
Learning to Extract Entities from

Labeled and Unlabeled Text

Rosie Jones

May 2005

CMU-LTI-05-191

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Tom Mitchell, Chair

Alex Hauptmann

Roni Rosenfeld

Ellen Riloff, University of Utah

Copyright c© 2005 Rosie Jones

This research was supported in part by the National Science Foundation under LIS Grant REC-

9720374 and by DARPA under research contract F30602-97-1-0215.

The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: Information Extraction, Machine Learning, Semi-supervised Learn-

ing, Graph Properties of Labeled and Unlabeled Data

Abstract

Imagine trying to build a system to identify people, locations and or-

ganizations, or other arbitrary types, in a human language you are not

familiar with. If we knew what kinds of words represent the classes peo-

ple, locations and organizations, by examining enough text data they occur

in, we could learn to recognize the contexts they occur in. And if we knew

what kind of contexts they occur in, we could recognize instances of these

classes themselves. In this work we address this chicken-and-egg problem

by assigning it to a computer, and giving it a small number of examples of

the class as initial examples to learn from. We explore several algorithms

in which alternating looking at noun-phrases and their local contexts al-

lows us to learn to recognize members of a semantic class in context. We

examine active learning algorithms for eliciting useful labels from an ex-

pert to improve learning performance, customized to this domain. Finally

we explore the graph structure of the underlying labeled and unlabeled

data, showing how properties of this graph structure explain performance

and inform design choices we have to make when applying these methods

to new tasks.

ii

Acknowledgements

I would like to thank my mentors: my advisor at Carnegie Mellon, Tom Mitchell,

and my manager at Yahoo!, Dan Fain, for all they have taught me about research. I

also owe a great deal to my co-authors and collaborators Rayid Ghani, Ellen Riloff

and Dunja Mladenic. Thanks to my committee members Alex Hauptmann and Roni

Rosenfeld for making suggestions to improve the thesis, and thanks for the valuable

input on the thesis I received from Fernando Diaz, Rayid Ghani, Seán Slattery, Dave

Hershberger, Chris Leger and Omid Madani. I also benefitted from two coadvising

groups, in which students discuss the state of their theses with one another. Seán

Slattery, Joseph O’Sullivan and Belinda Thom formed the core of one, while LTI stu-

dents Laura Mayfield Tomokiyo, Greg Aist, Jade Goldstein, Yan Qu, Klaus Zechner

and Kathy Baker formed another. Thanks to Tom Pierce, Jacob Sisk and Benjamin

Rey for providing me with seed-words at short notice. I also appreciate general

advice, encouragement and support I’ve had along the way, from Phyllis Reuther,

Richard Plunkett, Orna Raz, Nathaniel Daw, Francisco Pereira, Paul Bennett and

Paul Ogilvie. My various Pittsburgh hosts: Rachel Collins, Jimi Shanahan, Ann

Funge, Kathrin Probst and Guy Lebanon also helped me get from there to here. And

I’d like to thank Paul O’Gorman and Cathy Jones for everything.

iii

iv

Contents

1 Introduction 1

1.1 Problem Description . 1

1.2 Thesis Statement . 1

1.3 Summary of Results . 2

1.4 Contributions . 3

1.5 Dissertation Roadmap . 4

2 Background 5

2.1 Linguistic Terminology . 5

2.1.1 Noun . 6

2.1.2 Noun-phrase . 6

2.1.3 Head of noun-phrase . 6

2.1.4 Verb . 7

2.1.5 Verb Phrase . 7

2.1.6 Prepositional Phrase . 7

2.1.7 Lexico-syntactic Context . 8

2.2 Sundance and Autoslog . 9

2.3 Supervision in Machine Learning . 9

2.3.1 Supervised learning . 10

2.3.2 Unsupervised Learning using Clustering 10

2.3.3 Semi-supervised Learning . 11

v

2.4 The Information Extraction Problem 12

2.4.1 Semantic Class Finding . 13

2.4.2 Dictionary Construction . 13

2.4.3 Semantic Class Labeling . 13

2.4.4 Semantic Relation Finding . 15

2.4.5 Anaphora and Coreference Resolution 15

2.5 Automating IE . 16

2.5.1 Clustering for Semantic Class Labeling 16

2.5.2 Training Data Bottleneck in Automating IE 17

2.6 Scope of the Problem We Address . 18

2.6.1 Target Classes . 18

2.6.2 Inputs . 19

2.6.3 Outputs . 19

2.7 Related Work . 19

2.7.1 Information Extraction . 19

2.7.2 Active Learning . 20

2.7.3 Graph Structure and Semi-supervised Learning 20

2.8 Chapter Conclusions . 21

3 Comparison of Bootstrapping Algorithms for Information Extrac-

tion 23

3.1 Introduction . 24

3.2 Data and Representation . 24

3.2.1 Data Sources . 25

3.2.2 Data Preprocessing . 26

3.2.3 Task Representation . 27

3.3 Weak Initial Labeling with Seeds . 31

3.3.1 Seeds . 31

vi

3.3.2 Fixed Initialization . 32

3.3.3 Active Initialization . 33

3.4 Algorithms . 33

3.4.1 Algorithm Inputs . 34

3.4.2 Single-view Bootstrapping Algorithms 35

3.4.3 Two Feature Set Bootstrapping Algorithms 40

3.4.4 Metabootstrapping . 41

3.4.5 Cotraining . 43

3.4.6 coEM . 43

3.5 Assumptions and Biases . 45

3.5.1 Initialization from Seeds Assumption 45

3.5.2 Feature Sets Redundancy Assumption 49

3.5.3 Relevance of Training Data Assumption 52

3.5.4 Syntactic - Semantic Correlation Assumption 53

3.5.5 Summary of Assumptions and Biases 55

3.6 Empirical Comparison of Bootstrapping Algorithms 56

3.6.1 Extraction on the Test Corpus 56

3.6.2 Evaluation Metrics: Precision, Recall and Breakeven 57

3.7 Results Comparing Two-view Bootstrapping Algorithms 58

3.7.1 Bootstrapping Improves Over Using Seeds Alone 58

3.7.2 Using Stopwords is Important for coEM 59

3.7.3 Metabootstrapping Benefits from Stopwords in Increased Pre-

cision . 59

3.7.4 Small Gains from Correcting Labels for coEM 60

3.7.5 Initial Seed Choice Influential on Results 61

3.7.6 Training Set Size and Distribution Affects Results 63

3.7.7 Transductive Learning Sensitive to Errors in Head-Labeling . 66

3.8 Results Comparing CoEM and EM 67

vii

3.8.1 Initialization Conditions . 67

3.8.2 Frequency Information . 68

3.8.3 Effect of Stopwords on EM . 72

3.8.4 Corpus Size for EM . 72

3.8.5 EM versus CoEM . 74

3.9 Chapter Conclusions . 75

3.10 Chapter Conclusions . 78

4 Active Learning for Semi-supervised IE 79

4.1 Introduction . 79

4.2 Related Work . 82

4.3 Training Set Size and Distribution . 82

4.4 Whole Example Labeling Versus Single Feature Set Labeling 83

4.5 Number of Examples Labeled With Active Learning 83

4.6 Active Learning Selection Methods 84

4.7 Initialization Conditions . 86

4.8 Properties of the Model . 86

4.9 Bootstrapping Algorithms . 87

4.9.1 Choice of Bootstrapping Algorithm 87

4.9.2 Combining Bootstrapping with Active Learning 87

4.10 Results . 88

4.10.1 Uniformly Selected Labeled Examples of Little Utility 88

4.10.2 Example Selection Based on Density 88

4.10.3 Single Feature Set Labeling 89

4.10.4 Disagreement and Density Active Learning 91

4.10.5 Active Learning Compensates for Infrequent Seeds 91

4.10.6 Number of Examples Labeled 93

4.10.7 Active Learning More Useful than Active Initialization for CoEM 95

viii

4.10.8 Active Learning with EM . 96

4.11 Chapter Conclusion . 102

5 Analysis 107

5.1 Analyzing Results of Experiments . 108

5.1.1 Breakeven Score as Summary of Result 110

5.1.2 Spearman Rank Correlation Test 111

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph . . 113

5.2.1 Small-world Graphs of Data 114

5.2.2 Graph Samples from an Underlying Distribution 117

5.2.3 Small World and Power-law Graph Properties 118

5.2.4 Measuring Graph Properties of Noun-phrase Context Data . . 124

5.3 Predicting Performance with Graph Properties 133

5.3.1 Number of unique seeds head-matching some NP in graph . . 134

5.3.2 Number of unique seeds exact-matching some NP in the graph 135

5.3.3 Number of unique seeds head-matching NPs in the largest com-

ponent . 135

5.3.4 Number of Unique Examples labeled - Sum of Seed Node Degrees136

5.3.5 Total examples Labeled By Seeds 136

5.3.6 Number of components containing at least one seed 136

5.3.7 Number of unique seed-labeled examples in the largest component137

5.3.8 Unique Contexts Covered By Seeds 138

5.3.9 Combinations of Predictors with Multivariate Regression . . . 138

5.3.10 Cross-class Comparison of Node Degree as Predictor 140

5.3.11 Graph Features and Active Learning 141

5.4 Feature Set Independence . 142

5.5 Algorithm Desiderata for Small Worlds 151

5.6 Questions about Designing Bootstrapping Algorithms 151

ix

5.6.1 How Can I Know if a Set of Seeds Will Lead to Successful

Bootstrapping? . 151

5.6.2 How Should I Select Seeds For Bootstrapping? 153

5.6.3 How Can I Decide if Two Classes Represented By Seeds Are

Confusable? . 153

5.6.4 How Can I Know if I Have Enough Data 153

5.6.5 Should I Correct Examples Labeled By Seeds if I will be Per-

forming Active Learning? . 154

5.6.6 What Properties Should My Active Learning Algorithm Have? 154

5.7 Chapter Conclusions . 154

6 The Held-out Task 157

6.1 Task Selection . 157

6.2 Seed Selection . 158

6.2.1 Choice of Training Data . 159

6.2.2 Seed Selection By Introspection 160

6.2.3 Select Seeds Using the Training Data 161

6.2.4 No Active Initialization . 162

6.3 Bootstrapping and Active Learning Algorithm 163

6.3.1 Bootstrapping Algorithm . 163

6.3.2 Number of Examples Labeled With Active Learning 163

6.3.3 Active Learning Algorithm . 164

6.4 Evaluation . 164

6.5 Results . 165

6.5.1 Products . 165

6.5.2 Dates / Times . 166

6.6 Chapter Conclusions . 167

7 Conclusions and Future Work 169

x

7.1 Conclusions . 169

7.1.1 Active Learning has More Impact then Correcting Initial Ex-

amples . 169

7.1.2 Highly Connected Noun-phrases are Important In Learning . . 170

7.1.3 Overall Graph Structure is Important in Learning 170

7.2 Future Work . 170

7.2.1 Using Pre-existing Dictionaries 170

7.2.2 Applicability to a Range of Semantic Classes 171

7.2.3 Applicability Across Languages 171

7.2.4 Alternative Data Representations and Sources 171

7.2.5 Automatically Acquiring Relevant Training Data 172

7.2.6 Applicability Across Domains and Data Types 172

7.2.7 Predicting and Improving Algorithm Performance Based on

Data Structure . 172

xi

xii

List of Tables

2.1 Common prepositions in English . 8

3.1 Summary of issues we will consider in this chapter. 25

3.2 Seven top-level economic sectors from Marketguide’s hierarchy. Pages col-

lected from these sectors were used as the 7sector data-set. 26

3.3 TREC WT10g data subsets used in our experiments and the number of

documents with data in each subset, after parsing. 26

3.4 Heuristic Algorithm for inserting periods in web pages for subsequent pars-

ing. The HTML is stripped from these pages before the algorithm is applied. 27

3.5 Lexico-syntactic contexts . 28

3.6 Notation for referring to instances. 29

3.7 Descriptive Statistics of Corpora . 30

3.8 Seed words for initialization . 32

3.9 Density of seed words per 100 instances in fixed corpus of company web

pages, as well as percent of training collection which is positive, based on

sample of 500 (n, c) instance pairs. 46

3.10 For the locations task, 10 random sets of 10 and 20 country names matched

variable numbers of instances in the corporate web-page data. Shown here

is the average number of instances matching, across the 10 sets, and the

exact number of instances matching for the original 10 country names, and

the entire list of 253 country names. The 10 country names used in basic

experiments were very frequently occurring. Using all 253 country names

from a list of country names did not match many more initial examples. . 47

xiii

3.11 Precision and recall of labeling examples automatically using seed-heads.

Recall was estimated based percentage positive examples in sample of 500

instances from the training corpus. 47

3.12 Precision of labeling examples automatically using seed-heads for people. 48

3.13 Precision of labeling examples automatically using seed-heads for organizations. 48

3.14 Precision of labeling examples automatically using seed-heads for locations. 49

3.15 Distribution of NPs in the test set . 50

3.16 Distribution of Contexts in the test set 50

3.17 Conditions for inter-rate evaluation - All stands for NP, context and

the entire sentence in which the NP-context pair appeared 51

3.18 Ambiguity of nounphrases alone, contexts alone, and noun-phrase context

pairs in the test set, along with training set coverage. 52

3.19 Stopwords used in experiments. 54

3.20 Examples of probabilities of class membership based on multinomial

and binomial occurrences. When we use binomial occurrence counts

to calculate probabilities, removing frequency information, higher ini-

tial probabilities of class membership are assigned to contexts with a

greater diversity of seeds. 55

3.21 TREC WT10g data subsets used in our experiments, the number of doc-

uments in each subset, and the number of examples extracted from each

subset. We see that the number of examples matching seeds increases with

corpus size. 64

3.22 Number of positive examples, and size of vocabulary of positive examples

in test set for classes locations, organizations and people. 64

3.23 Initialization conditions for the people class with EM 69

3.24 Initialization conditions for the locations class with EM 70

3.25 Initialization conditions for the organizations class with EM 71

4.1 Summary of dimensions we can vary when performing active learning for

bootstrapping semantic classes of noun-phrases. 81

xiv

4.2 Noun-phrases selected for labeling when most frequent examples (noun-

phrase context pairs) are selected for labeling. Frequencies given here

are number of different contexts these noun-phrases occurred in, though

selection was based on number of occurrences of those contexts. . . . 89

4.3 For the people and locations classes, feature-set disagreement mostly se-

lected examples which had seeds as heads. We can eliminate this effect

by performing active initialization, or by excluding examples with seeds as

heads from the pool available for active learning. 99

5.1 Summary of Experiments . 109

5.2 Comparison of Single-number summary statistics of Experimental Results 111

5.3 High-level graph properties of the data we will examine, as well as conjec-

tures that we will test about their effect on algorithm performance 114

5.4 Training examples in feature vector format. Each example has two fea-

tures, f1 (the noun phrase) and f2 (its context). Some examples are labeled

positive, while all other examples are unlabeled. 115

5.5 Average node degree k̄ by class in the 7sector test set, for both noun-

phrases and contexts. We see that nodes in our target classes tend to have

higher average degree than the overall average node degree in the test set.

This could be explained by the fact that pronouns are included in these

classes. The presence of “he” and “we” may well explain the high average

node degree for noun-phrases in the organizations and people classes.

The higher average node degree for contexts in the locations class may be

explained by the fact that there are more varied ways of referring to locations

than to people and organizations. 125

5.6 High out-degree noun-phrases and contexts 126

5.7 Power-law coefficients of node degree, over noun-phrases connected to con-

texts, over the whole graph and the largest component. We see that mea-

suring the power law coefficient over the whole graph does not give a very

different result to measuring it over the largest component. 129

xv

5.8 Clustering coefficients C for unipartite graphs of noun-phrases and contexts,

for both the entire graph, and for the largest component. Crand, the cluster-

ing coefficient for a random graph of the same size, is shown in parentheses

for the largest component. 131

5.9 Characteristic path length L, or average average path length within the

graph, and clustering coefficient C, for the largest component in the graph.

