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Abstract

The Internet has been witnessing an explosion of video content. According to a Cisco

study, video content accounted for 64% of all the world’s internet traffic in 2014, and

this percentage is estimated to reach 80% by 2019. Video data are becoming one of

the most valuable sources to assess information and knowledge. However, existing video

search solutions are still based on text matching (text-to-text search), and could fail for

the huge volumes of videos that have little relevant metadata or no metadata at all.

The need for large-scale and intelligent video search, which bridges the gap between the

user’s information need and the video content, seems to be urgent.

In this thesis, we propose an accurate, efficient and scalable search method for video

content. As opposed to text matching, the proposed method relies on automatic video

content understanding, and allows for intelligent and flexible search paradigms over the

video content (text-to-video and text&video-to-video search). It provides a new way

to look at content-based video search from finding a simple concept like “puppy” to

searching a complex incident like “a scene in urban area where people running away after

an explosion”. To achieve this ambitious goal, we propose several novel methods focusing

on accuracy, efficiency and scalability in the novel search paradigm. First, we introduce

a novel self-paced curriculum learning theory that allows for training more accurate

semantic concepts. Second, we propose a novel and scalable approach to index semantic

concepts that can significantly improve the search efficiency with minimum accuracy

loss. Third, we design a novel video reranking algorithm that can boost accuracy for

video retrieval. Finally, we apply the proposed video engine to tackle text-and-visual

question answering problem called MemexQA.

The extensive experiments demonstrate that the proposed methods are able to surpass

state-of-the-art accuracy on multiple datasets. In addition, our method can efficiently

scale up the search to hundreds of millions videos, and only takes about 0.2 second

to search a semantic query on a collection of 100 million videos, 1 second to process

a hybrid query over 1 million videos. Based on the proposed methods, we implement

E-Lamp Lite, the first of its kind large-scale semantic search engine for Internet videos.

According to National Institute of Standards and Technology (NIST), it achieved the

best accuracy in the TRECVID Multimedia Event Detection (MED) 2013, 2014 and

2015, the most representative task for content-based video search. To the best of our

knowledge, E-Lamp Lite is the first content-based semantic search system that is capable

of indexing and searching a collection of 100 million videos.
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Chapter 1

Introduction

We are living in an era of big data: three hundred hours of video are uploaded to

YouTube every minute; social media users are posting 12 millions videos on Twitter

every day. According to a Cisco study, video content accounted for 64% of all the

world’s internet traffic in 2014, and this percentage is estimated to reach 80% by 2019.

The explosion of video data is creating impacts on many aspects of society. The big

video data is important not because there is a lot of it but because increasingly it is

becoming a valuable source for insights and information, e.g. telling us about things

happening in the world, giving clues about a person’s preferences, pointing out places,

people or events of interest, providing evidence about activities that have taken place [1].

An important approach of acquiring information and knowledge is through video re-

trieval. However, existing large-scale video retrieval methods are still based on text-

to-text matching, in which the query words are matched against the textual metadata

generated by the uploader [2]. The text-to-text search method, though simple, is of

minimum functionality because it provides no understanding about the video content.

As a result, the method proves to be futile in many scenarios, in which the metadata are

either missing or less relevant to the visual video content. Studies show that 66% videos

on a social media site called Twitter Vine are not associated with meaningful metadata

(hashtags or mentions) [3], and about 80% personal videos do not have any user tags [4].

This suggests on an average day, 8 millions of Twitter videos may never be watched

again just because there is no good way to find them. The phenomenon is more severe

for the even larger amount of videos that are captured by mobile phones, surveillance

cameras and wearable devices that end up not having any metadata at all. Comparable

to the days in the late 1990s, when people usually got lost in the rising sea of web pages,

now they are overwhelmed by the vast amounts of videos, but lack powerful tools to

discover, not to mention to analyze, meaningful information in the video content.

1



Introduction 2

In this thesis, we seek the answer to a fundamental research question: how to satisfy

information needs about video content at a very large scale. We embody this funda-

mental question into a concrete problem called Content-Based Video Semantic Retrieval

(CBVSR), a category of content-based video retrieval problem focusing on semantic un-

derstanding about the video content, rather than on textual metadata nor on low-level

statistical matching of color, edges, or the interest points in the content. A distinguishing

characteristic about the CBVSR method is the capability to search and analyze videos

based on semantic features that can be automatically extracted from the video content.

The semantic features are human interpretable multimodal tags about the image or video

content such as people (who were involved), objects (what objects were seen), scenes

(where did it take place), actions and activities (what happened), speech (what did they

say), visible text (what characters were spotted). Semantic concepts, or concepts for

short, represent the entities discovered in the content of images or videos, including peo-

ple, objects, scenes, actions, activities, etc. In this thesis, we assume semantic features

include the semantic concept, speech, and visible text.

The CBVSR method advances traditional video retrieval methods in many ways. It

enables a more intelligent and flexible search paradigm that traditional metadata search

would never achieve. A simple query in CBVSR may contain a single object about, say,

“a puppy” or “a desk”, and a regular query may describe a complex activity or incident,

e.g. “changing a vehicle tire”, “attempting bike tricks in the forest”, “a group of people

protesting an education bill”, “a scene in urban area where people running away after an

explosion”, and so forth. In this thesis, we consider the following two types of queries:

Definition 1.1. (Semantic Query and Hybrid Query) Queries only consisting of seman-

tic features (e.g. people, objects, actions, speech, visible text, etc.) or a text description

about semantic features are called semantic queries. Queries consisting of both seman-

tic features and a few video examples are called hybrid queries. As video examples are

usually provided by users on the fly, according to NIST [5], we assume there are at most

10 video examples in a hybrid query.

A user may formulate a semantic query in terms of a few semantic concept names or

a natural language description of her information need (See Chapter 4). According to

the definition, the semantic query provides an approach for text-to-video search, and

the hybrid query offers a mean for text&video-to-video search. Semantic queries are

important as, in a real-world scenario, users often start the search without any video

example. A query consisting only of a few video examples is regarded as a special case

of the hybrid query. Example 1.1 illustrates an example of formulating the queries for

birthday party.

Example 1.1. Suppose our goal is to search the videos about birthday party. In the

traditional text query, we have to search the keywords in the user-generated metadata,
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such as titles and descriptions, as shown in Fig. 1.1(a). For videos without any metadata,

there is no way to find them at all. In contrast, in a semantic query we might look

for visual clues in the video content such as “cake”, “gift” and “kids”, audio clues

like “birthday song” and “cheering sound”, or visible text like “happy birthday”. See

Fig. 1.1(b). We may alternatively input a sentence like “videos about birthday party in

which we can see cake, gift, and kids, and meanwhile hear birthday song and cheering

sound.”

Semantic queries are flexible and can be further refined by Boolean operators. For ex-

ample, to capture only the outdoor party, we may add “AND outdoor’ to the current

query; to exclude the birthday parties for a baby, we may add “AND NOT baby”. Tem-

poral relation can also be specified by a temporal operator. For example, suppose we are

only interested in the videos in which the opening of presents are seen before consuming

the birthday cake. In this case, we can add a temporal operator to specify the temporal

occurrence of the two objects “gift” and “cake”.

After watching some of the retrieved videos for a semantic query, the user is likely to

select a few interesting videos, and to find more relevant videos like these [6]. This can

be achieved by issuing a hybrid query which adds the selected videos to the query. See

Fig. 1.1(c). Users may also change the semantic features in the hybrid query to refine

or emphasize certain aspects in the selected video examples. For example, we may add

“AND birthday song” in the hybrid query to find more videos not only similar to the

video examples but also have happy birthday songs in their content.

Birthday 
Party

���������	

(a) Text query (b) Semantic Query (c) Hybrid Query

Figure 1.1: Comparison of text, semantic and hybrid query on “birthday party”.

1.1 Research Challenges and Solutions

The idea of CBVSR sounds appealing but, in fact, it is a very challenging problem. It

introduces several issues that have not been sufficiently studied in the literature, such

as the issue of searching complex query consisting of multimodal semantic features and

video examples, the novel search paradigm entirely based on video content understand-

ing, and efficiency issue for web-scale video retrieval. As far as this thesis is concerned,

we confront the following research challenges:
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1. Challenges on accurate retrieval for complex queries. A crucial challenge

for any retrieval system is achieving a reasonable accuracy, especially for the top-

ranked documents or videos. Unlike other problems, the data in this problem

are real-world noisy and complex Internet videos, and the queries are of complex

structures containing both texts and video examples. How to design intelligent

algorithms to obtain state-of-the-art accuracy is a challenging issue.

2. Challenges on efficient retrieval at very large scale. Processing video proves

to be a computationally expensive operation. The huge volumes of Internet video

data brings up a key research challenge. How to design efficient algorithms that

are able to search hundreds of millions of video within the maximum recommended

waiting time for a user, i.e. 2 seconds [7], while maintaining maximum accuracy

becomes a critical challenge.

3. Challenges on interpretable results. A distinguishing characteristic about

CBVSR is that the retrieval is entirely based on semantic understanding about the

video content. A user should have some understanding of why the relevant videos

are selected, so that she can modify the query to better satisfy her information

need. In order to produce accountable results, the model should be interpretable.

However, how to build interpretable models for content-based video retrieval is

still unclear in the literature.

Due to the recent advances in the fields of computer vision, machine learning, and

multimedia, it becomes increasingly interesting to consider addressing the above research

challenges. In analogy to building a rocket spaceship, we are now equipped with powerful

cloud computing infrastructures (structural frame) and big data (fuel). What is missing

is a rocket engine that provides driving force and reaches the target. In our problem,

the engine is essentially a collection of effective algorithms that can solve the above

challenges. To this end, we propose the following novel methods:

1. To address the challenges on accuracy, we explore the following aspects. In Chap-

ter 4, we systematically study a number of query generation methods, which trans-

late a user query to a system query that can be handled by the system, and retrieval

algorithms to improve the accuracy for semantic query. In Chapter 6, we propose

a cost-effective reranking algorithm called self-paced reranking. It optimizes a con-

cise mathematical objective and provides notable improvement for both semantic

and hybrid queries. In Chapter 7, we propose a theory of self-paced curriculum

learning, and then apply it to training more accurate semantic concept detectors.

2. To address the challenges on efficiency and scalability, in Chapter 3 we propose

a semantic concept adjustment and indexing algorithm that provides a founda-

tion for efficient search over 100 millions of videos. In Chapter 5, we propose a

search algorithm for hybrid queries that can efficiently search a large-scale video

collection, without significant loss on accuracy.
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3. To address the challenges on interpretability, we design algorithms to build inter-

pretable models based on semantic (and latent semantic) features. In Chapter 4,

we provide a semantic justification that can explain the reasoning of selecting rele-

vant videos for the semantic query. In Chapter 5, we discuss an approach that can

explain the reasoning behind the search for results retrieved by a hybrid query.

The above proposed methods are extensively verified on a number of large-scale challeng-

ing datasets. Experimental results demonstrate that the proposed method can exceed

state-of-the-art accuracy across a number of datasets. Furthermore, it can efficiently

scale up the search to hundreds of millions of Internet videos. It only takes about 0.2

second to search a semantic query on a collection of 100 million videos, and 1 second to

handle a hybrid query over 1 million videos.

Based on the proposed methods, we implement E-Lamp Lite, the first of its kind large-

scale semantic search engine for Internet videos. According to National Institute of

Standards and Technology (NIST), it achieved the best accuracy in the TRECVID

Multimedia Event Detection (MED) 2013, 2014, and 2015, one of the most representative

and challenging tasks for content-based video search. To the best of our knowledge, E-

Lamp Lite is also the first content-based video retrieval system that is capable of indexing

and searching a collection of 100 million videos.

1.2 Social Validity

The problem studied in this thesis is fundamental. The proposed methods can poten-

tially benefit a variety of related tasks such as video summarization [8], video recom-

mendation, video hyperlinking [9], social media video stream analysis [10], in-video ad-

vertising [11], etc. A direct usage is augmenting existing metadata search paradigms for

video. Our method provides a solution to control video pollution on the web [12], which

results from introduction into the environment of (i) redundant, (ii) incorrect, noisy,

imprecise, or manipulated, or (iii) undesired or unsolicited videos or meta-information

(i.e., the contaminants). Another application is about in-video advertising. Currently,

it may be hard to place in-video advertisements as the user-generated metadata typi-

cally does not describe the video content, let alone concept occurrences in time. Our

method provides a solution by formulating this information need as a semantic query

and putting ads into the relevant videos [11]. For example, a sport shoe company may

use the query “(running OR jumping) AND parkour AND urban scene” to find parkour

videos in which the promotional shoe ads can be put.

Furthermore, our method provides a feasible solution of finding information in the videos

without any metadata. Analyzing video content helps automatically understanding
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about what happened in the real life of a person, an organization or even a country.

This functionality is crucial for a variety of applications. For example, finding videos

in social streams that violate either legal or moral standards; analyzing videos captured

by a wearable device, such as Google Glass, to assist the user’s cognitive process on a

complex task [13]; searching specific events captured by surveillance cameras or even

devices that record other of types of signals.

Finally, the theory and insights in this thesis may inspire the development of more

advanced methods. For example, the insight in our web-scale method may guide the

design of the future search or learning systems for video big data [14]. The proposed

reranking method can be also used to improve the accuracy of image retrieval [15]. The

self-paced curriculums learning theory may inspire other machine learning methods.

1.3 Thesis Overview

In this thesis, we model a CBVSR problem as a retrieval problem, in which given a

query that complies with Definition 1.1, we are interested in finding a ranked list of

relevant videos based on the semantic understanding about the video content. To solve

this problem, we incorporate a two-stage framework as illustrated in Fig. 1.2.

Figure 1.2: Overview of the framework for the proposed method.

The offline stage is called semantic indexing, which aims at extracting semantic features

in the video content and indexing them for efficient online search. It usually involves the

following steps: a video clip is first represented by the low-level features that capture

the local appearance, texture or acoustic statistics in the video content, represented

by a collection of local descriptors such as interest points or trajectories. State-of-

the-art low-level features include dense trajectories [16] and convolutional Deep Neural
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Network (DNN) features [17] for visual modality, and Mel-frequency cepstral coefficients

(MFCCs) [18] and DNN features for audio modality [19, 20]. The low-level features

are then input into the off-the-shelf detectors to extract the semantic features1. The

semantic features, also known as high-level features, are human interpretable tags, each

dimension of which corresponds to a confidence score of detecting a concept or a word

in the video [21]. The visual/audio concepts, Automatic Speech Recognition (ASR) [19,

20, 22] and Optical Character Recognition (OCR) are four types of semantic features

considered in this thesis. Semantic visual concepts, semantic audio concepts, ASR and

OCR are four types of semantic features considered in this thesis. After extraction,

the high-level features will be adjusted and indexed for the efficient online search. The

offline stage can be trivially paralleled by distributing the videos over multiple cores2.

The second stage is an online stage called video search. We employ two modules to

process the semantic query and the hybrid query. Both modules consist of a query

generation and a multimodal search step. A user can express a query in the form

of a text description and a few video examples. The query generation for semantic

query is to map the out-of-vocabulary concepts in the user query to their most relevant

alternatives in the system vocabulary. For the hybrid query, the query generation also

involves training a classification model using the video examples. The multimodal search

component aims at retrieving a ranked list using the multimodal features. This step is a

retrieval process for the semantic query and a classification process for the hybrid query.

Afterwards, we can refine the results by reranking the videos in the initial ranked list.

This process is known as reranking or Pseudo-Relevance Feedback (PRF) [25]. The basic

idea is to first select a few videos and assign assumed labels to them. The samples with

assumed labels are then used to build a reranking model using semantic and low-level

features to improve the initial ranked list.

The quantity (relevance) and quality of the semantic concepts are two factors in affecting

performance. The relevance is measured by the coverage of the concept vocabulary to

the query, and thus is query-dependent. For convenience, we name it quantity as a

larger vocabulary tends to increase the coverage. Quality determines the accuracy of

the detector. To increase both the criteria, We propose a novel self-paced curriculum

learning theory that allows for training more accurate semantic concepts over noisy

datasets. The theory is inspired by the learning process of humans and animals that

gradually proceeds from easy to more complex samples in training.

The reminder of this thesis will discuss the above topics in more details. In Chapter 2,

we first briefly review related problems. In Chapter 3, we propose a scalable semantic

1Here we assume we are given the off-the-shelf detectors. Chapter 7 will introduce the approach to
build the detectors.

2In this thesis, we do not discuss the offline video crawling process. This problem can be solved by
the vertical crawling techniques [23, 24]
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indexing and adjustment method for semantic feature indexing. We then discuss the

multimodal search for semantic queries in Chapter 4, and the query embedding and

search method for hybrid queries in Chapter 5. The multimodal reranking method will

be discussed in 6. Finally we will introduce the method for training robust semantic

concepts in Chapter 5. The conclusions and a demo MemexQA system will be presented

in the last chapter.

1.4 Thesis Statement

In this thesis, we approach a fundamental problem of searching information in video

content at a very large scale. We address the problem by proposing an accurate, efficient,

and scalable method that can search the content of a billion videos by semantic concepts,

speech, visible texts, video examples, or any combination of these elements.

1.5 Key Contributions of the Thesis

To summarize, the contributions of the thesis are as follows:

1. The first-of-its-kind framework for web-scale content-based search over hundreds

of millions of Internet videos [ICMR’15, WWW’16]. The proposed framework

supports text-to-video, video-to-video, and text&video-to-video search [MM’12].

2. A novel theory about self-paced curriculums learning and its application on robust

concept detector training [NIPS’14, AAAI’15, IJCAI’16].

3. A novel reranking algorithm that is cost-effective in improving performance. It

has a concise mathematical objective to optimize and useful properties that can

be theoretically verified [MM’14, ICMR’14].

4. A consistent and scalable concept adjustment method representing a video by a

few salient and consistent concepts that can be efficiently indexed by the modified

inverted index [MM’15].

5. A novel query embedding for personal media search [WSDM’17], and a new joint

learning model for the hybrid query.

Based on the above contributions, we implement E-Lamp Lite, the first of its kind large-

scale semantic search engine for Internet videos. To the best of our knowledge, E-Lamp

Lite is also the first content-based video retrieval system that is capable of indexing and

searching a collection of 100 million videos. In Chapter 8, we demonstrate an interesting

application that is built on the proposed E-Lamp Lite system. We show that the E-Lamp

Lite can serves as an important fundamental engine for intelligent systems.



Chapter 2

Related Work

Traditional content-based video learning and retrieval methods have successfully been

used to address a number of real-world problems. In this chapter, we briefly review some

of these related problems. The goal of this chapter is to analyze their differences to the

proposed problem.

2.1 Content-based Image Retrieval

Given a query image, a content-based image retrieval method is to find identical or

visually similar images in a very large image collection. Similar images are “visually-

alike” images about the same object despite possibly changes in scale, viewpoint, lighting

and partial occlusion. It is a type of query-by-example search, where the query is usually

represented by a single image, and can be extended to find a key frames in the video

clip. As shown in Fig. 2.1, the query image is a coca-cola bottle and the results are

coca-cola bottles captured at different angles. Content-based image retrieval is often

used to search the images about a specific instance such as about a person, a logo or a

landmark. In some cases, users can select a region of interest in an image, and use it as

a query image [26].

Content-based image retrieval problem is a well-studied problem, and there have existed

a number of commercial applications such as Google and Bing Image Search. State-of-

the-art image retrieval systems can efficiently handle billions of images [27]. Generally,

the solution is to first extract the low-level descriptors of an image such as SIFT [28],

encode them into a numerical vector by, for example, bag-of-visual-words [29] or fisher

vector [30], and finally index the feature vectors for efficient online search using min-

hashing or LSH [31]. For example, Sivic et al. introduced a video frame retrieval system

9
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Figure 2.1: Comparison with different related problems.

called Video Google [32]. The system can be used to retrieve similar video key frames

for a query image.

The content-based image retrieval method only utilizes the low-level descriptors that

carry little semantic meaning. It is able to retrieve an instance of object from local

descriptors matching, without knowing what is the object in the image. Therefore, it is

good at finding visually similar but not necessarily semantically similar images.

2.2 Copy Detection

Video copy detection, also known as near duplicate detection, is a problem to detect

whether a segment of video clip is derived from another video, typically by the means

of various transformations such as addition, deletion, modification (of aspect, color,

contrast or encoding) camcording, etc [5]. The query to copy detection is a video segment

called copy, and the results are modified clips of the exact same video in a large video

collection. See Fig. 2.1 for an example. This problem seems to be easier than the content-

based image retrieval problem since the query and the retrieved results are essentially

from the same video without significant changes.
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Copy detection is also a well-studied problem. It has been broadly used to catch pirated

copies of movies or copyrighted videos. Generally, the method relies on low-level visu-

al/acoustic features without the need of understanding about the video content. The

handcrafted or learned low-level features are used to generate a signature to search for

the near-duplicate videos in a large collection. For example, Chum et al. [33] proposed

to build min-hashing over the local descriptor SIFT to search for near duplicate images.

Wu et al. [34] proposed a hierarchical approach for near-duplicate video detection. In

this method, videos are first screened efficiently by global descriptors, and the remain-

ing confusing videos will be inspected by an expensive approach that compares the local

descriptors.

Similar to content-based image retrieval, copy detection only utilizes low-level descriptors

that carry little semantic information. However, due to the natural of the problem, i.e.

no semantic information is needed to find the near duplicate video, low-level features

seems to be sufficient to solve the problem.

2.3 Semantic Concept Detection

Semantic concept detection, or concept detection for short, is a problem for searching

the occurrence of a single concept in the video. As defined in Chapter 1, a concept is a

visual or acoustic automatical tag of people, objects, scenes, actions, etc. over the video

content [35]. The input of semantic concept detection is a text phrase, and the outputs

are the videos that contain the corresponding concept. Note the search is purely based

on the image or the video content. See Fig. 2.1. The challenge of semantic concept

learning is to train a large number of robust classifiers called detectors on very big, and

often noisy, datasets.

This line of study emerged in a TRECVID task called Semantic Indexing [36] in 2004 by

NIST. In the image domain, a representative task is ImageNet [37] which was initiated

in 2009. Concept detection is a general problem which includes action recognition [38–

42] and scene recognition [43, 44]. It was initially targeted to detect people, objects

or scenes in the news video [45]. News videos were selected as they are well-edited

professional videos of limited variations. Later, it has been applied to “in-the-wide”

challenging Internet videos, which are armature videos of low-resolution and significant

camera motions.

Though the outputs of concept detector are high-level semantic features, the input of

concept detectors are either low-level features or raw pixels. Studies on concept detection

focused on learning better feature representation of images and videos. Initially it was

achieved by handcrafted features such as SIFT and dense trajectories [46]. With the
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thrive of deep learning, the best feature representation is achieved through convolutional

neural networks [47]. More recently, studies start to focus on learning detectors on noisy

labeled web videos. Varadarajan et al. [48] discussed a method that exploits the YouTube

topic API to train large scale video concept detectors on YouTube. The method utilized

a calibration process and hard negative mining to train a second order mixture of experts

model in order to discover correlations within the labels. Liang et al. [49] introduced a

robust learning concept learning method that is inspired by the self-paced learning

Semantic concept detection is a simplified version of our problem, where it assumes the

query is pure text and is only about a single concept. When the concept is not in the

concept vocabulary, it will be detected by a set of combined in-vocabulary concepts.

This problem of detecting is called zero-shot learning.

2.4 Multimedia Event Detection

With the advance in concept detection, people started to focus on addressing more

complex queries called events. An event is more complex than a concept as it usually

involves people engaged in process-driven actions with other people and/or objects at a

specific place and time [21]. For example, the event “rock climbing” involves a climber,

mountain scenes, and the action climbing. The relevant videos can be much diverse

which may include videos about outdoor bouldering, indoor artificial wall climbing or

snow mountain climbing.

A benchmark task on this topic is called TRECVIDMultimedia Event Detection (MED) [50],

which was initiated by NIST in 2010. Its goal is to assemble core detection technologies

into a system that can search multimedia recordings for user-defined events based on

pre-computed features 1. In MED, users can search an event using either a few video

examples (video-to-video) or a text description (text-to-video). MED is a challenging

problem, and many studies have been published to address the problem. Generally, in

a state-of-the-art video-to-video search system, the event classifiers are trained on the

labeled videos using low-level and high-level features, and the final decision is derived

from the fusion of the individual classification results. For example, Yu et al. [18] in-

troduced an award-wining solution to address vide-to-video search problems. Later, the

authors extended the video PQ encoding method for searching 1 million videos [51]. Oh

et al. [52] presented a latent SVM event detector that enables for temporal evidence

localization.

1https://www.nist.gov/itl/iad/mig/med-2016-evaluation

https://www.nist.gov/itl/iad/mig/med-2016-evaluation
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On the other hand, users can search an event using a text description. This text-to-video

search resembles more of a real world scenario, in which users often start the search with-

out any examples. As opposed to training an video-to-video event detector, it searches

semantic concepts that are expected to occur in the relevant videos, e.g. we might look

for concepts like “car”, “bicycle”, “hand” and “tire” for the event “changing a vehicle

tire”. A few studies have been proposed on this topic [15, 53–57]. A closely related work

is detailed in [58], where the authors presented their lessons and observations in building

a state-of-the-art semantic search engine for Internet videos. More related studies can

be found in Chapter 4.

2.5 Content-based Video Semantic Search

Our problem is similar to MED but advances it in the following perspectives. First, the

queries are more complex which consist of both the text description of semantic features

and a few video examples. As shown in Example 1.1, the query to our problem may

contain semantic concepts, speech, visible texts, video examples, or any combination

of these elements. Second, the search is performed solely based on high-level features

about the content, as opposed to the low-level feature. As a result, the problem scale

dealt in this thesis is orders-of-magnitude larger than that in the MED. This claim have

been substantiated by the experiments in this thesis. For example, the biggest collection

in TRECVID MED only contains around 200 thousand videos [5], whereas the largest

dataset in this thesis contains 100 million videos.



Chapter 3

Indexing Semantic Features

3.1 Introduction

Semantic indexing aims at extracting semantic features in the video content and in-

dexing them for efficient online search. In this chapter, we introduce the method for

extracting and indexing semantic features from the video content, focusing on adjusting

and indexing semantic concepts.

We consider indexing four types of semantic features in this thesis: visual concepts,

audio concepts ASR and OCR. ASR provides acoustic information about videos. It

especially benefits finding clues in close-to-camera and narrative videos such as “town

hall meeting” and “asking for directions”. OCR captures the text characters in videos

with low recall but high precision. The recognized characters are often not meaningful

words but sometimes can be a clue for fine-grained detection, e.g. distinguishing videos

about “baby shower” and “wedding shower”. ASR and OCR are text features, and thus

can be conveniently indexed by the standard inverted index. The automatically detected

text words in ASR and OCR in a video, after some preprocessing, can be treated as text

words in a document. The preprocessing includes creating a stop word list for ASR from

the English stop word list. The stop word lists for ASR includes utterances like “uh”,

“you know”, etc. For OCR, due to the noise in word detection, we need to remove the

words that do not exist in the English vocabulary.

How to index semantic concepts is an open question. Existing methods index a video by

the raw concept detection score that is dense and inconsistent [9, 15, 53–57]. This solu-

tion is mainly designed for analysis and search over a few thousand of videos, and cannot

scale to big data collections required for real world applications. Even though a modern

text retrieval system can already index and search over billions of text documents, the

task is still very challenging for semantic video search. The main reason is that semantic

14
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concepts are quite different from the text words, and semantic concept indexing is still

an understudied problem. Specifically, concepts are automatically extracted by detec-

tors with limited accuracy. The raw detection score associated with each concept is

inappropriate for indexing for two reasons. First, the distribution of the scores is dense,

i.e. a video contains every concept with a non-zero detection score, which is analogous

to a text document containing every word in the English vocabulary. The dense score

distribution hinders effective inverted indexing and search. Second, the raw score may

not capture the complex relations between concepts, e.g. a video may have a “puppy”

but not a “dog”. This type of inconsistency can lead to inaccurate search results.

To address this problem, we propose a novel step called concept adjustment that aims

at producing video (and video shot) representations that tend to be consistent with

the underlying concept representation. After adjustment, a video is represented by

a few salient and consistent concepts that can be efficiently indexed by the inverted

index. In theory, the proposed adjustment model is a general optimization framework

that incorporates existing techniques as special cases. In practice, as demonstrated

in our experiments, the adjustment increases the consistency with the ground-truth

concept representation on the real world TRECVID dataset. Unlike text words, semantic

concepts are associated with scores that indicate how confidently they are detected. We

propose an extended inverted index structure that incorporates the real-valued detection

scores and supports complex queries with Boolean and temporal operators.

Compared to existing methods, the proposed method exhibits the following three ben-

efits. First, it advances the text retrieval method for video retrieval. Therefore, while

existing methods fail as the size of the data grows, our method is scalable, extending the

current capability of semantic search by a few orders of magnitude while maintaining

state-of-the-art performance. Our experiments validate this argument. Second, we pro-

pose a novel component called concept adjustment in a common optimization framework

with solid probabilistic interpretations. Finally, our empirical studies shed some light on

the tradeoff between efficiency and accuracy in a large-scale video search system. These

observations will be helpful in guiding the design of future systems on related tasks.

The experimental results are promising on three datasets. On the TRECVIDMultimedia

Event Detection (MED), our method achieves comparable performance to state-of-the-

art systems, while reducing its index by a relative 97%. The results on the TRECVID

Semantic Indexing dataset demonstrate that the proposed adjustment model is able to

generate more accurate concept representation than baseline methods. The results on

the largest public multimedia dataset called YCCC100M [59] show that the method

is capable of indexing and searching over a large-scale video collection of 100 million

Internet videos. It only takes 0.2 seconds on a single CPU core to search a collection

of 100 million Internet videos. Notably, the proposed method with reranking is able
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to achieve by far the best result on the TRECVID MED 0Ex task, one of the most

representative and challenging tasks for semantic search in video.

3.2 Related Work

With the advance in object and action detection, people started to focus on searching

more complex queries called events. An event is more complex than a concept as it

usually involves people engaged in process-driven actions with other people and/or ob-

jects at a specific place and time [21]. For example, the event “rock climbing” involves

video clips such as outdoor bouldering, indoor artificial wall climbing or snow moun-

tain climbing. A benchmark task on this topic is called TRECVID Multimedia Event

Detection (MED). Its goal is to detect the occurrence of a main event occurring in a

video clip without any user-generated metadata. MED is divided into two scenarios

in terms of whether example videos are provided. When example videos are given, a

state-of-the-art system first train classifiers using multiple features and fuse the decision

of the individual classification results [52, 60–67].

This thesis focuses on the other scenario named zero-example search (0Ex) where no

example videos are given. 0Ex mostly resembles a real world scenario, in which users

start the search without any example. As opposed to training an event detector, 0Ex

searches semantic concepts that are expected to occur in the relevant videos, e.g. we

might look for concepts like “car”, “bicycle”, “hand” and “tire” for the event “changing

a vehicle tire”. A few studies have been proposed on this topic [15, 53–57]. A closely

related work is detailed in [58], where the authors presented their lessons and observa-

tions in building a state-of-the-art semantic search engine for Internet videos. Existing

solutions are promising but only for a few thousand videos because they cannot scale

to big data collections. Therefore, the biggest collection in existing studies contains no

more than 200 thousand videos [5, 58].

Deng et al. [68] recently introduced label relation graphs called Hierarchy and Exclusion

(HEX) graphs. The idea is to infer a representation that maximizes the likelihood and

do not violate the label relation defined in the HEX graph.

3.3 Method Overview

Fig. 3.1 illustrates the proposed indexing stage for semantic concepts, there are four ma-

jor components in this pipeline, namely, low-level feature extraction, concept detection,

concept adjustment and inverted indexing, in which the concept adjustment component

is first proposed in this thesis.
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Figure 3.1: Pipeline for the semantic concept indexing.

A video clip is first represented by low-level visual or audio features. Common features

include dense trajectories [16], deep learning [47] and MFCC features. The low-level

features are then fed into the off-the-shelf detectors to extract the semantic concept fea-

tures, in which each dimension corresponds to a confidence score of detecting a semantic

(audio and visual) concept in a video shot. The dimensionality is equal to the number

of unique detectors in the system.

We found that raw concept detection scores are inappropriate for indexing for two rea-

sons: distributional inconsistency and logical inconsistency. The distributional incon-

sistency means that the distribution of the raw detection score is inconsistent with the

underlying concept distribution of the video. The underlying concept representation

tends to be sparse but the distribution of the detection score is dense, i.e. a video

contains every concept. Indexing the dense representation by either dense matrices or

inverted indexes is known to be inefficient. For example, Fig. 3.1 illustrates an exam-

ple in which the raw concept detection contains 14 non-zero scores but there are only

three concepts in the underlying representation: “dog”, “terrier”, and “cheering sound”.

As we see, the dense distribution of the raw detection score is very different from the

underlying distribution.

The logical inconsistency means that the detection scores are not consistent with the

semantic relation between concepts, e.g. a video contains a “terrier” but not a “dog”.

This type of inconsistency results from that 1) the detectors are usually trained by

different people using different data, features and models. It is less likely for them

to consider the concept consistency that is not in their vocabulary; 2) even within a

concept vocabulary, many classification models cannot capture complex relation between

concepts [68]. The inconsistent representation can lead to inaccurate search results if

not properly handled. For example, in Fig. 3.1, the score of “dog” 0.2 is less than the

score of “terrier” 0.8; the frame is detected as “blank frame”, which means a empty

frame, and a “terrier”.
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To address the problem of distributional and logical inconsistencies, we propose a novel

step called concept adjustment. It aims at generating consistent concept representa-

tions that can be efficiently indexed and searched. We propose an adjustment method

based on the recently proposed label relation graph [68] that models the hierarchy and

exclusion relation between concepts (see Step 3 in Fig. 3.1). After adjustment, a video

is represented by a few salient concepts, which can be efficiently indexed by the inverted

index. In addition, the adjusted representation is logically consistent with the complex

relation between concepts.

