminative training in the form of online training. In-

stead of updating the model once after collecting the statistics from the whole train set,

online training allows model update after processing each utterance. Therefore, we would

like to compare our proposed single-pass discriminative training using our fast model

space and feature space discriminative training algorithms with online discriminative train-

ing.

Existing online discriminative training algorithms are often based on stochastic gra-

dient descent [Cheng et al.; Keshet et al. (2011)], since theycan be computed for each

utterance to perform model update. In contrast, Baum-Welch and Baum-Welch related

algorithms require the statistics for the whole train set, which is not suitable for online

training. However, Baum-Welch algorithms can be parallelized easily which is not the

case for online gradient descent since if the model is updated every utterance, there is a

sequential dependency which cannot be parallelized easily[Kuo et al. (2007)]. Therefore,

batch training like Baum-Welch algorithm is often preferredwhen building a large scale

system. As a result, batch mode training remains to be more popular for building speech

recognition systems.

Compared to batch training, it is more difficult to incorporate regularization for online

training. As discussed in chapter 4, the performance of EBW and GBW heavily rely on the

D-term which comes from the regularization function in the optimization problem, and the
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regularization considers the statistics of the whole trainset. In stochastic gradient descent,

it is not trivial to integrate such term as the overall statistics are not available. Existing

online algorithms using gradient descent basically omit anexplicit regularization function

but rely on the objective function itself to prevent over train issues. This may also be the

reason why MCE is more popular than BMMI or MPE for online training since MCE has

a sigmoid function to control the overtraining issue [Cheng et al.; Keshet et al. (2011)].

In our work, we would like to take a different approach to online training. Instead of

using gradient descent, we investigate if it is possible to use the EBW algorithm to perform

online training. In chapter 4, we learn that the D-term comesfrom the regularization

function. As a result, we can perform the EBW algorithm on small batches of data and

the model estimated from previous batch of data can be used toregularize the model

estimation for the next batch. If it works, we want to see how this version of online training

perform in the case of single-pass training. Since this training procedure process small

batches of data instead of updating the model every utterance, we call it the incremental

training to avoid confusion. In sum, we want to compare the incremental mode and the

batch mode of single-pass training and see how much improvement can be achieved by

processing the data only once.

6.3 Experiments on Single Pass Discriminative Training

We conducted our experiments on the Iraqi and the MSA ASR systems. Detailed system

description of both systems is available in chapter 3.

6.3.1 Experiments on Single Pass and Regular Discriminative Train-

ing

We first compared regular discriminative training procedures with the single-pass discrim-

inative training. For both regular and single-pass training, we used BMMI for model space

discriminative training, and for feature space training, we used fMMI and our proposed
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GDFT. Both fMMI and GDFT had a context window of±7 frames. Performing fMMI fol-

lowed by BMMI training is considered to be the state-of-the-art for discriminative training.
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Figure 6.1: Performance of different training procedures.This experiment is performed

on the TransTac Jun08 open set using the Iraqi ASR system.

Figure 6.1 shows that performing fMMI followed by BMMI (fMMI→BMMI) achieves

31.8% WER which improves the baseline ML model by 14.1% relative. If we replace

fMMI with GDFT, we get 31.9% WER which is very similar to fMMI→BMMI.

Table 6.1 summarizes and compares the performance and the run-time for different

training procedures. For single-pass training, we achieve32.5% WER by using one EM

iteration of GDFT and one EM iteration of BMMI using the rEBW algorithm with four

M-steps (M=4) per EM iteration. This performance is the sameas the regular BMMI

training without fMMI/GDFT (32.5%), but the regular BMMI training would need four
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passes on the train set instead of one. If we omit the GDFT for the single-pass training,

the performance is 33.2% WER. In sum, our single-pass trainingachieves 86.5% of the

total improvement available from discriminative training. If we release the single-pass

constraint and allow two passes of the data, GDFT(M=1)+BMMI(M=2) gives 32.0% WER

at the second EM iteration. This means it obtains 96.1% of theimprovement available

in the best training procedure (fMMI→BMMI). We can see that discriminative training is

very expensive but our proposed training procedure can drastically reduce the computation

and yet, obtain most of the improvement from discriminativetraining.