We see that paths are short, and similar to the path-length in a random

graph, while the clustering coefficient is much higher than for a random

graph. This means our graph has small-world properties. 131

5.10 Features predictive of algorithm performance, along with their Spearman

correlation coefficients. 135

5.11 The number of contexts labeled by more than one seed was most predictive

of algorithm performance. We see from a sample of contexts, that those

selected by more than one seed appear to be more unambiguously indicative

of the target class locations. 139

5.12 Using the interactions between multiple predictor variables, we obtain a

correlation of 0.78 with the rank of algorithm breakeven, higher than the

correlation of 0.72 that we obtained from the best predictor (unique contexts

covered by more than one seed) in isolation. 140

5.13 Features predictive of algorithm performance, along with their Spearman

correlation coefficients, when we consider experiments conducted with active

learning, over 255 combinations of random sets of locations seeds, number

of example labeled with active learning, and active learning method. All

correlations are significant are the 0.01 level. 141

5.14 A combination of features for predicting algorithm performance for boot-

strapping with active learning, over random seeds sets for locations. The

correlation of this model with algorithm performance is 0.73, greater than

the correlation of any individual feature in isolation. 142

5.15 Joint and marginal probabilities of np-context pairs 144

5.16 Mutual Information between noun phrases and contexts 146

xvi

5.17 Mutual information between noun phrases and contexts, given class labels

of test examples. Shown in parentheses are the maximum possible value for

mutual information, which is min(H(N |Class),H(C|Class). The minimum

possible value is 0. 150

6.1 Five sets of seeds for the products class, chosen by introspection by three

labelers. The set 2-a was chosen to be difficult. n indicates how many

examples in the training corpus matched each seed set. 160

6.2 Seeds for products task. Seeds were selected by examining the top 200

most frequent noun-phrases, and identifying the terms that seemed most

unambiguously like products. Shown are the number of times the seed

words occurred as whole noun-phrases (“nps”), the number of times the

seed-words occurred as heads of noun-phrases (“np-heads”), the number of

unique noun-phrases with the seed as head (“u. np-heads”), the number

of unique contexts labeled by the seed (“u. contexts”) and the three most

common contexts labeled by the seed. 20,331 examples total were labeled

by these three seeds. 163

6.3 Results of extracting test examples based on models obtained by bootstrap-

ping the products class, using the seeds created by introspection (1-a - 3),

and seeds chosen by frequency (freq). Set 1-a matched no seeds, and can be

seen as a baseline reflecting the prior distribution of products terms in the

test corpus. Set 2-a was chosen to be ambiguous, containing brand-names

which may also be company names. This set performed much worse than the

baseline. The frequency based seeds (freq) with 25 instances labeled with

active learning perform best, even when we remove test examples which

match a seed (freq-noseeds). 165

6.4 Precision of dictionary and extraction for products 166

6.5 Results of extracting test examples based on models obtained by bootstrap-

ping the dates / times class, using the seeds created by looking at frequent

noun-phrases in the training corpus (seeds were the years 1993 - 1997). . 167

xvii

xviii

List of Figures

2.1 A document marked up with the results of information extraction sub-

tasks: (a) Unlabeled document (b) after pro-active Semantic Class

Finding (shown here as finding box boundaries and textures) (c) af-

ter Semantic Class Labeling (shown here as labeling boxes “Location”,

“Company” etc), (d) after finding Semantic Relations (generating ar-

row labels : “Location of Company”), and Anaphora Resolution (arrow

labels for identity) . 14

3.1 Automatically labeling data using seeds with head-labeling, then correcting

these labels with active initialization. 34

3.2 Comparison of bootstrapping using coEM, meta-bootstrapping and cotrain-

ing, for the classes locations, people and organizations. 58

3.3 Comparison of the effects of using seeds alone, noun-phrases with seeds as

heads (head-labeling) and models learned by bootstrapping with coEM to

extract on the unseen test set. Seeds and head-labeling lead to good pre-

cision, but poor recall. Bootstrapping using coEM improves recall without

loss of precision. 59

3.4 Comparison of allowing stopwords in the model, and ignoring frequency

information, against forbidding stopwords and using frequency information

for coEM. Best results are obtained by allowing stopwords to be used in the

model, while frequency information does not appear to affect results greatly. 59

3.5 Comparison of allowing stopwords in the model, for metabootstrapping.

While allowing stopwords gives some improvement, overall the results are

still not as good as for coEM. 60

xix

3.6 Comparison of the effects of hand-labeling all examples matching the seed-

words before commencing bootstrapping (active initialization), against boot-

strapping assuming all are correct (coEM). A small gain is obtained by

labeling all data input. 60

3.7 The 10 seeds which were chosen for baseline experiments are very effective.

Using all 253 country names does not substantially improve results. The 10

original seeds cover a large number of the instances of country names in the

7sector training corpus. 61

3.8 A seed set corresponding to more instances of seeds in the training data

generally produces better results for coEM. 62

3.9 Effects of corpus-size for coEM. A larger training set is significantly better

for locations. However, for organizations, a training set which matches

the distribution of the test set appears to be a better fit. For the people

class, a training set which matches the distribution of the test set appears

to be a slightly better fit at the low-recall end of the scale. 62

3.10 Coverage of Positive Test Examples by Some Noun-phrase or Context in the

Training Set. 65

3.11 Transductive learning versus standard learning for coEM, for the classes

locations, organizations, and people. 66

3.12 Initialization of the unlabeled examples with 0, small values, random values

or the output of coEM does not affect the head-labeled examples, which

were labeled using the seeds. 68

3.13 Results for EM with and without frequency information. 69

3.14 Results for EM with and without stopwords. 72

3.15 Log likelihood plotted against breakeven point. We see that log-likelihood

is predictive of accuracy for the organizations class, but less so for the

people and locations classes. 73

3.16 Results for EM with large corpora. 73

3.17 Comparison of EM, against baseline coEM algorithm. All initialization con-

ditions are shown for EM. Stopwords were permitted in the model, and

frequency information used for both EM and coEM. 74

xx

4.1 Automatically labeling data using seeds with head-labeling, optionally cor-

recting these labels with active initialization, then performing active learning

interleaved with bootstrapping. Both unlabeled and head-labeled examples

are candidates for active labeling. Active initialized examples are treated as

active-labeled examples, and are not candidates for relabeling. 81

4.2 We compare a baseline of no active learning to adding 500 labeled examples,

examples selected uniformly at random, for locations, people and organiza-

tions, interleaved with bootstrapping with coEM. We also compare models

which allow or disallow stopwords. 87

4.3 Adding 500 labeled examples, examples selected according to their density,

for locations, people and organizations. 88

4.4 Adding 500 labeled noun-phrases, selected according to their density, for

locations, people and organizations. 90

4.5 Adding 500 labeled noun-phrases, selected according to context disagree-

ment, for locations, people and organizations. 90

4.6 Adding 500 labeled examples, selected according to their density or feature-

set disagreement, for locations, people and organizations. 91

4.7 Active Learning Compensates for Infrequent Seeds. Left, 10 randomly cho-

sen locations as seeds are infrequent in the training corpus. Center, the 10

randomly chosen seeds are relatively frequent in the training corpus. Right,

10 very frequent seeds and a near-complete list of country names used as

seeds. In all cases active learning produces comparable results, after 500

examples have been labeled using active learning. 92

4.8 Active Learning Compensates for Infrequent Seeds. Even with 20 random

seeds, active learning can produce considerable improvements. On the left,

infrequently occurring seeds, on the right frequently occurring seeds. . . . 93

4.9 Labeling More Examples Improves Results. For people with density based

selection, labeling just 5 examples greatly improves results. 94

4.10 Labeling More Examples Improves Results For Disagreement-based active

learning, for people and locations while for organizations little improve-

ment can be seen. 94

xxi

4.11 Breakeven point for each iteration. We see that most of the gains from active

learning come in the first 50 iterations (ie the first 250 examples labeled) but

labeling more continues to improve results. For the organizations class

there is a dip from iterations 8 through 50. This may be due to the ambiguity

in examples containing “we” which is labeled positive for organizations

but may lead the model to incorrectly identify people as organizations

until more examples have been labeled. 94

4.12 More data more important than labels 95

4.13 Labeling with active learning has more impact than active initialization.

Combining active initialization with active learning provides modest incre-

mental gains for the people class. 95

4.14 Adding 500 labeled examples, examples selected uniformly at random, for

locations, people and organizations. As with coEM, EM does not benefit

greatly from examples selected uniformly at random, both for random ini-

tialization, and initialization from coEM. 96

4.15 For EM, when we select examples for labeling according to density we see

very large improvements in results for the people class and the organizations

class. This transcends the initialization condition, unlike with uniform ac-

tive labeling. 97

4.16 Breakeven versus iteration, for density based active learning. 97

4.17 Single feature set labeling is reasonably successful for EM. It provided great

benefit for the organizations and people classes 98

4.18 When we select examples for labeling according to disagreement between

the noun-phrase and the context, we see the largest improvements for the

organizations class, because half of the examples selected were not among

the original head-labeled examples. Eliminating this manual relabeling of

automatically labeled examples by using active initialization, we see im-

provements in all classes. 98

4.19 Using different initial seed sets and labeling examples according to frequency.

Starting with random country names performs extremely poorly, when con-

trasted with starting with all country names. 100

xxii

4.20 Using different initial seed sets of random country names does not perform

well with feature-set disagreement, even with active initialization and 2500

examples labeled, when compared with using all country names. 100

4.21 Using different initial seed sets of random country names is reasonably ef-

fective with EM, when we label 2500 examples using context-disagreement. 101

4.22 For all classes, labeling more examples greatly improves the results for EM.

In particular, for the people class, labeling 100 or more examples provides

the biggest gains in model effectiveness. With both organizations and

locations, adding more examples continues to improve the effectiveness of

the model. 101

4.23 With 2500 examples labeled, the people and locations classes perform

slightly better with disagreement based labeling. 102

4.24 Breakeven score versus iteration number, for EM, with 2500 examples la-

beled (5 per iteration). The people and locations class perform slightly

better with disagreement based labeling. Organizations is always better

with density based labeling. 102

4.25 When we use a large corpus from a different distribution, and label examples

using density-based selection, we can recover from the losses in accuracy due

to train-test corpus mismatch. 103

5.1 Each instance represents an edge joining two nodes in the graph. For ex-

ample, the instance “flew to China” is represented by the two nodes “flew

to < x >” and “china”, with an edge joining them. 116

5.2 The whole graph is as shown at left. If we take a sample from the graph, we

may wind up with a graph as shown at right. Some edges and some nodes

are missing, though the general structure is similar. 118

5.3 Noun-phrase and context degrees follow a power law 127

5.4 When we fit a line to the log-log plot, we find the power law parameter α is

2.24 and 1.95 for noun-phrases and contexts respectively. 128

5.5 Asymptotic values for the power law coefficient α 129

5.6 7 sector component size . 132

5.7 Total node degree of examples labeled with seeds versus breakeven . . 134

xxiii

5.8 Number of Components covered by seeds versus breakeven 137

5.9 Number of contexts labeled with multiple seeds versus breakeven . . . 138

5.10 Total node degree of examples labeled with seeds versus breakeven,

across classes . 143

5.11 Asymptotic values of mutual information 147

5.12 Example graphs which attain (a,b) the lower bound, 0, on the mutual in-

formation between noun-phrases and contexts given the class, and (c,d) the

upper bound min(H(X),H(Y)). Positive examples are shown as bold edges. 149

xxiv

List of Algorithms

1 Active Initialization . 33

2 General procedure for single feature set bootstrapping algorithms with weakly

labeled positive data. Algorithms vary in how they select and use automat-

ically labeled examples. 35

3 General procedure for two feature set bootstrapping algorithms with weakly

labeled positive data. Algorithms vary in how they select and use automat-

ically labeled examples. The results may differ depending on whether we

start with f̂nt or f̂ct. 40

4 Metabootstrapping algorithm. 42

5 Cotraining algorithm for our information extraction setting 44

6 CoEM algorithm for our information extraction setting 45

xxv

Chapter 1

Introduction

1.1 Problem Description

Imagine being able to find all of the organizations mentioned in a document, to-

gether with their locations, and the people who are involved in the organizations.

Tasks of this type are known as information extraction problems. The type of infor-

mation to be extracted is defined in advance, and the goal is to extract the information

from new, previously unseen documents.

In this dissertation we describe approaches for training such information extrac-

tors, using as input example words which may belong to the target class, and a col-

lection of unlabeled text documents. We give more details about this task in Chapter

2.

1.2 Thesis Statement

The thesis of this research is that we can efficiently automate information extraction,

that is, learn from tens of examples of labeled training data instead of requiring

thousands, by exploiting redundancy and separability of the two features: (1) noun-

phrases and (2) contexts. We exploit this redundancy and separability in two ways:

(1) in the algorithms for learning semantic classes, and (2) in novel algorithms for

active learning, leading to better extractors for a given amount of user labeling effort.

1

2 Introduction

1.3 Summary of Results

Our goal is to learn to extract noun-phrases of particular semantic types or classes

from sentences in text documents. We perform in-depth experiments with identifying

the three semantic classes locations, people, and organizations in sentences in

text documents. We represent instances of semantic classes with an ordered pair,

consisting of a noun-phrase and the local lexico-syntactic context. We identify these

noun-phrases and contexts in documents using Sundance, a shallow parser. We take a

small set of words which the user believes may be examples of the target class (which

we will call seeds), and use them to perform weak labeling (providing noisy/partial

labels to a relatively small number of the examples) on a collection of documents, by

identifying any noun-phrase containing those words as a positive example. We weakly

label all other examples as negative examples, and perform semi-supervised learning

with this weakly labeled data.

We describe the algorithms metabootstrapping, coEM and EM and show how they

are applicable to semi-supervised learning of this information extraction task. We

find that cotraining does not work well using our representation on our task. We

break the algorithms down into those that employ a separation of the feature sets,

and those that combine the feature sets. We show that performance is affected by the

set of seeds chosen, with more frequently occurring seeds leading to better extraction

performance. However, correcting errors in the weak labeling performed with seeds

does not lead to substantial performance improvement. We also show that we should

use stopwords as part of the model, for best performance across classes. More details

are given in Chapter 3.

Given that our goal is optimizing the trade-off between user training time and

algorithm performance, it is important to see how we can improve results with active

learning. We describe novel active learning algorithms which are algorithmically

coupled with the separable feature sets. In addition, we describe a novel labeling

technique, single feature-set labeling. In single feature-set labeling, the user sees only a

partial example, for example the noun-phrase in isolation from the context. We then

use the labeled noun-phrase to label all contexts it cooccurs with. This technique

provides for economy in labeling, and we show that in some cases it is more effective

than standard whole example labeling.

The novel active learning algorithms are feature-set disagreement, in which we

select examples for labeling when the features disagree strongly on the target label

2

1.4 Contributions 3

(that is, when the noun-phrase and context disagree on the target label), and context

disagreement, when we select noun-phrases for single feature-set labeling when their

contexts disagree (for example, the noun-phrase occurs with several different contexts,

which differ in their confidence of representing a positive example). We also compare

against selecting the most frequent examples, which can be important when some

classes are represented well by pronouns. Overall we show that judicious selection of

examples for labeling can lead to greatly increased accuracy, without greatly increas-

ing the burden on the user. In particular, we show that using feature set redundancy

allows selection of examples for labeling which are much more effective than examples

chosen randomly, or without use of feature set redundancy. In addition, these results

show that active learning can compensate for a bad choice of initial seeds and that

the labeling effort is better spent during the active learning process rather than at

the beginning. More details of these experiments can be found in Chapter 4.

Finally, we perform a deeper analysis of the results. We measure properties of

the noun-phrase context connectivity graph, and show that it exhibits small-world

graph structure rather than random graph structure. We analyze how this explains

the failure of cotraining on our tasks, and how pronouns and certain very common

nouns form the hubs of the connectivity graph. We measure the mutual information

between noun-phrases and contexts in each class, in order to test our conditional

independence hypothesis. We also perform Spearman rank correlation tests over

multiple experiments, finding correlations between algorithm breakeven point and

features including the number of contexts labeled by initial seeds and the percent of

examples labeled positive in active learning. These features correlated with learning

performance can help us pinpoint the important properties of active learning and

bootstrapping algorithms for information extraction. Comparing these across classes

also highlights the different desiderata for active learning algorithms for classes with

sparse feature sets and extremely small priors. More detail of this analysis are given

in Chapter 5.

1.4 Contributions

The contributions of this research are

• In-depth experiments with bootstrapping algorithms across multiple semantic

classes.

3

4 Introduction

• Adaptation of existing semi-supervised learning algorithms for the task of in-

formation extraction.

• Novel active learning algorithms that take into account the feature set split into

two sets.

• Analysis of the noun-phrase context co-occurrence graph to show that it exhibits

small-world and power-law structure.

• Demonstration of the correlation between graph features and algorithm perfor-

mance.

• Suggestions for seed selection for bootstrapping algorithms informed by the

graph structure of the data.

• Suggestions for active learning for bootstrapping algorithms informed by the

graph structure of the data.

1.5 Dissertation Roadmap

In Chapter 2 we give background to terminology used in this dissertation, describe the

kind of machine learning we perform, and define the information extraction problem

in more detail. In Chapter 3 we describe algorithms for learning to perform this

information extraction task, as well as describing the data we use. We make explicit

the assumptions these algorithms make, and measure some properties of the data to

see how well these assumptions hold. We give results of the bootstrapping algorithms

on our task. In Chapter 4 we describe active learning extensions to the algorithms

described in Chapter 3. In Chapter 5 we analyze our results in terms of the underlying

graph structure of the data. In Chapter 6 we describe an experiment learning to

extract a new class, using some of the insights gained throughout this dissertation.

In Chapter 7 we summarize our conclusions and give suggestions for future work.

4

Chapter 2

Background

In this chapter we provide background for this dissertation. First we

define some linguistic syntactic categories. Then we introduce the data

representation, in which semantic classes are represented by an ordered

pair, consisting of a noun-phrase and the local syntactic context. We then

describe Sundance, the parser used to extract noun-phrases and syntactic

contexts from documents. We give some background on work in machine

learning on supervised, unsupervised, and semi-supervised learning, and

define weak labeling, which we will employ in this dissertation. We then

give a general overview of the information extraction task we are tackling

in this dissertation, which is learning to extract noun-phrases of particular

semantic types from sentences in text documents.

2.1 Linguistic Terminology

In this section we give a brief introduction to some linguistic terminology that will

be used throughout this dissertation. The general method of describing linguistic

syntactic categories used here is derived from the descriptions in Radford (1988). In

general it is difficult to give precise definitions of linguistic syntactic categories, as

there will be exceptions, but the descriptions below should give sufficient detail for

someone fluent in English to recognize the category.

5

6 Background

2.1.1 Noun

A noun is, roughly speaking, a word which describes an object or thing, such as

“cat”, “computer” and “city”, as well as more abstract things, such as “love”. Mor-

phologically, nouns are words which become plural by adding ‘s’ (apart from a few

exceptions). They can appear as the first word in sentences like ‘X is fun’ or ‘The X

is fun’.

2.1.2 Noun-phrase

Frequently nouns do not occur on their own, but as part of longer groups of words

called noun-phrases. A noun-phrase can be modified with the possessive ‘s’, as in

“this food is the fat cat’s” or “this mouse is the cat in the hat’s. Noun-phrases

can be replaced by pronouns in sentences, as in “I really like the job I am working

in now”, becoming “I really like it”. Noun-phrase is abbreviated NP.

2.1.3 Head of noun-phrase

In this dissertation we will often refer to the “head” of a noun-phrase. The head of

a noun-phrase is the noun which contains the core meaning of the phrase. Other

words can be deleted from the phrase and the sentence will still make sense, but the

head-noun is the most essential word. Some examples of noun-phrases, with the head

shown in bold, are below:

• the job that I am working in now

• the fat cat

• a few of my favorite things

• the person who I met last week

• a shiny new telephone handset

• dogs in coats

If we remove relative clauses, which start with words such as “that” and “who”,

and prepositional phrases, which start with words like “in” and “of”, the head of a

6

2.1 Linguistic Terminology 7

noun-phrase is generally the right-most word in English. For example if we take the

noun-phrase “the person who I met last week”, and remove the phrasal modifier “who

I met last week”, we are left with “the person”. The right-most word “person” is the

head of the noun-phrase.

2.1.4 Verb

A verb can be described as a “doing, being or having” word. Examples of verbs

include “eat”, “read”, “are”, “buy”, “think”, “give” and “keep”. In English, verbs

change form according to whether the action or event they refer to is in the past,

present or future. For example in the present we would say “I write”, whereas to

refer to the past we say “I wrote”, and to refer to the future we say “I will write”.

2.1.5 Verb Phrase

A verb phrase contains a verb, plus any modifiers. A verb phrase may also contain a

noun-phrase. For example the verb phrase “will eat the pistachios quickly” contains:

• a modal verb “will”

• the main verb “eat”

• the object of the verb “the pistachios” (which is also a noun-phrase)

• an adverb “quickly”.

Generally the noun-phrase which is the subject of a sentence (the person or thing

“doing” the action described) is not part of a verb phrase, but the noun-phrase which

is the object of the sentence is part of the verb-phrase.

In this dissertation we will be concerned primarily with the modal + verb parts

of verb phrases, for example “will eat”, which we will describe as “eat (future tense,

active verb)”. We will ignore any adverbs.

2.1.6 Prepositional Phrase

A prepositional phrase is used to situate an object or situation in space or time or

manner, and is introduced with a preposition. Table 2.1 gives examples of common

7

8 Background

about, above, across, after, against, along, amidst, among, around, as, at,

before, behind, below, beneath, beside, between, beyond, by, despite, down,

during, except, for, from, in, inside, into, like, near, of, off, on, onto, opposite,

out, outside, over, past, since, through, till, to, throughout, towards, under,

underneath, unlike, until, up, upon, via, with, within, without

Table 2.1: Common prepositions in English

English prepositions.

The other part of a prepositional phrase is a noun-phrase. Examples of preposi-

tional phrases include:

• in a week,

• with a hammer,

• under the table,

• for my family,

• near the pandas.

2.1.7 Lexico-syntactic Context

Syntactic information in language refers to grammatical properties, for example whether

a word is a noun or a verb, as described above. It can also refer to whether a noun is

used as the subject of a sentence, or the direct object, and whether a verb is in the

past or present tense, or in the active or passive voice.

Lexical information refers to the properties of words themselves, both in isolation,

and how they are used. Lexical information may be among the information listed for

a word in a dictionary. For example the word “dogs” has the property that it refers

to the species canine, and that it commonly occurs with “bark”.

A lexico-syntactic context is a combination of syntactic and lexical information.

An example of a lexico-syntactic context is “ateactiveV erbX<dobj>”. Here we have spec-

ified the context of something “X”, we know that X is the direct object of an active

verb (the syntactic part of the context) and that the active verb it is the direct object

of is “ate” (the lexical part of the context).

8

2.2 Sundance and Autoslog 9

2.2 Sundance and Autoslog

We use text which has syntactic categories assigned by Sundance. Sundance is a

robust heuristic-based shallow parser produced at the University of Utah by Ellen

Riloff and her students. Sundance identifies noun-phrases, verb phrases and preposi-

tional phrases within sentences. Autoslog (Riloff, 1993) uses the syntactic categories

identified by Sundance to recognize lexico-syntactic patterns. For example, Autoslog

can identify patterns of the form “X read a book”, or “the book was read by X”, and

may also use semantic constraints on the noun-phrase filling the slot “X”. We will

describe how we use Autoslog to preprocess sentences in text documents to give us

lexico-syntactic contexts in Chapter 3 Section 3.2.2. Another freely available parser

one could use for this kind of task is the Link Grammar Parser (Sleator & Temperley,

1993).

2.3 Supervision in Machine Learning

One way of characterizing approaches to machine learning is by the degree of super-

vision required by the approach. In supervised learning, the algorithm is provided

with a label for every example, and uses this information to learn a mapping from

examples to labels. In unsupervised learning, no labels are provided at all. Instead,

the algorithm sorts the data into related clusters, based on measures of proximity on

the example features. In semi-supervised learning, either some examples are provided

without labels, or only approximate labels are provided. The algorithm iteratively

uses those labels and the data to learn approximate models, which are used to re-

label and relearn better models. In the following subsections we describe each of

these paradigms of supervision, then explain weak labeling, the method of providing

supervision for semi-supervised learning that we use in this dissertation.

We will assume that algorithms are provided with a set of examples {x1 . . . xn}

drawn from the universe of possible examples X according to some distribution P (X).

Each example may be associated with a label from the universe of possible labels Y,

giving us pairs < x, y >. Our goal is to learn a function

f : X → Y

by using the information provided in the set of training examples. When the set

9

10 Background

of labels Y is discrete and finite we call it the set of target classes.

Each example xi has one or more properties, which we will call features. These

features describe the properties of the examples, and can be used in learning as

predictors of the target class or label. We will describe the features particular to our

data and representation in Section 3.2.

While in general we assume that the labels yl1..yln represent an accurate represen-

tation of the function we wish to learn, in some cases they may be noisy, ie the label

we see (yli) may not be the true label (yti) that is part of the function we wish to

learn. This may be because of imperfect sensors reading the label, errors by human

labelers, or errors introduced in the labeling processes in other ways.

2.3.1 Supervised learning

Supervised learning is the process of learning a mapping from examples to labels, by

inferring models from sets of labeled examples provided as input. Examples are drawn

from a distribution over the set of possible examples X , and their labels are from the

set Y. A labeled example is the pair < x, y >. The training set is then a set of n

examples from the space X × Y, which we will denote {< x1, y1 >, . . . < xn, yn >}.

A good overview of supervised learning can be found in (Mitchell, 1997).

2.3.2 Unsupervised Learning using Clustering

One form of unsupervised learning, also known as clustering, is the task of discovering

groups underlying examples. In this case we have examples from the universe X

which we wish to assign to a finite set of discrete groups. We do not provide an

explicit description of which groups to use, but there is an implicit assumption that

there exist coherent groups within the data, which will correspond well to potentially

useful categories. The typical approach is to use a clustering algorithm and distance

metric which is used to compare examples. The output of clustering is a grouping of

examples into sets, which we call clusters. We may not know in advance how many

clusters are inherent in the data. The way we characterize the examples, and the

distance metrics we provide over those features, can have a strong impact on the

actual clusters discovered (Kamvar et al., 2002). A good introduction to methods for

clustering for natural language tasks can be found in (Manning & Schutze, 1999).