An effective approach is to index the adjusted representation by the inverted index in

text retrieval. However, unlike text words, semantic concepts are associated with scores

that indicate how confidently they are detected. The detection score cannot be directly

indexed by the standard inverted index. As a result, the scores are usually indexed

by dense matrices in existing methods [55, 58]. To this end, we modify the inverted

index structure so that it can index the real-valued adjusted score. The modified index

contains inverted indexes, frequency lists that store the concept statistics used in the

retrieval model, temporal lists that contain the shot information, and video feature lists

that store the low-level features. The extended index structure is compatible to existing

text retrieval algorithms.

3.4 Concept Adjustment

In this thesis, we make no assumption on the training process of the off-the-shelf concept

detectors. The detectors may be trained by any type of features, models or data. We

relax the assumption [68] that detectors must be “re-trainable” by particular training

algorithms because this is usually impossible when we do not have the access to the

training data, the code or the computational resource.

Concept adjustment aims at generating video (or video shot) representations that tend

to be consistent to the underlying concept representation and meanwhile can be searched

efficiently. An ideal video representation tends to be similar to the underlying concept

representation in terms of the distributional and logical consistency. To this end, we

propose an optimization model to find consistent video representations of the given raw

concept detection output. Formally, let D ∈ R
n×m denote the raw scores outputted by

the concept detectors, where the row represents the n shots in a video, and the column

represents the m visual/audio concepts. The prediction score of each concept is in the

range between 0 and 1, i.e. ∀i, j, Dij ∈ [0, 1]. We are interested in obtaining a consistent

representation v ∈ R
m×1, which can be obtained by solving the following optimization
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problem:

argmin
v∈[0,1]m

1

2
‖v − fp(D)‖22 + g(v;α, β)

subject to Av ≤ c

(3.1)

where

fp(D) = (1− (
m− 1

m
)p)[‖d1‖p, . . . , ‖dm‖p]T (3.2)

and D =


d1 · · · dm


. Each element of fp(D) is the p-norm of the column vector

of D. g(v;α, β) is a regularizer of v with the parameters α and β. g(·) imposes the

distributional consistency, and will be discussed in Section 3.4.1. A and c are a con-

stant matrix and a constant vector, which model the logical consistencies and will be

discussed in Section 3.4.2. It is easy to verify that when p =∞ and p = 1, the operator

fp(D) corresponds to the max and the average pooling operator. Usually g(·) is convex,
and thus Eq. (3.1) can be conveniently solved by the standard convex programming

toolbox [69]. The raw prediction score may diminish during the concept adjustment. It

is usually helpful to normalize the optimal value of v = [v1, · · · , vm] by:

v̂i = min(1,
vi∑m
j=1 vj

m∑

j=1

fp(D)jI(vj)), (3.3)

where v̂ = [v̂1, · · · , v̂m] is the adjusted score after normalization. I(v) is an indicator

function equalling 1 when v > 0, and 0 otherwise. Here we define 0/0 = 0.

In order to obtain the shot-level adjusted representation, we can treat a shot as a “video”

and let D be a single row matrix containing the detection score of the shot. Eq. (3.1)

can be used but with an extra integer set in the constraints (see Section 3.4.2).

3.4.1 Distributional Consistency

For the distributional consistency, a regularization term g(v;α, β) is introduced that

produces sparse representations while taking into account that certain concepts may

co-occur together. A naive implementation is to use the l0 norm:

g(v;α, β) =
1

2
β2‖v‖0. (3.4)

This regularization term presents a formidable computational challenge. In this thesis

we propose a more feasible and general regularization term. Suppose the concepts are

divided into q non-overlapping groups. A group may contain a number of co-occurring

concepts, or a single concept if it does not co-occur with others. Such sparsity and group



Indexing Semantic Features 20

(a) Thresholding (   norm) (b) Lasso (   norm)

sky cloud boat puppy dog animal
0

0.2

0.4

0.6

0.8

1

(c) Group lasso

sky cloud boat puppy dog animal
0

0.2

0.4

0.6

0.8

1

(d) Sparse-group lasso

Group I

Group II

Input video frame
Distributional Consistency in semantic concepts

sky cloud boat puppy dog animal
0

0.2

0.4

0.6

0.8

1

Raw concept detection scores

sky cloud boat puppy dog animal0

0.2

0.4

0.6

0.8

1

Group I
Group II

sky cloud boat puppy dog animal0

0.2

0.4

0.6

0.8

1

Figure 3.2: Comparison of different regularization terms.

sparsity information can be encoded into the model by adding a convex regularization

term g(v) of the l1 norm and the sum of group-wise l2 norm of v:

g(v;α, β) = αβ‖v‖1+(1−α)
q∑

l=1

β
√
pl‖v(l)‖2, (3.5)

where v(l) ∈ R
pl is the coefficient for the lth group where pl is the length of that group.

α ∈ [0, 1] and β are two parameters controlling the magnitude of the sparsity.

The parameter α balances the group-wise and the within-group sparsity. When α = 1,

g(v) becomes lasso [70] that finds a solution with few nonzero entries. When α = 0,

g(v) becomes group lasso [71], that only yields nonzero entries in a sparse set of groups.

If a group is included then all coefficients in the group will be nonzero. Sometimes, the

sparsity within a group is also needed, i.e. if a group is included, only few coefficients

in the group will be nonzero. This is known as sparse-group lasso [72] that linearly

interpolates lasso and group lasso by the parameter α.

In the context of semantic concepts, lasso is an approximation to the corresponding

l0 norm regularization problem which is computationally expensive to solve. Lasso

and the l0 norm term assume the concepts are independent, and works well when the

assumption is satisfied. On the other hand, Group lasso assumes the there exist groups

of concepts that tend to be present or absent together frequently, e.g. “sky/cloud”,

“beach/ocean/waterfront” and “table/chair”. The group may also include multimodal

concepts such as “baby/baby noises”. Since co-occurring concepts may not always be

present together, the within-group sparse solution is needed sometimes, i.e. only few

concepts in a group are nonzero. This can be satisfied by sparse-group lasso that makes

weaker assumptions about the underlying concept distribution.

Consider a toy example in Fig. 3.2 comparing the above regularization terms. The raw

prediction scores of the input frame is shown below the video frame, where the ground

truth concept representation contains only “sky”, “cloud”, “dog” and “animal”. The
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figures on the right illustrate the optimal solutions yielded by Eq. (3.5) after normal-

ization with l0 norm, l1 norm, group lasso and sparse-group lasso. As we see, l0 and l1

norm do not consider the co-occurring concepts, and the concept “cloud” is missing in

their solutions (Fig. 3.2 (a) and (b)). In contrast, the concept “cloud” in the solution of

group lasso and sparse-group lasso is recalled by the concept group “sky” and “cloud”

(Fig. 3.2 (c) and (d)). The optimal solution of group lasso, however, introduces a false

positive concept “puppy”, because when it selects a group, all coefficients in the group

will be nonzero. However, only few concepts in a group are nonzero in the solution of

sparse-group lasso. See Fig. 3.2 (d).

3.4.2 Logical Consistency

The concept relation is modeled by Hierarchy and Exclusion (HEX) graph. Following

Deng et al. [68], we assume that the graph is given beforehand. According to [68], a

HEX graph is defined as:

Definition 3.1. A HEX graph G = (N,Eh, Ee) is a graph consisting of a set of nodes

N = {n1, · · · , nm}, directed edges Eh ⊆ N × N and undirected edges Ee ⊆ N × N

such that the subgraph Gh = (N,Eh) is a directed acyclic graph and the subgraph

Ge = (N,Ee) has no self-loop.

Each node in the graph represents a distinct concept. A hierarchy edge (ni, nj) ∈ Eh

indicates that concept ni subsumes concept nj in the concept hierarchy, e.g. “dog” is

a parent of “puppy”. An exclusion edge (ni, nj) ∈ Ee indicates concept ni and nj are

mutually exclusive, e.g. a frame cannot be both “blank frame” and “dog”. Based on

Definition 3.1, we define the logically consistent representation as:

Definition 3.2. v = [v1, · · · , vm] is a vector of concept detection scores. The ith

dimension corresponds to the concept node ni ∈ N in the HEX graph G. v ∈ [0, 1]m is

logically consistent with G if for any pair of concepts (ni, nj):

1. if ni ∈ α(nj), then vi ≥ vj;

2. if ∃np ∈ ᾱ(ni), ∃nq ∈ ᾱ(nj) and (np, nq) ∈ Ee, then we have vivj = 0;

where α(ni) is a set of all ancestors of ni in Gh, and ᾱ(ni) = α(ni) ∪ ni.

Definition 3.2 indicates that a logically consistent representation should not violate any

concept relation defined in its HEX graph G. This definition generalizes the legal as-

signments in [68] to allow concepts taking real values. We model the logical consistency

by the affine constraints Av ≤ c. The constant matrix A and vector c can be calculated

from Algorithm 1. For each edge in the graph, Algorithm 1 defines a constraint on values
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the two concepts can take. A hierarchy edge (ni, nj) ∈ Eh means that the value of a

parent is no less than the value of its children, e.g. “puppy=0.8” but “dog=0.2” is incon-

sistent. For each exclusion edge, Algorithm 1 introduces an affine constraint vi + vj = 1

and vi, vj ∈ {0, 1} to avoid the case where two concepts both have nonzero values. Note

that the solution of the exclusion constraint complies with the binary legal assignments

in [68] that for any (ni, nj) ∈ Ee, (vi, vj) 6= (1, 1). According to Definition 3.2, it is easy

to prove that the optimal solution of Eq. (3.1) is logically consistent with a given HEX

graph. The problem with integer constraints can be solved either by the mixed-integer

convex programming toolbox, or by the constraint relaxation [73].

Theorem 3.3. The optimal solutions of Eq. (3.1) (before or after normalization) is

logically consistent with its given HEX graph.

Algorithm 1: Constraints for logical consistency.

input : A HEX graph G = (V,Eh, Ee)
output: A constant matrix A and a constant c.

1 n = |Eh|+ |Ee|; m = |V |; k = 0;
2 A = 0n×m, c = 0n×1;
3 foreach (ni, nj) ∈ Eh do
4 Aki = −1; Akj = 1; ck = 0;
5 k++;

6 end
7 Define an integer constraint set I← φ;
8 foreach (ni, nj) ∈ Ee do
9 Aki = 1; Akj = 1; ck = 1;

10 add ni, nj to I;
11 k++;

12 end
13 return A, c, I;

3.4.3 Discussions

The proposed model can produce a representation that tends to be both distributionally

and logically consistent to the underlying concept representation. A nice property of the

model in Eq. (3.1) is that it can degenerate to several existing methods. For example,

it is easy to verify that the max and the average pooling results are optimal solutions of

Eq. (3.1) in special cases. Theorem 3.3 indicates that the optimal solution of adjusted

representations complies with the logical consistency definition. Theorem 3.4 indicates

that the thresholding and the top-k thresholding results are optimal solutions of Eq. (3.1)

in special cases. The thresholding method preserves scores only above some threshold.

In some cases, instead of using an absolute threshold, one can alternatively set the

threshold in terms of the number of concepts to be included. This is known as the top-k

thresholding. See the proof in Appendix A.

Theorem 3.4. The thresholding and the top-k thresholding results are optimal solutions

of Eq. (3.1) in special cases.



Indexing Semantic Features 23

The choice of the proposed model parameters depends on the underlying distribution of

the semantic concepts. For the manually exclusive concepts, such as the 1,000 concepts

in the ImageNet challenge [74], the l0 norm or the l1 norm without any HEX constraint

should work reasonably well. In addition, as the model is simple, the problem can be

efficiently solved by the closed-form solution. When the concepts are of concrete hierar-

chical or exclusion relations, such as the concepts in TRECVID SIN [36], incorporating

the HEX constraint tends to be beneficial. The group-lasso and the sparse-group lasso

play a role when groups of concepts tend to co-occur together frequently. It can be im-

portant for the multimodal concept detectors that capture the same concept by multiple

features, e.g. audio or visual. An approach to derive the co-occurring concepts is by

clustering the concepts in their labeled training data. We observed big clusters tend to

include loosely coupled concepts, e.g. sky/cloud is a good group, but sky/cloud/heli-

copter is not. To be prudent, we recommend limiting the group size in clustering.

Note the exclusion relation between concepts only makes sense at the shot-level ad-

justment, as in the video-level representation the scores of exclusive concepts can be

both non-zeros. Solving a mixed integer convex programming problem takes more time

than solving a regular convex programming problem. So when the proposed method

is applied on shot-level features, it is useful to use some type of constraint relaxation

techniques. Besides, in the current model, we assume the concept detectors are equally

accurate. A simple extension to embed this information is by discounting the squared

loss of inaccurate concepts in Eq. (3.1).

The proposed model also provides common interpretations of what are being optimized.

The physical meaning of the optimization problem in Eq. (3.1) can be interpreted as a

maximum a priori model. The physical meaning of the optimization problem in Eq. (3.1)

can be interpreted as the following. Firstly, for the pooling function fp(D) defined on

concept features D, the average pooling (p = 1) and max pooling (p = ∞) correspond

to the maximum likelihood estimation (MLE) for the mean and the maximum of the

concept feature variable under the assumption that the utilized data are i.i.d. sam-

pled from its latent distribution, respectively. This actually regularizes which feature

should be specified to deliver the major information underlying a video. In specific, the

average pooling emphasizes that the main information is uniformly scattered over the

video, while max pooling underlines that the most dominant feature should be the most

representative feature.

We then give a probabilistic explanation for the model in Eq. (3.1). As a general

maximum a priori (MAP) model, it consists of likelihood and prior elements. The

likelihood term is constructed based on the assumption that the observation fp(D) is

approximated by the latent term v under Gaussian corruptions, i.e. fp(D) = v + ε,
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where ε ∼ N(0, σ2In). This naturally leads to the likelihood term:

p(fp(D)|v) = N(v, σ2In). (3.6)

We utilize two useful priors. The first is on the logical consistency. That is, meaningful

concept features should be located in the feasible region induced by the constraint Ψ =

{v|Av ≤ c}. This naturally leads to the following prior distribution for v:

φ(v) =

{
γ,

0,

v ∈[0, 1]m ∩Ψ

otherwise
, (3.7)

where γ = 1/ |Ψ| = 1/
∫
Ψ dv is the normalization factor. Another prior is induced by the

sparsity of concepts in a video, which can be encoded as the following prior distribution:

π(v) ∝ exp

{
−αβ ‖v‖1 − (1− α)

q∑

l=1

β
√
pl‖v(l)‖2

}
. (3.8)

This corresponds to the sparse group lasso estimator [75].

Based on Bayes theorem, we can then get the posterior distribution for v as:

p(v|fp(D)) ∝ p(fp(D)|v)π(v)φ(v), (3.9)

and can then determine v by maximizing this posterior (i.e., the MAP rule). This

complies with the concept adjustment optimization model in Eq. (3.1) in the paper, and

thus provides a Bayesian understanding for this deterministic problem.

3.5 Inverted Indexing & Search

After adjustment, a video is represented by a few salient and consistent concepts. In

analogy to words in a text document, concepts can be treated as “words” in a video.

Unlike text words, concepts are associated with scores that indicate how confidently they

are detected. The real-valued scores are difficult to be directly indexed in the standard

inverted index designed for text words. A naive approach is by binning, where we assign

real values to the bins representing the segment covering the numerical value. The

concepts are duplicated by the number of its filled bins. However, this solution creates

hallucinating concepts in the index, and cannot store the shot-level concept scores.

To solve the problem in a more principled way, we propose a modified inverted index

to incorporate the real-valued detection scores. In text retrieval, each unique text word

has a list of postings in the inverted index. A posting contains a document ID, the term

frequency, and the term positions in the document. The term frequency is used in the
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retrieval model, and the position information is used in the proximity search. Inspired

by this structure, in our system, the concept with a nonzero score in the adjusted

representation is indexed to represent a video. Each unique concept has a list of video

postings and a range search tree. An example index structure is illustrated in Step 4 in

Fig. 3.1. A video posting contains a video ID, the number of concept occurrence in the

video, a video-level detection score, and a list of video shots in which the concept occurs.

It also has a payload to store the real-valued detection score for each shot. In this way,

the query that searches for the video-level score of a certain range can be handled by

the range tree, e.g. “videos that contain dog > 0.5”; the query that searches for the

shot-level score can be handled by the payload in the posting, e.g. “shots that contain

dog > 0.5”; otherwise, the query can be processed in a similar way as in text retrieval

using the adjusted video-level score, e.g. videos that contain “dog AND cat”.

3.5.1 Video Search

A search usually contains two steps: retrieving a list of video postings and ranking the

postings according to some retrieval model. In our system, we consider the following

query operators to retrieve a video posting list:

• Modality query: Searching a query term in a specified modality. For exam-

ple, “visual:dog” returns the videos that contain the visual concept “dog”; “vi-

sual:dog/[score s1, s2]” returns the videos that have a detection score of “dog”

between s1 and s2. “visual” is the default modality. The other modalities are

“asr” for automatically recognized speech, “ocr” for recognized optical characters,

and “audio” for audio concepts.

• Temporal query: Searching query terms that have constraints on their temporal

occurrences in a video. The constraints can be specified in terms of the absolute

timestamp like “videos that contain dog between the time t1 and t2”, the relative

sequence like “videos in which dog is seen before cat”, or the proximity relations

like “videos that contain dog and cat within the time window of t1”. A temporal

query can be handled in a similar fashion as the proximity search in text search.

• Boolean query: Multiple terms can be combined together with Boolean operators

to form a more complex query. Our system supports three operators: “AND”,

“OR” and “AND NOT”, where the “OR” operator is the default conjunction

operator.

A Boolean query can be handled by the standard algorithms in text retrieval, as Theo-

rem 3.2 guarantees that the adjusted representation is logically consistent. However, the

query may be accelerated by utilizing the concept relation in the HEX graph. For ex-

ample, it is unnecessary to run a query to realize that (“dog” AND “animal”) = “dog”.
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Suppose the query is expressed in the disjunctive normal form. Given a HEX graph G

and two concepts ni, nj ∈ V , for each term in the disjunctive normal form, we apply:

(ni AND nj) = ni if nj ∈ α(ni), where α(ni) is the set of all ancestors of ni in Gh; (ni

AND NOT nj) = φ if ∃np ∈ ᾱ(ni), ∃nq ∈ ᾱ(nj) and (np, nq) ∈ Ee. The simplified query

can be then used to retrieval the video postings.

After retrieving a video posting list, the next step is to rank the postings according to

some retrieval model. A retrieval model can have substantial impact on the performance.

We will study the impact of retrieval models in the next chapter. For now we use the

Okapi BM25 model [76]. Suppose the input query is Q = q1, · · · , qn, the model ranks a

video d by:

s(d|Q)=

n∑

i=1

log
|C| − df(qi)+

1
2

df(qi)+
1
2

tf(qi, d)(k1+1)

tf(qi, d)+k1(1−b+b len(d)
len

)
, (3.10)

where |C| is the total number of videos. tf(qi, d) returns the score of the concept qi in

the adjusted representation of video d. df(·) calculates the sum of adjusted score of qi in

the video collection. len(d) calculates the sum of adjusted scores for video d, and len is

the average length across all videos. k1 and b are two parameters to tune. The statistics

are calculated by the adjusted concept score rather than the raw detection score.

3.6 Experiments

3.6.1 Setups

Dataset and evaluation: The experiments are conducted on two TRECVID bench-

marks called Multimedia Event Detection (MED): MED13Test and MED14Test [5]. The

performance is evaluated by several metrics for a better understanding, which include:

P@20, Mean Reciprocal Rank (MRR), Mean Average Precision (MAP), and MAP@20,

where the MAP is the official metric used by NIST. Each set includes 20 events over

25,000 test videos. The official NIST’s test split is used. We also evaluate each experi-

ment on 10 randomly generated splits to reduce the split partition bias. All experiments

are conducted without using any example or text metadata.

Features and queries: Videos are indexed by semantic features including semantic

visual concepts, ASR, and OCR. For semantic concepts, 1,000 ImageNet concepts are

trained by the deep convolution neural networks [47]. The remaining 3,000+ concepts are

directly trained on videos by the self-paced learning pipeline [77, 78] on around 2 million

videos using improved dense trajectories [16]. The video datasets include Sports [79],

Yahoo Flickr Creative Common (YFCC100M) [59], Internet Archive Creative Common
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Table 3.1: Summary of the semantic concept training sets. ImageNet features are
trained on still images, and the rest are trained on videos.

Dataset #Samples #Classes Category Example Concepts

DIY [80] 72,000 1,601 Instructional videos Yoga, Juggling, Cooking
IACC [5] 600,000 346 Internet archive videos Baby, Outdoor, Sitting down
YFCC100M [59] 800,000 609 Amateur videos on Flickr Beach, Snow, Dancing
ImageNet [37] 1,000,000 1000 Still images Bee, Corkscrew, Cloak
Sports [79] 1,100,000 487 Sports videos on YouTube Bullfighting, Cycling, Skiing

(IACC) [5] and Do It Yourself (DIY) [80]. The details of these datasets can be found in

Table 3.1. The ASR module is built on EESEN and Kaldi [19, 20, 81]. OCR is extracted

by a commercial toolkit. Three sets of queries are used: 1) Expert queries are obtained

by human experts; 2) Auto queries are automatically generated by the Semantic Query

Generation (SQG) methods in [58] using ASR, OCR and visual concepts; 3) AutoVisual

queries are also automatically generated but only includes the visual concepts. The

Expert queries are used by default.

Configurations: The concept relation released by NIST is used to build the HEX

graph for IACC features [35]1. The adjustment is conducted at the video-level average

(p = 1 in Eq. (3.1)) so no shot-level exclusion relations are used. For other concept

features, since there is no public concept relation specification, we manually create the

HEX graph. The HEX graphs are empty for Sports and ImageNet features as there is

no evident hierarchical and exclusion relation in their concepts. We cluster the concepts

based on the correlation of their training labels, and include concepts that frequently

co-occur together into a group. The parameters are tuned on a validation sets, and

then are fixed across all experiment datasets including MED13Test, MED14Test and

YFCC100M. Specifically, the default parameters in Eq. (3.1) are p = 1, α = 0.95. β is

set as the top k detection scores in a video, and is different for each type of features: 60

for IACC, 10 for Sports, 50 for YFCC100M, 15 for ImageNet, and 10 for DIY features.

CVX optimization toolbox [69] is used to solve the model in Eq. (3.1). Eq. (3.10) is used

as the retrieval model for concept features, where k1 = 1.2 and b = 0.75.

3.6.2 Performance on MED

We first examine the overall performance of the proposed method. Table 3.2 lists the

evaluation metrics over the two benchmarks on the standard NIST split and on the

10 randomly generated splits. The performance is reported over three set of queries:

Expert, Auto, and AutoVisual.

Table 3.3 compares the performance of the raw and the adjusted representation on

the 10 splits of MED13Test. Raw lists the performance of indexing the raw score by

dense matrices; Adjusted lists the performance of indexing the adjusted concepts by

1http://www-nlpir.nist.gov/projects/tv2012/tv11.sin.relations.txt
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the proposed index which preserves the real-valued scores. As we see, although Raw is

slightly better than Adjusted, its index in the form of dense matrices is more than 33

times bigger than the inverted index in Adjusted. The comparison substantiates that

the adjusted representation has comparable performances with the raw representation

but can be indexed by a much smaller index.

An interesting observation is that Adjusted outperforms Raw on 8 out of 20 events on

MED13Test (see Table B.1). We inspected the results and found that concept adjust-

ment can generate more consistent representations. Fig. 3.3 illustrates raw and adjusted

concepts on three example videos. Since the raw score is dense, we only list the top

ranked concepts. As we see, the noisy concept in the raw detection may be removed

by the logical consistency, e.g. “snow” in the first video. The missed concept may be

recalled by logical consistencies, e.g. “vehicle” in the third video is recalled by “ground

vehicle”. The frequently co-occurring concepts may also be recovered by distributional

consistencies, e.g. “cloud” and “sky” in the second video. Besides, we also found that

Boolean queries can boost the performance. For example, in “E029: Winning a race

without a vehicle”, the query of relevant concepts such as swimming, racing or marathon

can achieve an AP of 12.5. However, the Boolean query also containing “AND NOT”

concepts such as car racing or horse riding can achieve an AP of 24.5.

Table 3.2: Overview of the system performance.

(a) Performance on the NIST’s split

Dataset Query
Evaluation Metric

P@20 MRR MAP@20 MAP

MED13Test
Expert 0.355 0.693 0.280 0.183
Auto 0.243 0.601 0.177 0.118

AutoVisual 0.125 0.270 0.067 0.074

MED14Test
Expert 0.228 0.585 0.147 0.172
Auto 0.150 0.431 0.102 0.100

AutoVisual 0.120 0.372 0.067 0.086

(b) Average Performance on the 10 splits

Dataset Query
Evaluation Metric

P@20 MRR MAP@20 MAP

MED13Test
Expert 0.325 0.689 0.247 0.172
Auto 0.253 0.592 0.187 0.120

AutoVisual 0.126 0.252 0.069 0.074

MED14Test
Expert 0.219 0.540 0.144 0.171
Auto 0.148 0.417 0.084 0.102

AutoVisual 0.117 0.350 0.063 0.084

Table 3.3: Comparison of the raw and the adjusted representation on the 10 splits.

Method Index
Evaluation Metric

P@20 MRR MAP@20 MAP
MED13 Raw 385M 0.312 0.728 0.230 0.176

MED13 Adjusted 11.6M 0.325 0.689 0.247 0.172
MED14 Raw 357M 0.233 0.610 0.155 0.185

MED14 Adjusted 12M 0.219 0.540 0.144 0.171
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HVC470017: A man leaves his office, gets 

in his car and drives home.

HVC177741: Ships pull across ocean.

HVC853806: A woman shows off her shoes.
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Figure 3.3: Comparison of raw and adjusted concepts.

The parameters α and β in Eq. (3.1) control the magnitude of sparsity in the concept

adjustment, i.e. the percentage of concepts with nonzero scores in a video representation.

A sparse representation reduces the size of indexes but hurts the performance at the same

time. As we will see later, β is more important than α in affecting the performance.

Therefore, we fix α to 0.95 and study the impact of β. Fig. 3.4 illustrates the tradeoff

between accuracy and efficiency on the 10 splits of MED13Test. By tuning β, we obtain

different percentages of nonzero concepts in a video representation. The x-axis lists the

percentage in the log scale. x = 0 indicates the performance of ASR and OCR without

semantic concept features. We discovered that we do not need many concepts to index

a video, and a few adjusted concepts already preserve significant amount of information

for search. As we see, the best tradeoff in this problem is 4% of the total concepts

(i.e. 163 concepts). Further increasing the number of concepts only leads to marginal

performance gain.
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Figure 3.4: The impact of parameter β. x = 0 indicates the performance of ASR and
OCR without semantic concepts.
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3.6.3 Comparison to State-of-the-art on MED

We then compare our best result with the published results on MED13Test. The exper-

iments are all conducted on the NIST’s split, and thus are comparable to each other. As

we see in Table 3.4, the proposed method has a comparable performance to the state-

of-the-art methods. Notably, the proposed method with one iteration of reranking [15]

is able to achieve the best result. The comparison substantiates that our method main-

tains state-of-the-art accuracy. It is worth emphasizing that the baseline methods may

not scale to big data sets, as the dense matrices are used to index all raw detection

scores [15, 55, 58].

Table 3.4: MAP (× 100) comparison with the published results on MED13Test.

Method Year MAP

Composite Concepts [53] 2014 6.4
Tag Propagation [54] 2014 9.6
MMPRF [56] 2014 10.1
Clauses [57] 2014 11.2
Multi-modal Fusion [55] 2014 12.6
SPaR [15] 2014 12.9
E-Lamp FullSys [58] 2015 20.7

Our System 2015 18.3
Our System + reranking 2015 20.8

3.6.4 Comparison to Top-k Thresholding on MED

We compare our full adjustment model with its special case top-k thresholding on

MED14Test. Theorem 3.4 indicates that the top-k thresholding results are optimal

solutions of our model in special cases. The experiments are conducted using IACC

SIN346 concept features that have large HEX graphs. We select the features because

large HEX graphs help compare the difference between the two methods. Table 3.5 lists

the average performance across 20 queries. We set the parameter k (equivalently β) to

be 50, and 60. As the experiment only uses 346 concepts, the results are worse than our

full systems using 3000+ concepts.

Table 3.5: Comparison of the full adjustment model with its special case Top-k
Thresholding on the 10 splits of MED14Test.

Method k
Evaluation Metric

P@20 MRR MAP@20 MAP
Our Model 50 0.0392 0.137 0.0151 0.0225

Top-k 50 0.0342 0.0986 0.0117 0.0218
Our Model 60 0.0388 0.132 0.0158 0.0239

Top-k 60 0.0310 0.103 0.0113 0.0220

As we see, the full adjustment model improves the accuracy and outperforms Top-k

thresholding in terms of P@20, MRR and MAP@20. We inspected the results and
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found that the full adjustment model can generate more consistent representations (See

Fig. 3.3). The results suggest that the full model outperforms the special model in this

problem.

3.6.5 Accuracy of Concept Adjustment

Generally the comparison in terms of retrieval performance depends on the query words.

A query-independent way to verify the accuracy of the adjusted concept representation

is by comparing it to the ground truth representation. To this end, we conduct ex-

periments on the TRECVID Semantic Indexing (SIN) IACC set, where the manually

labeled concepts are available for each shot in a video. We use our detectors to extract

the raw shot-level detection score, and then apply the adjustment methods to obtain

the adjusted representation. The performance is evaluated by Root Mean Squared Error

(RMSE) to the ground truth concepts for the 1,500 test shots in 961 videos.

We compare our adjustment method with the baseline methods in Table 3.6, where HEX

Graph indicates the logical consistent representation [68] on the raw detection scores (i.e.

β = 0), and Group Lasso denotes the representation yield by Eq. (3.1) when α = 0. We

tune the parameter in each baseline method and report its best performance. As the

ground truth label is binary, we let the adjusted scores be binary in all methods. As we

see, the proposed method outperforms all baseline methods. We hypothesize the reason

is that our method is the only one that combines the distributional consistency and the

logical consistency.

We study the parameter sensitivity in the proposed model. Fig. 3.5 plots the RMSE

under different parameter settings. Physically, α interpolates the group-wise and within-

group sparsity, and β determines the number of concepts in a video. As we see, the

parameter β is more sensitive than α, and accordingly we fix the value of α in practice.

Note the parameter β is also an important parameter in the baseline methods including

thresholding and top-k thresholding.

Table 3.6: Comparison of the adjusted representation and baseline methods on the
TRECVID SIN set. The metric is Root Mean Squared Error (RMSE).

Method RMSE

Raw Score 7.671
HEX Graph Only 8.090
Thresholding 1.349
Top-k Thresholding 1.624
Group Lasso 1.570

Our method 1.236
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Figure 3.5: Sensitivity study on the parameter α and β in our model.

3.6.6 Performance on YFCC100M

We apply the proposed method on YFCC100M, the largest public multimedia collec-

tion that has ever been released [59]. It contains about 0.8 million Internet videos

(approximately 12 million key shots) on Flickr. For each video and video shot, we ex-

tract the improved dense trajectory, and detect 3,000+ concepts by the off-the-shelf

detectors in Table 3.1. We implement our inverted index based on Lucene [82], and

a similar configuration described in Section 3.6.1 is used except we set b = 0 in the

BM25 model. All experiments are conducted without using any example or text meta-

data. It is worth emphasizing that as the dataset is very big. The offline video index-

ing process costs considerable amount of computational resources in Pittsburgh super-

computing center. To this end, we share this valuable benchmark with our community

http://www.cs.cmu.edu/~lujiang/0Ex/mm15.html.

To validate the efficiency and scalability, we duplicate the original videos and video shots,

and create an artificial set of 100 million videos. We compare the search performance

of the proposed method to a common approach in existing studies that indexes the

video by dense matrices [55, 58]. The experiments are conducted on a single core of

Intel Xeon 2.53GHz CPU with 64GB memory. The performance is evaluated in terms

of the memory consumption and the online search efficiency. Fig. 3.6(a) compares the

in-memory index as the data size grows, where the x-axis denotes the number of videos

in the log scale, and the y-axis measures the index in GB. As we see, the baseline method

fails when the data reaches 5 million due to lack of memory. In contrast, our method

is scalable and only needs 550MB memory to search 100 million videos. The size of

the total inverted index on disk is only 20GB. Fig. 3.6(b) compares the online search

speed. We create 5 queries, run each query 100 times, and report the mean runtime in

milliseconds. A similar pattern can be observed in Fig. 3.6 that our method is much

more efficient than the baseline method and only costs 191ms to process a query on a

single core. The above results verify scalability and efficiency of the proposed method.

As a demonstration, we use our system to find relevant videos for commercials. The

search is on 800 thousand Internet videos. We download 30 commercials from the

Internet, and manually create 30 semantic queries only using semantic visual concepts.

http://www.cs.cmu.edu/~lujiang/0Ex/mm15.html
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Figure 3.6: The scalability and efficiency test on 100 million videos. Baseline method
fails when the data reaches 5 million due to the lack of memory. Our method is scalable

to 100 million videos.

See detailed results in Table B.3. The ads can be organized in 5 categories. As we see, the

performance is much higher than the performance on the MED dataset in Table 3.2. The

improvement is a result of the increased data volumes. Fig. 3.7 plots the top 5 retrieved

videos are semantically relevant to the products in the ads. The results suggest that our

method may be useful in enhancing the relevance of in-video ads.

Table 3.7: Average performance for 30 commercials on the YFCC100M set.

Category #Ads
Evaluation Metric

P@20 MRR MAP@20

Sports 7 0.88 1.00 0.94
Auto 2 0.85 1.00 0.95
Grocery 8 0.84 0.93 0.88
Traveling 3 0.96 1.00 0.96
Miscellaneous 10 0.65 0.85 0.74

Average 30 0.81 0.93 0.86

Product: bicycle clothing 

and helmets 
Query: superbike racing 

OR bmx OR bike

Product: football shoes
Query: running AND 

football

Top 5 retrieved videos in the YFCC100M set

Product: vehicle tire
Query: car OR exiting a 
vehicle OR sports car 

racing OR car wheel

Figure 3.7: Top 5 retrieved results for 3 example ads on the YFCC100M dataset.