System WER # passes run-time % of total improv.

ML 37.0% - - 0.0%

BMMI 32.6% 4 2 days 84.6%

GDFT 35.7% 4 4 days 25.0%

GDFT→BMMI 31.9% 4+4 6 days 98.1%

fMMI 35.2% 12 20 days 34.6%

fMMI →BMMI 31.8% 12+4 22 days 100.0%

BMMI(M=4) 33.2% 1 0.5 day 73.1%

GDFT(M=1)+BMMI(M=4) 32.5% 1 1 day 86.5%

GDFT(M=1)+BMMI(M=2) 32.0% 2 2 days 96.2%

Table 6.1: Performance on TransTac Iraqi Jun08 open set and the run-time for different

training procedures. The run-time was measured on 20 CPU cores @∼2.66GHz using the

TransTac Iraqi 450-hr train set.

Model/GDFT M=1 M=2 M=3 M=4

ML 35.9% 35.6% 35.7% 35.7%

BMMI(M=4) 32.5% 33.0% 33.1% 33.0%

Table 6.2: The performance of single pass training with different combination of M-steps

for GDFT and BMMI. The experiment is performed on TransTac Jun08 Open set.
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Although we only performed one M-step for each EM iteration for GDFT in the ex-

periment shown in figure 6.1, we tried the recursive update for GDFT as well. Table 6.2

shows the results of using different ways to combine GDFT andBMMI for single-pass

training. When we use the ML model as the acoustic model, we observe GDFT can bene-

fit from multiple M-steps. However, when we use the BMMI model (M=4) as the acoustic

model, multiple M-steps for GDFT would degrade the performance. This result is reason-

able since when we train the model and the feature transformsjointly using single-pass

training, BMMI is trained on the untransformed data, while GDFT assumes the acoustic

model is the ML model. Hence, the mismatch becomes larger when we perform the recur-

sive update. For single-pass training, we found that the best setup is one M-step for GDFT

and four M-steps for BMMI.

#iters Jun08open Nov08open

ML - 37.0% 35.2%

BMMI 4 32.6% 30.6%

fMMI →BMMI 4+4 31.8% 30.0%

GDFT→BMMI 4+4 31.9% 30.0%

BMMI(M=4) 1 33.2% 31.3%

GDFT(M=1) 1 32.5% 31.0%

+BMMI(M=4)

GDFT(M=1) 2 32.0% 30.5%

+BMMI(M=2)

Table 6.3: The WER of the Iraqi ASR system on the Jun08 and the unseen Nov08 open

sets.

Table 6.3 and 6.4 show the performance of single-pass discriminative training on the

Iraqi and the MSA speech recognition systems for different test sets. These tables also

show the number of EM iterations used for different trainingprocedures. The time required

for each EM iteration for different algorithms is availablein table 6.1. In sum, the results

are consistent with the first experiment, which single-passtraining using GDFT and the

rEBW algorithm can achieve the performance of regular full BMMI training. If we allow
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#iters dev07 dev09 eval09 dev10

ML - 13.7% 20.4% 15.1% 16.5%

BMMI 4 11.7% 18.6% 13.3% 14.6%

BMMI(M=4) 1 12.0% 18.6% 13.4% 14.7%

GDFT(M=1) 1 11.7% 18.5% 13.4% 14.6%

+BMMI(M=4)

Table 6.4: The WER of the Vow 1100hrs 3-pass system on the GALE dev07/09/10 and

eval09 test sets.

two passes on the data, the performance of our proposed method is very close to the full

fMMI and BMMI training.

6.3.2 Experiments on Batch and Online Single Pass Discriminative

Training

Then, we compare batch and incremental single-pass training. Batch training means we

update the model only after collecting the statistics from the whole train set. For incre-

mental training, we allow model update after processing a subset of the data. One possible

advantage of incremental training over batch training is the statistics collected by E-steps

are computed by the model with better accuracy. While for batch training, the statistics are

only collected by the ML model. To perform incremental training, we randomly splitted

the train set of the Iraqi system into four or eight subsets ofequal size. A model update

was performed after processing each subset. We repeated theexperiments three times with

different data splits and took the average WER as the results.The difference due to data

splits is within the range of±0.2% WER absolute for all the data points we collected.

