
Optimizing Multiple Continuous Queries

Chun Jin

CMU-LTI-06-009

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave. Pittsburgh, PA 15213
cjin@cs.cmu.edu

Dissertation Committee:
Jaime Carbonell, Carnegie Mellon University (Chair)

Christopher Olston, Carnegie Mellon University, on leave at Yahoo! Research
Jamie Callan, Carnegie Mellon University

Phil Hayes, Vivisimo, Inc.

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

c©2006, Chun Jin





This dissertation is dedicated to my dear mother, Yueying.

iii





Abstract

Emerging data stream processing applications present new challenges that are not ad-

dressed by traditional DBMS technologies. To provide practical solutions for matching

highly dynamic data streams with multiple long-lived and dynamically-updated continu-

ous queries, a stream processing system should support incremental evaluation over new

data, query optimization for continuous queries including computation sharing among

multiple queries.

This thesis addresses these problems, presents the solutions in a prototype called AR-

GUS, and conducts experimental evaluations on the implemented techniques. Incremental

query evaluation is realized by a set of algorithms based on materializing intermediate

results to incrementally evaluate selections/joins (Rete), aggregates (incremental aggrega-

tion), and set operators (incremental set operations). The query optimization techniques

include transitivity inference to derive highly selective predicates, conditional material-

ization to selectively materialize intermediate results, join order optimization to reduce

join computations, and minimum column projection to project only necessary columns.

Computation sharing is realized by an incremental multiple query optimization (IMQO)

approach for tractable plan construction and dynamic query registration. It applies four

steps to register a new query Q, recording existing query computations of the multi-query

plan R, searching common computations between Q and R, selecting optimal sharing

paths, and adding new computations to obtain final results for Q and R. The thesis

v



vi

presents a comprehensive computation indexing and searching scheme, and presents sev-

eral sharing strategies. Finally, the evaluations on two data sets show that each technique

leads to significant improvement in system performance up to hundreds-fold speed-up.

ARGUS is implemented atop a widely used commercial DBMS Oracle to allow fast

deployment of the prototype as a value-added package to existing database applications

where requirements of stream processing are growing rapidly in both scale and diversity.

Future work includes supporting adaptive query processing, supporting distributive and

parallel computing, and execution optimization.

Keywords: Stream Data, Continuous Query, Incremental Multiple Query Optimiza-

tion, Rete, Incremental Query Evaluation, Transitivity Inference, Database, Conditional

Materialization, Predicate Set, Extended Predicate Set Operation, Canonical Predicate

Form, Predicate Indexing, Computation Sharing.



Acknowledgements

I am extremely grateful to my Ph.D. advisor, Jaime Carbonell, for all his guidance and

help he gave me. He has been a wonderful role model for me as a researcher, a teacher,

and a leader. He brought me into the amazing world of research, guided me to approach

and work through difficult problems, inspired me to look far beyond what we have now,

helped me enhance my writing and presentation, and always encouraged me to explore

challenging problems in the directions I am interested in. His continuous and generous

guidance and support had made my completion of the Ph.D. possible, particularly when

I went through the hard time of balancing my research and family. He helped me get the

best out of both. His impact will continue on my future career and the rest of my life.

I am very grateful to my committee, Christopher Olston, Jamie Callen, and Phil Hayes.

Christopher gave me lots of insightful suggestions on stream processing, inspired me to

think sharply about the strength and the weakness of different approaches, and encouraged

me to talk and work with other researchers. Jamie gave me wonderful suggestions on

designing and analyzing experiments, encouraged me to take a broader and longer vision

on research, and gave me lots of valuable advice on doing research as a career. Phil gave me

lots of support as one of the project leaders, pointed out interesting problems that were not

apparent at the beginning, and gave me many valuable suggestions on the system design

and experiment design. I enjoyed working with them and benefited from them enormously.

I thank the following faculties, staffs, fellow students, and friends, who made my years

at CMU a very memorable and beneficial experience: Anastassia Ailamaki, Santosh Anan-

vii



viii

thraman, Tom Ault, Mary Jo Bensasi, Matthew Bilotti, Alan Black, Lenore Blum, Dan

Bohus, Ralf Brown, Paul Carpenter, Shimin Chen, Datong Chen, Yee Man (Betty) Cheng,

Ananlada (Moss) Chotimongkol, Dwight Dietrich, Meryem Donmez, Maxine Eskenazi,

Christos Faloutsos, Fang Fang, Eugene Fink, Steve Fienberg, Michele Di Pietro, Ariadna

Font-Llitjos, Bob Frederking, Cenk Gazen, Aaron Goldstein, Jade Goldstein, Lingyun Gu,

Benjamin Han, Peggy Heidish, Fei Huang, Yi-Fen Huang, Brooke Hyatt, Peng Jia, Qin

Jin, Rong Jin, Rosemary Jones, Szu-Chen (Stan) Jou, Nancy Klancher, Jeongwoo Ko,

John Kominek, Alexandros Labrinidis, John Lafferty, Chad Langley, Alon Lavie, Guy

Lebanon, Lori Levin, Fan Li, Tien-ho (Henry) Lin, Fang Liu, Yan Liu, Jie Lu, Nianli

Ma, Ganesh Mani, Johny Mathew, Tom Minka, Teruko Mitamura, Christian Monson,

Thuy Linh Nguyen, Eric Nyberg, Paul Ogilvie, Jiazhi Ou, Jiayu (Tim) Pan, Yue Pan,

Erik Peterson, Kathrin Probst, Yanjun Qi, Pradipta Ray, Radha Rao, Monica Rogati,

Roni Rosenfeld, Alex Rudnicky, Norman Sadeh, Kenji Sagae, Christopher Scaffidi, An-

drew Schlaikjer, Tanja Schultz, Minglong Shao, Luo Si, Li Su, Oznur Tastan, Sebastian

Thrun, Stefanie Tomko, Alicia Tribble, Tiankai Tu, Alex Waibel, Haiyan Wang, Jianqun

Wang, Zhirong Wang, Larry Wasserman, Adele Weitz, Daniel Wilson, Jeannette Wing,

Wen Wu, Yinglian Xie, Eric Xing, Peng Xu, Wei Xu, Rong Yan, Hui (Grace) Yang, Yimin

Yang, Yiming Yang, Stacey Young, Jun Yang, Danni Yu, Hua Yu, Chengxiang Zhai, Jian

Zhang, Rong Zhang, Yi Zhang, Ying (Joy) Zhang, Bing Zhao, Jie Zhu, and Xiaojin Zhu.

I owe my deepest gratitude to my mother, Yueying, who has given me continuous and

tremendous support she could ever since I came to this world and all the way up to now.

The completion of the Ph.D. and my future contributions are probably the best presents

I could ever give back to her.

Finally, I want to thank the rest of my family, my father, Hongsheng, my husband, Zhu,

my daughters, Victoria and Gloria, and my brother, Jiang, for their continuous support,

patience, and love. They made my life enjoyable and rewarding.



Contents

1 Introduction 1

1.1 Incremental multiple query optimization (IMQO) . . . . . . . . . . . . . . 3

1.1.1 Indexing and Searching . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Sharing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Incremental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 ARGUS Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Statement and Contributions . . . . . . . . . . . . . . . . . . . . . . 15

2 Related Work 18

2.1 Data Stream Management Systems (DSMS) . . . . . . . . . . . . . . . . . 19

2.2 Multiple Query Optimization and View-based Query Optimization . . . . . 23

2.3 Data Warehousing and Aggregates . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Incremental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Normalization and Indexing in Information Retrieval . . . . . . . . . . . . 27

2.6 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



CONTENTS x

3 System Overview 30

3.1 Overall ARGUS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 ARGUS Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 ARGUS Stream Processing System . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Execution Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Query Network Structure . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Atop DBMS Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Query Network Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 System Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Incremental Evaluation 48

4.1 Selection and Join: Rete Algorithm . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Incremental Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Set Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Query Optimization 59

5.1 Transitivity Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Minimum Column Projection . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Conditional Materialization . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Join Order Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Query Optimizer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Incremental Multiple Query Optimization on Selection and Join 68

6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Equivalent Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.2 Extending Predicate Set Operations . . . . . . . . . . . . . . . . . . 71

6.2 Indexing and Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Rich Syntax and Canonicalization . . . . . . . . . . . . . . . . . . . 75



CONTENTS xi

6.2.2 Self-Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.3 Subsumption at Literal Layer . . . . . . . . . . . . . . . . . . . . . 80

6.2.4 Subsumption at Middle Layers . . . . . . . . . . . . . . . . . . . . . 82

6.2.5 Topology Connections . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.6 Predicate and PredSet Conversions . . . . . . . . . . . . . . . . . . 88

6.2.7 Relational Model for Indexing . . . . . . . . . . . . . . . . . . . . . 90

6.3 Sharing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Incremental Multiple Query Optimization on Aggregates and Set Oper-

ators 96

7.1 Incremental Multiple Query Optimization on Aggregates . . . . . . . . . . 96

7.1.1 Vertical Expansion and Sharing Strategies . . . . . . . . . . . . . . 99

7.2 Incremental Multiple Query Optimization on Set Operators . . . . . . . . . 101

7.2.1 Indexing on Set Operator Nodes . . . . . . . . . . . . . . . . . . . . 102

7.2.2 Searching Sharable Set Operator Nodes . . . . . . . . . . . . . . . . 103

7.2.3 Choose Optimal Sharable Node . . . . . . . . . . . . . . . . . . . . 105

8 Projection Management 106

8.1 Column Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1.1 Selection and Join Node Column Indexing . . . . . . . . . . . . . . 108

8.1.2 Aggregate Node Column Indexing . . . . . . . . . . . . . . . . . . . 109

8.1.3 Set Operator Node Column Indexing . . . . . . . . . . . . . . . . . 110

8.2 Minimum column projection . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Projection enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Parsing, Plan Instantiation, and Code Assembly 117

9.1 Query Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2 Plan Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS xii

9.2.1 Plan traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.2.2 Node Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.3 Query rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Code Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10 Evaluation 128

10.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.1.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.1.3 Query Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.1.4 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.2 Incremental Evaluation on SJP Queries and Query Optimization . . . . . . 135

10.2.1 Incremental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.2.2 Transitivity Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.2.3 Conditional Materialization . . . . . . . . . . . . . . . . . . . . . . 140

10.3 Incremental Aggregation and Aggregation IMQO . . . . . . . . . . . . . . 142

10.3.1 Incremental Aggregation . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3.2 IMQO on Aggregate Queries . . . . . . . . . . . . . . . . . . . . . . 145

10.3.3 Study on Vertical Expansion . . . . . . . . . . . . . . . . . . . . . . 146

10.4 Incremental Multiple Query Optimization on SJP Queries . . . . . . . . . 148

10.4.1 Incremental Multiple Query Optimization . . . . . . . . . . . . . . 149

10.4.2 Canonicalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.4.3 Match-Plan versus Sharing-Selection . . . . . . . . . . . . . . . . . 154

10.4.4 Weighted Query Network Size . . . . . . . . . . . . . . . . . . . . . 156

11 Conclusion and Future Work 159

11.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



CONTENTS xiii

11.1.1 Handling Long History . . . . . . . . . . . . . . . . . . . . . . . . . 159

11.1.2 Deregistering Query . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11.1.3 Immediate Response versus Processing Efficiency . . . . . . . . . . 166

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11.2.1 Generalization of Current Work . . . . . . . . . . . . . . . . . . . . 168

11.2.2 Adaptive Query Processing . . . . . . . . . . . . . . . . . . . . . . 168

11.2.3 New Infrastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

11.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A Stream Schemas 188

B Query Examples 190

C Experiment Results in Numbers 205



List of Figures

1.1 Sharing Query Networks. F presents FedWireTrans. . . . . . . . . . . . . 14

3.1 ARGUS overall functional architecture. Data streams feed novelty detec-

tion, stream matching, and ad hoc query matching modules. Novelty detec-

tion detects new events and pattern changes, stream matching continuously

matches new data with concurrent continuous queries, and ad hoc matching

efficiently match ad hoc queries. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Using ARGUS. An analyst registers a query with ARGUS. ARGUS Query

Network Generator processes and records the query in the System Catalog,

and generates the initialization and execution code. ARGUS Execution En-

gine executes the query network to monitor the input streams, and returns

matched results. The analyst may register more queries. . . . . . . . . . . 36

3.3 Execution of a shared query network. Each node has a historical (hist) table

and a temporary (temp) table, here only those of node F are shown. The

callouts show the computations performed to obtain the new results that

will be stored in the nodes’ temporary tables. S nodes are selection nodes,

J nodes are join nodes, and G nodes are aggregate nodes. The network

contains two 3-way self-join queries and two aggregate-then-join queries,

and nodes J2, S3, J3, and S4 present their results respectively. . . . . . . . 37

xiv



LIST OF FIGURES xv

3.4 Architecture of ARGUS Query Network Generator. . . . . . . . . . . . . . 46

3.5 System Catalog. * selection/join node, ** aggregate node, *** set operator

node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Optimal query network for Example 1.1. . . . . . . . . . . . . . . . . . . . 50

4.2 Incremental evaluation of the optimal query network for Example 1.1. It

illustrates the evaluation of node S1 and J1. S1 is the results of a selection

PredSet {type code = 1000 AND amount > 500000}, and is incrementally

evaluated by performing the selection from F temp to obtain S1 temp. J1

is the results of a join PredSet {r1.rbank aba = r2.sbank aba, AND ...},
and is incrementally evaluated by performing the three small joins from S1

and S2 to obtain J1 temp. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Evaluating Query A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 5-step Incremental Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Incremental aggregation instantiation. Generate the incremental aggrega-

tion code by rewriting incremental aggregation rules with actual arguments. 55

4.6 Incremental evaluation for UNION ALL . . . . . . . . . . . . . . . . . . . 57

4.7 Incremental evaluation for UNION. Duplicates are dropped. . . . . . . . . 57

4.8 Incremental evaluation for set difference. Assume new data part ∆m con-

tains duplicates in ∆n, but does not contain duplicates from the old part

n. Then the results is (m− n) + (∆m−∆n). . . . . . . . . . . . . . . . . 58

5.1 Data structures for transitivity inference. JTCHash hashes join conditions,

which are actually stored in JTCIDHash. STCHash hashes selection condi-

tions. A join condition in JTCHash and a selection condition in STCHash

with the same hash keys are paired up for transitivity inference. . . . . . . 61



LIST OF FIGURES xvi

5.2 Query optimizer architecture. Join Enumerator enumerates sub-join-plans

and chooses the cheapest one based on the cost estimates. . . . . . . . . . 64

5.3 An initial Join Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Expanding the Join Graph. The new node is the result of joinging nodes 1

and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Computation hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Hierarchy ER model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Subsumption and 2-level hash sets. . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Multiple topology connections. . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 System Catalog Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Match-Plan matches the pre-optimized plan structures with the existing

query network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Sharing-Selection selects the sharable joins and expands the existing query

network with unsharable ones. . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.8 Complex Sharing. Rerouting reconnects a local subtree to a newly created

node J2. Restructuring changes the join node computation so it can be

shared by more nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Evaluating Queries A and B . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Aggregate System Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Vertical Expansion, IMQO for aggregate queries. This shows that query B

is evaluated from query A’s results. . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Incremental Aggregation on Vertical Expansion. This shows incremental

aggregation can be realized on vertical-expanded aggregate node B as well. 101

7.5 A set operator node cluster, N1-N4. F1-F6 are the veryorig non-set-operator

nodes. A1 is an aggregate node and S1 is a selection node. . . . . . . . . . 103



LIST OF FIGURES xvii

7.6 UnionNode: Set operator node indexing. . . . . . . . . . . . . . . . . . . . 103

7.7 UnionTopology: Topology indexing for set operator nodes. . . . . . . . . . 104

8.1 Projection for Example 1.1. The callouts show the projected columns pro-

jected for nodes S1, S2, J1, J2 and the mapping from their direct parent

nodes. The identification number is appended to the column names to make

universal column names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Projection for Example 1.1. The callouts show the columns projected for

nodes S1, S2, J1, J2 with the preceding identification numbers. The identi-

fication number is appended to the column names to make universal column

names. The JoinSimpleColumnNameMap shows the entries of the J1 columns.110

8.3 JoinSimpleColumnNameMap: column indexing scheme for join node simple

projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.4 JoinExprColumnNameMap: column indexing scheme for join node expres-

sion projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5 SelSimpleColumnNameMap: column indexing scheme for selection node

simple projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.6 SelExprColumnNameMap: column indexing scheme for selection node ex-

pression projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.7 GroupColumnNameMap: column indexing scheme for aggregate node columns.112

8.8 UnionColumnNameMap: column indexing scheme for set operator node

columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.9 Chained Projection Enrichment. (a) The join node J1 is identified as

sharable for a new query Q. (b) More columns need to be added into

J1. Further they have to be added to J1’s ancestors S3, S1, S4, and S2, as

well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



LIST OF FIGURES xviii

8.10 Three cases of joins from which the direct parent of a column needs to be

identified given the column’s veryorig table. . . . . . . . . . . . . . . . . . 116

9.1 Building the SQL Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2 The where clause parse tree for Example 1.1 . . . . . . . . . . . . . . . . . 119

9.3 Predicate classifications for Example 1.1. Classify them into PredSets. . . . 120

9.4 Plan Instantiation. Plan Instantiator traverses the plan, sends individ-

ual node create/update instructions to node instantiator, and calls query

rewriter to rewrite the logical parse tree. Node instantiator calls sub-

modules to index predicate/PredSets, group expressions, topologies, and

columns, and to generate and store the code blocks for the node. . . . . . 121

9.5 Child-parent in query networks and in plan trees. (a) The existing query

network. Children are result tables. (b) The plan tree. Children are operand

tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.6 Child-parent in query networks and in plan trees. When the plan tree is

instantiated to the query network, the edge directions are reversed. . . . . 123

10.1 Execution times of QIEFed-Manual. This shows that incremental evaluation

(Rete) is much faster than the naive approach (DBMS) for the majority of

queries (Q1, Q2, Q3, Q6, and Q7) on both data conditions. Data1: the

historical data is the first 300, 000 records, and the new data is the next

20, 006 records. Data1 provides alerts for the queries being tested. Data2:

the historical data is the first 300, 000 records, and the new data is the next

20, 000 records. Data2 does not generate alerts for most of the queries being

tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



LIST OF FIGURES xix

10.2 Execution times of QIEFed-Uniform. X-axis is the batch-size: the number

of tuples in the new data part. Y-axis is the average execution time over

the 160 queries. This shows that incremental evaluation (Rete) is much

faster than the naive approach (DBMS) when the batch-size is small. But

the execution time grows as the batch-size increases, and may exceed the

DBMS approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.3 Effect of transitivity inference on QIEFed-Manual. This shows that transi-

tivity inference leads to significant improvements to both Rete and DBMS.

“Rete TI”: Rete generated with transitivity inference. It achieves 20-fold

improvement comparing to Rete Non-TI and DBMS Non-TI. “Rete Non-

TI”: Rete without transitivity inference. “DBMS Non-TI”: original SQL

query on DBMS. “DBMS TI”: original SQL query with hidden conditions

manually added on DBMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.4 Effect of transitivity inference on QIEFed-Uniform’s 4 query variants, Q1

- Q4, each of 20 queries. The historical data is the first 300000 records,

and the new data part is the next 1000 records. The figure shows that

transitivity inference leads to significant improvements to Rete, but not to

DBMS. “Rete TI”: Rete generated with transitivity inference. “Rete Non-

TI”: Rete without transitivity inference. “DBMS Non-TI”: original SQL

query on DBMS. “DBMS TI”: original SQL query with hidden conditions

manually added on DBMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.5 Effect of conditional materialization on QIEFed-Manual with transitivity

inference turned off. Comparing the execution times of conditional materi-

alization, non-conditional materialization, and running the original SQL on

the DBMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



LIST OF FIGURES xx

10.6 Effect of conditional materialization on QIEFed-Uniform’s 4 query variants,

Q1 - Q4, each of 20 queries with transitivity inference turned off. Historical

data is the first 300000 records, and the new data part is the next 1000

records. In the Non-Conditional case, the materialization overhead is large

enough to make the performance even worse than the DBMS approach.

This problem is fixed by the conditional materialization. . . . . . . . . . . 142

10.7 Single FED compares the execution times of incremental aggregation (In-

creAggre, IA) and non-incremental aggregation (NonIncreAggre, NIA) on

individual Fed aggregate queries. The x-axis is the query IDs sorted by the

AggreSize = |SH(A)| ∗ |AH |, which estimates the IA cost. The figure also

shows the performance Ratio between the IA and the NIA: (IA execution

time)/(NIA execution time). . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.8 Single MED compares the execution times of incremental aggregation (In-

creAggre, IA) and non-incremental aggregation (NonIncreAggre, NIA) on

individual Fed aggregate queries. The x-axis is the query IDs sorted by the

AggreSize = |SH(A)| ∗ |AH |, which estimates the IA cost. The figure also

shows the performance Ratio between the IA and the NIA: (IA execution

time)/(NIA execution time). . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.9 Aggregate sharing on FED. Comparing total execution times of shared

query network (SIA) and non-shared query network (NS-IA). SIA is up

to hundreds-fold faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.10Aggregate sharing on MED. Comparing total execution times of shared

query network (SIA) and non-shared query network (NS-IA). SIA is faster. 147

10.11Effect of vertical expansion for the first example. VE is always better, but

the benefit diminishes as the incremental size increases. . . . . . . . . . . . 148



LIST OF FIGURES xxi

10.12Effect of vertical expansion for the second example. VE is always better,

but the benefit diminishes as the incremental size increases. . . . . . . . . . 148

10.13Join Sharing. Comparing total execution times in seconds of join-shared

(AllSharing) and non-join-shared query networks (NonJoinS). AllSharing is

up to tens-fold faster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.14Canonicalization. This shows the effectiveness of canonicalization. The

canonicalized query networks are up to 50 folds performance improvement. 153

10.15Match-plan vs. sharing-selection. This compares the total execution times

of query networks generated with sharing-selection (AllSharing), match-

plan (MatchPlan), and match-plan without canonicalization (MPlan NCanon,

the baseline). AllSharing is the best. . . . . . . . . . . . . . . . . . . . . . 155

10.16Fed Weighted Query Network Sizes (QNS). QNS curves are consistent to

the execution performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

11.1 N-tuple sliding time window maintaining the top K results. . . . . . . . . 164



List of Tables

3.1 Operator sets and result nodes . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 AggreRules. Aggregate Category: A Algebraic; D Distributive; H Holistic. 52

4.2 AggreBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Subsumable Triples (γ1, γ2, O). E is equal, D is decreasing, and I is increasing. 82

10.1 Query sets for evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.2 QIMQOSJPFed Parameter Values and Ranges. Number of Joins: the num-

ber of 2-way joins. Tracking Direction: whether the query tracks the money

flow forward or backward based on a pivot transaction. The pivot transac-

tion is defined by selection predicates on the transaction type (1000), the

Group Confinement, and the Transfer Amount, and is the earliest one of

the joined records in the forward case or the latest one in the backward

case. Group Confinement: the transactions to be joined use certain types

of bank or certain types of account. Transfer Amount: the transfer amount

that the pivot transaction must be above. Join Time Window: the time

window in days that any two directly joined records must fall in. Amount

Split Ratio: the number of splits that the pivot transaction can be split for

forward or backward money flow. . . . . . . . . . . . . . . . . . . . . . . . 133

xxii



LIST OF TABLES xxiii

10.3 Evaluation Data for incremental aggregation. . . . . . . . . . . . . . . . . . 143

10.4 Total execution time in seconds for incremental aggregation (IA) and non-

incremental aggregation (NIA). . . . . . . . . . . . . . . . . . . . . . . . . 144

10.5 Vertical expansion statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10.6 Network Generation Configurations. Functionality enabled: Y; disabled: N. 149

10.7 Node weights. Node legend: S: selection node; J: join node; 0-4: join depth. 156

C.1 Execution times of Q1-Q7 in seconds for Figure 10.1. This shows that incre-

mental evaluation (Rete) is much faster than the naive approach (SQL) for

the majority of queries (Q1, Q2, Q3, Q6, and Q7) on both data conditions. 205

C.2 Execution times in seconds to show the effect of transitivity inference, shown

in Figure 10.3. This shows that transitivity inference leads to significant im-

provements to both Rete and SQL. “Rete TI”: Rete generated with transi-

tivity inference. It achieves 20-fold improvement comparing to Rete Non-TI

and SQL Non-TI. “Rete Non-TI”: Rete without transitivity inference. “SQL

Non-TI”: original SQL query. “SQL TI”: original SQL query with hidden

conditions manually added. . . . . . . . . . . . . . . . . . . . . . . . . . . 205

C.3 Execution times in seconds to show the effect of conditional materialization,

shown in Figure 10.5. Comparing the execution times of conditional mate-

rialization, non-conditional materialization, and running the original SQL,

for Q1 on Data1 and Data2. . . . . . . . . . . . . . . . . . . . . . . . . . . 206

C.4 Execution times in seconds to show aggregate sharing on FED, shown in

Figure 10.9. Comparing total execution times of shared query network (SIA)

and non-shared query network (NS-IA). SIA is up to hundreds-fold faster. . 206

C.5 Execution times in seconds to show aggregate sharing on MED, shown in

Figure 10.10. Comparing total execution times of shared query network

(SIA) and non-shared query network (NS-IA). SIA is faster. . . . . . . . . 206



LIST OF TABLES xxiv

C.6 Execution times on FED query networks, shown in Figures 10.13(a), 10.14(a),

and 10.15(a). The table compares five generation configurations, non-join-

shared query networks (NonJoinS), match-plan without canonicalization

(MPLan NCanon), sharing-selection without canonicalization (NonCanon),

match-plan with canonicalization (MatchPlan), and sharing-selection with

canonicalization (AllSharing). AllSharing is the best. . . . . . . . . . . . . 207

C.7 Weighted query network sizes on FED query networks, shown in Figure

10.16(a). The table compares four generation configurations, non-join-

shared query networks (NonJoinS), sharing-selection without canonicaliza-

tion (NonCanon), match-plan with canonicalization (MatchPlan), and sharing-

selection with canonicalization (AllSharing). AllSharing is the best. . . . . 207

C.8 Execution times on MED query networks, shown in Figures 10.13(e), 10.14(e),

and 10.15(e). The table compares five generation configurations, non-join-

shared query networks (NonJoinS), match-plan without canonicalization

(MPLan NCanon), sharing-selection without canonicalization (NonCanon),

match-plan with canonicalization (MatchPlan), and sharing-selection with

canonicalization (AllSharing). AllSharing is the best. . . . . . . . . . . . . 207

C.9 Weighted query network sizes on MED query networks, shown in Figure

10.16(e). The table compares four generation configurations, non-join-

shared query networks (NonJoinS), sharing-selection without canonicaliza-

tion (NonCanon), match-plan with canonicalization (MatchPlan), and sharing-

selection with canonicalization (AllSharing). AllSharing is the best. . . . . 208



Chapter 1

Introduction

In recent years, we have witnessed the emergence of stream processing applications. The

applications include terrorism detection and monitoring from structured message streams,

network intrusion detection from NetFlow streams, monitoring wireless sensor network

readings in a variety of military and scientific applications, publish/subscribe systems

such as stock ticker notification services, and more. In wake of the continuous growth of

hardware (network bandwidth, computing power, and data storage) and pervasive comput-

erization into mission-critical tasks, scientific exploration, business, and everyday personal

life, stream processing applications has become and will continue to be more attainable,

demanding, and prevalent.

These stream processing applications present new challenges that are not addressed by

traditional data management techniques, particularly the traditional Database Manage-

ment System (DBMS) techniques. Two prominent challenges among many are continuous

query matching and optimization on large-scale queries. The thesis addresses these two

problems with incremental evaluation methods, incremental multiple query optimization,

and other related optimization techniques.

A traditional online transaction processing (OLTP) DBMS is designed to process mul-

1



2

tiple concurrent transactions efficiently and supports precise data storage with infrequent

changes. And an online analytic processing (OLAP) DBMS is optimized to match complex

analytic ad hoc queries on large-scale warehouse data efficiently. Differently, stream appli-

cations require continuous query matching over fast-changing data streams and produce

new results continuously. The traditional DBMSs do not provide an efficient mechanism

to support continuous query matching. While triggers can be defined to simulate the

continuous query matching upon data changes, the method is not scalable, the triggers

can not be shared, and the functionalities are limited due to the ACID and other de-

sign constraints [98]. Moreover, DBMSs do not systematically support efficient continuous

matching algorithms that are vital for performance on stream processing. Many query

operators can be implemented to efficiently produce new results on new tuples without or

with bounded accesses to the historical data, which we call incremental evaluation. For

example, a selection predicate can be evaluated just on the new tuples without accessing

any historical data.

Another missing component is the computation sharing module. While multiple query

optimization (MQO) [108, 102] has been studied since late 1980’s, the techniques are not

implemented in commercial DBMS since queries on historical data are typically discarded

after a single search. However, since multiple concurrent continuous queries tend to be

persistent, computation sharing is appropriate for stream applications and even a must for

applications dealing with large-scale queries (pub/sub systems) or with intensive query dy-

namics (complex and evolving intelligence analysis tasks). Computation sharing can lead

to hundreds-fold performance improvement. And the larger the number of concurrently

active queries is, the more significant benefit is obtained.

Two problems add complexities to the implementation of a practical sharing component.

First, queries arrive intermittently, not in batch, which leads to constant changes of the

shared query plan. Second, since global optimization on multiple queries is known to be



1.1. Incremental multiple query optimization (IMQO) 3

NP-complete [108, 81], it is impractical to perform one-shot full optimization on large-

scale queries, not to say doing it repetitively. A practical solution is to develop a system

that adds new queries individually into an existing shared query evaluation plan to obtain

reasonably good performance via local optimization. We call this approach incremental

multiple query optimization (IMQO). With this approach, the system needs to store

existing query computations, identify the common computations between the new query

and the existing query plan, choose optimally among multiple sharing paths, and add

unsharable new computations to the plan.

This thesis addresses incremental evaluation, IMQO, and several query optimization

techniques pertinent to continuous queries. The resulting techniques are implemented in

a prototype called ARGUS.

1.1 Incremental multiple query optimization (IMQO)

The most distinguishable feature of ARGUS, comparing to other research prototypes on

data stream management systems (DSMS), is its comprehensive IMQO framework. While

computation sharing has been widely accepted as an important component of a DSMS, it is

often missing or underdeveloped in existing research prototypes. For example, STREAM

is a general-purpose DSMS prototype developed from scratch by Stanford University with

focus on adaptive processing, extended stream query languages, and execution engine

architecture. The STREAM architecture is designed to support large-scale concurrent

continuous queries and executes a shared query plan that outputs multiple result streams.

Algorithms realizing a range of resource sharing strategies are implemented. However, the

prototype does not develop or implement the sharing module. It does not recognize the

sharable computations across multiple queries, and does not support incremental addition

of new queries. See Section 2.1 for details.

In another example, NiagaraCQ is a publish/subscribe prototype that matches large-



1.1. Incremental multiple query optimization (IMQO) 4

scale subscriber queries with Internet content changes. It implements an incremental

sharing framework similar to ARGUS. A new query Q can be incrementally added into a

shared plan R by identifying sharable computations between Q and R and expanding R

with new unsharable computations. However, NiagaraCQ applies a simplified approach

to identify sharable computations, i.e. exact string match and shallow syntactic analysis

to identify equivalent and subsumption predicates. This largely limits the potential im-

provement offered by computation sharing; see examples in Section 1.5. In NiagaraCQ,

simple selection predicates are grouped by their expression signatures and evaluated in

chains, and equi-join predicates can also be shared. But the identification is limited to the

predicate level. Such limited findings restrict the construction of efficient shared plans.

For example, it can not identify sharable nodes which present the results of a group of

predicates (PredSet). Without topological association, such findings also limit the sharing

strategies to be applied. See Sections 2.1 and 6.3.

A generally useful IMQO framework must support extensive query types and general

plan structures efficiently. Particularly, the framework should meet following requirements.

• Support general query types, e.g. selection-join-projection queries, aggregate queries,

set operation queries, and their combinations.

• Support general plan structures, e.g. materializing the results of grouped predicates.

• Support compact indexing storage, fast computation search, and easy index update

and plan expansion for large-scale query applications.

Each requirement presents specific challenges, and the combination leads to a hyper-

linear complexity growth. Procedurally, IMQO involves four complex steps:

• computation indexing,

• common computation identification,



1.1. Incremental multiple query optimization (IMQO) 5

• sharing path selection,

• and indexing update and plan expansion.

Each step interacts with others and presents specific problems. So the framework should

be designed systematically to meet the overall requirements, as well as address the specific

problems in each step.

1.1.1 Indexing and Searching

The first two steps of IMQO, indexing and identifying common computations, are essential

to construct efficient shared plans, since the identification capability directly determines

to what extent the sharing can be achieved, determines what heuristic sharing strategies

can be applied, and largely influences applicable shared plan structures.

Common subexpression identification is also known to be NP-hard [75, 99], and thus has

to be addressed heuristically. Secondly, identifying sharable computations from the shared

plan structures and topologies, not just from the query semantics, adds one more layer

of complexity. Thirdly, to scale to a large number of queries, the scheme and algorithms

should support compact index storage, fast index search and easy index update. And

finally, since the shared plan dynamically evolves as new queries are registered, and is

subject to local re-optimization to adapt to data distribution changes, the indexing scheme

should provide enough information for fast constructing, updating, and rearranging the

executable query evaluation plan.

Previous work on DSMSs, such as NiagaraCQ, STREAM, and other work described in

Chapter 2, either do not develop or underdevelop the support of the common computation

indexing and identification. Previous work on MQO [107, 48, 27, 31] and view-based query

optimization [56, 129] address the common computation identification problem specifically,

but do not concern with plan topologies, compact storage, and easy update, and use quite

different approaches from this thesis; see Chapter 2.



1.1. Incremental multiple query optimization (IMQO) 6

This thesis introduces a comprehensive computation indexing scheme and related search-

ing algorithms to index and search common computations. Particularly, it emphasizes the

identification capability, and the solution to large-scale queries. It provides a general sys-

tematic framework to index, search, and present common computations, done to a degree

well beyond the previous approaches.

In terms of identification capability, the scheme indexes and identifies sharable selection

nodes, join nodes, aggregate nodes, and set operator nodes. To identify sharable selec-

tions and joins, the scheme recognizes syntactically-different yet semantically-equivalent

predicates and expressions by canonicalization, and subsumptions between predicates and

predicate sets, and supports self-join which is neglected in previous work. It supports rich

predicate syntax by indexing predicates in CNF forms, and it supports fast search and

update by indexing multiple plan topology connections. To identify sharable aggregate

nodes and sharable set operator nodes, the scheme recognizes the subsets and supersets of

GROUPBY expressions, and the subsets and supersets of set operator tables.

To deal with the large-scale problem, the scheme applies a relational model, instead of

a linked data structure as by previous approaches. All the plan information is stored in

the system catalog, a set of system relations. The advantage is that the relational model

is well supported by DBMSs. Particularly, fast search and easy update are achieved by

DBMS indexing techniques, and compact storage is achieved by following the database

design methodologies.

1.1.2 Sharing Strategies

We present two sharing path optimization strategies for selection-join queries, match-plan

and sharing-selection. Match-plan matches a plan optimized for the single new query

with the existing query network with bottom-up search. This strategy fails occasionaly to

identify certain sharable computations by fixing the sharing path to the pre-optimized plan.



1.2. Incremental Evaluation 7

Match-plan is also applied by NiagaraCQ [33, 34] on non-canonicalized single predicates

(not on PredSets). Sharing-Selection identifies sharable nodes and chooses the optimal

sharing path.

We present two sharing strategies for aggregate queries. The first one is to choose the

optimal sharing node when there are multiple sharable ones. And the second is rerouting.

After a new node B is created, the system checks if any existing nodes can be improved

by being evaluated from B. These nodes are disconnected from their original parents and

connected to B by vertical expansion.

We present one sharing strategy for set operator queries. Among all sharable nodes,

choose the one that will operate with the least amount of data to obtain the final results.

For example, when the set operator is UNION, choose the node that contains the most

number of tuples. For another example, when the set operator is difference (MINUS) and

the sharable nodes will perform further set difference operations to obtain the final results,

choose the one that contains the least number of tuples.

1.2 Incremental Evaluation

In a stream processing system, new data tuples continuously arrive, and long-lived queries

continuously match them to produce new results. Efficient algorithms (Incremental

Evaluation) to produce new results on new tuples with minimal access to the historical

data is vital for performance.

Various stream join operators were proposed. These include stream joins, such as

XJoin [117], MJoin [121], and the window join in [55], and stream aggregates, such as

Ripple join [64], window aggregates [82], quantile estimates [38], and top-K queries [14].

These operators are not immediately applicable to the ARGUS architecture since it is

implemented atop a DBMS. However, when ARGUS migrates to a DSMS, these stream

operators are very pertinent, and ARGUS existing incremental evaluation methods should



1.2. Incremental Evaluation 8

be implemented in the stream operators as well.

We implemented efficient incremental evaluation algorithms for selection, join, algebraic

aggregates, and set operators (union, union all, and set difference).

Selection is easy. New results can be produced without access to historical data.

Join is more complex. A new result may be produced from the join of a new tuple with

old tuples in the history or the join of new tuples, but will never be produced from the

join of only old tuples. We implemented the incremental evaluation algorithm for 2-way

joins by performing the two types of small joins: the join between the new data parts and

the join between the new data part versus old data part.

The incremental selection and join methods were inspired from the Rete algorithm [50]

which stores intermediate results to save repetitive computations in recursive matching of

newly produced working elements.

Many aggregate functions, algebraic functions, including MIN, MAX, COUNT, SUM,

AVERAGE, STDDEV, and TrackClusterCenters, can be incrementally updated upon data

changes without revisiting the entire history of grouping elements (incremental aggrega-

tion); while other aggregates, holistic functions, e.g. quantiles, MODE, and RANK, can

not be done this way. Particularly, algebraic functions can be updated upon data changes

from bounded statistics, while holistic functions can not. For example, AVERAGE can

be updated from up-to-date SUM and COUNT statistics which are simple accumulations

upon data changes. We implemented incremental aggregation for general algebraic aggre-

gates including arbitrary user-defined ones.

We implemented incremental evaluation for union, union all, and minus (set difference)

operators.



1.3. Query Optimization 9

1.3 Query Optimization

We studied and implemented several query optimization techniques in ARGUS. These in-

clude transitivity inference, join ordering, conditional selection materialization, and mini-

mum column projection.

Transitivity inference derives implicit highly-selective predicates from existing query

predicates to filter out many non-result records in earlier stages and reduce the amount

of data to be processed later. The experiments show up to twenty fold improvement

for applicable queries; see Section 10.2.2. There are relevant works on inferring hidden

predicates [92, 94]. However, they deal with only the simplest case of equijoin predicates

without any arithmetic operators. With our canonicalization procedure, ARGUS is able to

derive implicit selection predicates from general 2-way join predicates and other selection

predicates.

Searching for the optimal join order is one important goal for traditional query opti-

mizers. The optimal join order can lead to hundreds-fold faster plans than non-optimal

ones. This problem is still pertinent to continuous queries. We implemented the optimizer

to search for the optimal join sequence by using historical data for estimating costs.

The optimizer also decides whether the results of a set of selection predicates will be

materialized or not based on selection factors (conditional materialization). This oper-

ational choice is implemented based on the observation that when intermediate results

are not reduced substantially from the original data, the time saved from the repetitive

computations may be offset or exceeded by the materialization overhead (I/O time).