3.7 Summary

This chapter proposed a scalable solution for large-scale semantic search in video. The

proposed method extends the current capability of semantic video search by a few orders
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of magnitude while maintaining state-of-the-art retrieval performance. A key in our solu-

tion is a novel step called concept adjustment that aims at representing a video by a few

salient and consistent concepts which can be efficiently indexed by the modified inverted

index. We introduced a novel adjustment model that is based on a concise optimization

framework with solid interpretations. We also discussed a solution that leverages the

text-based inverted index for video retrieval. Experimental results validated the effi-

cacy and the efficiency of the proposed method on several datasets. Specifically, the

experimental results on the challenging TRECVID MED benchmarks validate the pro-

posed method is of state-of-the-art accuracy. The results on the largest multimedia set

YFCC100M set verify the scalability and efficiency over a large collection of 100 million

Internet videos.



Chapter 4

Semantic Search

4.1 Introduction

In this chapter, we study the multimodal search process for semantic queries. The

process is called semantic search, which is also known as zero-example search [5] or 0Ex

for short, as zero examples are provided in the query. Searching by semantic queries is

more consistent with human’s understanding and reasoning about the task, where an

relevant video is characterized by the presence/absence of certain concepts rather than

local points/trajectories in the example videos.

We will focus on two subproblems, namely semantic query generation and multimodal

search. The semantic query generation is to map the out-of-vocabulary concepts in the

user query to their most relevant alternatives in the system vocabulary. The multimodal

search component aims at retrieving a ranked list using the multimodal features. We

empirically study the methods in the subproblems and share our observations and lessons

in building such a state-of-the-art system. The lessons are valuable because of not only

the effort in designing and conducting numerous experiments but also the considerable

computational resource to make the experiments possible. We believe the shared lessons

may significantly save the time and computational cycles for others who are interested

in this problem.

4.2 Related Work

A representative content-based retrieval task, initiated by the TRECVID community,

is called Multimedia Event Detection (MED) [5]. The task is to detect the occurrence

of a main event in a video clip without any textual metadata. The events of interest

are mostly daily activities ranging from “birthday party” to “changing a vehicle tire”.

35
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The event detection with zero training examples (0Ex) resembles the task of semantic

search. 0Ex is an understudied problem, and only few studies have been proposed very

recently [11, 53–58, 83]. Dalton et al. [83] discussed a query expansion approach for

concept and text retrieval. Habibian et al. [53] proposed to index videos by composite

concepts that are trained by combining the labeled data of individual concepts. Wu et

al. [55] introduced a multimodal fusion method for semantic concepts and text features.

Given a set of tagged videos, Mazloom et al. [54] discussed a retrieval approach to

propagate the tags to unlabeled videos for event detection. Singh et al. [84] studied

a concept construction method that utilizes pairs of automatically discovered concepts

and then prunes those concepts that are unlikely to be helpful for retrieval. Jiang et

al. [15, 56] studied pseudo relevance feedback approaches which manage to significantly

improve the original retrieval results. Existing related works inspire our system.

4.3 Semantic Search

4.3.1 Semantic Query Generation

Users can express a semantic query in a variety of forms, such as a few concept names, a

sentence or a structured description. The Semantic Query Generation (SQG) component

translates a user query into a multimodal system query, all words of which exist in

the system vocabulary. A system vocabulary is the union of the dictionaries of all

semantic features in the system. The system vocabulary, to some extend, determines

what can be detected and thus searched by a system. For ASR/OCR features, the system

vocabulary is usually large enough to cover most words in user queries. For semantic

visual/audio concepts, however, the vocabulary is usually limited, and addressing the

out-of-vocabulary issue is a major challenge for SQG. The mapping between the user

and system query is usually achieved with the aid of an ontology such as WordNet and

Wikipedia. For example, a user query “golden retriever” may be translated to its most

relevant alternative “large-sized dog”, as the original concept may not exist in the system

vocabulary.

For example, in the MED benchmark, NIST provides a user query in the form of an

event-kit description, which includes a name, definition, explication and visual/acoustic

evidences. Table 4.1 shows the user query (event kit description) for the event “E011

Making a sandwich”. Its corresponding system query (with manual inspection) after

SQG is shown in Table 4.2. As we see, SQG is indeed a challenging task as it involves

understanding of text descriptions written in natural language.

The first step in SQG is to parse negations in the user query in order to recognize

counter-examples. The recognized examples can be either discarded or associated with
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Table 4.1: User query (event-kit description) for the event “Making a sandwich”.

Event name Making a sandwich

Definition
Constructing an edible food item from ingredients, often includ-
ing one or more slices of bread plus fillings

Explication

Sandwiches are generally made by placing food items on top
of a piece of bread, roll or similar item, and placing another
piece of bread on top of the food items. Sandwiches with only
one slice of bread are less common and are called ”open face
sandwiches”. The food items inserted within the slices of bread
are known as ”fillings” and often include sliced meat, vegetables
(commonly used vegetables include lettuce, tomatoes, onions,
bell peppers, bean sprouts, cucumbers, and olives), and sliced
or grated cheese. Often, a liquid or semi-liquid ”condiment”
or ”spread” such as oil, mayonnaise, mustard, and/or flavored
sauce, is drizzled onto the sandwich or spread with a knife on
the bread or top of the sandwich fillers. The sandwich or bread
used in the sandwich may also be heated in some way by placing
it in a toaster, oven, frying pan, countertop grilling machine,
microwave or grill. Sandwiches are a popular meal to make at
home and are available for purchase in many cafes, convenience
stores, and as part of the lunch menu at many restaurants.

Evidences

scene
indoors (kitchen or restaurant or cafeteria) or outdoors (a park
or backyard)

objects/people
bread of various types; fillings (meat, cheese, vegetables), condi-
ments, knives, plates, other utensils

activities
slicing, toasting bread, spreading condiments on bread, placing
fillings on bread, cutting or dishing up fillings

audio
noises from equipment hitting the work surface; narration of or
commentary on the process; noises emanating from equipment
(e.g. microwave or griddle)

Table 4.2: System query for the event “E011 Making a sandwich”.

Event ID Name Category Relevance

Visual

sin346 133 food man made thing, food very relevant
sin346 183 kitchen structure building, room very relevant

yfcc609 505 cooking
human activity, working
utensil tool

very relevant

sin346 261 room structure building, room relevant

sin346 28 bar pub
structure build-
ing,commercial building

relevant

yfcc609 145 lunch food, meal relevant
yfcc609 92 dinner food, meal relevant

ASR ASR long

sandwich, food, bread, fil-
l, place, meat, vegetable,
cheese, condiment, knife,
plate, utensil, slice, toast,
spread, cut, dish

- relevant

OCR OCR short sandwich - relevant

a “NOT” operator in the system query. We found that adding counter examples using

the Boolean NOT operator tends to improve performance. For example, in the query

“Winning a race without a vehicle”, the query including only relevant concepts such

as swimming, racing or marathon can achieve an AP of 12.57. However, the query

also containing “AND NOT” concepts such as car racing, horse riding or bicycling can

achieve an AP of 24.50.
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Given an event-kit description, a user query can be represented the event name (1-3

words) or the frequent words in the event-kit description (after removing the template

and stop words). This user query can be directly used as the system query for ASR/OCR

features as their vocabularies are sufficiently large. For visual/audio concepts, the query

are used to map the out-of-vocabulary words to their most relevant concepts in the

system vocabulary. To this end, we study the following classical mapping algorithms to

map a word in the user query to the concept in the system vocabulary:

Exact word matching: A straightforward mapping is matching the exact query word

(usually after stemming) against the concept name or the concept description. Generally,

for unambiguous words, this method has high precision but low recall.

WordNet mapping: This mapping calculates the similarity between two words in

terms of their distance in the WordNet taxonomy. The distance can be defined in

various ways such as structural depths in the hierarchy [85] or shared overlaps between

synonymous words [86]. Among the distance metrics, we found the structural depths

yields more robust results [85]. WordNet mapping is good at capturing synonyms and

subsumption relations between two nouns.

PMI mapping: The mapping calculates the Point-wise Mutual Information (PMI) [87]

between two words. Suppose qi and qj are two words in a user query, we have:

PMI(qi; qj) = log
P (qi, qj |Cont)

P (qi|Cont)P (qj |Cont)
, (4.1)

where P (qi|Cont), P (qj |Cont) represent the probability of observing qi and qj in the on-

tology Cont (e.g. a collection of Wikipedia articles), which is calculated by the fraction

of the document containing the word. P (qi, qj |Cont) is the probability of observing the

document in which qi and qj both occur. PMI mapping assumes that similar words tend

to co-occur more frequently, and is good at capturing frequently co-occurring concepts

(both nouns and verbs).

Word embedding mapping: This mapping learns a word embedding that helps pre-

dict the surrounding words in a sentence [88, 89]. The learned embedding, usually by

neural network models, is in a lower-dimensional continuous vector space. The cosine

coefficient between two words is often used to measure their distance. It is fast and also

able to capture the frequent co-occurred words in similar contexts.

We found that discriminating the mapping relevance in a query may increase the per-

formance. In other words, the calculated relevance can be used to weight query terms.

For example, the relevance can be categorized into discrete levels according to their

relevance to the user query. Table 4.2 have three levels of relevance: “very relevant”,

“relevant” and “slightly relevant”, and the levels are assigned to weight of 2.0, 1.0 and
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0.5, respectively. We manually modified the relevance produced by the above automat-

ical mapping algorithms. In this way, we can observe an absolute 1-2% improvement

over the same query with no weights.

4.3.2 Retrieval Models

Given a system query, the multimodal search component aims at retrieving a ranked list

for each modality. We are interested in leveraging the well-studied text retrieval models

for video retrieval. This strategy allows us to utilize the infrastructure built for text

retrieval. There is no single retrieval model that can work the best for all modalities. As

a result, our system incorporates several classical retrieval models and applies them to

their most appropriate modalities. Let Q = q1, . . . , qn denote a system query. A retrieval

model ranks videos by the score s(d|Q), where d is a video in the video collection C. We

study the following retrieval models:

Vector Space Model (VSM): This model represents both a video and a query as

a vector of the words in the system vocabulary. The common vector representation

includes generic term frequency (tf) and term frequency-inverse document frequency

(tf-idf) [90]. s(d|Q) derives from either the dot product or the cosine coefficient between

the video and the query vector.

Okapi BM25: This model extends tf-idf representation by:

s(d|Q)=

n∑

i=1

log
|C| − df(qi)+

1
2

df(qi)+
1
2

tf(qi, d)(k1+1)

tf(qi, d)+k1(1−b+b len(d)
len

)
, (4.2)

where |C| is the total number of videos in the collection. df(·) calculates the document

frequency for a given word in the collection; tf(qi, d) calculates the raw term frequency

for the word qi in the video d. Unlike text retrieval, in which document frequencies and

term frequencies are integers, in multimedia retrieval, these statistics can be real values

as concepts are associated with real-valued detection scores. len(d) calculates the sum

of concept or word detection scores in the video d, and len is the average video length

in the collection. k1 and b are two model parameters to tune [91]. In the experiments,

we set b = 0.75, and tune k1 in [1.2, 2.0].

Language Model-JM Smoothing (LM-JM): The score is considered to be generated

by a unigram language model [92]:

s(d|Q) = log P (d|Q) ∝ log P (d) +

n∑

i=1

log P (qi|d), (4.3)

where P (d) is usually assumed to be following the uniform distribution, i.e. the same

for every video, and can be dropped in the retrieval model. In some cases, we can
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encode prior information about a video into P (d), such as its view count, length, and

viralness [93]. P (qi|d) is calculated from:

P (qi|d) = λ
tf(qi, d)∑
w tf(w, d)

+ (1− λ)P (qi|C), (4.4)

where w enumerates all the words or the concepts in a given video. P (qi|C) is a smoother

that can be calculated by df(qi)/|C|. As we see, Eq. (4.4) linearly interpolates the

maximum likelihood estimation (first term) with the collection model (second term) by

a coefficient λ. The parameter is usually tuned in the range of [0.7, 0.9]. This model is

good for retrieving long text queries, e.g. the frequent words in the event kit description.

Language Model-Dirichlet Smoothing (LM-DL): This model adds a conjugate

prior (Dirichlet distribution) to the language model:

P (qi|d) =
tf(qi, d) + µP (qi|C)∑

w tf(w, d) + µ
, (4.5)

where µ is a coefficient balancing the likelihood model and the conjugate prior. It is

usually tuned in [0, 2000] [92]. This model is good for short text queries, e.g. the event

name.

4.4 Experiments

4.4.1 Setups

Dataset and evaluation: The experiments are conducted on two TRECVID bench-

marks called Multimedia Event Detection (MED): MED13Test and MED14Test [5]. The

performance is evaluated by the official metric Mean Average Precision (MAP). Each

set includes 20 events over 25,000 test videos. The official NIST’s test split is used.

We also evaluate each experiment on 10 randomly generated splits to reduce the bias

brought by the split partition. The mean and 90% confidence interval are reported. All

experiments are conducted without using any example or text metadata.

Features and queries: Videos are indexed by semantic features including semantic

visual concepts, ASR, and OCR. The same semantic features described in Section 3.6.1

are used in the experiments, except here the features are represented by the raw detection

scores before the adjustment. See the details of concept features in Table 3.1. we share

our features and experimental results on the benchmark

http://www.cs.cmu.edu/~lujiang/0Ex/icmr15.html.

The user query is the event-kit description. For ASR/OCR, the automatically generated

event name and description representations are directly used as the system query. The

http://www.cs.cmu.edu/~lujiang/0Ex/icmr15.html


Semantic Search 41

system query for semantic concepts is obtained by a two-step procedure: a preliminary

mapping is automatically generated by the discussed mapping algorithms. The results

are then examined by human experts to figure out the final system query. We call these

queries Expert queries. Besides, we also study the queries automatically generated by

the mapping algorithm called “Auto SQG” in Section 4.4.2.

Configurations: In the multimodal search component, by default, the LM-JM model

(λ = 0.7) is used for ASR/OCR for the frequent-words in the event-kit description.

BM25 is used for ASR [94] and OCR features for the event name query (1-3 words),

where k1 = 1.2 and b = 0.75. Both the frequent-words query and the event name query

are automatically generated without manual inspection. While parsing the frequent

words in the event-kit description, the stop and template words are first removed, and

words in the evidence section are counted three times. After parsing, the words with

the frequency ≥ 3 are then used in the query. VSM-tf model is applied to all semantic

concept features.

In the SQG component, the exact word matching algorithm finds the concept name in

the frequent event-kit words (frequency ≥ 3). The WordNet mapping uses the distance

metrics in [85] as the default metric. We build an inverted index over the Wikipedia

corpus (about 6 million articles), and use it to calculate the PMI mapping. To calculate

the statistics, we online issue queries to the index. A pre-trained word embedding trained

on Wikipedia [89] is used to calculated the word embedding mapping.

4.4.2 Semantic Matching in SQG

We apply the SQG mapping algorithms in Section 4.3.1 to map the user query to the

concepts in the vocabulary. The experiments are conducted only using semantic concept

features. We use two metrics to compare these mapping algorithms. One is the precision

of the 5 most relevant concepts returned by each algorithm. We manually assess the rel-

evance for 10 events (E031-E040) on 4 concept features (i.e. 200 pairs for each mapping

algorithm). The other is the MAP obtained by the 3 most relevant concepts. Table 4.3

lists the results, where the last column lists the runtime of calculating the mapping

between 1,000 pairs of words. The second last row (Fusion) indicates the average fusion

of the results of all mapping algorithms. As we see, in terms of P@5, PMI is slightly

better than others, but it is also the slowest because its calculation involves looking up

a index of 6 million text documents in Wikipedia. Fusion of all mapping results yields

a better P@5.

We then combine the automatically mapped semantic concepts with the automatically

generated ASR and OCR query. Here we assume users have specified which feature to

use for each query, and SQG is used to automatically find relevant concepts or words
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in the specified features. We obtain this information in the event-kit description. For

example, we will use ASR when we find words “narration/narrating” and “process” in

the event-kit description. An event that has these words in the description tends to

be an instructional event, such as “Making a sandwich” and “Repairing an appliance”,

in which the spoken words are more likely to be detected accurately. Our result can

be understood as an overestimate of a fully-automatic SQG system, in which users do

not even need to specify the feature. As we see in Table 4.3, PMI performs the best

on MED13Test whereas on MED14Test it is Exact Word Matching. The fusion of all

mapping results (the second last row) improves the MAP on both the datasets. We then

fine-tune the parameters of the mapping fusion and build our AutoSQG system (the last

row).

As we see, AutoSQG only achieves about 55% of the full system’s MAP. Several reasons

account for the performance drop: 1) the concept name does not accurately describe

what is being detected; 2) the quality of mapping is limited (P@5=0.42); 3) relevant con-

cepts are not necessarily discriminative concepts. For example, “animal” and “throwing

ball” appear to be relevant to the query “playing a fetch”, but the former is too general

and the latter is about throwing a baseball which is visually different; “dog” is much

less discriminative than “group of dogs” for the query “dog show”. The results suggest

that the automatic SQG is not well-understood. The proposed automatic mappings are

still very preliminary, and could be further refined by manual inspection. A significant

drawback of current mapping algorithms is representing a concept as a few words. How-

ever, in our manual assessment, we regard a concept as a multimodal document that

includes a name, description, category, reliability (accuracy) and examples of the top

detected video snippet.

Table 4.3: Comparison of SQG mapping algorithms.

Mapping Method P@5
MAP

Time (s)
13Test 14Test

Exact Word Matching 0.340 9.66 7.22 0.10
WordNet 0.330 7.86 6.68 1.22
PMI 0.355 9.84 6.95 22.20
Word Embedding 0.335 8.79 6.21 0.48
Mapping Fusion 0.420 10.22 9.38 -
AutoSQGSys - 12.00 11.45 -

4.4.3 Modality/Feature Contribution

Table 4.4 compares the modality contribution for semantic search, where each run rep-

resents a certain configuration. The MAP is evaluated on MED14Test and MED13Test.

As we see, visual modality is the most contributing modality, which by itself can recover

about 85% MAP of the full system. ASR and OCR provide complementary contribution

to the full system but prove to be much worse than the visual features. The event-level
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comparison can be found in Table B.4. The experimental results also justify the rationale

of multimodal search.

To understand the feature contribution, we conduct leave-one-feature-out experiments.

The performance drop, after removing the feature, can be used to estimate its contri-

bution to the full system. As we see in Table 4.5, the results show that every feature

provides some contribution. As the feature contribution is mainly dominated by a num-

ber of discriminative events, the comparison is more meaningful at the event-level (see

Table B.5 and Table B.6), where one can tell that, for example, the contribution of Im-

ageNet mainly comes from three events E031, E015 and E037. Though the MAP drop

varies on different events and datasets, the average drop on the two datasets follows:

Sports > ImageNet > ASR > IACC > YFCC > DIY > OCR. The biggest contributor

Sports is also the most computationally expensive feature to train. In fact, the above or-

der of semantic concepts highly correlates to #samples in their datasets, which suggests

the rationale of training concepts over big data sets.

Table 4.4: Comparison of modality contribution for semantic search.

Run
MED13Test MED14Test

1-split 10-splits 1-split 10-splits
FullSys 20.75 19.47±1.19 20.60 18.77±2.16
VisualSys 18.31 18.30±1.11 17.58 17.27±1.82
ASRSys 6.53 6.90±0.74 5.79 4.26±1.19
OCRSys 2.04 4.14±0.07 1.47 2.20±0.73

Table 4.5: Comparison of feature contribution for semantic search.

SysID
Visual Concepts

ASR OCR
MAP

MAP Drop(%)
IACC Sports YFCC DIY ImageNet 1-split 10-splits

MED13/IACC X X X X X X 18.93 18.61±1.13 9%
MED13/Sports X X X X X X 15.67 14.68±0.92 25%
MED13/YFCC X X X X X X 18.14 18.47±1.21 13%
MED13/DIY X X X X X X 19.95 18.70±1.19 4%
MED13/ImageNet X X X X X X 18.18 16.58±1.18 12%
MED13/ASR X X X X X X 18.48 18.78±1.10 11%
MED13/OCR X X X X X X 20.59 19.12±1.20 1%

MED14/IACC X X X X X X 18.34 17.79±1.95 11%
MED14/Sports X X X X X X 13.93 12.47±1.93 32%
MED14/YFCC X X X X X X 20.05 18.55±2.13 3%
MED14/DIY X X X X X X 20.40 18.42±2.22 1%
MED14/ImageNet X X X X X X 16.37 15.21±1.91 20%
MED14/ASR X X X X X X 18.36 17.62±1.84 11%
MED14/OCR X X X X X X 20.43 18.86±2.20 1%

4.4.4 Comparison of Retrieval Methods

Table 4.6 compares the retrieval models on MED14Test using representative features

such as ASR, OCR and two types of visual concepts. As we see, there is no single

retrieval model that works the best for all features. For ASR and OCR words, BM25

and Language Model with JM smoothing (LM-JM) yield the best MAPs. An interesting

observation is that VSM can only achieve 50% MAP of LM-JM on ASR (2.94 versus
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5.79). This observation suggests that the role of retrieval models in semantic search

is substantial. For semantic concepts, VSM performs no worse than other models. We

hypothesize that it is because the dense raw concept representation, i.e. every dimension

has a nonzero value, and this representation is quite different from sparse text features.

To verify this hypothesis, we apply the (top-k) concept adjustment to the Sports feature.

We increase the parameter k proportional to the size of vocabulary. As we see, BM25 and

LM exhibit better performance in the sparse representations. The results substantiate

our hypothesis classical text retrieval algorithms also work for adjusted concept features.

Table 4.6: Comparison of retrieval models on MED14Test using ASR, OCR, Sports
and IACC.

Feat. Split VSM-tf VSM-tfidf BM25 LM-JM LM-DP

ASR
1 2.94 1.26 3.43 5.79 1.45
10 2.67 1.49 3.03 4.26 1.14

OCR
1 0.56 0.47 1.47 1.02 1.22
10 2.50 2.38 4.52 3.80 4.07

Sports
1 9.21 8.97 8.83 8.75 7.57
10 10.61 10.58 10.13 10.25 9.04

IACC
1 3.49 3.52 2.44 2.96 2.06
10 2.88 2.77 2.05 2.45 2.08

Table 4.7: Study of retrieval performance using the adjusted concept features (Sports)
on MED14Test.

Density VSM-tf BM25 LM-JM LM-DP
1% 9.06 9.58 9.09 9.38
2% 9.93 10.12 10.14 10.07
4% 10.34 10.36 10.26 10.38
16% 10.60 10.45 10.03 9.89
100% 10.61 10.13 10.25 9.04

4.5 Summary

In this chapter, we studied semantic search. We focused on two subproblems called

semantic query generation and multimodal search. The proposed method goes beyond

conventional text-to-text matching, and allows for semantic search without any textual

metadata or example videos. We shared our compelling insights on a number of em-

pirical studies. From the experimental results, we found that 1) retrieval models may

have substantial impacts to the search result. A reasonable strategy is to incorporate

multiple models and apply them to their appropriate features/modalities; 2) automatic

query generation for queries in the form of event-kit descriptions is still very challeng-

ing. Combining mapping results from various mapping algorithms and applying manual

examination afterward is the best strategy known so far.
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The methods studied in this chapter is merely a first effort towards semantic search in

Internet videos. The proposed method can be improved in various ways, e.g. by incorpo-

rating more accurate visual and audio concept detectors, by studying more appropriate

retrieval models, by exploring search interfaces or interactive search schemes. As shown

in our experiments, the automatic semantic query generation is not well understood.

Closing the gap between the manual and automatic query may point to a promising

direction.



Chapter 5

Query Embedding and Hybrid

Search

5.1 Introduction

This chapter will study two problems: query embedding and hybrid search. Unlike

in Chapter 4, both of the problems need training data. In query embedding, we are

interested in learning an embedding to help understand user queries for the semantic

query generation problem discussed in Chapter 4. In hybrid search, we are interested

in finding a method that can accurately process the query with both semantic features

and a few video examples.

5.1.1 Query Embedding

Chapter 4 has demonstrated a significant gap between users queries and generic concepts,

i.e. a gap between a user’s information need and what can be retrieved by the system.

This gap becomes a critical issue hindering the delivery of accurate video search. For

this problem, we focus on the queries over personal media data, i.e. personal photos and

videos. Traditional text-to-text matching approaches, in which query words are matched

against images’ metadata, are bound to fail on personal media data since about 80%

personal media can only be searched via concepts [4]. With the speed that media gets

created everyday, manually annotating personal photo archives is practically infeasible.

This is a situation comparable to the days in the late 1990s, when people usually got

lost in the rising sea of web pages, now they are overwhelmed by the vast amounts of

personal media data but lack tools to find desired information.

46
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To bridge this gap, in this chapter we propose novel approaches based on deep query

embedding networks that leverages clickthrough data to learn end-to-end mappings di-

rectly from personal queries to the automatic concepts. We propose both feed-forward

and Recurrent Neural Network (RNN) [95] architectures to examine the effectiveness of

sequential modeling. The proposed model implicitly models the complicated nonlinear

relations in the visual domain. For example, a user query “birthday party” might not

retrieve any results simply because “birthday party” is missing from our concept vocab-

ulary. However, our new approach can translate the query to a set of relevant concepts

that exist in the vocabulary, such as “cake”, “candle”, “kids”, etc.

5.1.2 Hybrid Search

The previous chapters have not discussed the method to process the hybrid query, i.e.

the query with both semantic features and a few video examples. A straightforward

approach to process hybrid queries is to learn two independent models, i.e. a retrieval

model discussed in Chapter 4 and a supervised model over a few positive examples,

and, later, fuse the model outputs together. This process is called late fusion. In our

problem, late fusion yields reasonable results but is less accurate when the number of

positive samples is small. In this chapter, we study a new method for hybrid query which

learns a joint model over both semantic concepts and positive examples. Experimental

results show that the proposed method not only outperforms baseline methods, but also

proves to be a sparser model which might potentially enable large-scale search over big

video data.

5.2 Related Work

Regarding the query embedding, the research of general web search also benefits from

the recent progress of modern word embeddings [88]. Very recently, Grbovic et al. [96]

used web query embeddings together with advertisement click logs to learn query expan-

sion in a distributed system for query to advertisement matching. In a highly related

work, Huang et al. [97] proposed to learn latent semantic models between queries and

documents using clickthrough data. We are interested in learning an visual embedding

from the queries to automatically generated concepts. We employ concepts as the visual

information proxy making the learning space significantly smaller. More importantly,

we are able to implicitly take into account the accuracy of each concept detector; for

example, even if a query exists as one of the concepts, the visual detector for that con-

cept might be weak. We may therefore find other concepts to be equally or even more

important for ranking than that query concept itself and improve the ranking of results.
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We compare against the approach of [97] in Section ??. In some sense, the proposed

deep query understanding model might also be the first zero-shot learning approach that

uses clickthrough data.

Regarding the hybrid search, to the best of our knowledge, there have been few studies

dedicated to study neither hybrid search nor similar types of search, especially in the field

of multimedia and computer vision. Generally, hybrid queries are of two parts: semantic

features and a few positive examples. A naive way to combine the results is by late fusion,

i.e. learning different models for different modalities and aggregating the outputs [21].For

example, Wu et al. propose a method based on Principle Component Analysis (PCA)

and Independent Component Analysis (ICA) to exploit the dependency between different

modalities [98]. However, since the method is based on PCA, it assumes 1) that features

with large variances are important and 2) that the principal components are orthogonal.

As these assumption is too restrictive to hold in many data sets, Rasiwasia el al. [99]

proposed to eliminate the dependency by Canonical Correlation Analysis (CCA) i.e.

projecting the original feature spaces into a so-called semantic space that maximizes

the correlation between different modalities. As CCA only requires a linear relationship

between the variable in different modalities, the assumptions of Wu’s method can be

relaxed. Jiang et al. [21] proposed an approach for high-level and low-level features

fusion based on collective classification. Generally, the method consists of three steps:

training a classifier from low-level features; encoding high-level features into graphs;

and diffusing the scores on the established graph to obtain the final prediction. Another

possible approach is to train exemplar SVM classifiers [100] for each positive sample and

ensemble the results to obtain the final outputs.

5.3 Query Embedding

5.3.1 Problem

To bridge the gap between user query words and the concepts, we introduce a new

method, named Visual Query Embedding (VQE) to improve photo and video search.

Recall, a concept corresponds to a visual recognition model that estimates the probability

of observing the concept in the image or video content. There are two major differences

between the concepts in images and videos and the words in text documents. First, the

concept vocabulary is much smaller than the word vocabulary, limited by the number

of objects, scenes or actions that can be accurately detected in the content of photos

or videos. Scaling the number of concepts is nontrivial, as training detectors requires

considerable amount of labeled data which are expensive to acquire [49]. Second, the

accuracy of the automatically detected concepts is limited: the detected concepts may
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not actually be present whereas concepts not detected may well appear in the content

of the photos or videos.

Due to such differences, there is a significant gap between user query words and concepts,

i.e. a gap between a user’s information need and what can be retrieved by the system.

To address this issue, we propose to learn Visual Query Embedding (VQE) models that

directly map user query words to the related visual concepts. We propose to address this

problem through a novel perspective where end-to-end embeddings are learned leveraging

visually relevant concepts discovered in the clickthrough data. Following [97], we assume

a query to be relevant, at least partially, to clicked personal media data in that session.

Our intuition is that for the same query, concepts frequently occurring in the clicked

photos are more likely to be relevant. For example, if many users clicks photos containing

the concept “candles” for the query “birthday party”, then “candles” is a concept that

is probably related to “birthday party”. Table 5.1 shows some representative examples

discovered form the search logs.

Table 5.1: Examples of user queries and visually relevant concepts.

User queries Related Visual Concepts

jaguar → sports car, road
playa → coast, ocean

bluebell → flower, purple
tiger → carnivore, big cat, tiger

andromeda → empty, dreamlike, fire, bonfire
zoo → people, animal, primate, dog, monkey

We are interested in learning an end-to-end visual query embedding function from the

user query words to the relevant visual concepts discovered in the clickthrough data.

Formally, let Q = q1, · · · , qn denote a query of n words, where Q ∈ Z
n and each qi

represents an integer index in the query word vocabulary. Define a function φ : Zn →
R
m, where Rm is a vector over the concept vocabulary of m concepts. Denote yk as the

relevant concepts extracted from the search log for the query Qk. Based on the above

definitions, we can summarize the visual query embedding problem as a supervised

learning problem: φ = argminφ
∑

k ℓ(φ(Qk),yk), where ℓ is the loss function.

In the online search phase, given a user query Qk, we use φ to map it to a vector of

relevant concepts, and apply retrieval algorithms to obtain the relevant personal media.

In this paper, we employ the vector space (cosine) retrieval model for simplicity, and

refer readers to [58] for an analysis on the impact of retrieval algorithms.
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5.3.2 Models

This subsection discusses two deep models for learning the visual query embedding.

First of all, we introduce a method to extract visually relevant concepts in a search

session. The personal photos or videos are automatically tagged by m concepts in V.

Let d ∈ R
m represent the raw detection scores, each dimension of which corresponds to

the probability of detecting a concept. For a photo or video, d is usually a dense vector.

In other words, a photo contains almost every concept in the vocabulary with a non-

zero detection score. We found learning φ based on the dense raw score representation

not only leads to worse results but also becomes infeasible for large-scale learning. To

address this issue, we incorporate the concept adjustment method in Chapter 3, and

represent personal image or video data by the adjusted concept vector v ∈ R
m, by:

argmin
v∈[0,1]m

1

2
‖v − d‖22 + α‖v‖1

subject to Av ≤ 0

, (5.1)

where α is the parameter that controls the sparsity. For simplicity, we use the l1-

norm, and set A to be the zero matrix as most of the concepts in our experiments are

independent.

In the kth session, let C+
k represent a set of adjusted concept vectors in the clicked

personal media. We define the ground truth vector as the mean of the clicked con-

cept vectors, i.e. yk = 1/|C+
k |

∑
vi∈C+

k
vi. Note that the clickthrough data are very

noisy [101], containing many queries and clicks made by errors. We found the quality

of the training set to greatly affect the accuracy the learned visual query embedding.

To reduce noise, we select queries issued by at least 3 users, only consider clicks on the

top 30 retrieved results, and the concepts that occur in at least two clicked photos in a

session. Within a session, for each concept we compute the mutual information in the set

of clicked media and a set of randomly sampled non-clicked media. A concept with lower

mutual information means it occurs, indiscriminately, in both clicked and non-clicked

sets, and thus is likely to be a background concept such as “outdoor” and “people”. For

training, we zero the concepts with small mutual information in the ground-truth vector

y.

Given a training set of N sessions, let ŷi represent the embedding output after the

softmax activation function, i.e. ŷk = softmax(φ(Qk)), the embedding is learned by

minimizing the cross-entropy loss function:
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Figure 5.1: Deep Visual Query Embedding Models.

argmin
φ

N∑

i=1

ℓ(ŷi,yi)

= −
N∑

i=1

m∑

j=1

1(yij > 0) log ŷij + 1(yij = 0) log(1− ŷij)

(5.2)

where 1(·) is an indicator function equaling 1 when its argument is true, and 0 otherwise.

Eq. (5.2) is also known as softmax cross-entropy loss. In the rest of the section, we will

discuss two deep neural networks to learn the model.

5.3.2.1 Max-Pooled MLP

Our first model is the max-pooled Multi-Layer Perceptron (MLP), with architecture

depicted in Fig. 5.1(a). It takes query words and their Part-of-Speech (POS) tags as

input, and outputs the predicted concept vector. The model consists of three types of

layers: an embedding layer which maps a word or a POS tag to a low-dimensional vector;

a max pooling layer that computes the element-wise maximum for the input vectors; a

number of fully connected layer (fc) for nonlinear transformation. Due to the disjoint
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vocabulary space, we learn separate embeddings Wword for query words and Wpos for

POS tags. Denote qi as the ith word and pi as its POS tag in the query Q, the model

with l layer is calculated from:

a1 = max
qi,pi∈Q

(Wword(qi),Wpos(pi))

ai = σ(Wiai−1 + bi)

φ(Q) = relu(Wlal−1 + bl)

, (5.3)

where σ(x) = (1 + e−x)−1 is the sigmoid activation function in the hidden layers, and

relu is the rectified linear unit in the last layer. Wi and bi represent the weight matrix

and the bias term vector in the ith layer; ai is the activation of the ith layer, and φ(Q)

is the predicted concept vector.