10

2.3 Supervision in Machine Learning 11

2.3.3 Semi-supervised Learning

Semi-supervised learning is based on the assumption that we can learn classifiers using

a small number of labeled examples, together with unlabeled data. That is, we have

one set of examples with labels:

L = {< xl1 , yl1 > . . . < xln , yln >}

and another set of examples without labels:

U = {xu1
. . . xum

}.

We can use the examples with labels L to learn something about the target func-

tion f : X → Y. Those examples without labels can be used to learn the relationships

between examples, either by helping us understand the distribution of examples P (X)

or the relationships between features of the examples. This technique has been used

successfully in document classification with naive Bayes and EM (Nigam et al., 1998),

and support vector machines (Joachims, 2001). It has also proved effective in learning

named entity classifiers (Collins & Singer, 1999).

Weak Labeling

In machine learning, labels are typically assigned to examples explicitly, either because

they are measured along with example features, or because a human has examined the

example and assigned the label. In the text classification domain, a document which

is a conference paper may have the label of the conference proceedings it appeared

in, for example Proceedings of the International Conference of Machine Learning.

Alternatively, a human may inspect the paper and assign a label corresponding to

the subject matter of the paper, for example “machine learning”. In weak labeling

labels are derived from a separate source and assigned to examples automatically. In

the text classification example, weak labels may be assigned by automatically labeling

documents as belonging to the class “machine learning” if they contain both words

“machine” and “learning”. Note that this may leave many examples unlabeled, which

belong to this class, or assign examples to classes they do not belong to. This can

lead to a larger proportion of noisy or incorrect labels. Thus we can summarize weak

labeling as providing a learning algorithm with data which is (1) noisily labeled (2)

only partially labeled and (3) possibly a small number of labeled examples.

11

12 Background

Supervised machine learning examples often assume that there are regularities

between the features and labels, which allow generalization for learning. In semi-

supervised learning, we often assume that there are regularities between the features

in examples, which provide sufficient information to overcome the fact that we have

labels for only some of the instances. In the weak learning case, with very few, very

noisy labels, the structure inherent in the data will need to supply information not

only for missing labels, but also for incorrect labels. Weak labeling can be extremely

useful if it permits us to supply a training signal without inspecting the data at

all. For example, some research used a small set of words as a source of labels

(Jones et al., 1999). Documents or phrases containing those words were labeled as

positive, without any human inspection. Other work in weak labeling has been done

for learning hidden-Markov models for information extraction from document headers,

by using lists of names (Seymore et al., 1999). Bockhorst and Craven (2002) learn

gene terminators using weakly labeled examples. Liu et al. (2002) perform partially

supervised text classification by assuming all unlabeled examples are negative, then

inserting known positive examples into the negative class as “spies” to help identify

true positive examples in the unlabeled data, and learn appropriate thresholds for

distinguishing between the classes.

In this dissertation, we used weakly labeled examples which are pairs of noun-

phrases combined with their lexico-syntactic contexts. We will describe exactly how

we perform this weak labeling in Chapter 3 Section 3.3. We then perform semi-

supervised learning using those examples, and the remaining unlabeled examples.

2.4 The Information Extraction Problem

In this section we describe the information extraction problem we are addressing.

This problem is common to all chapters of the dissertation, with details of training

information and datasets varying from chapter to chapter.

The information extraction problem we address is that of identifying noun-phrases

of a particular semantic class, in their contexts in sentences. This can be a part of

a larger information extraction system, composed of many phases. We will now

describe each of those phases, then return to define the narrower scope we address in

this dissertation.

Information extraction can be divided into a number of subtasks, as described in

12

2.4 The Information Extraction Problem 13

(Cardie, 1997) and (Appelt & Israel, 1999). These subtasks are illustrated in Figure

2.1 and consist of (i) identifying classes of semantically related words and phrases

(semantic class finding) (ii) labeling those classes with a name that is meaningful to

the user (semantic class labeling) (iii) semantic relation labeling (labeling relationships

between individual semantic entities) and (iv) anaphora resolution (determining when

an object referred to in one way at one point of the text is the same one referred to

elsewhere).

2.4.1 Semantic Class Finding

The information extraction task relies on the assumption that interesting target se-

mantic classes have been identified for the task. In the MUC terrorism domain

(Proceedings, 1991), the semantic classes victim, perpetrator, weapon, etc, were

identified as being of interest. In the MUC management succession domain (MUC-6

Proceedings, 1996), the semantic classes company, takeover-event, etc were iden-

tified as being of interest. The classes can be chosen either a priori, or by inspection

of the target corpus.

2.4.2 Dictionary Construction

For a given semantic class, it can be useful to have a dictionary of terms which

are likely to belong to that class, perhaps with an associated probability of class

membership. This dictionary can then be used as input to other algorithms, by

identifying potential class members in a document whenever dictionary items are seen.

Thelen and Riloff (2002) construct dictionaries by extrapolating from the contexts of

initial sample class members, and assuming that a noun-phrase will be only of a single

type in a given context.

2.4.3 Semantic Class Labeling

Given a region of text, semantic class labeling involves assigning a label or meaning,

possibly from a predetermined set, to that region of text. This can be a text clas-

sification problem (Freitag, 1998) when we view the instances to be labeled in their

contexts in texts (i.e. as tokens, or noun-phrases-in-context (NPIC)) . It can also be

viewed as a cluster labeling problem, if we cluster NPICs in the texts, then seek to

13

14 Background

(b)

where Jaco Kumalo first

founded it in 1987.

the Disc Golf Inc. headquarters.

Production will continue in Mali

Yesterday Rio de Janeiro was

chosen as the new site for

(c)

Location

Production will continue in Mali

where Jaco Kumalo first

founded it in 1987.

chosen as the new site for

the Disc Golf Inc. headquarters.

Yesterday Rio de Janeiro was

Location

Company

Person

Company

Production will continue in Mali

where Jaco Kumalo first

founded it in 1987.

chosen as the new site for

the Disc Golf Inc. headquarters.

Yesterday Rio de Janeiro was

(d)

 Location of Company

Location

Company

Person

Location

Company

Production will continue in Mali

where Jaco Kumalo first

founded it in 1987.

chosen as the new site for

the Disc Golf Inc. headquarters.

Director

Anaphor

 Location of Company

Yesterday Rio de Janeiro was

(a)

Figure 2.1: A document marked up with the results of information extraction sub-

tasks: (a) Unlabeled document (b) after pro-active Semantic Class Finding (shown

here as finding box boundaries and textures) (c) after Semantic Class Labeling (shown

here as labeling boxes “Location”, “Company” etc), (d) after finding Semantic Rela-

tions (generating arrow labels : “Location of Company”), and Anaphora Resolution

(arrow labels for identity)

14

2.4 The Information Extraction Problem 15

assign labels to those clusters. A sub-problem of semantic class labeling is referred to

in (Grishman., 1995) as name recognition, and would involve recognizing the names

“Rio de Janeiro”, “Disc Golf Inc”, “Jaco Kumalo” and “Mali” as people, company

and place names, from the sentences in Figure 2.1.

2.4.4 Semantic Relation Finding

In semantic relation finding we assign labels to pairs or groups of instances of se-

mantic classes, or NPICs. Output from the sentences in Figure 2.1 may include

Director-of-Company(Jaco-Kumalo-NPIC-1, Disc-Golf-Inc-NPIC-2) and

Location-of-Company(Mali-NPIC-3,Disc-Golf-Inc-NPIC-2). This has also been

described as template filling, and much of the literature in information extraction, in-

cluding that by Califf (Califf & Mooney, 1997) and Huffman (Huffman, 1996), assumes

that fields have been assigned to semantic types before this operation is performed. It

identifies the relationships between the objects of interest. Huffman’s system (1996)

allows the training corpus to be built up interactively by the user by presenting pairs

of NPICs to the user for labeling. Soderland (Soderland, 1999) assumes that we have

a training corpus marked up with semantic classes, and some of the desired relation-

ships. The work described there examines the use of active learning, but does not

permit the simultaneous acquisition of the semantic classes themselves.

2.4.5 Anaphora and Coreference Resolution

An anaphor is a noun-phrase which does not refer to a real-world entity by itself, but

refers to some earlier reference in the text to that real-world entity. For example, a

character introduced in a text as “a tall woman” may later be anaphorically referred

to as “the woman” or “she”. Pronominal anaphora resolution involves replacing

each instance of a pronoun with the full name with which it is identified elsewhere

in the text. In Figure 2.1 this means identifying “it” in the second sentence as

referring to “Disc Golf Inc.” We can view this a special case of semantic relation

finding. The relation we wish to find is the identity relation. Previous work of interest

includes that by Dagan et al. (Dagan et al., 1995) which stresses the importance

of syntactic features over lexical features for resolving pronominal anaphora. That

paper suggests that lexical information derived from corpus statistics can contribute to

resolving ambiguities remaining after syntactic resolution has contributed all possible

15

16 Background

information.

More generally coreference resolution refers to identifying when two mentions refer

to the same entity, for example that “Dr Mitchell”, “Tom Mitchell” and “he” may all

be referring to the same entity (Gooi & Allan, 2004) (Bean & Riloff, 2004)

2.5 Automating IE

Recent attempts to improve the development time for information extraction systems

have focused on piece-wise application of machine learning algorithms to the sub-

components, generally by taking a corpus marked-up with the target output, and

applying a variety of traditional machine learning algorithms. Muslea (Muslea, 1999)

surveys recent work on automating the learning of extraction patterns for both free

text and structured documents and concludes that the trend is towards the use of a

combination of syntactic, semantic and delimiter-based approaches, and that systems

which learn multi-slot rules are preferable. Glickman and Jones (Glickman & Jones,

1999) survey the relevant literature for the entire information extraction problem, and

conclude that most of the parts of the basic information extraction problems have

been addressed with machine learning approaches. They suggest that the missing

step is the integration of these pieces into a complete system in which the learning

of each part informs the whole, with a corresponding reduction in the amounts of

training data required.

2.5.1 Clustering for Semantic Class Labeling

The general goal of clustering techniques is to group like things together. In Euclidean-

like spaces this is accomplished by defining (1) cluster centroids as points in the feature

space, and (2) a distance metric over the feature space. An optimization of an objec-

tive function is then performed, for example to minimize intra-cluster distances (or

distances of cluster elements from the closest centroids) while maximizing inter-cluster

distances. For modeling data distributions which are parameterized as a mixture of

Gaussian distributions, clustering is performed to find means of component distribu-

tions. Cluster radiuses (maximum intra-cluster distances) are then proportional to

the component variances. In general, clustering is performed in an unsupervised way,

with the feature space and objective function chosen a priori without reference to

16

2.5 Automating IE 17

the target function over the data, generally to be a function which it is hoped will

correlate well with the intended use of the clusters generated. A frequent problem,

expressed in (Bensaid et al., 1996) is that the objective function does not correlate

well enough with the task at hand.

Collocational regularities have been exploited to produce classes for language mod-

eling and word-sense disambiguation, with the classes produced by clustering the data

without external labels (Lee, 1997), (Rooth et al., 1999). This kind of distributional

clustering has also been used for feature reduction for text classifiers (Hofmann, 1999),

(Baker & McCallum, 1998). Agglomerative clustering was performed by Brown et al

(Brown et al., 1992). Similarity metrics for clustering intended for language models

are based on trigram or bigram statistics, and are generally performed by conducting

bottom-up clustering, where two clusters are merged if their merge causes the smallest

loss in between-class mutual information. A word wi is similar to another wj if wi can

be used to predict the probability of unseen word pairs involving wj (Dagan et al.,

1998). Other similarity measures used include KL divergence and Jensen-Shannon

divergence.

The problem of unsupervised discovery of word-classes has been referred to both

as “clustering” in (Lee, 1997), and as factor analysis (Hofmann, 1999). Clustering

has traditionally been the term used when word-classes have hard boundaries, and a

word can be found in a single class. Factor analysis assigns words to soft classes; a

particular word is modeled as a set of weights for a mixture distribution. Concrete

examples of semantic classes that are reliably produced by completely unsupervised

clustering include weekdays, names and words referring to people, as well as the

syntactic classes of definite and indefinite articles. By seeding with target examples,

Riloff and Jones (1999) are able to cluster groups of Locations, Weapons and Titles

for use in information extraction with reasonable accuracy.

2.5.2 Training Data Bottleneck in Automating IE

Most of the work in unsupervised clustering has focused on classes which are useful

for language modeling and word-sense disambiguation, not information extraction.

The rest of the work mentioned in section 2.4 requires large amounts of labeled train-

ing data, or many human-hours in hand-writing rules. For rapid deployment of an

information extraction system in a new domain, we would like to have to provide a

system with only a few examples of our target concepts, and have it automatically

17

18 Background

infer which other examples are also relevant, and learn rules over this expanded set.

Collins and Singer (Collins & Singer, 1999) have done some work on reducing

training data requirements for the named entity classification task (semantic class la-

beling). They compared a variety of boot-strapping algorithms for named entity clas-

sification. Their algorithms use a rich feature set, including not only string-identity

and context-identity, but context type (PP versus appositive), capitalization, con-

tains word, non alphabetic chars. They direct their approach at only a sub-set of the

examples a full information extraction system would need to label, labeling only those

NPs containing something already identified as a proper noun in either an appositive

or PP, and perform a four-way classification (person /location / organization /noise).

They achieved very good results by their conservative approach of adding a few new

examples to the bootstrapping algorithm at each step. Autoslog-ts (Riloff, 1996a)

automates learning semantic relations by requiring the user to be involved only at the

filtering stage, once the algorithm has identified relations likely to be of interest.

2.6 Scope of the Problem We Address

We focus on simultaneously addressing the problems of semantic lexicon construction

and semantic class labeling. That is, our goal is to find words and phrases which

are potential instances of the target class, and correctly classify whether they are

used in this way in a particular context in text. In particular, we attempt to learn

probability distributions over dictionary entries, then use those to assign probabilities

over possible instances in new documents .The reason we need to address semantic

class labeling in context is that dictionary entries may be ambiguous, for example

“leader” is ambiguous between people and organizations. When we see the context

it occurs in, we attempt to assign it to the correct class.

2.6.1 Target Classes

We will work with the target classes people, locations and organizations. Our

goal will be to correctly identify instances of these in text documents. While a simple

system which identifies all instances of dictionary entries as positive may appear

tempting, in practice there is ambiguity over terms; for example “Arizona” is both

the name of a US state, and a company, while “Paris” is both the name of a city and

18

2.7 Related Work 19

a person.

2.6.2 Inputs

The inputs we work with are small lists of words. We will describe these in more

detail in Chapter 3. We also work with text documents which have been parsed into

noun-phrases and their lexico-syntactic contexts. More detail on this is also given in

Chapter 3. We work almost exclusively with small lists of words in this dissertation,

though it would be reasonable also to work with long lists, if we have them at our

disposal.

2.6.3 Outputs

The outputs of our learning are probability distributions over noun-phrases and con-

texts. We will evaluate these by using them to identify the target classes in new

documents. More details about how this extraction is performed will be given in

Chapter 3.

2.7 Related Work

We have included descriptions of related work in this chapter as we described the

information extraction problem. We also give related work in later chapters as we

cover topics in more detail. In this section we include a summary of the most salient

related work, related work not covered in other sections, and a guide to the sections

where other related work is discussed.

2.7.1 Information Extraction

We introduced some related work on learning to cluster similar word-types in this

chapter in Section 2.4, learning specific word classes for information extraction in this

Chapter in Section 2.5.2 as well as in Chapter 3, section 3.5.4.

Also relevant is work by Kou et al (Kou et al., 2005), who use a large dictionary

converted to an HMM for high precision extraction of dictionary entries and variants

on those entries. This is an application in which a pre-existing dictionary is required,

19

20 Background

in contrast with our approach, which learns both a dictionary and contexts from a

small amount of additional data. While we require a shallow parser to pre-process

our data, Sarawagi and Cohen (Sarawagi & Cohen, 2004) allow the incorporation of

segmenting the text with the identification of named entities.

2.7.2 Active Learning

We describe most related work on active learning in Chapter 4 Section 4.2. In addi-

tion, Raghavan et al (Raghavan et al., 2005) show that users are able to efficiently

label features independent of their context in documents, and that this contributes

to greater efficiency in learning for document classification. This approach is similar

to our single-feature-set labeling that we will describe in Chapter 4 Section 4.4.

2.7.3 Graph Structure and Semi-supervised Learning

We introduced some related work on semi-supervised learning in this chapter in Sec-

tion 2.3.3. We describe other related work on semi-supervised learning in Chapter 3,

sections 3.4.5 and 3.4.2.

We describe most related work on graph structure in Chapter 5. At the intersection

of theory on graph structure and semi-supervised learning, Balcan et al (Balcan et al.,

2004) show that cotraining effectiveness can be related to graph properties of the

underlying labeled and unlabeled data. In particular, we can expect cotraining-like

algorithms to perform well if the data has the expander property. That is, they will

perform well if the probability mass of examples for which the algorithm is confident

for only one of the two feature sets, is greater than the probability mass of example

for which the algorithm is confident for both.

Blum et al (Blum et al., 2004) give an algorithm for using randomized min-cuts

for semi-supervised learning, and describe a way of constructing the graph of the data

which is amenable to this. They suggest that the data should be connected in one large

component, or most of the data should be present in the largest component. They

also compare joining nodes with edges based on a function of their similarity. This

contrasts with our simple approach of joining all nodes, based on a single cooccurrence.

We will show in Chapter 4 that active learning can compensate for cases that do not

satisfy connectivity conditions, by selecting examples from components not covered by

20

2.8 Chapter Conclusions 21

labeled examples. Using a threshold criterion for adding edges would be an interesting

extension to our work.

Joachims (Joachims, 2003) also models data for semi-supervised learning, used a

fixed number of nearest neighbors for each node as the edges in the graph. This way

of setting up the graph means that the graph may not have power-law properties.

Agichtein’s dissertation (Agichtein, 2004) is related in spirit to this work. The task

Agichtein addresses is of identifying relations, such as locationOfCompany(L,C) or

directoryOfCompany(C,P). The Snowball system is used to bootstrap from a small

number of labeled examples. The QTExtract system constructs queries to identify

new relations to be used for training. Agichtein evaluates the influence of the graph-

structure on his learning task, by showing that the data has power-law structure, and

measuring the reachability of the target examples within that graph.

2.8 Chapter Conclusions

In this Chapter we have given an overview of some background and terminology, from

both linguistics and machine learning. We briefly defined the information extraction

task we will be tackling in this thesis, and gave some pointers to where related work

can be found in the thesis.

In the next chapter we will give more concrete details about the information ex-

traction task, including the data and training information we use, and our evaluation

methods. We will describe experiments on performing information extraction, which

we will improve on in later chapters with active learning (Chapter 4).

21

22 Background

22

Chapter 3

Comparison of Bootstrapping

Algorithms for Information

Extraction

Our goal is to minimize the effort required to train information extrac-

tion systems. In Chapter 2 we described the information extraction task of

learning to identify locations, organizations and people in context, and the

desired outputs of training. In this chapter we will show that we can train

an information extraction system using a very small amount of training

data in the form of example words from the target class. We will describe

the properties of the data, and examine three algorithms which exploit

a separation of the multiple feature sets present in the data: metaboot-

strapping, cotraining, and coEM. We will also examine EM, which does

not make use of separation of the feature sets. We will concern our-

selves with identifying the three semantic classes locations, people, and

organizations in sentences in text documents. We will describe a set

of assumptions about the properties of the data and the task, that make

this task possible with very little training data. In addition we investigate

the effects of different seeds on bootstrapping performance, the effects

of unlabeled training set size, and the use of frequency information and

stopwords.

23

24 Comparison of Bootstrapping Algorithms for Information Extraction

3.1 Introduction

In this chapter we will show that we can train an information extraction system using

a very small amount of training data in the form of example words from the target

class (seed words which will be described in more detail in Section 3.3). In order

to do this we will have to describe data representations and algorithms, as well as

assumptions made by the algorithms.

The questions we will attempt to answer in this chapter are:

1. How can we represent data so we can use it to learn to extract instances of

semantic classes?

2. What algorithms can we use for bootstrapping?

3. How much does bootstrapping contribute, over using the seeds alone for boot-

strapping?

4. Does it matter which seeds we choose?

5. Should we correct any errors introduced by using seeds?

6. Can we learn all classes equally well with the same representation?

7. How does corpus size affect learning?

8. What assumptions do the algorithms make about the data representation, and

how well are those assumptions satisfied?

In Table 3.1 we summarize the dimensions we will explore in this chapter. We will

give more detail about each of these in the Sections below.

3.2 Data and Representation

Recall from Chapter 2 that we wish to learn to extract locations, people and

organizations in context from text documents. In this section we describe the

kinds of text documents we use in our experiments, and how we represent the target

classes and their contexts in those web pages.

24

3.2 Data and Representation 25

Dimension Instantiations

Data representation Output of a shallow parser

Training corpus Company web pages, and TREC web collection

Target classes people, locations and organizations

Algorithm used Metabootstrapping, cotraining, coEM, and EM

Number of seeds used 10, 20 and 253

Seed selection method Thoughtful, random from list

Treatment of errors in labeling Uncorrected, corrected

Corpus size Moderate, large

Table 3.1: Summary of issues we will consider in this chapter.