Minimum column projection refers to projecting the minimal set of columns for inter-

mediate tables. When a new node is created, to save materialization space and execution

time, we only project the necessary columns from its parents. These columns include those

in the final results and those needed for further evaluation. The process becomes intri-

cate when sharing is considered. When a node is shared among computations of different



1.4. ARGUS Prototype 10

queries, it may not contain all the columns needed for the new query. Then extra columns

will be added to the node and possibly to its ancestors. This process is called projection

enrichment. Aurora has the same functionality to project minimum columns. However,

with its procedural query language, the sharing-related intricacy is not considered by the

system but is handled manually.

1.4 ARGUS Prototype

ARGUS prototype is the integration of the stream techniques we explored. It supports

continuous large-scale complex query matching. The shared query plan has the persistent

storage and can be incrementally expanded with new queries.

It is built atop a commercial DBMS Oracle. Such choice allows us to focus on the

stream-related problems without worrying about implementing the underlying execution

engine. Particularly, the goal of the incremental multiple query optimization and other

optimization techniques aim at constructing an optimal shared plan, which is largely in-

dependent of how the plan is evaluated by the engine. While the engine interface and

architecture cast the way how incremental evaluation can be implemented and have sig-

nificant impact on performance, IMQO and other optimization techniques are complex

enough to merit dedicated study. At the beginning of this research, there is no available

DSMS engine to work with. Even now there are a few, they do not meet the requirement

to serve as an engine base due to the stability issue and the limited support for complex

queries.

Using a DBMS also provides us a solid evaluation platform. Particularly, we can eval-

uate the effects of the developed techniques by comparing them with the naive DBMS

solutions. And we can safely evaluate different stream techniques on a mature conven-

tional data query engine.

A more interesting and instant benefit of using DBMS is that ARGUS can be offered as



1.5. An example 11

a value-added package to existing database applications where the requirement of stream

processing is emerging. We are looking for opportunities to apply the work in national

geo-spatial databases, for instance.

While the DBMS is the current choice, our ultimate goal is to make the techniques

in practical DSMS systems as well as they also reach a state of maturity. The IMQO

framework and the query optimization techniques can be ported to DSMS without mod-

ification, but the incremental evaluation methods must be re-implemented based on the

engine-specific data structures, such as synopses that store intermediate results.

1.5 An example

In this section, we present two query examples to illustrate the desired sharing and op-

timization. The queries are formulated on the synthesized FedWire money transfer data

(FED), one of the two data sets that we used for system testing and evaluation. FED

contains one single data stream. The stream contains money transfer transaction records,

one record per transaction. The schema is given in Appendix A.

Consider a query Q1 on big money transfers for financial fraud detections.

Example 1.1 (Q1) The query links big suspicious money transactions of type 1000, and

generates an alarm whenever the receiver of a large transaction (over $1,000,000) transfers

at least half of the money further within 20 days using an intermediate bank. The query

can be formulated as a 3-way self-join:



1.5. An example 12

SELECT r1.tranid r2.tranid r3.tranid

FROM FedWireTrans r1,

FedWireTrans r2,

FedWireTrans r3

WHERE r1.type code = 1000 —p1

AND r1.amount > 1000000 —p2

AND r2.type code = 1000 —p3

AND r3.type code = 1000 —p5

AND r1.rbank aba = r2.sbank aba —p7

AND r1.benef account = r2.orig account —p8

AND r2.amount > 0.5 ∗ r1.amount —p9

AND r1.tran date <= r2.tran date —p10

AND r2.tran date <= r1.tran date + 20 —p11

AND r2.rbank aba = r3.sbank aba —p12

AND r2.benef account = r3.orig account —p13

AND r2.amount = r3.amount —p14

AND r2.tran date <= r3.tran date —p15

AND r3.tran date <= r2.tran date + 20; —p16

We add two predicates that can be inferred automatically [77] from predicates p2, p9,

and p14 by transitivity inference. The inferred predicates are p4 : r2.amount > 500000

and p6 : r3.amount > 500000. We classify the predicates into PredSets based on the table

references:

P1

r1.type code = 1000 AND

r1.amount > 1000000

P2

r2.type code = 1000 AND

r2.amount > 500000

P3

r3.type code = 1000 AND

r3.amount > 500000



1.5. An example 13

P4

r1.rbank aba = r2.sbank aba AND

r1.benef account = r2.orig account AND

r2.amount > 0.5 ∗ r1.amount AND

r1.tran date <= r2.tran date AND

r2.tran date <= r1.tran date + 20

P5

r2.rbank aba = r3.sbank aba AND

r2.benef account = r3.orig account AND

r2.amount = r3.amount AND

r2.tran date <= r3.tran date AND

r3.tran date <= r2.tran date + 20

Assume the selection PredSets (P1, P2, P3) are very selective, thus the optimal evalu-

ation plan will evaluate them first, as shown in Figure 1.1(a). Because PredSets P2 and

P3 are equivalent, they share the same node S1. The results of P1 are always a subset

of that of P2 or P3 (or P1 → P2, and P1 → P3), thus P1 can be evaluated from S1 to

obtain the results in S2 instead of evaluating from the source node B1. This improves the

performance since much less data needs to be processed to obtain S2. Assume P4 and P5

are equally selective. Because the input size to P4 is less than that of P5, P4 is evaluated

first.

In this example, identifying equivalent PredSets P1 and P2 allows them to share the

same node S1, and identifying the subsumption relation between P3 and P1/P2 allows S1

to be used to obtain results of P3 with reduced computations.

Consider a second query Q2 which is the same to Q1 except that the time span is 10

days instead of 20 days. Thus PredSets P4 and P5 are changed to P6 and P7, respectively.

P6

r1.rbank aba = r2.sbank aba AND

r1.benef account = r2.orig account AND

r2.amount > 0.5 ∗ r1.amount AND

r1.tran date <= r2.tran date AND

r2.tran date <= r1.tran date + 10



1.5. An example 14

F S1 S2 J1 J2

(a) A Self-Join Network for Q1

F S1 S2 J1 J2

(b) SharingPlan1: Add a New Query Q2

J3

J4

F S1 S2 J1 J2

(c) SharingPlan2: Add a New Query Q2

J4

Figure 1.1: Sharing Query Networks. F presents FedWireTrans.

P7

r2.rbank aba = r3.sbank aba AND

r2.benef account = r3.orig account AND

r2.amount = r3.amount AND

r2.tran date <= r3.tran date AND

r3.tran date <= r2.tran date + 10

Since P6 is subsumed by P4, P6 can be evaluated from J1 as results of a selection

predicate (r2.tran date <= r1.tran date + 10) to obtain J3 as shown in Figure 1.1(b).

Then P7 is evaluated to obtain final results in J4. A better sharing choice SharingPlan2

that avoids creating the join node is shown in Figure 1.1(c). Recognizing that J2 provides

the superset of Q2’s final results, P6 and P7 are actually evaluated from J2 as a selection

PredSet to obtain J4:

P8

r2.tran date <= r1.tran date + 10 AND

r3.tran date <= r2.tran date + 10

From the examples, we see the system needs to do following:



1.6. Thesis Statement and Contributions 15

1 Recognize equivalent and subsumed predicates. Particularly, r2.tran date <= r1.tran date+

10 → r2.tran date <= r1.tran date + 20. This is achieved by canonicalization, then

exact match on the left sides, and comparison on the right side constants.

2 Recognize equivalent and subsumed PredSets. Particularly, P2 ≡ P3, P1 → P2,

P1 → P3, P6 → P4, and P7 → P5. This is achieved by the subsumption identification

algorithms.

3 Associate PredSets with plan nodes and the topological connections. This is achieved

by searching topological information.

4 Choose the optimal sharing path among multiple ones. In above examples, we want

to choose SharingPlan2. This is achieved by applying a sharing strategy, sharing-

selection or match-plan.

5 Perform query plan expansion. For example, when we create the new node J4, we

need to find out the actual PredSet P8 = (P6∪P7)−(P4∪P5). Involving subsumption

relations, this becomes more complicated. This is achieved by a set of extended set

operations and several updates to the system catalog.

1.6 Thesis Statement and Contributions

The thesis statement is:

The thesis demonstrates constructively that incremental multiple query optimiza-

tion, incremental query evaluation, and other query optimization techniques provide

very significant performance improvements for large-scale continuous queries, and are

practical for real-world applications by permitting on-demand new-query addition.

The methods can function atop existing DBMS systems for maximal modularity and

direct practical utility. And the methods work well across diverse applications.



1.6. Thesis Statement and Contributions 16

The thesis contributions are as following.

• Incremental multiple query optimization: We design, implement, and evaluate

an IMQO framework. It is comprised of the following components.

– A comprehensive computation indexing scheme to support general plan structures

for selection-join-projection queries, aggregate queries, and set operation queries.

– A set of efficient algorithms to search common computations.

– Several effective sharing strategies to construct shared query network.

– A set of tools to incrementally construct the query network and to update the

computation index.

• Incremental evaluation: We design, implement, and evaluate the incremental eval-

uation mechanism for selection, join, algebraic aggregates, and set operations.

• Query optimization: We explore and evaluate several effective query optimization

techniques, including join order optimization, conditional materialization, transitivity

inference, and minimum column projection.

• System implementation: We build the system atop a DSMS Oracle for direct prac-

tical utility for existing database applications where the needs of stream processing

become increasingly demanding.

• Evaluation: We study and analyze the effectiveness of the implemented techniques.

It shows that each technique provides significant performance improvements for gen-

eral or specific queries, and that the implemented system supports large-scale contin-

uous queries efficiently across different applications.

Chapter 2 discusses the related work. Chapter 3 describes the ARGUS system archi-

tecture and the query network structures. Chapter 4 describes the incremental evaluation



1.6. Thesis Statement and Contributions 17

methods. Chapter 5 describes the query optimization techniques and the optimizer design.

Chapter 6 describes computation indexing, searching, and sharing on selection and join

queries. Chapter 7 describes computation indexing, searching, and sharing on aggregate

and set operation queries. Chapter 8 describes minimum column projection implemen-

tation including the column projection indexing, searching, and enrichment. Chapter 9

describes the tools for processing queries and constructing shared query networks. Chap-

ter 10 presents the evaluation results. And Chapter 11 discusses the future work and

concludes.



Chapter 2

Related Work

This thesis is related to several database research areas, and bears connections to ideas

applied in information retrieval. In this chapter, we describe related work in following

areas:

• Data Stream Management Systems: The thesis shares the similar goal of pro-

viding efficient stream processing functionalities to the recent DSMS prototypes, but

is distinguished from them by the extensive IMQO support.

• Multiple Query Optimization and View-based Query Optimization: The

thesis applies the relational model to index and search common computations. It

provides the advantages of fast search, compact storage, and easy update to the

indexed computations. The approach is very different from the previous approaches

employed in traditional MQO and VQO settings that use linked data structures (query

graph and filter tree). The optimal plan search space and heuristics are also substan-

tially different. MQO either applies global search or uses heuristics to construct the

plan from scratch, VQO searches the sharable views but not the immediate results,

but IMQO search sharable nodes including intermediate results with possible local

restructuring.

18



2.1. Data Stream Management Systems (DSMS) 19

• Data Warehousing: The thesis supports IMQO on multiple aggregate queries. This

is related to, but distinguished from data warehousing techniques where multiple

aggregate queries are optimized once for all.

• Incremental Evaluation: The thesis supports incremental evaluation for stream

operators by materializing intermediate results. It is inspired from Rete algorithm

used in rule-based production systems. This part is also related to the recent devel-

opment of stream operators and algorithms, active databases, and materialized view

maintenance.

• Normalization and Indexing in Information Retrieval: The predicate canoni-

calization and relational model indexing described in the thesis are inspired from the

word normalization and inverted indexing in information retrieval, the common and

effective practice to index and search large-scale text collections.

• Query Optimization: The thesis implements several query optimization techniques.

These are related to traditional query optimization techniques including join-order

search and transitivity inference.

• Other Related Work: The thesis is also tangentially related to sequence databases,

time-series databases, temporal databases, and XML search.

2.1 Data Stream Management Systems (DSMS)

To address the rising challenges of stream processing, several DSMS prototypes have been

developed. The well-known ones are Stanford STREAM [89], Berkeley TelegraphCQ [28],

and Brandeis/Brown/MIT’s Aurora/Borealis [2]. There are also prototypes and systems

developed for specific applications. For example, NiagaraCQ [34, 32] and OpenCQ/WebCQ

[114] provide Internet content update notification services to large-scale subscribers by



2.1. Data Stream Management Systems (DSMS) 20

matching relevant content changes to a large number of user queries. Gigascope [39] and

Tribeca [113] provide platforms to efficiently monitor, query, and analyze network packet

streams.

We have witnessed the tremendous scale and complexity of data management from the

prosperity of database research and commercial DBMS systems. Such scale and complex-

ity also apply to data stream management. So even the general-purpose DSMS prototypes

do not address every prominent component. The one that is often missed or over-simplified

is the computation sharing component. This problem becomes more intricate when sup-

porting IMQO, the only practical way to deal with large-scale queries.

Generally, the architectures of all existing DSMS prototypes support sharing among

multiple queries. However, due to the complexity of query syntax and semantics, these

systems did not fully investigate the approaches to identifying sharable common compu-

tations. They either lack or simplify the computation indexing scheme which is vital for

IMQO.

The Stanford STREAM [89, 13, 19, 12] is a general-purpose DSMS prototype that

employs the traditional modular-processing architecture and constructs tree-shaped query

evaluation plans. It supports a declarative stream query language CQL [9] (an extension

to SQL), has rich supports for adaptive query processing and load shedding [15], and

implements various resource sharing algorithms [8]. However, lacking the computation

indexing and searching component, the sharing is limited to the levels of named sub-

queries (views), and does not yet support sharing across multiple queries.

The Berkeley TelegraphCQ [28, 78, 70] is a general-purpose DSMS prototype that

builds around Eddies [10], the integrated adaptive query processer. The query results

are obtained by routing tuples to various query operators. TelegraphCQ [84] supports

incremental sharing among multiple queries by grouping and indexing individual predi-

cates. [79] shows how sharing can be optimized on adaptive dataflow models, such as on



2.1. Data Stream Management Systems (DSMS) 21

TelegraphCQ, by avoiding as much repeated work as possible by sharing, yet minimizing

waste work caused by sharing. However, the prototype does not address common com-

plex expression identification. And the simplified indexing technique is not suitable for

plan-based architecture, such as STREAM, since it does not identify relationship among

predicate sets, and does not record topological information of a query network.

The Aurora/Borealis [24, 2, 1] are developed by three universities, Brandeis, Brown

and MIT, with rich supports on distributive processing and tolerance of failures. Unlike

other DSMSs that use declarative query languages, Aurora/Borealis applies a procedural

query language. An Aurora query is a network of connected operator boxes formulated by

an administrator, and presents a ready-to-execute plan. With this procedural approach,

much of the query sharing and optimization work is pushed to the user side, and thus the

system does not have an individual module for it. However, this approach is not suitable

for the large-scale query applications or the applications where the users are not expected

to have extensive knowledge on the internal system.

Close to our ARGUS framework, NiagaraCQ [33, 34] supports IMQO. Simple selection

predicates are grouped by their expression signatures and evaluated in chains. Equi-join

predicates can also be shared. Again it apply only shallow syntactic analysis and limit the

matching to the predicate level. This simplified approach also restricts the sharing path

selection strategies. NiagaraCQ applies the match-plan strategy. Match-plan matches a

plan optimized for the single new query with the existing query network with bottom-

up search. This strategy may fail to identify certain sharable computations by fixing

the sharing path to the pre-optimized plan. In contrast, ARGUS indexes computation

information on predicate set level and topological level, and applies the more flexible

sharing strategy, sharing-selection, as well.

Computation sharing is also related to predicate grouping in event-processing model

systems such as Gator in Ariel [67, 68] and Trigger Grouping in WebCQ [114]. Both



2.1. Data Stream Management Systems (DSMS) 22

systems implemented the chained sharing on simple selection predicates.

Gigascope [39, 38] is a specialized DSMS for network analysis applications. Nile [65]

is a DSMS prototype on distributed sensor network applications. And CAPE [131] is a

DSMS prototype concerning dynamic query re-optimization. Tukwila [73] is an adaptive

query processing system for Internet applications. IrisNet [54, 42] focuses on multimedia

sensor networks. And [7, 45] describe publish/subscribe services. They do not support

IMQO.

Alert [105] and Tapestry [115] are two early systems built on DBMS platforms. Alert

uses triggers to check query conditions, and uses modified cursors to fetch satisfied tuples.

This method is not efficient in handling high data rates and the large number of queries in a

stream processing scenario. Similar to ARGUS, Tapestry’s incremental evaluation scheme

is also wrapped in a stored procedure. However, its incremental evaluation is realized

by rewriting the query with sliding window specifications on the append-only relations

(streams). This approach becomes inefficient when the append-only table is very large.

Particularly, it has to do repetitive computations over large historical data whenever new

data is to be matched in joins.

There are also other works on continuous query processing. Query scrambling [118]

reschedules the operations of a query during its execution on-the-fly. Rate-based query

optimization [122] aims at maximizing the output rate of query plans based on the rate

estimates of the streams in the query evaluation tree rather than the sizes of intermediate

results. [83] provides a formalism on incremental query evaluation over data changes.



2.2. Multiple Query Optimization and View-based Query Optimization 23

2.2 Multiple Query Optimization and View-based Query Opti-

mization

Our IMQO approach, particularly the indexing scheme and the sharing strategies, is also

closely related to but substantially different from the previous approaches targeted to

MQO [107] and view-based query optimization (VQO). VQO [101, 20, 74] is a query

optimization approach that identifies and uses sharable materialized views to speed up

the query evaluation. We first discuss the related work to the indexing scheme, then we

discuss the related work to the sharing strategies.

Since MQO and VQO target to different scenarios, their indexing schemes do not suit

for IMQO in DSMSs. MQO focuses on one-shot optimization where queries are assumed

to be available all at a time. Therefore, the plan structures do not need to be indexed,

since they are constructed from scratch and are not needed for future search and updates.

In VQO, the plan structures for views also do not need to be indexed, since they are

predetermined and the unmaterialized internal results are not sharable.

In most of these approaches, the common computations, or common subexpressions, are

identified by constructing and matching query graphs [48, 27, 31, 129]. A query graph is a

DAG presenting selection/join/projection computations for a query. The matching has to

be performed one query by the other. Signature (table/column references in predicates)

can be hashed for early detection of irrelevant query graphs. However, many, with the

same signature but irrelevant, remain and have to be filtered out by the regular semantic

matching. Since it does not index any plan structure information, it can not be used for

IMQO plan indexing.

In the remaining approaches, particularly for the view-matching problem in VQO, a

top-down rule-based filtering method equipped with view-definition indexing is applied

[56, 41]. It identifies the sharable views by filtering out irrelevant ones as soon as possible.



2.2. Multiple Query Optimization and View-based Query Optimization 24

The view-definition indexing is different from our indexing scheme in two ways. It does

not index the internal plan structures for view evaluations, since the internal intermediate

results of a view are not materialized and thus not sharable. It also does not support

fast updates since the index is not expected to change frequently over time. In contrast,

a shared continuous query plan contains materialized intermediate results to support the

continuous evaluation of state operators, such as joins, and is expected to change upon

new query registrations.

Foreign-key joins preserve cardinality [56, 129], i.e. joining with a dimension table on

the foreign key does not add, duplicate, or drop tuples. Thus a view with foreign-key

joins can still be shared by a query even if the query does not have such joins. This

cardinality-preserving property is utilized by both [56, 129] to recognize such views. Our

prototype currently does not support such findings. However, since foreign-key constraints

are orthogonal to the information recorded in the proposed scheme, such feature can

be independently implemented and integrated into the prototype without modifying the

scheme design.

A sharing strategy specifies the procedure of searching the optimal sharing path in a

given search space. In the MQO setting, [107] presents a global search strategy with the

A*-search algorithm, and [102] uses heuristics to reduce the global search space. Their

approaches assume that the queries are all available at the time of optimization, and are

not applicable to the IMQO setting. NiagaraCQ implements an IMQO sharing strategy,

match-plan. Match-plan matches a plan optimized for the single new query with the

existing shared query plan from bottom-up. This strategy may fail to identify certain

sharable computations by fixing the sharing path to the pre-optimized plan. ARGUS

implements two sharing strategies, one is match-plan, and the other is sharing-selection.

Sharing-selection identifies sharable nodes on 2-way joins and locally chooses the optimal

one. Actually, match-plan can be viewed as a special case of sharing-selection by always



2.3. Data Warehousing and Aggregates 25

choosing the join at the lowest level among all sharable 2-way joins.

2.3 Data Warehousing and Aggregates

Efficient aggregation computation has been studied widely for data warehousing and data

stream applications. CUBE operator [59] generates aggregates over power sets of aggre-

gating columns (dimensions), and ROLLUP operator generates aggregates over subsets of

aggregating columns that are decreasing in the number of dimensions. These operators

allow the query optimizer to share the computation from high-dimension aggregate results.

GROUPING SETS [4, 69, 100] is a generalization to CUBE and ROLLUP by enumerat-

ing the desired subsets of aggregating columns. [35] proposed a hill-climbing approach

to search for efficient evaluation plans that share computations among a large number of

GROUPING SETS queries. [130] showed how to choose finer-granularity yet-not-requested

aggregates that are shared by multiple aggregation queries to improve computation effi-

ciency. [35, 130] also showed that exhaustive search for optimal plans are NP-complete.

Similar to our work, these approaches consider sharing computations among multiple

aggregations. Different to ours, these approaches assume all queries are available at the

time of optimization and thus perform the optimization as an one-shot operation. Our

approach assumes that queries arrive at different times and are added to the existing

evaluation plans incrementally in the IMQO framework.

Different from OLAP, data stream aggregates involve constant result updates. Win-

dow aggregates, explicitly specifying the stream windows over which the aggregations are

performed, however, may cease to receive new tuples as time pass by. Utilizing such

property, [82] proposed using Window IDs as an extra aggregating column to avoid buffer-

ing tuples. Continuously estimating quantiles and frequent items in distributed streams

[38, 85, 14, 91, 86] is another important stream aggregate problem. Since quantiles and

frequent items are not algebraic functions, incremental aggregation is not applicable. Their



2.4. Incremental Evaluation 26

approaches focus on approximate techniques to bound errors and predictive distribution

models to minimize communication cost. Orthogonal to above efforts, our work focuses

on incremental aggregations for general algebraic functions and support large-scale query

systems.

2.4 Incremental Evaluation

The incremental evaluation was inspired from the Rete algorithm which is widely used

in rule-based production systems. The Rete algorithm [50] is an efficient method for

matching a large collection of patterns to a large collection of objects. By storing partially

instantiated (matched) patterns, Rete saves a significant portion of computation that

would otherwise have to be re-computed repetitively in recursive matching of the newly

produced working elements. Memorizing intermediate results to match new stream tuples

is similar to Rete’s main idea, and is employed in ARGUS, and other DSMSs.

TREAT [88] and Gator [67, 68] are variants to Rete. TREAT is similar to Rete except

that it performs the pattern filtering then match all patterns together. It is similar to

perform multi-way joins without materializing any internal join nodes. Gator networks

are applied in the Ariel database system to speed up condition testing for multi-table trig-

gers. Gator is a generalization of the Rete and TREAT algorithms. It evaluates selection

predicates first, then chooses the join order and selectively chooses which intermediate join

results should be materialized. Gator also applies a predicate indexing scheme similar to

NiagaraCQ’s to evaluate simple selection predicates in chain.

The incremental evaluation is also related to the recent development of stream operators

and algorithms, active databases, and materialized view maintenance.

Stream operators are studied in recent literature. XJoin [117], MJoin [121], and the

window join in [55] are non-blocking window join operators developed for stream pro-

cessing. Ripple join [64] is a stream aggregate operator. Window aggregates[82] explore



2.5. Normalization and Indexing in Information Retrieval 27

stream/query time constraints to detect the aggregating groups that no longer grow and

thus avoid unnecessary tuple buffering. The studies on continuously estimating holistic

functions, i.e. quantiles and frequent items, in distributed streams [37, 91] focus on ap-

proximate techniques and models to bound errors and to minimize communication cost.

These operators are not immediately applicable to the ARGUS architecture since it is

implemented atop a DBMS. However, when ARGUS migrates to a DSMS, these stream

operators are very pertinent, and ARGUS existing incremental evaluation methods should

be implemented in the stream operators as well.

Both active databases and materialized view maintenance concern with the incremental

result updates upon data changes. Active database systems [63, 125, 26, 87, 105] allow

users to specify, in the form of rules or triggers, actions to be performed upon changes of

database states. And materialized view maintenance [20, 74, 60, 97, 51] concerns the tech-

niques of refreshing the views when base relations are changed. While the core algorithms

are similar to incremental evaluation methods, the functional mechanism and the purpose

are very different. The techniques are not suitable for stream processing since the triggers

and the view maintenance updates are hard to share and are not scalable.

2.5 Normalization and Indexing in Information Retrieval

The ideas of predicate canonicalization and computation indexing are inspired from tradi-

tional information retrieval techniques including word normalization, dimension reduction,

and inverted indexing.

Word normalization converts words into stem forms [126], e.g. presenting, presents, pre-

sented are all converted into present. Dimension reduction [40] maps various synonyms to

the same presentation (a cluster, for example). Canonicalization bears similarity to these

techniques. It converts semantically-equivalent yet syntactically-different literal predicates

into the same canonical form through legal transformations, such as mathematical trans-



2.6. Query Optimization 28

formations and rule-based inference, and allows equivalent and subsumed predicates in

different forms to be identified in constant time (when hashing is used).

Building inverted lists to efficiently search large-scale document collections is the fun-

damental component of a search engine [103]. Beyond term indexing, document structures

are also indexed in several research prototypes and commercial search engines (Google).

Unlike dealing with the ambiguity of natural languages in information retrieval, the com-

putation information of queries can be exactly described and preserved in a set of indexing

tables. The tables should be designed to provide fast searching and easy updating.

2.6 Query Optimization

Traditional query optimization techniques [58], particularly the techniques that search the

optimal execution plans [106, 72] based on cost models [95, 71], provide valuable insights

to continuous query optimization.

The premises and the assumptions that stream applications run upon vary significantly,

which leads to various optimization objectives. For example, TelegraphCQ’s Eddy [10] and

STREAM’s A-Greedy [17] optimize the adaptivity of dynamic query plans to the changing

data rates and distributions. Rate-based optimization [11, 122] aims at maximizing output

rates. In ARGUS, the optimization goal is minimizing the incremental query evaluation

time, which is achieved by minimizing intermediate result sizes by exploiting the very-

high-selectivity query property.

There are some relevant works on inferring hidden predicates. [92] discusses inferring

hidden join predicates so alternative join orders could be considered in optimization. [94]

infers selection predicates as ARGUS does. However, these works deal with only the

simplest case of equi-join predicates without any arithmetic operators. ARGUS can in-

fer hidden predicates from general 2-way join predicates with comparison operators and

arithmetic operators.



2.7. Other Related Work 29

Multiple query optimization (MQO) is systematically presented in [107] as a search

problem. [108, 5] showed that MQO with joins is NP-complete. [81] showed that view

matching is NP-complete. [102] uses heuristics to reduce search space in MQO. [4, 104]

showed that multiple aggregate query optimization is NP-complete. [35] showed that even

a simple case, aggregating over single columns, is also NP-complete.

2.7 Other Related Work

There are several database research directions tangentially related to streaming data pro-

cessing. Sequence databases [110, 109, 111] model the logical ordering of sequence data,

and apply the information to the optimization of sequence data queries. Time-series

databases [46] are interested in the behaviors of subsequences in a stream of time-ordered

data items. Temporal databases [112, 44, 127, 128, 22, 57] stress maintaining temporal

versions of databases and their evolution. Index selection [6, 29, 119, 66, 62, 30, 124]

targets automatic database tuning. XML search [61, 90, 7, 93, 43] mostly explores variant

finite state automata (FSA) to find matches in changing XML files efficiently.



Chapter 3

System Overview

The thesis implements the ARGUS stream processing system. This prototype is a part

of the large project ARGUS sponsored by DTO NIMD program and jointly managed by

Carnegie Mellon University and Dynamix Technologies Inc.

As part of the ARGUS project, the ARGUS stream processing system is implemented

atop Oracle DBMS for immediate practical utility. The system takes continuous queries

specified in SQL, generates shared query evaluation plans, and evaluates plans against

stream data. The system is comprised of two components, Query Network Generator

(NetGen) and Execution Engine (Engine). The NetGen is the implementation of the

IMQO framework and is responsible for generating shared query evaluation plans (query

network). The Engine is the Oracle query evaluation engine on which a shared query

network is executed as stored procedures.

In this chapter, we first provide an overview of the overall ARGUS project, then we

discuss adopting SQL as ARGUS query language, and finally we focus on the ARGUS

stream processing architecture.

30



3.1. Overall ARGUS Project 31

3.1 Overall ARGUS Project

The purpose of the panorama overview is to illustrate the application context in which the

ARGUS stream system is intended to function, and the significant role it plays therein.

The ARGUS stream system can also be applied in other important applications, such as

business intelligence, scientific exploration, and publish/subscribe services.

The Disruptive Technology Office (DTO) is a funding agency of the Intelligence Com-

munity, which has a central mission to help the nation avoid strategic surprise. The Novel

Intelligence from Massive Data (NIMD) program is aimed at focusing analytic attention

on the most critical information found within massive data - information that indicates

the potential for strategic surprise [96].

Analyst A Analyst B

Stream Matching
Continuous

Queries

T
er

ro
ri

sm
 A

le
rt

s

Fraud Alerts

Novelty Detection

New Connections

New
 P

at
te

rn
s

Ad hoc 
Query Matching

New 
Continuous 

Queries

Data Streams
A

d 
ho

c 
ex

pl
or

in
g

Figure 3.1: ARGUS overall functional architecture. Data streams feed novelty detection, stream matching,
and ad hoc query matching modules. Novelty detection detects new events and pattern changes, stream
matching continuously matches new data with concurrent continuous queries, and ad hoc matching effi-
ciently match ad hoc queries.

Project ARGUS [23] addresses the problem of obtaining novel intelligence for intel-



3.1. Overall ARGUS Project 32

ligence analysts from large, constantly incrementing collections of structured data like

financial transfers, hospital admission records, or network traffic data. Figure 3.1 shows

the overall functional architecture of the ARGUS system. The kinds of analyst task that

ARGUS supports include:

• Exploring a large collection of structured data, possibly containing inaccuracies (eg,

typos) or being otherwise dirty, using ad hoc queries.

• Setting up automated monitoring of streaming data being incrementally added to the

collection in order to provide alerts on any of a potentially large set of conditions

satisfied by the new data, alone or in combination with data already in the collection.

• Managing the automated analysis of patterns and trends in the data to detect unan-

ticipated, novel events.

The first task is supported by the Dynamix flexible and fast matching software [47] to

quickly search through 106 to 109 records to find the results that match or are close to

the ad hoc queries. The queries specify complex data selection criteria, and do not have

joins and aggregates. The strength of the software is its competitive fast matching capa-

bility achieved from the efficient data indexing techniques, and its approximate matching

capability achieved from the distance matching techniques.

The third task is supported by Carnegie Mellon innovative cluster analysis techniques

for novelty detection [53]. Data points are clustered based on relevant features, then

new data points are added to the existing clusters or form new clusters as they arrive.

A cluster is characterized by the cluster distance function, a function of the distance of

the data points to the cluster centroid. By tracking changes in the radial cluster density

function over time, the system can find new clusters and detect changes in both the shape

and density of clusters corresponding to unanticipated, novel events.

The second task is supported by the ARGUS stream processing system, the thesis



3.2. ARGUS Query Language 33

work. Complex continuous queries are formulated by analysts or by the automatic novelty

detection tools, and evolve over time. Continuous stream monitoring allows analysts to

quickly respond to emergency situations and discover unusual developments of special

events. The success lies in fast concurrent continuous query matching over frequently-

incrementing data streams, and is achieved by the techniques that will be described in this

thesis. In the remaining of the thesis, ARGUS refers to the ARGUS stream processing

system (not to tasks 1 and 3), unless otherwise clarified.

3.2 ARGUS Query Language

ARGUS query language is SQL. With a little concept enrichment, SQL is capable of

expressing continuous queries. In a DBMS, a relation is a set of data of the same schema.

A query (a set of relation operators) operates on a set of relations, and the result of the

query is a new relation. In a DSMS, the more important data entities are streams. A

stream is a data pipeline of the same schema which keeps on streaming new data tuples.

A query that operates on streams (or a combination of streams and relations) apparently

should produce results continuously. Thus the query is called continuous query, and its

result is a new stream. By embracing the concept that continuous queries operate on

streams and produce new streams, SQL is capable of expressing semantics of continuous

queries.

Due to the long-lived nature on unbounded streams, continuous queries usually con-

cern with the results falling into certain time windows. SQL can express the semantics

of time windows. For example, when a query joins two tuples that fall in a time window

of fixed-length, the time window can be expressed as a predicate, 0 ≤ t2.timestamp −
t1.timestamp ≤ W . For another example, the sliding window with regard to the cur-

rent time can be expressed as a predicate involving the current time function, sysdate −
t1.timestamp ≤ W . The current implementation does not support sliding windows with



3.2. ARGUS Query Language 34

regard to the current time. This is because the DBMS applies bag semantics to tuples,

and thus it is hard to implementing the mechanism of tuple expiration. One roundabout

solution is to project the timestamp column all the way along the query network evaluation

paths. Then at each time tick, expired tuples and intermediate results can be dropped

from the query network.

SQL as the continuous query language provides the compatibility to traditional DBMS

interface. Such compatibility is desirable in the applications where both stream processing

and traditional data management are important. For example, an intelligence analyst

who studies a complicated phenomenon needs to explore a large historical data archive to

formulate, refine, and validate his hypothesis with ad hoc queries which can be optimally

evaluated with an OLAP DBMS or the Dynamix matcher. When an ad hoc query is

validated as the one to describe an interesting pattern worth tracking, the analyst registers

it with the DSMS as a continuous query to monitor new data.

SQL as the continuous query language also provides a way to compare the stream

techniques and the DBMS, where streams are treated as relations.

STREAM [9] and TelegraphCQ [28] propose new extensions to SQL to form the con-

tinuous query languages. These extensions are mainly adding explicit syntax structures

for time window specifications and adding stream-relation conversion operators. As we

see from above, SQL can express them with range predicates and the stream-producing

assumption. ARGUS can be extended to support new syntax structures in future.

ARGUS assumes that query conditions are in conjunctive normal forms (CNF). Par-

ticularly, predicates in where-clause and having-clause are in CNF. This is also a common

practice in query optimization and in other stream systems (TelegraphCQ, NiagaraCQ,

STREAM). A query condition is a conjunction (connected by AND) of one or more con-

juncts, each of which is a disjunction (connected by OR) of one or more literal predicates.

We also call the disjunctions OR predicates (ORPreds), and the conjunctions predicate sets



3.3. ARGUS Stream Processing System 35

(PredSets).

The current implementation supports incremental evaluation and IMQO for queries

with selections, joins (including self-join), projections, aggregates, set operators, and view

definitions and references.

3.3 ARGUS Stream Processing System

ARGUS contains two components, Query Network Generator (NetGen) and Execution

Engine (Engine), shown in Figure 3.2. The system works as following. An analyst sends

a request to ARGUS to register a new query Q; NetGen analyzes the query, constructs a

new shared optimal query evaluation plan (also called query network) from the existing

one, instantiates the plan and generates the updated initialization and execution code,

records the plan information in the system catalog, and outputs the updated code; Engine

runs the query network to match with data streams and returns the results to the analyst.

Section 3.4 overviews the shared plan structures and describes how query networks are

evaluated by the execution engine. Section 3.5 overviews the NetGen architecture and

how a new query Q in SQL is translated into a part of the shared query network.

3.4 Execution Engine

The engine is the underlying DBMS query execution engine. We use its primitive relation-

operator support, but not its complex query optimization functionality, to evaluate the

query network generated by ARGUS to produce stream results. As we know, to run a

query in SQL, a DBMS generates an optimal logical evaluation plan, then instantiates

it to a physical plan, and executes the physical plan to produce the query results. The

logical plan can be viewed as a formula comprised of relation operators on the querying

relations. And the physical plan specifies the actual methods and the procedure to access



3.4. Execution Engine 36

Data Tables

Analyst

Input S
tream

s

Query Network
System
Catalog

Sharing
Module

Query
Optimizer

Code
Assembler

Plan
Constructor

Register queries

Result streams

Register & initialize query network

Query Network Generator Execution Engine

Figure 3.2: Using ARGUS. An analyst registers a query with ARGUS. ARGUS Query Network Generator
processes and records the query in the System Catalog, and generates the initialization and execution
code. ARGUS Execution Engine executes the query network to monitor the input streams, and returns
matched results. The analyst may register more queries.

the data. When the query is simple, e.g. a selection or an aggregate from one relation, or

a 2-way join or a UNION of two relations, the logical plan is simple and requires almost no

effort from the query optimizer. An ARGUS query network breaks the multiple complex

continuous queries into simple queries, and the DBMS runs these simple queries to produce

the desired query results. Therefore, in ARGUS, the underlying DBMS is not responsible

for optimizing the complex logical plans, but is responsible for optimizing and executing

physical plans for the simple queries.

In the remaining of this section, we describe the query network structures, and discuss

the design decision on using the DBMS Oracle. We will not discuss how the DBMS

generates and executes the physical plans.



3.4. Execution Engine 37

3.4.1 Query Network Structure

A query network is a directed acyclic graph (DAG). Figure 3.3 shows an example, which

evaluates four queries. The upper part evaluates queries Q1 and Q2 described in Section

1.5, and the lower part evaluates two sharable aggregate-then-join queries. The source

nodes (nodes without incoming edges) present original data streams and non-source nodes

present intermediate or final results.

F S1 S2 J1 J2 S3

G1

G2

J3 S4

F

hist
temp

Select From F_temp
Results go to S1_temp

Join S1_temp and S2_hist
Join S1_hist and S2_temp

Join S1_temp and S2_temp
Results go to J1_temp

Re-compute J3_hist from
G1_hist and G2_hist;

Compute J3_tempAggregate F_temp, 
Results go to G2_temp;

Update G2_temp from G2_hist

Incremental Evaluation Non-Incremental Evaluation

Figure 3.3: Execution of a shared query network. Each node has a historical (hist) table and a temporary
(temp) table, here only those of node F are shown. The callouts show the computations performed to
obtain the new results that will be stored in the nodes’ temporary tables. S nodes are selection nodes, J
nodes are join nodes, and G nodes are aggregate nodes. The network contains two 3-way self-join queries
and two aggregate-then-join queries, and nodes J2, S3, J3, and S4 present their results respectively.

Each network node is associated with two tables of the same schema. One, called

historical table, stores the historical data (original stream data for source nodes, and

intermediate/final results for non-source nodes); and the other, called temporary table,

temporarily stores the new data or results which will be flushed and appended to the

historical table later. These tables are DBMS tables, their storage and access are controlled

by the DBMS.



3.4. Execution Engine 38

In principle, we are only interested in the temporary data because it presents the new

query results. However, since some operators, such as joins and aggregates, have to visit

the history to produce new results, the historical data has to be retained too. It is possible

to retain only certain nodes’ historical data that will be accessed later. However, this has

more intricacy when sharing is involved, and is not supported in current implementation.