5.3.2.2 Two-channel RNN

The word sequence in a query is totally discarded by the max-pooling layer in the

previous model. To incorporate the sequence information, we propose a two-channel

RNN model. As illustrated in Fig. 5.1(b), the embedding vectors of the word and POS

tags are fed into a two layer LSTM units one by one, via two channels: [q1,· · · ,qn, $]
and [p1,· · · ,pn, $], where $ is a special token that marks the end of a sequence. LSTM

units are used to reduce the vanishing gradients and exploding gradients problem [95].

More precisely, we use the LSTM unit with dropout implementation described in [102].

LSTM updates for time step t, given a word or pos embedding vector as the inputs xt:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + it tanh(Wxcxt +Whcch−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)

(5.4)

where i, f ,o and c are respectively the input gate, forget gate, output gate and memory

cell activation vectors. All of which are the same size of the hidden vector h.

The LSTM hidden states ht from the input sequences are fed into an average pooling

layer, as shown in Fig. 5.1(b). The pooled hidden states are then fed to a set of fully

connected layers similar to those in Eq. (5.3). The final predicted concept vector φ(Q)

is derived from the output of the final fully connected layer.
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We incorporate the POS tags in our models for two considerations: first, we found,

though adding POS tags would slow down the convergence, in some cases, it helps to

find better local minima. The second reason is for generalizability. The proposed models

can trivially degenerate to the models without POS tags when tags are less informative.

5.3.3 Results

We conduct our experiments on the Flickr personal search log data. We select personal

queries that were issued by at least 3 users, and divide them into a training and a

test set according to their issued time. In total, the training set contains about 20,600

personal queries from 3,978 users, while the test set contains 2,443 queries from 1620

users over about 148,000 personal photos. Given a personal query and a photo collection

from a user, our goal is to boost the rank for the user clicked photos. We discard all

user generated textual metadata that may exist in the user photos in our experiments,

and only assume that each photo is tagged with 1,720 automatically detected concepts

sampled from the Flickr concept bank [103].

We evaluate performance using two metrics: the non-interpolated mean Average Pre-

cision (mAP) of the retrieved ranked list and the concept recall of the top predicted

concepts denoted as CR@n. Let t represents the predicted concepts φ(Q) after the top-

n thresholding, i.e. all elements except for the top n elements in φ(Q) are set to 0, we

have:

CR@n(t,y) =
1

n

m∑

j=1

1(yiti > 0), (5.5)

where y is the ground-truth concept vector extracted in the search session, and 1 is

the indicator function. Note the two metrics measures different aspects of the search

results. mAP evaluates the quality of the clicked photos ranked in the search results,

whereas CR@n measures the relevance between the top-n predicted concepts and the

true concepts in the clicked photos. A relevant concept may not always lead to a good

ranked list as it might be less discriminative, e.g. the relevant concept “carnivore” to

the query “tiger”. On the other hand, discriminative concepts leading to better mAP

may not always be relevant. Therefore, both metrics are useful in understanding the

performance of a method.

Compared Methods: We refer to the two proposed Visual Query Embedding (VQE)

models, as VQE (MaxMLP) and VQE (RNN). To demonstrate their performance, we

compare them against the following common zero-shot learning and word embedding

approaches: Exact Match [58] is a plain mapping by matching the exact query words

to the concept names. Specifically, it produces a query vector of the same size with the

concept vocabulary, each dimension of which represents the similarity between the query
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and the corresponding concept. The generated query vector is then used to search rele-

vant personal photos. Likewise, WordNet computes similarities between query vectors

and concepts using WordNet path similarity [104] which is equal to the shortest path in

the WordNet taxonomy between the query and the concept name [104]. SkipGram [88]

learns an embedding space over a large corpus of text documents. In our experiments,

the pretrained embedding on Google News is used to compute the query vector. Se-

mantic DNN is inspired by the deep semantic structured model of [97], where the

authors proposed to learn a low-dimensional embedding space form the query words to

the words in the clicked text documents by multi-layer neural networks. In our problem

the vocabularies of query and concept are different, and as a result, we add a layer on

top of the last layer of the DNN model in [97] to obtain the predicted concept vector.

As in [97], the cosine loss function is used to train the model. Note that only the VQE

models and the semantic DNN model use the clickthrough training data.

Implementation Details: We implement the proposed VQE models in TensorFlow [105].

The model are trained over mini-batches of 32 samples. The word and POS embeddings

are set to 300 dimensional vector and are learned jointly by minimizing the loss in E-

q. (5.2). The standard gradient decent algorithm is used to train the MLP models, and

the adaptive subgradient (Adagrad) [106] algorithm is used to train the RNN models

for faster convergence. The start learning rate is set to 0.1 and is annealed by a stair-

case exponential decay function with a decay rate of 0.96. A dropout layer is applied

in training the RNN networks which discards 0.5% of the input data. Each model is

trained at most 7200 epochs (no more than 24 hours).

5.3.3.1 Baseline Comparisons

We first compare the proposed methods with the baseline methods in Table 5.2. As

we see, the proposed VQE MaxMLP significantly outperforms other baseline methods.

Specifically, it improves the mAP of SkipGram by about relative 45%. We inspected

the search results and found that MaxMLP can capture more visually relevant concepts

for personal media queries on Flickr. Fig. 5.2 shows representative examples of the top

search results for MaxMLP and SkipGram models, where the photos in the green border

are the user clicked photos in the search session. As shown in Fig. 5.2(a), MaxMLP

retrieves more accurate personal photos. This is because it maps the user query “paint

ball” to visually relevant concepts “solider” and “fatigues”, as opposed to the concepts

“archery” and “skateboarding” produced by SkipGram. In addition, we found MaxMLP

model can find relevant concepts for “who” and “where” quires (see Fig. ??), the two

major categories in personal queries. For example, as shown in Fig. 5.2(c), the MaxMLP

model maps the user query “key west”, i.e. a island city, to the concepts “water”

and “water sports”, whereas SkipGram fails to find any relevant concept. Besides,
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experimental results also show the domain difference between learning embedding on

clickthrough data versus learning embedding on text corpora like Google News.
Table 5.2: Comparison to baseline methods.

Method mAP CR@1 CR@3 CR@5

Exact Match [58] 0.231 0.209 0.086 0.067
WordNet [104] 0.269 0.298 0.195 0.161
SkipGram [88] 0.271 0.286 0.194 0.173
Semantic DNN [97] 0.120 0.010 0.018 0.018
VQE (RNN) 0.235 0.377 0.238 0.167
VQE (MaxMLP) 0.390 0.524 0.374 0.289

Although the proposed method shows promising results. We admit that it is still sig-

nificantly worse than traditional text-to-text search over the photos or videos with rich

user-generated metadata. We believe the problem is novel, challenging, and needs further

research [58]. We found the lack of common sense often results in inaccurate mappings

in the VQE (MaxMLP) model. For example, the user query “bus” is mapped to “tram-

line” by the VQE model even though there exists a “bus” concept in the vocabulary.

This problem may be addressed by either incorporating prior knowledge in training or

by increasing the size of the training data. Besides, the worse performance of Semantic

DNN model might stem from the less appropriate loss function. See the next subsection

for more discussions.

The proposed VQE (RNN) model yields better CR@1 and CR@3 but worse mAP than

the baseline SkipGram method, suggesting that the RNN model can find relevant but

less discriminative concepts. We found two reasons explaining the worse performance

of VQE (RNN) when compared to the VQE (MaxMLP) model: first the worse results

suggest the word sequence in personal queries is less informative. It is acknowledged

that the sequence of text query words plays a less important role in the bag-of-word or

unigram language retrieval model [107]. Our experimental results suggest this may still

hold in personal media search. Second, the RNN model converges much slower than the

MaxMLP model. When we stopped the training for the RNN model after 24 hours, its

performance is still worse than that of the MaxMLP model.

5.3.3.2 Model Parameters

In this section, we study the impact of parameters in the proposed VQE models. First we

empirically compare neural network structures. Table 5.3 lists different neural network

structures of VQE models, where embedding layers and polling layers are omitted to

save space. The detailed model for MaxMLP and RNN model can be found in Eq. (5.3),

Eq. (5.4), and Fig. 5.1. For example, the third row MaxMLP4 represents a 4-layer

network containing an embedding layer, a pooling layer, a fully connected layer fc1,

transforming a 300d max-polled vector to a hidden layer of 300d by the sigmoid function,
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Figure 5.2: Top search results of Flickr personal photos. The left ranked list indicates
our results and the right list is from the SkipGram (word2vec). The user query is listed

in the subtitle, and the photos in the green border are the user clicked photos.

and an output layer fc2, transforming the 300d hidden vector to an output vector of

1720d by the rectified linear unit. The fifth row MeanMLP4 represents the same network

as MaxMLP5 except that it employs the mean instead of the max polling layer .

We observed two trends in Table 5.3. First the performance increases as models get

deeper. This observation suggests the visual query embedding for personal media can

be highly nonlinear, and deeper models may better capture the underlying relation

between user query words and relevant concepts. For example, the 5-layer MaxMLP5

achieves better mAP than the 4-layer MaxMLP4. However, in fact, MaxMLP5 has fewer

parameters than MaxMLP4. Second, we found the max polling in the MaxMLP model

leads to not only faster convergence but also more accurate search results. For example,

MaxMLP5 outperforms MeanMLP5 suggesting the efficacy of the max-polling layer.

The loss function is an important component in neural network training. The softmax

cross-entropy loss discussed in Eq. (5.2) represents a type of loss that jointly models

concepts as a sparse vector due to the softmax transformation. Alternatively, we can

use the cross-entropy loss, which ignores the sparse constraint, or the cosine loss, which

measures the distance between queries and concepts seen as dense vectors. Our goal is

to find which type of loss is suitable for VQE learning. Table ?? lists the mAP perfor-

mance. As we see, the cosine loss yields the worst results suggesting treating concepts
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Table 5.3: Comparison of network structures.

Model Network Structure mAP CR@3

MaxMLP3 fc1: relu(300 → 1720) 0.225 0.314

MaxMLP4
fc1: sigmoid(300 → 300)

0.367 0.301
fc2: relu(300 → 1720)

MaxMLP5
fc1: sigmoid(300 →200)

0.390 0.374fc2: sigmoid(200 →200)
fc3: relu(200 →1720)

MeanMLP5 Same as above. 0.249 0.202

RNN3
lstm1 lstm:(300 → 200)

0.124 0.025
fc1: relu(200 → 1720)

RNN6

lstm1 lstm:(300 → 200)

0.235 0.238
lstm2 lstm:(200 → 200)
fc1: sigmoid(200 → 200)
fc2: sigmoid(200 → 200)
fc3: relu(200 → 1720)

as dense vectors in the high dimensional space is less appropriate in our problem. This

may explain the worse performance of Semantic DNN in Table 5.2. Besides, the compar-

ison between the cross-entropy and the softmax cross-entropy suggests jointly modeling

concepts as a sparse representation is helpful.

Table 5.4: mAP for different loss functions.

Loss Function MLP RNN

Softmax cross-entropy 0.390 0.235
Cross-entropy 0.187 0.145
Cosine distance 0.124 0.130

5.4 Hybrid Search

In this section, we propose a model that learns a joint model of the given semantic

features and video examples. See an example of hybrid query in Example 1.1.

5.4.1 Model

Suppose we represent a video by semantic concepts, we can derive the model using the

text description without any example videos, or using a few video examples. In other

words, the query has two different and independent dual-models.

Because of the dual-models, sometimes, the performance drops even when more training

examples are available. See the experiments in Section 5.4.2. Intuitively, there should

only be a consistent model for a query. To this end, we propose a method to learn a

joint model using both semantic features and video examples.

The key is to find a unified joint representation for the dual-models. Our method is

inspired by the Alternating Direction Method of Multipliers (ADMM). Finding a joint
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model for hybrid query is comparable to learning a parallel machine learning model

across a number of machines, where the models independently learned at multiple ma-

chines, are aggregated by ADMM into a converged model.

Formally, suppose X ∈ Rn×m is the feature matrix and y ∈ Rn is the label vector. Let

w0 denote a linear model, which is a weight vector over the concepts, derived from the

text query (zero examples), and w1 denote the model derived from a few positive video

examples. Let L define the loss function. Theoretically, suppose we have an infinite

amount of perfect data, the objective function is:

minimize L(X,y;w1,w0)

subject to w0 = w1

(5.6)

After introducing an augmented Lagrangian multiplier λ, we have:

minimize Lp(X,y;w0,w1, λ)

= L(X,y;w0,w1) + λT (w1 −w0) + (p/2)‖w1 −w0‖2
(5.7)

We optimize Lp using the ADMM:

w
(k+1)
1 = argmin

w
(k)
1

Lp(X,y;w
(k)
0 ,w

(k)
1 , λ(k))

w
(k+1)
0 = argmin

w
(k)
0

Lp(X,y;w
(k)
0 ,w

(k+1)
1 , λ(k))

λ(k+1) = λ(k) + (p/2 + 1)(w
(k+1)
1 −w

(k+1)
0 )

(5.8)

In this chapter, to simplify the problem, we assume that w0 is a constant vector given

by the user, i.e. w
(k)
0 = w

(k+1)
0 = w

(0)
0 . Future work might need to fine-tune w

(k)
0 .

According to [108], Eq. (5.8) is bound to converge. With an infinite amount of perfect

data, the optimal solution can be obtained at the convergence. In practice, due to

the limited and imperfect data, the optimal solution might be obtained when Eq. (5.8)

almost converges. When Eq. (5.8) almost converges, we have λ(k) = λ(k+1) ≃ 0:

w
(k+1)
1 = argmin

w
(k)
1

Lp(X,y;w
(0)
0 ,w

(k)
1 , λ(k+1))

≃ argmin
w1

L(X,y;w
(0)
0 ,w

(k)
1 ) + p‖w1 −w0‖2

(5.9)
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In other words, Eq. (5.9) is equivalent to a version of Eq. (5.6) with soft constraints. The

hard constraints in Eq. (5.6) is converted to soft constraints by introducing a Lagrangian

multiplier p, i.e.:

minimizew1L(X,y;w1,w0) + p‖w1 −w0‖22 (5.10)

As a result, we can calculate the final converged model w
(k+1)
1 by solving Eq. (5.10). If

we use a simple linear-transformation model, we can find the underlying probabilistic

model for Eq. (5.10) below. With an infinite amount of perfect data, we have:

minimize f(x) = 1/2‖Xw1 − y‖22
subject to w0 −w1 = 0

(5.11)

However, due to the inaccuracy and incompleteness of the input information, we have

minimize f(x) = 1/2‖Xw1 − y‖22 + p‖w0 −w1‖22

When p is large, the model relies more on the given prior model w0, and verse versa.

The underlying distribution is obvious. Assume y = Xw1 + ǫ, and ǫ ∼ N (0, 2I−1) we

have:

P (y|w1) ∝ exp{−1

2
(Xw1 − y)T 2I(Xw1 − y)}

= exp{−(Xw1 − y)2}
(5.12)

Assume w1 follows the Gaussian distribution N (w0,
1√
2p
):

P (w1) ∝ exp{−p‖w1 −w0‖22} (5.13)

p represents the inverse of the variance to the known Gaussian mean. Our goal is to

maximum a posterior:

max
w1

log P (w1|y) ∝ logP (y|w1) + log P (w1)

∝ max
w1

log exp{−p‖w1 −w0‖22}+ log exp{−(Xw1 − y)2}

= min
w1

(Xw1 − y)2 + p‖w1 −w0‖22

(5.14)
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As we see, solving Eq. (5.10) is equivalent to maximize a posterior distribution with a

conjugated prior distribution.

5.4.2 Experimental Results

Dataset and evaluation: The experiments are conducted on TRECVID benchmark

called Multimedia Event Detection (MED): MED14Test [5]. The performance is evaluat-

ed by several metrics for a better understanding, which include: P@20, Mean Reciprocal

Rank (MRR), mean Average Precision (mAP), and mAP@20, where the mAP is the

official metric used by NIST. It includes 20 events over 25,000 test videos. The official

NIST’s test split is used.

Features and queries: Videos are indexed by semantic features including semantic

visual concepts, ASR, and OCR. Three types of semantic features (IACC, YFCC and

Sports) described in Section 3.6.1 are used in the experiments. See the details of con-

cept features in Table 3.1. The user query is the event-kit description and 1-10 video

examples. The manual query in Chapter 4 is used to obtain the semantic concepts in

our experiments.

Baseline Methods: We compare our methods with following baseline methods: 0Ex

represents the baseline model using zero examples, as discussed in Chapter 4. nEx

represents the best supervised model in [18] trained on n video examples. For example,

1Ex represents the supervised model trained on one example. Fusion represents the late

fusion of the outputs of 0Ex and nEx. CCA follows the idea in [99], where it first projects

the outputs of 0Ex and nEx into two latent spaces with the maximum correlation by

Canonical Correlation Analysis (CCA) [109] and then it fuses the decorrelated outputs.

Table 5.5 lists the performance of basic individual model using from 0 to 10 video ex-

amples. As we see, there is a significant performance drop from 0Ex and 1Ex, i.e. the

performance significantly decreases when more examples are available. This counter-

intuitive observation is because of the disparity of different dual-models learned by se-

mantic features and video examples, in which 0Ex is derived by the method in Chapter 4

whereas 1Ex is trained using only a single example.

Table 5.5: Performance of basic individual model of 0Ex and nEx.

mAP P@20 MRR mAP@20

0Ex 0.1278 0.1600 0.4130 0.1099
1Ex 0.0372 0.0675 0.2957 0.0312
2Ex 0.0512 0.0800 0.2753 0.0393
4Ex 0.0856 0.1175 0.3833 0.0628
8Ex 0.1140 0.1600 0.5467 0.0926
10Ex 0.1341 0.1775 0.6139 0.1141
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Table 5.6 compares the performance of the baseline and our method using 1 to 10

examples. As we see, our method outperforms all baseline methods across almost all

metrics. Especially, when few (1-4) examples are available, our method significantly

boosts the mAP. P@20 and MRR. The baseline Fusion method yields reasonable results

when there are enough (10+) examples. Figure 5.3 illustrates the mAP in Table 5.6.

Note our method is the only one that experiences a continuous growth from 0Ex to

10Ex.

Table 5.6: Comparison of the baseline and our method.

Methods mAP P@20 MRR mAP@20

0Ex 0.1278 0.1600 0.4130 0.1099

1 Examples
1Ex 0.0372 0.0675 0.2957 0.0312
1Ex+0Ex Fusion 0.0948 0.1325 0.4341 0.0761
1Ex+0Ex CCA 0.0816 0.1100 0.3668 0.0641
1Ex+0Ex Ours 0.1297 0.1700 0.5169 0.1122

2 Examples
2Ex 0.0512 0.0800 0.2753 0.0393
2Ex+0Ex Fusion 0.1109 0.1350 0.4076 0.0865
2Ex+0Ex CCA 0.1350 0.1600 0.4977 0.1110
2Ex+0Ex Ours 0.1363 0.1608 0.4794 0.1131

4 Examples
4Ex 0.0856 0.1175 0.3833 0.0628
4Ex+0Ex Fusion 0.1457 0.1650 0.5667 0.1132
4Ex+0Ex CCA 0.1475 0.1800 0.5084 0.1232
4Ex+0Ex Ours 0.1535 0.1900 0.5784 0.1267

8 Examples
8Ex 0.1140 0.1600 0.5467 0.0926
8Ex+0Ex Fusion 0.1704 0.2150 0.5690 0.1481
8Ex+0Ex CCA 0.1555 0.1950 0.5694 0.1329
Ours 0.1724 0.2220 0.6280 0.1513

10 Examples
10Ex 0.1341 0.1775 0.6139 0.1141
10Ex+0Ex Fusion 0.1785 0.2300 0.6411 0.1588
10Ex+0Ex CCA 0.1595 0.1920 0.5841 0.1366
10Ex+0Ex Ours 0.1814 0.2275 0.6415 0.1594

One benefit of training models on semantic features is interpretability. Because the

models are trained on semantic features, we can understand why one model is better than

the other. To this end, we inspected three representative events in which our method

enjoys the highest mAP gain. We found that the major reason for the improvement is

that our method can often find more semantically relevant concepts than the baseline

method. Table 5.7 list the highly weighted concepts in the model, where the second and

the third column shows the concepts selected by the fusion model and by our model,

respectively. As we see, the concepts selected by our model seems more relevant. For

example, our model selects the concept “graduation”, “speech”, “talking” and “cheering”
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for Town Hall Meeting, as opposed to “space”, “concert” and “disgust” selected by the

fusion model. Even though the learned concepts largely overlap with the concepts in the

user semantic query, our method learns appropriate weights to each relevant concepts.

In addition, our model is sparser than the nEx model. For a even sparser model, we can

replace the l2 norm with l1 norm in Eq. (5.10).
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Figure 5.3: Comparison of the baseline and our method.

Table 5.7: Highly weighted concepts selected by the baseline and our model. The
concepts are ranked w.r.t their weights. The underlined concepts indicate the concept

also appearing in the user semantic query.

ID Event Name
Late Fusion Ours

mAP concepts mAP concepts
E028 Town hall meeting 0.121 space, concert, disgust,

male reporter, reporter
0.228 graduation, speech,

talking, cheering, reporter,
boredom

E035
Horse riding com-
petition

0.283 equestrianism, endurance
riding, kalaripayattu, for-
est

0.338 show jumping, horse,
barrel racing, steeplechase,
dressage

E039 Tailgating 0.074 bill, armored vehicle, trip 0.156 tent, truck, van, team,
stadium

5.5 Summary

In this chapter, we studied two problems: query embedding and hybrid search. As

for query embedding, we proposed novel models for learning visual query embedding

between user queries and concepts, and achieved high gains in search performance over

existing baselines methods. As for hybrid search, we proposed a method that jointly

models trained on semantic using a few examples. Specifically, we employ alternating

direction method of multipliers (ADMM) to learn a joint dual-model. The proposed

method outperforms existing baseline methods, especially when the training samples

are insufficient. Besides, the new model also demonstrates some interpretability over

the model trained only on low-level features.



Chapter 6

Multimodal Reranking

6.1 Introduction

Reranking is a technique to improve the quality of search results [110]. The intuition

is that the initial ranked result brought by the query has noise which can be refined by

the multimodal information residing in the retrieved documents, images or videos. For

example, in image search, the reranking is performed based on the results of text-to-

text search, in which the initial results are retrieved by matching images’ surrounding

texts [111]. Studies show that reranking can usually yield improvement of the initial

retrieved result [112, 113]. Reranking by multimodal content-based search is still an

understudied problem. It is more challenging than reranking by text-to-text search in

image search, since the content features not only come from multiple modalities but also

are much more noisy. In this chapter, we will introduce two content-based reranking

methods, and discuss how they can be united in the same algorithm.

In a generic reranking method, we would first select a few videos, and assign assumed

labels to them. Since no ground-truth label is used, the assumed labels are called “pseu-

do labels”. The samples with pseudo labels are used to build a reranking model. The

statistics collected from the model is used to improve the initial ranked list. Most exist-

ing reranking or Pseudo-Relevance Feedback (PRF) methods are designed to construct

pseudo labels from a single ranked list, e.g. from the text search [25, 114, 115] or the

visual image search [116, 117]. Due to the challenge of multimedia retrieval, features

from multiple modalities are usually used to achieve better performance [21, 65]. How-

ever, performing multimodal reranking is an important yet unaddressed problem. The

key challenge is to jointly derive a pseudo label set from multiple ranked lists. Although

reranking may not be a novel idea, reranking by multimodal content-based search is

clearly understudied and worthy of exploration, as existing studies mainly concentrate

on text-to-text search.

63
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Figure 6.1: Comparison of binary, predefined and learned weights on the query “Birth-
day Party”. All videos are used as positive in reranking. Learned weights are learned

by the proposed method.

Besides, an important step in this process is to assign weights to the samples with

pseudo labels. The main strategy in current reranking methods is to assign binary (or

predefined) weights to videos at different rank positions. These weighting schemes are

simple to implement, yet may lead to suboptimal solutions. For example, the reranking

methods in [56, 117, 118] assume that top-ranked videos are of equal importance (binary

weights). The fact is that, however, videos ranked higher are generally more accurate,

and thus more “important”, than those ranked lower. The predefined weights [115]

may be able to distinguish importance but they are derived independently of reranking

models, and thus may not faithfully reflect the latent importance. For example, Fig. 6.1

illustrates a ranked list of videos about “birthday party”, where all videos will be used

as positive in reranking; the top two are true positive; the third video is a negative but

closely related video on wedding shower due to the common concepts such as “gift”,

“cake” and “cheering”; the fourth video is completely unrelated. As illustrated, neither

binary nor predefined weights reflects the latent importance residing in the videos. An-

other important drawback of binary or predefined weighting is that since the weights

are designed based on empirical experience, it is unclear where does, or even whether,

the process would converge.

An ideal reranking method would consider the multimodal features and assign appropri-

ate weights in a theoretically sound manner. To this end, we propose two content-based

reranking models. The first model is called MultiModal Pseudo Relevance Feedback

(MMPRF) which conducts the feedback jointly on multiple modalities leading to a con-

sistent joint reranking model. MMPRF utilizes the ranked lists of all modalities and

combines them in a principled approach. MMPRF is a first attempt that leverages both

high-level and low-level features for semantic search in a CBVSR system. As we know,

it is impossible to use low-level features for semantic search, it is impossible to map the
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text-like query to the low-level feature without any training data. MMPRF circumvents

the difficulty by transferring this problem into a supervised problem on pseudo labels.

The second model is called Self-Paced Reranking (SPaR) which assigns weights adap-

tively in a self-paced fashion. The method is established on the self-paced learning

theory [119, 120]. The theory is inspired by the learning process of humans and ani-

mals, where samples are not presented randomly but organized in a meaningful order

which illustrates from easy to gradually more complex examples [119]. In the context of

reranking problems, easy samples are the top-ranked videos that have smaller loss. As

opposed to utilizing all samples to learn a model simultaneously, the proposed model is

learned gradually from easy to more complex samples. As the name “self-paced” sug-

gests, in every iteration, SPaR examines the “easiness” of each sample based on what

it has already learned, and adaptively determines their weights to be used in the next

iteration.

SPaR represents a general multimodal reranking method. MMPRF is a special case

of the proposed method that only uses the binary weighting. Compared with existing

reranking methods, SPaR has the following three benefits. First, it is established on a

solid theory, and of useful properties that can be theoretically verified. For example,

SPaR has a concise mathematical objective to optimize, and its convergence property

can be theoretically proved. Second, SPaR represents a general framework for reranking

on multimodal data, which includes other methods [56, 118, 121], such as MMPRF,

as special cases. The connection is useful because once an existing method is modeled

as a special case of SPaR, the optimization methods discussed in this chapter become

immediately applicable to analyze, and even solve the problem. Third, SPaR offers

a compelling insight into reranking by multimodal content-based search [53, 56, 122],

where the initial ranked lists are retrieved by content-based search.

The experimental results show promising results on several challenging datasets. As

for semantic search, on the MED dataset, MMPRF and SPaR significantly improve

the state-of-the-art baseline reranking methods with statistically significant differences;

SPaR also outperforms the state-of-the-art reranking methods on an image reranking

dataset called Web Query. For hybrid search, SPaR yields statistically significant im-

provements over the initial search results.

6.2 Related Work

The pseudo labels are usually obtained from a single modality in the literature. On

the text modality, reranking, usually known as PRF, has been extensively studied. In

the vector space model, the Rocchio algorithm [25] is broadly used, where the original



Multimodal Reranking 66

query vector is modified by the vectors of relevant and irrelevant documents. Since a

document’s true relevance judgment is unavailable, the top-ranked and bottom-ranked

documents in the retrieved list are used to approximate the relevant and irrelevant

documents. In the language model, PRF is usually performed with a Relevance Model

(RM) [114, 123]. The idea is to estimate the probability of a word in the relevance model,

and feed the probability back to smooth the query likelihood in the language model.

Because the relevance model is unknown, RM assumes the top-ranked documents imply

the distribution of the unknown relevance model. Several extensions have been proposed

to improve RM. For example, instead of using the top-ranked documents, Lee et al.

proposed a cluster-based resampling method to select better feedback documents [124].

Cao et al. explored a supervised approach to select good expansion terms based on a

pre-trained classifier [125].

Reranking has also been shown to be effective in image and video retrieval. Yan et

al. proposed a classification-based PRF [116–118], where the query image and its most

dissimilar images are used as pseudo samples. The idea is to train an imbalanced SVM

classifier, biased towards negative pseudo samples, as true negatives are usually much

easier to find. In [115], the pseudo negatives, sampled from the ranked list of a text query,

are first grouped into several clusters and the clusters’ conditional probabilities are fed

back to alter the initial ranked list. Similar to [124], the role of clustering is to reduce the

noise in the initial text ranked list. In [121, 126], the authors incorporated pseudo labels

into the learning to rank paradigm. The idea is to learn a ranking function by optimizing

the pair-wise or list-wise orders between pseudo positive and negative samples. In [127],

the relevance judgments over the top-ranked videos are provided by users. Then an SVM

is trained using visual features represented in the Fisher vector. However, the manual

inspection of the search results is prohibited in many problems.

Existing reranking methods are mainly performed based on text-to-text search results,

i.e. the initial ranked list is retrieved by text/keyword matching [126, 128]. In terms of

the types of the reranking model, these methods can be categorized into Classification,

Clustering, Graph and LETOR (LEarning-TO-Rank) based reranking. In Classification-

based reranking [118], a classifier is trained upon the pseudo label set, and then tested

on retrieved videos to obtain a reranked list. Similarly, in LETOR-based reranking [129]

instead of a binary classifier, a ranking function is learned by the pair-wise [121] or list-

wise [112, 126] RankSVM. In Clustering-based reranking [115], the retrieved videos are

aggregated into clusters, and the clusters’ conditional probabilities of the pseudo samples

are used to obtain a reranked list. The role of clustering is to reduce the noise in the

initial reranking. In Graph-based reranking [130, 131], the graph of retrieved samples

needs to be first constructed, on which the initial ranking scores are propagated by

methods such as the random walk [21], under the assumption that visually similar videos
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usually have similar ranks. Generally, reranking methods, including the above methods,

are unsupervised methods. There also exist some studies on supervised reranking [111,

128]. Although reranking may not be a novel idea, reranking by multimodal content-

based search is clearly understudied and worthy of exploration. Only a few methods

have been proposed to conduct reranking based on content-based search results without

examples (or training data).

6.3 MMPRF

The intuition behind MMPRF is that the relevant videos can be modeled by a joint

discriminative model trained on all modalities. Suppose dj is a video in the collection,

the probability of it being relevant can be calculated from the posterior P (yj|dj ; Θ),

where yj is the (pseudo) label for jth video, and Θ denotes the parameter in the joint

model. In PRF methods on unimodal data, the partial model is trained on a single

modality [116, 117]. We model the ranked list of each modality by its partial model,

and our goal is to recover a joint model from these partial models. Formally, we use

logistic regression as the discriminative model. For ith modality, the probability of a

video being relevant can be calculated from

P (yj|dj ; Θi) =
1

1 + exp{−θTi wij}
, (6.1)

wherewij represents the video dj’s feature vector from the ith modality. Θi = θi denotes

the model parameter vector for the ith modality. For a clearer notation, the intercept

parameter b is absorbed into the vector θi. According to [116], the parameters Θi can

be independently estimated using the top ranked k+ samples and the bottom ranked

k− samples in the ith modality, where k+ and k− control the number of pseudo positive

and pseudo negative samples, respectively.

However, the models estimated independently on each modality can be inconsistent.

For example, a video may be used as a pseudo positive in one modality but as a pseudo

negative in another modality. An effective approach to find the consistent pseudo label

set is by Maximum Likelihood Estimation (MLE) with respect to the label set likelihood

over all modalities. Formally, let Ω denotes the union of feedback videos of all modalities.

Our objective is to find a pseudo label set that maximizes:

argmax
y

m∑

i=1

lnL(y; Ω,Θi)

s.t. ||y||1 ≤ k+; y ∈ {0, 1}|Ω|

(6.2)
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where |Ω| represents the total number of unique pseudo samples, and y = [y1, ...y|Ω|]
T

represents their pseudo labels. L(y; Ω,Θi) is the likelihood of the label set y in the ith

modality. The sum of likelihood in Eq. (6.2) indicates that each label in the pseudo

label set needs to be verified by all modalities and the desired label set satisfies the most

modalities. The selection process is analogous to voting, where every modality votes

using the likelihood and the better the labels fit a modality, the higher the likelihood

is, and vice versa. The set with the highest votes is selected as the pseudo label set.

Because each pseudo label is validated by all modalities, the false positives in a single

modality may be corrected during the voting. This property is unavailable when only a

single modality is considered.

To solve Eq. (6.2), we rewrite the logarithmic likelihood using Eq. (6.1)

lnL(y; Ω,Θi) = ln
∏

dj∈Ω
P (yj|dj ,Θi)

yj (1− P (yj|dj ,Θi))
(1−yj )

=

|Ω|∑

j=1

yjθ
T
i wij − θTi wij − ln(1 + exp{−θTi wij})

(6.3)

As mentioned above, θi can be independently estimated using the top-ranked and

bottom-ranked samples in the ith modality. wij is the known feature vector. Plug-

ging Eq. (6.3) back to Eq. (6.2) and dropping the constants, the objective function in

Eq. (6.3) becomes

argmax
y

m∑

i=1

lnL(y; Ω,Θi) = argmax
y

m∑

i=1

|Ω|∑

j=1

yjθ
T
i wij.

s.t. ||y||1 ≤ k+; y ∈ {0, 1}|Ω|

(6.4)

As can be seen, the problem of finding the pseudo label set with the maximum likelihood

has been transferred to an integer programming problem, where the objective function

is the sum of logarithmic likelihood across all modalities and the pseudo labels are

restricted to be binary numbers.