Note that we address only extraction of information from the sentences in text

documents. Extraction from tables and semi-structured layout require different tech-

niques, which are well described elsewhere (Cohen et al., 2002; Hurst, 2000; Knoblock

et al., 2000).

3.2.1 Data Sources

The experiments in this chapter use data from two sources: company web pages and

web pages from the TREC WT10g collection. Details about each are given below.

Company Web Pages

The company web pages come from crawling seven top-level economic sectors from

a hierarchy published by Marketguide http://www.marketguide.com. The seven

sectors are shown in Table 3.2. The web sites were crawled in 1998. This data is a

subset of the company data described in (McCallum et al., 1998). It consists of 4392

corporate web pages of which 4160 were used for training and 232 were set aside as

a test set. We refer to this data as the 7sector data. It can be obtained from http:

//www.cs.cmu.edu/afs/cs/project/theo-20/www/data/bootstrappingIE/.

TREC WT10g Web Collection

The TREC WT10g Web Collection (Bailey et al., 2003) is a set of web pages collected

for the TREC information retrieval evaluation. Information about obtaining this

25

26 Comparison of Bootstrapping Algorithms for Information Extraction

basic materials sector

energy sector

financial sector

healthcare sector

technology sector

transportation sector

utilities sector

Table 3.2: Seven top-level economic sectors from Marketguide’s hierarchy. Pages collected

from these sectors were used as the 7sector data-set.

WT10g name num docs

wtx051 15,724

wtx051-052 30,552

wtx051-053 48,921

wtx051-056 99,324

Table 3.3: TREC WT10g data subsets used in our experiments and the number of docu-

ments with data in each subset, after parsing.

data can be found at http://www.ted.cmis.csiro.au/TRECWeb/access_to_data.

html. The data consists of 10 gigabytes of html and text web pages, crawled in 1997.

We identify a number of subsets, shown in Table 3.3, in order to have larger and

larger collections of documents, ranging from 15,000 documents to just under 100,000

documents.

3.2.2 Data Preprocessing

All HTML was stripped from the pages. For the representation we used for our task,

which will be described in Section 3.2.3, we need to be able to identify sentences and

sentence fragments. In web pages, this can include noun-phrases in headings and lists

that are not attached to any other sentences, as well as sentences in headings that do

not include punctuation. In order to separate sentences and sentence fragments when

punctuation is missing, we added periods heuristically. The algorithm for adding

periods is due to Mike Thelen of the University of Utah and is given in Table 3.4.

26

3.2 Data and Representation 27

Periods are added only at the end of lines.

If the line ends with punctuation, no period is added.

If the final word in the line is any of:

{“the”, “a”, “an”, “to”, “of”, “by”, “at”, “on”, “in”, “click”,

“is”, “and”, “or”, “but”, “not”} no period is added.

If the next line is blank, add a period.

If there are five or fewer words in the line, add a period.

Table 3.4: Heuristic Algorithm for inserting periods in web pages for subsequent parsing.

The HTML is stripped from these pages before the algorithm is applied.

After adding periods to identify sentence boundaries, we parsed the sentences

using Sundance (Riloff & Phillips, 2004), a parser from the University of Utah, then

ran Autoslog (Riloff, 1996b) over the sentences. This results in a corpus of noun-

phrases, each paired with local context in the form of a lexico-syntactic pattern. We

described lexico-syntactic patterns in Section 2.1.7. These patterns come from a small

set of possible patterns, given in Table 3.5. The version of Sundance and Autoslog

that we used is version 3.0. We ran Autoslog in an exhaustive fashion, so all possible

lexico-syntactic patterns occurring with any noun-phrase were identified, that is, the

flag -u 1 was employed. For extraction using those contexts, we used the domain

“terrorism”, and the shepherd output format was selected, ie -p shepherd.

3.2.3 Task Representation

An instance x ∈ X is a noun-phrase and a lexico-syntactic context, produced by

Autoslog. The lexico-syntactic contexts were introduced in Section 2.1.7 and the way

they are obtained from web pages was described in Section 3.2.2 and Table 3.5. We

will refer to these lexico-syntactic contexts as contexts for the remainder of this thesis.

Thus an example xi is made up of the pair < ni, ci >, where ni ∈ N refers to the

noun-phrase in an instance xi, and ci ∈ C refers to the context. The instance space is

thus N × C, and we will be aiming to learn functions f : N × C → Y, where Y refers

to the set of possible class labels for instances. Table 3.6 summarizes this notation.

N and C can both take on a very wide set of values, but many of these values will

not appear in the training corpus. Our training corpus is a sample from the set of

possible values N × C, sampled according to the underlying probability distribution

27

28 Comparison of Bootstrapping Algorithms for Information Extraction

Pattern Example

<subj> passive verb <> was murdered

<subj> active verb < > bombed

<subj> verb infinitive < > attempted to kill

<subj> auxtobe noun <> was victim

<subj> auxtohave noun <> has talent

active verb <dobj> bombed < >

infinitive <dobj> to kill <>

verb infinitive <dobj> threatened to attack < >

noun auxtobe <dobj> fatality was <>

noun auxtohave <dobj> farmers have < >

noun pp <obj-prep> bomb against < >

active verb pp <obj-prep> killed with < >

passive verb pp <obj-prep> was aimed at < >

<subj> active verb dobj < > declare dividend

infinitive pp <obj-prep> to expand in < >

Table 3.5: All lexico-syntactic contexts used. Each of these is instantiated with words,

as shown in the examples. For noun-phrases, the head of the noun is instantiated as

part of the noun phrase; the context can match noun phrases with different determin-

ers or adjectives as part of the noun phrase. For the extracted portion (eg <subj>)

the entire noun phrase is extracted.

28

3.2 Data and Representation 29

Symbol Meaning

X the set of possible instances

X a sample of instances

Xtrain a sample of instances used for training

Xtest a sample of instances used for testing

k the size of the training set Xtrain, in number of instances

xi the ith example in sample of instances X

yi the label associated with xi

zi the pair < xi, yi >

N the set of possible noun phrases

N a bag of noun phrases; the projection of X onto N

ni the ith noun phrase in a sample X

{n : n ∈ X} the set of unique noun phrases in X

mn ‖{n : n ∈ X}‖ the number of unique noun phrases in X

C the set of possible contexts

C a bag of contexts, the projection of X onto C

ci the ith context in a sample X

{c : c ∈ X} the set of unique contexts in X

mc ‖{c : c ∈ X}‖ the number of unique contexts in X

Table 3.6: Notation for referring to instances.

29

30 Comparison of Bootstrapping Algorithms for Information Extraction

corpus name num docs num unlabeled examples k mn mc

7sector 4,160 228,574 75,737 23,278

wtx051 15,724 1,829,020 442,700 302,565

wtx051-052 30,552 3,555,045 800,192 504,048

wtx051-053 48,921 5,313,224 1,168,248 689,776

wtx051-056 99,324 10,588,096 2,190,965 1,151,849

Table 3.7: Descriptive overview statistics for corpora used in this thesis: the number of

documents, number of <noun-phrase,context> pair instances (k), number of unique noun

phrases (mn) and contexts (mc) in each set.

PN ,C. For language, the probability distribution generating words and phrases is Zipf,

which means that many possible values will be seen only rarely, and may not occur at

all in a sample. We will refer to a sample from PN ,C as X = x1..xk. We will refer to

the sample of noun phrases occurring in X as N = n1..nk and the sample of contexts

as C = c1..ck.

Because there is a chance that some features may not be seen in the training

set, we are interested in the distribution of the noun-phrase and context features in

the training and test sets. Specifically we are interested in the size of the training

set, in number of instances k as well as the size of the noun phrase and context sets

appearing in the training set: mn and mc.

Table 3.7 shows these values along with the number of documents for the 7sector

corpus and the TREC corpora used as training data in this thesis.

In Sections 3.5.3 and 3.7.6 we discuss overlap between the training and test corpora

in terms of values taken on by the noun-phrase and context attributes.

The learning task we address is learning a function from noun-phrases and contexts

to a binary classification indicating whether this instance of the noun phrase belongs

to a particular semantic category:

fClass(ni, cj) = y

where y ∈ {0, 1}.

In practice, the meaning of a noun-phrase context pair may partially depend on

the larger context, and so a person who is labeling test examples may label the same

example < ni, cj > positive or negative depending on where it occurs. We discuss

30

3.3 Weak Initial Labeling with Seeds 31

this with measurements of inter-rater agreement in Section 3.5.2. Thus we wish to

map from the noun-phrase, context and target class to a probability of being in that

class. The function we are trying to learn can be written as

fClass : N × C → [0..1]

where the value of fClass is P (Class|ni, ci).

Viewed as a statistical estimation problem, we wish to estimate

P (Class|ni, ci)

using P̂ (Class|ni, ci) = f̂Class(ni, ci) for arbitrary pairs of noun-phrases and contexts.

3.3 Weak Initial Labeling with Seeds

Since we are interested in minimizing the burden on a user for training an extraction

system, we would like the method of providing initial information to be as easy as

possible. We employ weak labeling, introduced in Section 2.3.3, in a form that does

not necessarily require the user to inspect the data at all. The specific method we

propose consists of asking the user to provide a small set of nouns or noun phrases

which may be representative of the target class, which we will call seeds. In many

of the experiments that are described in this chapter, 10 initial words are provided

by the user. In the following sections we describe the types of seeds used in our

experiments, how those seeds are used to automatically label an unlabeled corpus of

data, and ways of addressing possible ambiguity in the initial seeds set.

3.3.1 Seeds

In order to characterize the target class, we ask the user for a small set of words

which may occur in positive examples of it, as part of noun phrases, ie as examples

of n ⊂ N . For example, when the user wants to train the system to recognize the

class locations, they may provide a list of 10 country names. These are positive

examples from the feature set N . The majority of experiments described in this

thesis were run with the the seeds shown in Table 3.8. The locations seeds are the

same as those used in (Riloff & Jones, 1999). In Section 3.7.5 we will also compare

31

32 Comparison of Bootstrapping Algorithms for Information Extraction

Class Seeds

locations australia, canada, china, england, france, germany, japan,

mexico, switzerland, united states

organizations inc., praxair, company, companies, dataram, halter marine group,

xerox, arco, rayonier timberlands, puretec

people customers, subscriber, people, users, shareholders, individuals,

clients, leader, director, customer

Table 3.8: Seeds used for weak labeling of data, for initialization of bootstrapping.

the effects of using different seeds for this task. The seeds for organizations and

people were chosen by sorting noun-phrases in the training set by frequency, and

asking the trainer to select the first ten matching the target class. Note that this

method does not necessarily lead to the best choice of seeds, but is a simple method

not requiring skill or experience. We could also ask the user to think up some words

which may occur in the target class, avoiding the need to inspect the data at all. The

seeds provided by the user are used to label the data, with one of two methods: (1)

fixed initialization, via head-labeling and (2) active initialization. We describe these

methods below.

3.3.2 Fixed Initialization

Fixed initialization uses a form of approximate or weak labeling we call head-labeling.

All pairs in which the noun phrase head (often the right-most word, as described in

Section 2.1.3) matches a seed word are considered to be positive training instances,

regardless of the context in which they appeared. This approach was also used by

Riloff and Jones (1999). This is frequently correct, but may also introduce some errors.

For example, the word “Canada” as a seed correctly labeled the example “locations

in Eastern Canada”1 as a positive example of the class locations, but incorrectly

labeled the example “Royal Bank of Canada used technology”2 as a positive example.

In both cases the word we identified automatically as the head-word was “Canada”.

In Section 3.5.1 we will discuss in detail the accuracy obtained by using the seed

1“Ultramar Diamond Shamrock has a strong network of approximately 4,400 locations in 10

Southwestern states and eastern Canada.”
2“The Royal Bank of Canada has used smart card technology since 1985 for access control to the

bank’s on-line electronic business banking services”.

32

3.4 Algorithms 33

words for weak labeling on our datasets, as well as providing more examples both

correctly and incorrectly labeled using this approach.

3.3.3 Active Initialization

To address occasional errors introduced by ambiguity in the automatic labeling phase,

we implemented a novel method of labeling training data that incorporates active

learning. In active initialization, examples matching the seed words for a given task

are interactively labeled by the trainer before beginning the learning process. The

process is shown here as Algorithm 1.

Algorithm 1 Active Initialization

inputs: a set of seeds S from feature set N

for all xi =< ni, ci >: matchesSeed(S, ni) do

f̂Class(xi) = askUserToLabel(xi)

end for

Note that this contrasts with fixed initialization, in that additional examples are

labeled by the user. It also contrasts with regular batch labeling, in which a random

subset of examples, or all examples, are labeled by the user. The examples are

selected for labeling by the algorithm, which asks for confirmation before labeling

each as positive for bootstrapping.

We might hypothesize that by actively labeling examples at the outset we can

provide the learning algorithms with better initial examples and thus improve ex-

traction performance. For reasonably frequent seed words, this requires significant

numbers of examples to be labeled at the outset; 894 examples for locations, 3388

for organizations, and 5257 for people, for the seed words in Table 3.8 and the

7sector training data.

Figure 3.1 summarizes the labeling process.

3.4 Algorithms

In this section we describe several algorithms for learning to extract semantic classes

using noun-phrases and their contexts, given weak labeling of the type described in

Section 2.3.3. These algorithms differ in the way they treat the two feature sets, and

33

34 Comparison of Bootstrapping Algorithms for Information Extraction

Unlabeled data

head−labeled dataUnlabeled data

seed
words

Unlabeled data

head−labeled data +ve

head−labeled data −ve

active
initialization

head
labeling

Figure 3.1: Automatically labeling data using seeds with head-labeling, then correcting

these labels with active initialization.

how they use the unlabeled data. We referred to the groups of features as (1) the

set of noun-phrases N and (2) the set of contexts C. Algorithms which apply to two

feature sets are applicable in other domains too.

The algorithms fall naturally into two classes. First are those that collapse the

features into a single feature set X = N × C. These algorithms learn a model over

X , use it to label or relabel the unlabeled data, and then relearn the model. We will

refer to this class of algorithms as single-view bootstrapping algorithms, and discuss

them more fully in Section 3.4.2. The second set of algorithms uses the feature set

split into N and C explicitly, by learning models over the two feature sets separately,

and using those models separately to label or relabel the unlabeled data. This class

of algorithms has been described as the class of cotraining algorithms, but we will

refer to them as two-view bootstrapping algorithms, and we will discuss this class of

algorithms in Section 3.4.3.

3.4.1 Algorithm Inputs

The algorithms all have the same inputs:

1. seed words S ⊂ N , which are nouns likely to be in examples of the target class

2. unlabeled data X = x1..xk sampled from X = N × C. Each example xk is a

pair consisting of exactly one feature whose value ni is from the set N and one

feature whose value cj is from the set C. N(ni, cj) is the number of examples

with the values ni and the feature cj.

3. A function matchesSeed(S,xi) which specifies whether an example xi matches

one of the seeds in S.

34

3.4 Algorithms 35

3.4.2 Single-view Bootstrapping Algorithms

A single-view set bootstrapping algorithm uses a single model constructed over all

features for learning. The general algorithm is given in Algorithm 2. One instantiation

of this type of algorithm is self-training described by Nigam and Ghani (2000). The

algorithm is trained on the initial labeled data, then assigns labels to the unlabeled

examples for which it has the most confident predictions. It is then retrained using

the initial examples, and those it has labeled itself. Nigam and Ghani found that self-

training did not perform as well as expectation-maximization (EM) on their document

classification task. In this thesis we use EM, and a full description of EM and its

instantiation in our information extraction domain can be found below.

Algorithm 2 General procedure for single feature set bootstrapping algorithms with

weakly labeled positive data. Algorithms vary in how they select and use automatically

labeled examples.

initial training set L0 ← {< xi, ŷi0 >: xi ⊂ X, ŷi0 = matchesSeed(S, xi)}

repeat

train f̂t(ni, cj) on Lt−1

∀xi ∈ X use f̂t(ni, cj) to update ŷit

Lt ← {< xi, ŷit+1
>: satisfiesSelectionCriterion(xi, ŷit+1

)

until (change in models < ε) ∨ (maxIterations reached)

EM

The Expectation Maximization (EM) algorithm is an iterative hill-climbing procedure

for finding a parameterization of a probability density function (PDF) which locally

maximizes the likelihood of the observed data. It is useful in situations in which

the form of the probability density function is known, but the observed data does

not provide the information we need to estimate the parameters. This is the case

with calculating the parameters of mixture distributions, when class membership

of observations is unknown. We call the unknown class membership labels of the

observed data the hidden data. We then use the EM algorithm to iteratively estimate

the values of the hidden data, and use these estimates to update estimates of the

model parameters. In statistical terms, the observed data do not provide us with

a means of calculating the sufficient statistics for the model, but we can iteratively

improve our estimates of these sufficient statistics.

35

36 Comparison of Bootstrapping Algorithms for Information Extraction

The overall description of the EM algorithm is as follows:

Initialization Initialize the parameters of the model to non-singular values.

E-step Calculate the expected values of the hidden data using the current model

parameters.

M-step Update the model parameters using the observed data and the expectations

of the hidden data calculated in the E-step.

Likelihood Test Calculate the likelihood of the observed and hidden data. If the

likelihood has not converged, return to the E-step.

Probabilistic Model

In our setting we assume that the data is generated by a mixture model with two

components. Component one, the positive component, generates a noun-phrase and

a context according to a multinomial distribution for each. Mpos(N) is a multinomial

distribution over all noun-phrases in N , given that an example is in the positive class.

Mpos(C) is a multinomial distribution over all contexts in C, given that an example

is in the positive class. We assume that the multinomials for the noun-phrases and

contexts are conditionally independent, given the class label, and so the PDF for

their joint distribution is just the product of the multinomials. In practice the noun-

phrases and contexts are not completely conditionally independent. We will examine

this assumption in more detail in Chapter 5.

We can therefore write the PDF for the first component as:

fpos(N , C) = Mpos(N)Mpos(C) (3.1)

Similarly,

fneg(N , C) = Mneg(N)Mneg(C) (3.2)

In addition we have the mixture parameter π which determines the probability

of selecting a component to generate an observation. In Bayesian terms, this is the

prior probability of the class. Class membership for each example is determined by

36

3.4 Algorithms 37

the random variable Z, which follows a Bernoulli distribution determined by π. Our

probability model of the complete data is then

f(N , C, Z) = πMpos(N)Mpos(C) + (1− π)Mneg(N)Mneg(C) (3.3)

Note that while we can observe the noun-phrases N and contexts C, we cannot

observe the class memberships Z directly. These are our hidden data. The complete

set of individual parameters that must be learned to fully specify our classifier is

therefore:

nipos
∼Mpos(N)

cjpos
∼Mpos(C)

nineg
∼Mneg(N)

cjneg
∼ Mneg(C)

for ni ∈ N , cj ∈ C

and

π ∼ U(0, 1)

Initialization

In the initialization phase, we set the initial parameters of the model. We have partial

information in the form of seed words, and make the assumption that any pair with

a seed as the head of the noun-phrase is a positive example. We further assume that

all unknown examples are negative.

P̂init(pos| < ni, cj >) =







1 if matchesSeed(ni, S)

0 otherwise
(3.4)

In Section 3.8.1 we discuss three other ways of initializing P̂init(pos| < ni, cj >)

which were also used in the experiments.

We can then use this labeling to calculate the multinomial parameters and the

class prior π. Recall that N(ni, cj) is the number of examples with the values ni and

the feature cj, while mn is the number of unique noun-phrases in the sample X, and

37

38 Comparison of Bootstrapping Algorithms for Information Extraction

mc is the number of unique contexts, and k is the number of instances in the sample

X. To avoid zero probabilities, we use Laplace smoothing:

P̂0(ni|pos) =
1 +

∑

j N(ni, cj, pos)
∑

k,l N(nk, cl, pos) + mn

P̂0(cj|pos) =
1 +

∑

i N(ni, cj, pos)
∑

k,l N(nk, cl, pos) + mc

P̂0(ni|neg) =
1 +

∑

j N(ni, cj, neg)
∑

k,l N(nk, cl, neg) + mn

P̂0(cj|neg) =
1 +

∑

i N(ni, cj, neg)
∑

k,l N(nk, cl, neg) + mc

P̂0(pos) =
1 + N(pos)

2 + k

E-step

In the E-step, we calculate the expected labels of the data using the model parameters.

Specifically, at step t + 1 for each pair we update our estimate of the probability of

that example being in the positive class, based on the parameters of the model we

estimated at step t:

P̂t+1(pos|ni, cj) =
P̂t(ni, cj|pos)P̂t(pos)

P̂t(ni, cj)
(3.5)

=
πP̂t(ni|pos)P̂t(cj|pos)

πP̂t(ni|pos)P̂t(cj|pos) + (1− π)P̂t(ni|neg)P̂t(cj|neg)
(3.6)

These are our expectations for the hidden class labels Z. Note that for two instances

xm =< ni, cj > and xr =< ni, cj >, ie two distinct examples with the same features

ni and cj, zm = zr.