An arrow between nodes presents the evaluation of a set of operators on the parent

node(s) to obtain the results stored in the child node. The operator set could be a set

of selection predicates (selection PredSet), a set of join predicates (join PredSet), a set of

GROUPBY expressions, or a set operator (UNION, set difference, etc.). Table 3.1 shows

the types of operator sets and their result nodes.1

Operator Set # of Result Node Type
parents

Selection PredSet 1 Selection node

Join PredSet 2 Join node

GROUPBY Expressions 1 Aggregate node

Set Operator ≥ 2 Set operator node

Table 3.1: Operator sets and result nodes

The operator sets are stream operator sets. They operate on streams and output other

streams. Many operator sets can be evaluated incrementally on the parents’ temporary

tables to produce new results that populate the result node’s temporary table. For ex-

ample, the new results of a selection PredSet can be produced solely from the parent’s

temporary table, e.g. in Figure 3.3, S1 temp can be obtained by selecting from F temp.

For another example, the new results of a 2-way join PredSet can be evaluated by three

small joins from the parents’ historical and temporary tables, e.g. in Figure 3.3, J1 temp

can be obtained by three joins, S1 temp 1 S2 hist, S1 hist 1 S2 temp, and S1 temp 1

S2 temp. Performing the small joins is much faster than performing a large join on the

whole data sets, (S1 hist+S1 temp) 1 (S2 hist+S2 temp), since the temporary tables are

1The system only supports 2-way joins now. The major challenge on supporting multi-way join lies in the NP-hardness
of join sharing selection, not in the indexing and searching. We plan to extend to support multi-way joins with local sharing
strategies.



3.4. Execution Engine 39

much smaller than the historical tables, |S1 temp| ¿ |S1 hist|, and |S2 temp| ¿ |S2 hist|
[77].

The incremental evaluation on selections and joins is inspired from Rete, a fast pattern

matching algorithm widely used in production systems. It avoids repetitive computations

in the recursive matching process by storing intermediate results.

For the last example, an aggregate function SUM can be evaluated by adding the new

tuple values to the accumulated old aggregate values instead of revisiting the entire parent

historical table, e.g. in Figure 3.3, G2 temp can be obtained by aggregating F temp tuples

and then adding the old aggregate values from G2 hist to the aggregate values [76].

Some operator sets can not be incrementally evaluated. Examples include holistic aggre-

gates, such as quantiles [59], and operator sets operating on non-incrementally-evaluated

nodes. In the current implementation, we do not perform incremental evaluation on post-

aggregate operators, e.g. the join node J3 in Figure 3.3. Because the aggregate nodes’

historical tables also need updates, and the system currently does not trace such updates,

the incremental evaluations from aggregate nodes will not produce the correct results. If

the system is extended to support the tracing, the incremental evaluation methods can be

modified to evaluate post-aggregate nodes as well.

Regardless a node can be incrementally evaluated or not, the way to populate its

temporary table can be expressed by a set of simple SQL queries operating on its parent

nodes and/or its own historical table. In another word, the incremental or non-incremental

evaluation methods to populate a node’s temporary table can be instantiated by simple

SQL queries.

Each node is associated with two pieces of code and a runtime Boolean flag. The first

code, initialization code, is a set of DDL statements to create and initialize the historical

and temporary tables. It is executed only once prior to the continuous execution of the

query network. The second, execution code, is a PL/SQL code block that contains the



3.4. Execution Engine 40

simple queries to populate the temporary table. The Boolean flag is set to true if new

results are produced. To avoid fruitless executions, the queries are executed conditioning

on the new data arrivals in the parent nodes. Particularly, only when at least one parent

flag is true, are the queries executed. There is a finer tuning on execution conditions for

incremental joins depending on which parent’s temporary table is used.

The nodes of the entire query network are sorted into a list by the code assembler.

Correspondingly, we get a list of execution code blocks. This list of code blocks are

wrapped in a set of Oracle stored procedures. These stored procedures are the execution

code of the entire query network. To register the query network, the system runs the

initialization codes, then stores and compiles the execution code. Then the execution code

is scheduled periodical executions to produce new results.

3.4.2 Atop DBMS Oracle

As we see from above, built atop Oracle, the ARGUS engine is a wrap-up of the Oracle

engine. It drives the Oracle engine to produce stream evaluation results. The interface be-

tween the Oracle engine and the ARGUS engine is the PL/SQL language, a procedural lan-

guage supported by Oracle to manage the database. The shared incrementally-evaluated

query network is realized by stored procedures written in PL/SQL.

Although ARGUS is built atop Oracle, it is not intrinsically clung to Oracle or DBMSs.

The query network has its internal presentations and persistent storage in the system

catalog. Only the instantiation of the network evaluation is platform-specific. Particularly,

the code blocks are instantiated from several platform-specific operator code templates

that implements the incremental or non-incremental evaluation algorithms, and the wrap-

up stored procedures are generated based on a platform-specific procedure construction

template. Thus by just mapping the slight syntax differences between PL/SQL and the

procedural language supported by another DBMS, e.g. TSQL by Microsoft SQL Sever, in



3.5. Query Network Generator 41

the code templates and the procedure template, ARGUS can support stream monitoring

on that DBMS as well.

Further, ARGUS can also be expanded to work with DSMSs. This will be a major

direction of the future work. There are two approaches of coupling ARGUS with a DSMS.

The first is the loose coupling, where ARGUS sends a DSMS-compliant evaluation plan

of the query network or plan updates to DSMS, and DSMS continuously runs the network

to produce new results. This is simple and presents an one-way communication from

ARGUS to the DSMS. The second approach is the tight coupling, where ARGUS is also

responsible for adaptive re-optimization of the query network when sub-optimal behavior

is detected upon new data trends. This will be a major direction of the future work.

3.5 Query Network Generator

ARGUS Query Network Generator (NetGen) is responsible for generating and updating

the shared query evaluation plan (query network). It takes a new query Q, constructs an

new optimal shared evaluation plan, expands the existing query network with the plan

(plan instantiation), and outputs the updated query network initialization and execution

code. Figure 3.4 shows the architecture of NetGen, and illustrates the query processing

procedure and information flow between modules.

ARGUS Manager in NetGen is a master program that takes the query in SQL, and

invokes different modules to generate the shared plan, update the system catalog, and

generate the updated code.

The parser parses the SQL query into a parse tree based on a publicly available SQL

grammar.

The canonicalizer is a set of preprocessing programs to convert the parse tree to the

standard logical parse tree that is assumed by other processing modules. It performs the

transitivity inference (see Section 5.1), classifies the where-clause predicates into PredSets



3.5. Query Network Generator 42

based on the tables they reference, canonicalizes expressions and predicates (see Section

6.2.1), and converts the parse tree into the standard parse tree, such as presenting a

conjunct as a strict OR predicate tree even if the conjunct does not contains OR. See

Section 6.2 for details.

The incremental multi-query optimizer (IMQO) is comprised of three submodules to

process selection-join predicates in where-clause, aggregates in groupby-clause, and set

operators (UNION, MINUS, etc.) that connect multiple terms, respectively. The submod-

ules work in a similar approach. A submodule extracts sub-structures from the logical

parse tree, uses the index & search interface to search for the matches of the existing

query network from system catalog, selects the optimal ones to construct the local optimal

sharing plan, and calls the plan instantiator to instantiate the sharing plan and rewrite

the logical parse tree to reference the shared nodes. Recursively, IMQO works on the

rewritten logical parse tree until no more sharing is possible. Chapters 6, 7, and 9 describe

the related details.

The query optimizer generates an optimal evaluation plan for the remaining unsharable

logical parse tree. The plan is also called construction plan since it expands the existing

query network. In the current implementation, the optimizer mainly concerns with join

orders and the choice of materializing selection PredSets. Optimizations on aggregates

and set operators are not considered. Chapter 5 describes the details.

Correspondingly, the plan instantiator, index & search interface, and query rewriter,

all have separate submodules to process where-clause, groupby-clause, and set operators.

The plan instantiator traverses and instantiates a plan (a local sharing plan or an

construction plan). It breaks the plan into sub-plans, creates the nodes and generates the

code blocks, and calls the index & search module to update the system catalog to reflect

such changes. See Chapter 9 for details.

The index & search interface is a set of programs that creates, updates, and searches



3.5. Query Network Generator 43

the index of the query network. The index is stored in the system catalog as a set of

relational tables. The common computations are matched and formulated conceptually

between sub-structures of the logical parse tree and the index through the interface. Sec-

tion 3.6 describes the system catalog, and Chapters 6, 7, 8 and 9 describe the indexing

and searching various types of query network information.

The query rewriter rewrites the logical parse tree to reference the shared or newly

created nodes. The rewritten logical parse tree becomes simpler and simpler as com-

putations done by the newly referenced nodes are dropped. Beyond the submodules to

support where-clause, groupby-clause, and set operators, the query rewriter has one more

submodule which deals with view definitions and references. See Section 9.2.3 for details.

The code assembler retrieves the initialization code and execution code blocks of all

query network nodes, sorts them in the order that complies to the evaluation precedence,

then concatenates the initialization codes, and wraps-up the execution code blocks in a

set of stored procedures. The evaluation precedence states that an ancestor node must be

evaluated before its descendants. See Section 9.3 for details.

Beyond join ordering and conditional materialization, there are two additional optimiza-

tion techniques applied in NetGen, namely, transitivity inference and minimum column

projection.

Transitivity inference is a part of the canonicalizer and derives implicit highly-selective

predicates from existing query predicates to filter out many non-result records in earlier

stages and reduce the amount of data to be processed later. See Section 5.1 for details.

Minimum column projection is a part of the plan instantiator and projects only neces-

sary columns in the materialized table pairs when a new node is created, to save materi-

alization space and execution time. These columns include those in the final results and

those needed for further evaluation. When a node is shared, it may not contain all the

columns needed for the new query. Then extra columns will be added to the node and



3.6. System Catalog 44

possibly to its ancestors. This process is called projection enrichment. See Sections 8.2

and 8.3 for details.

3.6 System Catalog

The system catalog is a set of relations that records the query network information. The

information serves two purposes. First, it is used to instantiate the query network execution

plan, or say construct the executable code of the query network. Second, it is used to search

the common computations between the query network and the new query Q. The system

catalog information is updated when the query network is changed, which we call system

catalog synchronization.

The system catalog relations are categorized into five groups, query network storage,

coding storage, query storage, meta storage, and admin storage, shown in Figure 3.5.

Query network storage relations are categorized into three sub-groups in two ways. First

by information types, they are categorized into predicate/PredSet/expression indexing in-

formation tables, projection information tables, and topology information tables. Second,

by node types, they are categorized into selection/join node tables, aggregate node tables,

and set operation node tables. These relations record all the query network information

that is used for constructing the executable code and searching for common computations.

Chapter 6 and 7 describe the details.

Coding storage contains one relation called LinearNodeTable. It records the initial-

ization code and execution code blocks of each node. It also contains the sequencing

information of each node, which is used to sort the code blocks when wrapping up them

into stored procedures. See Section 9.3.

Query storage contains two relations, QueryTable, and QuerySemanticTable. Query-

Table records the registered query information, including query identifiers, the result table

of the query, and the registering time, etc. QuerySemanticTable records the original SQL



3.6. System Catalog 45

query texts of registered queries.

Meta storage contains four relations. It records the registered streams, user-defined

aggregation information and rules (Section 4.2), and the counters that are used for con-

structing the query network entity names.

Admin storage contains one relation, CheckPointTable. It records the query network

checkpoint information. A checkpoint is a dump of query network storage, coding storage,

and query storage, and can be used for reconstructing the query network and the system

catalog. The CheckPointTable and the related checkpoint utilities are implemented to

facilitate the system testing and evaluation, and will also be useful for recovery in real use.



3.6. System Catalog 46

System
Catalog

Incremental
Multi-Query
Optimizer

Query
Optimizer

Code
Assembler

Plan
Instantiator

ARGUS Query Network Generator

Parser

Canonicalizer

Index & Search
Interface

Query
Rewriter

ARGUS
Manager

SQL
Query

3

2

1

i

iii

ii

4

a

b

d

c

e
f

5

Initiation and execution code

Figure 3.4: Architecture of ARGUS Query Network Generator.

ARGUS Manager receives a query Q in SQL, and invokes sub-components to register the query:
1. Parser parses the query to a parse tree.
2. Canonicalizer converts the parse tree to logical parse tree, where predicates are canonicalized and
grouped into PredSets.
3. Sharing Module searches the common computation between the logical parse tree and the query
network R, constructs a sharing plan (a selected local optimal sharing path), and calls the Plan
Instantiator.
4. Query Optimizer generates an optimized plan for the remaining logical parse tree, and calls the Plan
Instantiator.
5. Code Assembler reads nodes’ registration information and assembles the code blocks into executables
(initialization code and execution code).

Plan Instantiation:
i) Plan Instantiator traverses the plan, and sends individual node create/update instructions to Index &
Search Interface.
ii) Index & Search Interface constructs and executes a set of commands to create/update the query node
registration in the System Catalog.
iii) Query Rewriter rewrites the logical parse tree.

Information Flow:
a. Parse tree
b. Logical parse tree
c. Sharing plan
d. Remaining logical parse tree
e. Optimized plan for the remaining logical parse tree
f. Node Registration information



3.6. System Catalog 47

Query Network Storage Coding Storage
Indexing Tables: LinearNodeTable

PredIndex*
PSetIndex* Query Storage
GroupExprIndex** QueryTable
GroupExprSet** QuerySemanticTable

Projection Tables:
JoinSimpleColumnNameMap*
JoinExprColumnNameMap* Meta Storage
SelSimpleColumnNameMap* BaseTableTable
SelExprColumnNameMap* AggreBasicTable
GroupColumnNameMap** AggreRuleTable
UnionColumnNameMap*** ValueTable

Topology Tables:
SelectionTopolgy*
JoinTopology* Admin Storage
GroupTopology** CheckPointTable
UnionNode***
UnionTopology***

Figure 3.5: System Catalog. * selection/join node, ** aggregate node, *** set operator node.



Chapter 4

Incremental Evaluation

This chapter describes the incremental evaluation algorithms for selections, joins, aggre-

gates, and set operators.

As discussed in Section 1.2, incremental evaluation refers to efficient continuous query

evaluation methods over stream data to produce new results. The main idea is minimizing

the access to the relatively large-volume historical data. This usually requires materializing

intermediate results on historical data.

Different query operators, i.e. selections, joins, aggregates, and set operators, entail

different intermediate results and different rules to compute new results. Incremental

selection does not require any historical data and computes new results immediately from

the new stream data. Incremental join needs to join historical data with new stream data

to produce new results. Incremental aggregation needs to store basic aggregate function

values on historical data and compute new aggregate values from the basic values and new

data. And some set operators need to access historical data to compute new results while

others do not.

This chapter describes the incremental evaluation algorithms for selections, joins, ag-

gregates, and set operators.

48



4.1. Selection and Join: Rete Algorithm 49

4.1 Selection and Join: Rete Algorithm

Consider selections and joins on tables N and M . Let n and m denote the historical data,

and ∆n and ∆m the new much smaller incremental data, respectively. By Relational

Algebra, a selection operation σ on data n+∆n is equivalent to σ(n+∆n) = σ(n)+σ(∆n).

σ(n) is the set of the historical results that is materialized. To evaluate incrementally, only

the computation on ∆n is needed (σ(∆n)).

Similarly, for a join operation 1 on (n + ∆n) and (m + ∆m), we have (n + ∆n) 1

(m + ∆m) = n 1 m + ∆n 1 m + n 1 ∆m + ∆n 1 ∆m. n 1 m is the set of the

historical results that is materialized and by far the largest part of the computation since

m À ∆m and n À ∆n, but needs not to be recomputed. Only the computations on

∆n 1 m + n 1 ∆m + ∆n 1 ∆m, three small joins, are needed. Since ∆n and ∆m

are much smaller than n and m, the time complexity of the incremental join is linear to

O(n + m). In the implementation, the incremental selection or join is executed only when

the corresponding new data part contains new data (not empty) based on the Boolean flag

value of the corresponding node’s parent. For example, ∆n 1 m is only executed when

∆n is not empty.

The incremental evaluation algorithms on selections and joins are inspired from Rete,

a fast pattern matching algorithm widely used in production systems. It avoids repetitive

computations in the recursive matching process by storing intermediate results.

Figure 4.1 shows the optimal query network for Example 1.1. And Figure 4.2 shows

how the PredSets are incrementally evaluated to obtain the new results for Example 1.1

through the Rete algorithm.

Using the Rete algorithm on selection and join queries leads to up to 10-fold performance

improvement comparing to using the original SQL queries on the DBMS directly; see

Section 10.2 for evaluation details.



4.2. Incremental Aggregation 50

F

r1.rbank_aba = r2.sbank_aba
r1.benef_account = r2.orig_account
r2.amount > r1.amount*0.5
r1.tran_date <= r2.tran_date
r2.tran_date >= r1.tran_date+20

r2.rbank_aba = r3.sbank_aba
r2.benef_account = r3.orig_account
r2.amount = r3.amount
r2.tran_date <= r3.tran_date
r3.tran_date >= r2.tran_date+20

type_code=1000
amount>500000

type_code=1000
amount>1000000

S1 S2 J1 J2

Figure 4.1: Optimal query network for Example 1.1.

4.2 Incremental Aggregation

Aggregate functions can be classified into three categories based on whether and how the

aggregate value on the whole data set S can be computed from its partition {Sj|j =

1, ..., K} [59]; see below. ARGUS handles all three types of aggregates, and performs

incremental aggregation on both distributive and algebraic aggregates even if they are

user-defined aggregates.

Distributive: Aggregate function F is distributive if there is a function G such that

F (S) = G(F (Sj)|j = 1, ..., K). COUNT, MIN, MAX, SUM are distributive.

Algebraic: Aggregate function F is algebraic if there is a function G and a multiple-

valued function F ′ such that F (S) = G({F ′(Sj)}|j = 1, ..., K). AVERAGE is algebraic

with F ′(Sj) = (SUM(Sj), COUNT (Sj)) and G(F ′(Sj)|j = 1, ..., K) =
P

F ′1(Sj)P
F ′2(Sj)

where F ′
i

is F ′’s ith value.



4.2. Incremental Aggregation 51

F S1 S2 J1 J2

F

hist
temp

Compute S1_temp by
selecting from F_temp

Compute J1_temp by
joining S1_temp and S2_hist,
joining S1_hist and S2_temp,

and joining S1_temp and S2_temp

S1

hist
temp

S2

hist
temp J1

hist
temp

r1.rbank_aba = r2.sbank_aba
r1.benef_account = r2.orig_account
r2.amount > r1.amount*0.5
r1.tran_date <= r2.tran_date
r2.tran_date >= r1.tran_date+20

type_code=1000
amount>500000

Figure 4.2: Incremental evaluation of the optimal query network for Example 1.1. It illustrates the
evaluation of node S1 and J1. S1 is the results of a selection PredSet {type code = 1000 AND amount >
500000}, and is incrementally evaluated by performing the selection from F temp to obtain S1 temp. J1
is the results of a join PredSet {r1.rbank aba = r2.sbank aba, AND ...}, and is incrementally evaluated
by performing the three small joins from S1 and S2 to obtain J1 temp.

Holistic: Aggregate function F is holistic if there is no constant bound on storage for

describing F ′. Quantiles are holistic.

Distributive and algebraic functions can be incrementally updated with finite data

statistics while holistic functions can not. To perform incremental aggregation for ar-

bitrary distributive/algebraic functions including user-defined ones, we use two system

catalog tables to record the types of the necessary statistics and the updating rules, shown

in Tables 4.1 and 4.2. Table AggreBasics records the necessary bookkeeping statistics for

each distributive/algebraic function. Argument X in BasicStatistics indicates the exact

match when binding with the actual value while W indicates the wild-card match. Ta-

ble AggreRules records incremental aggregation rules. The rule of a distributive function

specifies how the new aggregate is computed from the historical data (SH) and the tem-



4.2. Incremental Aggregation 52

porary data (SN); and the rule of an algebraic function specifies how the new aggregate is

computed from the basic statistics.

AGGREGATE AGGREGATE INCREMENTAL AGGREGATION VERTICAL EXPANSION
FUNCTION CATEGORY RULE RULE
AVERAGE A SUMX/COUNTW SUMX/COUNTW
SUM D SUMX(H) + SUMX(N) SUM(SUMX)
MEDIAN H NULL NULL
COUNT D COUNTW (H) + COUNTW (N) SUM(COUNTW )

Table 4.1: AggreRules. Aggregate Category: A Algebraic; D Distributive; H Holistic.

AGGREGATE BASIC BASIC
FUNCTION STATISTICS STATID
AVERAGE COUNT (W ) COUNTW
AVERAGE SUM(X) SUMX
SUM SUM(X) SUMX
COUNT COUNT (W ) COUNTW

Table 4.2: AggreBasics

Consider query A that monitors the number of visits and the average charging fees on

each disease category in a hospital everyday, shown in Example 4.1. When new tuples

from the stream Med arrive, the aggregates COUNT(*) and AVERAGE(fee) can be in-

crementally updated if COUNT(*) and SUM(fee) are stored, shown in Figure 4.3. Node

S presents the data stream Med, and node A presents query A’s results.

Example 4.1 (A) Monitoring the number of visits and the average charging fees on each

disease category in a hospital everyday.

SELECT dis cat, hospital, vdate,

COUNT (∗), AV ERAGE(fee)

FROM Med

GROUP BY CAT (disease) AS dis cat

hospital,

DAY (visit date) AS vdate

Incremental aggregation is shown in Algorithm 4.1 and is illustrated by Figure 4.4 on

AV ERAGE(fee) for query A.



4.2. Incremental Aggregation 53

S A

AVERAGE(fee)
AS AVGA

SUM(fee)
AS SUMA

COUNT(*)
AS COUNTA

vdatehospitaldis_cat

(a) Evaluate query A

Figure 4.3: Evaluating Query A.

Algorithm 4.1 also shows the time complexity Ti of each step. The merge step (Step

2) is realized with a hash join on AH and AN with Thash2 = O(|AH | + |AN |). If the AH

hash is precomputed and maintained in RAM or on disk with perfect prefetching, the

time complexity is Tprefetch2 = O(|AN |). The duplicate-drop step (Step 4) is realized by

a set difference AH − AN , which can be achieved by hashing with the time complexity of

Thash4 = O(|AH |+ |AN |) or by prefetched hashing with the time complexity of Tprefetch4 =

O(|AN |). However, we observed that it took Tcurr4 = O(|AN | ∗ (|AH
N |)) = O(|AN |2) on the

DBMS, where |AH
N | is the number of the groups in SH to be dropped. This means that

the DBMS applies the nested-loop algorithm to compute the set difference.

If the incremental aggregation is implemented in a DBMS or a DSMS as a built-in

operator, both merge and duplicate-drop steps can be achieved with hashing. With the

prefetching, the complexity will be linear to |AN |. Therefore, the time complexities on the

current implementation, build-in operator with hashing, and with prefetch are following:

Tcurr = O(|S2
N |+ |AH |), Tbuilt−in = O(|SN |+ |AH |), and Tprefetch = O(|SN |).

Algorithm 4.1 Incremental Aggregation

0. PredUpdate State. AH contains update-to-date aggregates on SH .



4.2. Incremental Aggregation 54

1. Aggregate SN , and put results into AN . T1 = O(|SN |)
2. Merge groups in AH to AN . Thash2 = O(|AH |+ |AN |), Tprefetch2 = O(|AN |)
3. Compute algebraic aggregates in AN from basic statistics

(omitted for distributive functions). T3 = O(|AN |)
4. Drop duplicates in AH that have been merged into AN .

Tcurr4 = O(|AN | ∗ |AH
N |) = O(|AN |2),

Thash4 = O(|AH |+ |AN |), Tprefetch4 = O(|AN |)
5. Insert new results from AN to AH , preferably after AN has been sent to the users.

T5 = O(|AN |)

AVERAGE(fee) 

AS AVGA

SUM(fee)

AS SUMA

COUNT(*)

AS COUNTA

GID

SUM(fee)

AS SUMA

AVERAGE(fee)

AS AVGA

COUNT(*)

AS COUNTA

GID

0: PreUpdate State

1: Aggregate AN

t1: AH

t2: AN

SH

SN

2: Merge Groups
t2.COUNTA = t1.COUNTA + t2.COUNTA
t2.SUMA = t1.SUMA + t2.SUMA

3: Compute Algebraic Aggregate

COUNTAt

SUMAt
AVGAt

.2

.2
.2 =

AAAADDDDiiiigggg AAAADDDDiiiigggg
AAAADDDDiiiigggg AAAADDDDiiiigggg

4: Drop Duplicates

5: Insert New Results

Figure 4.4: 5-step Incremental Aggregation.

Figure 4.5 shows the procedure to instantiate the incremental aggregation code for

function AV ERAGE(fee) in query A.

1. The function is parsed to obtain the function name and the list of the actual argu-



4.2. Incremental Aggregation 55

ments.

2. The basic statistics and updating rules are retrieved.

3. The statistics are parsed and their formal arguments are substituted by the actual

arguments.

4. The statistics are renamed and stored in GroupColumns.

5. The name mapping is constructed based on above information.

6. The updating rules are instantiated by substituting formal arguments with the re-

named columns.

COUNTW

SUMX
AVERAGE =)()()(

)()()(

NCOUNTWHCOUNTWNCOUNTW

NSUMXHSUMXNSUMX

+=
+=

AggreRules:AggreBasics:
AVERAGE: SUM(X): SUMX
AVERAGE: COUNT(W): COUNTW

New Query A:
AVERAGE(fee)

GroupColumns:
SUM(fee): SUMA
COUNT(*): COUNTA
AVERAGE(fee): AVGA

AVERAGE fee

COUNTA

SUMA
AVGA =

COUNTW

SUMX
feeAVERAGE =)(

COUNTW

SUMX
AVGA =

COUNTAt

SUMAt
AVGAt

.2

.2
.2 =

)()()(

)()()(

NCOUNTAHCOUNTANCOUNTA

NSUMAHSUMANSUMA

+=
+=

COUNTAtCOUNTAtCOUNTAt

SUMAtSUMAtSUMAt

.2.1.2

.2.1.2

+=
+=

SUM(X) SUMX
COUNT(W) COUNTW

SUM(fee) SUMX
COUNT(*) COUNTW

parse

retrieve rules

substitute

insert columns

su
bs

tit
ut

e

SUM(fee)
SUMX

SUMA

COUNT(*)
COUNTW

COUNTA

AVERAGE(fee) AVGA

Name Mapping:

Figure 4.5: Incremental aggregation instantiation. Generate the incremental aggregation code by rewriting
incremental aggregation rules with actual arguments.

Using the incremental aggregation on algebraic aggregate queries shows up to 100-fold

performance improvement comparing to using the regrouping approach; see Section 10.3

for evaluation details.



4.3. Set Operators 56

4.3 Set Operators

This section describes the incremental evaluation on set operators. We consider three set

operators, UNION ALL, UNION, and MINUS.

Set operator, UNION ALL (+), takes data elements as a bag and outputs all data

elements from the operand relations/streams, as shown in Figure 4.6. Thus, we have

(m + ∆m) + (n + ∆n) = (m + n) + (∆m + ∆n). The incremental evaluation is easy by

simply unioning all new data parts.

Set operator, UNION (∪), takes data elements as a set (identical data elements present

just once) and outputs all distinct data elements from the operand relations/streams, as

shown in Figure 4.7. Thus, we have (m + ∆m) ∪ (n + ∆n) = (m ∪ n) ∪ (∆m ∪ ∆n).

Therefore, the incremental evaluation is easy by unioning new data parts. However, the

results may contain duplicates that are already in m ∪ n, which are not needed by the

user. Duplicates can be dropped by differentiating the results from m ∪ n. We have

(m + ∆m) ∪ (n + ∆n) = (m ∪ n) ∪ (∆m ∪∆n) = (m ∪ n) + ((∆m ∪∆n)− (m ∪ n)).

Set operator Difference (-) is similar to a join, as shown in Figure 4.8. We have (m +

∆m)− (n + ∆n) = (m− n) + (m−∆n) + (∆m− n) + (∆m−∆n). However, continuous

queries usually have a time-segregate property. The time-segregate property holds on a

set-operation query if and only if for any two non-overlapped time period τ1 and τ2, the

corresponding data parts of the query do not overlap, that is ∆mτ1 − ∆nτ2 = φ and

∆mτ2 −∆nτ1 = φ. This property clearly holds when streams keep on streaming in unique

new data tuples (may be unique just on timestamps). All the queries that involve the

difference operator in our query repository (simulation of intelligence analysis queries)

have the property. So we always have (m −∆n) = φ and (∆m − n) = φ. Therefore, the

incremental evaluation can be simplified as (m+∆m)− (n+∆n) = (m−n)+(∆m−∆n).



4.3. Set Operators 57

m∆m

n∆n

m

n∆m∆n

+

Figure 4.6: Incremental evaluation for UNION ALL

m∆m

n∆n

m

+

duplicates

duplicates

duplicates

∆m

n∆n

Figure 4.7: Incremental evaluation for UNION. Duplicates are dropped.



4.3. Set Operators 58

m∆m

duplicates
from n

duplicates from ∆n

-

n∆n 

Figure 4.8: Incremental evaluation for set difference. Assume new data part ∆m contains duplicates in
∆n, but does not contain duplicates from the old part n. Then the results is (m− n) + (∆m−∆n).



Chapter 5

Query Optimization

This chapter describes the query optimization techniques that are implemented in ARGUS,

including transitivity inference, join ordering, conditional selection materialization, and

minimum column projection.

The query optimization techniques help generate efficient shared query networks. Par-

ticularly, transitivity inference derives implicit highly-selective predicates from existing

query predicates to filter out many non-result records in earlier stages and reduce the

amount of data to be processed later. Join ordering aims to find the optimal join order to

minimize the join intermediate result sizes. Conditional selection materialization decides

whether the results of a set of selection predicates will be materialized or not based on

selection factors. It aims to gain computation efficiency by balancing the computation

saving and the materialization overhead. And minimum column projection projects the

minimal set of columns for intermediate result tables shared by multiple queries to reduce

intermediate result sizes.

Section 5.1 describes the transitivity inference in detail. Section 5.2 briefly overviews the

minimum column projection and refers to Chapter 8 for implementation details. Sections

5.3 and 5.4 describe the problem and importance of conditional materialization and join

59



5.1. Transitivity Inference 60

order optimization. And Section 5.5 describes the design of the optimizer that performs

conditional materialization and join order optimization.

5.1 Transitivity Inference

Transitivity inference explores the transitivity property of comparison operators, such as >,

<, and =, to infer hidden selective selection predicates from a set of existing predicates. For

example, in Example 1.1, the query has the following conditions (the first is very selective):

r1.amount > 1000000, r2.amount > r1.amount ∗ 0.5, and r3.amount = r2.amount.

The first two predicates imply a new selective predicate on r2: r2.amount > 500000.

Further, the third predicate and the newly derived predicate imply another new selective

predicate on r3: r3.amount > 500000. These inferred predicates have significant impact

on performance. The intermediate result tables of the highly-selective selection predicates

are very small and save significant computation on subsequent joins.

Given a pair of predicates, if one condition contains exactly one column a, which we

call single-table condition (STC), and the other contains exactly two columns a and b from

two different tables, which we call joint-table conditions (JTC), then the inference module

will try to infer some predicate on b.

The inference module is comprised of two parts. The first part builds up the data

structures from the existing conditions. The second part loops through the data structures

to look for the hidden conditions. Figure 5.1 shows the data structures and work flow of

the inference module.

JTCIDHash is a hash table whose keys are JTC identifiers, and the values are JTCs.

STCHash is a hash table that stores all the STCs whose keys are the columns, and the

values are the lists of the STCs that contain the key columns. JTCHash is a hash table

that stores all the JTCs whose keys are also column names, and the values are the lists of

IDs of JTCs that contain the key columns. STCList is the list of STCHash keys.



5.1. Transitivity Inference 61

(r1.a, r2.b, …)JTCID1 JTC

r1.a
r2.b

STC1 STC2 …r1.a(JTCID1, JTCID2, …)

JTCHash STCHash

JTCIDHash

STCList

Figure 5.1: Data structures for transitivity inference. JTCHash hashes join conditions, which are actually
stored in JTCIDHash. STCHash hashes selection conditions. A join condition in JTCHash and a selection
condition in STCHash with the same hash keys are paired up for transitivity inference.

Following is the inference algorithm.

Algorithm 5.1 Inference

1. Pop up a column r1.a from the STCList.

2. If there is an entry r1.a in JTCHash, we do transitivity inference on each pair of the

matching conditions: JTC1 and STC1.

If a hidden condition C on column r2.b is inferred from JTC1 and STC1,

– Add C to the parsed subtree for the where-clause.

– Add C to STCHash, and add r2.b to STCList. This allows inferred conditions to

be used for further inference.

– Remove JTC1 from JTCHash. This step avoids endless cycle of inferring the

same conditions. If we can’t find the entry for a given JTC ID in JTCHash, then

we simply skip this JTC.

3. Repeat Step 1 and 2 until STCList is empty.



5.2. Minimum Column Projection 62

A transform function is developed to facilitate inference. Given a pair of STC and JTC,

the function transforms the conditions into the following format:

STC: r1.a >=< f1(c)

JTC: r1.a >=< f2(r2.b)

where f1(c) is a function of constant c, and f2(r2.b) is a function of r2.b. >=< is the

comparison operator, which could be one of the following: <, ≤, >, ≥, =. Based on the

operator, a hidden condition on r2.b may or may not be inferred.

The transitivity inference module is a part of the canonicalizer and it runs after the

parsing.

Transitivity inference leads to up to 20-fold performance improvement in our experi-

ments, shown in Section 10.2.

5.2 Minimum Column Projection

Minimum column projection refers to projecting the minimal set of columns for intermedi-

ate tables. When a new node is created, to save materialization space and execution time,

we only project the necessary columns from its parents. These columns include those in

the final results and those needed for further evaluation. The process becomes intricate

when sharing is considered. When a node is shared, it may not contain all the columns

needed for the new query. Then extra columns will be added to the node and possibly

to its ancestors. This process is called projection enrichment. Aurora has the same func-

tionality to project minimum columns. However, with its procedural query language, the

sharing-related intricacy is not considered by the system but is handled manually. See

Chapter 8 for details on projection management.



5.3. Conditional Materialization 63

5.3 Conditional Materialization

In the incremental evaluation of selections/joins, materialized intermediate results improve

performance by avoiding repetitive computations over the historical data. However, a

potential problem is that when any materialized intermediate table is very large, thus

requiring many I/O operations, the performance degrades severely. When intermediate

results are not reduced substantially from the original data, the time saved from the

repetitive computations may be offset or exceeded by the materialization overhead (I/O

time).

Assume transitivity inference is not applicable by turning the module off, Example 1.1 is

such a query. The two selection predicates (r2.type code = 1000, r3.type code = 1000) are

highly non-selective, the sizes of the intermediate results are close to that of the original

data table. Aware of the table statistics, such a materialization can be conditionally

skipped, which we call conditional materialization.

Conditional materialization examines the selectivity of selection PredSets and decides

whether or not materializing the PredSets based on a threshold cutoff (default is 0.3).

Conditional materialization is implemented in the query optimizer.

PredSet selectivity may change over time. Dynamically detecting the change and mod-

ifying the materialization choice belong to the area of adaptive processing and will be

future work.

Conditional materialization shows up to 1.8-fold performance improvement in our ex-

periments, shown in Section 10.2.

5.4 Join Order Optimization

The optimal join order may lead to hundreds-fold performance improvement, as shown in

classic query optimization literature [92, 106]. We implemented the join order optimization



5.5. Query Optimizer Design 64

in the query optimizer.

5.5 Query Optimizer Design

Query optimization based on cost models has been well studied since the seminal paper

[106]. [67] studied how to apply cost models to Gator networks. Similar techniques can be

applied to ARGUS query network optimization. However, ARGUS has different optimiza-

tion choices. It considers two problems, deciding whether or not materializing intermediate

results, and optimizing the join order. Traditional query optimization concerns the join

order, and choices of access methods, such as choosing using index or not, and choosing

between merge join or nested-loop join, etc.

Active List

Join Graph

StructureBuilder

Join

Enumerator

History-based

Cost Estimator DB

SQL Query

Rete

networks

Update Tables

History-based

Rete Optimizer

Figure 5.2: Query optimizer architecture. Join Enumerator enumerates sub-join-plans and chooses the
cheapest one based on the cost estimates.

Figure 5.2 shows the architecture of the query optimizer. The join graph is a bipartite

graph that shows the join connections of a query. The circle nodes represent the tables



5.5. Query Optimizer Design 65

referenced in the query. Each circle node also represents the subplan to access the table.

The rectangle nodes are join predicates whose associated edges link to the tables to be

joined. The join graph is initialized by StructureBuilder. Initially, each subplan node

is associated to a single table and contains the decision of conditional materialization.

During the join-order optimization phase, the join graph is expanded to incorporate the

new subplans.

For example, assume a query references four tables, table 1, 2, 3, and 4, and there are

four sets of join predicates, denoted as P (1, 2), P (2, 3), P (1, 3), and P (3, 4), respectively.

Particularly, P (n,m) presents the set of join predicates that join tables n and m. The

initial join graph is shown in Figure 5.3. Assume during the optimization, a subplan that

joins tables 1 and 2 is generated, then the join graph is expanded to the graph shown in

Figure 5.4. A new subplan node (1, 2) is generated, which can be seen as a wrap-up node

of circle node 1, circle node 2, and the predicate node P (1, 2). The new node is connected

to all the predicate sets whose join table sets have non-empty intersections with {1, 2}.
Activelist is the list of active subplan nodes. An active subplan node will eventually

be popped from the Activelist, and be used to search for expansion. Newly generated

subplan nodes are put into the Activelist for further expansion until it is a complete plan.

The position that the newly generated subplan is placed in the ActiveList is determined

by the search strategy. When placing new subplans at the top of the list, where nodes

are popped, it is the depth-first search. When placing new subplans at the bottom of the

list, it is the breadth-first search. When the subplans in the Activelist maintain the order

of estimated costs of the subplans, it is the hill-climbing search. And when the subplans

maintain the order of a heuristic function, which is the sum of the estimated cost of the

subplan and a non-overestimated cost of the remaining plan, then it is the A* search. The

initial Activelist contains and only contains all the subplan nodes of the initial join graph.

StructureBuilder is the module that initializes and maintains the data structures in-



5.5. Query Optimizer Design 66

1

2

3

4

P(1,2)

P(2,3)

P(1,3)

P(3,4)

Figure 5.3: An initial Join Graph

cluding the join graph and Activelist.

JoinEnumerator is the module that searches the optimal construction plan. The search

is driven by the Activelist. Given an active subplan PLAN1, JoinEnumerator generates a

set of subplans that expand PLAN1. The cost of each plan is estimated by the history-

based cost estimator. The newly generated subplans are checked for completeness, and if

not, are put into the Activelist. When the Activelist is empty, the best complete plan is

chosen as the output plan.

The history-based cost estimator estimates the cost of a query plan. It builds a tem-

porary sub-query network in the engine environment, and runs the network against the

existing data. The temporary sub-query network is created and expanded as the plan ex-

pands. Each subplan in the join graph has a correspondent network node whose associated

table contains the output of the subplan. The estimator uses the execution time of the

temporary networks on the existing data as the estimated cost of the networks running



5.5. Query Optimizer Design 67

1

2

3

4

P(1,2)

P(2,3)

P(1,3)

P(3,4)

1,2

Figure 5.4: Expanding the Join Graph. The new node is the result of joinging nodes 1 and 2.

on the future stream data. The assumption adopted by the history-based cost estimator

is that the future stream data distributions are the same to that of the historical data.

It bypasses detailed modeling, and provides the accurate cost estimates given the same

distribution assumption.