The pseudo negative samples can be randomly sampled from the bottom-ranked sam-

ples, as suggested in [115, 116]. In the worst case, suppose n pseudo negative samples

are randomly and independently sampled from a collection of samples, and the prob-

ability selecting a false negative sample is p. Let the random variable X represents

the experiment of selecting pseudo negative samples, then the random variable follows

the binomial distribution, i.e. X ∼ B(n, p). It is easy to calculate the probability of
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selecting at least 99% true negatives by

F (X ≤ 0.01n) =

⌊0.01n⌋∑

i=0

(
n

i

)
pi(1− p)n−i, (6.5)

where F is the binomial cumulative distribution function. p is usually very small as the

number of negative videos is usually far more than that of positive videos. For example,

on the MED dataset, p = 0.003, and if n = 100, the probability of randomly selecting at

least 99% true negatives is 0.963. This result suggests that randomly sampled pseudo

negatives seems to be sufficiently accurate on the MED dataset.

If the objective function in Eq. (6.2) is calculated from:

ln L̂(y; Ω,Θi) = E[y|Ω,Θi] =

|Ω|∑

j=1

yjP (yj|dj ,Θi), (6.6)

then the optimization problem in Eq. (6.2) can be solved by the late fusion [132], i.e. the

scores in different ranked lists are averaged (or summed) and then the top k+ videos are

selected as pseudo positives. It is easy to verify this yields optimal y for Eq. (6.2). In

fact, late fusion is a common method to combine information within multiple modalities.

Eq. (6.2) provides a theoretical justification for the simple method i.e. rather than

maximizing the sum of likelihood, one can alternatively maximize the sum of expected

values. Note the problem in Eq. (6.2) is tailored to select a small number of accurate

labels as opposed to producing a good ranked list in general. Empirically, we observed

selecting pseudo positives by the likelihood is better than the expected value when

the multiple ranked lists are generated by different retrieval algorithms, e.g. BM25,

TFIDF, or Language Model. This is because the distributions of those ranked list (even

after normalization) can be quite different. A pain late fusion may produce a biased

estimation. In MLE model, estimating Θ in Eq. 6.1 first can put the parameter back

into the same scale.

6.4 SPaR

Self-paced Reranking is a general reranking framework for multimedia search. Given a

dataset of n samples with features extracted frommmodalities, let xij denote the feature

of the ith sample from the jth modalities, e.g., feature vectors extracted from different

channels of a video. yi ∈ {−1, 1} represents the pseudo label for the ith sample whose

values are assumed as the true labels are unknown to reranking methods. The kernel

SVM is used to illustrate the algorithm due to its robustness and decent performance

in reranking [117]. We will discuss how to generalize it to other models in Section 6.4.3.
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Let Θj = {wj , bj} denote the classifier parameters for the jth modality, which includes

a coefficient vector wj and a bias term bj . Let v = [v1, ..., vn]
T denote the weighting

parameters for all samples. Inspired by the self-paced learning [120], suppose n is the

total number of samples; m is the total number of modalities; the objective function E

can be formulated as:

min
Θ1,...,Θm,y,v

E(Θ1, ...,Θm,v,y;C, k) =
m∑

j=1

min
Θj ,y,v

E(Θj,v,y;C, k)

= min
y,v,w1,...,wm,
b1,...,bm,{ℓij}

m∑

j=1

1

2
‖wj‖22 + C

n∑

i=1

m∑

j=1

viℓij +mf(v; k)

s.t. ∀i,∀j, yi(wT
j φ(xij) + bj) ≥ 1− ℓij, ℓij ≥ 0

y ∈ {−1,+1}n,v ∈ [0, 1]n,

(6.7)

where ℓij is the hinge loss, calculated from:

ℓij = max{0, 1− yi · (wT
j φ(xij) + bj)}. (6.8)

φ(·) is a feature mapping function to obtain non-linear decision boundaries. C (C > 0)

is the standard regularization parameter trading off the hinge loss and the margin.
∑m

j=1 viℓij represents the weighted loss for the ith sample. The weight vi reflects the

sample’s importance, and when vi = 0, the loss incurred by the ith sample is always

zero, i.e. it will not be selected in training.

f(v; k) is a regularization term that specifies how the samples are selected and how their

weights are calculated. It is called the self-paced function as it determines the specific

learning scheme. There is an m in front of f(v; k) as
∑m

j=1 f(v; k) = mf(v; k). f(v; k)

can be defined in various forms which will be discussed in Section 6.4.2. The objective

is subjected to two sets of constraints: the first set of constraints in Eq. (6.7) is the

soft margin constraint inherited from the conventional SVM. The second constraints in

Eq. (6.7) define the domains of pseudo labels and their weights, respectively.

Eq. (6.7) turns out to be difficult to optimize directly due to its non-convexity and

complicated constraints. However, it can be effectively optimized by Cyclic Coordinate

Method (CCM) [133]. CCM is an iterative method for non-convex optimization, in which

the variables are divided into a set of disjoint blocks, in this case two blocks, i.e. classifier

parameters Θ1, ...,Θm, and pseudo labels y and weights v. In each iteration, a block of

variables can be optimized while keeping the other block fixed. Suppose EΘ represents

the objective with the fixed block Θ1, ...,Θm, and Ey,v represents the objective with the

fixed block y and v. Eq. (6.7) can be solved by the algorithm in Fig. 6.2. In Step 2,

the algorithms initializes the starting values for the pseudo labels and weights. Then it

optimizes Eq. (6.7) iteratively via Step 4 and 5, until convergence is reached.
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Figure 6.2: Reranking in Optimiza-
tion Perspective.

Figure 6.3: Reranking in Conven-
tional Perspective.

Fig. 6.2 provides a theoretical justification for reranking from the optimization perspec-

tive. Fig. 6.3 lists general steps for reranking that have one-to-one correspondence with

the steps in Fig. 6.2. The two algorithms present the same methodology from two per-

spectives. For example, optimizing Θ1, ...,Θm can be interpreted as training a reranking

model. In the first few iterations, Fig. 6.2 gradually increases the 1/k to control the

learning pace, which, correspondingly, translates to adding more pseudo positives [56]

in training the reranking model.

Fig. 6.2 and Fig. 6.3 offer complementary insights. Fig. 6.2 theoretically justifies Fig. 6.3

on the convergence and the decrease of objective. On the other hand, the empirical

experience from studying Fig. 6.3 offers valuable advices on how to set starting values

from the initial ranked lists, which is less concerned in the optimization perspective.

According to Fig. 6.3, to use SPaR one needs to alternate between two steps: training

reranking models and determining the pseudo samples and their weights for the next

iteration. We will discuss how to optimize Ey,v (training reranking models on pseudo

samples) in Section 6.4.1, and how to optimize EΘ (selecting pseudo samples and their

weights based on the current reranking model) in Section 6.4.2.

6.4.1 Learning with Fixed Pseudo Labels and Weights

With the fixed y,v, Eq. (6.7) represents the sum of weighted hinge loss across all modal-

ities, i.e,

min
Θ1,...,Θm

Ey,v(Θ1, ...,Θm;C)

= min
w1,...,wm,b1,...,bm,{ℓij}

m∑

j=1

1

2
‖wj‖22 + C

n∑

i=1

m∑

j=1

viℓij

s.t. ∀i,∀j, yi(wT
j φ(xij) + bj) ≥ 1− ℓij, ℓij ≥ 0.

(6.9)

As mentioned, viℓij is the discounted hinge loss of the ith sample from the jth modality.

Eq. (6.9) represents a non-conventional SVM as each sample is associated with a weight

reflecting its importance. Eq. (6.9) is non-trivial to optimize directly due to its complex
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constraints. As a result, we introduce a method that finds the optimum solution for

Eq. (6.9). The objective of Eq. (6.9) can be decoupled, and each modality can be

optimized independently. Now consider the jth modality (j = 1, ...,m). We introduce

Lagrange multipliers λ and α, and define the Lagrangian of the problem as:

Λ(wj , bj , α, λ) =
1

2
‖wj‖22 + C

n∑

i=1

viℓij

+

n∑

i=1

αij(1− ℓij − yiw
T
j φ(xij)− yibj) +

n∑

i=1

−λijℓij

s.t. ∀i, αij ≥ 0, λij ≥ 0.

(6.10)

Since only the jth modality is considered, j is a fixed constant. The Slater’s condition

trivially holds for the Lagrangian, and thus the duality gap vanishes at the optimal

solution. According to the KKT conditions [134], the following conditions must hold for

its optimal solution:

∇Λ
wj

= wj −
n∑

i=1

αijyiφ(xij) = 0,
∇Λ
bj

=
n∑

i=1

αijyi = 0,

∀i, ∂Λ
∂ℓij

= Cvi − αij − λij = 0.

(6.11)

According to Eq. (6.11), ∀i, λij = Cvi−αij, and since Lagrange multipliers are nonneg-

ative, we have 0 ≤ αij ≤ Cvi. Substitute these inequations and Eq. (6.11) back into

Eq. (6.10), the problem’s dual form can be obtained by:

max
α

n∑

i=1

αij −
1

2

n∑

i=1

n∑

k=1

αijαkjyiykκ(xij ,xkj),

s.t.
n∑

i=1

yiαij = 0, 0 ≤ αij ≤ Cvi,

(6.12)

where κ(xij ,xkj) = φ(xij)
Tφ(xkj) is the kernel function. Compared with the dual form

of a conventional SVM, Eq. (6.12) imposes a sample-specific upper-bound on the support

vector coefficient. A sample’s upper-bound is proportional to its weight, and therefore

a sample with a smaller weight vi is less influential as its support vector coefficient is

bounded by a small value of Cvi. Eq. (6.12) degenerates to the dual form of conven-

tional SVMs when v = 1. According to the Slater’s condition, strong duality holds,



Multimodal Reranking 73

and therefore Eq. (6.10) and Eq. (6.12) are equivalent problems. Since Eq. (6.12) is a

quadratic programming problem in its dual form, there exists a plethora of algorithms

to solve it [134].

6.4.2 Learning with Fixed Classification Parameters

With the fixed classification parameters Θ1, ...,Θm, Eq. (6.7) becomes:

min
y,v

EΘ(y,v; k) = min
y,v

C
n∑

i=1

m∑

j=1

viℓij +mf(v; k)

s.t. y ∈ {−1,+1}n,v ∈ [0, 1]n.

(6.13)

The goal of Eq. (6.13) is to learn not only the pseudo labels y but also their weights v.

Note, as discussed in Section 6.3, the pseudo negative samples can be randomly sampled.

In this section, the learning process focuses on pseudo positive samples. Learning y is

easier as its optimal values are independent of v. We first optimize each pseudo label

by:

y∗i = argmin
yi={+1,−1}

EΘ(y,v) = argmin
yi={+1,−1}

C

m∑

j=1

ℓij , (6.14)

where y∗i denotes the optimum for the ith pseudo label. Solving Eq. (6.14) is simple as

all labels are independent with each others in the sum, and each label can only take

binary values. Its global optimum can be efficiently obtained by enumerating each yi.

For n samples, we only need to enumerate 2n times. In practice, we may need to tune

the model to ensure there are a number of pseudo positives.

Having found the optimal y, the task switches to optimizing v. Recall f(v; k) is the

self-paced function, and in [120], it is defined as the l1 norm of v ∈ [0, 1]n.

f(v; k) = −1

k
‖v‖1 = −1

k

n∑

i=1

vi. (6.15)

Substituting Eq. (6.15) back into Eq. (6.13), the optimal v∗ = [v∗1 , ..., v
∗
n]

T is then cal-

culated from

v∗i =




1 1

m

∑m
j=1Cℓij <

1
k

0 1
m

∑m
j=1Cℓij ≥ 1

k
.

(6.16)

The underlying intuition of the self-paced learning can be justified by the closed-form

solution in Eq. (6.16). If a sample’s average loss is less than a certain threshold, 1/k in

this case, it will be selected, or otherwise not be selected, as a training example. The
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Figure 6.4: Comparison of different weighting schemes (k = 1.2, k′ = 6.7). Hard
Weighting assigns binary weights. The figure is divided into 3 colored regions, i.e.

“white”, “gray” and “black” in terms of the loss.

parameter k controls the number of samples to be included in training. Physically, 1/k

corresponds to the “age” of the model. When 1/k is small, only easy samples with small

loss will be considered. As 1/k grows, more samples with larger loss will be gradually

appended to train a “mature” reranking model.

As we see in Eq. (6.16), the variable v takes only binary values. This learning scheme

yields a hard weighting as a sample can be either selected (vi = 1) or unselected (vi = 0).

The hard weighting is less appropriate in our problem as it cannot discriminate the

importance of samples, as shown in Fig. 6.4. Correspondingly, the soft weighting, which

assigns real-valued weights, reflects the latent importance of samples in training more

faithfully. The comparison is analogous to the hard/soft assignment in Bag-of-Words

quantization, where an interest point can be assigned either to its closest cluster (hard),

or to a number of clusters in its vicinity (soft). We discuss three of them, namely,

linear, logarithmic and mixture weighting. Note that the proposed functions may not

be optimal as there is no single weighting scheme that can always work the best for all

datasets.

Linear soft weighting: Probably the most common approach is to linearly weight

samples with respect to their loss. This weighting can be realized by the following

self-paced function:

f(v; k) =
1

k
(
1

2
‖v‖22 −

n∑

i=1

vi). (6.17)

Considering vi ∈ [0, 1], the close-formed optimal solution for vi (i = 1, 2, ..., n) can be

written as:

v∗i =




−k( 1

m

∑m
j=1Cℓij) + 1 1

m

∑m
j=1Cℓij <

1
k

0 1
m

∑m
j=1Cℓij ≥ 1

k
.

(6.18)
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Similar as the hard weighting in Eq. (6.16), the weight is 0 for the samples whose average

loss is larger than 1/k; Otherwise, the weight is linear to the loss (see Fig. 6.4).

Logarithmic soft weighting: The linear soft weighting penalizes the weight linearly in

terms of the loss. A more conservative approach is to penalize the weight logarithmically,

which can be achieved by the following function:

f(v; k) =

n∑

i=1

(ζvi −
ζvi

log ζ
), (6.19)

where ζ = (k − 1)/k and k > 1. The closed-form optimal is then given by:

v∗i =





1
log ζ log(

1
m

∑m
j=1Cℓij + ζ) 1

m

∑m
j=1Cℓij <

1
k

0 1
m

∑m
j=1Cℓij ≥ 1

k
.

(6.20)

Mixture weighting: Mixture weighting is a hybrid of the soft and the hard weighting.

One can imagine that the loss range is divided into three colored areas, as illustrated in

Fig. 6.4. If the loss is either too small (“white” area) or too large (“black” area), the

hard weighting is applied. Otherwise, for the loss in the “gray” area, the soft weighting

is applied. Compared with the soft weighting scheme, the mixture weighting tolerates

small errors up to a certain point. To define the start of the “gray” area, an additional

parameter k′ is introduced. Formally,

f(v; k, k′) = −ζ
n∑

i=1

log(vi + ζk), (6.21)

where ζ = 1
k′−k

and k′ > k > 0. The closed-form optimal solution is given by:

v∗i =





1 1
m

∑m
j=1Cℓij ≤ 1

k′

0 1
m

∑m
j=1Cℓij ≥ 1

k

mζ∑m
j=1 Cℓij

− kζ otherwise.

(6.22)

Eq. (6.22) tolerates any loss lower than 1/k′ by assigning the full weight. It penalizes

the weight by the inverse of the loss for samples in the “gray” area which starts from

1/k′ and ends at 1/k (see Fig. 6.4). The mixture weighting has the properties of both

hard and soft weighting schemes. The comparison of these weighting schemes is listed

in the toy example below.

Example 6.1. Suppose we are given six samples from two modalities. The hinge loss

of each sample calculated by Eq. (6.8) is listed in the following table, where Loss1 and

Loss2 column list the losses w.r.t. the first and the second modality, whereas “Avg Loss”
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column lists the average loss. The last four columns present the weights calculated by

Eq. (6.16), Eq. (6.18), Eq. (6.20) and Eq. (6.22) where k = 1.2 and k′ = 6.7.

ID Loss1 Loss2
Avg

Loss
Hard Linear Log Mixture

1 0.08 0.02 0.05 1 0.940 0.853 1.000

2 0.15 0.09 0.12 1 0.856 0.697 1.000

3 0.50 0.50 0.50 1 0.400 0.226 0.146

4 0.96 0.70 0.83 1 0.004 0.002 0.001

5 0.66 1.02 0.84 0 0.000 0.000 0.000

6 1.30 1.10 1.20 0 0.000 0.000 0.000

As we see, Hard produces less reasonable solutions, e.g. the difference between the first

(ID=1) and the fourth sample (ID=4) is 0.78 and they share the same weight 1; on the

contrary, the difference between the fourth and the fifth sample is only 0.01, but suddenly

they have totally different weights. This abrupt change is absent in other weighting

schemes. Log is a more prudent scheme than Linear as it diminishes the weight more

rapidly. Among all weighting schemes, Mixture is the only one that tolerates small

errors.

6.4.3 Convergence and Relation to Other Reranking Models

The proposed SPaR has some useful properties. The following lemma proves that the

optimum solution can be obtained for the proposed self-paced functions.

Lemma 6.1. For the self-paced functions in Section 6.4.2, the proposed method finds

the optimal solution for Eq. (6.13).

The following theorem proves the convergence of algorithm 6.2.

Theorem 6.2. The algorithm in Fig. 6.2 converges to a stationary solution for any

fixed C and k.

A general form of Eq. (6.7) is written as

min
Θ1,...,Θm,y,v

E(Θ1, ...,Θm,v,y; k) =

min
Θ1,...,Θm,y,v

n∑

i=1

m∑

j=1

viLoss(xij; Θj) +mf(v; k)

s.t. Constraints on Θ1, ...,Θm,y ∈ {−1,+1}n,v ∈ [0, 1]n,

(6.23)

where Loss(xij; Θj) is a general function of the loss incurred by the ith sample against

the jth modality, e.g., it is defined as the sum of the hinge loss and the margin in
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Eq. (6.7). The constraints on Θ1, ...,Θm are the constants in the specific reranking

model. Alg. 6.2 is still applicable to solve Eq. (6.23). In theory, Eq. (6.23) can be used

to find both pseudo positive, pseudo negative samples, and their weights. In practice,

we recommend only learning pseudo positive samples and their weights by Eq. (6.23).

Eq. (6.23) represents a general reranking framework, which includes existing reranking

methods as special cases. For example, generally, when Loss takes the negative likeli-

hood of Logistic Regression, and f(v; k) takes Eq. (6.15) (hard weighting scheme), SPaR

corresponds to MMPRF. When Loss is the hinge loss, f(v; k) is Eq. (6.15), the pseu-

do labels are assumed to be +1, and there is only one modality, SPaR corresponds to

Classification-based PRF [117, 118]. Given Loss and constraints on Θ are from pair-wise

RankSVM, SPaR can degenerate to LETOR-based reranking methods [121].

6.5 Experiments

6.5.1 Setups

Dataset, query and evaluation: We conduct experiments on the TRECVID Multi-

media Event Detection (MED) set including around 34,000 videos on 20 Pre-Specified

events. The used queries are semantic queries discussed in the previous chapters. The

performance is evaluated on the MED13Test consisting of about 25,000 videos, by the

official metric Mean Average Precision (MAP). The official test split released by NIST is

used. No ground-truth labeled videos are used in all experiments. In the baseline com-

parison, we evaluate each experiment 10 times on randomly generated splits to reduce

the bias brought by the partition. The mean and 90% confidence interval are reported.

Features: The used semantic features include Automatic Speech Recognition (ASR),

Optical Character Recognition (OCR), Semantic INdexing (SIN) and DCNN (Deep Con-

volutional Neural Network). SIN and DCNN [47] include 346 visual concepts and 1,000

visual objects trained on TRECVID and ImageNet sets. Two types of low-level features

are used: dense trajectories [46] and MFCCs.

Baselines: The proposed method is compared against the following baselines: 1)With-

out Reranking is a plain retrieval method without Reranking, and the language model

with Jelinek-Mercer smoothing is used [107]. 2)Rocchio is a classical reranking model for

vector space model under tf-idf representation [25]. 3) Relevance Model is a well-known

reranking method for text, and the variant with the i.i.d. assumption in [114] is used.

4)CPRF (Classification-based PRF) is a seminal PRF-based reranking method. Follow-

ing [117, 118], SVM classifiers with the χ2 kernel are trained using the top-ranked and
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bottom-ranked videos [118]. 5)Learning to Rank is a LETOR-based method. Follow-

ing [121], it is trained using the pairwise constraints derived from the pseudo-positives

and pseudo-negatives. A LambdaMART [135] in the RankLib toolkit is used to train

the RankSVM model; The parameters of all methods, including the proposed SPaR, are

tuned on a third dataset that shares no overlap with our development set.

Model Configuration: Alg. 6.2 is used to solve MMPRF and SPaR. In MMPRF,

lp solve [136] is used to solve the linear/integer programming problem. The regression

with the elastic net regularization [137] is used to estimate the parameters of the partial

models. Linear and χ2 kernel is used for dense trajectory and MFCCs features. By

default, 10 pseudo positive samples are selected by Eq. (6.2) in MMPRF MLE model.

A hundred of pseudo-negatives were randomly sampled from the bottom of the fused

ranked list. For a fair comparison, we fix the pseudo negative samples used in all baseline

methods.

In SPaR, Eq. (6.12) is solved by the quadratic programming package “quadprog” [138],

in which the parameter C is fixed to 1 and the φ is set as the χ2 explicit feature map [139].

By default, Eq. (6.21) is used. The initial values of the pseudo positive labels and weights

are derived by MMPRF. Since, according to [56], pseudo negative samples have little

impact on the MAP, Eq. (6.12) is only used to learn pseudo positive samples.

6.5.2 Comparison with Baseline methods

We first examine the overall MAP in Table 6.1, in which the best result is highlighted.

As we see, MMPRF significantly outperforms the baseline method without PRF. SPaR

outperforms all baseline methods by statistically significant differences. For example, on

the NIST’s split, it increases the MAP of the baseline without reranking by a relative

230% (absolute 9%), and the second best method MMPRF by a relative 28% (absolute

2.8%). Fig. 6.6 plots the AP comparison on each event, where the x-axis represents the

event ID and the y-axis denotes the average precision. As we see, SPaR outperforms

the baseline without reranking on 18 out of 20 events, and the second best MMPRF on

15 out of 20 events. The improvement is statistically significant at the p-level of 0.05,

according to the paired t-test. Fig. 6.5 illustrates the top retrieved results on two events

that have the highest improvement. As we see, the videos retrieved by SPaR are more

accurate and visually coherent.

We observed two reasons accounting for the improvement brought by MMPRF. First,

MMPRF explicitly considers multiple modalities and thus can produce a more accurate

pseudo label set. Second, the performance of MMPRF is further improved by leverag-

ing both high-level and low-level features. The improvement of SPaR stems from the

capability of adjusting weights of pseudo samples in a reasonable way. For example,
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HVC523034: The police in 
New York shut down a small 
protest against a city council 

member's fundraiser

HVC288592: 

Education rally in the 
street.

HVC709059: People doing 

a choreographed dance 
for a campaign .

HVC562609 : Footage and 

interviews from Egypt 
solidarity protests .

HVC635692: A guy 

lets people cut off his 
dreads for charity .

HVC059444: Pro-union 

protest in Wisconsin , 
against the govenor .

HVC383369: A jump 

rope troup does double 
dutch.

HVC103253: Flash mob in 

Millennium Park , Chicago .

HVC508163: Faculty flash 

mob dance at high school 
pep rally .

HVC744324: People celebrate 

St. Patrick's Day with a parade 
in New York City .

HVC745339: Justin 
Bieber flash mob .

HVC824069: Amateur 
film of marathon .

HVC036225: Britney 
Spears flash mob .

HVC067623: Dance flash 
mob at Seattle public library .

HVC264196: People attend 
a state fair do parkour on 

rollercoasters .

HVC179107: Kid does 

parkour around city .

HVC667755: Kids doing 
parkour in a park .

HVC887082 : Guys free 
running across campus .

HVC135468: A group of 
people practicing high risk 

parkour moves during the day .

HVC595192 : Three 
men perform parkour .

HVC295234: Philly 
parkour.

(a)

(b)

(b)

(a)

HVC800786: Footage 

of a marathon .
HVC745081: A group of 

people protest education 
budget cuts in California .

HVC676818 : footage of 
urban sports at Copenhagen 

Street Festival 2010

HVC196047 : People watch 

a parade , leave, and film 
random events in their lives .

HVC709059: People doing 

a choreographed dance for 
a campaign .

HVC185454: Children 

play football .

HVC242096: A main 

gives direction to 
locations.
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Figure 6.5: Top ranked videos/images ordered left-to-right using (a) plain retrieval
without reranking and (b) self-paced reranking. True/false labels are marked in the

lower-right of every frame.
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Figure 6.6: The AP comparison with the baseline methods. The MAP across all
events is available in Table 6.1.

Fig. 6.7 illustrates the weights assigned by CPRF and SPaR on the event “E008 Flash

Mob Gathering”. Three representative videos are plotted where the third (ID=3) is true

positive, and the others (ID=1,2) are negative. The tables on the right of Fig. 6.7 list

their pseudo labels and weights in each iteration. Since the true labels are unknown

to the methods, in the first iteration, both methods made mistakes. In Convention-

al Reranking, the initial pseudo labels and learned weights stay unchanged thereafter.

However, SPaR adaptively adjusts their weights as the iteration grows, e.g. it reduces

the overestimated weights of videos (ID=1,2) in iteration 2 and 3 probably because of

their dissimilarity from other pseudo positive videos.

We found two scenarios where SPaR and MMPRF can fail. First, when the initial top-

ranked samples retrieved by queries are completely off-topic. SPaR and MMPRF may

not recover from the inferior starting values, e.g. the query brought by “E022 Cleaning

an appliance” are off-topic (all videos are on all cooking in kitchen). Second, SPaR and

MMPRF may not help when the features used in reranking are not discriminative to the

queries, e.g. for “E025 Marriage Proposal”, our system lacks of meaningful detectors
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Figure 6.7: Weights changed by CPRF and SPaR on representative videos in different
iterations.

Table 6.1: MAP (× 100) comparison with the baseline methods across 20 Pre-
Specified events.

Method NIST’s split

Without Reranking 3.9
Rocchio 5.7
Relevance Model 2.6
CPRF 6.4
Learning to Rank 3.4
MMPRF 10.1
SPaR 12.9

such as “stand on knees”. Therefore even if 10 true positives are used, the AP is still

bad.

6.5.3 Impact of Pseudo Label Accuracy

To study the impact of pseudo label accuracy, we conduct the following experiments,

where the pseudo positive samples are simply selected by the top k+ samples in the

ranked lists of individual features and the fusion of all features. Figure 6.8(a) illustrates

the result in a scatter plot where the x-axis represents the accuracy of pseudo positives

and the y-axis represents the MAP. As can be seen, there is a strong correlation between

the MAP and the accuracy of pseudo-positives. The average Pearson correlation is 0.93.

We also conduct a similar experiment on pseudo negative samples, where the pseudo

positive samples are fixed and the pseudo negative samples are randomly selected from

the bottom of the initial ranked list. The experiments are conducted five times and

the result is shown in Figure 6.8(b). As we see, the precision is always larger than

0.980 as false negatives are difficult to find. This observation agrees with the analytical

result in Section 6.3. Given such highly accurate pseudo negatives, the impact of pseudo

negatives on MAP seems to be marginal. In summary, the results demonstrate that the
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Figure 6.8: The correlation between pseudo label accuracy and MAP. Each point
represents an experiment with pseudo samples with certain accuracy.

accuracy of pseudo positive samples has a substantial impact on the MAP. The impact

of pseudo negative samples, however, appears to be negligible.

6.5.4 Comparison of Weighting Schemes

Section 6.4.2 discusses four weighting schemes including the conventional hard weighting

and the proposed three soft weighting schemes. The following two predefined schemes

are also included for comparison: 1) Interpolation is a commonly used weighting scheme

which assigns weights linearly to a sample’ rank order [115, 126]:

vi =
1

m

m∑

j=1

(1− rank(xij)

N
), (6.24)

where N is the number of total pseudo samples. The weight for the first sample is 1.0,

and 0.0 for the last. rank(·) returns the sample’s rank order in its list. 2) Inverse Rank

assigns a sample’s weight based on its inverse rank order. The weight vi equals the

average inverse rank across m modalities:

vi =
1

m

m∑

j=1

1

rank(xij)
. (6.25)

We conduct experiments with different weighting schemes and plot their MAPs in

Fig. 6.9, where the x-axis denotes the iteration, and the y-axis is the MAP. The same

step size is used in all methods. As we see, SPaR with the proposed soft weighting

schemes, including linear, log and mixture weighting, outperforms the binary and the

predefined weighting across iterations. Among them, the mixture weighting is slightly

better than others, suggesting the rationale for tolerating small errors on this dataset.

However, it needs an additional parameter to tune. The MAPs of the proposed soft

weighting schemes seem to be robust and less sensitive to the iteration change. The
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Figure 6.9: Comparison of binary, predefined, and learned weighting schemes in dif-
ferent iterations.

MAP drop, in all reranking methods, seems to be related to the nature of the MED

dataset as the similar pattern can be observed in other reranking methods. Neverthe-

less, SPaR still outperforms the binary, predefined weights and the baseline methods in

Table 6.1.

6.5.5 Experiments on Web Query Dataset

To verify SPaR’s performance on image search, we conduct experiments on a web im-

age query dataset consisting of 71,478 images from 353 queries, retrieved by a search

engine named Exalead. For each query, the top ranked images generated by Exalead

are provided, along with the true label for every image. The dataset is representative

as the 353 queries cover a broad range of topics. The performance is evaluated by the

non-interpolated MAP, as used in [111]. MAP@100 is also included for comparison.

Note that as the initial result contains a single modality.

Following [112, 113], densely sampled SIFT are extracted. A codebook of 1,024 centroids

is constructed. Spatial Tiling [43] is used to further improve the performance. We

compare SPaR with the state-of-the-art reranking methods. SPaR is configured in a

similar way as discussed in Section 6.5.1, and provided initial text-based search results

are used. Following [112, 113], the parameters are tuned on a validation set consisting

of a subset of 55 queries.

We examine the overall MAP in Table 6.2. “-” denotes that the number is unavail-

able in the cited paper. As we see, SPaR achieves the promising MAP among state-

of-the-art reranking methods, including Graph-based [130], LETOR-based [112, 126],

Classification-based [118] and even supervised reranking methods [111, 128], in terms of

both MAP and MAP@100. A similar pattern can be observed that SPaR significantly
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Table 6.2: MAP and MAP@100 comparison with baseline methods on the Web Query
dataset.

Method MAP MAP@100

Without Reranking [111] 0.569 0.431
CPRF [118] 0.658 -
Random Walk [130] 0.616 -
Bayesian Reranking [112, 126] 0.658 0.529
Preference Learning Model [112] - 0.534
BVLS [113] 0.670 -
Query-Relative(visual) [111] 0.649 -
Supervised Reranking [128] 0.665 -
SPaR 0.672 0.557

Table 6.3: Runtime Comparison in a single iteration.

Method MED Web Query

Rocchio 5.3 (s) 2.0 (s)
Relevance Model 7.2 (s) 2.5 (s)
Learning to Rank 178 (s) 22.3 (s)
CPRF 145 (s) 10.1 (s)
MMPRF 149 (s) 10.1 (s)
SPaR 158 (s) 12.2 (s)

boosts the MAP of plain retrieval without reranking, and obtain comparable or even

better performance than the baseline methods. Generally, SPaR improves about 84%

queries over the method without reranking. Since the initial ranked lists are retrieved by

text matching, this result substantiates the claim that SPaR is general and applicable

to reranking by text-based search.

6.5.6 Runtime Comparison

To empirically verify the efficiency of SPaR and MMPRF, we compare the runtime

(second/query) in a single iteration. The experiments are conducted on Intel Xeon

E5649 @ 2.53GHz with 16GB memory and the results are listed in Table 6.3. To test

the speed of Rocchio and Relevance Model, we built our own inverted index on the Web

Query dataset, and issue the query against the index. The reranking in MED, which

is conducted on semantic features, is slower because it involves multiple features and

modalities. As we see, SPaR’s overhead over CPRF is marginal on the both sets. This

result suggests SPaR and MMPRF is inexpensive. Note the implementations for all

methods reported here are far from optimal, which involve a number of programming

languages. We will report the runtime of the accelerated pipeline in Section 8.
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6.6 Summary

In this chapter, we proposed two approaches for multimodal reranking, namely Multi-

Modal Pseudo Relevance Feedback (MMPRF) and Self-Paced Reranking (SPaR). Unlike

existing methods, the reranking is conducted using multiple ranked lists. In MMPRF,

we formulated the pseudo label construction problem as maximum likelihood estima-

tion and maximum expected value estimation problems, which can be solved by existing

linear/integer programming algorithms. By training a joint model on the pseudo label

set, MMPRF leverages low-level features and high-level features for multimedia event

detection without any training data. SPaR reveals the link between reranking and an

optimization problem that can be effectively solved by self-paced learning. The proposed

SPaR is general, and can be used to theoretically explain other reranking methods in-

cluding MMPRF. Experimental results validate the efficacy and the efficiency of the

proposed methods on several datasets. The proposed methods consistently outperforms

the plain retrieval without reranking, and obtains decent improvements over existing

reranking methods.

The quality of the initial feedback samples in the top ranked results affects the reranking

performance. Generally, reranking improves the accuracy of some queries whereas hurts

the accuracy of some queries, and in the end, improves the average accuracy across

all queries. Admittedly, in some cases where the initial feedback samples are of low

quality, reranking may not help. In this case, we recommend employing supervised

reranking algorithms [111, 128], in which human supervision can be used to either 1)

obtain feedback samples with higher quality, or 2) select the queries that might benefit

from reranking [125]. Supervised reranking is out of the scope of this thesis, and we

refer readers to relevant papers.