The results are shown in figure 6.2. In the figure, BMMI incr b=4 represents we per-

form incremental BMMI training which we update the model (M=1) after processing each

subset. The variable b specifies how many batches of data are available. BMMI incr b=4

has an WER of 33.4% after processing the whole train set. BMMI accu b=4 is similar to
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BMMI incr b=4 except the statistics accumulate and are not reset after processing each

subset. Compared to the original incremental mode, this procedure has access to more

data at the later stages of the training, but it may suffer from inconsistent statistics col-

lected by the models at different stages. As shown, the training becomes unstable at the

later stages of training. This result shows that the first strategy is better than the second

one. We also compare how the number of batches may affect the performance. In the

figure, we observe that although with more but smaller batches, the performance is better

at the early stages of training, the final performance is roughly the same. We also tried

12 batches but the training became unstable for both incremental modes. Then, we also

apply feature space discriminative training using GDFT to perform incremental training.

GDFT+BMMI incr b=4 uses the strategy of BMMI incr b=4 and it achieves 33.0% WER.

However, both incremental training algorithms are worse than their corresponding batch

mode training where BMMI using rEBW with four M-steps (M=4) hasan WER of 33.2%

while GDFT(M=1)+BMMI(M=4) has an WER of 32.5%.

On the unseen TransTac Nov08 open set, we observe a similar trend. As shown in

table 6.5, the batch mode single-pass training is better than the corresponding incremental

mode training. In sum, the batch training is slightly betterthan the incremental training in

the context of single-pass discriminative training.

Jun08open Nov08open

ML 37.0% 35.2%

BMMI(online) 33.4% 31.7%

BMMI(M=4) 33.2% 31.3%

GDFT 33.0% 31.6%

+BMMI(online)

GDFT(M=1) 32.5% 31.0%

+BMMI(M=4)

Table 6.5: Comparing the performance of the online and batch mode single pass discrimi-

native training on the Iraqi Jun08 and the unseen Nov08 open sets.
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Chapter 7

Conclusions

7.1 Contributions

We list out the contributions of our thesis work as follows:

• We have proposed the GBW algorithm which is the generalization of the BW and

EBW algorithm. The formulation of GBW justifies the heuristicsand the smoothing

techniques used in the EBW algorithm from a theoretical aspect.

• The GBW framework also explains that the EBW algorithm uses KL-divergence

as a regularization function. This is a new insight which is not discovered in the

original formulation of EBW. This finding also inspires better variants of the EBW

algorithm. In our work, we propose the rEBW and the sEBW algorithms.

• Our proposed rEBW algorithm can reduce the time for model space discriminative

training by half without any degradation on recognition accuracy. The rEBW algo-

rithm can further speed up the training process up to four times faster with small

degradation on accuracy.

• We have proposed the GDFT algorithm which generalizes CMLLR so it can perform

feature space discriminative training. In our experiments, we have found that the
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recognition performance of GDFT is comparable to fMMI but GDFT only requires

around1
5

of the computation needed for fMPE/MMI.

• We have extended our previous work on GDFT so that it can perform context train-

ing like fMPE/MMI.

• By combining GDFT and rEBW, we have proposed single pass discriminative train-

ing which can achieve most of the improvement from discriminative training by

processing the data only once. We also found that by allowingto process the data

twice, we could achieve all of the improvement.

• We have compared our single pass discriminative training with online methods.

While both methods only process the data once, single pass training gives better

recognition accuracy.

• Our proposed optimization algorithms for discriminative training can greatly reduce

the time for building ASR systems. This allows us to incorporate larger train set if

the amount of available data is unlimited.

• We have explained the meanings of indirect statistics used by fMPE/MMI and RDLT

from the aspect of formulating an optimization problem. We showed that fMPE/MMI

and RDLT optimize a multi-objective optimization problem. These insights help re-

searchers to understand the feature space discriminative training algorithms better.

These issues are not previously discussed in the original papers of fMPE/MMI and

RDLT.