We also apply heuristic pruning to the optimization search. If applied heuristic functions

predict an extremely high cost of a subplan, such subplan will not be expanded and

estimated.



Chapter 6

Incremental Multiple Query

Optimization on Selection and Join

This chapter describes the incremental multiple query optimization (IMQO) on selection

and join queries. The next chapter describes the IMQO on aggregate and set operator

queries. As discussed in Chapters 1 and 3, IMQO contains four complex steps: indexing

the existing query network R, searching the common computations between the new query

Q and the existing query network R, selecting the optimal sharing paths, and expanding

the existing query network R to evaluate the new query as well. We focus on the first

three steps in this chapter and the next chapter, and defer the fourth step to Chapter 9.

IMQO on selection and join queries is much more complex than that on aggregate or

set operator queries due to rich query syntax and semantics. The query computation

can be captured by a 4-layer hierarchical model, including layers of literal predicates,

OR predicates (disjuncts of literal predicates, or ORPreds), predicate sets (conjuncts of

ORPreds, or PredSets), and topology.

Section 6.1 introduces formal definitions on equivalent and subsumed literal predicates,

ORPreds, and PredSets, and discuss PredSets operations. A reader may skip this sec-

68



6.1. Definitions 69

tion without losing the integrity on understanding the system. Section 6.2 presents the

computation hierarchical model, related computation representation issues and solutions,

and the common computation identification algorithms. Lastly Section 6.3 presents two

sharing selection strategies, match-plan and sharing-selection.

6.1 Definitions

6.1.1 Equivalent Predicates

We say a predicate p1 is equivalent to a predicate p2, if for any database status D, p1

and p2 have the same results. An equivalent predicate class is the set of all equivalent

predicates. And canonical predicate form is a representation of an equivalent predicate

class.

Definition 6.1 (Equivalent Predicate) For any database status D, if p1(D) = p2(D),

then p1 is equivalent to p2, and denote p1 ≡ p2.

Definition 6.2 (Equivalent Predicate Class) An equivalent predicate class C is a set

of predicates, such that if pC ∈ C, then

• ∀p′C that pC ≡ p′C, we have p′C ∈ C.

• and ∀p′C that ¬(pC ≡ p′C), we have p′C /∈ C.

Definition 6.3 (Canonical Predicate Form) A canonical predicate form FC of an equiv-

alent predicate class C is a representation of that class that satisfies the following condi-

tions:

• Each equivalent predicate class has a unique canonical predicate form. The canonical

predicate form can be viewed as the ID of an equivalent predicate class.

• Through legal transformations, such as mathematical transformations and rule-based

inference, any predicate can be converted into the canonical predicate form.



6.1. Definitions 70

• Canonical predicate form should be easy to be broken down to basic units such that

different equivalent predicate classes can be compared and merged. For example, pred-

icates p1 : t.a > 1 and p2 : t.a > 0 present two different equivalent predicate classes.

From the semantics, we know that if p1 is true, then p2 is true, too. The inference

on this kind of single-attribute predicates is made easy if the representation of the

predicates comprises three separate parts: attribute name, comparison operator, and

the compared constant.

There are various canonical predicate forms. Our discussion is applicable to any canon-

ical predicate form, but we assume that a system will stick to some particular canonical

predicate form for consistency. The canonical predicate form is important to predicate

indexing.

Because of the complexity of mathematical transformations and rule-based inference,

the predicate indexing module of a system may not implement all transformations and

inference. Therefore, the system may not recognize all forms of equivalent predicates. In

this case, an equivalent predicate class is partitioned into small pieces. Each piece is a

sub-equivalent predicate class. Therefore, there are cases that common predicates can be

shared, but will not be shared because the common predicates are not identified by the

system. Such a predicate indexing module is called incomplete.

Note that a predicate indexing module must be valid or correct. Validity means that

the module never puts inequivalent predicates into one single equivalent predicate class,

although it is allowed to fail to put equivalent ones into one class.

We can measure the quality of a predicate indexing module by its capability of iden-

tifying equivalent predicates. An incomplete predicate indexing module partitions an

equivalent predicate class into smaller sub-equivalent predicate classes. Conceptually, we

can use the number of sub-classes nC , or the average number of sub-classes navg(C), and

the variance of nC or variance of navg(C), to measure the quality of the predicate indexing



6.1. Definitions 71

module. The complete predicate indexing module has nC = 1, and V ARnC
= 0. Although

ARGUS canonicalization is not complete, it provides a much more close-to-complete iden-

tification capability than previous approaches by converting many syntactically-different

predicates into the same canonical form.

6.1.2 Extending Predicate Set Operations

The extended predicate set operators are defined on predicate sets. We point out the

distinction between the notation of a predicate set and the notation of the result tuple

set obtained by applying the predicate set on the database D. A predicate set is a set of

conjunctive predicates. For example, assume that PNT = {p1} and POJ = {p1, p2}. PNT ,

{p1}, POJ , and {p1, p2} are all predicate sets. The result tuple set obtained by applying

a predicate set {p1, p2, ..., pn} is denoted as S({p1, p2, ..., pn}), and is a set of tuples in the

database D (could be compound tuples generated by joining multiple tuples) that satisfy

all the predicates in {p1, p2, ..., pn}.
Fixing the database status as D, a predicate set P can be mapped to SD(P ):

SD : P → SD(P )

Vice versa is not necessarily true because there may be non-equivalent predicate sets

P1 and P2 (see Definition 6.6 for equivalent predicate sets), such that SD(P1) = SD(P2)

for some particular database status D.

Among the definitions introduced below, the literal belong operator ∈ has the similar

meaning of the set operator ∈ under the usual sense. Other set operators incorporate

subsumption semantics.

Definition 6.4 (Literal Belong Operator ∈) Given a predicate p and a predicate set

P = {p1, p2, ..., pn}, if there is a pk, k is an integer in [1..n], such that p ≡ pk, then we say

that p literally belongs to P , and denote as p ∈ P .

Definition 6.5 (Semantic Belong Operator ∈≡) Given a predicate p and a predicate



6.1. Definitions 72

set P, if for any database status D, SD(P ) ⊆ SD({p}), then we say that p semantically

belongs to P , and denote as p ∈≡ P .

If p ∈ P , then p ∈≡ P . Vice versa is not true. For example, let p1 : t1.a > 1, and

p2 : t1.a > 2, then p1 /∈ {p2}, but p1 ∈≡ {p2}.

Definition 6.6 (Equivalent Predicate Sets ≡≡) Given two predicate sets P1 and P2,

we say that P1 and P2 are equivalent, and denote as P1 ≡≡ P2, if for any database status

D, we have SD(P1) = SD(P2).

Definition 6.7 (Semantic Subset ⊆≡) Given two predicate sets P1 and P2, we say that

P1 is a semantic subset of P2, or that P1 subsumes P2, and denote as P1 ⊆≡ P2, if for any

database status D, we have SD(P1) ⊇ SD(P2).

Definition 6.8 (Proper Semantic Subset ⊂≡) Given two predicate sets P1 and P2, we

say that P1 is a proper semantic subset of P2, and denote as P1 ⊂≡ P2, if P1 ⊆≡ P2 and

P1 is not equivalent to P2.

Definition 6.9 (Semantic Superset ⊇≡) Given two predicate sets P1 and P2, we say

that P1 is a semantic superset of P2, or that P1 is subsumed by P2, and denote as P1 ⊇≡ P2,

if P2 ⊆≡ P1.

Semantic superset and semantic subset are also referred as query containment [49] in

literature.

Definition 6.10 (Proper Semantic Superset ⊃≡) Given two predicate sets P1 and P2,

we say that P1 is a proper semantic superset of P2, and denote as P1 ⊃≡ P2, if P2 ⊂≡ P1.

Consider two semantic subset examples. In the first example, let P1 = {p1}, and

P2 = {p1, p2}, then any tuple satisfying predicate set P2 must also satisfy predicate set P1,

therefore P1 ⊆≡ P2, which is straightforward as P2 literally contains all the predicates in

P1.



6.1. Definitions 73

In the second example, let p1 : t1.a > 1, p2 : t1.a > 2, P1 = {p1}, and P2 = {p2}.
Similarly, any tuple satisfying predicate set P2 must also satisfy predicate set P1, therefore

SD(P1) ⊇ SD(P2). Under the semantic subset definition, we have P1 ⊆≡ P2. Recall that

P ′
2 = {p1, p2} ≡ P2, it becomes clear that SD(P1) ⊇ SD(P ′

2).

The process to find the equivalent predicate set P ′
2 for the purpose of establishing the

semantic relationship (or subsumption) between predicate sets is called explication, and

say that P ′
2 is the explication of P2 on P1.

Definition 6.11 (Explication) Given two predicate sets P1 and P2, P1 = {p11, p12, ..., p1n1},
and P2 = {p21, p22, ..., p2n2}. We say predicate set P ′

2 = {p31, p32, ..., p3n3} is the explication

of P2 on P1, denote as P ′
2 = EP1(P2), if all the following conditions are satisfied.

• ∀p2k ∈ P2, we have p2k ∈ P ′
2.

• ∀p1k ∈ P1, if p1k ∈≡ P2, then we have p1k ∈ P ′
2.

• P2 ≡≡ P ′
2

We can see that in terms of literal predicate elements, P ′
2 is a superset of P2.

Definition 6.12 (Semantic Intersection ∩≡) Given two predicate sets P1 and P2. Let

P ′
1 = EP2(P1), and P ′

2 = EP1(P2). The semantic intersection P of P1 and P2, denoted as

P = P1 ∩≡ P2, is defined as a predicate set such that

• ∀p ∈ P , we have p ∈ P ′
1, and p ∈ P ′

2.

• ∀p, such that p ∈ P ′
1, and p ∈ P ′

2, then we have p ∈ P .

For example, let p1, p2, and p3 be three selection predicates on three different columns of

a table respectively, such as p1 : t1.a = 1, p2 : t1.b = 2, and p3 : t1.c = 3. Let P1 = {p1, p2},
and P2 = {p1, p3}, then we have P1 ∩≡ P2 = {p1}.

In another example, let p1 : t1.a > 1, p2 : t1.a < 3, p3 : t1.a > 2, p4 : t1.a < 4,

P1 = {p1, p2}, and P2 = {p3, p4}. Then we have EP2(P1) = {p1, p2, p4}, and EP1(P2) =



6.2. Indexing and Searching 74

{p3, p4, p1}. Therefore, we have P1 ∩≡ P2 = {p1, p4}. The explication process is important

here for calculating the intersection.

We shall note that S(P1 ∩≡ P2) ⊇ S(P1) ∪ S(P2).

Since ARGUS does not yet support restructuring, it does not need to compute the

predicate set intersections and thus does not implement the explication yet. Explication,

intersections, and restructuring will be supported in future. See Section 11.2.1 for the

future work.

6.2 Indexing and Searching

We describe the computation indexing scheme and the related searching algorithms in this

section.

The computations of a query network is organized as a 4-layer hierarchy. From top

to bottom, the layers are topology layer, PredSet layer, OR predicate (ORPred) layer,

and literal predicate (literal) layer. The last three layers, also referred as the three-pred

layers, present the computations in CNF. And the top layer presents network topological

connections.

S1

P1

S2

P2

ORp1 ORp2 ORp3 ORp4

p1 p2 p3 p4

Figure 6.1: Computation hierarchy.

Literal Pred

Associates

ORpid

psetid

type

name

text

OR Pred

Node

BelongsTo

BelongsTo

IsAChild

PredSet

pid

Figure 6.2: Hierarchy ER model.

Figure 6.1 shows the hierarchy for the two nodes S1 and S2 from Figure 1.1. The

ORPreds are trivial in this example. But in general, the ORPred layer is necessary to



6.2. Indexing and Searching 75

support full predicate semantics. For the equivalent PredSets P2 and P3, only P2 is shown.

For the equivalent predicates p1 and p3, only p1 is shown, while p3 is crossed out and

dropped from the hierarchy. The dashed arrows between PredSets and literal predicates

indicate subsumptions at these two layers. And the dashed arrow between nodes S1 and

S2 indicates the direct topology connection between them.

Such a hierarchy supports general predicate semantics and general topology structures.

An indexing scheme should efficiently index all relevant information of the hierarchy to

support efficient operations on it including search and update. The hierarchy can be

presented in an ER model, as shown in Figure 6.2.

The reason that we do not use a linked data structure to record query network is due to

its search and update inefficiency on large-scale query networks. In a linked data structure,

the update needs to perform the search first unless the nodes are indexed, and the search

needs to go through every node of the same querying table(s) to check the relationship

between the node’s associated operator set and the query’s operator sets to decide the

sharability.

There are several issues we need to consider before we transform the ER model to the

relational model. Particularly, we want to deal with rich predicate syntax for matching

semantically-equivalent literal predicates, match self-join computations at the three-pred

layers, identify subsumptions at the three-pred layers, and identify complex topological

connections. We discuss these issues and their solutions in the remaining of this section.

The solutions are then implemented in the final relational model.

6.2.1 Rich Syntax and Canonicalization

A literal predicate can be expressed in different ways. For example, t1.a < t2.b can also

be expressed as t2.b > t1.a. A simple string match can not identify such equivalence

as done by previous work. For doing so, we introduce a canonicalization procedure. It



6.2. Indexing and Searching 76

transforms syntactically-different yet semantically-equivalent literal predicates into the

same pre-defined canonical form. Then the equivalence can be detected by exact string

match.

There is intricacy with regard to the canonicalization. We need to identify subsump-

tion relationship between literal predicates. For example, t1.a > 10 subsumes t1.a ≥ 5.

The exact match on the canonicalized predicates can not identify subsumptions. Instead,

the subsumption can be identified by a combination of the exact match on the column

references, the operator comparison, and the constant comparison. Therefore, we apply a

triple-string canonical form, (LeftExpression Operator RightExpression). LeftExpression is

the left side of the canonicalized predicate and is the canonicalized expression containing

all the column references, and RightExpression is the right side and is a constant. The

subsumption identification can be formulated as a system-catalog look-up query on the

triple strings.

Due to extremely rich syntax and unknown semantics, e.g. user-defined functions, a

complete canonicalization procedure is impossible. Previous works [56, 34, 84] apply simple

approaches to identify subsumptions between simple selection predicates (e.g. t1.a > 10

subsumes t1.a > 5), equivalence of equi-join predicates and literally-matched predicates.

This simplification fails to identify many syntactically-different yet semantically-related

predicates that are commonly seen in practice.

Our canonicalization is more general. For example, the equivalence between r1.amount >

0.5∗r1.amount and 2∗r1.amount > r1.amount, and the subsumption between r2.tran date <=

r1.tran date + 20 and r2.tran date <= r1.tran date + 10 can be identified by the canon-

icalization but not the previous approaches.

The canonicalization applies arithmetic transformations recursively to literal predicates

to convert them to predefined canonical forms. The time complexity is quadratic to the

length of the predicates because of sorting. But the non-linear complexity is not a problem,



6.2. Indexing and Searching 77

since the canonicalization is an one-time operation for just new queries, and the average

predicate length is far less than the extent that can slow down the process noticeably. The

canonicalization does not use specific knowledge such as user-defined functions which may

be time-consuming.

For non-comparison predicates, such as LIKE, IN, and NULL test, there are no ex-

changeable left and right sides. In such cases, we only canonicalize their subexpressions.

We treat range predicates BETWEEN as two conjunctive comparison predicates. For

comparison predicates on char-type data, the left and right expressions are exchangeable

but can not be piled into one single side. In this case, left and right sides are canonicalized

separately.

The canonicalization for numeric comparison predicates is more complex. It is a

recursive transformation procedure. At each recursion, it performs pull-up, flattening,

sorting, and constant evaluation. It flattens and sorts commutable sub-expressions, e.g.

a + (c + b) ⇒ a + b + c, and a ∗ (b ∗ c) ⇒ a ∗ b ∗ c. It pulls up − over +, and pulls up / over

∗, e.g. a− b + c− d ⇒ (a + c)− (b + d), and a/b ∗ c/d ⇒ (a ∗ c)/(b ∗ d). It pulls up + and

− over ∗, e.g. a ∗ (b + c) ⇒ a ∗ b + a ∗ c. And when possible, it merges multiple constants

into one and converts decimal and fractions to integers.

Following shows the implemented canonicalization procedure on comparison predicates

whose data types allow arithmetic operations.

Algorithm 6.1 (Predicate Canonicalization)

• If the right side is not 0, move it to the left, e.g. t1.a + 10 < t2.a− 1 ⇒ t1.a + 10−
(t1.a− 1) < 0.

• Perform expression canonicalization on the left side.

• If there is a constant divisor or a constant fraction factor, or the constant factors



6.2. Indexing and Searching 78

are not relatively prime, multiply both sides by a proper number to make the factors

relatively prime, and change the operator when the number is negative, e.g. t1.a/2−
1 > 0 ⇒ t1.a− 2 > 0.

• Move the constant term on the left side to the right side. e.g. t1.a− t2.a + 9 < 0 ⇒
t1.a− t2.a < −9.

• If the right side is a negative number, the operator is =, and the left side is in the

form of MinusTerm1 − MinusTerm2, change signs of both sides so the right side

becomes a positive number, e.g. t1.a− t2.a = −9 ⇒ t2.a− t1.a = 9.

• Sort operands of commutable operators (+ and ∗) on the left side in the order of

alphabet, e.g. t3.a + t2.a + t1.a ⇒ t1.a + t2.a + t3.a.

Expression canonicalization is a bottom-up recursive transformation procedure per-

formed on an arithmetic expression, as shown below.

Algorithm 6.2 (Expression Canonicalization)

• Gather constant terms and evaluate them, e.g. a+2−1 ⇒ a+1. Involving functions,

some constants may not be evaluated, then do the canonicalization on each function

argument, and leave the function call as it is.

• Flattening and sorting commutable sub-expression parse trees, e.g. a + (c + b) ⇒
a + b + c, and a ∗ (b ∗ c) ⇒ a ∗ b ∗ c.

• Pull up − over +, and pull up / over ∗, e.g. a− b + c− d ⇒ (a + c)− (b + d), and

a/b ∗ c/d ⇒ (a ∗ c)/(b ∗ d).

• Pull up + and − over ∗, e.g. a ∗ (b + c) ⇒ a ∗ b + a ∗ c.



6.2. Indexing and Searching 79

6.2.2 Self-Join

We need to decide how to reference tables in the canonical forms. In the easy cases where

the predicate is a selection predicate or a join predicate on different tables, any column

reference in its canonical form can be presented as table.column, e.g. F.amount, without

ambiguity and information loss. The direct table reference is necessary for applying the

fast exact-string match.

However, when a predicate is a self-join predicate, using true table names is problematic.

For example, the self-join predicate r1.benef account = r2.orig account joins two records.

The specification of joining two records is clarified by different table aliases r1 and r2. To

retain the semantics of the self-join, we can not replace the table aliases with their true

table names. To avoid the ambiguity or information loss, we introduce Standard Table

Aliases (STA) to reference the tables. We assign T1 to one table alias and T2 to the other.

To support multi-way join predicates, we can use T3, T4, and so on.

Self-joins also present problems in the middle layers (PredSet and ORPred layers). For

example, an ORPred p1 may contain two literal predicates, one is a selection predicate

ρ1: F.c = 1000, and the other a self-join predicate ρ2: T1.a = T2.b. The canonicalized ρ1

references the table directly, and is not aware of the STA assignment. But when it appears

in p1, we must identify its STA with respect to the self-join predicate ρ2. Therefore,

ρ1’s STA, T1 or T2, must be indexed in p1. Similar situation exists in PredSets where

some ORPred is a selection from a single table and some other is a self-join. Thus an

ORPred STA should be indexed in the PredSet in which it appears. The STA assignment

must be consistent in the three-layer hierarchy. Particularly, a PredSet chooses one STA

assignment, and propagates it down to the ORPred layer and the literal layer.

A 2-way self-join PredSet1 has two possible STA assignments. And a k-way self-join has

k! assignments. This means that a search algorithm may try up to k! times to find a match.

1This is also true for literal predicates and ORPreds.



6.2. Indexing and Searching 80

The factorial issue is intrinsic to self-join matching, but may be addressed heuristically.

In our implementation, supporting 2-way joins, the search on a self-join PredSet stops

when it identifies an equivalent one from the system catalog. If both assignments lead to

identify subsuming PredSets, the one that has less results (indicating a stronger condition)

is chosen. To support multi-way self-joins, STA assignments may be tried one by one until

an equivalent PredSet is found, the assignments are exhausted, or a good-enough one is

found based on heuristics.

We note that other work, such as STREAM, fails to support self-joins for querying

streams, requiring very inefficient data replication.

6.2.3 Subsumption at Literal Layer

Subsumptions present in the literal layer, ORPred layer, and PredSet layer. If a condition

p2 implies p1, or say p2 → p1, then p1 subsumes p2. Subsumptions are important for efficient

computation sharing, since evaluating from the results of subsumed conditions processes

less data and is more efficient. We want to identify existing conditions that either subsume

or are subsumed by the new condition. The former directly leads to sharing, while the

later can be used to re-optimize the query network. See Section 11.2.1 for the future work

on re-optimization.

Identifying subsumptions between PredSets is NP-hard [75, 99]. The hardness originates

in the presence of correlated literal predicates in an ORPred. For example, {t1.a <

4 OR t1.a > 5} subsumes PredSet {t1.a > 2 AND t1.a < 3}, but there is no polynomial

algorithm that can identify such subsumption in general. On the other hand, without

the correlated disjunction, detecting subsumptions is easy. For example, PredSet {t1.a >

1 AND t1.a < 4} subsumes {t1.a > 2 AND t1.a < 3}, but not {t1.a > 2 AND t1.a < 5}.
Both the acceptance and rejection can be computed in linear time. Our subsumption

identification algorithms are also heuristic and linear. The heuristic is the assumption of



6.2. Indexing and Searching 81

no correlated disjunctions.

Functional dependencies held on streams may pose additional subsumptions [13]. Search-

ing all functional dependencies is also NP-complete [98], but heuristic algorithms may exist

to find interesting ones for improving the computation sharing, which will be a future re-

search problem.

This subsection describes how subsumptions at literal layer are detected from the triple-

string canonical forms. And the next subsection describes the heuristic algorithms for doing

so at the ORPred layer and PredSet layer.

For LIKE, NULL Test, and IN predicates, no subsumption but only exact matching is

performed. On comparison predicates, both subsumption and equivalence are identified.

In the remaining of this subsection, we look at comparison predicates.

When LeftExpressions are the same, the subsumption between two literals may exist.

It is determined by the operators and the comparison on RightExpressions. For example,

ρ1 : t1.a < 1 → ρ2 : t1.a < 2, but the reverse is not true. We define a subsumable

relationship between pairs of operators based on the order of the right sides.

Definition 6.13 For two literal operators γ1 and γ2 and an order O, we say (γ1, γ2, O) is

a subsumable triple if following is true: for any pair of canonicalized literal predicates ρ1

and ρ2, assume ρ1: L(ρ1)γ1R(ρ1), and ρ2: L(ρ2)γ2R(ρ2) where L() and R() are the left

and right parts respectively. If L(ρ1) = L(ρ2) , and O(R(ρ1), R(ρ2)) is true (the right parts

satisfy the order), then we have ρ1 → ρ2.

For example, (<,<, Increasing) is a subsumable triple (ρ1 : t1.a < 1 → ρ2 : t1.a < 2,

and O(1, 2) is true). Table 6.1 shows the implemented subsumable triples. With this,

look-up queries can be formulated to retrieve the indexed subsumption literals in constant

time.



6.2. Indexing and Searching 82

γ1 γ2 Order O γ1 γ2 Order O

> >= E < <= E

= >= E = <= E

> >= D > > D

>= >= D >= > D

= > D = >= D

< <= I < < I

<= <= I <= < I

= < I = <= I

Table 6.1: Subsumable Triples (γ1, γ2, O). E is equal, D is decreasing, and I is increasing.

6.2.4 Subsumption at Middle Layers

Given an ORPred p of a PredSet P in the new query Q, we want to find all ORPreds

p′ ∈ RORPred, such that p is subsumed by, subsumes, or is equivalent to p′, based on the

subsumptions identified at the literal layer. From the results, we find all PredSets P ′ ∈ R,

such that P is subsumed by, subsumes, or is equivalent to P ′.

This subsection describes the algorithm that computes subsumptions at the middle

layers (PredSet and ORPred layers). We focus on finding the ORPreds that subsume p,

then extend the algorithm to find ORPreds that p subsumes, and finally discuss the similar

subsumption algorithms on the PredSet layer. Identifying equivalence is easy given the

subsuming and subsumed sets are identified; it is a unique ORPred or PredSet that is in

the intersection of the two sets.

We assume non-redundant ORPred presentations in both queries and the indexed hier-

archy. Particularly, any literal in an ORPred does not subsume any other one in the same

ORPred. For example, if p = {ρ1 OR ρ2} and ρ1 → ρ2, then p is redundant and can be

reduced to p = {ρ2}. Similar non-redundancy is also assumed on PredSet presentations.

Our algorithms guarantee that the non-redundancy holds on the hierarchy index as long

as it holds on queries.

For illustration, we assume that each ORPred has l literal predicates, each literal is

subsumed by s indexed literals, and each literal appears in m non-equivalent ORPreds. l

is related to typical types of queries registered into the system, and thus can be viewed as



6.2. Indexing and Searching 83

a constant parameter. Figure 6.3 shows that each of the l literals in p is subsumed by s

indexed literals, and each indexed literal belongs to m different ORPreds.

ρ1

ρ11

ρ1s

p111

p11m

p1s1

p1sm

ρl

ρl1

ρls

pl11

pl1m

pls1

plsm

{ p111         {ρ11}

p11m {ρ11}

p1s1 {ρ1s}

p1sm {ρ1s}}

{ pl11         {ρl1}

pl1m {ρl1}

pls1 {ρls}

plsm {ρls}}

Sρ1 =

Sρl =

Figure 6.3: Subsumption and 2-level hash sets.

According to Section 6.2.3, given a literal ρi ∈ p, i ∈ [1..l], and any pair of the s

literals (ρij, ρih), j ∈ [1..s], h ∈ [1..s], which subsume ρi, a subsumption exists between

ρij and ρih, namely, either ρij → ρih or ρih → ρij is true. Along with the non-redundancy

assumption, all s ∗ m ORPreds {pijk|i ∈ [1..s], k ∈ [1..m]} are different to each other.

Therefore s ∗m ≤ |RORPred|, where |RORPred| is the number of ORPreds in R. Generally,

s ∗ m ¿ |RORPred|, since on average, ρi and its related literals {ρij|j ∈ [1..s]} present

narrow semantics and only appear in a small portion of RORPred.

Note that the ORPreds across different literal predicates, such as pi1j1k1 and pi2j2k2 ,

i1 6= i2, could be legitimately equivalent. In fact, we want to identify those ones and check

whether they subsume p.

The subsumption algorithm uses a data structure called 2-level hash set. A 2-level hash

set S is a hashed nested set. The set elements, called top-level elements or hash keys, are

hashed for constant-time accesses. The set of these elements is denoted as keys(S). Each



6.2. Indexing and Searching 84

element p ∈ keys(S) points to a bottom-level set whose elements are also hashed and

is denoted as S(p). Conceptually, a top-level element p presents a set identifier, and its

nested set S(p) contains the elements that are currently detected as belonging to set p.

Shown in Figure 6.3, for each literal ρi, the subsuming literal predicates and their

ORPreds form a 2-level hash set Sρi
. The ORPreds are the s∗m unique top level elements,

and form the set keys(Sρi
). Each ORPred points to the set of the literal predicates that

belong to it. In Figure 6.3, the bottom-level sets are singleton sets whose elements are

literals that subsume p.

We define a binary operation Υ -intersection ∩Υ on 2-level hash sets. The purpose is

to find the sets, identified by the top-level keys, that appear in both operand sets, and to

merge the currently-detected set elements in them.

Definition 6.14 Given two 2-level-hash sets S1 and S2, we say S is the Υ -intersection of

S1 and S2, denoted as S = S1 ∩Υ S2, if and only if following is true: S is a 2-level-hash

set, keys(S) = keys(S1) ∩ keys(S2), and for ∀k ∈ keys(S), S(k) = S1(k) ∪ S2(k).

When intersecting two 2-level hash sets S1 and S2, only the common top-level keys,

namely, the ones appearing in both S1 and S2, are preserved; others, appearing in one set,

but not the other, are discarded in the result set. For any preserved key p, its nested set

is the union of p’s nested sets in S1 and S2. Υ -intersection can be computed in the time of

O(|keys(S)| ∗ Averagep∈keys(S)|S(p)|) where S is either S1 or S2. In Figure 6.3, the time

of Υ -intersecting two hash sets is O(s ∗m).

Algorithm 6.3 Subsumed ORPreds

input: p, R; output: SubsumedSet(p)

for each literal ρi ∈ p, i ∈ [1..l]

Sρi
:= {pijk ⇒ {ρij} | ρij ∈ pijk, pijk ∈ RORPred,

ρi → ρij, j ∈ [1..s], k ∈ [1..m]};



6.2. Indexing and Searching 85

I := ∩Υ
l
i=1Sρi

;

SubsumedSet(p) := {};
for each key p′ ∈ keys(I)

if |I(p′)| = |p|
SubsumedSet(p)+ := p′;

The subsumption algorithm shown above finds all ORPreds in RORPred that subsume

p. It constructs Sρi
, i ∈ [1..l], Υ -intersects them to I, and checks the satisfying ORPreds

in I. |I(p′)| is the number of elements in I(p′), namely, the number of literals in p′ that

subsume some literal in p. And |p| is the number of literals in p. The check condition

|I(p′)| = |p| means that if each literal in p is subsumed by some literal in p′, then p is

subsumed by p′. The time complexity is easy to be shown as O(l ∗ s ∗m).

The algorithm Subsume ORPreds that finds all ORPreds in RORPred that p subsumes is

very similar to Subsumed ORPreds, except that the 2-level hash sets are constructed from

the literals that are subsumed by p’s literals, and the final check condition is |I(p′)| = |p′|,
saying that if each literal in p′ is subsumed by some literal in p, then p′ is subsumed by p.

The algorithms can be easily extended to identify subsumptions and equivalence at the

PredSet layer. In that case, the top-level hash keys are the PredSet IDs and the bottom-

level elements are ORPred IDs. The final check conditions dictate that a PredSet P is

subsumed by another P ′ if P is subsumed by all literal predicates in P ′.

Assume that each PredSet has k ORPreds, each ORPred is subsumed by t indexed

ORPreds, and each ORPred appears in n different PredSets. The time complexity of the

PredSet-layer algorithm is O(k∗l∗s∗m+k∗t∗n) including the k calls of Subsumed ORPreds.

Note that t∗n ≤ |R| given the non-redundancy assumption. |R| is the number of the search-

able PredSets in R and is also the number of nodes in R. Generally, t ∗ n ¿ |R| since on

average the PredSets related to p appear in only a small portion of the indexed PredSets.

Therefore, the algorithm takes only a small portion of time O(k ∗ l ∗ |RORPred| + k ∗ |R|)



6.2. Indexing and Searching 86

to compute.

If the sharable PredSets are searched by matching PredSets and ORPreds one by one,

the searching will take the time of O(k2 ∗ l ∗ |R|) since k new ORPreds need to match

|R| ∗ k existing ORPreds and each match computes on l literal predicates. Although it is

also linear to |R|, the factor is larger and it will be much slower on large scales.

6.2.5 Topology Connections

PredSets are associated with nodes. A PredSet P presents the topological connection

between the associated node N and N ’s ancestors {A}. Namely, the results of N are ob-

tained by evaluating P on {A}. A node N is associated with multiple PredSets depending

on the different types of ancestors. An important one is the DPredSet which connects N

to its direct parents. DPredSet is used in constructing the execution code, and needs to

be indexed.

Solely relying on DPredSets does not provide the fast searching. In Figure 6.4(a),

assume a selection PredSet P from stream table B1 can be evaluated from any of S1, S2,

S3, S4, and S5, and S5 is the best one to share. If only DParent is recorded, S5 has to be

found by a chained search process that needs to check the sharability of nodes along the

way from B1 to S5. The process also needs to deal with branches, e.g. in Figure 6.4(a)

searching the descendants of S1 as well.

Same problems exist for join PredSets. In Figure 6.4(b), assume a self-join P on stream

table B1 can be evaluated from J7. If only DParents are recorded, J7 can not be found

immediately. The chained search process must search all B1’s descendants up to the end

of its next join depth. Both chained processes have the time complexity of linear to the

total size of the chains.

One solution is recording all PredSets associated with a node S. Particularly, for any

ancestor A of S, the PredSet between them is recorded. In this approach, the number



6.2. Indexing and Searching 87

B1

S2

S1

S4

S3

(b) Matching joins with chained selections

(a) Matching chained selections

S5

NULLB1B1

NULLB1S1, S2, S3, S4, S5

JVOAsSVOANodes

NULLB1S1, S2, S3, 

S4, S5, S6

NULLB1B1

B1, B1J1J1, J4, J7

JVOAsSVOANodes

B1
S2

S1

S4

S3

S5

S6

J1 J4 J7

(c) SVOAs & JVOAs of nodes in (a)

(d) SVOAs & JVOAs of nodes in (b)

Figure 6.4: Multiple topology connections.

of PredSets to be recorded is higher than linear of |R|. Assume the average number of

descendants of a node is m, and average number of branches is k, thus km ≈ |R|. Then the

number of PredSets is O(km2). Also the redundant indexing leads to redundant search.

A better choice is recording only two more PredSets for each node N . These PredSets

are associated with nodes called N ’s SVOA and N ’s JVOAs. Figures 6.4(c) and 6.4(d)

show the SVOAs and JVOAs for nodes in (a) and (b).

Definition 6.15 (SVOA) A selection node N ’s SVOA is N ’s closest ancestor node that

is either a join node or a base stream node. A join node or a base stream node N ’s SVOA

is itself. SVOA stands for selection very original ancestor.

Definition 6.16 (JVOA) A join node N ’s JVOAs are the closest ancestor nodes that

are either join nodes (but not N) or base stream nodes. A selection node N ’s JVOAs are

the JVOAs of N ’s SVOA. And a base stream node’s JVOA is NULL. JVOA stands for

join very original ancestor.

SVOAs present local selection chains, and JVOAs present one join depth beyond the



6.2. Indexing and Searching 88

local selection chains. With SVOAs and JVOAs, the chained searches are no longer nec-

essary. Note that SVOAs and JVOAs present local topological connections within and

across one join depth. The common computations identified at the local level are fed to

a sharing strategy to search for optimal sharing paths. In ARGUS, we implemented two

local strategies that perform sharing one join-depth a time.

A semantically-equivalent predicate may appear in DPredSet, JVOAPredSet, and SVOAPred-

Set in different forms for a given node. For example, as shown in Figure 6.4(b), assume a

self-join predicate p1 from stream base table B1 is actually evaluated as a selection predi-

cate from node J4 to obtain J7. Then for node J7, p1 will appear as the original self-join

predicate from B1 in JVOAPredSet, as a selection predicate from J1 in SVOAPredSet,

and as a selection predicate from J4 in DPredSet. Automatic conversions between these

forms are needed and implemented. We also need and implement the union and difference

operations on PredSets, which should ensure the non-redundancy requirement.

6.2.6 Predicate and PredSet Conversions

When a new node is created or the topology of a sub-network is changed, the topology

information in the system catalog has to be updated to maintain the consistent state with

the changed topology. To do that, we identify all the nodes whose topology information

needs to be updated, compute the updated information, and make the corresponding

changes to the system catalog. When a new node is created, only that node’s topology

information needs to be added into the system catalog. When any existing node is moved

around, then we need to decide which descendants of it need to be updated and what

information (JVOA, SVOA, and/or Direct Parent(s)) needs to be updated. For each

node, the needed information to be updated is computed according to its predicate sets

from the direct parent(s), JVOAs, and SVOA.

The computation usually applies the combination of the predicate set conversion, pred-



6.2. Indexing and Searching 89

icate set union, and predicate set difference to obtain the right predicate sets in the right

forms.

PredSet conversion converts a PredSet from one form to another equivalent form. In

a new query Q, the PredSet is presented in JVOA or SVOA form. In either form, the

PredSet references the JVOA or SVOA tables and their columns. When a PredSet is

indexed, we need other forms, such as direct form, in which the PredSet references the

direct parent tables and their columns. The conversions between the different forms are

performed in the procedures similar to query rewriting. The conversions replace the table

and column references in one form by the table and column references in the other form.

PredSet union is a binary PredSet operator similar to set union but drops the duplicate

subsumption predicates. Algorithm 6.4 shows the implemented PredSet union algorithm.

We add each predicate p ∈ P1 to P , unless p subsumes some p′ ∈ P2 and p′ is not equivalent

to p. Then we add each predicate p′ ∈ P2 to P , unless p′ subsumes some p ∈ P1. This

assures that no predicate in P subsumes another in P , and that P is equivalent to the

union of P1 and P2.

Algorithm 6.4 PredSet Union

input: P1, P2

output: P = P1 ∪ P2

P := φ

for each predicate p ∈ P1

if there is a p′ ∈ P2, such that p′ → p and 6 (p′ ≡ p)

next;

P+ := p

for each predicate p′ ∈ P2

if there is a p ∈ P1, such that p → p′

next;

P+ := p′



6.2. Indexing and Searching 90

PredSet difference is a binary PredSet operator similar to set difference, as shown below.

Algorithm 6.5 PredSet Difference

input: P1, P2

output: P = P1 − P2

P := φ

for each predicate p ∈ P1

if there is a p′ ∈ P2, such that p′ → p

next;

P+ := p

6.2.7 Relational Model for Indexing

Now we consider converting the indexing ER model to the relational model.2 Two ad-

justments are made. First, the relations that index literal predicates and ORPreds are

merged into one, PredIndex, based on the assumption that ORPred are not frequent in

queries. This allows a literal predicate to appear multiple times in PredIndex if it belongs

to different ORPreds. But this redundancy is negligible given the assumption. The second

adjustment is splitting the node topology indexing relation (Node Entity in the ER model)

to two, namely, SelectionTopology, and JoinTopology, based on the observation that the

topology connections on selection nodes and on join nodes are quite different.

Figure 6.5 shows the indexing relation schemas. In PredIndex, ORPredID is the ORPred

identifier, and LPredID is the sub-identifier of the literal within the ORPred. The com-

bination of ORPredID and LPredID is the primary key of PredIndex. Node1 and Node2

record the ancestor tables from which the literal is evaluated. LeftExpression, Operator,

and RightExpression are the triple-string canonical form of the literal. If the literal is a

selection predicate in an self-join ORPred, STA is used, otherwise it is NULL. If the literal

2The schema described in this subsection is simplified.



6.2. Indexing and Searching 91

PredIndex PSetIndex
ORPredID Node1 LeftExpr ORPredID
LPredID Node2 Operator PredSetID
UseSTA STA RightExpr STA

SelectionTopology
Node DirectParent JVOA1
IsDISTINCT DPredSetID JVOA2
SVOA SVOAPredSetID JVOAPredSetID

JoinTopology
Node DirectParent1 JVOA1
IsDISTINCT DirectParent2 JVOA2

DPredSetID JVOAPredSetID

Figure 6.5: System Catalog Schemas

is a self-join predicate, or STA is used, the binary attribute UsingSTA is set, otherwise, it

is NULL.

PSetIndex indexes the PredSets. The primary key is the combination of PredSetID and

ORPredID, indicating which ORPred belongs to which PredSet. STA is used when the

ORPred is a selection but the PredSet is a self-join.