Chapter 7

Learning Semantic Concepts

7.1 Introduction

Concept detectors is the key in a CBVSR system as it affects what can be searched by

semantic search. Concept detectors can be trained on still images or videos. The latter

approach is more desirable due to 1) a minimal domain difference and 2) capability for

action, and 3) possibility for audio detection. In this chapter, we explore a semantic

concept learning method using self-paced curriculum learning. The theory has been

used in the reranking method SPaR in Chapter 6.4. In this chapter, we will formally

introduce the general form of the theory and discuss its application on semantic concept

training. We approach this problem based on recently proposed theories called cur-

riculum learning [119] and self-paced learning [120]. The theories have been attracting

increasing attention in the field of machine learning and artificial intelligence. Both the

learning paradigms are inspired by the learning principle underlying the cognitive pro-

cess of humans and animals, which generally start with learning easier aspects of a task,

and then gradually take more complex examples into consideration. The intuition can

be explained in analogous to human education in which a pupil is supposed to under-

stand elementary algebra before he or she can learn more advanced algebra topics. This

learning paradigm has been empirically demonstrated to be instrumental in avoiding

bad local minima and in achieving a better generalization result [140–142].

A curriculum determines a sequence of training samples which essentially corresponds

to a list of samples ranked in ascending order of learning difficulty. A major disparity

between curriculum learning (CL) and self-paced learning (SPL) lies in the derivation of

the curriculum. In CL, the curriculum is assumed to be given by an oracle beforehand,

and remains fixed thereafter. In SPL, the curriculum is dynamically generated by the

learner itself, according to what the learner has already learned.

85
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The advantage of CL includes the flexibility to incorporate prior knowledge from various

sources. Its drawback stems from the fact that the curriculum design is determined in-

dependently of the subsequent learning, which may result in inconsistency between the

fixed curriculum and the dynamically learned models. From the optimization perspec-

tive, since the learning proceeds iteratively, there is no guarantee that the predetermined

curriculum can even lead to a converged solution. SPL, on the other hand, formulates

the learning problem as a concise biconvex problem, where the curriculum design is

embedded and jointly learned with model parameters. Therefore, the learned model is

consistent. However, SPL is limited in incorporating prior knowledge into learning, ren-

dering it prone to overfitting. Ignoring prior knowledge is less reasonable when reliable

prior information is available. Since both methods have their advantages, it is difficult

to judge which one is better in practice.

In this chapter, we discover the missing link between CL and SPL. We formally propose

a unified framework called Self-paced Curriculum Leaning (SPCL). SPCL represents a

general learning paradigm that combines the merits from both the CL and SPL. On

one hand, it inherits and further generalizes the theory of SPL. On the other hand,

SPCL addresses the drawback of SPL by introducing a flexible way to incorporate prior

knowledge. This chapter offers a compelling insight on the relationship between the

existing CL and SPL methods. Their relation can be intuitively explained in the context

of human education, in which SPCL represents an “instructor-student collaborative”

learning paradigm, as opposed to “instructor-driven” in CL or “student-driven” in SPL.

In SPCL, instructors provide prior knowledge on a weak learning sequence of samples,

while leaving students the freedom to decide the actual curriculum according to their

learning pace. Since an optimal curriculum for the instructor may not necessarily be

optimal for all students, we hypothesize that given reasonable prior knowledge, the

curriculum devised by instructors and students together can be expected to be better

than the curriculum designed by either part alone.

7.2 Related Work

7.2.1 Curriculum Learning

Bengio et al. proposed a new learning paradigm called curriculum learning (CL), in

which a model is learned by gradually including from easy to complex samples in train-

ing so as to increase the entropy of training samples [119]. Afterwards, Bengio and his

colleagues presented insightful explorations for the rationality underlying this learning

paradigm, and discussed the relationship between CL and conventional optimization
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techniques, e.g., the continuation and annealing methods [143, 144]. From human be-

havioral perspective, evidence have shown that CL is consistent with the principle in

human teaching [140, 141].

The CL methodology has been applied to various applications, the key in which is to find

a ranking function that assigns learning priorities to training samples. Given a training

set D = {(xi, yi)}ni=1, where xi denotes the ith observed sample, and yi represents its

label. A curriculum is characterized by a ranking function γ. A sample with a higher

rank, i.e., smaller value, is supposed to be learned earlier.

The curriculum (or the ranking function) is often derived by predetermined heuristics

for particular problems. For example, in the task of classifying geometrical shapes, the

ranking function was derived by the variability in shape [119]. The shapes exhibiting less

variability are supposed to be learned earlier. In [140], the authors tried to teach a robot

the concept of “graspability” - whether an object can be grasped and picked up with

one hand, in which participants were asked to assign a learning sequence of graspability

to various object. The ranking is determined by common sense of the participants.

In [145], the authors approached grammar induction, where the ranking function is

derived in terms of the length of a sentence. The heuristic is that the number of possible

solutions grows exponentially with the length of the sentence, and short sentences are

easier and thus should be learn earlier.

The heuristics in these problems turn out to be beneficial. However, the heuristical

curriculum design may lead to inconsistency between the fixed curriculum and the dy-

namically learned models. That is, the curriculum is predetermined a priori and cannot

be adjusted accordingly, taking into account the feedback about the learner.

7.2.2 Self-paced Learning

To alleviate the issue of CL, Koller’s group [120] designed a new formulation, called

self-paced learning (SPL). SPL embeds curriculum design as a regularization term in-

to the learning objective. Compared with CL, SPL exhibits two advantages: first, it

jointly optimizes the learning objective together with the curriculum, and therefore the

curriculum and the learned model are consistent under the same optimization problem;

second, the regularization term is independent of loss functions of specific problems. This

theory has been successfully applied to various applications, such as action/event detec-

tion [77], reranking [15], domain adaption [142], dictionary learning [146], tracking [147]

and segmentation [148].

Formally, let L(yi, g(xi,w)) denote the loss function which calculates the cost between

the ground truth label yi and the estimated label g(xi,w). Here w represents the model
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parameter inside the decision function g. In SPL, the goal is to jointly learn the model

parameter w and the latent weight variable v = [v1, · · · , vn]T by minimizing:

min
w,v∈[0,1]n

E(w,v;λ)=
n∑

i=1

viL(yi, g(xi,w))−λ
n∑

i=1

vi, (7.1)

where λ is a parameter for controlling the learning pace. Eq. (7.1) indicates the loss of

a sample is discounted by a weight. The objective of SPL is to minimize the weighted

training loss together with the negative l1-norm regularizer −‖v‖1 = −∑n
i=1 vi (since

vi ≥ 0). A more general regularizer consists of both ‖v‖1 and the sum of group-wise

‖v‖2 [77].

ACS (Alternative Convex Search) is generally used to solve Eq. (7.1) [133]. ACS is a

special case of Cyclic Coordinate Method (CCM) [133] discussed in Section 6.4. It is an

iterative method for biconvex optimization, in which the variables are divided into two

disjoint blocks. In each iteration, a block of variables are optimized while keeping the

other block fixed. With the fixed w, the global optimum v∗ = [v∗1 , · · · , v∗n] can be easily

calculated by:

v∗i =




1, L(yi, g(xi,w)) < λ,

0, otherwise.
(7.2)

There exists an intuitive explanation behind this alternative search strategy: first, when

updating v with a fixed w, a sample whose loss is smaller than a certain threshold λ

is taken as an “easy” sample, and will be selected in training (v∗i = 1), or otherwise

unselected (v∗i = 0); second, when updating w with a fixed v, the classifier is trained

only on the selected “easy” samples. The parameter λ controls the pace at which the

model learns new samples, and physically λ corresponds to the “age” of the model.

When λ is small, only “easy” samples with small losses will be considered. As λ grows,

more samples with larger losses will be gradually appended to train a more “mature”

model.

This strategy complies with the heuristics in most CL methods [119, 140]. However,

since the learning is completely dominated by the training loss, the learning may be

prone to overfitting. Moreover, it provides no way to incorporate prior guidance in

learning. To the best of our knowledge, there has been no studies to incorporate prior

knowledge into SPL, nor to analyze the relation between CL and SPL.

7.2.3 Weakly-Labeled Data Learning

Recently, a few studies have been proposed trying to utilize the huge amount of noisy

data from the Internet. For example, Mitchell et al. [149] proposed a Never-Ending
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Language Learning (NELL) paradigm and built adaptive learners that makes use of the

web data by learning different types of knowledge and beliefs continuously. Such learning

process is mostly self-supervised, and previously learned knowledge enables learning

further types of knowledge. Sukhbaatar et al. [150] designed loss layers specifically for

noisy label learning of images in Convolutional Neural Network. It tried to estimate

the distribution of noise and was mainly verified on synthesized noisy labels. Liang et

al. [151] presented a weakly-supervised method called Baby Learning for object detection

from a few training images and videos. They first embed the prior knowledge into a pre-

trained CNN. When given very few samples for a new concept, a simple detector is

constructed to discover much more training instances from the online weakly labeled

videos. As more training samples are selected, the concept detector keeps refining until

a mature detector is formed. Varadarajan et al. [48] discussed a method that exploits

the YouTube topic API to train large scale video concept detectors on YouTube. The

method utilized a calibration process and hard negative mining to train a second order

mixture of experts model in order to discover correlations within the labels. Existing

methods are mainly built on heuristic approaches and it is unclear what objective is being

optimized. In this paper, we theoretically justify the proposed method and empirically

demonstrate its superior performance over representative existing methods.

7.3 Theory

An ideal learning paradigm should consider both prior knowledge known before training

and information learned during training in a unified and sound framework. Similar to

human education, we are interested in constructing an “instructor-student collabora-

tive” paradigm, which, on one hand, utilizes prior knowledge provided by instructors as

a guidance for curriculum design (the underlying CL methodology), and, on the other

hand, leaves students certain freedom to adjust to the actual curriculum according to

their learning paces (the underlying SPL methodology). This requirement can be re-

alized through the following optimization model. Similar in CL, we assume that the

model is given a curriculum that is predetermined by an oracle. Following the notation

defined above, we have:

min
w,v∈[0,1]n

E(w,v;λ,Ψ)=
n∑

i=1

viL(yi,g(xi,w))+f(v;λ)

s.t. v ∈ Ψ

(7.3)

where v = [v1, v2, · · · , vn]T denote the weight variables reflecting the samples’ impor-

tance. f is called self-paced function which controls the learning scheme; Ψ is a feasible

region that encodes the information of a predetermined curriculum.
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SPCL represents a general learning framework which includes CL and SPL as special

cases. SPCL degenerates to SPL when the curriculum region is ignored (Ψ = [0, 1]n),

or equivalently, the prior knowledge on predefined curriculums is absent. In this case,

the learning is totally driven by the learner. SPCL degenerates to CL when the curricu-

lum region (feasible region) only contains the learning sequence in the predetermined

curriculum. In this case, the learning process neglects the feedback about learners, and

is dominated by the given prior knowledge. When information from both sources are

available, the learning in SPCL is collaboratively driven by prior knowledge and learning

objective. Table 7.1 summarizes the characteristics of different learning methods. Given

reasonable prior knowledge, SPCL which considers the information from both sources

tend to yield better solutions. Example 7.1 shows a case in this regard.

7.3.1 Curriculum

A curriculum can be mathematically described as:

Definition 7.1 (Total order curriculum). For training samples X = {xi}ni=1, a total

order curriculum, or curriculum for short, can be expressed as a ranking function:

γ : X→ {1, 2, · · · , n},

where γ(xi) < γ(xj) represents that xi should be learned earlier than xj in training.

γ(xi) = γ(xj) denotes there is no preferred learning order on the two samples.

Definition 7.2 (Curriculum region). Given a predetermined curriculum γ(·) on training

samples X = {xi}ni=1 and their weight variables v = [v1, · · · , vn]T . A feasible region Ψ

is called a curriculum region of γ if

1. Ψ is a nonempty convex set;

2. for any pair of samples xi,xj , if γ(xi) < γ(xj), it holds that
∫
Ψ vi dv >

∫
Ψ vj dv,

where
∫
Ψ vi dv calculates the expectation of vi within Ψ. Similarly if γ(xi) = γ(xj),∫

Ψ vi dv =
∫
Ψ vj dv.

The two conditions in Definition 7.2 offer a realization for curriculum learning. Condition

1 ensures the soundness for calculating the constraints. Condition 2 indicates that

samples to be learned earlier should have larger expected values. The curriculum region

physically corresponds to a convex region in the high-dimensional space. The area

inside this region confines the space for learning the weight variables. The shape of

the region weakly implies a prior learning sequence of samples, where the expected

values for favored samples are larger. For example, Figure 7.1(b) illustrates an example

of feasible region in 3D where the x, y, z axis represents the weight variable v1, v2, v3,
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Table 7.1: Comparison of different learning approaches.

CL SPL Proposed SPCL
Comparable to human learning Instructor-driven Student-driven Instructor-student collaborative

Curriculum design Prior knowledge Learning objective Learning objective + prior knowledge
Learning schemes Multiple Single Multiple
Iterative training Heuristic approach Gradient-based Gradient-based

respectively. Without considering the learning objective, we can see that v1 tends to be

learned earlier than v2 and v3. This is because if we uniformly sample sufficient points

in the feasible region of the coordinate (v1, v2, v3), the expected value of v1 is larger.

Since prior knowledge is missing in Eq. (7.1), the feasible region is a unit hypercube,

i.e. all samples are equally favored, as shown in Figure 7.1(a). Note the curriculum

region should be confined within the unit hypercube since the constraints v ∈ [0, 1]n in

Eq. (7.3).

(a) SPL (b) SPCL

Figure 7.1: Comparison of feasible regions in SPL and SPCL.

Note that the prior learning sequence in the curriculum region only weakly affects the

actual learning sequence, and it is very likely that the prior sequence will be adjusted

by the learners. This is because the prior knowledge determines a weak ordering of

samples that suggests what should be learned first. A learner takes this knowledge

into account, but has his/her own freedom to alter the sequence in order to adjust to

the learning objective. See Example 7.1. Therefore, SPCL represents an “instructor-

student-corporative” learning paradigm.

Predetermining a total-order learning sequence for every pair of samples, especially in big

data, seems to be infeasible in many problems. In reality, we can only obtain incomplete

prior information from the noisy data. For examples, we may know some videos with

certain keywords in its title should be learned earlier, but may never know the learning

priority for the videos that do not have the keywords. To this end, we also propose

partial-order curriculum, which allows for leveraging the incomplete prior information.

Define a partial order relation � such that xi � xj indicates that the sample xi should

be learned no later than xj (i, j ∈ [1, n]). Similarly given two sample subsets Xa � Xb

denotes the samples in Xa should be learned no later than the samples in Xb.

Definition 7.3 (Partial order curriculum). Given the training samples X = {xi}ni=1

and their weight variables v = [v1, · · · , vn]T . Define a partial-order set γ = (X,�). For
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every element in set Xp � Xq(Xp,Xq ⊆ X), a feasible region Ψ = (ATv ≤ 0) is called

a partial-order curriculum region of γ if

1. A = 0 is a zero matrix except

2. ∀xi ∈ Xp, ∀xj ∈ Xq we have ∃t, Ati = −1 and Atj = 1. Otherwise .

Definition 7.3 incorporates the constraints on groups of examples as opposed to every

pair of examples. In other words, for the partial order xi � xj , it holds that
∫
Ψ vi dv >

∫
Ψ vj dv, where

∫
Ψ vi dv calculates the expectation of vi within Ψ. And if xi � xj and

xj � xi, it holds
∫
Ψ vi dv =

∫
Ψ vj dv.

The partial-order curriculum in Definition 7.3 generalizes the total-order curriculum

Definition 7.1 by incorporating the incomplete prior over groups of samples. Samples in

the confident groups should be learned earlier than samples in the less confident groups.

It imposes no prior over the samples within the same group nor the samples not in any

group. Definition ?? follows the curriculum definition in [78] and will degenerate to the

curriculum in [78] when the partial order becomes the full order relation.

7.3.2 Self-pace Functions

Compared with Eq. (7.1), SPCL generalizes SPL by introducing a regularization term.

This term determines the learning scheme, i.e., the strategy used by the model to learn

new samples. In human learning, we tend to use different schemes for different tasks.

Similarly, SPCL should also be able to utilize different learning schemes for different

problems. Since the existing methods only include a single learning scheme, we generalize

the learning scheme and define:

Definition 7.4 (Self-paced function). A self-paced function determines a learning scheme.

Suppose that v = [v1, · · · , vn]T denotes a vector of weight variable for each training sam-

ple and ℓ = [ℓ1, · · · , ℓn]T are the corresponding loss. λ controls the learning pace (or

model “age”). f(v;λ) is called a self-paced function, if

1. f(v;λ) is convex with respect to v ∈ [0, 1]n.

2. When all variables are fixed except for vi and ℓi, v
∗
i decreases with ℓi, and it holds

that lim
ℓi→0

v∗i = 1, lim
ℓi→∞

v∗i = 0.

3. ‖v‖1 =
∑n

i=1 vi increases with respect to λ, and it holds that ∀i∈ [1, n], lim
λ→0

v∗i =

0, lim
λ→∞

v∗i =1.

where v∗ = argminv∈[0,1]n
∑

viℓi + f(v;λ), and denote v∗ = [v∗1 , · · · , v∗n].
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The three conditions in Definition 7.4 provide a definition for the self-paced learning

scheme. Condition 2 indicates that the model inclines to select easy samples (with

smaller losses) in favor of complex samples (with larger losses). Condition 3 states that

when the model “age” λ gets larger, it should incorporate more, probably complex,

samples to train a “mature” model. The convexity in Condition 1 ensures the model

can find good solutions within the curriculum region.

It is easy to verify that the regularization term in Eq. (7.1) satisfies Definition 7.4. In fact,

this term corresponds to a binary learning scheme since vi can only take binary values,

as shown in the closed-form solution of Eq. (7.2). This scheme may be less appropriate

in the problems where the importance of samples needs to be discriminated. In fact,

there exist a plethora of self-paced functions corresponding to various learning schemes.

We will detail some of them in the next section.

7.3.3 Algorithm

Inspired by the algorithm in [120], we employ a similar ACS algorithm to solve Eq. (7.3).

Algorithm 2 takes the input of a predetermined curriculum, an instantiated self-paced

function and a stepsize parameter; it outputs an optimal model parameterw. First of all,

it represents the input curriculum as a curriculum region that follows Definition 2, and

initializes variables in their feasible region. Then it alternates between two steps until

it finally converges: Step 4 learns the optimal model parameter with the fixed and most

recent v∗; Step 5 learns the optimal weight variables with the fixed w∗. In first several

iterations, the model “age” is increased so that more complex samples will be gradually

incorporated in the training. For example, we can increase λ so that µ more samples will

be added in the next iteration. According to the conditions in Definition 7.4, the number

of complex samples increases along with the growth of the number iteration. Step 4

can be conveniently implemented by existing off-the-shelf supervised learning methods.

Gradient-based or interior-point methods can be used to solve the convex optimization

problem in Step 5. According to [133], the alternative search in Algorithm 2 converges

as the objective function is monotonically decreasing and is bounded from below.

7.4 Implementation

The definitions discussed above provide a theoretical foundation for SPCL. However, we

still need concrete self-paced functions and curriculum regions to solve specific problems.

To this end, this section discusses some implementations that follow Definition 7.2 and

Definition 7.4. Note that there is no single implementation that can always work the
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Algorithm 2: Self-paced Curriculum Learning.

input : Input dataset D, predetermined curriculum γ, self-paced function f and a
stepsize µ

output: Model parameter w

1 Derive the curriculum region Ψ from γ;
2 Initialize v∗, λ in the curriculum region;
3 while not converged do
4 Update w∗ = argminw E(w,v∗;λ,Ψ);
5 Update v∗ = argminv E(w

∗,v;λ,Ψ);
6 if λ is small then increase λ by the stepsize µ;

7 end
8 return w∗

best for all problems. Our purpose is to argument the implementations in the literature,

and to help enlighten others to further explore this interesting direction.

7.4.1 Curriculum region implementation

We suggest an implementation induced from a linear constraint for realizing the curricu-

lum region: aTv ≤ c, where v = [v1, · · · , vn]T are the weight variables in Eq. (7.3), c is

a constant, and a = [a1, · · · , an]T is a n-dimensional vector. The linear constraints is a

simple implementation for curriculum region that can be conveniently solved. It can be

proved that this implementation complies with the definition of curriculum region.

Theorem 7.5. For training samples X = {xi}ni=1, given a curriculum γ defined on it,

the feasible region, defined by,

Ψ = {v|aTv ≤ c}

is a curriculum region of γ if it holds: 1) Ψ ∧ v ∈ [0, 1]n is nonempty; 2) ai<aj for all

γ(xi)<γ(xj); ai=aj for all γ(xi)=γ(xj).

We also suggest an implementation for partial order curriculum in the context of video

concept learning. We can derive the partial-order curriculum in the following way: we

only distinguish the training order for groups of samples. We directly utilize the textual

descriptions of the videos generated by the uploaders. For each video, we extract the

latent topics of the video based on their titles, descriptions and tags in their metadata.

In terms of the distance between the video’s latent topic to the target concept, we group

videos in a sequential order for each concept. The grouping and ordering information of

the videos can be used to construct the partial-order curriculum. In our experiment, we

divide the data into two partial-order curriculum groups, where the videos with matching

scores larger than zero are in one group and the rest are in the other group.
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7.4.2 Self-paced function implementation

Similar to the scheme human used to absorb knowledge, a self-paced function determines

a learning scheme for the model to learn new samples. Note the self-paced function is

realized as a regularization term, which is independent of specific loss functions, and

can be easily applied to various problems. Since human tends to use different learning

schemes for different tasks, SPCL should also be able to utilize different learning schemes

for different problems. Inspired by a study in [15], this section discusses some examples

of learning schemes.

Binary scheme: This scheme in is used in [120]. It is called binary scheme, or “hard”

scheme, as it only yields binary weight variables.

f(v;λ) = −λ‖v‖1 = −λ
n∑

i=1

vi, (7.4)

Linear scheme: A common approach is to linearly discriminate samples with respect to

their losses. This can be realized by the following self-paced function:

f(v;λ) =
1

2
λ

n∑

i=1

(v2i − 2vi), (7.5)

in which λ > 0. This scheme represents a “soft” scheme as the weight variable can take

real values.

Logarithmic scheme: A more conservative approach is to penalize the loss logarithmi-

cally, which can be achieved by the following function:

f(v;λ) =
n∑

i=1

ζvi −
ζvi

log ζ
, (7.6)

where ζ = 1− λ and 0 < λ < 1.

Mixture scheme: Mixture scheme is a hybrid of the “soft” and the “hard” scheme [15].

If the loss is either too small or too large, the “hard” scheme is applied. Otherwise, the

soft scheme is applied. Compared with the “soft” scheme, the mixture scheme tolerates

small errors up to a certain point. To define this starting point, an additional parameter

is introduced, i.e. λ = [λ1, λ2]
T . Formally,

f(v;λ) = −ζ
n∑

i=1

log(vi +
1

λ1
ζ), (7.7)

where ζ = λ1λ2
λ1−λ2

and λ1 > λ2 > 0.

Theorem 7.6. The binary, linear, logarithmic and mixture scheme function are self-

paced functions.
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It can be proved that the above functions follow Definition 7.4. The name of the learning

scheme suggests the characteristic of its solution. The curve in Fig. 6.4 illustrates the

characteristics of the learning schemes. When the curriculum region is not a unit hyper-

cube, the closed-form solution, such as Eq. (7.2) cannot be directly used. Gradient-based

methods can be applied. As Ew is convex, the local optimal is also the global optimal

solution for the subproblem.

Example 7.1. Given six samples a, b, c, d, e, f . In the current iteration, the losses for

these samples are ℓ = [0.1, 0.2, 0.4, 0.6, 0.5, 0.3], respectively. A latent ground-truth cur-

riculum is listed in the first row of the following table, followed by the curriculum of

CL, SPL and SPCL. For simplicity, binary scheme is used in SPL and SPCL where

λ = 0.8333. If two samples with the same weight, we rank them in ascending order of

their losses, in order to break the tie. The Kendall’s rank correlation is presented in the

last column.

Method Curriculum Correlation

Ground-Truth a, b, c, d, e, f -

CL b, a, d, c, e, f 0.73

SPL a, b, f, c, e, d 0.46

SPCL a, b, c, d, e, f 1.00

The curriculum region used is a linear constraint aTv ≤ 1, where a = [0.1, 0.0, 0.4, 0.3, 0.5, 1.0]T .

In the implementation, we add a small constant 10−7 in the constraints for optimiza-

tion accuracy. The constraint follows Definition 2 in the paper. As shown, both CL

and SPL yield the suboptimal curriculum, e.g. their correlations are only 0.73 and

0.46. However, SPCL exploits the complementary information in CL and SPL, and

devises an optimal curriculum. Note that CL recommends to learn b before a, but

SPCL disobeys this order in the actual curriculum. The final solution of SPCL is

v∗ = [1.00, 1.00, 1.00, 0.88, 0.47, 0.00].

When the predetermined curriculum is completely wrong, SPCL may still be robust to

the inferior prior knowledge given reasonable curriculum regions are applied. In this

case, the prior knowledge should not be encoded as strong constraints. For example, in

the above example, we can use the following curriculum region to encode the completely

incorrect predetermined curriculum: aTv ≤ 6.0, where a = [2.3, 2.2, 2.1, 2.0, 1.7, 1.5]T

Method Curriculum Correlation

CL f, e, d, c, b, a -1.00

SPL a, b, f, c, e, d 0.46

SPCL a, f, b, c, e, d 0.33

As we see, even though the predetermined curriculum is completely wrong (correlation

-1.00), the proposed SPCL still obtains reasonable curriculum (correlation 0.33). This
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is because SPCL is able to leverage information in both prior knowledge and learning

objective. The optimal solution of SPCL is v∗ = [1.00, 0.91, 0.10, 0.00, 0.00, 1.00].

7.4.3 Self-paced function with diversity

In the above learning schemes, samples in a curriculum are selected solely in terms of

“easiness”. In this section, we reveal that diversity, an important aspect in learning,

should also be considered. Ideal learning should utilize not only easy but also diverse

examples that are sufficiently dissimilar from what has already been learned. This can

be intuitively explained in the context of human education. A rational curriculum for a

pupil not only needs to include examples of suitable easiness matching her learning pace,

but also, importantly, should include some diverse examples on the subject in order for

her to develop more comprehensive knowledge. Likewise, learning from easy and diverse

samples is expected to be better than learning from either criterion alone. To this end,

we propose the following learning scheme.

Diverse learning scheme: Diversity implies that the selected samples should be less

similar or clustered. An intuitive approach for realizing this is by selecting samples of

different groups scattered in the sample space. We assume that the correlation of samples

between groups is less than that of within a group. This auxiliary group membership

is either given, e.g. in object recognition frames from the same video can be regarded

from the same group, or can be obtained by clustering samples.

This aim can be mathematically described as follows. Assume that the training samples

X = (x1, · · · ,xn) ∈ R
m×n are partitioned into b groups: X(1), · · · ,X(b), where columns

of X(j) ∈ R
m×nj correspond to the samples in the jth group, nj is the sample number in

the group and
∑b

j=1 nj = n. Accordingly denote the weight vector as v = [v(1), · · · ,v(b)],

where v(j) = (v
(j)
1 , · · · , v(j)nj )

T ∈ [0, 1]nj . The diverse learning scheme on one hand needs

to assign nonzero weights of v to easy samples as the hard learning scheme, and on

the other hand requires to disperse nonzero elements across possibly more groups v(i) to

increase the diversity. Both requirements can be uniformly realized through the following

optimization model:

min
w,v

E(w,v;λ, γ) =
n∑

i=1

viL(yi, f(xi,w))− λ
n∑

i=1

vi − γ‖v‖2,1, s.t. v ∈ [0, 1]n, (7.8)

where λ, γ are the parameters imposed on the easiness term (the negative l1-norm:

−‖v‖1) and the diversity term (the negative l2,1-norm: −‖v‖2,1), respectively. As for

the diversity term, we have:

− ‖v‖2,1 = −
b∑

j=1

‖v(j)‖2. (7.9)
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The new regularization term consists of two components. One is the negative l1-norm

inherited from the hard learning scheme in SPL, which favors selecting easy over complex

examples. The other is the proposed negative l2,1-norm, which favors selecting diverse

samples residing in more groups. It is well known that the l2,1-norm leads to the group-

wise sparse representation of v [71], i.e. non-zero entries of v tend to be concentrated in

a small number of groups. Contrariwise, the negative l2,1-norm should have a counter-

effect to group-wise sparsity, i.e. nonzero entries of v tend to be scattered across a large

number of groups. In other words, this anti-group-sparsity representation is expected to

realize the desired diversity. Note that when each group only contains a single sample,

Eq. (A.16) degenerates to Eq. (7.1).

Unlike the convex regularization term above, the term in diverse learning scheme is non-

convex. A challenge is optimizing v with a fixed w becoming a non-convex problem. To

this end, we propose a simple yet effective algorithm for extracting the global optimum

of this problem when the curriculum is as in SPL, i.e. Ψ = [0, 1]n. Algorithm 3 takes

as input the groups of samples, the up-to-date model parameter w, and two self-paced

parameters, and outputs the optimal v of minv E(w,v;λ, γ). The global minimum is

proved in Appendix A:

Theorem 7.7. Algorithm 3 attains the global optimum to minv E(w,v) for any given

w in linearithmic time.

Algorithm 3: Algorithm for Solving minv E(w,v;λ, γ).

input : Input dataset D, groups X(1), · · · ,X(b), w, λ, γ
output: The global solution v = (v(1), · · · ,v(b)) of minv E(w,v;λ, γ).

1 for j = 1 to b do // for each group

2 Sort the samples in X(j) as (x
(j)
1 , · · · ,x(j)

nj ) in ascending order of their loss values L;

3 Accordingly, denote the labels and weights of X(j) as (y
(j)
1 , · · · , y(j)nj ) and (v

(j)
1 , · · · , v(j)nj );

4 for i = 1 to nj do // easy samples first

5 if L(y
(j)
i , f(x

(j)
i ,w)) < λ+ γ 1√

i+
√
i−1

then v
(j)
i = 1 ; // select this sample

6 else v
(j)
i = 0; // not select this sample

7 end

8 end
9 return v

As shown, Algorithm 3 selects samples in terms of both the easiness and the diversity.

Specifically:

• Samples with L(yi, f(xi,w)) < λ will be selected in training (vi = 1) in Step 5.

These samples represent the “easy” examples with small losses.

• Samples with L(yi, f(xi,w)) > λ + γ will not be selected in training (vi = 0) in

Step 6. These samples represent the “complex” examples with larger losses.
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Figure 7.2: An example on samples selected by Algorithm 3. A colored block denotes
a curriculum with given λ and γ, and the bold (red) box indicates the easy sample

selected by Algorithm 3.

• Other samples will be selected by comparing their losses to a threshold λ+ γ√
i+

√
i−1

,

where i is the sample’s rank w.r.t. its loss value within its group. The sample with

a smaller loss than the threshold will be selected in training. Since the threshold

decreases considerably as the rank i grows, Step 5 penalizes samples monotonously

selected from the same group.

Example 7.2. We study a tractable example that allows for clearer diagnosis in Fig. 7.2,

where each keyframe represents a video sample on the event “Rock Climbing” of the

TRECVID MED data [5], and the number below indicates its loss. The samples are

clustered into four groups based on the visual similarity. A colored block on the right

shows a curriculum selected by Algorithm 3. When γ = 0, as shown in Fig. 7.2(a),

SPLD, which is identical to SPL, selects only easy samples (with the smallest losses)

from a single cluster. Its curriculum thus includes duplicate samples like b, c, d with the

same loss value. When λ 6= 0 and γ 6= 0 in Fig. 7.2(b), SPLD balances the easiness

and the diversity, and produces a reasonable and diverse curriculum: a, j, g, b. Note that

even if there exist 3 duplicate samples b, c, d, SPLD only selects one of them due to the

decreasing threshold in Step 5 of Algorithm 3. Likewise, samples e and j share the same

loss, but only j is selected as it is better in increasing the diversity. In an extreme case

where λ = 0 and γ 6= 0, as illustrated in Fig. 7.2(c), SPLD selects only diverse samples,

and thus may choose outliers, such as the sample n which is a confusable video about

a bear climbing a rock. Therefore, considering both easiness and diversity seems to be

more reasonable than considering either one alone. Physically the parameters λ and γ

together correspond to the “age” of the model, where λ focuses on easiness whereas γ

stresses diversity.
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7.4.4 Self-paced function with dropout

In many problems, only weak annotations are available. For example, the videos might

be weakly labeled by the surrounding metadata such as title or descriptions. We call

these samples are weakly labeled. The weakly-labeled videos can be collected without

any manual effort, and its amount is thus orders of magnitude larger than that of any

manually-labeled video collection. Unlike the manual labels, the weak labels are noisy

and have both low accuracy and low recall: the weakly labeled concepts may not present

in the video content and concepts not in the web label may appear in the video.

The labels in big weakly labeled data are much noisier than manually labeled data, and

as a result, we found that the learning is prone to overfitting the noisy labels. To address

this issue, inspired by the dropout technique in deep learning [152], we propose a dropout

strategy for weakly labeled learning. It is implemented in the self-paced function. Define

ri(p) ∼ Bernoulli(p) + ǫ, (0 < ǫ≪ 1), (7.10)

where r is a column vector of independent Bernoulli random variables with the proba-

bility p of being 1. Each of the element equals the addition of ri and a small positive

constant ǫ.

Then we can define the self-paced functions with dropout. For example, the binary

self-paced function with dropout becomes:

f(v;λ, p) = −λ‖r · v‖1, (7.11)

and the linear self-paced function with dropout becomes:

fl(v;λ, p) =
1

2
λ

n∑

i=1

(
1

ri
v2i − 2vi). (7.12)

Denote Ew =
∑n

i=1 viℓi + f(v;λ) as the objective with the fixed model parameters w

without any constraint, and the optimal solution v∗ = [v∗1 , · · · , v∗n]T = argminv∈[0,1]n Ew.

For binary self-paced function in Eq. (7.11), we have:

Ew =
n∑

i=1

(ℓi − riλ)vi (7.13)

The closed-form solution is:

v∗i =




1 ℓi < riλ

0 ℓi ≥ riλ
(7.14)
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For linear self-paced function in Eq. (7.12), the closed-form solution is:

Ew =
n∑

i=1

ℓivi + λ(
1

2ri
v2i − vi); (7.15)

∂Ew

∂vi
= ℓi + λvi/ri − λ = 0;⇒ v∗i =




ri(− 1

λ
ℓi + 1) ℓi < λ

0 ℓi ≥ λ
. (7.16)

The dropout effect can be demonstrated in the closed-form solutions in Eq. (7.14) and

Eq. (7.16): with the probability 1 − p, v∗i approaches 0; with the probability p, v∗i
approaches the solution of the plain regularizer discussed in Eq. (7.4) and Eq. (7.5).