• The formulation of the GBW and GDFT algorithm shows that one can convert many

existing ML based algorithms to optimize for discriminative or other objective func-

tions. While this research only explored converting the BW andCMLLR algorithm,

this formulation can be applied to many other algorithms as well. Thus, we created

an overall framework which hosts the traditionally used DT algorithms. Further-

more, the overall framework gives insight that helps to develop better solutions to

existing algorithms and tuning.
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7.2 Summary of Results

Using our baseline systems trained on sufficiently large amount of training data, we have

achieved the following results:

Our experiments showed that the rEBW algorithm can achieve the same WER as the

standard EBW algorithm. Among the eight test sets on three different systems, the differ-

ence in WER is no more than0.2% absolute. The key advantage of rEBW is that it only

requires half of the training time compared to the standard EBW algorithm. The rEBW

algorithm can further speed up the training up to four times faster. However, this setting

would slightly degrade the recognition accuracy by around1 − 2% relative compared to

the standard EBW algorithm.

On the Iraqi ASR system, GDFT achieved3−4% relative reduction on WER compared

to fMMI which achieved around5% relative reduction. However, after BMMI training, the

difference was gone. Both GDFT plus BMM and fMMI plus BMMI gave around13−15%

relative WER reduction. However, GDFT only needs one fifth of the computation required

for fMMI.

By combining all our proposed algorithms including GDFT and sEBW together with

fMMI and BMMI, we achieved31.2% and29.8% WER for the Iraqi Jun08 and Nov08

open set which are the best numbers for this system in the thesis. Compared to the ML

baseline, the relative improvements are15.7% and15.3% respectively.

For the single pass discriminative training, we achieved11 − 12% relative WER re-

duction from discriminative training compared to the ML baseline by processing the data

only once. For single pass training, we jointly performed GDFT and BMMI using rEBW.

Our single pass training is slightly better than the online training which gave around10%

relative reduction on WER.
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7.3 Future Challenges and Chances

Our proposed GBW algorithm is a new framework to formulate theoptimization problem

for discriminative training. This framework provides insights which are not discovered in

the original formulation of the EBW algorithm. These insights help us to develop better

variants of the EBW algorithm like our proposed rEBW and sEBW algorithms. While

our focus in this thesis is to speed up discriminative training, the idea can be expanded to

improve the recognition performance or perform semi-supervised training.

Under the GBW framework, we find that the EBW algorithm uses KL divergence as a

regularization function but it assumes the model from the previous EM iteration as the true

distribution. Our proposed rEBW algorithm exploits this by plugging in a discriminatively

updated model for regularization. However, one can also plug in models estimated from

or adapted for some unsupervised data. By doing so, we can comeup with a new EBW

algorithm which can combine supervised and unsupervised training. A similar idea has

been explored in [Cui et al. (2011)] where the researchers proposed a variant of the EBW

algorithm which aims to combine supervised and unsupervised discriminative training.

The formulation of GDFT context training provides a flexibleframework to incorpo-

rate new features for GDFT. In the formulation, the projection is performed on the super-

vectors which construction is arbitrary. For context training, we stack features within a

context window to form a supervector. However, one can construct the supervectors using

posterior features or mean offset features like fMMI/MPE. The only drawback is the di-

mension of the supervectors cannot be too high or otherwise,the computational costs are

high. This problem is avoided in context training because only a small portion of the data

is assigned to train the projection. For other high dimensional features like posterior fea-

tures, one may need to apply some dimension reduction methods like LDA before using

GDFT.

The framework of GBW and GDFT using Lagrange relaxation can beapplied to many

speech problems. Our proposed formulation can transform analgorithm which originally

optimizes for likelihood to optimize for some discriminative objective function. In ad-

dition, an explicit regularization function can be included in the optimization problem.
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Generally speaking, if we have an ML algorithm which has an closed form solution for
∂Q
∂θ

= 0 whereQ is the auxiliary function, one can apply the same method usedin GBW

and GDFT to convert the ML algorithm to optimize for some discriminative objective

function as long as we can solve
∑

i(αi − βi)
∂Qi

∂θ
= 0, which is almost the same as the

original problem except we have an additional factor(αi − βi). In most cases, we can

derive a generalized version of the algorithm which can optimize for likelihood or some

discriminative objective functions.
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