In the topology relations, Node is the primary key. The binary IsDISTINCT indicates

whether the duplicates are removed. The remaining attributes are described in Section

6.2.5. JoinTopology does not need to index SVOA.

Section 10.4 evaluates the effects of IMQO sharing supported by the indexing and

searching scheme. It shows up to hundred-fold performance improvement over non-sharing

approaches. The section also shows the effectiveness of canonicalization which leads to

tens-fold performance improvement.



6.3. Sharing Strategies 92

B2

B1

J1

B3

J2

J3

B2

B1

B3

J2

J3

B2

B1

J1

(a) Existing query network R

(b) Optimal plan for Q

(c) New query network Rm
by match-plan

Figure 6.6: Match-Plan matches the pre-optimized plan structures with the existing query network.

6.3 Sharing Strategies

Given the sharable nodes identified, various sharing optimization strategies may be applied.

We present two simple strategies, match-plan and sharing-selection. Match-plan matches

the plan optimized for the single new query with the existing query network from bottom-

up. This strategy may fail to identify certain sharable computations by fixing the sharing

path to the pre-optimized plan. Sharing-selection identifies sharable nodes and chooses

the optimal sharing path.

Figures 6.6 & 6.7 illustrate the difference between sharing-selection and match-plan.

Assume the existing query network R (Figures 6.6(a) & 6.7(a)) performs a join on table

B1 and B2, and the results are materialized in table J1. Assume the new query Q performs

two joins, B1 1 B2 and B2 1 B3, and its optimal plan (Figure 6.6(b)) performs B2 1 B3

first . From the viewpoint of match-plan, the bottom join B2 1 B3 is not available in R,



6.3. Sharing Strategies 93

B2

B1

J1

B3

J2

B2

B1

?

B2

B1

J1

(a) Existing query network R

(b) Joins in Q

(c) New query network Rs
by selection-sharing

B2

B3

?

1

2

Figure 6.7: Sharing-Selection selects the sharable joins and expands the existing query network with
unsharable ones.

thus no sharing is available. It expands R to a new query network Rm (Figure 6.6(c)).

From sharing-selection, both of the joins (Figure 6.7(b)) are matched against R to see

whether it has been computed in R. In this example, B1 1 B2 has, while B2 1 B3 has

not. Sharing the results of J1 with B1 1 B2, the network is expanded to Rs (Figure 6.7(c))

which has less join nodes.

In general, sharing-selection identifies more sharable paths than match-plan, and con-

structs more concise query networks which run faster. Actually, the match-plan method

can be viewed as a special case of sharing-selection by applying a constraint: always select

from bottom-level predicate sets. Match-plan and sharing-selection have the same time

complexity of O(kl) where k is the average number of branches of a node, and l is the

average number of JoinLevels. l is actually the typical number of joins in queries, which

is a small integer, less than 15, etc.



6.3. Sharing Strategies 94

J1
B2

B1
S1

S2

S3

S4

S5

S6

J2

J1
B2

B1
S2 S4

J2 S1 S3

S5

S6

J2

T1

T2

POJ

T1

T2

PFJ

PNJ

POJ-PFJ

PNJ-PFJ

(b) Restructure Sharing

(a) Rerouting

Figure 6.8: Complex Sharing. Rerouting reconnects a local subtree to a newly created node J2. Restruc-
turing changes the join node computation so it can be shared by more nodes.

In both strategies, we need to choose the optimal sharable node at each JoinLevel. We

apply a simple cost model for doing so. The cost of sharing a node S is simply the cost of

evaluating the remaining part of the chosen PredSet P . The cost is defined as the size of

S, the number of records to be processed to obtain the final results of P . For example, in

Figure 4(a), assume P can be evaluated from S5. Then the cost of sharing S5 is the table

size |S5|. Now assume S5 is associated with an equivalent PredSet to P , then no further

evaluation is needed, and the cost is 0. It is possible that multiple PredSets can be shared

this way (with cost 0), then future costs are used for choosing among these candidates.

Future cost is still defined as the size of the sharing node. It is so called because it is the

number of records to be processed from the sharing node in the next JoinLevel.

When a join node J is chosen for sharing, even if it does not provide the final results

for the chosen join PredSet P , we choose not to extend J for P until it is the last join in



6.3. Sharing Strategies 95

the query. Instead the remaining computations are rewritten as a selection PredSet from

J , and thus are carried on to the next JoinLevel. With this sharing choice, we are able

to choose the better sharing path as shown in SharingPlan2 in Section 1.5. This choice is

applied by both sharing-selection and match-plan.

The two sharing strategies are compared in Section 10.4, and sharing-selection is shown

to be better than match-plan in general.

Given the identified common computations, more complex sharing strategies, e.g. rerout-

ing and restructuring, may be applied as well.

Rerouting occurs after a new node is created. Once a new node is created, there may

be a set of old nodes that can be evaluated from the new node. Disconnecting the old

nodes from their current DParent(s) and rerouting them to be evaluated from the new one

may lead to a better shared query network. Figure 6.8(a) shows the rerouting after a new

node J2 is created. In this example, S1 can be better evaluated from J2, i.e. |J2| < |J1|,
then S1 and its descendants are rerouted to J2.

Restructuring re-optimizes local topological structures when new computations are

added into the network. One example is splitting computations in a join PredSet to allow

multiple queries to share the same join results, as shown in Figure 6.8(b). The choices

to perform these topological operations should be decided by cost models, and are also

applicable to adaptive processing. The cost models should capture the stream distribu-

tion changes that outdate the original network, and guide the rerouting and restructuring

procedures for adaptive re-optimization.

The sharing strategies presented so far are local greedy optimizations bounded by join

depths. Beyond, more aggressive optimization strategies can be performed by looking

ahead along sharable paths, probably with heuristic pruning.



Chapter 7

Incremental Multiple Query

Optimization on Aggregates and Set

Operators

This chapter describes the incremental multiple query optimization (IMQO) on aggregates

(Section 7.1) and set operators (Section 7.2). As mentioned before, the previous chapter

describes the IMQO on selection and join queries. Both chapters focus on the first three

steps of IMQO, indexing, searching, and selecting. And the last IMQO step, expanding,

is described in Chapter 9.

7.1 Incremental Multiple Query Optimization on Aggregates

As discussed in Section 4.2, algebraic aggregate functions, such as MIN, MAX, COUNT,

SUM, AVERAGE, STDDEV, and TrackClusterCenters, can be incrementally updated

upon data changes without revisiting whole history of grouping elements; while holistic

aggregate functions, e.g. quantiles, MODE, and RANK, can not be done this way.

The algebraic functions can also be shared through dimension reductions, but holistic

96



7.1. Incremental Multiple Query Optimization on Aggregates 97

functions can not.

Reconsider the query A described in Section 4.1 that monitors the number of visits

and the average charging fees on each disease category in a hospital everyday. When new

tuples from the stream Med arrive, the aggregates COUNT(*) and AVERAGE(fee) can

be incrementally updated if COUNT(*) and SUM(fee) are stored, shown in Figure 4.3.

Now consider a new query B that monitors the number of visits and average charging

fees in a hospital everyday, as shown in Example 7.1. B groups can be obtained by

compressing A groups on the CAT (disease) dimension. Further, B’s aggregate can be

obtained from A as well. Thus the system shares A’s results to evaluate B, as shown in

Figure 7.1(b). This sharing process is called vertical expansion.

Note that holistic functions can not be shared through vertical expansion since the

aggregate values of B can not be obtained from the aggregate values of A.

Example 7.1 (B) Monitoring the number of visits and the average charging fees in a

hospital everyday.

SELECT hospital, vdate,

AV ERAGE(fee)

FROM Med

GROUP BY hospital,

DAY (visit date) AS vdate

Aggregate-related system catalog relations include GroupExprIndex, GroupExprSet,

GroupTopology, GroupColumnNameMap. GroupExprIndex records all canonicalized group

expressions. GroupExprSet records the dimension sets, and GroupTopology records the

topological connections of the aggregate nodes. A dimension set is the set of groupby

expressions in an aggregate query. The dimension set specifies the grouping criteria. Each

dimension set has a GroupID, is uniquely associated with an aggregate node in Group-

Topology, and has one or more GroupExpressions recorded in GroupExprIndex. Each node

has a unique entry in GroupTopology which records the node name, its direct parent (the



7.1. Incremental Multiple Query Optimization on Aggregates 98

S A

AVERAGE(fee)
AS AVGA

SUM(fee)
AS SUMA

COUNT(*)
AS COUNTA

vdatehospitaldis_cat

S A B

AVERAGE(fee)
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

vdatehospital

(a) Evaluate query A

(b) Evaluate query B from A

Figure 7.1: Evaluating Queries A and B

node from which the results are computed), its original stream table, and the GroupID.

GroupColumnNameMap records the projected group expressions and aggregate functions

for each node; see Section 8.1.2.

Similar to the IMQO on selection and join queries, as shown in Figure 3.4, the IMQO

on aggregate queries works as following for a new query B:

• Identify sharable nodes {A} with following steps:

– identify all dimension sets {DA′} that are supersets of DB by looking at Group-

ExprSet and GroupExprIndex,

– identify the nodes {A′} associated with {DA} by looking at GroupToplogy,

– and identify the nodes in {A′} that contain all columns needed for query B.

These are sharable nodes {A}.

• Select the optimal node A from which B will be evaluated.



7.1. Incremental Multiple Query Optimization on Aggregates 99

GroupIDNodeNameDirectParentOriginal

GroupExprIDGroupExprCanonicalOriginal

GroupIDGroupExprID

GroupTopology

GroupExprSet

GroupExprIndex

Figure 7.2: Aggregate System Catalog

• Create a new node B by creating the table pairs and updating the system catalog.

• Perform rerouting on B.

7.1.1 Vertical Expansion and Sharing Strategies

Vertical expansion is not applicable to holistic queries. However, holistic queries can still

be shared if they share the same dimension sets. Additional aggregate functions requested

by the new query should be added to the holistic node. Such process is called horizontal

expansion. In following discussion, we focus on sharing among distributive and algebraic

functions.

Query B can be evaluated from the query A (see Figure 7.1). Figure 7.3 shows how

the vertical expansion creates and initializes B from A. The process is comprised of two

steps and takes the time of T V Init = O(|AH |). The further-aggregate step executes the



7.1. Incremental Multiple Query Optimization on Aggregates 100

Rest
ID

AVERAGE(fee) 
AS AVGA

SUM(fee)
AS SUMA

COUNT(*)
AS COUNTA

BID

AH

1: Further Aggregate:
COUNTB=SUM(COUNTA)
SUMB=SUM(SUMA)
GROUP BY BID

2:

COUNTB

SUMB
AVGB =

AVERAGE(fee) 
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

BID

BH

1: Further Aggregate
COUNTB=SUM(COUNTA)
SUMB=SUM(SUMA)
GROUP BY BID

A B

Vertical ExpansionBBBBDDDDiiiigggg BBBBDDDDiiiigggg BBBBDDDDiiiigggg BBBBDDDDiiiigggg

Figure 7.3: Vertical Expansion, IMQO for aggregate queries. This shows that query B is evaluated from
query A’s results.

code instantiated from the vertical expansion rules stored in the AggreRules, and the

algebraic-computing step is applicable only to algebraic functions.

Figure 7.4 shows the incremental aggregation for AV ERAGE(fee) in query B. It is

the same to the procedure shown in Figure 4.4 except the first step which performs further

aggregation from AN instead of from SN . The time complexities are following:

T V
curr = O(|A2

N |+ |BH |), T V
built−in = O(|AN |+ |BH |), and T V

prefetch = O(|AN |).
Given the new query B, there may be multiple nodes from which a vertical expansion

can be performed. According to the time complexity analysis, the optimal choice is the

node A such that |AH | is the smallest. If A does not contain all aggregate functions or

bookkeeping statistics needed by query B, a horizontal expansion is performed.

After the new node B is created, the system invokes the rerouting procedure. It checks

if any existing node C can be sped up by being evaluated from B. We apply a simple cost



7.2. Incremental Multiple Query Optimization on Set Operators 101

SUM(fee)
AS SUMA

Rest ID …COUNT(*)
AS COUNTA

BID

AN

A B
Rest ID …BID

AH

AVERAGE(fee) 
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

BID

BH

2: Merge Groups
t2.COUNTA = t1.COUNTA + t2.COUNTA
t2.SUMA = t1.SUMA + t2.SUMA

1: Further Aggregate
COUNTB=SUM(COUNTA)
SUMB=SUM(SUMA)
GROUP BY BID

Vertical Expansion

3: Compute Algebraic Aggregate

COUNTB

SUMB
AVGB =

BBBBDDDDiiiigggg
AVERAGE(fee) 
AS AVGB

SUM(fee)
AS SUMB

COUNT(*)
AS COUNTB

BIDBBBBDDDDiiiigggg BN

4: Drop Duplicates

5: Insert New Results

BBBBDDDDiiiigggg BBBBDDDDiiiigggg BBBBDDDDiiiigggg
BBBBDDDDiiiigggg BBBBDDDDiiiigggg

Figure 7.4: Incremental Aggregation on Vertical Expansion. This shows incremental aggregation can be
realized on vertical-expanded aggregate node B as well.

model to decide such rerouting nodes. If 1. B contains all the aggregate functions needed

by C, and 2. |BH | < |PC
H | where PC is C’s current parent node, then C will be rerouted

to B. The system applies a simple pruning heuristic. If a node C satisfies both conditions,

and a set of nodes {Ci} satisfying the first condition are descendants of C, then any node

in {Ci} should not be rerouted, and so are dropped from consideration.

Section 10.3 evaluates the effects of vertical expansion. It shows up to hundred-fold

performance improvement over non-sharing approaches.

7.2 Incremental Multiple Query Optimization on Set Operators

The IMQO on set operators is similar to those on selection/join queries and aggregate

queries. In this section, we describe the indexing and searching on set operator computa-

tions, and the sharing strategy to select the optimal sharable nodes.



7.2. Incremental Multiple Query Optimization on Set Operators 102

7.2.1 Indexing on Set Operator Nodes

A set operator node is the result of a set operation on two or more nodes. A set operator

node can be shared if it provides the data from which final results can be computed. To

do this, we index topology of set operator nodes.. First we introduce set operator node

cluster and veryorig table set.

Definition 7.1 (Set Operator Node Cluster) A set operator node cluster is a max-

imum connected sub-graph of the query network. All the nodes in the sub-graph are set

operator nodes. It is defined recursively as following:

1 A set operator node cluster G contains at least one set operator node N .

2 If any of N ’s direct parent nodes, Nd, is a set operator node, Nd is in G.

3 If any of N ’s child nodes, Nc, is a set operator node, Nc is in G.

Definition 7.2 (Veryorig Table Set) The veryorig table set {Nv} of a set operator node

N in the set operator node cluster G is defined as following:

1 If any of N ’s direct parent node Nd is not in G, Nd is in {Nv}.

2 For any N ’s ancestor M that is in G, if any of M ’s direct parent node Md is not in

G, Md is in {Nv}.

Theorem 7.1 Any veryorig table of a set operator node is non-set-operator node.

Therefore, although set operator nodes can construct multi-layer topology, conceptually,

they are considered as being in just one single-layer starting from their non-set-operator

veryorig tables. This allows the global search within set operator node clusters. See Figure

7.5.

Set operator nodes are indexed in three system catalog relations. UnionTopology in-

dexes the topology of set operator node clusters, including the veryorig tables and the



7.2. Incremental Multiple Query Optimization on Set Operators 103

F4

N4

N3

A1

S1
F5

F6

F1

F2

F3

N1

N2

Figure 7.5: A set operator node cluster, N1-N4. F1-F6 are the veryorig non-set-operator nodes. A1 is an
aggregate node and S1 is a selection node.

direct parents. UnionNode indexes node-specific information, such as set operators in its

direct form and its veryorig form, and Boolean flags to control selective evaluation. And

UnionColumnNameMap indexes column projection information; see Section 8.1.

ResultTable Node N .
DirectUnionType N ’s set operator from direct parent nodes.
VeryOrigUnionType N ’s set operator from veryorig nodes.
ReteFlag N ’s ReteFlag.

Figure 7.6: UnionNode: Set operator node indexing.

7.2.2 Searching Sharable Set Operator Nodes

Given a new set operator query Q that operates on a set of tables {Mv}, we want to find

a set of set operator nodes {N} from the existing query network R where N can be used



7.2. Incremental Multiple Query Optimization on Set Operators 104

ResultTable Node N .
DirectOrigTableName N ’s direct parent Nd.
DirectOrigUnionSubID Nd’s position ID to evaluate N .
VeryOrigTableName N ’s veryorig table Nv.
VeryOrigUnionSubID Nv’s position ID to evaluate N .

Figure 7.7: UnionTopology: Topology indexing for set operator nodes.

to evaluate Q. The sharability depends on the set operators, the veryorig tables, and the

columns. First we state the sharability criteria on the set operators and the veryorig tables

in Algorithm 7.1. Then we state the criteria on the columns in Algorithm 7.2.

Algorithm 7.1 Sharability on set operators and veryorig tables

• When Q is set difference (MINUS), a sharable N can be either of the following:

1. N is set difference;

2. first VeryOrigTables of N and Q are the same; and

3. Q’s remaining set of VeryOrigTable is a superset of N ’s remaining set of Very-

OrigTable.

or

1. N is set union (UNION); and

2. Q’s remaining set of VeryOrigTable (excluding the first VeryOrigTable) is a su-

perset of N’s VeryOrigTable set.

• When Q is UNION ALL, a sharable N should satisfy:

1. N is UNION ALL; and

2. Q’s VeryOrigTable set is a superset of N ’s VeryOrigTable set

• When Q is UNION, a sharable N should satisfy:

1. N is either UNION or UNION ALL; and

2. Q’s VeryOrigTable set is a superset of N ’s VeryOrigTable set.



7.2. Incremental Multiple Query Optimization on Set Operators 105

For a sharable N , Q’s column set must be a subset of N ’s column set, and their column

position mapping across veryorig tables must be consistent. The consistency checking can

be performed as following.

Algorithm 7.2 Column Position Check

1. For the first VeryOrigTable of Q and N , we record the matching columns’ position

mapping. For example, mapping column positions in Q (selecting 4 columns) to those

in N (selecting 5 columns), we get (1, 2, 3, 4) → (1, 2, 5, 3). This means that the 1st

column of Q matches the 1st of N, 2nd of Q matches the 2nd of N, 3rd of Q matches

the 5th of N, and 4th of Q matches the 3rd of N.

2. For any remaining VeryOrigTable of N , it must match one of Q’s VeryOrigTable.

For each such match, we look at the matching column positions. As well, we get a

mapping, such as (1, 2, 3, 4) → (1, 2, 5, 3). The mapping must be identical to that is

recorded for the first VeryOrigTable.

7.2.3 Choose Optimal Sharable Node

Once the sharable nodes {Nv} are identified, we want to choose the optimal sharable node

N . N is chosen as following.

• When Q is UNION ALL, choose N whose table size is maximum.

• When Q is UNION, choose N whose number of distinct values on Q’s requested

columns is the maximum.

• When Q is MINUS, if there are Ns that are MINUS, choose the N whose table size is

minimum; otherwise, if there are sharable Ns that are UNION/UNION ALL, choose

the N whose number of distinct values on Qs requested columns is the maximum.



Chapter 8

Projection Management

As discussed in Chapter 5, to save materialization space and execution time, minimum

column projection is performed. It projects only the necessary columns to a new node from

its parents. The necessary columns include those in the final results and those needed for

further evaluation. The process becomes intricate when sharing is considered. When a

node is shared, it may not contain all the columns needed for the new query. Then extra

columns will be added to the node and possibly to its ancestors by projection enrichment.

Projection enrichment is necessary to exploit sharing opportunities with a new query that

needs additional columns being added to the shared node.

To perform such operations, we need to index the projected column information and

develop algorithms to search and update the index. This chapter describes the column

indexing schema in Section 8.1 and the related algorithms in Sections 8.2 and 8.3.

8.1 Column Indexing

Projected columns are indexed in a set of system catalog relations, as shown in Figures

8.3, 8.5, 8.4, and 8.6. These relations describe the column transformations between nodes.

A projected column in a node N is either a simple projection of an individual column,

106



8.1. Column Indexing 107

or a projection of a complex expression, from one of N ’s direct parents. The projected

column is also associated with N ’s other ancestors, as it is projected from the ancestors

all the way down to N . Figure 8.1 shows the column transformations between the nodes

of Example 1.1.

First, we look at direct transformations. For example, column tranid 20 in J2 is pro-

jected from tranid 14 in J1; tranid 14 in J1 is projected from tranid 9 in S2; tranid 9

in S2 is projected from tranid 1 in S1; and tranid 1 in S1 is projected from tranid in F .

We also look at the indirect transformations. For example, both tranid 14 and tranid 15

are transformed from tranid in F .

F S1 S2 J1 J2

tranid_1
type_code_2
amount_3
rbank_aba_4
benef_account_5
sbank_aba_6
orig_account_7
tran_date_8

tranid_9

amount_10
rbank_aba_11
benef_account_12

tran_date_13

T1: tranid_14
T2: tranid_15
T2: amount_16

T2: rbank_aba_17
T2: benef_account_18
T2: tran_date_19

T1: tranid_20
T2: tranid_21
T3: tranid_22

t1

t2

t3

tranid
type_code
amount
rbank_aba
benef_account
sbank_aba
orig_account
tran_date

Figure 8.1: Projection for Example 1.1. The callouts show the projected columns projected for nodes S1,
S2, J1, J2 and the mapping from their direct parent nodes. The identification number is appended to the
column names to make universal column names.

For a projected column C in node N , e.g. tranid 14 in J1, a base column Cb

is a column in N ’s ancestor Na from which C is projected. We are interested in two

base columns. The first is the base column Cd in N ’s direct parent Nd, called direct



8.1. Column Indexing 108

base column. And the second is the base column Cv in N ’s veryorig ancestor Nv, called

veryorig base column. If Nv is N ’s SVOA table, Cv is called SVOA base column.

If Nv is N ’s JVOA table, Cv is called JVOA base column. If node N has both SVOA

and JVOA tables, then C has both SVOA and JVOA base columns. Similar veryorig base

column notions apply to aggregate node columns and set operator node columns.

Similar to topology indexing, we observed that for a projected column, we need to know

both its direct base column and its veryorig base column(s). The direct base column is used

for code generation, and the base columns are used for searching. Thus both mappings

are recorded in the system catalog.

Consistent to topology indexing, the column mappings are also confined to join-level-

locality, aggregate-locality, or set-operator-locality for consistent searching and manage-

ment.

Since the pieces of information needed to index selection node columns, join node

columns, aggregate node columns, and set operator node columns are all different to each

other, we have different indexing schemas for them. The differences will be shown in

following sub-sections.

A projected column in a node N is either carried along from an individual column in

N ’s ancestor, called simple projection, or is a complex expression from N ’s ancestor(s),

called expression projection. When the column is an expression projection, we index

the canonicalized expression, so searching can be done easily. The expression is called

projection expression.

8.1.1 Selection and Join Node Column Indexing

Both veryorig base columns and direct base columns should be recorded for projected

columns in selection or join nodes. Veryorig base columns are used for searching available

columns, since the columns are expressed in the form of veryorig base columns in the new



8.1. Column Indexing 109

query. And the direct base column is used for constructing code and tracing back during

projection enrichment.

Due to different information structures, simple projection columns and expression pro-

jection columns are indexed in different column indexing relations, namely, JoinSim-

pleColumnNameMap, JoinExprColumnNameMap, SelSimpleColumnNameMap, and Se-

lExprColumnNameMap. However, the SimpleColumnNameMaps should not only index

the simple projection columns but also the columns that appear in the projection expres-

sions.

Self-join nodes may have column name conflicts. For example, in Figure 8.2, tranid 14

and tranid 15 have the same JVOA base column form tranid in F . They are distinguished

by different table aliases in SQL. To materialize the join results, we need to assign two

different projected column names (tranid 14 and tranid 15) to them. In ARGUS, we use

unique universal column names and TableAlias attribute to resolve such name conflict.

8.1.2 Aggregate Node Column Indexing

Aggregate node column indexing is simpler. Constrained by aggregate semantics, the

projected column of an aggregate node must be either a group expression (a column or

an expression of columns) or an aggregate function expression. A projected aggregate

function is either a result function specified in the selection-clause or a basic aggregate

function needed for incremental aggregation. If a projected column is a group expression,

we also record its GroupExpressionID.

Since aggregates are unary relation operators, there is no name conflict. Therefore,

we use the same universal column name for a projected expression along the vertical-

expanded node chains, which simplifies the indexing and searching procedures. With this

simplification, and with the fact that any aggregate node has a single direct parent without

ambiguity, we do not need to record the direct parent information.



8.1. Column Indexing 110

F S1 S2 J1 J2

1. tranid
2. type_code
3. amount
4. rbank_aba
5. benef_account
6. sbank_aba
7. orig_account
8. tran_date

9. tranid
10. amount
11. rbank_aba
12. benef_account
13. tran_date

14. t1.tranid
15. t2.tranid
16. t2.amount
17. t2.rbank_aba
18. t2.benef_account
19. t2.tran_date

20. t1.tranid
21. t2.tranid
22. t3.tranid

YesT2tran_dateFNoNulltran_date_8S1J1tran_data_19

…………………………

YesT2amountFNoNullamount_3S1J1amount_16

YesT2abank_abaFNoNullrbank_aba_4S1J1rbank_aba_17

YesT2benef_accountFNoNullbenef_account_5S1J1benef_account_18

YesT2tranidFNoNulltranid_1S1J1tranid_15

YesT1tranidFNoNulltranid_9S2J1tranid_14

Very
Orig
Using
Alias

Very
Orig
Table
Alias

VeryOrig
Column
Name

Very
Orig
Table
Name

Direct
Orig
Using
Alieas

Direct
Orig
Table
Alias

DirectOrig
Column
Name

Direct
Orig
Table
Name

Current
Table
name

Univ
Column
Name

t1

t2

t3

JoinSimpleColumnNameMap

Figure 8.2: Projection for Example 1.1. The callouts show the columns projected for nodes S1, S2, J1, J2
with the preceding identification numbers. The identification number is appended to the column names
to make universal column names. The JoinSimpleColumnNameMap shows the entries of the J1 columns.

UnivColumnName Universal Column Name C. The projected column name.
TableName Projected join node name N . The projected column is in this node.
DirectOrigTableName N ’s direct parent Nd.
DirectOrigColumnName C’s direct base column Cd. It is in Nd

DirectOrigTableAlias TableAlias of Nd in the direct PredSet. Null if not self-join.
DirectOrigUsingAlias A binary flag indicating whether the direct PredSet is a self-join.
VeryOrigTableName N ’s join veryorig table Nv.
VeryOrigColumnName C’s join veryorig base column Cv.
VeryOrigTableAlias TableAlias of Nv in the join veryorig PredSet. Null if not self-join.
VeryOrigUsingAlias A binary flag indicating whether the join veryorig PredSet is a self-join.
OnlyInExpression A binary flag indicating whether the projected column only appears

in a selection expression.

Figure 8.3: JoinSimpleColumnNameMap: column indexing scheme for join node simple projections.

8.1.3 Set Operator Node Column Indexing

A set operator node is the result of a set operation on two or more parent nodes. The set

operator node column indexing is thus similar to join node column indexing in terms of



8.1. Column Indexing 111

UnivColumnName Universal Column Name C. The projected column name.
TableName Projected join node name N . The projected column is in this node.
DirectExpressionCanonical The canonical expression text in direct base columns.
DirectOrigTableName1 N ’s first direct parent Nd1.
DirectOrigTableName2 N ’s second direct parent Nd2.
DirectOrigUsingAlias A binary flag indicating whether the direct PredSet is a self-join.
VeryOrigExpressionCanonical The canonical expression text in join veryorig base columns.
VeryOrigTableName1 N ’s first join veryorig parent Nv1.
VeryOrigTableName2 N ’s second join veryorig parent Nv2.
VeryOrigUsingAlias A binary flag indicating whether the join veryorig PredSet is a self-join.

Figure 8.4: JoinExprColumnNameMap: column indexing scheme for join node expression projections.

UnivColumnName Universal Column Name C. The projected column name.
TableName Projected join node name N . The projected column is in this node.
DirectOrigTableName N ’s direct parent Nd.
DirectOrigColumnName C’s direct base column Cd. It is in Nd.
SelectionVeryOrigTableName N ’s selection veryorig table Nvs.
SelectionVeryOrigColumnName C’s selection veryorig base column. It is in Nvs.
JoinVeryOrigTableName N ’s join veryorig table Nv.
JoinVeryOrigColumnName C’s join veryorig base column Cv.
JoinVeryOrigTableAlias TableAlias of Nv in the join veryorig PredSet. Null if not self-join.
JoinVeryOrigUsingAlias A binary flag indicating whether the join veryorig PredSet is a self-join.
OnlyInExpression A binary flag indicating whether the projected column only appears

in a selection expression.

Figure 8.5: SelSimpleColumnNameMap: column indexing scheme for selection node simple projections.

UnivColumnName Universal Column Name C. The projected column name.
TableName Projected join node name N . The projected column is in this node.
DirectExpressionCanonical The canonical expression text in direct base columns.
DirectOrigTableName N ’s direct parent Nd.
SelectionVeryOrigCanonical The canonical expression text in selection veryorig base columns.
SelectionVeryOrigTableName N ’s selection veryorig table Nvs.
JoinVeryOrigExpressionCanonical The canonical expression text in join veryorig base columns.
JoinVeryOrigTableName1 N ’s first join veryorig parent Nv1.
JoinVeryOrigTableName2 N ’s second join veryorig parent Nv2.
JoinVeryOrigUsingAlias A binary flag indicating whether the join veryorig PredSet is a self-join.

Figure 8.6: SelExprColumnNameMap: column indexing scheme for selection node expression projections.



8.1. Column Indexing 112

UnivColumnName Universal Column Name C. The projected column name.
TableName Projected aggregate node name N . The projected column is in this node.
ExpressionCanonical The canonical expression in veryorig base columns.
VeryOrigTable N ’s veryorig table Nv.
GroupExpressionID The GroupExpressionID if the column is a group expression. Null if not.
ColumnType A binary flag indicating whether the column is a group expression or not.
SeqID The position of the column in N .

Figure 8.7: GroupColumnNameMap: column indexing scheme for aggregate node columns.

the need to record both direct base columns and veryorig base columns. However, since

set operator nodes do not have interleaving selection-type nodes, the column indexing is

simpler, particularly without SVOA-like base column information to be indexed.

In a set operator node, the projected columns are just the set of columns specified

in the selection-clause. The order in which the projected columns are specified in the

selection clause must be preserved for the set operation. Thus the column positions are

also recorded.

A set operation may operate on a parent node multiple times (similar to self-joins).

And for some set operator, such as Difference (MINUS), the position of the parent node

appearing in the query must be preserved. Therefore, we need a position ID for each

parent node operand to uniquely distinguish it.

UnivColumnName Universal Column Name C. The projected column name.
TableName Projected set operator node name N . The projected column is in this node.
DirectOrigTableName N ’s direct parent Nd.
DirectOrigUnionSubID The set operation ID for Nd.
DirectOrigColumnName C’s direct base column Cd. It is in Nd.
VeryOrigTableName N ’s veryorig table Nv.
VeryOrigUnionSubID The set operation ID for Nv.
VeryOrigColumnName C’s direct base column Cv. It is in Nv.
UnivColumnSubID The position of the column in N .

Figure 8.8: UnionColumnNameMap: column indexing scheme for set operator node columns.



8.2. Minimum column projection 113

8.2 Minimum column projection

Minimum column projection states that we should project only the minimal set of columns

in a node, namely the necessary columns, to save space and execution time.

When a selection or join node is created to compute a where-clause PredSet, the neces-

sary columns are all the columns in the selection-clause, the groupby-clause, the having-

clause, and the columns in all the remaining predicates of the where-clause.

When an aggregate node is created, the necessary columns are the columns projected

from the group expressions and the columns projected from the basic aggregate functions

or the final aggregate functions required by the query.

When a set operator node is created, the necessary columns are just the ones specified

by the selection-clause.

8.3 Projection enrichment

When query networks are not shared, the minimum column projection can be easily im-

plemented for each type of nodes. However, when sharing is applied, much more intricacy

arises. Given a node N that can be shared to evaluate a new query Q, N may not contain

all the necessary columns needed by Q.

Assume1 the set Cu(N) of projected columns of N is projected from a subset of the

columns in N ’s veryorig table(s) {Nv}. The subset is denoted as Subset(Cu(Nv), N), which

is the subset of Cu(Nv).

Assume on node N , the necessary column set for Q in the form of N ’s veryorig base

columns is Columns(Cu(Nv), Q, N). It can be shown that this set of columns is always a

subset of Cu(Nv), thus Columns(Cu(Nv), Q, N) can be presented as Subset(Cu(Nv), Q, N).

Since N is sharable to evaluate Q, N ’s veryorig tables {Nv} are also sharable to evaluate

1Cu(N) presents the set of columns in the form of its projected column name in N . Which N ’s veryorig table(s) refer to
depends on the N node type and the sharing context.



8.3. Projection enrichment 114

Q, therefore {Nv} must have projected all the necessary columns for Q. This theorem

confines the projection enrichment within one join-level.

When Subset(Cu(Nv), Q,N) * Subset(Cu(Nv), N), or N does not contain all the

columns requested by Q, the projection enrichment has to be performed on N to make it

trully sharable for Q. Since any nodes between N and Nv may or may not contain all the

columns requested by Q, the chained projection enrichment has to be applied on each of

them. When join is involved, the procedure may be branched into two ancestor chains.

Generally, the projection enrichment is a recursive branched chaining process to add

necessary columns to nodes to allow an existing node to be shared to evaluate a new query.

The process starts at the node N that is identified for sharing, and stops at or before N ’s

veryorig tables Nv. Which type of veryorig tables to be used depends on the sharing type

and the query context.

Given a node N to be shared for a query Q, and a set of columns Subset(Cu(Nv), Q, N)

that should appear in the node to obtain final results of Q, projection enrichment finds

which columns are available in N, and which are not. The columns that are not in N ,

Subset(Cu(Nv), Q, N)−Subset(Cu(Nv), N), should be added to N . These added columns

may or may not appear in N ’s direct parent tables. If not, they have to be added into

the direct parent tables as well. This chained projection enrichment has to be processed

recursively until the direct parent contain all the requested columns.

One major challenge is to identify the direct parent of a column given its VeryOrigTable

column form. This is clearly easy when there are no branches (selection or aggregate

nodes). It becomes tricky when joins are involved, particularly when self-join and selection

chains are present. We distinguish three cases.

1. When on both veryorig tables and direct parent tables, the joins are self-joins, shown

in Figure 8.10(a), then the direct parent tables inherit their ancestors’ STAs, and the

direct parent of the column can be identified.



8.3. Projection enrichment 115

B1

B2

S3

S4

J1

S1

S2

(a)

B1

B2

S3

S4

J1

S1

S2

(b)

Figure 8.9: Chained Projection Enrichment. (a) The join node J1 is identified as sharable for a new query
Q. (b) More columns need to be added into J1. Further they have to be added to J1’s ancestors S3, S1,
S4, and S2, as well.

2. When the join is a self-join on the veryorig tables, and is a non-self-join on the direct

parent tables, show in Figure 8.10(b), we specify that the direct parents are indexed

in the order of their STAs in JoinTopologyTable for the new join node N . Particularly

the direct parent with STA T1 is indexed as OrigTableName1, and the other with

STA T2 as OrigTableName2. Then the direct parent can be identified by matching

the indexing position and the STA.

3. When the join is a non-self-join on both veryorig tables and direct parent tables,

shown in Figure 8.10(c), the direct parent is the one that is a descendent of the

column’s veryorig table.



8.3. Projection enrichment 116

V1 D1

V2 D2

N

V1 D1 N

V1

D1

D2

N

(a) Self-join on both VeryOrigTables and Direct Parents

(b) Self-join on VeryOrigTables and non-self-join on Direct Parents

(c) Non-self-join on both VeryOrigTables and Direct Parents

Figure 8.10: Three cases of joins from which the direct parent of a column needs to be identified given
the column’s veryorig table.



Chapter 9

Parsing, Plan Instantiation, and

Code Assembly

This chapter describes the remaining operations necessary to construct shared query net-

works. They are query parsing described in Section 9.1, plan instantiation in Section 9.2,

and code assembly in Section 9.3. Query parsing is the first step of the processing that

transforms the new query in text form to a logical tree structure. Once the parse tree

goes through the canonicalization and PredSet formation, it is fed to the IMQO module.

Given a sharing plan generated by the IMQO, or a construction plan generated by the

query optimizer, the plan instantiator performs necessary operations on the existing query

network to carry out the intended computations specified in the plan, updates the system

catalog to reflect the changes, and rewrite the query parse tree to reference the results of

the computations. The code assembler sorts the executable code blocks generated by the

plan instantiator and wraps them up into a set of stored procedures which present the

executable code of the shared query network.

117



9.1. Query Parsing 118

9.1 Query Parsing

The query parser parses a query Q into a parse tree. It takes the query Q as input, and

outputs a parse tree. Figure 9.1 shows the structure and the data flow of the parser. It

contains a SQL parsing module and a lexer module. The SQL parsing module is a Perl

package generated by a compiler compiler Perl-byacc [36] based on a publicly-available

SQL grammar [80]. The lexer module is also a Perl package [120]. The lexer is called by

the SQL parsing module to tokenize the input query. The stream of tokens is fed to the

SQL parsing module to generate the parse trees. The tools we used, namely, Perl-byacc,

Perl Lexer, and the SQL grammar, were all from open sources with slight modifications.

Perl Lexer

SQL Parsing

Module

Parsed Trees

Query

SQL

Parser

Perl-byacc

SQL Grammar

SQL Parsing

Module

Input

Output

Input

Output

Figure 9.1: Building the SQL Parser

The where-clause parse tree is further processed by classifying predicates into PredSets.

Figure 9.2 shows the schematic subtree of the query in Example 1.1. Predicates are

classified based on the tables they use. For the subtree in Figure 9.2, the classifications

are shown in Figure 9.3.



9.2. Plan Instantiation 119

r1.type_code =1000

r2.type_code =1000

r3.type_code =1000

r1.amount >1000000

r1.rbank_aba = r2.sbank_aba

r1.benef_account = r2.orig_account

r2.amount > r1.amount*0.5

r1.tran_date <= r2.tran_date

r2.tran_date <= r1.tran_date+20

r2.rbank_aba = r3.sbank_aba

r2.benef_account = r3.orig_account

r2.amount = r3.amount

r2.tran_date <= r3.tran_date

r3.tran_date = r2.tran_date+20

Where
clause

r2.amount >500000

r3.amount >1000000

Figure 9.2: The where clause parse tree for Example 1.1

9.2 Plan Instantiation

A plan is either a sharing plan generated by the IMQO module or an optimized construction

plan generated by the query optimizer. It describes how to expand the existing query

network to obtain the intermediate and final results of Q. The process to follow the plan

and expand the query network is called plan instantiation.

Shown in Figure 9.4, plan instantiation is comprised of plan traversal, node instantia-

tion, and query rewriting. This chapter will describe these procedures.