Recall the self-paced function defines a scheme for learning, and the self-paced function

with dropout represent new learning schemes.

When the base learner is neural networks, the proposed dropout can be used combined

with the classical dropout in [152]. The term dropout in this paper refers to dropping out

samples in the iterative learning. By dropping out a sample, we drop out its update to

the model. It is useful for noisy data. When samples with incorrect noisy labels update

a model, it will encourage the model to select more noisy labels. The dropout strategy

prevents overfitting to noisy labels. Experimental results substantiate this argument.

In practice, we recommend setting two Bernoulli parameters for positive and negative

samples on imbalanced data. Empirically, we apply a much smaller probability p on the

negative samples than on the positive samples. In other words, we encourage models to

mainly drop out negative samples.

7.5 Discussions

7.5.1 Theoretical Justification

Interestingly, it turns out that Algorithm 2 actually optimizes an underlying non-convex

robust loss on the noisy data. To show this, let v∗(λ, ℓ) represent the optimal weight of

v for a loss term ℓ imposed on a training sample in Eq (7.3), where

v∗(λ, ℓ) = argminv∈[0,1] vℓ+ f(v, λ). (7.17)

For convenience of notation, let the curriculum region be the full space. According

to [153], the latent objective has the form of Eℓ =
∑n

i=1 Fλ(ℓi)(λ > 0) with a latent loss
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function Fλ(ℓ) obtained by integrating the loss variable from v∗(λ, ℓ), i.e.,

Fλ(ℓ) =

∫ ℓ

0
v∗(λ; l)dl. (7.18)

Note that in the above ℓ and l means loss variables in the latent loss function Fλ(ℓ)

and the optimal weight function v∗(λ, l), whereas ℓi denotes the loss value actually

calculated on the i-th sample. Incorporating the binary and linear self-paced functions

in Eq. (7.18), the latent objective becomes:

F b
λ(ℓ) = min(ℓ, λ) (7.19)

F l
λ(ℓ) = I(ℓ ≥ λ)

λ

2
+ I(ℓ < λ)(ℓ− ℓ2

2λ
) (7.20)

Eq. (7.19) and Eq. (7.20) are two common non-convex regularized penalties in the ma-

chine learning community, where Eq. (7.19) is the Capped-Norm based Penalty(CNP) [154,

155] and Eq. (7.20) is the Minimax Convex Plus (MCP) [156]. It has been showed that

both CNP and MCP can be used as robust loss functions that threshold the samples of

greater loss [157]. Therefore, Algorithm 2 actually minimizes a non-convex robust loss

derived from the original loss in the base learner (e.g. hinge loss). On clean data, the

effect of the robust loss may not be evident, but on noisy data, without the robust loss,

the model can be easily dominated by a few noisy samples or outliers. Experimental

results substantiate this argument, where we observed that the robust loss leads to more

accurate results than the original loss on the weakly labeled data.

The proposed theory can be theoretically justified from two independent perspectives.

From the learning perspective, it mimics the human and animal learning process that

learns a model gradually from confident to less confident examples in the noisy data.

From the optimization perspective, it minimizes a non-convex robust loss (CNP or MCP)

on the noisy data. The robust loss tends to depress samples with noisy labels or outliers.

Due to the nature of non-convexity, it utilizes the curriculum and self-paced learning,

which have been demonstrated to be instrumental in avoiding bad local minima in non-

convex problems [119, 120]. Interestingly, Meng et al. [153] proved that when λ is fixed,

Algorithm 2, in fact, is identical to the Majorization-Minimization algorithm [158], a

popular solver for non-convex problems [153]. Based on the understanding, one can

justify the role of the curriculum region, i.e. the curriculum confines the search space of

a non-convex problem to some reasonable subspace which tends to improve the quality

of the starting value and the final solution. The dropout methods on the other hand,

prevent overfitting in the non-convex optimization problem.
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7.5.2 Limitations

Since the publication of SPCL in 2015, it has helped inspire a number of studies in

a variety of fields. For example, in the noisy data learning [159–161], information

retrieval [162], multimedia retrieval [163, 164], visual saliency detection [165], matrix

factorization [166], multi-task/objective learning [167, 168], natural language process-

ing [169], deep learning [170, 171], machine learning theory [172], and so on.

However, we did observe a number of limitations of the current SPCL model. First, the

fundamental learning philosophy of SPL/CL/SPCL is 1) learning needs to be conducted

iteratively using samples organized in a meaningful sequence; 2) models are becoming

more complex in each iteration. However, the learning philosophy may not applicable to

every learning problem. For example, in many problems where training data, especially

small training data, are carefully selected and the spectrum of learning difficulty of

training samples is controlled. We found the proposed theory may not outperform the

conventional training methods. Second, the performance of SPCL can be unstable to the

random starting values. This phenomenon can be intuitively explained in the context of

education, it is impossible for students to predetermine what to learn before they actually

learning anything. To address this, the curriculum needs to be meaningful so that it

can provide some supervision in the first few iterations. However, precisely deriving

curriculum region from prior knowledge seems to be an open question. When the prior

knowledge is unavailable, a common approach is to first train a model on 50%, randomly

selected data, and use the model to initialize the samples and their weights in the first

iteration. Third, the age parameters λ are very important hyper-parameters to tune. In

order to tune the parameters, the proposed theory requires a labeled validation set that

follows the same underlying distribution of the test set. Intuitively, it is analogous to

the mock exam whose purposes are to let students realize how well they would perform

on the real test data, and more importantly have a better idea of what to study.

In implementation, we found some engineering tricks to apply the theory to real-world

problems. First, the parameters λ (and γ in the diversity learning scheme) should be

tuned by the statistics collected from the ranked samples, as opposed to the absolute

values. For example, instead of setting λ to an absolute value, we rank samples by their

loss in increasing order, then set λ as the loss of the top nth sample. As a result, the

top n− 1 samples will be used in training. The nth sample will have 0 weights and will

not be used in training, and so does the samples ranked after it. In the next iteration

we may increase λ to be the loss of the top 1.5n sample. This strategy avoids selecting

too many or too few samples at a single iteration and seems to be robust. Second, for

unbalanced datasets, two sets of parameter λ were introduced: λ+ for positive and λ−

for negative samples in order to pace positive and negative separately. This trick lead

to a balance training data set in each iteration. Third, for the convex loss function L in
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the off-the-shelf model, if we use the same training sets, we will end up with the same

model, irrespective of iterative steps. In this case, at each iteration, we should test our

model on the validation set, and determine when to terminate the training process. The

converged model on a subset of training samples may perform better than the model

trained on the whole training set. For example, Lapedriza et al. [173] found training

detectors using a subset samples can yield better results. On noisy data, early stopping

must be applied as training all samples is bound to introduce much noise in training.

For non-convex loss function in the off-the-shelf model, the sequential steps affect the

final model. Therefore, the early stopping may not be necessary on clean data sets.

7.6 Experiments using Diversity Scheme

We name SPCL with diversity learning scheme SPLD. We present experimental results

on two tasks: event detection and action recognition. We demonstrate that our approach

outperforms SPL on three real-world challenging datasets.

SPLD is compared against four baseline methods: 1) RandomForest is a robust boot-

strap method that trains multiple decision trees using randomly selected samples and

features [174]. 2) AdaBoost is a classical ensemble approach that combines the sequen-

tially trained “base” classifiers in a weighted fashion [175]. Samples that are misclassified

by one base classifier are given greater weight when used to train the next classifier in

sequence. 3) BatchTrain represents a standard training approach in which a model is

trained simultaneously using all samples; 4) SPL is a state-of-the-art method that trains

models gradually from easy to more complex samples [120]. The baseline methods are

a mixture of the well-known and the state-of-the-art methods on training models using

sampled data.

7.6.1 Event Detection

Given a collection of videos, the goal of MED is to detect events of interest, e.g. “Birth-

day Party” and “Parade”, solely based on the video content. The task is very challenging

due to complex scenes, camera motion, occlusions, etc. The experiments are conducted

on the largest collection on event detection: TRECVID MED13Test, which consists of

about 32,000 Internet videos. There are a total of 3,490 videos from 20 complex events,

and the rest are background videos. For each event 10 positive examples are given to

train a detector, which is tested on about 25,000 videos. The official test split released

by NIST (National Institute of Standards and Technology) is used. A Deep Convolu-

tional Neural Network is trained on 1.2 million ImageNet challenge images from 1,000

classes [37] to represent each video as a 1,000-dimensional vector. Algorithm 3 is used.
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By default, the group membership is generated by the spectral clustering, and the num-

ber of groups is set to 64. Following [142], LibLinear is used as the solver in Step 4 of

Algorithm 3 due to its robust performance on this task. The performance is evaluated

using MAP as recommended by NIST. The parameters of all methods are tuned on the

same validation set.

Table 7.2 lists the overall MAP comparison. To reduce the influence brought by ini-

tialization, we repeated experiments of SPL and SPLD 10 times with random starting

values, and report the best run and the mean (with the 95% confidence interval) of the

10 runs. The proposed SPLD outperforms all baseline methods with statistically signif-

icant differences at the p-value level of 0.05, according to the paired t-test. It is worth

emphasizing that MED is very challenging and 26% relative (2.5 absolute) improvement

over SPL is a notable gain. SPLD outperforms other baselines on both the best run

and the 10 runs average. RandomForest and AdaBoost yield poorer performance. This

observation agrees with the study in literature [5] that SVM is more robust on event

detection.

Table 7.2: MAP (x100) comparison with the baseline methods on MED.

Run Name RandomForest AdaBoost BatchTrain SPL SPLD
Best Run 3.0 2.8 8.3 9.6 12.1

10 Runs Average 3.0 2.8 8.3 8.6±0.42 9.8±0.45

BatchTrain, SPL and SPLD are all performed using SVM. Regarding the best run,

SPL boosts the MAP of the BatchTrain by a relative 15.6% (absolute 1.3%). SPLD

yields another 26% (absolute 2.5%) over SPL. The MAP gain suggests that optimizing

objectives with the diversity is inclined to attain a better solution. Fig. 7.3 plots the

validation and test AP on three representative events. As illustrated, SPLD attains a

better solution within fewer iterations than SPL, e.g. in Fig. 7.3(a) SPLD obtains the

best test AP (0.14) by 6 iterations as opposed to AP (0.12) by 11 iterations in SPL.

Studies have shown that SPL converges fast, while this observation further suggests that

SPLD may lead to an even faster convergence. We hypothesize that it is because the

diverse samples learned in the early iterations in SPLD tend to be more informative. The

best Test APs of both SPL and SPLD are better than BatchTrain, which is consistent

with the observation in [173] that removing some samples may be beneficial in training

a better detector. As shown, Dev AP and Test AP share a similar pattern justifying the

rationale for parameters tuning on the validation set.

Fig. 7.4 plots the curriculum generated by SPL and SPLD in a first few iterations on

two representative events. As we see, SPL tends to select easy samples similar to what it

has already learned, whereas SPLD selects samples that are both easy and diverse to the

model. For example, for the event “E006 Birthday Party”, SPL keeps selecting indoor

scenes due to the sample learned in the first place. However, the samples learned by
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Figure 7.3: The validation and test AP in different iterations. Top row plots the
SPL result and bottom shows the proposed SPLD result. The x-axis represents the
iteration in training. The blue solid curve (Dev AP) denotes the AP on the validation
set, the red one marked by squares (Test AP) denotes the AP on the test set, and the
green dashed curve denotes the Test AP of BatchTrain which remains the same across

iterations.
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Figure 7.4: Comparison of positive samples used in each iteration by (a) SPL (b)
SPLD.

SPLD are a mixture of indoor and outdoor birthday parties. For the complex samples,

both methods leave them to the last iterations, e.g. the 10th video in “E007”.

7.6.2 Action Recognition

The goal is to recognize human actions in videos. Two representative datasets are used:

Hollywood2 was collected from 69 different Hollywood movies [42]. It contains 1,707

videos belonging to 12 actions, splitting into a training set (823 videos) and a test set

(884 videos). Olympic Sports consists of athletes practicing different sports collected

from YouTube [41]. There are 16 sports actions from 783 clips. We use 649 for training

and 134 for testing as recommended in [41]. The improved dense trajectory feature

is extracted and further represented by the fisher vector [16, 176]. A similar setting

discussed in Section 7.6.1 is applied, except that the groups are generated by K-means

(K=128).
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Table 7.3: MAP (x100) comparison with the baseline methods on Hollywood2 and
Olympic Sports.

Run Name RandomForest AdaBoost BatchTrain SPL SPLD
Hollywood2 28.20 41.14 58.16 63.72 66.65

Olympic Sports 63.32 69.25 90.61 90.83 93.11

Table 7.3 lists the MAP comparison on the two datasets. A similar pattern can be

observed that SPLD outperforms SPL and other baseline methods with statistically

significant differences. We then compare our MAP with the state-of-the-art MAP in

Table 7.4. Indeed, this comparison may be less fair since the features are different in

different methods. Nevertheless, with the help of SPLD, we are able to achieve the best

MAP reported so far on both datasets. Note that the MAPs in Table 7.4 are obtained by

recent and very competitive methods on action recognition. This improvement confirms

the assumption that considering diversity in learning is instrumental.

Table 7.4: Comparison of SPLD to the state-of-the-art on Hollywood2 and Olympic
Sports

Hollywood2 Olympic Sports

Vig et al. 2012 [177] 59.4% Brendel et al. 2011 [178] 73.7%
Jiang et al. 2012 [179] 59.5% Jiang et al. 2012 [179] 80.6%
Jain et al. 2013 [40] 62.5% Gaidon et al. 2012 [180] 82.7%
Wang et al. 2013 [16] 64.3% Wang et al. 2013 [16] 91.2%

SPLD 66.7% SPLD 93.1%

7.7 Experiments on Noisy Data

This section verifies the accuracy and the scalability of the proposed method on learn-

ing concept detectors on weakly labeled video data. In each dataset, the labels are

automatically derived from the textual metadata without manual supervision. The ex-

periments are conducted on two public benchmarks, where FCVID is by far one of the

biggest manually annotated video set, and the YFCC100M is the largest multimedia

benchmark.

7.7.1 Experimental Setup

Dataset and Feature Fudan-Columbia Video Dataset (FCVID) contains 91,223 Y-

ouTube videos (4,232 hours) from 239 categories. It covers a wide range of concepts

like activities, objects, scenes, sports, etc. [181]. Each video is manually labeled to one

or more categories. In our experiments, we do not use the manual labels in training,

but instead we automatically generate the web labels according to the concept name

appearance in the video metadata. The manual labels are used only in testing to eval-

uate our and baseline methods. Following [181], the standard train/test split and the

same static Convolution Neural Networks(CNN) feature from [181] are used to have a
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fair comparison to existing methods. The second set YFCC100M [59] contains about

800,000 videos on Flickr with metadata such as the title, tags, the uploader, etc. There

are no manual labels on this set and we automatically generate the web labels from the

metadata. We use the features provided in [11] where we first extract the keyframe level

the VGG neural network features [182] and create a video feature by average pooling.

The same features are used across different methods on each dataset. Since there are no

annotations, we train the concept detectors on the most 101 frequent latent topics in the

video metadata. On YFCC, we use a data-driven approach to determine the concept

vocabulary. Given a collection of video with metadata, we run topic models to surface

frequent objects, scenes, actions or events. The list of automatically generated latent

topics is manually examined to obtain the final concept vocabulary. In this way, we can

ensure every concept has a reasonable number of training samples.

Baselines The proposed method is compared against the following five baseline methods

which cover both the classical and the recent representative learning algorithms on

weakly-labeled data. BatchTrain trains a single SVM model using all samples with noisy

labels. AdaBoost is a classical ensemble approach that combines the sequentially trained

“base” classifiers in a weighted fashion [175]. Self-Paced Learning (SPL) is a classical

method where the curriculum is generated by the learner itself [120]. BabyLearning is

a recent method that simulates baby learning by starting with few training samples

and fine-tuning using more weakly labeled videos crawled from the search engine [151].

We build a search engine that indexes the textual metadata and retrieves videos using

concept words based on Lucene [82]. GoogleHNM uses the hard negative mining strategy

in [48]. On FCVID, we use the YouTube topic API to acquire the noisy labels whereas

on YFCC100M we obtain the noisy labels by the Lucene search engine.

Evaluation Metrics On FCVID, as the manual labels are available, the performance

is evaluated in terms of the precision of the top 5 and 10 ranked videos (P@5 and

P@10) and mean Average Precision (mAP) of 239 concepts. On YFCC100M, since

there are no manual labels, for evaluation, we apply the detectors to a third public video

collection called TRECVID MED which includes 32,000 Internet videos [5]. We apply

the detectors trained on YFCC100M to the TRECVID videos and manually annotate

the top 10 detected videos of each method for the 101 concepts.

Our Model We build our method on top of a pre-trained convolutional neural network

as the low-level features, i.e. static CNN features on FCVID and VGG-16 features [183]

on YFCC100M. The concept detectors are trained based on a hinge loss cost function.

Algorithm 2 is used to train the concept models iteratively and the λ stops increasing

after 100 iterations. We automatically generate noisy web labels based on the video

metadata. For the videos with noisy positive labels, we group them based on their latent

topics, and derive a partial-order curriculum in Definition 7.3. The hyper-parameters of



Learning Semantic Concepts 109

all methods including the baseline methods are tuned on the same validation set. On

FCVID, the set is a small training subset with manual labels whereas on YFCC100M it

is a proportion of noisy training set.

7.7.2 Experiments on FCVID

Table 7.5 compares the precision and mAP of different methods where the best results

are highlighted. As we see, the proposed SPCL with dropout significantly outperforms

all baseline methods, with a significant difference at p-level of 0.05. For example, it

outperforms the best baseline on 194 out of 239 concepts. The promising experimental

results substantiate our theoretical analysis in Chapter 7.5. With the proposed model,

the binary and linear regularizer yield a similar accuracy on this dataset. The perfor-

mance difference between SPCL with and without dropout demonstrates the efficacy of

the proposed dropout technique, and the difference between SPL and SPCL indicates

the benefit of incorporating prior knowledge as the partial-order curriculum.

Note that SPCL does not use any manual labels in training, but interestingly, its accu-

racy is comparable with the model trained on 35,850 videos with ground truth labels

in [181]. To investigate the potential of training concepts on the weakly labeled data

setting, we apply SPCL on the data subsets of different sizes. Specifically, we randomly

split the FCVID training set into the subset of 200, 500, 1,000, and 2,000 hours of videos,

and train the models on each subset. The models are then tested on the same standard

test set. Table 7.6 lists the results. As we see, the accuracy of SPCL on weakly labeled

data increases along with the growth of the size of noisy data. The accuracy on 2,000

hours of videos with noisy web labels turns out to be better than the model trained

on 500 hour of manually labeled data. Recall FCVID is one of the biggest manually

annotated set which contains about 2,000 hours of annotated videos. According to the

results, we hypothesize that with more weakly labeled data, which is not hard to obtain,

our method can potentially outperform models trained on any existing manually-labeled

data.

Table 7.5: Performance comparison on FCVID.

Method P@5 P@10 mAP

BatchTrain 0.782 0.763 0.469
Adaboost 0.456 0.412 0.293
SPL 0.793 0.754 0.414
GoogleHNM 0.781 0.757 0.472
BabyLearning 0.834 0.817 0.496
SPCL w/o dropout (binary) 0.857 0.843 0.521
SPCL w/. dropout (linear) 0.893 0.877 0.566
SPCL w/. dropout (binary) 0.893 0.878 0.567
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Table 7.6: MAP comparison of models trained using weak labels and ground-truth
labels on different subsets of FCVID. Noted that SPCL is trained using noisy web labels

while ∗ is trained using ground truth labels

Dataset Size 200h 500h 1000h 2000h

SPCL 0.413 0.480 0.520 0.567
BatchTrain∗ 0.485 0.561 0.604 0.638

7.7.3 Experiments on YFCC100M

Since there are no manual labels on YFCC100M, to evaluate the performance, we man-

ually annotate the top 10 videos in the test set and report their precisions in Table 7.7.

A similar pattern can be observed where the comparisons substantiate the rationality of

the proposed partial-order curriculum and the dropout technique. The promising results

on the largest multimedia set YFCC100M verify the scalability of the proposed method.

Table 7.7: Performance comparison on YFCC100M.

Method P@3 P@5 P@10

BatchTrain 0.535 0.513 0.487
Adaboost 0.341 0.327 0.282
SPL 0.485 0.463 0.454
GoogleHNM 0.541 0.525 0.500
BabyLearning 0.548 0.519 0.466
SPCL binary w/o dropout (binary) 0.607 0.608 0.589
SPCL w/. dropout (linear) 0.667 0.663 0.649
SPCL w/. dropout (binary) 0.660 0.640 0.625

7.8 Summary

We proposed a novel learning regime called self-paced curriculum learning (SPCL), which

imitates the learning regime of humans/animals that gradually involves from easy to

more complex training samples into the learning process. The component of SPCL is of

physical interpretation. The off-the-shelf models, such as SVMs, deep neural networks,

and regression models, correspond to students. The self-paced functions correspond to

learning schemes used by students to solve specific problems. The curriculum region

corresponds to the prior knowledge provided from an oracle or an instructor so that

learning can be processed in a desired direction. The proposed SPCL can exploit both

prior knowledge before training and dynamical information extracted during training.

The novel regime is analogous to an “instructor-student-collaborative” learning mode,

as opposed to “instructor-driven” in curriculum learning or “student-driven” in self-

paced learning. We presented compelling understandings for curriculum learning and
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self-paced learning, and revealed that the underlying robust loss function the model

tries to optimize. We discussed several concrete implementations in the proposed SP-

CL framework, and presented experiments on a number of datasets to demonstrate its

promising results in learning concept detectors.

SPCL is a general learning framework. Despite the promising results, we did observe a

number of limitations as discussed Section 7.5.2. This thesis is not able to completely

address all limitations. We believe the proposed theory is still immature, and thus needs

further research.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we studied a fundamental research problem of searching and learning

semantic information in video content at a very large scale. We proposed several nov-

el methods focusing on improving accuracy, efficiency and scalability. The proposed

method demonstrated promising results on web-scale video learning, search and under-

standing. Based on the proposed methods, we implement E-Lamp Lite, the first of its

kind large-scale semantic search engine for Internet videos. The extensive experiments

demonstrated that the methods are able to surpass state-of-the-art accuracy on multiple

datasets. In addition, our method can efficiently scale up the search to hundreds of mil-

lions videos, and only takes about 0.2 second to search a semantic query on a collection

of 100 million videos, 1 second to process a hybrid query over 1 million videos. There are

two research issues to be addressed. To the best of our knowledge, E-Lamp Lite is also

the first content-based video retrieval system that is capable of indexing and searching

a collection of 100 million videos.

There are a number of future directions to improve the current system. For example, the

current concept detection mainly focuses on video-level recognition and on recognizing

coarse-grained nouns and verbs. It can neither understand the relation between the

entities, nor detect subtle or small objects, actions or events in the video. A promising

is to apply advanced computer vision techniques to address this limitation.

8.2 Application: Visual Memory QA

In this section, we demonstrate an interesting application that is built on the proposed

E-Lamp Lite system. Our point is to show that the proposed system can serves as an

112
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important fundamental engine for intelligent systems. The demo video can be found

at https://www.youtube.com/watch?v=wr19v1GofAs

The prevailing of mobile devices and cloud services has led to an unprecedented growth

of personal photo and video data. A recent study shows that the queries over personal

photos or videos are usually task- or question-driven [4]. For question-driven queries,

users seem to be using photos or videos as a mean to recover pieces from their own

memories, i.e. looking for a specific name, place or date. For example, a user might

ask “what was the last time we went hiking?”; “did we have pizza last week?” or “with

whom did I have dinner in AAAI 2015?”.

Figure 8.1: Comparison of Visual QA & Visual Memory QA.

We define the problem of seeking answers about the user’s daily life discovered in his

or her personal photo and video collection as MemexQA (Visual Memory Question

Answering). As about 80% of personal photos and videos do not have metadata such as

tags or titles [4], this functionality can be very useful in helping users find information

in their personal photos and videos. Visual Memory QA is a novel problem and has two

key differences from VQA (Visual QA) [184]: first the user is able to ask questions over

a collection of photos or videos in Visual Memory QA as opposed to a single image in

VQA. As shown in Fig. 8.1, given an image it is trivial for an adult to answer a question

in VQA. However, it is considerably more difficult for the same adult to answer questions

in MemexQA. This is particularly difficult and time consuming to answer questions over

a collection videos. Second, the question space in MemexQA is a subset of that in VQA,

which only includes the questions a user might ask later to recall his or her memories.

Because of the two differences, Visual Memory QA is expected to be more useful in

practice.

To address this novel problem, we introduce a prototype system that is built on the

proposed E-Lamp Lite system. The prototype can automatically analyzes the content

of personal videos/photos without user-generated metadata, and offers a conversational

interface to answer questions discovered from the user’s personal videos/photos. Tech-

nically, it can be regarded as an end-to-end neural network, consisting of three major

https://www.youtube.com/watch?v=wr19v1GofAs
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components: a recurrent neural network to understand the user question, a content-

based video engine to analyze and find relevant videos, and a multi-channel attention

neural network to extract the answer. To the best of our knowledge, the proposed system

is the first to answer personal questions discovered in personal photos or videos.

As shown in Fig. 8.2, the proposed model is inspired by the classical text QA model [185],

consisting of three major components: a recurrent neural network to understand the user

question, a content-based video engine to find the relevant videos, and a multi-channel

attention feed-forward neural network to extract the answer. Each component is pre-

trained on its own task, and then the first and the third components are fine-tuned on

our annotated benchmark data by Back Propagation.
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Figure 8.2: Framework of the proposed Visual Memory QA system.

In the recurrent neural network, the task is to understand the question and classify

it into a predefined answer type. We predefine a set of question and answer types

based on their frequencies in Flickr visual search logs [4]. See Table 8.1. A two-layer

LSTM neural network is incorporated as the classifier where the embedding of each

word in the question is sequentially fed into the LSTM units. As the answer types are

mutually exclusive, a softmax logistic loss is employed to train the network. Besides,

this question understanding component is also responsible for parsing the question to

extract the named entity (person, organization, place and time).

Table 8.1: Question and answer types in the proposed system.

Question
Type

Answer Type Example

which photo, video show me the photo of my dog?

when date, year, season, hour, etc. What was the last time we went hiking?

where scene, gps, city, country, etc. Where was my brother’s graduation ceremony in 2013?

what action, object, activity, etc. What did we play during this spring break?

who name, face, etc. With whom did I have dinner in AAAI 2015?

how many number How many times have I had sushi last month?

yes/no yes, no Did I do yoga yesterday?

The second component is the proposed content video/photo engine (E-Lamp Lite ) that

can automatically understand and index personal videos purely based on the video con-

tent. It takes a natural language sentence as the input, and outputs a list of semantically

relevant videos, i.e. text-to-video [58]. The top ranked relevant videos are fed into the

third component.
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The last component is a neural network to extract the answer. It receives, from the

question understanding network, a hidden state that embeds the information about the

predicted answer type, and the top ranked relevant videos from the video content engine.

Each relevant video is associated with information organized into channels, such as the

timestamp, the action concepts, scene concepts, object concepts and, in some cases, the

GPS coordinates. The task now switches to localizing the answer in the multiple input

channels. For example, the attention should be on timestamp for “when” questions, and

on food concepts for “what did we eat” questions. This is now achieved by a multi-

channel attention feed-forward neural network. For the current prototype, a few manual

templates are also employed to further improve the accuracy.

We presented a novel and promising Visual Memory QA system, an intelligent agent or

chatbot that can answer questions about users’ daily lives discovered in their personal

photos and videos. We have developed a prototype system that can efficiently answer

questions over 1 million personal videos. We will release an open benchmark dataset on

this task in future.



Appendix A

Proof

Theorem 3.4: the thresholding and the top-k thresholding results are optimal solutions

of Eq. (3.1) in special cases.

Proof. Suppose v ∈ [0, 1]m represents the adjusted m-dimensional representation, and

d ∈ [0, 1]m represents the vector fp(D). Define the regularization term g(v;α, β) as:

g(v;α, β) =
1

2
β2‖v‖0,

and denote the objective function value of Eq. (3.1) in the paper as E(v, β). Then the

optimization problem without constraint is reformulated as:

min
v

E(v, β) =
1

2
‖v − d‖22 +

1

2
β2‖v‖0

=
1

2

m∑

i=1

(
(vi − di)

2 + β2|vi|0
)
.

It is easy to see that this optimization can be decomposed into m sub-optimization

problems for i = 1, 2, · · · ,m as

min
v

E(vi, β) =
1

2
(vi − di)

2 +
1

2
β2|vi|0. (A.1)

For any vi 6= 0 it holds that |vi|0 = 1 in this case. Thus the minimum of Eq. (A.1) is

obtained at the minimal value of the first term, where v∗i = di, and the corresponding

optimal objective value is E(v∗i , β) =
1
2β

2.

For vi = 0, we have that E(vi, β) =
1
2d

2
i .
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It is then easy to deduce that the optimum of Eq. (A.1) can be calculated at:

v∗i =




di, di ≥ β

0, otherwise,

and thus the solution of the original problem is

v∗ = [v∗1 , v
∗
2 , · · · , v∗m]T .

Denote the kth largest component of d is d̃k. Then if we want to get the k-sparse solution

of Eq. (3.1), we just need to set that d̃k ≤ β < d̃k+1. Then the solution of the problem

keeps top-k largest elements of d while thresholds others to 0. This corresponds the

thresholding and the top-k thresholding results. The proof is completed.

Theorem 3.3: the optimal solutions of Eq. (3.1) (before or after normalization) is

logically consistent with its given HEX graph.

Proof. Suppose v ∈ [0, 1]m represents the adjusted m-dimensional representation, and

G = (N,Eh, Ee) represents the given HEX graph. For any concept (ni, nj) ∈ Eh,

according to Algorithm 1, we have vi ≥ vj . Therefore ∀nk, nj ∈ V , nk ∈ α(nj), we

have vk ≥ vj , where α(nj) is a set of ancestor of nj in Gh . This means condition 1 in

Definition 3.2 is satisfied.

Suppose ∃np ∈ ᾱ(ni), ∃nq ∈ ᾱ(nj) s.t. (np, nq) ∈ Ee. According to Algorithm 1, the

constraints ensure that if (np, nq) ∈ Eh, vpvq = 0, which breaks down into three cases:

1) vp 6= 0, vq = 0, 2) vp = 0, vq 6= 0, and 3) vp = vq = 0. According to the condition 1

in Definition 3.2, we have vp ≥ vi and vq ≥ vj so for case 1) we have vj ≤ vq = 0; for

case 2) vi ≤ vp = 0; for case 3) vi = 0 and vj = 0. Therefore in all cases, either vi or vj

is nonzero. When i = p and j = q, it trivially holds that vpvq = vivj = 0. This means

condition 2 in Definition 3.2 is satisfied.

According to Definition 3.2, v satisfies the two conditions and thus is logically consistent.

The normalization method discussed in the paper does not change nonzero scores to

zero or vice versa. If v is consistent with the exclusion relation in the given HEX graph

(condition 2), then after normalization it is still consistent. The normalization method

multiples a constant factor to each dimension of v so it would not change the ranking

order of the concepts. Therefore the normalization also preserves the hierarchical relation

(condition 1). The proof is completed.

Lemma 6.1: for the self-paced functions in Section 6.4.2, the proposed method finds

the optimal solution for Eq. (6.13).
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Proof. Consider the objective of Eq. (6.13). Suppose y∗ = [y∗1 , ..., y
∗
n]

T is a solution found

by the gradient descent method in Section 6.4.2. According to Eq. (6.14), ∀yi ∈ {−1,+1}
and ∀vi ∈ [0, 1], we have:

EΘ(y
∗
i , vi; k) ≤ EΘ(yi, vi; k). (A.2)

Therefore ∀y, ∀v, the following inequations hold:

EΘ(y
∗,v; k) =

n∑

i=1

EΘ(y
∗
i , vi; k) ≤

n∑

i=1

EΘ(yi, vi; k) = EΘ(y,v; k). (A.3)

In other words, y∗ found by Eq. (6.14) is the global optimum for Eq. (6.13). Now

consider the objective with the fixed y∗. The functions in Section 6.4.2, f(v) are convex

functions of v, so Eq. (6.13) is a convex function of v. Suppose that v∗ is a solution

found by gradient descent, due to the convexity, v∗ is the global optimum for Eq. (6.13).

Therefore, y∗,v∗ is the global optimal solution for Eq. (6.13).

Theorem 6.2: the algorithm in Fig. 6.2 converges to a stationary solution for any fixed

C and k.

Proof. Let the superscript index the variable value in that iteration, e.g. v(t) represents

the value of v in the tth iteration. Denote Θ(t) = Θ
(t)
1 , ...,Θ

(t)
m . y(0) and v(0) are arbitrary

initial values in their feasible regions. As Eq. (6.12) is a quadratic programming problem,

the solution Θ(t) is the global optimum for Ey,v, i.e.

E(Θ(t),y(t−1),v(t−1)) ≤ E(Θ(t−1),y(t−1),v(t−1)). (A.4)

According to Lemma 6.1, v,y are also global optimum for EΘ, i.e.

E(Θ(t),y(t),v(t)) ≤ E(Θ(t),y(t−1),v(t−1)). (A.5)

Substitute Eq. (A.5) back into Eq. (A.4), we have that ∀t ≥ 1,

E(Θ(t),y(t),v(t)) ≤ E(Θ(t−1),y(t−1),v(t−1)). (A.6)

Eq. (A.6) indicates that the objective decreases in every iteration. Since the objective E

is the sum of finite elements, it is bounded from below. Consequently, according to [186],

it is guaranteed that Alg. 6.2 (an instance of CCM algorithm) converges to a stationary

solution of the problem.

Theorem 7.5: For training samples X = {xi}ni=1, given a curriculum γ defined on it,

the feasible region, defined by,

Ψ = {v|aTv ≤ c} (A.7)
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is a curriculum region of γ if it holds: 1) Ψ ∧ v ∈ [0, 1]n is nonempty; 2) ai<aj for all

γ(xi)<γ(xj); ai=aj for all γ(xi)=γ(xj).