38

3.4 Algorithms 39

M-step

In the M-step we estimate the parameters based on the labeling of the data. In

particular, we estimate the class prior π̂, as well as the parameters for each feature

P̂ (ni|pos), P̂ (ni|neg), P̂ (cj|pos), and P̂ (cj|neg). We use Laplace smoothing, and find

the expected number of occurrences of examples in each class by using the estimated

class labels P̂ (pos|ni, cj) in place of the hidden true labels Z. For examples in which

the noun-phrase has a seed as its head, we use the assumed label positive rather than

the expectation for that label. In other words, examples initially labeled positive

remain unchanged throughout the EM process.

P̂t(ni|pos) =
1 +

∑

j E[Npos(ni, cj)]
∑

k,l E[Npos(nk, cl)] + mn

P̂t(cj|pos) =
1 +

∑

i E[Npos(ni, cj)]
∑

k,l E[Npos(nk, cl)] + mc

P̂t(ni|neg) =
1 +

∑

j E[Nneg(ni, cj)]
∑

k,l E[Nneg(nk, cl)] + mn

P̂t(ci|neg) =
1 +

∑

i E[Nneg(ni, cj)]
∑

k,l E[Nneg(nk, cl)] + mc

π̂t =
1 +

∑

i,j E[Npos(ni, cj)]

|Sample|+ 2

where

E[Npos(ni, cj)] = P̂t(pos|ni, cj)N(ni, cj)

with the P̂t(pos|ni, cj) calculated in the E-step when not matchesSeed(ni, S), and

with P̂t(pos|ni, cj) = 1 when matchesSeed(ni, S)

Similarly,

E[Nneg(ni, cj)] = P̂t(neg|ni, cj)N(ni, cj)

= (1− P̂t(pos|ni, cj))N(ni, cj)

Termination Condition

Next we check the termination condition by calculating the log likelihood of the

observed data given the model parameters.

39

40 Comparison of Bootstrapping Algorithms for Information Extraction

log(l) =
∑

i,j

log[(π̂tP̂t(ni, cj|pos)) + (1− π̂t)P̂t(ni, cj|neg)]

=
∑

i,j

log[(π̂tP̂t(ni|pos)P̂t(cj|pos)) + (1− π̂t)P̂t(ni|neg)P̂t(cj|neg)]

If the log likelihood has not converged, we return to the E-step.

3.4.3 Two Feature Set Bootstrapping Algorithms

We have just finished discussing algorithms which infer new or updated labels for

partially labeled examples, based on the current set of labels by considering examples

in their entirety. In contrast, two feature set bootstrapping algorithms treat the two

feature sets N and C separately. The algorithm learns a model for each: f̂n(ni) and

f̂c(cj). These two models are used separately for labeling the unlabeled training data.

Algorithm 3 provides the general algorithm for two-view bootstrapping algorithms.

It differs from single feature set bootstrapping in that the two views are used in

alternation to label the unlabeled data. This chapter describes experiments with

three two-view bootstrapping algorithms: metabootstrapping, coEM, and cotraining,

described below.

Algorithm 3 General procedure for two feature set bootstrapping algorithms with weakly

labeled positive data. Algorithms vary in how they select and use automatically labeled

examples. The results may differ depending on whether we start with f̂nt or f̂ct.

initial training set L0 ← {< xi, ŷi0 >: xi ⊂ X, ŷi0 = matchesSeed(S, xi)}

repeat

train f̂nt
(ni) on Lt−1

∀xi ∈ X use f̂nt
(ni) to update ŷit

Lt ← {< xi, ŷit >: satisfiesSelectionCriterion(xi, ŷit)}

train f̂ct
(ci) on Lt

∀xi ∈ X use f̂ct
(ci) to update ŷit+1

Lt+1 ← {< xi, ŷit >: satisfiesSelectionCriterion(xi, ŷit)}

until (change in models < ε) ∨ (maxIterations reached)

40

3.4 Algorithms 41

3.4.4 Metabootstrapping

Metabootstrapping (Riloff & Jones, 1999) is a simple two-level bootstrapping algo-

rithm using two features sets to label one another in alternation. It is customized

for information extraction. There is no notion of negative examples or features, but

only positive features and unlabeled features. The two feature sets, noun-phrases and

contexts, are used asymmetrically. For a noun-phrase ni the label f̂n(ni) does not

change once it is assigned. For a context, however, the label f̂c(cj) can change at

different steps in the algorithm.

Heuristics are used to score the noun-phrases ni and contexts cj at each iteration.

For noun-phrases ni the scores are based on co-occurrences with positive and unla-

beled contexts cj, using both frequency of co-occurrence, and diversity of co-occurring

features. Similarly, for contexts the score depends on the cooccurring noun phrases

and their scores. The highest scoring features which have not been labeled acquire a

label f̂n(ni) or f̂c(cj).

Metabootstrapping treats the noun-phrases and their contexts asymmetrically,

not only in the permanence of labeling, as described above, but also in the way

noun phrases and contexts contribute to labeling each other. Once a context is

labeled as positive, all of its co-occurring noun-phrases are assumed to be positive.

However, a noun-phrase labeled as positive is part of a committee of noun-phrases

voting on the next context to be selected. After a phase of bootstrapping, all contexts

learned are discarded, and only the best noun-phrases are retained in the permanent

dictionary. The bootstrapping is then recommenced using the expanded list of noun-

phrases. Once a noun-phrase is added to the permanent dictionary, it is assumed to

be representative of the positive class, with confidence of 1.0.

These asymmetries may derive from the empirical development of the algorithm.

As we will see in Section 3.5.2, contexts are much more ambiguous than noun-phrases,

when viewed in isolation. Thus an alternative algorithm which may be more effective

would use the reverse asymmetry – permitting all contexts to be labeled positive when

identified by a single noun-phrase, but requiring voting among contexts for labeling

noun phrases.

Pseudocode for the metabootstrapping algorithm is shown in Figure 4.

41

42 Comparison of Bootstrapping Algorithms for Information Extraction

Algorithm 4 Metabootstrapping algorithm.

initialize based on seeds S: f̂nt
(ni) ==







1 if matchesSeed(ni, S)

0 otherwise

St
outer ← S

repeat

St
inner ← St

outer

initialize context list: K = {}

repeat

Score contexts:

f̂ct
(cj) =

∑

ni
f̂nt

(ni)× I(ni, cj)
∑

nk
I(nk, cj)

× log
∑

ni

f̂t(ni)× I(ni, cj)

where I(ni, cj) is the indicator function which is 1 if ni and cj cooccur in the

training set X.

c′ = argmax{ci:ci¬∈K}f̂ct
(ci)

K ← K ∪ c′

add all noun phrases cooccurring with context c′:

St+1
inner ← S

t
inner ∪ {ni : I(ni, c

′) = 1}

until |K| == 10 ∨ f̂ct
(c′) < 0.7

update Souter:

St+1
outer ← St

outer ∪ argmax5ni
(
∑

(1 + 0.1(f̂ct
(cj)× I(ni, cj))

until maxIterations reached

42

3.4 Algorithms 43

3.4.5 Cotraining

Cotraining (Blum & Mitchell, 1998) is a bootstrapping algorithm that was originally

developed for combining labeled and unlabeled data for text classification, and has

been used successfully for named entity classification (Collins & Singer, 1999). At a

high level, it uses a feature split in the data and starting from seed examples, labels the

unlabeled data and adds the most confidently labeled examples incrementally. Unlike

Collins and Singer (Collins & Singer, 1999), we treat noun phrases and contexts as

atomic units, and do not match based on substrings or other properties, apart from

the matchesSeed(ni, S) operator. This means that cotraining has access to the same

view of the data as other algorithms described in this feature. Because cotraining

requires negative examples, negative seeds are provided in the form of stopwords.

When used in our information extraction setting, the algorithm details are as given

in Algorithm 5.

Note that cotraining assumes that we can accurately model the data by assigning

noun-phrases and contexts to a single class. When we add an example, it is either

entirely a member of the class (assigned to the positive class, with a probability of

1.0) or not (assigned to the negative class, with a probability of 0.0 of belonging to

the target class). As we will see in section 3.5.2, many noun-phrases, and many more

contexts, are inherently ambiguous. Cotraining may harm its performance through

its hard (binary 0/1) non-probabilistic class assignment.

3.4.6 coEM

coEM is a hybrid algorithm, proposed by Nigam and Ghani (2000), combining fea-

tures from both cotraining and Expectation-Maximization (EM). coEM is iterative,

like EM, but uses the feature split present in the data, like cotraining. The separa-

tion into feature sets we use is that of noun-phrases N and contexts C, as with our

implementations of metabootstrapping and cotraining. coEM proceeds by initializing

the noun-phrase classifier f̂n(ni) = P̂ (class|ni) using the labeled data only. Then

f̂n(ni) is used to probabilistically label all the unlabeled data. The context classifier

f̂c(cj) = P̂ (class|cj) is then trained using the original labeled data plus the unlabeled

data with the labels provided by f̂n. Similarly, f̂c then relabels the data for use by f̂n,

and this process iterates until the classifiers converge. For final predictions over the

test set, f̂n and f̂c predictions are combined by assuming independence, and assigning

43

44 Comparison of Bootstrapping Algorithms for Information Extraction

Algorithm 5 Cotraining algorithm for our information extraction setting

initialize based on seeds Spos, Sneg : f̂n0
(ni) =







1 if matchesSeed(ni, Spos)

0 if matchesSeed(ni, Sneg)

K1
pos = {}

K1
neg = {}

repeat

Use f̂nt
to score contexts, using labeled data only:

f̂ct
(cj) =

∑

ni∈Spos∪Sneg
f̂nt

(ni)N(ni, cj)
∑

ni∈Spos∪Sneg
N(ni, cj)

select a single new positive context c′ = argmax{ci:ci¬∈K}f̂ct
(ci)

Kt+1 ← Kt ∪ c′

repeat

select new negative context c′ = argmin{ci:ci¬∈Kneg}f̂ct
(ci)

Kt+1
neg ← Kt

neg ∪ c′

until (10 new contexts added to Kneg ∧ f̂ct
(c′ > 0.7))

Score contexts: f̂ct
(cj) =







1 if matchesSeed(ni, Kpos)

0 if matchesSeed(ni, Kneg)

Use f̂ct
to score noun phrases, using labeled data only:

f̂nt
(ni) =

∑

cj∈Kpos∪Kneg
f̂ct

(cj)N(ni, cj)
∑

cj∈Kpos∪Kneg
N(ni, cj)

select a single new positive noun phrase n′ = argmax{ni:ni¬∈Spos}f̂nt
(ni)

St+1
pos ← St

pos ∪ n′

repeat

Select new negative noun-phrase n′ = argmin{ni:ni¬∈Sneg}f̂nt
(ni)

St+1
neg ← St

neg ∪ n′

until 10 new negative noun phrases added

until (change in models < ε) ∨ (maxIterations reached)

44

3.5 Assumptions and Biases 45

the test example probability proportional to f̂n(ni)f̂c(cj).

Note that coEM does not perform a hard clustering of the data, but assigns to

each noun-phrase and context a probability of belonging to the positive class. This

may reflect well the inherent ambiguity of many terms.

Algorithm 6 CoEM algorithm for our information extraction setting

initialize based on seeds S: f̂n0
(ni) ==







1 if matchesSeed(ni, S)

0 otherwise
repeat

Use N to label C:

f̂c(cj) =

∑

ni
f̂n(ni)∗N(ni ,cj)

N(.,cj)

Use C to label N :

f̂n(ni) =











1 if matchesSeed(ni, S)
∑

cj
f̂c(cj)∗N(ni,cj)

N(ni,.)
otherwise

until (500 iterations ∨ change < ε)

The algorithm is as shown in Algorithm 6.

3.5 Assumptions and Biases

The bootstrapping algorithms described in Section 3.4 have a number of assumptions

in common: (1) that initialization from seeds leads to labels which are accurate for the

target class; (2) that seeds will be present in the data; (3) that distribution with simi-

lar phrase contexts correlates with semantic similarity; and (4) that noun-phrases and

their contexts are redundant and unambiguous with respect to the semantic classes

we are attempting to learn. These introduce a model selection bias which makes

generalization possible, and which reduces the complexity of learning. Violation of

these assumptions may affect the learning. This section assesses the validity of each

of these assumptions by examining the data.

3.5.1 Initialization from Seeds Assumption

All the algorithms considered here use seed words as their source of information about

the target class. An assumption made by all these algorithms is that seed words

45

46 Comparison of Bootstrapping Algorithms for Information Extraction

Corpus Class Seed-density % Positive % Positive

(/100) noun phrases Instances

7sector locations 0.29 1.8 4

wtx-051-056 0.16

7sector organizations 1.49 6.4 12.8

wtx-051-056 0.25

7sector people 1.10 8.57 7.2

wtx-051-056 0.47

Table 3.9: Density of seed words per 100 instances in fixed corpus of company web pages,

as well as percent of training collection which is positive, based on sample of 500 (n, c)

instance pairs.

suggested by a user will be present in the data. We assess this by comparing seed

density for three different tasks over two types of data, one collected specifically for

the task at hand (7sector), and one which we can consider to be drawn according to

a uniform random distribution over documents on the world wide web (wtx051-056).

The seeds we use for initializing bootstrapping all algorithms are shown in Table 3.8.

The density of seed words in different corpora is shown in Table 3.9. Note that the

people and organizations classes are much more prevalent in the company data we

are working with than in random documents.

In addition, we can assess this assumption by looking at different candidate seeds

for the same task. We took a list of 253 country names from a list of country domain

names, and took subsets of size 10 and 20 from this list. The number of occurrences

of the words in the list was quite variable, as shown in Table 3.10.

Accuracy of Head Labeling

Another assumption that arises from using seeds is that labeling using them accurately

labels items in the target semantic class. All three algorithms initialize the unlabeled

data by using the seeds to perform head labeling. Any noun-phrase with a seed word

as its head is labeled as positive. For example, when canada is in the seed word list,

both “eastern canada” and “marketnet inc. canada” are labeled as being positive

examples. Table 3.11 shows the precision and estimated recall of head-labeling on the

7sector training set. Tables 3.12, 3.13 and 3.14 show the precision for these classes,

46

3.5 Assumptions and Biases 47

Seed Num Seeds Examples Matching σ Examples Matching

Set(s) (∗ Average over 10 sets) (∗ Over 10 sets)

10-random 10 32.9∗ 40.0∗

20-random 20 74.9∗ 59.3∗

orig-10 10 894

allcountries 253 1016

Table 3.10: For the locations task, 10 random sets of 10 and 20 country names matched

variable numbers of instances in the corporate web-page data. Shown here is the aver-

age number of instances matching, across the 10 sets, and the exact number of instances

matching for the original 10 country names, and the entire list of 253 country names. The

10 country names used in basic experiments were very frequently occurring. Using all 253

country names from a list of country names did not match many more initial examples.

Class Examples True Precision Estimated

Labeled Positives Recall

locations 894 865 98% 9.5%

people 3388 3207 95% 19.5%

organizations 5257 5247 99.8% 17.9%

Table 3.11: Precision and recall of labeling examples automatically using seed-heads. Recall

was estimated based percentage positive examples in sample of 500 instances from the

training corpus.

broken down by seed-word. For people, some seed words were generally unambiguous,

with the exception of a few instances. An example of this is “customers”, which

was unambiguous except in phrases such as “industrial customers”. The seed-word

“people” also led to some training examples of questionable utility, for example “invest

in people”. If we learn the context “invest in”, it may not help in learning to extract

words for people, in the general case. Other seed-words from the people class proved

to be very ambiguous; “leader” was most often to used to describe a company, as in

the sentence “Anacomp is a world leader in digital document-management services”.

We will discuss the results of correcting these errors before beginning bootstrap-

ping with active initialization in Section 3.7.4.

47

48 Comparison of Bootstrapping Algorithms for Information Extraction

head-word correct / labeled precision

clients 328/334 0.98

customer 239/244 0.98

customers 1096/1124 0.98

director 74/76 0.97

individuals 139/139 1.00

leader 38/158 0.24

people 418/434 0.96

shareholders 379/379 1.00

subscriber 269/270 1.00

users 227/230 0.99

Overall 3207/3388 0.95

Table 3.12: Precision of labeling examples automatically using seed-heads for people.

head-word correct / labeled precision

arco 29/29 1.00

companies 896/898 1.00

company 3323/3329 1.00

dataram 42/42 1.00

inc. 844/844 1.00

praxair 13/13 1.00

puretec 73/75 0.97

xerox 27/27 1.00

Overall 5247/5257 1.00

Table 3.13: Precision of labeling examples automatically using seed-heads for

organizations.

48

3.5 Assumptions and Biases 49

head-word correct / labeled precision

australia 36/38 0.95

canada 150/165 0.91

china 39/39 1.00

england 15/17 0.88

france 37/39 0.95

germany 43/43 1.00

japan 87/88 0.99

mexico 91/98 0.93

switzerland 13/13 1.00

united states 354/354 1.00

Overall 865/894 0.97

Table 3.14: Precision of labeling examples automatically using seed-heads for locations.

3.5.2 Feature Sets Redundancy Assumption

The bootstrapping algorithms we discuss all assume that there is sufficient infor-

mation in each feature set (noun-phrases and contexts) to use either to label an

example. However, when we look at the ambiguity of noun-phrases in the test set

(Table 3.15) we see that 78 noun-phrases were ambiguous between two classes, and 4

were ambiguous between three classes (“group”, “they” and “them” were ambiguous

between organization, people and no class, while “facility” was ambiguous between

location, organization and no class). This means that these 82 noun-phrases (2%

of the 4575 unique noun-phrases occurring in the test set, and 963 instances of the

8081 test instances, ie 12%) are not in fact sufficient to identify the class. This dis-

crepancy may hurt cotraining and meta-bootstrapping more, since they assume that

we can classify noun-phrases into a class with 100% accuracy.

When we examine the same information for contexts (Table 3.16) we see even

more ambiguity. 36% of contexts are ambiguous between two or more classes. This

suggests that best results may be obtained with an algorithm which requires stronger

evidence of class membership from contexts than from noun-phrases. An algorithm

of this type was proposed by Thelen and Riloff (Thelen & Riloff, 2002) which adds

words to the lexicon only when multiple contexts classify it as positive. Arguably this

is similar to the scoring imposed by coEM. Exploration of this issue in greater depth

is outside the scope of this thesis, but it warrants further examination.

49

50 Comparison of Bootstrapping Algorithms for Information Extraction

Ambiguity Class(es) Number

of NPs

none 3677

Unambiguous loc 114

Only Belonging to One Class org 452

person 191

loc, none 6

org, none 30

Belonging to Two Classes person, none 23

loc, org 6

org, person 13

Belonging to Three Classes loc, org, none 1

org, person, none 3

Table 3.15: Distribution of NPs in the test set

Ambiguity Class(es) Number

of Contexts

none 1068

Unambiguous loc 25

Only Belonging to One Class org 98

person 59

loc, none 51

org, none 271

Belonging to Two Classes person, none 206

loc, org 5

org, person 50

Belonging to Three Classes loc, org, none 18

org, person, none 83

Belonging to Four Classes loc, org, 6

person, none

Table 3.16: Distribution of Contexts in the test set

50

3.5 Assumptions and Biases 51

Labeler Set 1 Condition Set 2 Condition

1 NP-context all

2 all NP-context

3 NP all

4 all NP

Table 3.17: Conditions for inter-rate evaluation - All stands for NP, context and the

entire sentence in which the NP-context pair appeared

Inter-rater agreement

We have another measure of the inherent ambiguity of the noun-phrases making up

our target class when we measure the inter-rater (labeler) agreement on the test

set. We randomly sampled 230 examples from the test collection, broken into two

subsets of size 114 and 116 examples. We had four labelers label subsets with different

amounts of information. The three conditions were:

• noun-phrase, local syntactic context, and full sentence (all)

• noun-phrase, local syntactic context (np-context)

• noun-phrase only (np).

The labelers were asked to label each example with any or all of the labels

organization, person and location. Before-hand, they each labeled 100 exam-

ples separate from those described above (in the all condition) and discussed ways of

resolving ambiguous cases (agreeing, for example, to count “we” as both person and

organization when it could be referring to the organization or the individuals in it.

The distribution of conditions to labelers is shown in Figure 3.17.

We found that when the labelers had access to the noun-phrase, context, and

the full sentence they occurred in, they agreed on the labeling 90.5% of the time.

However, when one did not have the sentence (only the noun-phrase and context),

agreement dropped to 88.5%. Our algorithms have only the noun-phrase and contexts

to use for learning. Based on the agreement of our human labelers, we conjecture that

the algorithms could do better with more information.

51

52 Comparison of Bootstrapping Algorithms for Information Extraction

Noun phrase Context NP-Context Pair

Both Either

% ambiguous vocabulary 3% 41% 0.3% 57%

in test set instances 18% 54% 0.8% 57%

% of test set vocabulary 41% 91% 53% 97%

seen in training data instances 58% 94% 56% 97%

Table 3.18: Ambiguity of nounphrases alone, contexts alone, and noun-phrase context pairs

in the test set, along with training set coverage.

Seen Versus Inherent Ambiguity

We saw in Tables 3.15 and 3.16 that a number of phrases and contexts are ambiguous

in our test set. This ambiguity may be both under- and overstated by these measures.