The node instantiation is comprised of four sub-procedures, predicate/PredSet or group-

expression indexing, topology indexing, column projection, and code generation. Predi-

cate/PredSet indexing is described in Section 6.2. Group-expression indexing is described

in Section 7.1. Topology indexing is described in Sections 6.2, 7.1, and 7.2. Column pro-

jection is described in Chapter 8. And code generation is described in Chapter 4. This

section describes the control flow and the data flow of the node instantiation and the



9.2. Plan Instantiation 120

r1 :
r1.type code = 1000
r1.amount > 1000000

r2 :
r2.type code = 1000
r2.amount > 500000

r3 :
r3.type code = 1000
r3.amount > 500000

r1, r2 :
r1.rbank aba = r2.sbank aba
r1.benef account = r2.orig account
r2.amount > 0.5 ∗ r1.amount
r1.tran date <= r2.tran date
r2.tran date <= r1.tran date + 20

r2, r3 :
r2.rbank aba = r3.sbank aba
r2.benef account = r3.orig account
r2.amount = r3.amount
r2.tran date <= r3.tran date
r3.tran date <= r2.tran date + 20

Figure 9.3: Predicate classifications for Example 1.1. Classify them into PredSets.

related algorithms to compute the information flowing through these sub-modules.

9.2.1 Plan traversal

This subsection overviews the plan structure and the traversal process.

Both sharing plan and construction plan contain two pieces of information, topology of

the new part, and the columns that should be projected for each node in the new part.

In the current implementation, the topology of a sharing plan is simple, since only one

node N is provided for sharing, even though there may be one or more intermediate nodes

between N and its original tables that the query references.

Construction plans are more complex. It is a tree. Each node presents the sub-plan of

how to create a query network node. The tree shape presents the topology of the query



9.2. Plan Instantiation 121

Topology
Indexer

Projection
Manager

Code Generator

Predicate/PredSet
Indexer

GroupExpression
Indexer

Node
Instantiator

Plan
Plan

TraverserQuery
Parse tree

Query
Rewriter

Rewritten query
Parse tree

Indexing
Tables

Topology
Tables

Projection
Tables

LinearNode
Table

Figure 9.4: Plan Instantiation. Plan Instantiator traverses the plan, sends individual node create/update
instructions to node instantiator, and calls query rewriter to rewrite the logical parse tree. Node instan-
tiator calls sub-modules to index predicate/PredSets, group expressions, topologies, and columns, and to
generate and store the code blocks for the node.

network part to be expanded. The root node presents the entire plan to obtain the final

results for the new query Q.

We need to clarify the child-parent definition in the plan tree, since this is precisely

opposite from the definition in query network. Query network is a DAG. Edges are pointed

from parents to children. In a query network, we apply operators on parent nodes to

produce the results of the child node. Thus the direction of an edge is from an operand

node to a result node. A child may have multiple parents.

However, in a plan tree, the final result node is the root node, which is conceived as the

ancestor of the remaining nodes according to a widely-accepted child-parent definition on

trees. Figure 9.5 shows this difference. Figure 9.5(a) is the existing query network R, and

(b) shows a tree-shaped construction plan that can be used to expand R, and Figure 9.6



9.2. Plan Instantiation 122

shows the expanded query network where edge directions from the plan are reversed.

F2

F1 J1

F3

J2

J3

F4

F5

J4J3 J5

(a)

(b)

Figure 9.5: Child-parent in query networks and in plan trees. (a) The existing query network. Children
are result tables. (b) The plan tree. Children are operand tables.

The plan traversal is a recursive bottom-up tree traversal procedure. A node (sub-

plan) is traversed (processed or instantiated) after all of its children nodes (sub-plans) are

traversed (processed or instantiated). In another word, a sub-plan is only instantiated

after all of its children sub-plans are instantiated.

Instantiation of a sub-plan involves creating a new node or updating an existing node.

This process is called node instantiation. After the node instantiation, the query is rewrit-

ten to reference the node table.

9.2.2 Node Instantiation

Node instantiation computes and records all the information related to the new or updated

node. Different types of nodes require different instantiation procedures. However, all the

procedures involve topology indexing, column indexing, and code generation. Besides these



9.2. Plan Instantiation 123

F2

F1 J1

F3

J2

J3

F4

F3

J4 J5

Figure 9.6: Child-parent in query networks and in plan trees. When the plan tree is instantiated to the
query network, the edge directions are reversed.

common indexing sub-procedures, a selection or join node also involves predicate/PredSet

indexing (see Section 6.2); an aggregate node also involves group expression indexing (see

Section 7.1); and a set operator node does not involve any specific indexing.

When creating a new or updating an existing selection/join node, the SVOA and JVOA

PredSets and the direct PredSet are computed by the PredSet conversion, union, and

difference operations. These PredSets are indexed. Then the topology entry of the node is

created or updated. And finally, the column information is indexed in the column system

catalog relations. The column indexing also contains a chained projection enrichment

procedure to add necessary columns to the ancestors of the node. Given the indexed

information, the code generator is called to generate the code blocks for the node, and the

code blocks are stored in the LinearNodeTable.

When creating a new or updating an existing aggregate node, the group expressions,

and the group expression sets (dimension sets) are indexed. Then the topology entry of the



9.3. Code Assembly 124

node is created or updated. And the columns (group expressions and aggregate functions)

are indexed. Given the indexed information, the code generator is called to generate the

code blocks for the node, and the code blocks are stored in the LinearNodeTable.

When creating or updating a set operator node, the topology and column information

are indexed. Given the indexed information, the code generator is called to generate the

code blocks for the node, and the code blocks are stored in the LinearNodeTable.

9.2.3 Query rewriting

Assume the new query Q is evaluated from a set of tables {Mv}. When a new node N is

created or when an existing sharable node N is selected to provide the intermediate results

for Q, Q’s parse tree should be rewritten to reference N to reflect such progress.

Assume N ’s veryorig table set is {Nv}, where {Nv} is a subset of {Mv}. The rewriting

procedure replaces the references to {Nv} and their columns by the references to N and

its columns. It first rewrite Q’s from-clause by replacing the reference to {Nv} with N .

Namely, {Mv} → ({Mv} − {Nv}) ∪N . When there are self-joins or set operations on the

same tables, tables within {Nv} and {Mv} are distinguished by their unique table aliases.

Then it replaces the related column references. For any column that is in one of {Nv},
replace it with its new projected column name in N . The mapping between the old column

names to the new column names is constructed when N is created.

9.3 Code Assembly

The query network is evaluated in a linear fashion, and the nodes need to be sorted. The

only sorting constraint is that the descendant nodes must follow their ancestor nodes,

which is called the Minimal Partial Order (MPO) requirement. Any order that satisfies

the MPO requirement is called a Minimal Partial Order (MPO).

One way to get a MPO list is to traverse the entire network starting from the original



9.3. Code Assembly 125

stream nodes. However, since the query network is recorded as a set of node entries in the

system catalog relations, not in linked data structures1, the traversal entails many system

catalog accesses and is not efficient. The traversal algorithm itself is complicated since it

needs to support various traversal strategies, e.g. breadth-first and depth-first, to allow

flexible scheduling, which will be implemented in future.

Another way to get a MPO list is to retrieve and sort all node entries with one block

system catalog access as long as each node is associated with a sort ID whose order renders

a MPO. On the other hand, any one-dimensional linear MPO sort ID assignment confines

to one restrict unchangeable order, which will not allow dynamic rescheduling, a useful

adaptive processing technique that we plan to support in future. Such assignment is also

hard to maintain when the query network expands, since adding a new node may entail

the assignment update for a significant portion of nodes in the query network.

To address such problems, we introduce a two-dimensional sort ID assignment scheme.

A sort ID is a pair of integers, JoinLevel and SequenceID. The JoinLevel globally defines

the depth of a node, and the SequenceID defines the local order within sub-network graphs.

In a query network of only selection and join nodes, a node’s JoinLevel is its join depth.

An original stream node’s JoinLevel is 0. For a node with two or more parents, a.k.a.

a join node or a set operator node, its JoinLevel is 1 plus the maximal JoinLevel of its

parents. For a node with a single parent, a.k.a. a selection node or an aggregate node, its

JoinLevel is the same to its parent JoinLevel.

Theorem 9.1 Any connected sub-network graph of the query network whose nodes have

the same JoinLevel must be a tree.

Proof: First, we prove that any non-source node in the sub-graph has a single parent.

The non-source nodes are with regard to the sub-graph, not to the entire query network.

Assume there is one non-source node N that has more than one parents, then at least
1The reason for doing so is to provide the fast searching and easy updating to the system catalog.



9.3. Code Assembly 126

one of its parents is also in the sub-graph since N is a non-source node. Assume the

parent is M , then M ’s JoinLevel must be less than N ’s, which contradicts to the sub-

graph definition.

Second, we prove that there is only one source node in the sub-graph.

Assume there are more than one source node in the sub-graph, and two of them are

N1 and N2. Since the sub-graph is connected, and N1 and N2 are source nodes (nodes

without incoming edges), so they must be connected by at least one common descendant

N in the sub-graph. Then N has more than one parent, which contradicts to the fact

proved in the first step.

Now, the sub-graph is a DAG with a single source node, and each non-source node has

a single parent, so the sub-graph is a tree. ¥

The tree is called a local tree. SequenceIDs are defined within local trees. The root

node’s SequenceID is 0, and a child node’s SequenceID is always bigger than its parent’s

SequenceID.

When a new node N is created as a leaf node of the tree, its SequenceID is assigned

as k plus its parent’s SequenceID. In the system, the default is k = 1000. When a node

is inserted into between a parent node and a child node in a local tree, the new node’s

SequenceID is the round-up mean of its parent and child’s SequenceIDs. So a large k

helps future insertions without affecting children’s SequenceIDs. If the parent and child’s

SequenceIDs are consecutive, and thus no unique SequenceID in-between is available for the

new one, then the system increments the SequenceIDs of the child and all its descendants

in the local tree by k.

With JoinLevel and SequenceID defined, a MPO order can be obtained by sorting

on the JoinLevels and then on the SequenceIDs. Since multiple nodes may have the

same JoinLevel and SequenceID, there are ties. Different tie resolution strategies render



9.3. Code Assembly 127

different MPO orders. In future, we want to apply additional information (locality) to

choose optimal MPOs or rearrange MPOs for dynamic rescheduling. Such techniques

may improve performance significantly when disk page swapping is inevitable and the

data characteristics are changing dramatically. It is noticeable that the two-dimensional

assignment is still stricter than the MPO requirement. For example, a depth-first traversal

is a MPO, but violates the two-dimensional sorting criteria. Studying such legal violations

may lead to finer MPO searching.



Chapter 10

Evaluation

We conduct experiments to understand the effectiveness of various techniques implemented

in ARGUS. Particularly, we evaluate the effectiveness of incremental evaluation methods

and optimization techniques on selection-join-projection queries, the effectiveness of in-

cremental aggregation and IMQO on aggregate queries, and the effectiveness of IMQO

techniques on SJP queries. The evaluated IMQO techniques include canonicalization, join

sharing, and the two sharing strategies, match-plan and sharing-selection 1.

The results show that every individual technique lead to significant performance im-

provement either in general or at least for some specific types of queries. As a whole,

the system provides acceptable performance for continuously matching large-scale queries.

The analysis of the results also raises new questions and points to new research directions.

In this chapter, we first discuss the overall experiment setting including data, query,

and the simulation setting, then we present the experiments and results.

1We had difficulty to directly compare ARGUS with other publicly available stream systems, such as STREAM and
NiagaraCQ. For example, STREAM does not support common computation identification among multiple queries, and
NiagaraCQ uses XML data schema and XQL query language.

128



10.1. Experiment Setting 129

10.1 Experiment Setting

The experiment setting is comprised of three components, data, query, and the simulation

setting. In this section, we describe the data sources and their generation, the query

generation and the query characteristics, and how the data and queries are used in the

experiments.

10.1.1 Data

We use two databases, the synthesized FedWire money transfer transaction database

(FED), and the anonymized Massachusetts hospital patient admission and discharge record

database (MED). Both databases have a single stream with timestamp attributes. Ap-

pendix A describes the schemas.

FED is a synthesized database containing 500006 FedWire money transfer transactions.

The schema contains all the real transaction data attributes. The first 500000 records are

generated according to the real transaction statistics. The last 6 records are generated to

bring some linkages between transactions and to satisfy some experiment queries which

simulates the very rare alert-triggering conditions.

MED is a real medical database of 835890 inpatient admission and discharge records.

Personal information, such as name and address, are dropped for privacy protection, but

demographic information, such as age, gender, race, and residency township are retained.

10.1.2 Queries

We created a query repository for FED and MED databases. It contains several query

sets for different experiments. These queries were generated systematically in three steps.

Firstly, interesting queries arising from applications are formulated manually as query

seeds or query categories. The seeds cover a wide range of query types, including selections,

joins, aggregates, set operators, and their combinations. The seed queries vary in several



10.1. Experiment Setting 130

ways and present some overlap computations. For example, there are SJP queries and

aggregate queries, and some aggregate queries aggregate on the results of SJP queries

and can share from them. Appendix B presents the typical seed queries used in our

experiments. In the experiments, we also used variants of seed queries, e.g. queries with

different number of joins. We describe these variants in Section 10.1.3.

Secondly, changeable query parameters, or the constants, are identified. The variants

of seed queries, such as those with different number of joins but with similar join and

selection predicates, are also considered as different values of changeable parameters. For

example, for the query category as shown in Section 1.4, we used the variants of the query

that differ in three dimensions. The first (number of joins) varies the self-joins from 2-

way, up to 5-ways. The second (tracking direction) varies the placement of the money

split join which indicates the binary tracking direction (look forward or backward) of the

money flow. And the third defines two types of groups (one based on account numbers

and the other on bank numbers) that the joined records are confined to. For example,

two records join only if the first one transfers money from a certain type of bank/account

and the second transfers to another type of bank/account. Further, we identify three

more simple changeable parameters, the transfer amount, the join time window, and the

amount split ratios between joined records. These parameters can be changed easily by

value substitution.

Thirdly, more queries are generated by varying the parameters of the seed queries.

The queries generated from the same query seed present overlap computations, such as

subsumptions, and can be shared. The varying parameters are either selected manually

or generated by random draws from a distribution of parameters.



10.1. Experiment Setting 131

10.1.3 Query Sets

We generated several query sets for different experiments on the FED and MED databases,

as shown in Table 10.1. QIEFeds are used to evaluate incremental evaluation meth-

ods and query optimization techniques. QAggreFed and QAggreMed are used to eval-

uate incremental aggregation and IMQO on aggregate queries. And QIMQOSJPFeds and

QIMQOSJPMed are used to evaluate IMQO on SJP queries.

Query Sets Data Purpose Parameter Number of Number of
Base Value Selection Variants Queries

QIEFed-Manual FED Incremental evaluation and Manual 7 7
query optimization

QIEFed-Uniform FED Incremental evaluation on SJP Random Draws 8 160
queries and query optimization

QAggreFed FED Incremental aggregation and Manual 21 350
IMQO on aggregate queries

QAggreMed MED Incremental aggregation and Manual 3 450
IMQO on aggregate queries

QIMQOSJPFed- FED IMQO on SJP queries Manual 16 768
Manual
QIMQOSJPFed- FED IMQO on SJP queries Random Draws 16 1000
Uniform
QIMQOSJPFed- FED IMQO on SJP queries Random Draws 16 1000
Normal
QIMQOSJPFed- FED IMQO on SJP queries Random Draws 16 1000
GaussianMixture
QIMQOSJPMed MED IMQO on SJP queries Manual 8 565

Table 10.1: Query sets for evaluation.

QIEFed-Manual contains 7 queries, presented as Examples B.1-B.7 in Appendix B, and

is used to evaluate incremental evaluation and query optimization techniques. This is the

first query set developed, and its variants are used to develop other FED query sets.

QIEFed-Uniform contains 8 query variants and 160 queries, 20 for each variant. The

first 4 variants are the 2-way up to 5-way joins derived from Examples B.1 and B.3. And

the other 4 variants are Examples B.2, B.4, B.6, B.7. We did not include Example B.5 in

this query set; the aggregate query is left to QAggreFed.



10.1. Experiment Setting 132

QIEFed-Uniform and three of QIMQOSJPFeds were generated by randomly selecting

parameter values. Particularly, for each query set, the queries are drawn independently

from a joint parameter distribution. We define that the joint distribution is on independent

random variables, so the draws of the values of the parameters within one query are

also independent. Therefore, the joint distribution can be presented as a set of marginal

distributions on each parameter.

The changeable parameters on QIEFed-Uniform queries include transfer amount, join

time window, transaction date, and bank name. The marginal distribution on a parameter

P is the uniform distribution on a range on P . The ranges of transfer amount and join

time window are described in Table 10.2. The transaction date range is the month that

covers the dates in FED data, and the bank name range is a randomly-picked set of 10

banks.

Both QAggreFed and QAggreMed are used to evaluate incremental aggregation and

IMQO on aggregate queries. They are generated by manually selecting parameter values.

QAggreFed has 3 query categories, 21 query variants, and 350 aggregate queries on the

FED database. They monitor alerting accumulative amounts of certain types of trans-

actions. The first category performs selection and join before the aggregation, and have

16 variants in three dimensions (4 numbers-of-joins * 2 tracking-directions * 2 group-

by-options). The second category performs join after the aggregation, and have 4 query

variants depending on whether grouping by the receiving or sending party and whether the

party entity is the account or the bank. And the third category performs set operations

after the aggregation.

QAggreMed has 3 query categories and 414 distinct aggregate queries on the MED

database. We pad the first 36 queries from the set to the end of it to make QAggreMed

contain 450 queries. These queries monitor multiple occurrences of various contagious

diseases in or beyond local areas within or not within a given time window. They perform



10.1. Experiment Setting 133

selections and joins, then aggregations, and finally set operations.

Both QIMQOSJPFeds and QIMQOSJPMed are used to evaluate the IMQO approach

on SJP queries. There are four QIMQOSJPFed query sets and one QIMQOSJPMed query

set.

Each of the four QIMQOSJPFed query sets is generated from the 16 variants of one

query category. Two query examples from the category are shown in Section 1.4. The

variants vary in three dimensions, 4 numbers-of-join * 2 tracking-directions * 2 group-

confinements. Among the 4 QIMQOSJPFeds, QIMQOSJPFed-Manual is generated by

manually selecting the parameters, and each of the remaining three, QIMQOSJPFed-

Uniform, QIMQOSJPFed-Normal, or QIMQOSJPFed-GaussianMix, is generated by ran-

dom draws from a distribution of the parameters.

QIMQOSJPFed-Manual contains 768 queries. They are generated from the combina-

torial combinations of the parameter values shown in Table 10.2.

Parameters Number Tracking Group Transfer Join Time Amount
of Joins Direction Confinement Amount Window Split Ratio

Values 2,3,4,5 forward, account, 50000, 5,10,20, 1,2,5,10
backward bank 100000 30,40,60

Ranges [2, 5] {forward, {account, [50000, [5, 60] [1, 10]
backward} bank} 100000]

Table 10.2: QIMQOSJPFed Parameter Values and Ranges. Number of Joins: the number of 2-way
joins. Tracking Direction: whether the query tracks the money flow forward or backward based on a
pivot transaction. The pivot transaction is defined by selection predicates on the transaction type (1000),
the Group Confinement, and the Transfer Amount, and is the earliest one of the joined records in the
forward case or the latest one in the backward case. Group Confinement: the transactions to be joined
use certain types of bank or certain types of account. Transfer Amount: the transfer amount that the
pivot transaction must be above. Join Time Window: the time window in days that any two directly
joined records must fall in. Amount Split Ratio: the number of splits that the pivot transaction can be
split for forward or backward money flow.

Each of the three randomly-generated FED query sets contains 1000 queries. For

QIMQOSJPFed-Uniform, the marginal distribution on a parameter P is the uniform dis-

tribution on the range [min,max] defined in Table 10.2. For QIMQOSJPFed-Normal,



10.1. Experiment Setting 134

the marginal distribution on P is the normal distribution with µ = (min + max)/2

and σ = 0.1 ∗ (max − min). And for QIMQOSJPFed-GaussianMix, the marginal dis-

tribution on P is the two-Gaussian mixture model with the equal model probability,

µ1 = min+(max−min)∗ 0.2, µ2 = min+(max−min)∗ 0.8, and σ = 0.1∗ (max−min).

All drawn values are rounded to integers. And for the binary non-numerical parameters,

the equivalent Bernoulli drawing is used.

QIMQOSJPMed has 8 query categories and 565 queries generated by manually select-

ing parameters. The majority is the 3-category 414 queries used in QAggreMed. The

remaining 5 categories monitor the patient hospital transferring, different types of disease

development over time, or the links between diseases and operations. Since the accurate

personal information is not available, the patient matches among multiple records use

only the demographic information and are not accurate, but nevertheless are useful to

demonstrate large-scale query settings.

10.1.4 Experiment Setting

The experiments were conducted on two system configurations. At first, QIEFed-Manual

was evaluated on an HP PC computer with single core Pentium(R) 4 CPU 1.7GHz and

512M RAM, running Windows XP and Oracle 9.2. Later, the system was updated, and

all the remaining experiments were conducted on a DELL PC computer with single core

Pentium(R) 4 CPU 3.00GHz and 1G RAM, running Windows XP and Oracle 10.1.

To simulate the streams, in the order of time, we take the first part (300000 records

from FED and 600000 from MED) of the data as historical data, and simulate the arrivals

of new data incrementally. Query networks are evaluated on 10 incremental data sets 11

times for each set. Each incremental data set contains 4000 new records. Most of the

experiments were conducted on such simulation settings unless otherwise specified.

Given the historical data and one incremental data set, the system performance is



10.2. Incremental Evaluation on SJP Queries and Query Optimization 135

measured in the total time of producing new results for all the currently active queries.

The queries from different categories are added to the system in an interleaving fashion,

and the performance is recorded at each hundred number of queries. Besides the figures

shown in this chapter, most experiment results are also shown in tables in Appendix C.

10.2 Incremental Evaluation on SJP Queries and Query Opti-

mization

The experiments presented in this section were conducted on two query sets, QIEFed-

Manual and QIEFed-Uniform. QIEFed-Manual was evaluated on the earlier system con-

figuration: HP PC Pentium4 1.7G CPU and 512M RAM, running Windows XP and Oracle

9.2; and QIEFed-Uniform was on the later updated configuration: DELL PC Pentium(R)4

CPU 3.00GHz and 1G RAM, running Windows XP and Oracle 10.1.

The QIEFed-Uniform evaluation is more concrete than QIEFed-Manual. The QIEFed-

Uniform results are averaged over a set of randomly-generated queries, instead of on single

queries. The reason that we still show the old evaluation on QIEFed-Manual is because the

two DBMS versions on different hardware configurations behave differently which merits

some discussion.

On QIEFed-Manual, we use the following two data conditions:

• Data1. Historical data: the first 300, 000 records. New data: the next 20, 006 records.

This data set provides alerts for the queries being tested. Particularly, the 6 additional

records in Data1 give at least one result for each of the query in QIEFed-Manual.

• Data2. Historical data: the first 300, 000 records. New data: the next 20, 000 records.

This data set does not generate alerts for most of the queries being tested.

On QIEFed-Uniform, the historical data part is the same, and the new data part is the

next 1000 records. To evaluate the effect of batch-size on incremental evaluation, we vary



10.2. Incremental Evaluation on SJP Queries and Query Optimization 136

the batch-size of the new data part from 1000 records to 20000 records, as shown in Figure

10.2.

The query network for each individual query is generated and evaluated. It takes some

time for query networks to initialize intermediate results, yet it is an one-time operation.

Query networks provide incremental new results. On the other hand, when running the

original SQL queries directly on the DBMS, we combine the historical (old) data and the

new data (stream), and the performance measurement is the time to process the whole

data sets.

10.2.1 Incremental Evaluation

This section compares the execution time of the incremental evaluation (Rete) and running

the queries on DBMS directly (DBMS). The experiments were conducted on two query

sets, QIEFed-Manual and QIEFed-Uniform.

In incremental evaluation, the query network for each individual query is generated

with following configuration: no hidden condition is added to the original queries, and

transitivity inference is turned on.

Figure 10.1 summarizes the results of running the queries Q1-Q7 on the two data con-

ditions. For most of the queries, query networks with transitivity inference gain significant

improvements over directly running the SQL queries on the DBMS.

Q4 and Q5 are the two queries involving aggregations. The Q4 query network has a join

that computes on the large original table. This significantly slows down the incremental

matching. And Q5 is an aggregate-then-join query and the query network did not apply

incremental aggregation, thus there is no performance improvement. We show later that

incremental aggregation will provide significant improvements to these types of queries.

Figure 10.2 shows the average execution times over 160 QIEFed-Uniform queries with

different batch-sizes. This figure still shows that incremental evaluation is better than



10.2. Incremental Evaluation on SJP Queries and Query Optimization 137

0

10

20

30

40

50

Q1 Q2 Q3 Q4 Q5 Q6 Q7

E
xe

cu
ti

o
n

 T
im

e(
s)

   
 a

Rete Data1 DBMS Data1
Rete Data2 DBMS Data2

Figure 10.1: Execution times of QIEFed-Manual. This shows that incremental evaluation (Rete) is much
faster than the naive approach (DBMS) for the majority of queries (Q1, Q2, Q3, Q6, and Q7) on both
data conditions. Data1: the historical data is the first 300, 000 records, and the new data is the next
20, 006 records. Data1 provides alerts for the queries being tested. Data2: the historical data is the first
300, 000 records, and the new data is the next 20, 000 records. Data2 does not generate alerts for most of
the queries being tested.

running queries directly on DBMS, but less significant. Two facts contribute to this

insignificance. First, transitivity inference is automatically applied in the new DBMS

version but not in the old one, as we will show later in Section 10.2.2. Second, the

updated hardware improves the computation efficiency significantly over large-scale data

as required by the DBMS approach, but not on the processing overhead as required by

the incremental evaluation approach.

Figure 10.2 also shows the performance changes of the incremental evaluation over the

changes of the batch size: the number of tuples in the new data part. Theoretically and

ideally, the execution time should be linear to the batch-size. However, the figure shows

two different behaviors at the two batch-size ends. At the small batch-size end (1000 to



10.2. Incremental Evaluation on SJP Queries and Query Optimization 138

0

1

2

3

4

5

6

1000 10000 100000

Rete DBMS

Figure 10.2: Execution times of QIEFed-Uniform. X-axis is the batch-size: the number of tuples in the
new data part. Y-axis is the average execution time over the 160 queries. This shows that incremental
evaluation (Rete) is much faster than the naive approach (DBMS) when the batch-size is small. But the
execution time grows as the batch-size increases, and may exceed the DBMS approach.

8000), the execution time is sub-linear to the batch-size, because the majority of time is

the overhead of the query network processing including loading the tables into memory.

At the large batch-size end (8000 to 20000), the execution time becomes linear and finally

higher than linear, because page swapping is involved. In practice, we want to tune the

batch-size to provide fast response with computation efficiency. We will discuss this future

work in Section 11.1.3.

10.2.2 Transitivity Inference

This section presents the results on transitivity inference. We show the experiments con-

ducted on the two system configurations.

On the old system configuration with QIEFed-Manual, Q1 and Q3 are queries that



10.2. Incremental Evaluation on SJP Queries and Query Optimization 139

benefit from transitivity inference. Figure 10.3 shows the execution times for these two

examples. The inferred condition amount > 500000 is very selective with selectivity factor

of 0.1%. Clearly, when transitivity inference is applicable and the inferred conditions are

selective, a query network runs much faster than its non-TI counterpart and the DBMS

approach.

0

10

20

30

40

50

Q1 Data1 Q1 Data2 Q3 Data1 Q3 Data2

E
xe

cu
ti

o
n

 T
im

e(
s)

   
 a

Rete TI Rete Non-TI DBMS Non-TI DBMS TI

Figure 10.3: Effect of transitivity inference on QIEFed-Manual. This shows that transitivity inference
leads to significant improvements to both Rete and DBMS. “Rete TI”: Rete generated with transitivity
inference. It achieves 20-fold improvement comparing to Rete Non-TI and DBMS Non-TI. “Rete Non-
TI”: Rete without transitivity inference. “DBMS Non-TI”: original SQL query on DBMS. “DBMS TI”:
original SQL query with hidden conditions manually added on DBMS.

Note that in Figure 10.3, DBMS TI for Q1 is the time of running the SQL query with

the inferred conditions manually added in. It runs significantly faster than the DBMS. This

suggests that this type of complex transitivity inference is not applied in the DBMS query

optimization, and can be implemented in a traditional DBMS to improve performance on

evaluating traditional SQL queries.

On the new system configuration, we evaluated the transitivity inference on the first



10.2. Incremental Evaluation on SJP Queries and Query Optimization 140

4 query variants of QIEFed-Uniform, Q1 - Q4, (Section 10.1.3), as shown in Figure 10.4.

Each variant has 20 queries. The historical data is the first 300000 records, and the new

data part is the next 1000 records. The figure shows that transitivity inference leads to

significant improvements to the incremental evaluation, but not to DBMS. This indicates

that the new DBMS version implements the transitivity inference.

0

1

2

3

4

5

6

Q1 Q2 Q3 Q4

Rete-TI
Rete-NonTI
DBMS-NonTI
DBMS-TI

Figure 10.4: Effect of transitivity inference on QIEFed-Uniform’s 4 query variants, Q1 - Q4, each of 20
queries. The historical data is the first 300000 records, and the new data part is the next 1000 records.
The figure shows that transitivity inference leads to significant improvements to Rete, but not to DBMS.
“Rete TI”: Rete generated with transitivity inference. “Rete Non-TI”: Rete without transitivity inference.
“DBMS Non-TI”: original SQL query on DBMS. “DBMS TI”: original SQL query with hidden conditions
manually added on DBMS.

10.2.3 Conditional Materialization

Conditional materialization is also tested on the two system configurations. The experi-

ments were conducted by turning off the transitivity inference option. Then the queries

have to join with large historical data parts.



10.2. Incremental Evaluation on SJP Queries and Query Optimization 141

We compared three configurations, Conditional, Non-Conditional, and DBMS. DBMS

is running the query directly on the DBMS. Non-Conditional is the query network that

materializes all selection and 2-way join predicate sets. Conditional is the query network

that materializes all above mentioned predicate sets except those selection predicate sets

with selectivity above 0.3.

0

10

20

30

40

50

Data1 Data2

E
xe

cu
ti

o
n

 T
im

e(
s)

   
 a

Conditional Non-Conditional DBMS

Figure 10.5: Effect of conditional materialization on QIEFed-Manual with transitivity inference turned
off. Comparing the execution times of conditional materialization, non-conditional materialization, and
running the original SQL on the DBMS.

On the old system configuration, in Figure 10.5, Non-Conditional presents the query

network that still materializes the results of the non-selective selection predicates, and

Conditional presents the query network that skip such inefficient materialization. The

figure also shows the time of running the original SQL query on the DBMS. It is clear that

if non-selective conditions are present, conditional materialization should be applied.

On the new system configuration, we evaluated the conditional materialization on the

first 4 query variants of QIEFed-Uniform, as shown in Figure 10.6. The historical data



10.3. Incremental Aggregation and Aggregation IMQO 142

0

2

4

6

8

10

12

14

Q1 Q2 Q3 Q4

Conditional
Non-Conditional
DBMS

Figure 10.6: Effect of conditional materialization on QIEFed-Uniform’s 4 query variants, Q1 - Q4, each of
20 queries with transitivity inference turned off. Historical data is the first 300000 records, and the new
data part is the next 1000 records. In the Non-Conditional case, the materialization overhead is large
enough to make the performance even worse than the DBMS approach. This problem is fixed by the
conditional materialization.

is the first 300000 records, and the new data part is the next 1000 records. In the Non-

Conditional case, the materialization overhead is large enough to make the performance

even worse than the DBMS approach. This problem is fixed by the conditional material-

ization.

10.3 Incremental Aggregation and Aggregation IMQO

In this section, we present experiments to show: 1. the effect of incremental aggregation

(IA) vs. the naive reaggregation approach (NIA), 2. the effect of IMQO on aggregate

queries (shared incremental aggregation, SIA) vs. unshared aggregate queries (non-shared

incremental aggregation, NS-IA), and 3. the performance changes of vertical expansion



10.3. Incremental Aggregation and Aggregation IMQO 143

(VE ) and non-vertical expansion (NVE ) with regard to |SN |. |SN | is the incremental data

size.

Table 10.3 shows the historical and new data part sizes on the FED and MED databases

used in the experiments.

FED MED
|SH | 300000 600000
|SN | 4000 4000

Table 10.3: Evaluation Data for incremental aggregation.

We use 350 aggregate queries on FED and 450 aggregate queries on MED as discussed in

Section 10.1.2. Some of these queries aggregate on selection and self-join results. Examples

B.4, B.5, and B.8 to B.11 present some of these queries.

10.3.1 Incremental Aggregation

Figures 10.7 and 10.8 show the execution times of IA and NIA on each single query, and

the ratio between them, NIA/IA. A NIA/IA ratio above 1 indicates better IA performance.

Since there are more fluctuations on diversified MED queries, we show running averages

over 20 consecutive queries in Figure 10.8 to make the plot clear. The queries are sorted in

the increasing order of AggreSize = |SH(A)| ∗ |AH |, shown on the second Y axis. |SH(A)|
is the actual aggregation data size of the historical part after possible selections and joins.

We tried to sort the queries based on two other metrics, |SH(A)|, and |SH(A)|+ |AH |. But

they show less consistent trends to the time growth and the NIA/IA ratio. This indicates

that the DBMS aggregation operator on SH has time complexity of |SH(A)| ∗ |AH |.
AggreSize indicates the query characteristics. There are about 250 queries in both FED

and MED whose |SH(A)| is 0, shown to the left of the vertical cut lines and are sorted by

the NIA/IA ratio. Unsurprisingly, their execution times are very small. The small time

fluctuations are caused by the DBMS file caching.



10.3. Incremental Aggregation and Aggregation IMQO 144

0.1

1

10

100

0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

FED Query IDs

E
xe

cu
tio

n
 T

im
e
 R

a
tio

: 
N

IA
/I

A

Ratio

IncreAggre

NonIncreAggre

E
xe

cu
tio

n
 T

im
e
 (

s)
: 
In

cr
e
A

g
g
re

(N
IA

)
N

o
n
In

cr
e
A

g
g
re

(I
A

)
A

g
g
re

g
a
tio

n
 S

iz
e
: 
lo

g
(|

S
H
(A

)|
*|

A
H
|)

AggreSize

0 AggreSize

Figure 10.7: Single FED compares the execution times of incremental aggregation (IncreAggre, IA) and
non-incremental aggregation (NonIncreAggre, NIA) on individual Fed aggregate queries. The x-axis is
the query IDs sorted by the AggreSize = |SH(A)| ∗ |AH |, which estimates the IA cost. The figure also
shows the performance Ratio between the IA and the NIA: (IA execution time)/(NIA execution time).

For the remaining queries, incremental aggregation is better than non-incremental ag-

gregation. Particularly, it gains more significant improvements when the aggregation size

is large. These large-size queries dominate the execution time in multiple-query systems.

Thus significant improvements on such queries are significant to the whole system perfor-

mance, as shown in Table 10.4.

FED MED
350Q 450Q

IA 662 316
NIA 6236 938

Table 10.4: Total execution time in seconds for incremental aggregation (IA) and non-incremental aggre-
gation (NIA).



10.3. Incremental Aggregation and Aggregation IMQO 145

0.1

1

10

100

1000

0 50 100 150 200 250 300 350 400
1

100

10000

1000000

100000000

10000000000

MED Query IDs

E
xe

cu
tio

n
 t

im
e
 r

u
n
n
in

g
 a

vg
(s

):
 N

IA
 a

n
d

IA
R

a
tio

: 
N

IA
/I
A

Ratio

IncreAggre(IA)NonIncreAggre(NIA)

A
g
g
re

g
a
tio

n
 S

iz
e
: 

|S
H
(A

)|
*|

A
H
|

AggreSize

0 AggreSize

Figure 10.8: Single MED compares the execution times of incremental aggregation (IncreAggre, IA) and
non-incremental aggregation (NonIncreAggre, NIA) on individual Fed aggregate queries. The x-axis is
the query IDs sorted by the AggreSize = |SH(A)| ∗ |AH |, which estimates the IA cost. The figure also
shows the performance Ratio between the IA and the NIA: (IA execution time)/(NIA execution time).

10.3.2 IMQO on Aggregate Queries

Figures 10.9 and 10.10 show the total execution times of SIA and NS-IA by scaling over

the number of queries. Clearly, incremental sharing provides improvements, particularly

on FED where queries share more overlap computations.

It is interesting to note that the benefit of IMQO is much more significant on FED than

on MED. Similar gap is observed on pure SJP queries; see Section 10.4. This is because the

system does not recognize certain sharable computations on MED queries. Particularly,

the majority MED queries involve certain type of disease (selection predicates on the

disease category), but have same join predicates. The selection predicates from different

queries specify a set of disjoint disease category ranges. Ideally, the system can create a

selection node which selects all the tuples that are in the minimum cover of the disjoint



10.3. Incremental Aggregation and Aggregation IMQO 146

ranges (the minimum consecutive range that covers each of the ranges), perform just one

join from the selection node, and further select the tuples in each disease range from the

join result. Currently, the system does not find the minimum range cover. We should

note that the range cover can only be identified on ordered data types, such as numerical

values.

Number of FED queries

E
xe

cu
tio

n
 T

im
e
 (

s)

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

SIA NS-IA

Figure 10.9: Aggregate sharing on FED. Comparing total execution times of shared query network (SIA)
and non-shared query network (NS-IA). SIA is up to hundreds-fold faster.

10.3.3 Study on Vertical Expansion

To study how the incremental size |SN | influences the vertical expansion performance, we

select two FED query pairs and compare vertical expanded plans (VE ) and non-vertical

expanded plans (NonVE ) on them by varying the incremental sizes from 1 to 30000 tuples

in exponential scale, as shown on the X axis in Figures 10.11 and 10.12. In each query pair,

one query B can be shared by vertical expansion from the other query A, and their data



10.3. Incremental Aggregation and Aggregation IMQO 147

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450

SIA NS-IA

Number of MED queries

E
xe

cu
tio

n
 T

im
e
 (

s)

Figure 10.10: Aggregate sharing on MED. Comparing total execution times of shared query network (SIA)
and non-shared query network (NS-IA). SIA is faster.

sizes are shown in Table 10.5. Figures 10.11 and 10.12 show two types of execution times,

IBT and ITT. IBT is the time to update the whole incremental batch SN , indicated

on the left Y axis, and ITT is the average time to update an individual tuple in each

incremental batch, ITT = IBT/|SN |, indicated on the right Y axis. The VE performance

gets close to NVE as |SN | gets larger, since |SN |2 in Tcurr becomes dominant and dims

the VE advantage; see Section 4.2 for the time complexity discussion. We expect that this

situation can be avoided with the hasing implementation.

Pair1 Pair2
|SH | 300000 300000
|AH | 95050 94895
|BH | 10000 10000

Table 10.5: Vertical expansion statistics



10.4. Incremental Multiple Query Optimization on SJP Queries 148

0.01

0.1

1

10

100

1 3 10 33 100 333 1000 3333 10000 30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Incremental Size: |SN|

NonVE ITT
VE ITT

Non-VE IBT
VE IBT

IB
T

: I
nc

re
m

en
ta

l-B
at

ch
 E

xe
cu

tio
n 

T
im

e 
(s

)

IT
T

: A
ve

ra
ge

 In
di

vi
du

al
-T

up
le

E
xe

cu
tio

n 
T

im
e 

(s
)

FED Query Pair 1

Figure 10.11: Effect of vertical expansion for the first example. VE is always better, but the benefit
diminishes as the incremental size increases.