Proof. (1) Ψ ∧ v ∈ [0, 1]n is a nonempty convex set.

(2) For xi,xj with γ(xi) < γ(xj), denote Ψij = {vij |aTijvij≤c}, aij/vij the sub-vector

of a/v by wiping off its ith and jth elements, respectively, we can then calculate the

expected value of vi on the region Ψ = {v|aTv ≤c} as:

E(vi) =

∫

Ψ
vi dv

=

∫

Ψij

∫ c−a
T
ijvij

aj

0

∫ c−a
T
ijvij−ajvj

ai

0
vidvidvjdvij

=

∫

Ψij

∫ c−a
T
ijvij

aj

0

(
c− aTijvij − ajvj

)2

2a2i
dvjdvij

=

∫
Ψij

(
c− aTijvij

)3
dvij

6a2i aj
.

In the similar way, we can get that:

E(vj) =

∫

Ψ
vj dv =

∫
Ψij

(
c− aTijvij

)3
dvij

6a2jai
.

We thus can get that

E(vi)− E(vj) =

∫
Ψij

(
c− aTijvij

)3
dvij

6a2i a
2
j

(aj − ai) > 0.

Similarly, we can prove that
∫
Ψ vi dΨ =

∫
Ψ vj dΨ for γ(xi) = γ(xj).

The proof is then completed.

Theorem 7.6: The binary, linear, logarithmic and mixture scheme are self-paced func-

tions.

Proof. We first prove the above functions satisfying Condition 1 in Definition 7.4, i.e.

they are convex with respect to v ∈ [0, 1]n, where n is the number of samples. As

binary, linear, logarithmic and mixture self-paced functions can be decoupled f(v;λ) =
∑n

i=1 f(vi;λ):
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For binary scheme f(vi;λ) = −λvi:

∂2f

∂2vi
= 0. (A.8)

For linear scheme f(vi;λ) =
1
2λ(v

2
i − 2vi):

∂2f

∂2vi
= λ > 0, (A.9)

where λ > 0.

For logarithmic scheme f(vi;λ) = ζvi − ζvi

log ζ :

∂2f

∂2vi
= − 1

log ζ
ζvi > 0, (A.10)

where ζ = 1− λ and λ ∈ (0, 1).

For mixture scheme f(vi;λ) = −ζ log(vi + 1
λ1
ζ):

∂2f

∂2vi
=

ζλ2
1

(ζ + λ1vi)2
> 0 (A.11)

where λ = [λ1, λ2], ζ = λ1λ2
λ1−λ2

, and λ1 > λ2 > 0.

As the above second derivatives are non-negative, and the sum of convex functions is

convex, we have f(v;λ) for binary, linear, logarithmic and mixture scheme are convex.

We then prove the above functions satisfying Condition 2 that is when all variables are

fixed except for vi, ℓi, v
∗
i decreases with ℓi

Denote Ew =
∑n

i=1 viℓi + f(v;λ) as the objective with the fixed model parameters w,

where ℓi is the loss for the ith sample. The optimal solution v∗ = [v∗1 , · · · , v∗n]T =

argminv∈[0,1]n Ew.

For binary scheme:

Ew =
n∑

i=1

(ℓi − λ)vi;

∂Ew

∂vi
= ℓi − λ = 0;

⇒ v∗i =




1 ℓi < λ

0 ℓi ≥ λ.

(A.12)
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For linear scheme:

Ew =

n∑

i=1

ℓivi +
1

2
λ(v2i − 2vi);

∂Ew

∂vi
= ℓ+ viλ− λ = 0;

⇒ v∗i =




− 1

λ
ℓ+ 1 ℓi < λ

0 ℓi ≥ λ.

(A.13)

For logarithmic scheme:

Ew =

n∑

i=1

ℓivi + ζvi −
ζvi

log ζ
;

∂Ew

∂vi
= ℓ+ ζ − ζvi = 0;

⇒ v∗i =





1
log ζ log(ℓ+ ζ) ℓi < λ

0 ℓi ≥ λ.

(A.14)

where ζ = 1− λ (0 < λ < 1).

For mixture scheme:

Ew =

n∑

i=1

ℓivi − ζ log(vi +
1

λ1
ζ);

∂Ew

∂vi
= ℓ− ζλ1

ζ + λ1vi
= 0;

⇒ v∗i =





1 ℓi ≤ λ2

0 ℓi ≥ λ1

(λ1−ℓ)ζ
ℓλ1

λ2 < ℓi < λ1

(A.15)

where λ = [λ1, λ2], and ζ = λ1λ2
λ1−λ2

, (λ1 > λ2 > 0).

By setting the partial gradient to zero we arrive the optimal solution of v. It is obvious

that vi is decreasing with respect to ℓi in all functions. In all cases, we have that

lim
ℓi→0

v∗i = 1, lim
ℓi→∞

v∗i = 0.

Finally, we prove that the above functions satisfying Condition 3 that is ‖v‖1 increases

with respect to λ, and it holds that ∀i∈ [1, n], lim
λ→0

v∗i =0, lim
λ→∞

v∗i =1.

It is easy to verify that each individual v∗i increases with respect to λ in their closed-form

solutions in Eq. (A.12), Eq. (A.13), Eq. (A.14) and Eq. (A.15) (in mixture scheme, let

λ = λ1 represent the model age). Therefore ‖v‖1 =
∑n

i=1 vi also increases with respect

to λ. In an extreme case, when λ approaches positive infinity, we have ∀i ∈ [1, n]vi = 1,
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i.e. lim
λ→∞

v∗i =1 in Eq. (A.12), Eq. (A.13), Eq. (A.14) and Eq. (A.15). Similarly, when λ

approaches 0, we have lim
λ→0

v∗i =0.

As binary, linear, logarithmic and mixture scheme satisfy the three conditions, they are

all self-paced functions.

The proof is then completed.

Theorem 7.7: Algorithm 3 attains the global optimum to minv E(w,v) for any given

w in linearithmic time.

Proof. Given the training dataset D = {(x1, y1), · · · , (xn, yn)}, where xi ∈ R
m denotes

the ith observed sample and yi denotes its label. Assume that the training samples

X = [x1, · · · ,xn] are with b groups: X(1), · · · ,X(b), where X(j) = (x
(j)
1 , · · · ,x(j)

nj ) ∈
R
m×nj corresponds to samples in the jth group, nj is the sample number in this group

and
∑b

j=1 nj = n. Accordingly, denote the weight vector as v = [v(1), · · · ,v(b)], where

v(j) = (v
(j)
1 , · · · , v(j)nj )

T ∈ R
nj . The following theorem proves that Algorithm 1 can get

the global solution of the following non-convex optimization problem:

min
v∈[0,1]n

E(w,v;λ, γ) =
n∑

i=1

viL(yi, f(xi,w))− λ
n∑

i=1

vi − γ‖v‖2,1, (A.16)

where L(yi, f(xi,w)) denotes the loss function which calculates the cost between the

ground truth label yi and the estimated label f(xi,w), and the l2,1-norm ‖v‖2,1 is the

group sparsity of v:

‖v‖2,1 =

b∑

j=1

‖v(j)‖2.

For convenience we briefly rewrite E(w,v;λ, γ) and L(yi, f(xi,w)) as E(v) and Li,

respectively.

The weight vector v∗ outputted from Algorithm 1 attains the global optimal solution of

the optimization problem (A.16), i.e.,

v∗ = arg min
v∈[0,1]n

E(v).

The objective function of (A.16) can be reformulated as the following decoupling forms

based on the data cluster information:

E(v) =

b∑

j=1

E(v(j)), (A.17)
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where

E(v(j)) =

nj∑

i=1

v
(j)
i L

(j)
i − λ

nj∑

i=1

v
(j)
i − γ‖v(j)‖2, (A.18)

where L
(j)
i represents the loss value of x

(j)
i . It is easy to see that the original problem

(A.16) can be equivalently decomposed as a series of the following sub-optimization

problems (j = 1, · · · , b):
v(j)∗ = arg min

v(j)∈[0,1]nj

E(v(j)). (A.19)

E(v(j)) defined in Eq. (A.18) is a concave function since its first and second terms are

linear, and the third term is the negative l2,1 norm, whose positive form is a commonly

utilized convex regularizer. It is well known that the minimum solution of a concave

function over a polytope can be obtained at its vertices [187]. In other words, for the

optimization problem (A.19), it holds that its optimal solution v(j)∗ ∈ {0, 1}nj , i.e.,

v(j)∗ = arg min
v(j)∈{0,1}nj

E(v(j)). (A.20)

For k = 1, · · · , nj, let’s denote

v(j)(k) = arg min

v(j) ∈ {0, 1}nj

‖v(j)‖0 = k

E(v(j)). (A.21)

This means that v(j)(k) is the optimum of (A.19) if it is further constrained to be with

k nonzero entries. It is then easy to deduce that

v(j)∗ = arg min
v(j)(k)

E(v(j)(k)). (A.22)

That is, the optimal solution v(j)∗ of (A.19) can be achieved among v(j)(1), · · · ,v(j)(nj)

at which the minimal objective value is attained.

Without loss of generality, we assume that the samples (x
(j)
1 , · · · ,x(j)

nj ) in the jth cluster

are arranged in the ascending order of their loss values L
(j)
i . Then for the optimization

problem (A.21), we can get that

min

v(j) ∈ {0, 1}nj

‖v(j)‖0 = k

E(v(j)) =

nj∑

i=1

v
(j)
i L

(j)
i − λ

nj∑

i=1

v
(j)
i − γ‖v(j)‖2
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⇔ min

v(j) ∈ {0, 1}nj

‖v(j)‖0 = k

nj∑

i=1

v
(j)
i L

(j)
i ,

since the last two terms in E(v(j)) are with constant values under the constraint. Then

it is easy to get that the optimal solution v(j)(k) of (A.21) is attained by setting its k

entries corresponding to the k smallest loss values L
(j)
i (i.e., the first k entries of v(j)(k))

as 1 while others as 0, and the minimal objective value is

E(v(j)(k)) =

k∑

i=1

v
(j)
i L

(j)
i − λk − γ

√
k. (A.23)

Then let’s calculate the difference between any two adjacent elements in the sequence

E(v(j)(1)), · · · , E(v(j)(nj)):

diffk = E(v(j)(k + 1))− E(v(j)(k))

= L
(j)
k+1 − λ− γ(

√
k + 1−

√
k)

= L
(j)
k+1 − (λ+ γ

1√
k + 1 +

√
k
).

Since L
(j)
k (with respect to k) is a monotonically increasing sequence while λ+γ 1√

k+1+
√
k

is a monotonically decreasing sequence, diffk is a monotonically increasing sequence.

Denote k∗ as the index where its first positive value is attained (if diffk ≤ 0 for all

k = 1, · · · , nj − 1, k∗ = nj). Then it is easy to get that E(v(j)(k)) is monotonically

decreasing until k = k∗ and then it starts to be monotonically increasing. This means

that E(v(j)(k∗)) gets the minimum among all E(v(j)(1)), · · · , E(v(j)(nj)). Based on

(A.22), we know that the global optimum v(j)∗ of (A.19) is attained at v(j)(k∗).

By independently calculating the optimum v(j)∗ for each cluster and then combining

them, the global optimal solution v∗ of (A.16) can then be calculated. This corresponds

to the process of our proposed Algorithm 3.

The most computational complex step in the above derivation is the sort of nj (1 ≤ j ≤ b)

samples. Since nj < n, the average-case complexity is thus upper bounded by O(n log n),

assuming that the quick sort algorithm is used.

The proof is completed.
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Detailed Results

Table B.1: Event-level comparison of AP on the 10 splits of MED13Test.

Event ID & Name Raw + Expert Adjusted + Expert Adjusted + Auto Adjusted + AutoVisual
E006: Birthday party 0.3411 0.2980 0.1207 0.1207
E007: Changing a vehicle tire 0.0967 0.1667 0.2061 0.0134
E008: Flash mob gathering 0.2087 0.1647 0.1028 0.1028
E009: Getting a vehicle unstuck 0.1416 0.1393 0.0569 0.0569
E010: Grooming an animal 0.0442 0.0479 0.0128 0.0128
E011: Making a sandwich 0.0909 0.0804 0.2910 0.0709
E012: Parade 0.4552 0.4685 0.2027 0.2027
E013: Parkour 0.0498 0.0596 0.0619 0.0525
E014: Repairing an appliance 0.2731 0.2376 0.2262 0.0234
E015: Working on a sewing project 0.2022 0.2184 0.0135 0.0045
E021: Attempting a bike trick 0.0969 0.1163 0.0486 0.0486
E022: Cleaning an appliance 0.1248 0.1248 0.1248 0.0124
E023: Dog show 0.7284 0.7288 0.6028 0.6027
E024: Giving directions to a location 0.0253 0.0252 0.0252 0.0069
E025: Marriage proposal 0.0748 0.0750 0.0755 0.0011
E026: Renovating a home 0.0139 0.0061 0.0049 0.0049
E027: Rock climbing 0.1845 0.1724 0.0668 0.0668
E028: Town hall meeting 0.1585 0.0898 0.0163 0.0163
E029: Winning a race without a vehicle 0.1470 0.1697 0.0584 0.0584
E030: Working on a metal crafts project 0.0673 0.0422 0.0881 0.0026
MAP 0.1762 0.1716 0.1203 0.0741
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Table B.2: Event-level comparison of AP on the 10 splits of MED14Test.

Event ID & Name Raw + Expert Adjusted + Expert Adjusted + Auto Adjusted + AutoVisual
E021: Attempting a bike trick 0.0632 0.0678 0.0814 0.0822
E022: Cleaning an appliance 0.2634 0.2635 0.2634 0.2636
E023: Dog show 0.6757 0.6449 0.4387 0.4414
E024: Giving directions to a location 0.0613 0.0613 0.0614 0.0612
E025: Marriage proposal 0.0176 0.0174 0.0181 0.0174
E026: Renovating a home 0.0252 0.0089 0.0043 0.0043
E027: Rock climbing 0.2082 0.1302 0.0560 0.0560
E028: Town hall meeting 0.2478 0.0925 0.0161 0.0161
E029: Winning a race without a vehicle 0.1234 0.1848 0.0493 0.0497
E030: Working on a metal crafts project 0.1238 0.0616 0.0981 0.0981
E031: Beekeeping 0.5900 0.5221 0.4217 0.4258
E032: Wedding shower 0.0834 0.0924 0.0922 0.0395
E033: Non-motorized vehicle repair 0.5218 0.4525 0.0149 0.0150
E034: Fixing musical instrument 0.0284 0.0439 0.0439 0.0023
E035: Horse riding competition 0.3673 0.3346 0.0994 0.0993
E036: Felling a tree 0.0970 0.0620 0.0108 0.0108
E037: Parking a vehicle 0.2921 0.2046 0.0313 0.0313
E038: Playing fetch 0.0339 0.0284 0.0016 0.0014
E039: Tailgating 0.1429 0.0200 0.0010 0.0010
E040: Tuning musical instrument 0.1553 0.1553 0.1840 0.0128
MAP 0.2061 0.1724 0.0994 0.0865

Table B.3: Performance for 30 commercials on the YFCC100 set.

ID Query Name Commercial Product
Evaluation Metric

Category
P@20 MRR MAP@20

1 football and running soccer shoes 0.80 1.00 0.88 Sport
2 auto racing sport cars 0.70 1.00 0.91 Auto
3 dog show dog training collars 0.95 1.00 0.97 Grocery
4 baby stroller/diapper 1.00 1.00 1.00 Grocery
5 fire burning smoke fire prevention 0.95 1.00 0.96 Miscellaneous
6 cake or birthday cake birthday cake 0.35 0.50 0.60 Grocery
7 underwater diving 1.00 1.00 1.00 Sports
8 dog indoor dog food 0.75 1.00 0.67 Grocery
9 riding horse horse riding lessons 0.90 1.00 0.93 Sports
10 kitchen food restaurant 1.00 1.00 1.00 Grocery
11 Christmas decoration decoration 0.80 1.00 0.87 Grocery
12 dancing dancing lessons 0.90 1.00 0.90 Miscellaneous
13 bicycling cycling cloth and helmet 0.95 1.00 0.99 Sports
14 car and vehicle car tires 1.00 1.00 1.00 Auto
15 skiing or snowboarding ski resort 0.95 1.00 0.96 Sports
16 parade flags or banners 0.90 1.00 0.96 Grocery
17 music band live music show 1.00 1.00 1.00 Grocery
18 busking live show 0.20 1.00 0.50 Miscellaneous
19 home renovation furniture 0.00 0.00 0.00 Miscellaneous
20 speaking in front of people speaking in public training 0.65 0.50 0.63 Miscellaneous
21 sunny beach vacation by beach 1.00 1.00 1.00 Traveling
22 politicians vote Obama 0.60 1.00 0.63 Miscellaneous
23 female face makeup 1.00 1.00 1.00 Miscellaneous
24 cell phone cell phone 0.80 1.00 0.96 Miscellaneous
25 fireworks fireworks 0.95 1.00 0.96 Miscellaneous
26 tennis tennis 1.00 1.00 1.00 Sports
27 helicopter helicopter tour 1.00 1.00 1.00 Traveling
28 cooking pan 0.90 1.00 0.92 Miscellaneous
29 eiffel night hotels in Paris 0.90 1.00 0.89 Traveling
30 table tennis ping pong 0.60 1.00 0.85 Sports
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Table B.4: Event-level comparison of modality contribution on the NIST split. The
best AP is marked in bold.

Event ID & Name FullSys FullSys+PRF VisualSys ASRSys OCRSys
E006: Birthday party 0.3842 0.3862 0.3673 0.0327 0.0386
E007: Changing a vehicle tire 0.2322 0.3240 0.2162 0.1707 0.0212
E008: Flash mob gathering 0.2864 0.4310 0.2864 0.0052 0.0409
E009: Getting a vehicle unstuck 0.1588 0.1561 0.1588 0.0063 0.0162
E010: Grooming an animal 0.0782 0.0725 0.0782 0.0166 0.0050
E011: Making a sandwich 0.1183 0.1304 0.1064 0.2184 0.0682
E012: Parade 0.5566 0.5319 0.5566 0.0080 0.0645
E013: Parkour 0.0545 0.0839 0.0448 0.0043 0.0066
E014: Repairing an appliance 0.2619 0.2989 0.2341 0.2086 0.0258
E015: Working on a sewing project 0.2068 0.2021 0.2036 0.0866 0.0166
E021: Attempting a bike trick 0.0635 0.0701 0.0635 0.0006 0.0046
E022: Cleaning an appliance 0.2634 0.1747 0.0008 0.2634 0.0105
E023: Dog show 0.6737 0.6610 0.6737 0.0009 0.0303
E024: Giving directions to a location 0.0614 0.0228 0.0011 0.0614 0.0036
E025: Marriage proposal 0.0188 0.0270 0.0024 0.0021 0.0188
E026: Renovating a home 0.0252 0.0160 0.0252 0.0026 0.0023
E027: Rock climbing 0.2077 0.2001 0.2077 0.1127 0.0038
E028: Town hall meeting 0.2492 0.3172 0.2492 0.0064 0.0134
E029: Winning a race without a vehicle 0.1257 0.1929 0.1257 0.0011 0.0019
E030: Working on a metal crafts project 0.1238 0.1255 0.0608 0.0981 0.0142
E031: Beekeeping 0.5883 0.6401 0.5883 0.2676 0.0440
E032: Wedding shower 0.0833 0.0879 0.0459 0.0428 0.0017
E033: Non-motorized vehicle repair 0.5198 0.5263 0.5198 0.0828 0.0159
E034: Fixing musical instrument 0.0276 0.0444 0.0170 0.0248 0.0023
E035: Horse riding competition 0.3677 0.3710 0.3677 0.0013 0.0104
E036: Felling a tree 0.0968 0.1180 0.0968 0.0020 0.0076
E037: Parking a vehicle 0.2918 0.2477 0.2918 0.0008 0.0009
E038: Playing fetch 0.0339 0.0373 0.0339 0.0020 0.0014
E039: Tailgating 0.1437 0.1501 0.1437 0.0013 0.0388
E040: Tuning musical instrument 0.1554 0.3804 0.0010 0.1840 0.0677
MAP (MED13Test E006-E015 E021-E030) 0.2075 0.2212 0.1831 0.0653 0.0203
MAP (MED14Test E021-E040) 0.2060 0.2205 0.1758 0.0579 0.0147

Table B.5: Event-level comparison of visual feature contribution on the NIST split.

Event ID & Name FullSys MED/IACC MED/Sports MED/YFCC MED/DIY MED/ImageNet
E006: Birthday party 0.3842 0.3797 0.3842 0.2814 0.3842 0.2876
E007: Changing a vehicle tire 0.2322 0.2720 0.2782 0.1811 0.1247 0.0998
E008: Flash mob gathering 0.2864 0.1872 0.2864 0.3345 0.2864 0.2864
E009: Getting a vehicle unstuck 0.1588 0.1070 0.1588 0.1132 0.1588 0.1588
E010: Grooming an animal 0.0782 0.0902 0.0782 0.0914 0.0474 0.0782
E011: Making a sandwich 0.1183 0.0926 0.1183 0.1146 0.1183 0.1183
E012: Parade 0.5566 0.5738 0.5566 0.3007 0.5566 0.5566
E013: Parkour 0.0545 0.0066 0.0545 0.0545 0.0545 0.0545
E014: Repairing an appliance 0.2619 0.2247 0.2619 0.1709 0.2619 0.1129
E015: Working on a sewing project 0.2068 0.2166 0.2068 0.2068 0.1847 0.0712
E021: Attempting a bike trick 0.0635 0.0635 0.0006 0.0635 0.0635 0.0635
E022: Cleaning an appliance 0.2634 0.2634 0.2634 0.2634 0.2634 0.2634
E023: Dog show 0.6737 0.6737 0.0007 0.6737 0.6737 0.6737
E024: Giving directions to a location 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614
E025: Marriage proposal 0.0188 0.0188 0.0188 0.0188 0.0188 0.0188
E026: Renovating a home 0.0252 0.0017 0.0252 0.0252 0.0252 0.0252
E027: Rock climbing 0.2077 0.2077 0.0009 0.2077 0.2077 0.2077
E028: Town hall meeting 0.2492 0.0956 0.2492 0.2418 0.2492 0.2492
E029: Winning a race without a vehicle 0.1257 0.1257 0.0056 0.1257 0.1257 0.1257
E030: Working on a metal crafts project 0.1238 0.1238 0.1238 0.0981 0.1238 0.1238
E031: Beekeeping 0.5883 0.5883 0.5883 0.5883 0.5883 0.0012
E032: Wedding shower 0.0833 0.0833 0.0833 0.0833 0.0924 0.0833
E033: Non-motorized vehicle repair 0.5198 0.5198 0.4440 0.5198 0.4742 0.4417
E034: Fixing musical instrument 0.0276 0.0276 0.0276 0.0276 0.0439 0.0276
E035: Horse riding competition 0.3677 0.3430 0.1916 0.3677 0.3677 0.3677
E036: Felling a tree 0.0968 0.0275 0.1100 0.0968 0.0968 0.0968
E037: Parking a vehicle 0.2918 0.1902 0.2918 0.2918 0.2918 0.1097
E038: Playing fetch 0.0339 0.0339 0.0008 0.0339 0.0339 0.0339
E039: Tailgating 0.1437 0.0631 0.1437 0.0666 0.1437 0.1437
E040: Tuning musical instrument 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554
MAP (MED13Test E006-E015 E021-E030) 0.2075 0.1893 0.1567 0.1814 0.1995 0.1818
MAP (MED14Test E021-E040) 0.2060 0.1834 0.1393 0.2005 0.2050 0.1637
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Table B.6: Event-level comparison of textual feature contribution on the NIST split.

Event ID & Name FullSys MED/ASR MED/OCR
E006: Birthday party 0.3842 0.3842 0.3673
E007: Changing a vehicle tire 0.2322 0.2162 0.2322
E008: Flash mob gathering 0.2864 0.2864 0.2864
E009: Getting a vehicle unstuck 0.1588 0.1588 0.1588
E010: Grooming an animal 0.0782 0.0782 0.0782
E011: Making a sandwich 0.1183 0.1043 0.1205
E012: Parade 0.5566 0.5566 0.5566
E013: Parkour 0.0545 0.0545 0.0448
E014: Repairing an appliance 0.2619 0.2436 0.2527
E015: Working on a sewing project 0.2068 0.1872 0.2242
E021: Attempting a bike trick 0.0635 0.0635 0.0635
E022: Cleaning an appliance 0.2634 0.0008 0.2634
E023: Dog show 0.6737 0.6737 0.6737
E024: Giving directions to a location 0.0614 0.0011 0.0614
E025: Marriage proposal 0.0188 0.0188 0.0024
E026: Renovating a home 0.0252 0.0252 0.0252
E027: Rock climbing 0.2077 0.2077 0.2077
E028: Town hall meeting 0.2492 0.2492 0.2492
E029: Winning a race without a vehicle 0.1257 0.1257 0.1257
E030: Working on a metal crafts project 0.1238 0.0608 0.1238
E031: Beekeeping 0.5883 0.5883 0.5883
E032: Wedding shower 0.0833 0.0833 0.0459
E033: Non-motorized vehicle repair 0.5198 0.5198 0.5198
E034: Fixing musical instrument 0.0276 0.0314 0.0178
E035: Horse riding competition 0.3677 0.3677 0.3677
E036: Felling a tree 0.0968 0.0968 0.0968
E037: Parking a vehicle 0.2918 0.2918 0.2918
E038: Playing fetch 0.0339 0.0339 0.0339
E039: Tailgating 0.1437 0.1437 0.1437
E040: Tuning musical instrument 0.1554 0.0893 0.1840
MAP (MED13Test E006-E015 E021-E030) 0.2075 0.1848 0.2059
MAP (MED14Test E021-E040) 0.2060 0.1836 0.2043
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wise coordinate optimization. The Annals of Applied Statistics, 1(2):302–332,

2007.

[158] Julien Mairal. Stochastic majorization-minimization algorithms for large-scale

optimization. In NIPS, 2013.

[159] Shankar Vembu and Sandra Zilles. Interactive learning from multiple noisy labels.

In ECML, 2016.

[160] Maciej Zieba, Jakub M Tomczak, and Jerzy Swiatek. Self-paced learning for imbal-

anced data. In Asian Conference on Intelligent Information and Database Systems,

2016.

[161] Enver Sangineto, Moin Nabi, Dubravko Culibrk, and Nicu Sebe. Self paced deep

learning for weakly supervised object detection. arXiv preprint arXiv:1605.07651,

2016.

[162] Jian Liang, Zhihang Li, Dong Cao, Ran He, and Jingdong Wang. Self-paced

cross-modal subspace matching. In SIGIR, 2016.

[163] Dan Xu, Xavier Alameda-Pineda, Jingkuan Song, Elisa Ricci, and Nicu Sebe.

Academic coupled dictionary learning for sketch-based image retrieval. In MM,

2016.

[164] Dan Xu, Jingkuan Song, Xavier Alameda-Pineda, Elisa Ricci, and Nicu Sebe.

Multi-paced dictionary learning for cross-domain retrieval and recognition. In

ICPR, 2016.

[165] Dingwen Zhang, Deyu Meng, Chao Li, Lu Jiang, Qian Zhao, and Junwei Han.

A self-paced multiple-instance learning framework for co-saliency detection. In

ICCV, 2015.

[166] Qian Zhao, Deyu Meng, Lu Jiang, Qi Xie, Zongben Xu, and Alexander G Haupt-

mann. Self-paced learning for matrix factorization. In AAAI, 2015.



Bibliography 141

[167] Hao Li, Maoguo Gong, Deyu Meng, and Qiguang Miao. Multi-objective self-paced

learning. In AAAI, 2016.

[168] Changsheng Li, Fan Wei, Junchi Yan, Weishan Dong, Qingshan Liu, and

Hongyuan Zha. Self-paced multi-task learning. arXiv preprint arXiv:1604.01474,

2016.

[169] Yulia Tsvetkov. Linguistic Knowledge in Data-Driven Natural Language Process-

ing. PhD thesis, Carnegie Mellon University, 2016.

[170] Volkan Cirik, Eduard Hovy, and Louis-Philippe Morency. Visualizing and under-

standing curriculum learning for long short-term memory networks. arXiv preprint

arXiv:1611.06204, 2016.

[171] Jie Fu, Zichuan Lin, Miao Liu, Nicholas Leonard, Jiashi Feng, and Tat-Seng Chua.

Deep q-networks for accelerating the training of deep neural networks. arXiv

preprint arXiv:1606.01467, 2016.

[172] Yanbo Fan, Ran He, Jian Liang, and Bao-Gang Hu. Self-paced learning: an

implicit regularization perspectiv. AAAI, 2017.

[173] Agata Lapedriza, Hamed Pirsiavash, Zoya Bylinskii, and Antonio Torralba. Are

all training examples equally valuable? arXiv preprint arXiv:1311.6510, 2013.

[174] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[175] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics &

Data Analysis, 38(4):367–378, 2002.

[176] Zhenzhong Lan, Xuanchong Li, and Alexandar G Hauptmann. Temporal exten-

sion of scale pyramid and spatial pyramid matching for action recognition. arXiv

preprint arXiv:1408.7071, 2014.

[177] Eleonora Vig, Michael Dorr, and David Cox. Space-variant descriptor sampling

for action recognition based on saliency and eye movements. In ECCV, 2012.

[178] William Brendel and Sinisa Todorovic. Learning spatiotemporal graphs of human

activities. In ICCV, 2011.

[179] Yu-Gang Jiang, Qi Dai, Xiangyang Xue, Wei Liu, and Chong-Wah Ngo.

Trajectory-based modeling of human actions with motion reference points. In

ECCV, 2012.

[180] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Recognizing activities with

cluster-trees of tracklets. In BMVC, 2012.



Bibliography 142

[181] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-Fu Chang.

Exploiting feature and class relationships in video categorization with regularized

deep neural networks. arXiv preprint arXiv:1502.07209, 2015.

[182] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return

of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.

[183] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[184] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In ICCV,

2015.

[185] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,

Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager,

et al. Building watson: An overview of the deepqa project. AI magazine, 31(3):

59–79, 2010.

[186] Paul Tseng. Convergence of a block coordinate descent method for nondiffer-

entiable minimization. Journal of optimization theory and applications, 109(3):

475–494, 2001.

[187] James E Falk and Karla L Hoffman. Concave minimization via collapsing poly-

topes. Operations Research, 34(6):919–929, 1986.


	Abstract
	Acknowledgements
	1 Introduction
	1.1 Research Challenges and Solutions
	1.2 Social Validity
	1.3 Thesis Overview
	1.4 Thesis Statement
	1.5 Key Contributions of the Thesis

	2 Related Work
	2.1 Content-based Image Retrieval
	2.2 Copy Detection
	2.3 Semantic Concept Detection
	2.4 Multimedia Event Detection
	2.5 Content-based Video Semantic Search

	3 Indexing Semantic Features
	3.1 Introduction
	3.2 Related Work
	3.3 Method Overview
	3.4 Concept Adjustment
	3.4.1 Distributional Consistency
	3.4.2 Logical Consistency
	3.4.3 Discussions

	3.5 Inverted Indexing & Search
	3.5.1 Video Search

	3.6 Experiments
	3.6.1 Setups
	3.6.2 Performance on MED
	3.6.3 Comparison to State-of-the-art on MED
	3.6.4 Comparison to Top-k Thresholding on MED
	3.6.5 Accuracy of Concept Adjustment
	3.6.6 Performance on YFCC100M

	3.7 Summary

	4 Semantic Search
	4.1 Introduction
	4.2 Related Work
	4.3 Semantic Search
	4.3.1 Semantic Query Generation
	4.3.2 Retrieval Models

	4.4 Experiments
	4.4.1 Setups
	4.4.2 Semantic Matching in SQG
	4.4.3 Modality/Feature Contribution
	4.4.4 Comparison of Retrieval Methods

	4.5 Summary

	5 Query Embedding and Hybrid Search
	5.1 Introduction
	5.1.1 Query Embedding
	5.1.2 Hybrid Search

	5.2 Related Work
	5.3 Query Embedding
	5.3.1 Problem
	5.3.2 Models
	5.3.2.1 Max-Pooled MLP
	5.3.2.2 Two-channel RNN

	5.3.3 Results
	5.3.3.1 Baseline Comparisons
	5.3.3.2 Model Parameters


	5.4 Hybrid Search
	5.4.1 Model
	5.4.2 Experimental Results

	5.5 Summary

	6 Multimodal Reranking
	6.1 Introduction
	6.2 Related Work
	6.3 MMPRF
	6.4 SPaR
	6.4.1 Learning with Fixed Pseudo Labels and Weights
	6.4.2 Learning with Fixed Classification Parameters
	6.4.3 Convergence and Relation to Other Reranking Models

	6.5 Experiments
	6.5.1 Setups
	6.5.2 Comparison with Baseline methods
	6.5.3 Impact of Pseudo Label Accuracy
	6.5.4 Comparison of Weighting Schemes
	6.5.5 Experiments on Web Query Dataset
	6.5.6 Runtime Comparison

	6.6 Summary

	7 Learning Semantic Concepts
	7.1 Introduction
	7.2 Related Work
	7.2.1 Curriculum Learning
	7.2.2 Self-paced Learning
	7.2.3 Weakly-Labeled Data Learning

	7.3 Theory
	7.3.1 Curriculum
	7.3.2 Self-pace Functions
	7.3.3 Algorithm

	7.4 Implementation
	7.4.1 Curriculum region implementation
	7.4.2 Self-paced function implementation
	7.4.3 Self-paced function with diversity
	7.4.4 Self-paced function with dropout

	7.5 Discussions
	7.5.1 Theoretical Justification
	7.5.2 Limitations

	7.6 Experiments using Diversity Scheme
	7.6.1 Event Detection
	7.6.2 Action Recognition

	7.7 Experiments on Noisy Data
	7.7.1 Experimental Setup
	7.7.2 Experiments on FCVID
	7.7.3 Experiments on YFCC100M

	7.8 Summary

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Application: Visual Memory QA

	A Proof
	B Detailed Results
	Bibliography