The combination of noun phrase and context together may greatly reduce the ambi-

guity of examples in our test set. However, our test set may contain only one possible

label for an example which is inherently more ambiguous. In addition, for many ex-

amples in our test set, we will not have seen both noun phrase and context during

training. Table 3.18 shows ambiguity for noun phrases, context and their combination

in the test set, along with coverage of test set vocabulary from the 7sector training

set. We see that less than 1% of examples are ambiguous when we have access to

both noun-phrase and context. However, only for 56% of test instances have we seen

both in the training set.

3.5.3 Relevance of Training Data Assumption

We assume that noun-phrases and contexts in the test set will be well-modeled based

on information learned from the training set. In fact we find that, within the domain

of company web-pages, of the 4516 unique noun-phrases in the test set, only 1836, or

41% of them, occurred in the training set. However, 91% of the 1961 unique contexts

from the test set also appear in the training set. This is for training and test data

drawn from the same distribution. For random data, we expect these discrepancies

to be much greater. We will see in Section 3.7 that having train and test sets sampled

from the same distribution helps bootstrapping more than adding extra documents

for the organizations class.

52

3.5 Assumptions and Biases 53

We saw in Section 3.5.2 that noun-phrases are much less ambiguous than contexts.

Now we see that noun-phrases are less well-modeled by the training data, we become

aware of an asymmetry between the two feature sets. Both the phrase and the context

will play a role in determining the correct classification in the test set, and the way the

algorithm bias handles the asymmetry may be of great importance in its effectiveness.

3.5.4 Syntactic - Semantic Correlation Assumption

All the algorithms we address in this paper use the assumption that phrases with

similar syntactic distributions have similar semantic meanings, that is, that distri-

bution with similar phrase contexts correlates with semantic similarity. It has been

shown (Dagan et al., 1998) that syntactic cooccurrence leads to clusterings which are

useful for natural language tasks. However, since we seek to extract items from a

single semantic target class at a time, syntactic correlation may not be sufficient to

represent our desired semantic similarity.

The mismatch between syntactic correlation and semantic similarity can be mea-

sured directly by measuring context ambiguity, as we did in Section 3.5.2. Consider

the context “visit <X>”, which is ambiguous between all four of our classes location,

person, organization and none. It occurs as a location in “visit our area”, am-

biguously between person and organization in “visit us”, and as none in “visit our

website”.

Similarly, examining the ambiguous noun-phrases we see that occurring with a

particular noun-phrase does not necessarily determine the semantics of a context.

Three of the three-way ambiguous noun-phrases in our test set are: “group”, ”them”

and “they”. Adding “they” to the model when learning one class may cause an

algorithm to add contexts which belong to a different class. We will see in Section

3.8.3 that different classes are very sensitive to the use of stopwords, in differing ways.

Meta-bootstrapping deals with this problem by specifically forbidding a list of 35

stop words (mainly pronouns) from being added to the dictionaries. We will also

examine how the algorithm performs when stopwords are permitted in the model, in

Section 3.7.3. In addition, metabootstrapping’s heuristic that a context be selected

by many different noun-phrases in the seed list helps prevent the addition of a single

ambiguous noun-phrase to have too strong an influence on the bootstrapping. The

probabilistic labeling used by coEM helps prevent problems from this ambiguity.

53

54 Comparison of Bootstrapping Algorithms for Information Extraction

he, her, herself, here, him, himself, i, it, me, mine, ours, she, that, they, them

themselves, their, there, these, this, those, us, what, when, where, which, who

whom, we, you, percent, all, many, most, some

Table 3.19: Stopwords used in experiments.

Though we also implemented a stop-list for cotraining, its all-or-nothing labeling

means that ambiguous words not on the stop list (such as “group”) may have a

strong influence on the bootstrapping.

Stopwords

The stopwords shown in Table 3.19 are words frequently removed in natural language

tasks, as they are frequent but may contribute less to the meaning of a section of text.

When we are bootstrapping from seeds, we may wish to avoid learning stopwords as

part of our model, as they may appear in many contexts. The word “it” for example,

may appear in some contexts related to our task. At the same time, adding it to

our model may cause the model learned to be much noisier in labeling unlabeled

examples. As we discussed in Section 3.5.4, the word “they” is particularly ambiguous

with respect to the tasks people, organizations and locations.

Frequency Information

A frequently occurring phrase may dominate a model, merely by being frequent.

Metabootstrapping collapses repeated occurrences of a noun-phrase context pair <

ni, ci > to a single example, while coEM, cotraining and EM respect the frequency

information in the training data. In Section 3.8.2 we will see the effects of models

using and ignoring frequency information. There is an analogy between the use of

term frequency versus binary term weight in models for document classification (Mc-

Callum & Nigam, 1998a), and filtering (Lewis, 1998). For document classification

and filtering, document length is an issue, since a single occurrence of a word in a

long document may suggest less about the topic than a word which occurs multiple

times, or a word which occurs a single time in a short document.

In the bootstrapping information extraction case, the examples are of fixed size

(a single noun-phrase and a single context, as described in Section 3.2). Table 3.20

54

3.5 Assumptions and Biases 55

context occurrences seeds distinct nps distinct seeds pmult(pos) pbin(pos)

located in 75 8 62 5 0.11 0.08

markets in 45 5 30 3 0.11 0.10

developed in 39 2 34 2 0.05 0.06

Table 3.20: Examples of probabilities of class membership based on multinomial and

binomial occurrences. When we use binomial occurrence counts to calculate probabil-

ities, removing frequency information, higher initial probabilities of class membership

are assigned to contexts with a greater diversity of seeds.

shows examples of the different probabilities of class membership under these two

representations, for contexts after initial head labeling. We see that “located in”

and “markets in” have higher probabilities of class membership, when we consider all

occurrences, compared to considering only binary occurrence counts. “developed in”,

however, has a higher probability of class membership when we consider only binary

occurrence counts.

When deciding how representative of a class a given noun-phrase ni is, we con-

sider all examples it occurs in. If we ignore the frequency of each example, a high

probability of class membership suggests that ni is indicative of the target class, in

the majority of the contexts it occurs in. If we also use the frequency information for

each example, a high probability of class membership suggests that ni is indicative

of the target class, in the majority of the examples it occurs in. A high-frequency

negative context may dwarf the influence of a plurality of positive contexts. However,

for predictive accuracy, a model which takes into account the frequency of examples

could be expected to work better.

3.5.5 Summary of Assumptions and Biases

As we saw in this section, the training corpus affects the density of seeds present in

the data, and head labeling is relatively accurate. On the other hand, we saw that in

the data the noun phrase and context feature sets are not redundant with respect to

the task, with greater ambiguity with respect to target class in the contexts than in

the noun phrases. In addition, as we will examine in Section 3.7.6, many of the noun

phrases and contexts in the test set may not appear in the training set at all. Thus

we anticipate that the best-performing algorithms will be those which are robust to

these violations of the theoretical assumptions.

55

56 Comparison of Bootstrapping Algorithms for Information Extraction

3.6 Empirical Comparison of Bootstrapping Algo-

rithms

After running bootstrapping with each algorithm we have two models: (1) a set of

noun-phrases, with associated probabilities or scores, and (2) a set of contexts with

probabilities or scores. We then use these models to extract examples of the target

class from a held-out hand annotated test corpus. Since we are able to associate

scores with each test example, we can sort the test results by score, and calculate

precision-recall curves.

3.6.1 Extraction on the Test Corpus

There are several ways of using the models produced by bootstrapping to extract

from the test corpus. These are described below.

1. Use only the noun-phrases. This corresponds to using bootstrapping to acquire

a lexicon of terms, along with probabilities or weights reflecting confidence as-

signed by the bootstrapping algorithm. This may have advantage over lists of

terms (such as proper names) which have no such probabilities associated with

them. The probabilities allow us to sort extracted phrases and thus control

whether we obtain few, highly probable members of the target class, or obtain

good coverage, at the expense of accuracy. However, as we saw in Section 3.5.2,

using only noun-phrases gives us information about only 58% of test instances

for the 7sectors task, since the training set vocabulary does not completely cover

the test set.

2. Use only the contexts. In this case we discard the noun-phrases we learned

during bootstrapping, and use only the contexts as extraction patterns for ex-

tracting on the test set. We extract a noun-phrase when it occurs with one

of the contexts in our model, using the score assigned by that context. This

may have the advantage of allowing greater generalization. Unseen words and

phrases can be extracted from the test corpus, and overspecialization based on

the training corpus can be avoided. We saw that 94% of test examples are cov-

ered by a context from the training set, though many of these are ambiguous.

56

3.6 Empirical Comparison of Bootstrapping Algorithms 57

3. Use both models. To score a noun-phrase context pair in the test set, assume

independence, and multiply the model noun-phrase and context scores to get a

probability for the example. Noun-phrases and contexts not seen in the training

corpus are given a score based on the prior probability. This has the advantage

of combining all the information we acquired during training. This method

is most effective for methods which assign probability-like scores (coEM and

cotraining). For meta-bootstrapping, there is no natural way of combining the

scores.

4. Bootstrap on the test corpus using both models. Here we use the models to

initialize on the test corpus, then run bootstrapping. Surprisingly, preliminary

experiments suggested that this approach does not work very well. We examine

a related approach with transduction in Section 3.7.7.

We experimented with these extraction methods for all three algorithms, and

found that method 2, extracting using only the contexts, was by far the best for meta-

bootstrapping, so all our results for meta-bootstrapping use this extraction method.

CoEM and cotraining performed best with method 3, combining information from

both noun-phrase and context models, so all results reported for coEM and cotraining

use this extraction method.

3.6.2 Evaluation Metrics: Precision, Recall and Breakeven

To evaluate, we assign scores to each of the test examples. We then sort the examples

by score, and calculate precision and recall. Precision is defined with respect to a

threshold value i. For all possible thresholds we calculate the number of examples we

classify correctly as belonging to the class (true positives TP), the number of examples

we incorrectly classify as belonging to the class (false positive FP), and the number

of examples we incorrectly classify as negative (false negative FN). Precision is then

given by:

Precision =
TPi

TPi + FPi

and Recall is given by:

Recall =
TPi

TPi + FNi

57

58 Comparison of Bootstrapping Algorithms for Information Extraction

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
coem

metaboot
cotraining

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
coem

metaboot
cotraining

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
coem

metaboot
cotraining

Figure 3.2: Comparison of bootstrapping using coEM, meta-bootstrapping and cotraining,

for the classes locations, people and organizations.

Intuitively, precision tells us what proportion of the ones we chose were correct, and

recall tells us what proportion of all positive examples we found.

When we want to summarize the results of an experiment with a single number,

we use the breakeven score. The breakeven score is the value of precision and recall

when they are equal on the curve. A higher breakeven score is better.

3.7 Results Comparing Two-view Bootstrapping

Algorithms

In this section we give results for two-view algorithms for bootstrapping semantic

classes. We will see results for the single-view algorithm EM in Section 3.8.

Figure 3.2 compares using models obtained by bootstrapping with coEM, meta-

bootstrapping and cotraining, for extracting on a held out test set. CoEM performs

better than meta-bootstrapping, while cotraining does very poorly.

3.7.1 Bootstrapping Improves Over Using Seeds Alone

Figure 3.3 shows that bootstrapping using unlabeled documents gives us significant

gains over using just the seeds, or noun-phrases with the seeds as heads, for extracting

from the test corpus. This difference is least marked for the class people, which had

the most ambiguous seed words.

58

3.7 Results Comparing Two-view Bootstrapping Algorithms 59

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
coem

seedonly
headlabeling

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
coem

seedonly
headlabeling

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
coem

seedonly
headlabeling

Figure 3.3: Comparison of the effects of using seeds alone, noun-phrases with seeds as heads

(head-labeling) and models learned by bootstrapping with coEM to extract on the unseen

test set. Seeds and head-labeling lead to good precision, but poor recall. Bootstrapping

using coEM improves recall without loss of precision.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
coem

allowStopwords.coem
allowStopwords.nofreq.coem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
coem

allowStopwords.coem
allowStopwords.nofreq.coem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n
Recall

organizations
coem

allowStopwords.coem
allowStopwords.nofreq.coem

Figure 3.4: Comparison of allowing stopwords in the model, and ignoring frequency in-

formation, against forbidding stopwords and using frequency information for coEM. Best

results are obtained by allowing stopwords to be used in the model, while frequency infor-

mation does not appear to affect results greatly.

3.7.2 Using Stopwords is Important for coEM

We see in Figure 3.4 that allowing stopwords in the model improves results greatly

for the people and organizations classes, without having a deleterious effect on

the locations class. “We” is a very good indicator for organizations, and “he” and

“she” are very good indicators for people. For subsequent results we allow stopwords

and frequency information for coEM, except where noted.

3.7.3 Metabootstrapping Benefits from Stopwords in Increased

Precision

When we allow stopwords in the model for metabootstrapping, gains are achieved

at the high-precision end of the precision recall curve, but there is no improvement

in recall. Overall the algorithm still does not perform as well as coEM. Results are

59

60 Comparison of Bootstrapping Algorithms for Information Extraction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
allowStopwords.metaboot

metaboot

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
allowStopwords.metaboot

metaboot

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
allowStopwords.metaboot

metaboot

Figure 3.5: Comparison of allowing stopwords in the model, for metabootstrapping. While

allowing stopwords gives some improvement, overall the results are still not as good as for

coEM.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
allowStopwords.coem

allowStopwords.coem.activeinit

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
allowStopwords.coem

allowStopwords.coem.activeinit

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Pr

ec
is

io
n

Recall

people
allowStopwords.coem

allowStopwords.coem.activeinit

Figure 3.6: Comparison of the effects of hand-labeling all examples matching the seed-words

before commencing bootstrapping (active initialization), against bootstrapping assuming all

are correct (coEM). A small gain is obtained by labeling all data input.

shown in Figure 3.5.

3.7.4 Small Gains from Correcting Labels for coEM

Figure 3.6 shows that only a small gain is obtained by hand-labeling all 669 unique

examples matching the location seeds before commencing bootstrapping, all 3406 ex-

amples matching the organization class, and all 2521 examples matching the people

class before commencing bootstrapping. We see a slight improvement in precision at

low recall for organizations, very slight improvements in precision for locations,

and for the people class precision is hurt in the low-recall range, recovering a little

at higher recall.

This shows that head-labeling is an effective way of initializing, and correcting

errors introduced does not substantially improve results. We will examine whether

more intelligent ways of selecting additional examples to label could provide more

leverage in Chapter 4.

60

3.7 Results Comparing Two-view Bootstrapping Algorithms 61

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries seed selection
allcountries (807 initial)
10 locations (669 initial)

Figure 3.7: The 10 seeds which were chosen for baseline experiments are very effective.

Using all 253 country names does not substantially improve results. The 10 original seeds

cover a large number of the instances of country names in the 7sector training corpus.

3.7.5 Initial Seed Choice Influential on Results

Figure 3.7 shows the effects of seed choice on bootstrapping accuracy for the locations

task with coEM. When we initialize with all 253 country names, we obtain best re-

sults, though the 10 country names shown in Table 3.8 are nearly as effective, as they

are very frequent in the training set, accounting for most instances of country names.

By producing random subsets of the country names, we obtain seed sets which have

varying numbers of examples in the training set. We saw in Table 3.10 that these seed

sets vary greatly in the number of initial examples they cover in the 7sector training

set. Figures 3.8 show the results of using 10 and 20 random seeds. The results suggest

that we do best with frequent seed words. If our seed words are fixed, we may do

well by using a set of unlabeled documents which contain many examples of those

seed words. One way of doing this may be by automatically constructing a training

corpus by retrieving documents containing seeds, then automatically constructing

search queries to retrieve similar documents. Ghani et al. showed this is effective

for identifying documents in a specific language (Ghani et al., 2003); it may also be

effective for finding documents matching a target domain.

61

62 Comparison of Bootstrapping Algorithms for Information Extraction

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations seed selection 10 random country names

10 locations (669 initial)
random10 (87 initial)
random10 (2 initial)
random10 (2 initial)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations seed selection 20 random country names

10 locations (669 initial)
random20 (81 initial)
random20 (49 initial)
random20 (30 initial)

random20 (122 initial)
random20 (16 initial)

Figure 3.8: A seed set corresponding to more instances of seeds in the training data

generally produces better results for coEM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
wtx051-056 (101,380 docs)

wtx051-053 (50,001 docs)
wtx051-052 (31409 docs)

wtx051 (15,910 docs)
7sector (4160 docs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
wtx051-056 (101,380 docs)
wtx051-053 (50,001 docs)
wtx051-052 (31409 docs)

wtx051 (15,910 docs)
7sector (4160 docs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
wtx051-056 (101,380 docs)
wtx051-053 (50,001 docs)
wtx051-052 (50,001 docs)

wtx051 (15,910 docs)
7sector (4160 docs)

Figure 3.9: Effects of corpus-size for coEM. A larger training set is significantly better for

locations. However, for organizations, a training set which matches the distribution of

the test set appears to be a better fit. For the people class, a training set which matches

the distribution of the test set appears to be a slightly better fit at the low-recall end of the

scale.

62

3.7 Results Comparing Two-view Bootstrapping Algorithms 63

3.7.6 Training Set Size and Distribution Affects Results

It is frequently the case in machine learning that increasing the training set size

increases the accuracy of the learned models. Since we are performing semi-supervised

learning, changes in training set size may have a number of effects. Firstly, a larger

training set may contain more instances of the seeds we choose, and thus be provided

with more initial training information. Secondly, a larger training set may contain

a larger vocabulary, and thus semi-supervised learning may learn a model which is

applicable to more of the test instances. Note that in machine learning we also

expect algorithms to perform best when the training and test data are drawn from

the same distribution. Using data from a different distribution may, in our task, have

vocabulary and cooccurrence statistics that vary greatly from our test set. Since our

original 7sector training set is a fixed collection, we can increase the size above it only

by using data from a different distribution.

As we can see in Figure 3.9, a larger training set is significantly better for locations.

However, for organizations, a training set which matches the distribution of the test

set appears to be a better fit. However, larger and larger mismatched training sets

get closer to the accuracy achieved by the matched test set. For the people class,

a training set which matches the distribution of the test set appears to be a slightly

better fit at the low-recall end of the scale.

A reasonable question is why different classes benefit differently from increasing

corpus size. We may conjecture several explanations for the difference in effect of

corpus size on learned model accuracy. First, we may conjecture that the number of

seeds matching the training corpus differs across classes. However, we see in Table

3.21 that the number of seeds matching is always as least as large for people and

organizations as it is for locations, so this is not a reasonable explanation.

A second potential explanation is the vocabulary size of the target class in the

test set. A target class which is represented by a wider vocabulary may benefit more

from increased training set size than a target class which is represented by a narrow

vocabulary. In Table 3.22 we see the vocabulary size of each class in the test set.

We see that both organizations and people have much larger positive test set

vocabulary sizes than locations. Thus test set vocabulary does not explain why

locations benefits more from increased training set size from a different domain.

A third possible explanation is the vocabulary intersection between the training

63

64 Comparison of Bootstrapping Algorithms for Information Extraction

WT10g name num docs num unlabeled num instances

examples matching seeds

894 (locations)

7sector 4,160 228,574 5,257 (organizations)

3,388 (people)

5,240 (locations)

wtx051 15,910 1,829,020 7,105 (organizations)

12,609 (people)

10,498 (locations)

wtx051-052 31,409 3,555,045 15,360 (organizations)

24,737 (people)

16,383 (locations)

wtx051-053 50,001 5,313,224 23,746 (organizations)

37,885 (people)

28,233 (locations)

wtx051-056 101,380 10,588,096 47,319 (organization)

81,975 (people)

Table 3.21: TREC WT10g data subsets used in our experiments, the number of documents

in each subset, and the number of examples extracted from each subset. We see that the

number of examples matching seeds increases with corpus size.

Class Positive Unique Positive Unique Positive

Test Set Instances Test Set NPs Test Set Contexts

locations 183 127 115

organizations 1099 505 533

people 827 230 415

Table 3.22: Number of positive examples, and size of vocabulary of positive examples in

test set for classes locations, organizations and people.

64

3.7 Results Comparing Two-view Bootstrapping Algorithms 65

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

7 sector
(228,574)

wtx052
(1,925,190)

wtx051-052
(3,936,177)

wtx051-053
(7,301,730)

wtx051-056
(14,919,468)

T
es

t S
et

 E
xa

m
pl

e
C

ov
er

ag
e

Training Corpus Size in Examples

Coverage of Test Instances -- NP or Context Seen in Training Data

locations
organizations

people
all test examples

Figure 3.10: Coverage of Positive Test Examples by Some Noun-phrase or Context in the

Training Set.

and test sets. If the test set contains vocabulary that is not in the training set,

an algorithm may have trouble learning to model a class. We might expect higher

intersection of train and test set vocabulary either when the training and test set

are drawn from the same distribution, or when the training set is large. We learned

in Section 3.5.3 that a greater proportion of the test contexts have been seen in

the 7sector training data, than for the NPs. This was independent of the target

class. Figure 3.10 shows the training set instance overlap with positive examples

in the test set for all three classes and several training corpora. We see that for

locations, increasing corpus size corresponds to increasing coverage of positive test

examples by some noun-phrase or context in the training set. For all examples,

and for organizations, the smaller corpora from the TREC wtx data cover less

positive test examples. For organizations, increasing TREC corpus size approaches

the coverage achieved by the 7sector training corpus, which comes from the same

distribution. For the people class, size of corpus does not have a big effect on coverage

of positive test examples. These effects match the effects of increasing corpus size on

extraction accuracy. Thus we can expect to learn well when the test set has much

of its vocabulary covered by the training set. This also suggests that transductive

learning may be very effective. We will look at the effects of transductive learning in

Section 3.7.7.