0.1

1

10

100

1 3 10 33 100 333 1000 3333 10000 30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Incremental Size: |SN|

NonVE ITT
VE ITT

Non-VE IBT
VE IBT

IB
T

: I
nc

re
m

en
ta

l-B
at

ch
 E

xe
cu

tio
n 

T
im

e 
(s

)

IT
T

: A
ve

ra
ge

 In
di

vi
du

al
-T

up
le

E
xe

cu
tio

n 
T

im
e 

(s
)

FED Query Pair 2

Figure 10.12: Effect of vertical expansion for the second example. VE is always better, but the benefit
diminishes as the incremental size increases.

10.4 Incremental Multiple Query Optimization on SJP Queries

In this section, we present the experiments on IMQO on the five SJP query sets, QIMQOSJPFed-

Manual, QIMQOSJPFed-Uniform, QIMQOSJPFed-Normal, QIMQOSJPFed-GaussianMixture,



10.4. Incremental Multiple Query Optimization on SJP Queries 149

and QIMQOSJPMed. The experiment setting is as discussed in Section 10.1. For each

query set, the performance is evaluated on increasingly-expanded query subsets with 100

more queries added to the system each time.

We observe that the benefit of IMQO is much more significant on FED than on MED,

as for aggregate queries. See Section 10.3.2 for explanations.

We compare performance of four query network generation configurations, AllShar-

ing, NonJoinS, NonCanon, and MatchPlan, as shown in Table 10.6. Particularly, we

conduct three comparisons: 1. join sharing vs. non-join sharing, i.e. AllSharing vs. Non-

JoinS; 2. canonicalization vs. non-canonicalization, i.e. AllSharing vs. NonCanon; and

3. sharing-selection vs. match-plan, i.e. AllSharing vs. MatchPlan. When comparing

sharing-selection and match-plan, we also present a baseline curve for the configuration of

match-plan without canonicalization (MatchPlan NCanon), which simulates NiagaraCQ’s

approach.

In some of the experiments, when the baseline data points are apparently much worse

than the configuration to be compared, they were not evaluated and not shown in the

figures. For example, in Figures 10.13(b), 10.13(c), and 10.13(d), NonJoinS performance

is reported only up to 700, 600, and 500 queries, respectively.

Config Join Canoni- Strategy
ID Sharing calize
AllSharing Y Y Sharing-Selection
NonJoinS N Y Sharing-Selection
NonCanon Y N Sharing-Selection
MatchPlan Y Y Match-Plan

Table 10.6: Network Generation Configurations. Functionality enabled: Y; disabled: N.

10.4.1 Incremental Multiple Query Optimization

As shown in Figure 10.13, the performance difference between join sharing and non-join

sharing is significant. This is because sheer repetitive join work is computed multiple times



10.4. Incremental Multiple Query Optimization on SJP Queries 150

for non-join sharing.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

AllSharing
NonJoinS

(a) QIMQOSJPFed-Manual

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900 1000

AllSharing
NonJoinS

(b) QIMQOSJPFed-Uniform

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

AllSharing
NonJoinS

(c) QIMQOSJPFed-Normal

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

AllSharing

NonJoinS

(d) QIMQOSJPFed-GaussianMixture

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600

AllSharing
NonJoinS

(e) QIMQOSJPMed

Figure 10.13: Join Sharing. Comparing total execution times in seconds of join-shared (AllSharing) and
non-join-shared query networks (NonJoinS). AllSharing is up to tens-fold faster.



10.4. Incremental Multiple Query Optimization on SJP Queries 151

10.4.2 Canonicalization

As shown in Figure 10.14, the effect of canonicalization is also significant, particularly

on FED, due to different query characteristics. In FED queries, there is a significant

portion of queries that specify different time windows for join, as shown in Example 1.1,

such as r2.tran date <= r1.tran date + 20 and r2.tran date <= r1.tran date + 10. The

canonicalization procedure makes it possible to identify the subsumption relations between

such join predicates. Thus the sharing leads to more significant reduction in the number

of join nodes.

We observe that the canonicalization outperforms join sharing on the randomly parame-

terized query sets, QIMQOSJPFed-Uniform, and QIMQOSJPFed-Normal, QIMQOSJPFed-

GaussianMixture, but not on the manually parameterized query sets, QIMQOSJPFed-

Manual, and QIMQOSJPMed. This is because that randomly parameterized queries

present rare equivalent predicates, but many more subsumption predicates. Without

canonicalization, many subsumptions can not be identified. For example, the subsump-

tion between the join predicates r2.tran date ≤ r1.tran date + 20 and r2.tran date ≤
r1.tran date + 10 can not be identified without canonicalization. Therefore, many poten-

tial subsumption join sharing opportunities are not explored.

We observe that different randomly parameterized query sets present different levels

of performance improvement by conducting join sharing or canonicalization. Comparing

the three randomly parameterized query sets in Figures 10.13 and 10.14, we notice that

the most significant improvement comes from QIMQOSJPFed-Normal, the second from

QIMQOSJPFed-Uniform, and the last from QIMQOSJPFed-GaussianMixture.

Examining the queries and the constructed query networks, we find that QIMQOSJPFed-

Normal presents the highest level of sharability, while QIMQOSJPFed-GaussianMixture

presents the lowest level of sharability, because of the following. The subsumption sharing

between two queries requires that the parameter values present the consistent predicate



10.4. Incremental Multiple Query Optimization on SJP Queries 152

subsumption relationship from one query to the other. Remember the parameter values

within one query are drawn independently. When the values focus in smaller ranges (val-

ues fall into smaller ranges with higher probability), the subsumption is more likely to

occur. Clearly, QIMQOSJPFed-Normal generated from normal distributions has the most

focused values. As discussed in Section 10.1.3, a Gaussian mixture has two local focuses

located at µ1 = min+(max−min)∗0.2, µ2 = min+(max−min)∗0.8, and each Gaussian

model has the half probability to be chosen and has σ = 0.1 ∗ (max−min). This is more

scattered than the uniform distribution in range [min,max].



10.4. Incremental Multiple Query Optimization on SJP Queries 153

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

AllSharing
NonCanon

(a) QIMQOSJPFed-Manual

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

AllSharing

NonCanon

(b) QIMQOSJPFed-Uniform

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

AllSharing
NonCanon

(c) QIMQOSJPFed-Normal

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

AllSharing
NonCanon

(d) QIMQOSJPFed-GaussianMixture

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

AllSharing
NonCanon

(e) QIMQOSJPMed

Figure 10.14: Canonicalization. This shows the effectiveness of canonicalization. The canonicalized query
networks are up to 50 folds performance improvement.



10.4. Incremental Multiple Query Optimization on SJP Queries 154

10.4.3 Match-Plan versus Sharing-Selection

In Figure 10.15, we compare sharing-selection, match-plan, and match-plan without canon-

icalization. It is not surprising that match-plan without canonicalization is worse than the

other two because of the effect of canonicalization. When both perform canonicalization,

sharing-selection is still better than match-plan by identifying more sharing opportunities

and constructs smaller query networks.



10.4. Incremental Multiple Query Optimization on SJP Queries 155

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

AllSharing
MatchPlan
MPlan_NCanon

(a) QIMQOSJPFed-Manual

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900 1000

AllSharing

MatchPlan

MPlan_NCanon

(b) QIMQOSJPFed-Uniform

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

AllSharing

MatchPlan

MPlan_NCanon

(c) QIMQOSJPFed-Normal

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

AllSharing
MatchPlan
MPlan_NCanon

(d) QIMQOSJPFed-GaussianMixture

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600

AllSharing
MatchPlan
MPlan_NCanon

(e) QIMQOSJPMed

Figure 10.15: Match-plan vs. sharing-selection. This compares the total execution times of query net-
works generated with sharing-selection (AllSharing), match-plan (MatchPlan), and match-plan without
canonicalization (MPlan NCanon, the baseline). AllSharing is the best.



10.4. Incremental Multiple Query Optimization on SJP Queries 156

10.4.4 Weighted Query Network Size

Weighted query network size (QNS) is the weighted sum of numbers of various types of

nodes in the network, to roughly present the network size and its execution cost. The

weighted size intends to predict the total query network execution time by assigning dif-

ferent weights to nodes of different types (selection or join) at different join depths based

on cost estimates and summing-up them together. Particularly, the weight of each node

intends to estimate the execution cost of that node. The cost is estimated based on the

node’s type (selection or join) and join depth. The cost largely depends on the number

of records to be processed in an incremental evaluation run. Assuming the queries filter

out records through selection predicates and join much less records than the original data,

the shallow join-depth nodes should have more weights than the deep ones. Since join is

usually much more expensive than selection, join nodes should have much more weights

than selection nodes.

Node S0 S1 S2 S3 S4 J1 J2 J3 J4

Weight 5 4 3 2 1 16 8 4 2

Table 10.7: Node weights. Node legend: S: selection node; J: join node; 0-4: join depth.

Table 10.7 shows the weights we used for computing the weighted query network sizes.

The selection node weights decrease linearly as the join depths increase, and the join node

weights decrease exponentially as the join depths increase. The sizes are plotted in Figures

10.16. The figures show that canonicalization and common computation identification are

very effective. To correlate them with the actual performance, we also recap AllSharing

and NonJoinS execution times in the figures.

The figures indicate that the execution times are linear to the weighted size of the

query networks in general. We also observe the sub-linearity when the network is very

small (Figure 10.16(a) etc.), we believe that it is due to the fact that the underlying

DBMS does a good job on buffer and cache management on relatively small data sets.



10.4. Incremental Multiple Query Optimization on SJP Queries 157

We expect that optimizing the node evaluation order, e.g. grouped evaluation on local

trees, will alleviate the I/O bottleneck problem for large-scale queries. Such cache-aware

optimization remains a challenge for future work.



10.4. Incremental Multiple Query Optimization on SJP Queries 158

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800
0

5000

10000

15000

20000

25000

AllSharing
NonJoinS
AllSharing QNS
NonJoinS QNS
NonCanon QNS
MatchPlan QNS

(a) QIMQOSJPFed-Manual

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

(b) QIMQOSJPFed-Uniform

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(c) QIMQOSJPFed-Normal

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

(d) QIMQOSJPFed-GaussianMixture

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600
0

2500

5000

7500

10000

12500

15000

17500

20000

AllSharing
NonJoinS
AllSharing QNS
NonJoinS QNS
NonCanon QNS
MatchPlan QNS

(e) QIMQOSJPMed

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

AllSharing

NonJoinS

AllSharing QNS

NonJoinS QNS

NonCanon QNS

MatchPlan QNS

(f) Legend

Figure 10.16: Fed Weighted Query Network Sizes (QNS). QNS curves are consistent to the execution
performance.



Chapter 11

Conclusion and Future Work

This concluding chapter discusses the related issues and future work directions, and sum-

marizes the thesis contributions.

We discuss several problems related to multiple continuous query optimization and exe-

cution, including long history handling, query deregistering, and batch-size tradeoff. Then

we discuss the future work that can further improve the performance in three categories,

including the immediate generalization of current work, adding adaptive processing func-

tionalities, and adapting our methods to work well on new computing infrastructures. And

finally we summarize the thesis contributions.

11.1 Discussion

11.1.1 Handling Long History

Continuous queries may deal with long or potentially unlimited historical data. To address

the problem, researchers have developed techniques to bound the history. The techniques

fall in two categories, exploiting constraints and approximation. Streams usually hold cer-

tain constraints that can be exploited to drop useless historical data without compromising

result precision. Approximation drops stream tuples to limit the history with certain er-

159



11.1. Discussion 160

ror bound on results. Currently, ARGUS does not have such techniques. In the rest of

the section, we briefly discuss the techniques and the challenge of implementing them on

shared query networks.

Exploiting Constraints

Streams usually hold certain constraints or display certain data patterns such that his-

torical stream tuples useless to the current set of continuous queries can be dropped.

When a new continuous query is registered, it may request more historical data beyond

the currently available ones to produce precise results. However, by adjusting the history

retaining policy, this problem will be alleviated continuously and eventually go away as

new data pour in.

Babu et al. [18] discussed three kinds of stream constraints and how they can be used to

reduce history for selection-join-projection (SJP) queries. The constraints are referential

integrity constraint, clustered-arrival constraint, and monotonicity constraint. The last

two constraints can also be used for aggregate queries. We review the constraints and the

applications to SJP queries that were discussed in [18], and add the discussion on handling

aggregates and defining minimum sliding window.

Referential integrity constraints on data streams (RIDS) characterize data arrival pat-

terns on two streams that can be joined in the many-one form. RIDS on a many-one

join S1 → S2 states that when a tuple s1 arrives on S1, its unique joining tuple in S2 has

already arrived [18]. Due to physical reasons, such as network delay, the constraints may

not hold strictly. A more relaxed k-constraint version states that when a tuple s1 arrives

on S1, its joining tuple s2 has already arrived or s2 will arrive within k tuple arrivals on S2

[18]. To be realistic, we assume the query has selection predicates on S1 and S2. According

to the k-constraint, when a new tuple s1 ∈ S1 arrives, if it joins with s2 ∈ S2, it will not

join with further tuples in S2 and can be discarded. If s1 does not join with any tuple in



11.1. Discussion 161

S2, s1 is retained until it joins with a future tuple s2 within k tuple arrivals or expires at

the kth tuple arrival. When a new tuple s2 ∈ S2 arrives, if it fails to pass the selection

predicates, any tuples in S1 that joins with it can be discarded. Although then s2 can be

discarded now, it may be retained to fail future joining tuples, so that they don’t need to

wait until the expiration.

A clustered-arrival constraint (CA) on attribute A of a stream S specifies that duplicate

values for A arrive at successive positions in S. The relaxed k-constraint version states

that the number of S tuples with non-v values for attribute A between any two S tuples

with the same v-value is less or equal to k. Consider the many-one join S1 → S2 where

S1 holds the CA constraint on the join attribute A. Once a tuple s2 ∈ S2 joins with some

tuple s1 ∈ S1 with value A = v, s2 will not join with further S1 tuples after observing a

no-show of A = v in any subsequent k + 1 tuple window on S1. So s2 can be dropped as

well as any tuples joining with s2.

CA constraints can also be used to drop tuples for aggregate queries. Consider a holistic

aggregate query on stream S that groups tuples by values of attribute A which holds the

CA constraint. Once a new value A = v is seen from S, we can compute and update the

aggregate for this new group until observing a no-show in any k + 1 tuple window. Then

the v-value tuples can be dropped.

An ordered-arrival constraint (OA) on attribute A of a stream S says that the stream

S is sorted on A. The relaxed k-constraint version allows some disorder within k tuple

windows. It specified that for any tuple s and any tuple s′ that arrives at least k+1 tuples

after s, s.A < s′.A. OA constraints can be used to drop tuples for both many-one and

aggregate queries in the similar way as CA constrains. Furthermore, OA constraints allow

dangling tuples (tuples never join) to be dropped.

An OA constraint can also be used to define the minimum sliding windows, such as

those on the timestamp attribute. Consider a query that concerns only with recent data in



11.1. Discussion 162

a sliding window defined on attribute A from stream S. Assume A is in the ascending order

(descending order is symmetric). The sliding window is specified as Current − S.A < c,

where c is a constant, and Current is the current value of A. Current could be either an

objective value independent of the stream, such as the actual time, or the S.A value of the

latest tuple. With the relaxed k-constraint version, any tuple not in the window plus the

k preceding tuples can be dropped.

Approximation

Various approximation techniques are described in rich literature. Load shedding [2] drops

chunks of tuples when the system performance degrades to a certain level. More sophisti-

cated approaches achieve certain error bounds by sampling streams according to statistical

models, such as histogram [116] or compressed wavelets [52, 25] for aggregation and join,

and Bloom filter [21] for duplicate elimination, set difference, or set intersection.

Adaptive approximation [89] is important to deal with the dynamics of stream process-

ing including fluctuations in data rates and distributions, query workload, and resource

availability. For example, besides the reduction on the original stream data, more fine-

tuned approximation may be considered at operator level. When an operator becomes

the bottleneck for the entire query evaluation plan, a dynamic sampling operator can be

applied before the congested operator. Such challenges have not yet been investigated in

depth. An interesting direction in this regard is using machine learning techniques to learn

the model of the dynamics and using the model to guide the adaptive approximation.

Here we review the approximation techniques in literature on two problems, k-way

foreign key joins [3], and distributed top-K or quantile monitoring.

A 2-way foreign key join is a join on referential-integrity-held attributes. It is the many-

one join discussed in Section 11.1.1. We use the term foreign key join in this section to be

consistent with the discussion in [3].



11.1. Discussion 163

A k-way foreign key join on k relations (denoted as a set R) is defined as following. A

k-way join is a k-way foreign key join if each relation in R has at least one 2-way foreign

key join with another relation in R.

We can construct a join graph G for a k-way foreign key join, in which each relation is

presented as a node, and each 2-way foreign key join is presented as a directed edge from

the foreign key relation (many) to the primary key relation (one). It can be shown that

the graph G is a connected directed acyclic graph with a single root node S. Intuitively,

S is the central fact relation in a star or snowflake schema. Further, it can be shown that

a uniform sample on S will give a uniform sample on the final result.

Now we discuss distributed top-K and quantile monitoring. Aggregates vary on history

retainment. Algebraic aggregates on unlimited history or windowed history do not need

to retain the entire history, but only a bounded number of up-to-date statistics. Some

algebraic aggregates on unlimited history become holistic aggregates on windowed history.

Such as MAX, MIN , and top-K queries. Holistic queries, such as quantiles, need to

retain the entire history (unlimited or limited) to produce precise results. For the holistic

queries, we can apply approximation.

MAX or MIN can be approximated by maintaining the top-K answers instead of

the entire history. K is a tunable parameter. Here we use the MAX as the example

(MIN is symmetric). When the maximum value tuple expires from the time window, the

second value tuple becomes the result. When a new tuple arrives, if the value is larger

than that of at least one tuple in the top-K list, the list is updated. Such operation has

the effect of monotonic increasing on minimum value in the list. So the list may shrink

as old top-K tuples expire while no new tuples can be inserted into the list. A remedy

that resumes the history retaining can be evoked when shrinkage is detected. The remedy

does not guarantee precise results. An extreme case occurs when the values arrive in the

descending order, as shown in Figure 11.1. Here the time window is specified in the number



11.1. Discussion 164

N of tuples. In the time period between t1 and t3, the top-K list is the tuples arrived

between t2 and t2. Starting from t3, the top-K list shrinks, the remedy is evoked, and

precise results continue to be processed until time t4. At time t4, the top-K list is empty,

but the retained recent history has only K tuples. Clearly, when K = N the results are

always correct, but may not be necessary for tolerable error bounds. How to tune K with

regard to N and the data characteristics is an interesting problem for future research.

K K

N

t1 t2 t3 t4
time

Figure 11.1: N-tuple sliding time window maintaining the top K results.

Babu and Olston [14] described the efficient distributive top-K monitoring, where the

aggregate values are computed from distributed nodes, e.g. most popular webpages that

can be accessed from mirrored distributed servers. The focus is on producing error-

bounded results with minimum communications among nodes. The idea is that after

an initial top-K is computed, constraints are established in local nodes. The central node

estimate the results based on the constraints. Local nodes monitor the local streams but

not transmitting the updated values until the constraints are violated. The constraints



11.1. Discussion 165

are extended by Cormode et al. [38] to data distribution models that are used to estimate

distributed quantiles at central station and are monitored for violation by local nodes.

Implementation

In future, ARGUS can be enhanced with constraint exploitation and approximation. We

can apply the techniques on original streams. We note that the techniques can be applied

to intermediate result streams as well.

Different intermediate result streams display very different data patterns and data rates.

Some of them benefit from the techniques while others (low-rate stream, etc.) do not. Fur-

ther, in a shared query network, different queries may have different priorities (requirement

on response time or accuracy, etc.) and incur different computation cost. A challenging

question is how to decide, probably dynamically, which original or intermediate streams

to use which techniques to optimize a certain utility function, such as optimizing the

throughput or response time for high-priority queries.

11.1.2 Deregistering Query

As the inverse of adding new queries into a shared query network, deregistering existing

ones from the network also naturally occurs in application. Currently, ARGUS does not

take any action when deregistering an existing query. The analyst may simply not poll

the produced results.

The system can be enhanced in deregistering query by deleting the nodes that are not

useful anymore. The system will check the system catalog to identify the nodes that are

used for produce results for the deregistered query and are not shared by other queries.

These nodes are dropped from the query network and the system catalog is updated.

As the shared query network shrinks, its topology may drift away from optimality. To

deal with this, local reoptimization, such as rerouting, restructuring, and merging, can be



11.1. Discussion 166

applied to regain the local optimality.

More intelligent reconstruction strategies model query dynamics. New queries tend to

be revised more often. At the beginning, analysts do not fully understand the phenomena,

and tend to either overestimate or underestimate the situations. As time pass by, refined

queries stabilize gradually. It could be beneficial to keep the new and unstable queries

outside the shared query network. They are individually optimized and executed. When

one of them is deregistered, the entire query network can be dropped without interfering

the rest of the active queries. When new queries reach the stable status, they can be added

into the shared query network.

To automatically adjust the query network sharing, the system must understand the

behavior of analysts. This brings up a new and challenge research problem of behavior

modeling. The goal is to predict the probability that a query will be revised in a certain

period of time. Then the sharing decision can be made based on the value of the probability.

The probability may be modeled from several factors including subjective measures given

by analysts, the recent revision history, and the result production history (when too many

false-alarm results are produced, the query tends to be revised to produce less, etc.).

11.1.3 Immediate Response versus Processing Efficiency

Ideally, whenever a new stream tuple arrives, the shared query network immediately pro-

cesses it and produces results for all the queries. However, due to the limit of computing

power, we often need to trade off between immediate response and processing efficiency.

Since each node operator imposes computation overhead, processing tuples in batch re-

duces the overhead cost and improves the overall performance [2]. Sections 10.2.1 and

10.3.3 demonstrated this effect on SJP and aggregate queries. However, the batch size

(the number of tuples in the batch) should not be too large to unnecessarily delay the

response time or to invoke too many page swapping.



11.2. Future Work 167

Finding the optimal batch size is a challenging scheduling problem related to query

execution engine. The optimal batch size keeps the system in a busy but non-congested

state. Whenever the system completes the processing on one batch, the unprocessed newly-

arrived tuples just compose the entire next batch. Due to query and data dynamics, the

optimal batch size changes over time. Monitoring the system status and dynamically

adjusting the batch size present another problem for adaptive query processing. And it

should be considered with approximation.

In general, finding the optimal batch size with appropriate level of approximation is very

hard, and involves complex cost modeling. However, in the continuous query processing

scenario, it is possible to adopt simple feedback/adaptation mechanism that is widely

used in automatic control systems to approach the optimal status. Particularly, when

the system is congested or idles, the batch size and the level of approximation increase

or decrease a small amount. The amount is determined by a parameterized function of

the level of congestion and idleness. The parameters control the level of adjustment in

response to the status changes, and should be tuned to minimize the adapting time and

avoid vibration (alternative overestimation and underestimation of the batch size and the

level of approximation).

A related problem with regard to response time is that some queries require immediate

response while the rest do not. To provide immediate response to high-priority queries, sys-

tem should schedule the execution of their nodes first. Optimal node execution scheduling

is discussed in Section 11.2.2.

11.2 Future Work

We look at future work in three categories, generalization of current work, adding new capa-

bilities, particularly adding adaptive processing functionalities, and adapting our methods

to work well on new computing infrastructures.



11.2. Future Work 168

11.2.1 Generalization of Current Work

To extend the current work, we consider supporting multi-way joins and more sophisticated

local re-optimization techniques.

To support multi-way joins, we consider general conditional materialization, in which

intermediate results of 2-way joins may be omitted. Since the database is large, and the

results may not necessarily be sparse as expected in anomaly detection, the intermediate

results of joins may be also large enough such that the materialization cost may offset the

time saved from repetitive computation. Whether or not materializing an intermediate

join result set can be decided by cost estimation. Performing conditional materialization

on joins is equivalent to performing multi-way joins. The challenge is how to index and

search multi-way join computations in the IMQO framework. We have preliminary ideas

of indexing the information in separate system catalog relations, and will investigate the

search algorithms.

Beyond the match-plan and sharing-selection, we propose to investigate more sophisti-

cated local re-optimization techniques including restructure sharing and rerouting. Since

the global optimization is NP-complete, the efficient local re-optimization is practical and

worth studying. Restructure sharing is a reconstruction of a local network structure. It

occurs when a set of new predicates need to be evaluated and the local structure can be

reconstructed to provide the results for both the new predicates and the existing predicates

more efficiently. Rerouting is changing the direct parent nodes of a set of existing nodes.

It occurs after a new node is created and a set of existing nodes can be more efficiently

evaluated from the new node.

11.2.2 Adaptive Query Processing

Adaptive query processing (AQP) has received much attention recently in the stream

processing research. AQP techniques at various DSMS processing layers are proposed.



11.2. Future Work 169

They fall into three major categories, dynamic query plan re-optimization [131], adaptive

operator scheduling [16], and batch-size adaptation and approximate query answering [2].

The first one is jointly handled by the stream execution engine and the plan generator,

and the last two are mainly handled by the engine. In this subsection, we discuss the

thoughts in each direction.

While AQP has been studied extensively in all the three directions, applying AQP

on IMQO-generated query network has not yet been investigated. An IMQO-enabled

system presents both new challenges and opportunities to apply AQP. An IMQO-enabled

system tends to support a large number of queries, and identifying the congested local

plan regions that need adaptive processing adjustment is challenging. On the other hand,

equipped with a comprehensive computation indexing scheme that provides a clear view

of the current plan and fast search and update tools, the system can easily apply re-

optimization strategies, such as adaptive plan restructuring and rerouting as discussed in

Section 11.2.1.

To support dynamic plan re-optimization, the system needs to look at the local plan

region, and reconstruct the new local plan based on the new cost estimates. The IMQO-

enabled system already provides the basic functionalities, e.g. plan presentation and

searching tools, to support such operations. And the extensions to support re-optimization,

such as restructuring and rerouting, will provide high-level functional modules to realize

dynamic and adaptive re-optimization. However, successful low-cost and effective adapta-

tion also relies on accurate pinpointing major congestions on the fly and quick plan switch.

These two problems should be addressed at the execution engine side, and remain part of

the research.

Dynamic operator scheduling is another important adaptive processing technique. Query

network nodes are evaluated sequentially. The evaluation order only needs to satisfy one

constraint: a node must be evaluated before any of its descendants. Thus when there



11.2. Future Work 170

are branches in the query network, there are more than one valid evaluation order. Our

current system takes a breadth-first traversal order. Our experiments and analysis show

that different orders on a large network may lead to big performance differences due to

different page swapping patterns. Since a large network can not fit into memory, the query

engine has to perform page swapping operations between the memory and disk if the part

of the network to be processed is not in the memory. In the best situation, every part

of the network is loaded into memory just once and is prefetched into memory before its

turn for processing. Then the overhead of page swapping is just the loading time of the

first part. In the worst situation, every part has to be loaded into memory when it is

requested. Thus the overhead of page swapping is the sum of the loading time of all parts

of the network. In practice, if we evaluate a set of nodes that access the same part of

network contiguously, then that part of the network does not need to go through many

page swapping. However, it is not always possible to follow such requirement restrictly.

For example, a node table T is accessed by writing when it is evaluated, and is accessed

by reading when its direct descendant nodes are evaluated. If T has sibling nodes that

share the same direct parent, and each sibling node have its own descendants. Then T

may not be put contiguously with its own descendants. For another example, a join node

has to be evaluated after both of its direct parent nodes are evaluated. Thus finding an

optimal evaluation order to minimize the page swapping cost is not a trivial task. Fur-

thermore, the node execution order should also provide faster responses to high-priority

queries. However, by modeling page swapping costs on network nodes which depends on

their table sizes and the local topology, and quantify the query priority as costs, we turn

such optimization into a search problem. The solution, possibly with heuristics, will give

us an optimal order to evaluate the large query network.

Finally, adaptively adjusting batch-size and the level of approximation is important for

providing fast response time and avoiding overloading. As discussed in Section 11.1.3,



11.2. Future Work 171

finding the optimal batch-size with appropriate level of approximation is very hard, but

may be solved by a simple feedback/adaptation mechanism. A parameterized function

of the system status (the level of congestion or idleness) is used to control the adjusting

amount. Furthermore, the function may be learned dynamically as the system keeps

on running. For example, data-rates may reach peaks at certain hours each day, then

the optimal adjustment function can be learned from the past performance, and may be

adjusted as the peak hours or peak volumes shift. For another example, unexpected data

bursts may display similar distribution characteristics, such as similar data-rate changes

or time-window width. These data bursts provide the training data to learn the optimal

adjustment function that can be applied when the first sign of future unexpected bursts

is detected.

11.2.3 New Infrastructures

Parallel/Distributed computing is the natural way to go for big performance improvement.

While parallel/distributed computing algorithms may find ways to parallelize/distribute

evaluation work at lower level, it is clearly more advantageous to use query network cost

models to obtain optimal workload partitions. The problem is similar and coupled to

that of finding the optimal evaluation order. However, the cost model should be different.

It should also consider communication traffic and bandwidth, and avoiding bottlenecks,

etc. We expect to develop a set of algorithms to compute the optimal workload partition

and assignments to a given parallel/distributed computing setting. If possible, we will

experiment such algorithms on some parallel/distributed platforms.

Another direction is exploring automatic index selection and related techniques. Since

indices on certain distributed tables can speed up certain types of queries (range queries,

etc.) with non-negligible maintenance overhead, automatically selecting proper indices for

query network tables is a challenge but is worth investigating. Automatic index selection



11.3. Summary of Contributions 172

has been studied for DBMS, but not studied for large-scale connected query networks.

Therefore, we will be able to start with experimenting with existing methods, and we

expect extensions to be developed to suit for our particular purpose.

11.3 Summary of Contributions

The thesis addresses the challenges of continuously matching a large number of concurrent

queries over high data-rate streams and it is specifically targeted at detecting rare high-

value “hits” such as alert conditions.

In order to provide practical solutions for matching highly-dynamic data streams with

multiple long-lived continuous queries, the stream processing system supports incremental

evaluation, query optimization for continuous queries, and incremental multiple query

optimization.

The thesis demonstrated constructively that incremental multiple query optimization,

incremental query evaluation, and other query optimization techniques provide very sig-

nificant performance improvements for large-scale continuous queries, and are practical for

real-world applications by permitting on-demand new-query addition. The methods can

function atop existing DBMS systems for maximal modularity and direct practical utility.

And the methods work well across diverse applications.

We implement a complete IMQO framework that supports large-scale general queries

including selection-join-projection queries, aggregate queries, set operator queries, and

their combinations. It provides a practical solution to large-scale queries and allows on-

demand query addition, a requirement in many real applications.

In the center of the IMQO framework are the comprehensive computation indexing

scheme and the related common computation search algorithms realized by the relational

model for compact storage, fast search, and easy update. This approach is much more

advanced and general than previous work done for DSMSs, in terms of supporting more



11.3. Summary of Contributions 173

types of queries, supporting more flexible plan structures, and identifying more general

types of common computations. The approach is also very different from previous work

done for MQO and VQO which usually employ query graphs and do not index plan topolo-

gies. And the approach is efficient in time since it searches only the relevant computations

and formulates the conceptual common computations in a bottom-up fashion.

There are several computation description issues relevant to common computation iden-

tification, including semantically-equivalent yet syntactically-different predicates and ex-

pressions, self-join presentations, subsumption identification, predicates with disjunctions,

and plan topology presentations. The intertwined nature of the problems add much more

complexity to the scheme design and algorithm development. We apply various techniques

and solve the problems in the integrated scheme design. These include the 4-layer hier-

archical indexing model, predicate and expression canonicalization, triple-string canonical

form, standard table alias presentation and search at multiple layers, subsumption identi-

fication at multiple layers, and multiple topology presentations.

The IMQO framework applies several sharing strategies to construct shared query net-

works that result in up to hundreds of time fold improvement comparing to unshared

ones. These include the match-plan and sharing-selection for selection-join-projection

queries, aggregate-sharing-selection and aggregate-rerouting for aggregate queries, and

set-operator-sharing for set operator queries. Sharing-selection usually results in more

compact query networks.

The thesis implements the incremental evaluation methods for selection, join, algebraic

aggregates, and set operators.

The thesis implements several effective query optimization techniques, including tran-

sitivity inference for inferring highly-selective predicates, conditional materialization for

selectively materializing intermediate results, join order optimization for reducing join

computation, and minimum column projection for projecting only necessary columns.



11.3. Summary of Contributions 174

The system is built atop a DSMS Oracle for direct practical utility for existing database

applications where the needs of stream processing become increasingly demanding.

Finally, the evaluations show that every individual technique leads to significant im-

provement in system performance up to hundreds fold speed-up.



Bibliography

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cher-

niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther

Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the

borealis stream processing engine. In CIDR, pages 277–289, 2005.

[2] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik.

Aurora: a new model and architecture for data stream management. VLDB J.,

12(2):120–139, 2003.

[3] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.

Join synopses for approximate query answering. In SIGMOD Conference, pages

275–286, 1999.

[4] Sameet Agarwal, Rakesh Agrawal, Prasad Deshpande, Ashish Gupta, Jeffrey F.

Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of

multidimensional aggregates. In VLDB, pages 506–521, 1996.

[5] Sameet Agarwal and et al. On the computation of multidimensional aggregates. In

VLDB, pages 506–521, 1996.

[6] Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Automated Selection of

Materialized Views and Indexes for SQL Databases. In Proceedings of 26th Interna-

tional Conference on Very Large Data Bases, Cairo, Egypt, 2000.

[7] Mehmet Altinel and Michael J. Franklin. Efficient Filtering of XML Documents

for Selective Dissemination of Information. In Proceedings of 26th International

Conference on Very Large Data Bases, pages 53–64, Cairo, Egypt, September, 2000.

[8] Arvind Arasu. Continuous Queries over Data Streams. PhD thesis, Stanford Uni-

versity, 2006.

175



BIBLIOGRAPHY 176

[9] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query

Language: Semantic Foundations and Query Execution. Technical Report 2003-68,

Stanford University, October, 2003.

[10] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Pro-

cessing. In Proceedings of the 2000 ACM SIGMOD International Conference on

Management of data, pages 261–272, Dallas, Texas, May, 2000.

[11] Ahmed M. Ayad and Jeffrey F. Naughton. Static Optimization of Conjunctive

Queries with Sliding Windows Over Infinite Streams. In Proceedings of the 2004

ACM SIGMOD International Conference on Management of data, pages 419–430,

Paris, France, June, 2004.

[12] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwani. Chain: Oper-

ator Scheduling for Memory Minimization in Data Stream Systems. In Proceedings

of the 2003 ACM SIGMOD International Conference on Management of data, pages

253–264, San Diego, California, June, 2003.

[13] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and issues in data stream systems. In PODS, pages 1–16, 2002.

[14] Brian Babcock and Chris Olston. Distributed top-k monitoring. In SIGMOD Con-

ference, pages 28–39, 2003.

[15] Shivnath Babu. Adaptive Query Processing in Data Stream Management Systems.

PhD thesis, Stanford University, 2005.

[16] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer

Widom. Adaptive ordering of pipelined stream filters. In Weikum et al. [123], pages

407–418.

[17] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer

Widom. Adaptive Ordering of Pipelined Stream Filters. In Proceedings of the 2004

ACM SIGMOD International Conference on Management of data, pages 407–418,

Paris, France, June, 2004.

[18] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting -constraints

to reduce memory overhead in continuous queries over data streams. ACM Trans.

Database Syst., 29(3):545–580, 2004.



BIBLIOGRAPHY 177

[19] Shivnath Babu and Jennifer Widom. Continuous Queries over Data Streams. ACM

SIGMOD Record, 30(3):109–120, September, 2001.

[20] José A. Blakeley, Neil Coburn, and Per-Åke Larson. Updating derived relations:

Detecting irrelevant and autonomously computable updates. ACM Trans. Database

Syst., 14(3):369–400, 1989.

[21] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

mun. ACM, 13(7):422–426, 1970.

[22] Michael H. Bohlen. Temporal Database System Implementations. ACM SIGMOD

Record, 24(4):53–60, December, 1995.

[23] Jaime Carbonell, Phile Hayes, Cenk Gazen, Chun Jin, Aaron Goldstein, Ganesh

Mani, and Johny Mathew. Finding Novel Information in Large, Constantly Incre-

menting Collections of Structured Data. In NIMD PI Meeting, San Diego, CA, 2003.

[24] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Mon-

itoring streams - a new class of data management applications. In VLDB, pages

215–226, 2002.

[25] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim.

Approximate query processing using wavelets. In VLDB, pages 111–122, 2000.

[26] Sharma Chakravarthy. Architectures and Monitoring Techniques for Active

Databases: An Evaluation. Technical Report TR-92-041, CISE Dept., University

of Florida, 1992.

[27] Upen S. Chakravarthy and Jack Minker. Multiple query processing in deductive

databases using query graphs. In VLDB, pages 384–391, 1986.

[28] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Vi-

jayshankar Raman, Fred Reiss, and Mehul A. Shah. TelegraphCQ: Continuous

Dataflow Processing for an Uncertain World. In CIDR, January, 2003.

[29] Surajit Chaudhuri and Vivek Narasayya. An Efficient, Cost-Driven Index Selection

Tool for Microsoft SQL Server. In Proceedings of 23rd International Conference on

Very Large Data Bases, pages 146–155, Athens, Greece, 1997.



BIBLIOGRAPHY 178

[30] Surajit Chaudhuri and Gerhard Weikum. Rethinking Database System Architecture:

Towards a Self-tuning RISC-style Database System. In Proceedings of 26th Interna-

tional Conference on Very Large Data Bases, pages 1–10, Cairo, Egypt, 2000.

[31] Fa-Chung Fred Chen and Margaret H. Dunham. Common subexpression processing

in multiple-query processing. IEEE Trans. Knowl. Data Eng., 10(3):493–499, 1998.

[32] Jianjun Chen and David J. Dewitt. Dynamic Re-grouping of Continuous Queries.

Technical Report 507, CS, University of Wisconsin-Madison, 2002.

[33] Jianjun Chen, David J. DeWitt, and Jeffrey F. Naughton. Design and evaluation of

alternative selection placement strategies in optimizing continuous queries. In ICDE,

pages 345–356, 2002.

[34] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A scalable

continuous query system for internet databases. In SIGMOD Conference, pages

379–390, 2000.

[35] Zhimin Chen and Vivek R. Narasayya. Efficient computation of multiple group by

queries. In SIGMOD Conference, pages 263–274, 2005.

[36] Robert Corbett, Rick Ohnemus, and Jake Donham. Perl-byacc. In

http://mirrors.valueclick.com/pub/perl/CPAN/src/misc/, 1998.

[37] Graham Cormode and et al. Holistic aggregates in a networked world: Distributed

tracking of approximate quantiles. In SIGMOD Conference, pages 25–36, 2005.

[38] Graham Cormode, Minos N. Garofalakis, S. Muthukrishnan, and Rajeev Rastogi.

Holistic aggregates in a networked world: Distributed tracking of approximate quan-

tiles. In SIGMOD Conference, pages 25–36, 2005.

[39] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.

Gigascope: A Stream Database for Network Applications. In Proceedings of the 2003

ACM SIGMOD International Conference on Management of data, pages 647–651,

San Diego, California, June, 2003.

[40] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and

Richard A. Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391–407,

1990.



BIBLIOGRAPHY 179

[41] David DeHaan, Per-Åke Larson, and Jingren Zhou. Stacked indexed views in Mi-

crosoft SQL Server. In SIGMOD Conference, pages 179–190, 2005.

[42] Amol Deshpande, Suman Nath, Phillip B. Gibbons, and Srinivasan Seshan. Cache-

and-Query for Wide Area Sensor Databases. In Proceedings of the 2003 ACM SIG-

MOD International Conference on Management of data, pages 503–514, San Diego,

California, June, 2003.