65

66 Comparison of Bootstrapping Algorithms for Information Extraction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
7 sectors

7 sectors transductive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
7 sectors

7 sectors transductive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
7 sectors

7 sectors transductive

Figure 3.11: Transductive learning versus standard learning for coEM, for the classes

locations, organizations, and people.

3.7.7 Transductive Learning Sensitive to Errors in Head-Labeling

Transductive learning is learning using the test data as part of the training data.

Joachims (Joachims, 2001) showed effective results for transductive learning for text

classification. To implement transductive learning, we combined training and test

corpora into a single unlabeled training set, performed head-labeling, trained using

coEM, then extracted on the test corpus in the usual way. Recall that the training

corpus for the 7sector dataset consists of 228,574 noun-phrase context pairs, while the

test set consists of just 8081 examples. Thus adding the test set does not significantly

increase the amount of unlabeled data available for training, though it does give the

algorithms the possibility of learning to model the data distribution more accurately

for the test set. Figure 3.11 shows the results of transductive learning with the

7sector dataset. The organizations class benefits greatly from transductive learning,

because many test examples are covered by NPs or contexts in the training corpus.

Thus adding the test examples helps model the class. For locations improvements

in precision are made at the higher recall levels, with some loss of precision at low

recall. The people class seems to be hurt by transductive training.

We may wonder why precision is harmed for the locations class. We find that

some of the damage is caused by head-labeling. For example, examples containing the

company Altos Hornos de Mexico are labeled positive during transductive learning,

which hurts precision. In addition, the context “Morgan on” (a misparsing from “J.

P. Morgan on”) is learned with high confidence in the transductive case, as it twice

occurs with “Mexico”. In the original training set “J. P. Morgan on” occurs only once,

and not with a place name. Thus it appears that transductive learning is overfitting

to the test set. A solution to this may be to perform head-labeling on the training set

only, then learn over both train and test sets together, or to train on the training set,

66

3.8 Results Comparing CoEM and EM 67

and then run further iterations of bootstrapping on the test set. In the case of the

people class, we find the same issues, with known problematic head-labeling resulting

in positive labels for “corporate clients” and “industry leader”.

We may need to correct the examples labeled by seeds, active initialization, de-

scribed in 3.7.4, to enable us to make use of the full power of transductive learning.

We leave these experiments for future work.

3.8 Results Comparing CoEM and EM

As we saw in Section 3.7, coEM is the most successful of the two-view algorithms

described in this thesis. Now we wish to compare coEM to EM, which collapses

the two feature sets into a single model. In addition, we will compare the effects

of varying parameters to EM, including initialization, use of stopwords, and use of

frequency information.

3.8.1 Initialization Conditions

We used four different initialization conditions for EM. Three of these are are different

ways of using the unlabeled examples as a source of initial information about the

negative class, while the fourth uses the output of coEM for initialization. For zero

initialization, all unlabeled examples were initialized with P̂init(pos| < ni, cj >) = 0

as shown in the EM algorithm initialization in Equation 3.4 in Section 3.4.2. For

small initialization unlabeled examples were initialized with score 0.1. In random

initialization unlabeled examples were initialized with a random score between 0 and

1.0. Figure 3.12 shows that this initialization affects only the unlabeled examples, and

not the head-labeled examples, which were initialized using the seeds.

As we will see in Figure 3.17, initializing with zero and small scores are both

slightly better than initializing with random scores. This may suggest that the strat-

egy used by each of coEM, metabootstrapping, and cotraining, of treating unlabeled

examples as having score 0 initially may be reasonable. Initializing with the output

of coEM’s models coeminit gives the best results. Tables 3.23, 3.24 and 3.25 show

results sorted by final breakeven score, for various initialization conditions. These

tables also show the number of iterations EM ran before convergence or reaching 500

iterations, as well as the final log likelihood of the training data under the model.

67

68 Comparison of Bootstrapping Algorithms for Information Extraction

Unlabeled data

head−labeled data head−labeled data

Unlabeled data
InitializedUnitialized

Random
Small

Zero OR

OR

NP 1 0.001
NP 2 0.021 Context2 0.3
... ...

Models from coEM

coEMinit
OR

Context1 0.02

Figure 3.12: Initialization of the unlabeled examples with 0, small values, random values

or the output of coEM does not affect the head-labeled examples, which were labeled using

the seeds.

We will examine the relationship between log likelihood of the model and breakeven

scores in Section 3.8.3.

3.8.2 Frequency Information

In our description of EM in Section 3.4.2 probability estimates were calculated for

examples using their counts N(ni, cj). If we collapse repeated occurrences of the same

pair of features into a single count, we reduce the impact of very frequent occurrences.

Since EM is seeking to maximize the likelihood of the data under the model, examples

with very frequent occurrences have a strong effect on the model. However, if our

target class does not contain these frequent instances (for example, if our target class

does not contain pronouns or dates) then we do not wish frequent instances to have

a strong effect on the model learned.

Experiments using this counting method are designated nofreq. Figure 3.13 shows

that for the organizations class it is best to use frequency information, while for

the locations and people classes no major difference is discernible for EM. All

remaining experiments with EM use frequency information in the model.

68

3.8 Results Comparing CoEM and EM 69

final breakeven # iter final ll init freq stopwords

0.116122 17 -3.55614e+06 coeminit freq stopwords

0.111612 18 -3.55628e+06 coeminit freq nostopwords

0.10823 10 -3.55657e+06 coeminit nofreq stopwords

0.105975 500 -3.55844e+06 zero1init freq stopwords

0.105975 500 -3.55844e+06 small1init freq stopwords

0.105975 500 -3.55777e+06 random1init freq stopwords

0.105975 10 -3.55683e+06 coeminit nofreq nostopwords

0.104848 500 -3.55861e+06 zero1init freq nostopwords

0.104848 500 -3.55861e+06 small1init freq nostopwords

0.104848 500 -3.55789e+06 random1init freq nostopwords

0.100338 8 -3.55835e+06 random1init nofreq nostopwords

0.0980834 9 -3.55827e+06 random1init nofreq stopwords

0.0980834 351 -3.56215e+06 zero1init nofreq stopwords

0.0980834 269 -3.56225e+06 zero1init nofreq nostopwords

0.096956 6 -3.56135e+06 small1init nofreq nostopwords

0.096956 6 -3.56126e+06 small1init nofreq stopwords

Table 3.23: For people with EM, best results are obtained by initializing from coEM, using

frequency information, and allowing stopwords in the model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
em.small1init.nofreq

em.small1init

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
em.small1init.nofreq

em.small1init

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
em.small1init.nofreq.nostopwords

em.small1init.nostopwords

Figure 3.13: Results for EM with and without frequency information.

69

70 Comparison of Bootstrapping Algorithms for Information Extraction

final breakeven # iter final ll init freq stopwords

0.155556 16 -3.5594e+06 random1init freq stopwords

0.155556 15 -3.55954e+06 random1init freq nostopwords

0.128889 500 -3.5628e+06 coeminit freq nostopwords

0.128889 500 -3.56246e+06 coeminit freq stopwords

0.124444 93 -3.56857e+06 zero1init freq stopwords

0.124444 91 -3.56858e+06 zero1init freq nostopwords

0.12 8 -3.55751e+06 random1init nofreq nostopwords

0.12 8 -3.55736e+06 random1init nofreq stopwords

0.12 500 -3.56489e+06 small1init freq stopwords

0.12 14 -3.56541e+06 small1init freq nostopwords

0.115556 5 -3.5599e+06 coeminit nofreq stopwords

0.115556 5 -3.55999e+06 coeminit nofreq nostopwords

0.115556 5 -3.55991e+06 small1init nofreq nostopwords

0.115556 5 -3.55986e+06 small1init nofreq stopwords

0.111111 48 -3.5608e+06 zero1init nofreq stopwords

0.111111 48 -3.5608e+06 zero1init nofreq nostopwords

Table 3.24: For locations with EM, best results are obtained by using random initializa-

tion and frequency information, and allowing stopwords in the model.

70

3.8 Results Comparing CoEM and EM 71

final breakeven # iter final ll init freq stopwords

0.488243 23 -3.54627e+06 coeminit freq stopwords

0.375 15 -3.55062e+06 coeminit nofreq stopwords

0.331064 18 -3.54967e+06 coeminit freq nostopwords

0.328589 500 -3.5529e+06 small1init freq stopwords

0.328589 500 -3.55291e+06 zero1init freq stopwords

0.327351 500 -3.55309e+06 zero1init freq nostopwords

0.327351 500 -3.55309e+06 small1init freq nostopwords

0.326733 500 -3.55251e+06 random1init freq stopwords

0.326114 500 -3.55274e+06 random1init freq nostopwords

0.322401 14 -3.552e+06 coeminit nofreq nostopwords

0.245668 9 -3.5581e+06 random1init nofreq stopwords

0.243193 9 -3.55828e+06 random1init nofreq nostopwords

0.237005 500 -3.56039e+06 zero1init nofreq nostopwords

0.237005 500 -3.56039e+06 small1init nofreq nostopwords

0.237005 500 -3.56026e+06 zero1init nofreq stopwords

0.237005 500 -3.56026e+06 small1init nofreq stopwords

0.165842 6 -3.56584e+06 small1init freq stopwords

Table 3.25: For organizations with EM, best results are obtained by initializing from

coEM, using frequency information, and allowing stopwords in the model.

71

72 Comparison of Bootstrapping Algorithms for Information Extraction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people

em.small1init.nostopwords
em.small1init.stopwords

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations

em.small1init.nostopwords
em.small1init.stopwords

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations

em.small1init.nostopwords
em.small1init.stopwords

Figure 3.14: Results for EM with and without stopwords.

3.8.3 Effect of Stopwords on EM

Unlike with coEM, our experiments with EM show little difference between allowing

and disallowing stopwords in the model. Figure 3.14 shows this using the small

initialization condition. We also saw in Tables 3.23, 3.24 and 3.25 that for most

initialization conditions, results are very slightly better allowing stopwords in the

model. All subsequent experiments with EM allow stopwords in the model.

Likelihood of Data Under EM

EM will work well for a class for which accuracy correlates well with log likelihood of

the training data under the model. Figure 3.15 show the breakeven score on the test

set plotted against the log likelihood of the training data under the model, through

training iterations of EM. We see that an increase in log likelihood correlates with

an increase of the breakeven score for the organizations class, but less so for the

people and locations classes. For the locations class, the breakeven point drops

slightly with increased log likelihood of the training data under the model. These

results explain why EM is most successful for the organizations class.

3.8.4 Corpus Size for EM

We see in Figure 3.16 that using a larger corpus helps a little with EM for the people

class. For the locations class, however, it is not clear if adding more documents

helps when using EM. This contrasts with coEM, which benefited greatly from added

documents for locations, as we saw in Figure 3.9.

72

3.8 Results Comparing CoEM and EM 73

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-3.57e+06 -3.56e+06 -3.55e+06

br
ea

ke
ve

n

loglikelihood

loglikelihood of model versus breakeven

organizations
locations

people

Figure 3.15: Log likelihood plotted against breakeven point. We see that log-likelihood

is predictive of accuracy for the organizations class, but less so for the people and

locations classes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people - EM small1init
wtx051-056 (... docs)

wtx051-052-053 (50,001 docs)
wtx052 - 15499 docs

7 sector

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations - EM small1init
wtx051-056 (... docs)

wtx051-052-053 (50,001 docs)
wtx052 - 15499 docs

7 sector

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations - EM small1init
wtx051-056 (... docs)

wtx051-052-053 (50,001 docs)
wtx052 - 15499 docs

7 sector

Figure 3.16: Results for EM with large corpora.

73

74 Comparison of Bootstrapping Algorithms for Information Extraction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people
allowStopwords.coem

em.random1init.randomSeed.2052
em.small1init
em.zero1init
em.coeminit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations
allowStopwords.coem

em.random1init.randomSeed.2052
em.zero1init

em.small1init
em.coeminit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations
allowStopwords.coem

em.random1init.randomSeed.2052
em.small1init
em.zero1init
em.coeminit

Figure 3.17: Comparison of EM, against baseline coEM algorithm. All initialization condi-

tions are shown for EM. Stopwords were permitted in the model, and frequency information

used for both EM and coEM.

3.8.5 EM versus CoEM

In Figure 3.17 coEM outperforms EM for the locations and people tasks. Stopwords

were permitted in the model, and frequency information was used, for both EM and

coEM. coEM outperforms EM for all initialization conditions for the locations and

people tasks. For organizations task however, when we initialize EM with the

output of coEM, the breakeven point is somewhat better than for EM with random,

zero or small initialization.

74

3.9 Chapter Conclusions 75

3.9 Chapter Conclusions

We will now go over the questions we raised at the start of this chapter, in the light

of knowledge provided by our experimental results.

How can we represent data so we can use it to learn to extract instances

of semantic classes?

We found that representing the data as pairs of (1) noun-phrases and (2) their local

syntactic contexts allowed us to learn to extract instances of semantic classes, using

a small number of initial examples. We noted in Section 3.5.2 that when labelers

had access to the noun-phrase, context, and the full sentence they occurred in, they

agreed on the labeling 90.5% of the time. However, when one did not have the

sentence (only the noun-phrase and context), agreement dropped to 88.5%. Our

algorithms have only the noun-phrase and contexts to use for learning. Based on the

agreement of our human labelers, we conjecture that the algorithms could do better

with more information. We could use other representations, for example n-grams, as

has been used in other work (Sarawagi & Cohen, 2004). We could also augment the

representation by incorporating whether examples had capital letters or punctuation

(Collins & Singer, 1999). We won’t experiment with alternative data representations

in this thesis, but it is worth noting that the amount of context and information we

use could be augmented, with the possibility of improved results.

What algorithms can we use for bootstrapping?

We found that in general coEM outperformed EM, except when coEM’s output

was used for initialization, and increases in the breakeven point for the class cor-

related with increased log likelihood of the training data under the model, as was the

case for the organizations class. This suggests that EM could be effective for the

organizations class, given good initialization conditions.

The advantage coEM has over meta-bootstrapping and cotraining may reflect the

good match between its probabilistic treatment of the data, and the inherent ambigu-

ity of the classes. This permits an ambiguous example to be labeled with a probability

that reflects its true ambiguity, rather than committing it to a class, then being overly

influenced by its presence in that class. Since meta-bootstrapping repeatedly discards

75

76 Comparison of Bootstrapping Algorithms for Information Extraction

the contexts, ambiguity in the contexts does not hurt the algorithm as much as it

hurts cotraining.

How much does bootstrapping contribute, over using the seeds alone for

bootstrapping?

We can see from the comparison of gains from bootstrapping over using the seeds or

head-labeling (see Figure 3.3), that classes for which we have ambiguous seeds words,

such as our people class, benefit less from bootstrapping than those with relatively

unambiguous seed words. However, we still benefit from bootstrapping. This may be

because the noise introduced by the ambiguous seed-words is somewhat mitigated by

the presence of the less ambiguous seed words.

Does it matter which seeds we choose?

For the seed-words and datasets we used, we saw in Figure 3.8 that seed density in

the training corpus appears to affect the accuracy of the results. We should select

seeds, or corpora, such that many occurrences of seeds are in the training corpus.

Should we correct any errors introduced by using seeds?

For locations and people we saw in Figure 3.6 that correcting by hand the exam-

ples labeled using the seed words did not have a significant impact on the results.

This means that for relatively unambiguous seed words, at least, hand-labeling them

in context does not give us an advantage over using automatic head-labeling. For

transductive learning, however, we should be sure to correct the examples labeled by

seeds.

Can we learn all classes equally well with the same representation?

We found that the people and organizations classes were sensitive to the presence

or absence of stopwords. This may be due to pronouns which are correlated with the

class. For example “we” may be a good predictor of organizations, while “he” or

“she” may be a good predictor of people. We will examine this question in more

detail in Chapter 5. Since the locations class was not adversely affected by allowing

stopwords in the model, we can use the same data representation for all three classes.

76

3.9 Chapter Conclusions 77

We also saw in Section 3.7.6 Figure 3.10 that the classes varied greatly in how much

of their test vocabulary was covered by the training corpus. We can expect to learn

better when the test set has much of its vocabulary covered by the training set.

How does corpus size affect learning?

We saw in Sections 3.7.5 and 3.7.6 that both number of seeds in the training corpus

and corpus size affect results. We may wonder if there is a way of increasing the

number of seeds in the training corpus without greatly increasing the corpus size, for

greater computational efficiency. One way may be to label more examples. We will

address this question in Chapter 4 by examining the most efficient ways to choose

examples for labeling, using active learning. A different approach, motivated by

related work in acquiring documents in a target language (Ghani et al., 2003), would

involve automatically acquiring training data that is likely to contain many instances

of the seeds and the target class. This may be a promising direction for future work.

What assumptions do the algorithms make about the data representation,

and how well are those assumptions satisfied?

We have assumed for extraction with the models described in this chapter that noun-

phrases and contexts are conditionally independent given their class labels, though

we do not expect this to hold completely. It would be interesting to measure the

actual level of independence, and examine whether gains can be made by dropping

this assumption. We will perform this measurement in Chapter 5. As we discussed

in the related work in Chapter 2 Section 2.7.3, Balcan et al (2004) have showed that

conditional independance given the target class may not be necessary for bootstrap-

ping.

The algorithms also assumed that seeds will be present in the data, which we

saw depends on the choice of seeds. There is an implicit assumption we have not

addressed until now, that the bootstrapping algorithms we employ are able to modify

the labels of all examples, by modifying labels based on cooccurrence, ie that following

cooccurrence links will allow us to reach all relevant examples. We will examine this

assumption more deeply in Chapter 5.

77

78 Comparison of Bootstrapping Algorithms for Information Extraction

3.10 Chapter Conclusions

In this chapter we explored a number of variations on initialization for algorithms for

bootstrapping information extraction. There are more combinations of these which

could prove interesting to pursue. These include extending algorithm initialization

to permit the user to specify verbs and prepositional phrases, as well as nouns. It

would also be interesting to try using negative seeds for coEM and EM, and active

initialization for EM.

In the next chapter we will examine how we could improve on these results by

incorporating active learning. We will look at active learning algorithms customized

to the feature-set split, which may lead to more efficient learning.

78

Chapter 4

Active Learning for

Semi-supervised IE

We saw in Chapter 3 that coEM is effective for bootstrapping the learning

of semantic classes from a small collection of seed-words. This requires

only minutes of user training time. However, if the user has more time

for labeling, it may be useful for the user to spend more time labeling if

this leads to increased accuracy. In this chapter we show that judicious

selection of examples for labeling can lead to greatly increased accuracy,

without greatly increasing the burden on the user. In particular, we show

that using the feature set redundancy allows selection of examples for

labeling which are much more effective than examples chosen randomly,

or without use of feature set redundancy. In addition, these results show

that active learning can compensate for a bad choice of initial seeds and

that the labeling effort is better spent during the active learning process

rather than at the beginning.

4.1 Introduction

Active learning seeks to make efficient use of a trainer’s time by having the learner

intelligently select examples to label based on the anticipated value of that label

to the learner. The bootstrapping approaches considered in Chapter 3 make use

of the fact that each example is described by two distinct sets of features, either

79

80 Active Learning for Semi-supervised IE

of which is sufficient to approximate the function; that is, they fit the cotraining

problem setting. We discuss a range of active learning algorithms and show that using

feature set disagreement to select examples for active learning leads to improvements

in extraction performance regardless of the choice of initial seeds.

Active labeling is performed in an interleaved manner with bootstrapping. As

we described in Chapter 3, we initialize the data with seeds using head-labeling, and

then use both head-labeled and unlabeled examples as data for bootstrapping, and

as candidates for active labeling. Figure 4.1 shows a schematic of this process.

The questions we will attempt to answer in this chapter are:

1. Is it more effective to correct head-labeled examples, or actively label new ex-

amples?

2. What is the most effective way to select new examples to actively label?

3. Is it more effective to actively label just noun-phrases, or to actively label noun-

phrase context pairs, in active learning?

4. If we have a larger corpus to choose examples from, does this lead to greater

accuracy for the same amount of user labeling effort?

5. How much does increasing the number of actively labeled examples improve

accuracy? Do improvements tail off, or do we continue to get increased accuracy

as we increase the number of labeled examples?

6. Does active learning make bootstrapping algorithms more robust to the set of

seeds chosen for head-labeling?

7. Does active learning make bootstrapping algorithms more robust to the way

unlabeled examples are initialized?

Table 4.1 summarizes the dimensions we will experiment with in this chapter.

Some of these dimensions, such as training set size, have already been addressed in

Chapter 3 but they may interplay in different ways when we add active learning. We

will give more details about each in the sections below.