[43] Yanlei Diao and Michael J. Franklin. High-Performance XML Filtering: An Overview

of YFilter. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, 26(1):41–48, March, 2003.

[44] Richard T. Snodgrass et al. TSQL2 Language Specification. SIGMOD Record,

23(1):65–86, August, 1994.

[45] Françoise Fabret, Hans-Arno Jacobsen, François Llirbat, João Pereira, Kenneth A.

Ross, and Dennis Shasha. Filtering algorithms and implementation for very fast

publish/subscribe. In SIGMOD Conference, pages 115–126, 2001.

[46] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast Subsequence

Matching in Time-Series Databases. In Proceedings of the 1994 ACM SIGMOD In-

ternational Conference on Management of data, pages 419–429, Minneapolis, Min-

nesota, May, 1994.

[47] Eugene Fink, Aaron Goldstein, Philip Hayes, and Jaime Carbonell. Search for Ap-

proximate Matches in Large Databases. In Proc. of the 2004 IEEE Intl. Conf. on

Systems, Man, and Cybernetics.

[48] Sheldon J. Finkelstein. Common subexpression analysis in database applications. In

SIGMOD Conference, pages 235–245, 1982.

[49] Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunctive

queries with regular expressions. In PODS, pages 139–148, 1998.

[50] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem. Artificial Intelligence, 19(1):17–37, Septempber, 1982.

[51] Hector Garcia-Molina, Wilburt Labio, and Jun Yang. Expiring data in a warehouse.

In VLDB, pages 500–511, 1998.



BIBLIOGRAPHY 180

[52] Minos N. Garofalakis and Phillip B. Gibbons. Wavelet synopses with error guaran-

tees. In SIGMOD Conference, pages 476–487, 2002.

[53] Cenk Gazen, Jaime Carbonell, and Phil Hayes. Novelty Detection in Data Streams:

A Small Step Towards Anticipating Strategic Surprise. In NIMD PI Meeting, Wash-

ington, DC, 2005.

[54] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and Srinivasan Seshan. Irisnet:

An architecture for a world-wide sensor web. IEEE Pervasive Computing, 2(4), 2003.

[55] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in contin-

uous queries over data streams. In VLDB, pages 500–511, 2003.

[56] Jonathan Goldstein and Per-Åke Larson. Optimizing queries using materialized

views: A practical, scalable solution. In SIGMOD Conference, 2001.

[57] Iqbal A. Goralwalla, M. Tamer Ozsu, and Duane Szafron. An object-oriented frame-

work for temporal data models. In O. Etzion, S. Jajodia, and S. Sripada, editors,

Temporal Databases: Research and Practice, pages 1–35. Springer Verlag, 1998.

[58] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Computing

Surveys, 25(2):73–169, 1993.

[59] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,

Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational

aggregation operator generalizing group-by, cross-tab, and sub-totals. J. Data Mining

and Knowledge Discovery, 1(1):29–53, 1997.

[60] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data integration using

self-maintainable views. In EDBT, pages 140–144, 1996.

[61] Ashish Kumar Gupta and Dan Suciu. Stream Processing of XPath Queries with

Predicates. In Proceedings of the 2003 ACM SIGMOD International Conference on

Management of data, pages 419–430, San Diego, California, June, 2003.

[62] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman.

Index Selection for OLAP. In Proceedings of the 13th International Conference on

Data Engineering, pages 208–219, 1997.

[63] L. Haas, W. Chang, G. Lohman, J. McPherson, P. Wilms, G. Lapis, B. Lindsay,

H. Pirahesh, M. Carey, and E. Shekita. Startburst Mid-Flight: As the Dust Clears.

IEEE Transactions on Knowledge and Data Engineering, 2(1):143–160, March, 1990.



BIBLIOGRAPHY 181

[64] Peter J. Haas and Joseph M. Hellerstein. Ripple Joins for Online Aggregation. In

Proceedings of the 1999 ACM SIGMOD International Conference on Management

of data, pages 287–298, Philadelphia, Pennsylvania, June, 1999.

[65] Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid G. Aref,

Ann Christine Catlin, Ahmed K. Elmagarmid, M. Eltabakh, Mohamed G. Elfeky,

Thanaa M. Ghanem, R. Gwadera, Ihab F. Ilyas, Mirette S. Marzouk, and Xiaopeng

Xiong. Nile: A query processing engine for data streams. In ICDE, page 851, 2004.

[66] Michael Hammer and Arvola Chan. Index Selection in a Self-Adaptive Data Base

Management System. In Proceedings of the 1976 ACM SIGMOD International Con-

ference on Management of data, pages 1–8, Washington, D.C., 1976.

[67] Eric N. Hanson, Sreenath Bodagala, and Ullas Chadaga. Optimized Trigger Con-

dition Testing in Ariel Using Gator Networks. Technical Report TR-97-021, CISE

Dept., University of Florida, November, 1997.

[68] Eric N. Hanson, Chris Carnes, Lan Huang, Mohan Konyala, Lloyd Noronha, Sashi

Parthasarathy, J. B. Park, and Albert Vernon. Scalable Trigger Processing. In

Proceedings of the 15th International Conference on Data Engineering, pages 266–

275, Sydney, Austrialia, March, 1999.

[69] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data

cubes efficiently. In SIGMOD Conference, pages 205–216, 1996.

[70] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Deshpande,

Kris Hildrum, Sam Madden, Vijayshankar Raman, and Mehul A. Shah. Adaptive

Query Processing: Technology in Evolution. Bulletin of the IEEE Computer Society

Technical Committee on Data Engineering, 23(2):7–18, June, 2000.

[71] Yannis E. Ioannidis and Stavros Christodoulakis. On the Propagation of Errors in

the Size of Join Results. In Proceedings of the 1991 ACM SIGMOD International

Conference on Management of data, pages 268–277, Denver, Colorado, May, 1991.

[72] Yannis E. Ioannidis and Younkyung Cha Kang. Randomized Algorithms for Opti-

mizing Large Join Queries. In Proceedings of the 1990 ACM SIGMOD International

Conference on Management of data, pages 312–321, Atlantic City, NJ, May, 1990.

[73] Zachary G. Ives, Alon Y. Levy, Daniel S. Weld, Daniela Florescu, and Marc Fried-

man. Adaptive Query Processing for Internet Applications. Bulletin of the IEEE



BIBLIOGRAPHY 182

Computer Society Technical Committee on Data Engineering, 23(2):19–26, June,

2000.

[74] H. V. Jagadish, Inderpal Singh Mumick, and Abraham Silberschatz. View mainte-

nance issues for the chronicle data model. In PODS, pages 113–124, 1995.

[75] Matthias Jarke. Common subexpression isolation in multiple query optimization. In

Query Processing in Database Systems, pages 191–205. Springer, 1985.

[76] Chun Jin and Jaime Carbonell. Incremental Aggregation on Multiple Continuous

Queries. In Proc. of the 16th International Symposium on Methodologies for Intelli-

gent Systems, Bari, Italy, 2006.

[77] Chun Jin, Jaime Carbonell, and Philip Hayes. ARGUS: Rete + DBMS = Efficient

Continuous Profile Matching on Large-Volume Data Streams. In Proc. of the 15th

International Symposium on Methodologies for Intelligent Systems, pages 142–151,

Saratoga Springs, NY, 2005.

[78] Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,

Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Samuel R. Madden, Vi-

jayshankar Raman, Fred Reiss, and Mehul A. Shah. TelegraphCQ: An Architectural

Status Report. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, 26(1):11–18, March, 2003.

[79] Sailesh Krishnamurthy, Michael J. Franklin, Joseph M. Hellerstein, and Garrett Ja-

cobson. The case for precision sharing. In VLDB, pages 972–986, 2004.

[80] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. O’Reilly & Associates,

Inc, 1995.

[81] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. An-

swering queries using views. In PODS, pages 95–104, 1995.

[82] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Seman-

tics and evaluation techniques for window aggregates in data streams. In SIGMOD

Conf, pages 311–322, 2005.

[83] Ling Liu, Calton Pu, Roger Barga, and Tong Zhou. Differential Evaluation of Contin-

ual Queries. In IEEE Proceedings of the 16th International Conference on Distributed

Computing Systems, Hong Kong, China, May, 1996.



BIBLIOGRAPHY 183

[84] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Raman.

Continuously Adaptive Continuous Queries over Streams. In Proceedings of the

2002 ACM SIGMOD International Conference on Management of data, pages 49–60,

Madison, Wisconsin, June, 2002.

[85] Amit Manjhi, Suman Nath, and Phillip B. Gibbons. Tributaries and deltas: Efficient

and robust aggregation in sensor network streams. In SIGMOD Conference, pages

287–298, 2005.

[86] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston.

Finding (recently) frequent items in distributed data streams. In ICDE, pages 767–

778. IEEE Computer Society, 2005.

[87] Dennis R. McCarthy and Umeshwar Dayal. The Architecture of an Active Data

Base Management System. In Proceedings of the 1989 ACM SIGMOD International

Conference on Management of Data, pages 215–224, Portland, Oregon, 1989.

[88] Daniel P. Miranker. TREAT: A New and Efficient Match Algorithm for IA Produc-

tion Systems. Morgan Kaufmann, 1990.

[89] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.

Query Processing, Resource Management, and Approximation in a Data Stream

Management System. In Proceedings of the 2003 Conference on Innovative Data

Systems Research (CIDR), pages 245–256, January, 2003.

[90] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda. Monitoring

XML Data on the Web. In Proceedings of the 2001 ACM SIGMOD International

Conference on Management of data, pages 437–448, Santa Barbara, California, May,

2001.

[91] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries

over distributed data streams. In SIGMOD Conference, pages 563–574, 2003.

[92] Kiyoshi Ono and Guy Lohman. Measuring the Complexity of Join Enumeration in

Query Optimization. In Proceedings of 16th International Conference on Very Large

Data Bases, pages 314–325, Brisbane, Australia, 1990.

[93] Feng Peng and Sudarshan S. Chawathe. XPath Queries on Streaming Data . In

Proceedings of the 2003 ACM SIGMOD International Conference on Management

of data, pages 431–442, San Diego, California, June, 2003.



BIBLIOGRAPHY 184

[94] Hamid Pirahesh, T. Y. Cliff Leung, and Waqar Hasan. A Rule Engine for Query

Transformation in Starburst and IBM DB2 C/S DBMS. In Proceedings of the 13th

International Conference on Data Engineering, pages 391–400, Birmingham, U.K.,

April, 1997.

[95] Viswanath Poosala, Vannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita.

Improved Histograms for Selectivity Estimation of Range Predicates. In Proceedings

of the 1996 ACM SIGMOD International Conference on Management of data, pages

294–305, Montreal, Canada, June, 1996.

[96] ARDA NIMD Program. www.ic-arda.org/Novel Intelligence/.

[97] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, and Jennifer Widom. Making

Views Self-Maintainable for Data Warehousing. In Proceedings of 4th International

Conference on Parallel and Distributed Information Systems, pages 158–169, Decem-

ber, 1996.

[98] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill, 3rd edition, 2003.

[99] Daniel J. Rosenkrantz and Harry B. Hunt III. Processing conjunctive predicates and

queries. In VLDB, pages 64–72, 1980.

[100] Kenneth A. Ross and Divesh Srivastava. Fast computation of sparse datacubes. In

VLDB, pages 116–125, 1997.

[101] Nick Roussopoulos. View indexing in relational databases. ACM Trans. Database

Syst., 7(2):258–290, 1982.

[102] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible

algorithms for multi query optimization. In SIGMOD Conference, pages 249–260,

2000.

[103] Gerald Salton, editor. Automatic text processing. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1988.

[104] Wolfgang Scheufele and Guido Moerkotte. On the complexity of generating optimal

plans with cross products. In PODS, pages 238–248, 1997.

[105] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An Archi-

tecture for Transforming a Passive DBMS into an Active DBMS. In Proceedings of



BIBLIOGRAPHY 185

17th International Conference on Very Large Data Bases, pages 469–478, Barcelona,

Spain, September, 1991.

[106] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.

Price. Access Path Selection in a Relational Database Management System. In

Proceedings of the 1979 ACM SIGMOD International Conference on Management

of data, pages 23–34, Boston, MA, May, 1979.

[107] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–

52, 1988.

[108] Timos K. Sellis and Subrata Ghosh. On the multiple-query optimization problem.

IEEE Trans. Knowl. Data Eng., 2(2):262–266, 1990.

[109] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. SEQ: A Model for Se-

quence Databases. In Proceedings of the 11th International Conference on Data

Engineering, pages 232–239, Taipei, Taiwan, March, 1995.

[110] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence query pro-

cessing. In Proceedings of the 1994 ACM SIGMOD International Conference on

Management of data, pages 430–441, Minneapolis, Minnesota, May, 1994.

[111] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. The Design and Imple-

mentation of a Sequence Database System. In Proceedings of 22nd International

Conference on Very Large Data Bases, pages 99–110, Bombay, India, September,

1996.

[112] Richard Snodgrass and Ilsoo Ahn. A Taxonomy of Time in Databases. In Proceedings

of the 1985 ACM SIGMOD International Conference on Management of data, pages

236–246, Austin, Texas, May, 1985.

[113] Mark Sullivan and Andrew Heybey. Tribeca: A System for Managing Large

Databases of Network Traffic. In Proceedings of the USENIX Annual Technical Con-

ference, pages 13–24, New Orleans, LA, June, 1998.

[114] Wei Tang, Ling Liu, and Calton Pu. Trigger Grouping: A Scalable Approach to

Large Scale Information Monitoring. In Proceedings of the 2nd IEEE International

Symposium on Network Computing and Applications (NCA-03), Cambridge, MA,

April, 2003.



BIBLIOGRAPHY 186

[115] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous Queries

over Append-Only Databases. In Proceedings of the 1992 ACM SIGMOD Interna-

tional Conference on Management of data, pages 321–330, San Diego, California,

June, 1992.

[116] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. Dynamic multidimen-

sional histograms. In SIGMOD Conference, pages 428–439, 2002.

[117] Tolga Urhan and Michael J. Franklin. XJoin: A Reactively-Scheduled Pipelined

Join Operator. Bulletin of the IEEE Computer Society Technical Committee on

Data Engineering, 23(2):27–33, June, 2000.

[118] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost-based Query Scram-

bling for Initial Delays. In Proceedings of the 1998 ACM SIGMOD International

Conference on Management of data, pages 130–141, Seattle, Washington, June, 1998.

[119] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy Lohman, and Alan Skelley.

DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes. In

Proceedings of the 16th International Conference on Data Engineering, pages 101–

110, San Diego, California, 2000.

[120] Philippe Verdret. Perl Lexer. In http://search.cpan.org/author/PVERD/ParseLex-

2.15/, 1999.

[121] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output rate of

multi-way join queries over streaming information sources. In VLDB, pages 285–296,

2003.

[122] Stratis D. Viglas and Jeffrey F. Naughton. Rate-Based Query Optimization for

Streaming Information Sources. In Proceedings of the 2002 ACM SIGMOD Interna-

tional Conference on Management of data, pages 37–48, Madison, Wisconsin, June,

2002.

[123] Gerhard Weikum, Arnd Christian König, and Stefan Deßloch, editors. Proceedings

of the ACM SIGMOD International Conference on Management of Data, Paris,

France, June 13-18, 2004. ACM, 2004.

[124] Gerhard Weikum, Axel Moenkeberg, Chrstof Hasse, and Peter Zabback. Self-tuning

Database Technology and Information Services: from Wishful Thinking to Viable



BIBLIOGRAPHY 187

Engineering. In Proceedings of 28th International Conference on Very Large Data

Bases, Hong Kong, China, 2002.

[125] Jennifer Widom and Stefano Ceri, editors. Active Database Systems. Morgan Kauf-

mann, 1996.

[126] Jinxi Xu and W. Bruce Croft. Corpus-based stemming using cooccurrence of word

cariants. ACM Trans. Inf. Syst., 16(1):61–81, 1998.

[127] Jun Yang and Jennifer Widom. Temporal View Self-Maintenance. In Proceedings of

the 7th International Conference on Extending Database Technology, pages 395–412,

Konstanz, Germany, March, 2000.

[128] Jun Yang and Jennifer Widom. Incremental Computation and Maintenance of Tem-

poral Aggregates. International Journal on Very Large Data Bases (VLDB Journal),

12(3):262–283, October, 2003.

[129] Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and Mon-

ica Urata. Answering complex sql queries using automatic summary tables. In SIG-

MOD Conference, pages 105–116, 2000.

[130] Minghua Zhang, Ben Kao, David Wai-Lok Cheung, and Kevin Yip. Mining periodic

patterns with gap requirement from sequences. In SIGMOD Conference, 2005.

[131] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic plan migration

for continuous queries over data streams. In Weikum et al. [123], pages 431–442.



Appendix A

Stream Schemas

We use the synthesized FedWire money transfer data (Fed) and the real Massachusetts

hospital patient admission and discharge record database (Med) for system testing and

evaluation. Each database contains one single data stream. Fed contains a stream of

money transfer transaction records, one record per transaction. And Med contains a

stream of in-hospital patient discharge records.

A relevant subset of the attributes of the Fed stream is shown below

TRANID NUMBER(10), – transaction id, the primary key

TYPE CODE NUMBER(4), – transfer type

TRAN DATE DATE, – transaction date

AMOUNT NUMBER, – transfer amount

SBANK ABA NUMBER(9), – sending bank ABA number

SBANK NAME VARCHAR2(100), – sending bank name

RBANK ABA NUMBER(9), – receiving bank ABA number

RBANK NAME VARCHAR2(100), – receiving bank name

ORIG ACCOUNT VARCHAR2(50), – originator account

BENEF ACCOUNT VARCHAR2(50), – beneficiary account

A relevant subset of the attributes of the Med stream is shown blow

188



189

RECID NUMBER(10), – record ID, the primary key

PROVIDERID CHAR(11), – provider control ID

DISCHARGEID CHAR(11), – discharge ID

HOSPID CHAR(4), – hospital ID

SEX CHAR(1), – patient gender

AGE NUMBER(3), – patient age

PAYOR CHAR(1), – primary payor type

BDATE DATE, – date of birth

ADATE DATE, – admit date

DDATE DATE, – discharge date

ZIP CHAR(5), – patient ZIP code

LOS NUMBER(5), – gross length of stay in days

DISP CHAR(2), – disposition status at discharge

RACE CHAR(1), – patient race

DXS 01 CHAR(5), – principle diagnosis

DXS 02 CHAR(5), – secondary diagnosis #1

DXS 03 CHAR(5), – secondary diagnosis #2

DXS 04 CHAR(5), – secondary diagnosis #3

DXS 05 CHAR(5), – secondary diagnosis #4

OPS 01 CHAR(4), – principle procedure

OPS 02 CHAR(4), – secondary procedure #1

OPS 03 CHAR(4), – secondary procedure #2

OPS 04 CHAR(4), – secondary procedure #3

OPS 05 CHAR(4), – secondary procedure #4

PAYORG CHAR(1), – patient origin indicator

TOWNID CHAR(3), – town code ID

BYEAR DATE, – year of birth

BYM DATE, – year/month of birth



Appendix B

Query Examples

Following are queries on FED. Q1 has also been shown in Section 1.5.

Example B.1 (Q1) The query links big suspicious money transactions of type 1000, and

generates an alarm whenever the receiver of a large transaction (over $1,000,000) transfers

at least half of the money further within 20 days using an intermediate bank. The query

can be formulated as a 3-way self-join:

190



191

SELECT r1.sbank aba sbank, r1.orig account saccount,

r1.rbank aba rbank, r1.benef account raccount,

r1.amount ramount, r1.tran date rdate,

r2.rbank aba ibank, r2.benef account iaccount,

r2.amount iamount, r2.tran date idate,

r3.rbank aba frbank, r3.benef account fraccount,

r3.amount framount, r3.tran date frdate

FROM FedWireTrans r1,

FedWireTrans r2,

FedWireTrans r3

WHERE r2.type code = 1000 —p1

AND r3.type code = 1000 —p2

AND r1.type code = 1000 —p3

AND r1.amount > 1000000 —p4

AND r1.rbank aba = r2.sbank aba —p5

AND r1.benef account = r2.orig account —p6

AND r2.amount > 0.5 ∗ r1.amount —p7

AND r1.tran date <= r2.tran date —p8

AND r2.tran date <= r1.tran date + 20 —p9

AND r2.rbank aba = r3.sbank aba —p10

AND r2.benef account = r3.orig account —p11

AND r2.amount = r3.amount —p12

AND r2.tran date <= r3.tran date —p13

AND r3.tran date <= r2.tran date + 20; —p14

Example B.2 (Q2) The analyst is interested if there exists a bank, which received an

incoming transaction over 1,000,000 dollars and has performed an outgoing transaction

over 500,000 dollars on the same day. The query can be formulated as:



192

SELECT r1.tranid rtranid, r2.tranid stranid,

r1.rbank name rbank name,

r1.tran date rtran date,

r1.amount ramount, r2.amount smount

FROM FedWireTrans r1, FedWireTrans r2

WHERE r1.rbank aba = r2.sbank aba AND

to char(r1.tran date, ′Y Y Y Y MMDD′)

= to char(r2.tran date, ′Y Y Y Y MMDD′) AND

r1.amount > 1000000 AND

r2.amount > 500000;



193

Example B.3 (Q3) For every big transaction, the analyst wants to check if the money

stayed in the bank or left it within ten days. The query can be formulated as:

SELECT r1.tranid rtranid, r2.tranid stranid,

r1.rbank name rbank name,

r1.benef account benef account,

r1.tran date rtran date,

r2.tran date stran date,

r1.amount ramount, r2.amount smount

FROM FedWireTrans r1, FedWireTrans r2

WHERE r1.rbank aba = r2.sbank aba AND

r1.benef account = r2.orig account AND

r1.tran date <= r2.tran date AND

r1.tran date + 10 >= r2.tran date AND

r1.amount > 1000000 AND

r2.amount = r1.amount;



194

Example B.4 (Q4) For every big transaction, the analyst again wants to check if the

money stayed in the bank or left it within ten days. However he suspects that the receiver

of the transaction would not send the whole sum further at once, but would rather split it

into several smaller transactions. The following query generates an alarm whenever the

receiver of a large transaction (over $1,000,000) transfers at least half of the money further

within ten days of this transaction. The query can be formulated as:

SELECT r.tranid tranid, r.rbank aba rbank aba,

r.benef account benef account,

AV G(r.amount) ramount,

SUM(s.amount) samount

FROM FedWireTrans r, FedWireTrans s

WHERE r.rbank aba = s.sbank aba AND

r.benef account = s.orig account AND

r.tran date <= s.tran date AND

s.tran date <= r.tran date + 10 AND

r.amount > 1000000

GROUP BY r.tranid, r.rbank aba, r.benef account

HAVING SUM(s.amount) > AV G(r.amount) ∗ 0.5;



195

Example B.5 (Q5) Check whether there is a bank, having incoming transactions for more

than $100,000,000 and outgoing transactions for more than $50,000,000 on one particular

day. The formulated query is composed of three SQL statements. First two are view

definitions, and the last one is the query on the views.

CREATE VIEW rbank money AS

SELECT r1.rbank aba rbank aba,

r1.tran date tran date,

SUM(r1.amount) rsum

FROM FedWireTrans r1

GROUP BY r1.rbank aba, r1.tran date

HAVING SUM(r1.amount) > 100000000;

CREATE VIEW sbank money AS

SELECT r2.sbank aba sbank aba,

r2.tran date tran date,

SUM(r2.amount) ssum

FROM FedWireTrans r2

GROUP BY r2.sbank aba, r2.tran date

HAVING SUM(r2.amount) > 50000000;

SELECT r.rbank aba rbank aba,

s.sbank aba sbank aba,

r.tran date tran date,

r.rsum rsum,

s.ssum ssum

FROM rbank money r, sbank money s

WHERE r.rbank aba = s.sbank aba AND

r.tran date = s.tran date;



196

Example B.6 (Q6) Get the transactions of Citibank and Fleet on a particular period of

time. The query can be formulated as:

SELECT r1.tranid tranid,

r1.sbank name sbank name,

r1.tran date tran date,

r1.amount amount

FROM FedWireTrans r1

WHERE (r1.sbank name =′ Citibank (New Y ork State)′ OR

r1.sbank name =′ Fleet Bank′) AND

r1.tran date >= to date(′20021120′, ′Y Y Y Y MMDD′) AND

r1.tran date <= to date(′20021130′, ′Y Y Y Y MMDD′);

Example B.7 (Q7) The analyst is interested whether Citibank has conducted a trans-

action on Nov.27, 2002 with the amount exeeding 1,000,000 dollars. The query can be

formulated as:

SELECT r1.tranid tranid,

r1.sbank name sbank name,

r1.tran date tran date,

r1.amount amount

FROM FedWireTrans r1

WHERE r1.sbank name =′ Citibank (New Y ork State)′ AND

to char(r1.tran date, ′Y Y Y Y MMDD′) =′ 20021127′ AND

r1.amount > 1000000;



197

Example B.8 (QA1) Monitoring account categories whose daily received money is above

10000000.

SELECT t1.rbank aba rbank aba, SUBSTR(t1.benef account, 0, 1) benef account,

TO CHAR(t1.tran date, ′Y Y Y Y MMDD′) rtran date,

SUM(t1.amount) ramount, COUNT (∗) rcount

FROM FedWireTrans t1

GROUP BY t1.rbank aba, SUBSTR(t1.benef account, 0, 1),

TO CHAR(t1.tran date, ′Y Y Y Y MMDD′)

HAVING (SUM(t1.amount) > 10000000)

Example B.9 (QA2) Monitoring banks whose daily received money is above 10000000.

SELECT t1.rbank aba rbank aba,

TO CHAR(t1.tran date, ′Y Y Y Y MMDD′) rtran date,

SUM(t1.amount) ramount, COUNT (∗) rcount

FROM FedWireTrans t1

GROUP BY t1.rbank aba, TO CHAR(t1.tran date, ′Y Y Y Y MMDD′)

HAVING (SUM(t1.amount) > 10000000)



198

Example B.10 (QA3) Monitoring account categories whose daily sent-out money is above

10000000.

SELECT t1.sbank aba sbank aba, SUBSTR(t1.orig account, 0, 1) orig account,

TO CHAR(t1.tran date, ′Y Y Y Y MMDD′) stran date,

SUM(t1.amount) samount, COUNT (∗) scount

FROM FedWireTrans t1

GROUP BY t1.sbank aba, SUBSTR(t1.orig account, 0, 1),

TO CHAR(t1.tran date, ′Y Y Y Y MMDD′)

HAVING (SUM(t1.amount) > 10000000)

Example B.11 (QA4) Monitoring banks whose daily sent-out money is above 10000000.

SELECT t1.sbank aba sbank aba,

TO CHAR(t1.tran date, ′Y Y Y Y MMDD′) stran date,

SUM(t1.amount) samount, COUNT (∗) scount

FROM FedWireTrans t1

GROUP BY t1.sbank aba, TO CHAR(t1.tran date, ′Y Y Y Y MMDD′)

HAVING (SUM(t1.amount) > 10000000)



199

Following queries are formulated on an imaginary patient admission stream.

Example B.12 (A) Monitoring the number of visits and the average charging fees on

each disease category in a hospital everyday.

SELECT dis cat, hospital, vdate,

COUNT (∗), AV ERAGE(fee)

FROM Med

GROUP BY CAT (disease) AS dis cat

hospital,

DAY (visit date) AS vdate

Example B.13 (B) Monitoring the number of visits and the average charging fees in a

hospital everyday.

SELECT hospital, vdate,

AV ERAGE(fee)

FROM Med

GROUP BY hospital,

DAY (visit date) AS vdate



200

On the MED database, we have 8 query categories. Three monitor potential outbreaks

of contagious diseases (QM1-QM3), and the others monitor different types of patient his-

tories (QM4-QM8). Since patient IDs are anonymized, we use a set of demographical

attributes (approximate ID) to approximate the patient IDs, and use a set of predicates

(ID predicates) to approximately identify patients from different records. The approxi-

mate ID and ID predicates are shown in full in query QM4, and are abbreviated to ID

and t1.ID = t2.ID repectively in the remaining queries.

Example B.14 (QM1) Generate an alarm when there is a distinct anthrax occurrence.

A distinct anthrax occurrence is defined as an anthrax patient admission beyond the time

window of 40 days from any previous anthrax patient admissions. The alarm condition

can be formulated as a set difference query that filters out the occurrences that fall into the

time window.

SELECT t1.dxs 01, t2.zip, t2.adate, t2.recid

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t2.adate > t1.adate

AND t1.dxs 01 = t2.dxs 01

AND t1.dxs 01 >=′ 022′

AND t1.dxs 01 <′ 023′

GROUP BY t1.dxs 01, t2.zip, t2.adate, t2.recid

MINUS

SELECT t1.dxs 01, t2.zip, t2.adate, t2.recid

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t2.adate > t1.adate

AND t1.dxs 01 = t2.dxs 01

AND t1.dxs 01 >=′ 022′

AND t1.dxs 01 <′ 023′

AND t2.adate < t1.adate + 40

GROUP BY t1.dxs 01, t2.zip, t2.adate, t2.recid



201

Example B.15 (QM2) Generate an alarm when there is an anthrax occurrence that is

within 40-day time window of the closest previous occurrence but is beyond the 50-mile

radius of that one.

SELECT t1.dxs 01, t2.zip, t2.adate, t2.recid

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t2.adate > t1.adate

AND t1.dxs 01 = t2.dxs 01

AND t1.dxs 01 >=′ 022′

AND t1.dxs 01 <′ 023′

AND t2.adate < t1.adate + 40

GROUP BY t1.dxs 01, t2.zip, t2.adate, t2.recid

HAVING min(zipdistance(t2.zip, t1.zip)) >= 50

Example B.16 (QM3) Generate an alarm when there is an anthrax occurrence that is

within 40-day time window of the closest previous occurrence and is within the 50-mile

radius of that one.

SELECT t1.dxs 01, t2.zip, t2.adate, t2.recid

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t2.adate > t1.adate

AND t1.dxs 01 = t2.dxs 01

AND t1.dxs 01 >=′ 022′

AND t1.dxs 01 <′ 023′

AND t2.adate < t1.adate + 40

GROUP BY t1.dxs 01, t2.zip, t2.adate, t2.recid

HAVING min(zipdistance(t2.zip, t1.zip)) < 50



202

Example B.17 (QM4) Find the children less than 10-years-old who developed lung-related

(disease code ’4800’-’5200’) diseases twice within 40 days.

SELECT t1.bdate, t1.bym, t1.byear, t1.sex, t1.race, t1.zip, t1.townid, t1.payor, t1.age,

t1.recid, t1.hospid, t1.adate, t1.ddate, t1.los, t1.disp, t1.dxs 01

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE (t1.bdate = t2.bdate OR

((t1.bdate IS NULL OR t2.bdate IS NULL) AND t1.bym = t2.bym) OR

((t1.bdate IS NULL OR t2.bdate IS NULL)

AND (t1.bym IS NULL OR t2.bym IS NULL)

AND (t1.byear = t2.byear)))

AND t1.sex = t2.sex

AND (t1.race = t2.race OR t1.race IS NULL OR t2.race IS NULL)

AND t1.zip = t2.zip

AND t1.townid = t2.townid

AND (t1.patorg = t2.patorg OR

(t1.patorg =′ 9′ AND t2.patorg =′ 1′)

OR t1.patorg =′ 7′ OR t2.patorg =′ 7′)

AND t1.age < 10 AND t2.age < 11

AND t1.adate <= t2.adate AND t2.adate < t1.adate + 40

AND t1.recid! = t2.recid

AND t1.dxs 01 = t2.dxs 01

AND t1.dxs 01 >=′ 4800′ AND t1.dxs 01 <′ 5200′



203

Example B.18 (QM5) Find the patients who took bypass operations (operation code cat-

egory ’361’) twice within one year.

SELECT t1.ID, t1.ops 01

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t1.ID = t2.ID

AND t1.adate <= t2.adate AND t2.adate < t1.adate + 365

AND t1.recid! = t2.recid

AND ((t1.ops 01 >=′ 361′ AND t1.ops 01 <′ 362′) OR

(t1.ops 02 >=′ 361′ AND t1.ops 02 <′ 362′))

AND ((t2.ops 01 >=′ 361′ AND t2.ops 01 <′ 362′) OR

(t2.ops 02 >=′ 361′ANDt2.ops 02 <′ 362′))

Example B.19 (QM6) Find the patients who took kidney transplantation (operation code

category ’556’), then developed complications.

SELECT t1.ID, t1.ops 01, t2.dxs01

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t1.ID = t2.ID

AND t1.ops 01 >=′ 556′ AND t1.ops 01 <′ 557′

AND (t2.dxs 01 =′ 99681′ OR t2.dxs 02 =′ 99681′OR

t2.dxs 03 =′ 99681′ OR t2.dxs 04 =′ 99681′)

AND t1.adate <= t2.adate AND t2.adate < t1.adate + 40

AND t1.recid! = t2.recid

Example B.20 (QM7) Find the patients who had liver diseases (categories: ’070’ and

’570’-’573’) and developed liver cancer (’155’) later.

SELECT t1.ID, t1.dxs 01, t2.dxs01

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t1.ID = t2.ID

AND t1.adate < t2.adate

AND (t1.dxs 01 >=′ 070′ AND t1.dxs 01 <′ 071′ OR

t1.dxs 01 >=′ 570′ AND t1.dxs 01 <′ 574′)

AND t1.disp! =′ 20′

AND (t2.dxs 01 >=′ 155′ AND t2.dxs 01 <′ 156′)



204

Example B.21 (QM8) Find the patients who transferred (dispose status is transfer, ’02’)

from one hospital to another.

SELECT t1.ID, t1.hospid, t2.hospid

FROM MHDCFY 01A t1, MHDCFY 01A t2

WHERE t1.ID = t2.ID

AND t1.adate <= t2.adate

AND t1.ddate = t2.adate

AND t1.recid! = t2.recid

AND (t1.disp =′ 02′)

AND t1.hospid! = t2.hospid

AND t1.dxs 01 = t2.dxs 01



Appendix C

Experiment Results in Numbers

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Rete Data1 3 1 1 16 14 1 1
SQL Data1 45 14 20 20 14 6 6
Rete Data2 3 1 1 16 15 1 1
SQL Data2 31 12 19 19 17 7 6

Table C.1: Execution times of Q1-Q7 in seconds for Figure 10.1. This shows that incremental evaluation
(Rete) is much faster than the naive approach (SQL) for the majority of queries (Q1, Q2, Q3, Q6, and
Q7) on both data conditions.

Q1 Data1 Q1 Data2 Q3 Data1 Q3 Data2
Rete TI 3 3 1 1
Rete Non-TI 44 27 18 17
SQL Non-TI 45 31 20 19
SQL TI 20 12

Table C.2: Execution times in seconds to show the effect of transitivity inference, shown in Figure 10.3.
This shows that transitivity inference leads to significant improvements to both Rete and SQL. “Rete TI”:
Rete generated with transitivity inference. It achieves 20-fold improvement comparing to Rete Non-TI
and SQL Non-TI. “Rete Non-TI”: Rete without transitivity inference. “SQL Non-TI”: original SQL query.
“SQL TI”: original SQL query with hidden conditions manually added.

205



206

Data1 Data2
Conditional 38 17
Non-Conditional 44 27
SQL 45 31

Table C.3: Execution times in seconds to show the effect of conditional materialization, shown in Figure
10.5. Comparing the execution times of conditional materialization, non-conditional materialization, and
running the original SQL, for Q1 on Data1 and Data2.

# of queries SIA NS-IA
50 15.93 131.219
100 16.2035 237.586
150 15.9445 641.783
200 32.2495 831.7605
250 32.581 1076.437
300 39.6875 1440.344
350 42.025 1477.453

Table C.4: Execution times in seconds to show aggregate sharing on FED, shown in Figure 10.9. Com-
paring total execution times of shared query network (SIA) and non-shared query network (NS-IA). SIA
is up to hundreds-fold faster.

# of queries SIA NS-IA
50 20.5715 20.7185
100 22.743 23.31872
150 79.7855 79.01062
200 81.6715 87.923
250 86.2245 129.141
300 94.716 132.42
350 111.4765 132.42
400 118.345 139.795
450 124.253 158.049

Table C.5: Execution times in seconds to show aggregate sharing on MED, shown in Figure 10.10. Com-
paring total execution times of shared query network (SIA) and non-shared query network (NS-IA). SIA
is faster.



207

# of queries NonJoinS Mplan NCanon NonCanon MatchPlan AllSharing
100 0.5155 0.492 0.4765 0.453 0.5545
200 2.6875 1.9845 2.602 0.922 0.9765
300 38.008 9.867 9.2185 0.922 0.961
400 60.774 42.672 40.5935 3.266 1.8825
500 95.3205 58.883 53.1175 12.242 2.633
600 131.687 69.8985 61.0315 26.0625 23.8125
700 147.063 85.922 66.594 33.969 29.0935
768 190.4925 93.461 73.711 39.672 32.7185

Table C.6: Execution times on FED query networks, shown in Figures 10.13(a), 10.14(a), and 10.15(a).
The table compares five generation configurations, non-join-shared query networks (NonJoinS), match-
plan without canonicalization (MPLan NCanon), sharing-selection without canonicalization (NonCanon),
match-plan with canonicalization (MatchPlan), and sharing-selection with canonicalization (AllSharing).
AllSharing is the best.

# of queries NonJoinS NonCanon MatchPlan AllSharing
100 1650 188 116 116
200 3434 574 332 332
300 5914 2435 688 637
400 8524 3955 1122 1003
500 11759 4356 1764 1408
600 15200 4764 2412 1813
700 19152 4957 2797 2007
768 21836 5081 3057 2138

Table C.7: Weighted query network sizes on FED query networks, shown in Figure 10.16(a). The table
compares four generation configurations, non-join-shared query networks (NonJoinS), sharing-selection
without canonicalization (NonCanon), match-plan with canonicalization (MatchPlan), and sharing-
selection with canonicalization (AllSharing). AllSharing is the best.

# of queries NonJoinS Mplan NCanon NonCanon MatchPlan AllSharing
100 18.4765 12.195 12.2035 12.047 12.3355
200 42.4295 30.75 30.9765 30.1405 30.5235
300 67.75 52.656 49.094 48.32 35.5855
400 89.5235 61.4225 58.945 55.828 53.727
500 107.2655 67.688 66.281 64.4925 60.6
565 114.8045 69.765 66.7975 67.8515 61.641

Table C.8: Execution times on MED query networks, shown in Figures 10.13(e), 10.14(e), and 10.15(e).
The table compares five generation configurations, non-join-shared query networks (NonJoinS), match-
plan without canonicalization (MPLan NCanon), sharing-selection without canonicalization (NonCanon),
match-plan with canonicalization (MatchPlan), and sharing-selection with canonicalization (AllSharing).
AllSharing is the best.



208

# of queries NonJoinS NonCanon MatchPlan AllSharing
100 2414 1485 1401 1401
200 4760 2807 2591 2591
300 7245 4011 3787 3750
400 9799 5193 4936 4875
500 12403 6295 6064 5961
565 14083 7025 6786 6673

Table C.9: Weighted query network sizes on MED query networks, shown in Figure 10.16(e). The table
compares four generation configurations, non-join-shared query networks (NonJoinS), sharing-selection
without canonicalization (NonCanon), match-plan with canonicalization (MatchPlan), and sharing-
selection with canonicalization (AllSharing). AllSharing is the best.