80

4.1 Introduction 81

 +

Unlabeled data
Initialization

(head labeling

optional
active intialization)

Unlabeled data

Algorithm
Bootstrapping

Active
Label

Active−labeled data

Head−labeled data

Unlabeled data

Head−labeled data

Figure 4.1: Automatically labeling data using seeds with head-labeling, optionally cor-

recting these labels with active initialization, then performing active learning interleaved

with bootstrapping. Both unlabeled and head-labeled examples are candidates for active

labeling. Active initialized examples are treated as active-labeled examples, and are not

candidates for relabeling.

Dimension Instantiations

Training set size 230,000 - 10 million examples

Training set distribution same as test set; different from test set

What user labels whole example or just noun-phrase

Number of examples labeled 0, 5, 25, 100, 500, 2500

Algorithm used uniform random, density, feature set disagreement,

to select examples context disagreement

Initialization conditions unlabeled examples 0, small or random;

choice of seedwords

Properties of the model frequency, stopwords

Algorithm used for bootstrapping coEM or EM

Table 4.1: Summary of dimensions we can vary when performing active learning for boot-

strapping semantic classes of noun-phrases.

81

82 Active Learning for Semi-supervised IE

4.2 Related Work

Using a pool of unlabeled examples and prompting the user to actively label examples

that have high anticipated value reduces the number of examples required for tasks

such as text classification (Lewis & Gale, 1994) and parsing and information extrac-

tion (Thompson et al., 1999; Soderland, 1999). Bootstrapping algorithms for similar

learning problems fall into the cotraining setting (Blum & Mitchell, 1998; Collins &

Singer, 1999; Muslea et al., 2000), ie. they have the property that each example can

be described by multiple feature sets, any of which are independently sufficient to

approximate the function.

The cotraining problem structure lends itself to a variety of active learning al-

gorithms. In näıve co-testing (Muslea et al., 2000) the two classifiers are trained on

available labeled data, then run over the unlabeled data. A contention set of examples

is then created, consisting of all unlabeled examples on which the classifiers disagree.

Examples from this contention set are selected at random, a label is requested from

the trainer, both classifiers are retrained, and the process repeats.

While this co-testing algorithm was shown to be quite effective, it represents just

one possible approach to active learning in the co-training setting. It is based on

training the two classifiers ĝ1 and ĝ2 using labeled examples only, whereas earlier

work (Collins & Singer, 1999; Blum & Mitchell, 1998; Riloff & Jones, 1999) has

shown that unlabeled data can bootstrap much more accurate classifiers. Instead of

selecting new examples uniformly at random from the contention set, one might rank

the examples in the contention set according to some criterion reflecting the value of

obtaining their label. In this chapter, we propose and experiment with active learning

algorithms that use unlabeled data for training ĝ1 and ĝ2, in addition to using ĝ1 and

ĝ2 to determine which unlabeled example to present to the trainer. We also consider

a variety of strategies for selecting the best example from the contention set.

4.3 Training Set Size and Distribution

We saw in Chapter 3 Figure 3.9 that a larger training set is more effective for

locations, even when the domain of train and test are mismatched. We also ex-

pect active learning to increase accuracy for a bootstrapping algorithm (we will see

this in Section 4.10.2, for example). Given these two background empirical facts, we

82

4.4 Whole Example Labeling Versus Single Feature Set Labeling 83

wish to find out whether a greater win is obtained by increasing the training set size,

that is, increasing the size pool of unlabeled examples available for bootstrapping and

selecting examples from, or by increasing the number of examples labeled.

4.4 Whole Example Labeling Versus Single Fea-

ture Set Labeling

Typically in active learning a labeler examines a whole example in order to assign

a label, using what we call the standard labeling paradigm. In the context of our

information extraction task, standard labeling would ask the user to label a pair

consisting of a noun-phrase and its context. However, it may be as easy to actively

label noun phrases independent of context, and since each noun phrase may occur in

many contexts, this may lead to greater economy in labeling. For example, “Italy”

occurs with “centers in < >”, “operations in < >”, “introduced in < >”, “partners

in < >”, and “offices in < >”, so labeling “Italy” provides us with information about

all of these contexts. We will call the approach of labeling noun-phrases and applying

the labels to the whole example single feature set labeling.

4.5 Number of Examples Labeled With Active Learn-

ing

Since labeling more examples provides us with more information about the target

function, we expect increases in the number of examples labeled with active learn-

ing to improve overall performance. However, different example selection methods

may be more effective at finding informative examples for labeling, and thus increase

performance at different rates. We may also find that even labeling very few exam-

ples provides a great deal of benefit, making active learning an attractive addition to

bootstrapping, even if the user has very little time for labeling. We will compare no

active learning (zero examples labeled) against tiny numbers of examples labeled (5

examples labeled) up to 2500 examples labeled (around 1% of the examples in the 7

sector dataset).

83

84 Active Learning for Semi-supervised IE

4.6 Active Learning Selection Methods

Uniform Random Selection: This baseline method selects examples according

to a uniform distribution. Each noun-phrase, context pair that occurs at least once

in the training set is selected with equal probability. Example frequency is ignored.

This method is applicable to both standard labeling, and single feature set labeling.

With single feature set labeling, each noun-phrase is selected with equal probability.

Density Selection: The most frequent unlabeled example is selected for la-

beling at each step. This method is applicable to both standard labeling, and single

feature set labeling. With standard labeling, the most frequent unlabeled noun-phrase

context pair is selected. With single feature set labeling, the most frequent unlabeled

noun-phrase is selected.

Feature Set Disagreement: Since we learn two distinct classifiers that apply

to the same instance, one way to select instances where a human trainer can provide

useful information is to identify instances where these two classifiers disagree. This

approach can be viewed as a form of query-by-committee (QBC), (Freund et al.,

1997; Liere & Tadepalli, 1997; Muslea et al., 2000) or uncertainty sampling (Lewis

& Gale, 1994; Thompson et al., 1999), where the committee consists of models that

use different feature sets and is similar to that used by (McCallum & Nigam, 1998b).

Our selection criterion is based on Kullback-Leibler (KL) divergence. It gives each

example a density-weighted KL score, by multiplying KL(P̂g1
(+|x), P̂g2

(+|x)) by the

frequency of the example.

Let the set of predictors be g1..gn then the mean of the scores they assign an

example is

P̂mean(class|x) =

∑

i P̂gi
(class|x)

n
(4.1)

P̂mean(¬class|x) =

∑

i P̂gi
(¬class|x)

n
(4.2)

Then the score assigned by KL is given by

KL(x) =
1

n

∑

i

P̂gi
(class|x)log

P̂gi
(class|x)

P̂mean(class|x)
+

1

n

∑

i

P̂gi
(¬class|x)log

P̂gi
(¬class|x)

P̂mean(¬class|x)
(4.3)

84

4.6 Active Learning Selection Methods 85

Our overall score is then given by

KL(x)× freq(x) (4.4)

Examples are selected deterministically, with the highest ranked unlabeled exam-

ple taken each time. We use a total of two committee members, with one committee

member ĝ1 to represent the probability assigned by the noun-phrase, and a second

committee member ĝ2 to represent the probability assigned by the context. A pos-

sible extension motivated by earlier work on query-by-committee would have several

committee members for the noun-phrase, and several for the context. These commit-

tee members would differ from each other either by being sampled from a probability

distribution, or by being derived from different initialization conditions. This method

is applicable only to the standard labeling paradigm. A variant applicable to single

feature set labeling, context disagreement, is described below.

Context Disagreement: We noted earlier that since each noun phrase may

occur in many contexts, this may lead to greater economy in labeling. For exam-

ple, “Italy” occurs with “centers in < >”, “operations in < >”, “introduced in <

>”, “partners in < >”, and “offices in < >”, so labeling “Italy” provides us with

information about all of these contexts.

In addition, we may find that while some contexts of a noun-phrase suggest it is

positive, others suggest it should be classified as negative. We can take probabilities

assigned by the different contexts as votes by committee members about the label

for the noun-phrase. Disagreement among these committee members may suggest

that labeling the noun-phrase would be informative. Selecting the noun-phrase with

the most context disagreement may provide us with the most informative labeling.

This can be thought of as query-by-committee (QBC) with the committee consisting

of different cooccurrences of elements of one feature set with elements of the other

feature set. We quantify context disagreement using density weighted KL divergence

to the mean, as in feature set disagreement, but all the contexts of the noun-phrase

are used as input to the KL divergence measure.

The classifiers gi simply use the scores assigned by the model to the probability of

class membership given the context c, for all contexts that the noun-phrase n occurs

in:

85

86 Active Learning for Semi-supervised IE

KL(n) =
1

n

∑

i

P̂gi
(class|c)log

P̂gi
(class|c)

P̂mean(class|c)
+

1

n

∑

i

P̂gi
(¬class|c)log

P̂gi
(¬class|c)

P̂mean(¬class|c)
(4.5)

We use the frequency of the noun-phrase to density-weight the KL divergence.

The score is then given by

KL(n)freq(n) (4.6)

The user then labeled noun-phrases, in single-feature set labeling.

4.7 Initialization Conditions

As we saw in Chapter 3 Section 3.8.1 we can initialize the unlabeled examples for

bootstrapping with EM in several different ways; we can initialize unlabeled examples

with a score of zero, a small constant, a random value, or with the scores assigned

by coEM. We saw in Chapter 3 that the way we initialize unlabeled examples affects

the performance of EM for our bootstrapping task. When we have more examples

labeled with active learning, we expect the influence of the initialization of unlabeled

examples to have less impact on the overall performance. We will examine to what

extent active learning reduces the impact of initialization conditions for unlabeled

examples.

We also saw in Chapter 3 Section 3.5.1 that the choice of seeds for initial labeling of

positive examples with head-labeling can lead to quite different numbers of examples

labeled, and also to different overall algorithm effectiveness (Section 3.7.5). We will

examine in this chapter whether active learning can make bootstrapping more robust

to the initial choice of seeds.

4.8 Properties of the Model

We saw in Chapter 3 Section 3.7.2 that including or disallowing stopwords in the

model has a substantial effect on bootstrapping effectiveness, as does whether we

factor example frequency into our model. We will examine how these properties of the

model come into play when we add active learning to our bootstrapping algorithms.

86

4.9 Bootstrapping Algorithms 87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations coem
no active learning

uniform500
no active learning allowStopwords

uniform500 allowStopwords

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people coem
no active learning

uniform500
no active learning allowStopwords

uniform500 allowStopwords

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations coem
no active learning

uniform500
no active learning allowStopwords

uniform500 allowStopwords

Figure 4.2: We compare a baseline of no active learning to adding 500 labeled examples,

examples selected uniformly at random, for locations, people and organizations, interleaved

with bootstrapping with coEM. We also compare models which allow or disallow stopwords.

4.9 Bootstrapping Algorithms

4.9.1 Choice of Bootstrapping Algorithm

In this chapter we examine active learning for coEM, and EM. We chose coEM as

it performed reasonably well for bootstrapping with no human annotated data at all

(Chapter 3), and EM because it often performs well for semi-supervised tasks (see eg.

(Nigam & Ghani, 2000)). Although in our experiments in Chapter 3 EM performed

poorly for bootstrapping with only head-labeled data, it may perform better when

we add a little more labeled data with active learning.

4.9.2 Combining Bootstrapping with Active Learning

We interleave active learning with the bootstrapping algorithm. We use coEM or

EM to bootstrap for one iteration, and then actively label five examples per iteration,

until the target number of examples have been labeled with active learning. Then, we

continue running the bootstrapping algorithm till convergence or till 500 iterations

total. We sort the test instances according to the score assigned by the extraction

method and calculate precision-recall values.

87

88 Active Learning for Semi-supervised IE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations coem
coem

density500
allowStopwords

allowStopwords.density500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people coem
coem

density500
allowStopwords

allowStopwords.density500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations coem
coem

density500
allowStopwords

allowStopwords.density500

Figure 4.3: Adding 500 labeled examples, examples selected according to their density, for

locations, people and organizations.

4.10 Results

4.10.1 Uniformly Selected Labeled Examples of Little Utility

Allowing stopwords to influence the model has a much greater effect for the people

class, than adding 500 labeled examples selected uniformly at random. Adding the

500 uniformly selected examples to the model allowing stopwords does not provide

any additional leverage, as can be seen in Figure 4.2. This is supported by research in

the literature, which shows that a model whose assumptions about the distribution

of data are not greatly divergent from the empirical data distribution benefits more

from unlabeled data (Cozman & Cohen, 2002). The amounts of data we are labeling

here are small compared to the size of the overall unlabeled data set, which contains

228,574 examples, and the size of the test set, which contains 8,081 examples. We

will examine the effect of labeling more examples in Section 4.10.6.

4.10.2 Example Selection Based on Density

As we see in Figure 4.3 selecting examples according to their density provides an

improvement over the baseline. This shows that selecting examples according to a

non-uniform distribution can help learn, particularly for the people class. Even when

we do not allow stopwords to influence the model, examples selected in this way aid

greatly in learning the people class. Stopwords such as pronouns tend to be the most

frequent examples.

Since the selection criterion is based on example frequency and not the model or

the target class, the same 500 examples are chosen for labeling for all experiments on

the same training set. When we examine the 500 examples selected for labeling for

88

4.10 Results 89

noun-phrase number of total most frequent

unique examples examples labeled context (frequency)

you 69 2460 you LIKE (166)

we 42 1435 we BELIEVE (123)

us 14 354 CONTACT us (90)

share 12 44 share INCREASED (15)

company 11 258 company OPERATES (44)

this 10 247 this PRESS (38)

it 10 200 it PROVIDES (31)

1997 9 364 ENDED 1997 (114)

1996 9 373 ENDED 1996 (114)

trademarks 7 181 REGISTERED trademarks (65)

Table 4.2: Noun-phrases selected for labeling when most frequent examples (noun-

phrase context pairs) are selected for labeling. Frequencies given here are number

of different contexts these noun-phrases occurred in, though selection was based on

number of occurrences of those contexts.

density-based active learning, we find that only 211 distinct noun-phrases appeared

among them. Table 4.2 shows the noun-phrases that occurred in the most examples

selected for labeling.

Our labeler labeled 69 different <noun-phrase, context> examples which con-

tained the noun-phrase “you”, and 11 different examples which contained the noun-

phrase “company”. However, as we learned in Chapter 3, noun-phrases alone are

relatively unambiguous with respect to the classes we are attempting to learn. Thus

we may be able to economize on labeling time by avoiding redundancy in the noun-

phrases labeled. One way of doing this is to ask the labeler to actively label noun-

phrases alone, using single-feature set labeling.

We describe experiments and results examining this approach in the next section.

4.10.3 Single Feature Set Labeling

When we ask our labeler to actively label only noun-phrases, the labeled noun-phrases

are assigned probability 0 or 1 of class membership, depending on the label.

In Figure 4.4 we find that labeling frequently occurring NPs is effective for people,

89

90 Active Learning for Semi-supervised IE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations coem allowStopwords
coem

density500
npdensity500

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people coem allowStopwords
coem

density500
npdensity500

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations coem allowStopwords
coem

density500
npdensity500

Figure 4.4: Adding 500 labeled noun-phrases, selected according to their density, for loca-

tions, people and organizations.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations coem allowStopwords
coem

npdensity500
cfdisagreement500

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people coem allowStopwords
coem

npdensity500
cfdisagreement500

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations coem allowStopwords
coem

npdensity500
cfdisagreement500

Figure 4.5: Adding 500 labeled noun-phrases, selected according to context disagreement,

for locations, people and organizations.

whereas for companies we are best off labeling entire examples. For the locations class,

labeling NPs in isolation harms precision. This is surprising – most of the examples are

not in the location class, only 24 of the 500 examples labeled were labeled as positive.

However, we find that ambiguity in the noun-phrases leads to incorrect labeling by

the oracle. For example, “capital” was labeled as positive, however in our test set,

“capital” refers to the company. For organizations we find similar effects. Noun-

phrases which do not obviously refer to companies when seen in isolation, including

“energy solutions” and “vcs technologies” actually are company names in our dataset.

Using capital letters as part of our model could aid in mitigating this problem, but

noun-phrases occurring in titles or at the start of sentences would remain ambiguous.

Context Disagreement

We see in Figure 4.5 the results of labeling 500 examples, selected according to context

disagreement. For the people class, context disagreement works about as well as NP

density for selecting examples to actively label. However, for the locations class,

context disagreement is more effective. When we examine the examples chosen for

labeling, we find that “capital” is no longer selected for labeling.

90

4.10 Results 91

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations allow stopwords coem
no active learning

density500
disagreement500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people allow stopwords coem
no active learning

density500
disagreement500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations allow stopwords coem
no active learning

density500
disagreement500

Figure 4.6: Adding 500 labeled examples, selected according to their density or feature-set

disagreement, for locations, people and organizations.

4.10.4 Disagreement and Density Active Learning

In Figure 4.6 we see the results of labeling examples selected according to the dis-

agreement between the two feature sets. We see that for locations this is slightly more

effective than density based selection, whereas for both organizations and people

density based selection provides the most leverage. This matches the intuition we

gained in Chapter 3, that good features for the people and organizations classes

are the most frequently occurring ones, and that stopwords (which are frequent) are

important in the model.

4.10.5 Active Learning Compensates for Infrequent Seeds

Figure 4.7 shows that using feature set disagreement for active learning can compen-

sate for very infrequent seeds. Recall from Chapter 3 Section 3.3.2 that we use the

seeds to actively label as positive all examples for which the head of the noun-phrase

matches the seed, in a process we call head-labeling, while all remaining examples are

unlabeled. Infrequently occurring seed words will therefore lead to fewer examples

labeled at the outset with head-labeling. In the figure on the left, different sets of 10

randomly chosen country names led to only 2 and 3 examples labeled at the outset

using head-labeling. In the center figure, the randomly chosen seeds were commonly

occurring in the training data, occurring a total of 111, 101 and 36 times. With 500

examples chosen for active learning, the difference between the initial seed sets is

virtually eliminated. We see in the graph on the right that starting with Riloff and

Jones’ 10 frequent country names, or a nearly complete list of 253 country names

gives virtually the same results, after 500 examples have been labeled using active

learning.

91

92 Active Learning for Semi-supervised IE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

random 10 countries coem
random10.6 (3 instances)
random10.7 (2 instances)
random10.9 (2 intances)

random10.6.disagreement500
random10.7.disagreement500
random10.9.disagreement500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

random 10 countries coem
random10.2 (101 instances)

random10.8 (36 instances)
random10.10 (111 instances)
random10.2.disagreement500
random10.8.disagreement500

random10.10.disagreement500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries versus 10 locations coem
allcountries

allcountries.disagreement500
locations

locations.disagreement500

Figure 4.7: Active Learning Compensates for Infrequent Seeds. Left, 10 randomly chosen

locations as seeds are infrequent in the training corpus. Center, the 10 randomly chosen

seeds are relatively frequent in the training corpus. Right, 10 very frequent seeds and a

near-complete list of country names used as seeds. In all cases active learning produces

comparable results, after 500 examples have been labeled using active learning.

92

4.10 Results 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries 20 random coem
random20.4 (17 instances)
random20.7 (29 instances)

random20.10 (31 instances)
random20.4.disagreement500
random20.7.disagreement500

random20.10.disagreement500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n
Recall

allcountries 20 random coem
random20.2 (174 instances)
random20.1 (164 instances)
random20.5 (132 instances)

random20.2.disagreement500
random20.1.disagreement500
random20.5.disagreement500

Figure 4.8: Active Learning Compensates for Infrequent Seeds. Even with 20 random

seeds, active learning can produce considerable improvements. On the left, infrequently

occurring seeds, on the right frequently occurring seeds.

Figure 4.8 shows that even when we double the number of randomly selected seeds

to 20, active learning can still provide significant improvement in the results. This

suggests that active learning makes bootstrapping robust to a poor initial choice of

seeds.

4.10.6 Number of Examples Labeled

In Figures 4.9 and 4.10 we see that labeling more examples improves results for

locations using disagreement labeling, whereas from 0 to 2500 examples labeled

the change is not great for density-based labeling. When we contrast the effect of

labeling more examples for people and organizations we see that both density

and disagreement labeling are effective for the people class, while for organizations

disagreement-based labeling shows the most effect for labeling more examples. Fur-

thermore, when we look at learning curves showing the breakeven score against the

number of iterations, it is clear that the bulk of the benefit is obtained during the first

few examples labeled. Figure 4.11 shows the breakeven point at each iteration for

both density and disagreement based active learning. Recall that we label 5 examples

at each iteration. We see that the largest gains are obtained in the first few iterations,

however continued labeling contributes to improvements too.

However, we see in Figure 4.12 that a larger corpus is more helpful for the

location class than having up to 2500 examples labeled.

93

94 Active Learning for Semi-supervised IE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations coem
density2000
density1500
density1000
density500
density100
density25
density5

no active learning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Pr

ec
is

io
n

Recall

people coem
density2000
density1500
density1000
density500
density100
density25
density5

no active learning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations coem
density2000
density1500
density1000
density500
density100
density25
density5

no active learning

Figure 4.9: Labeling More Examples Improves Results. For people with density based

selection, labeling just 5 examples greatly improves results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations coem
disagreement2500
disagreement2000
disagreement1500
disagreement1000
disagreement500
disagreement100
disagreement25
disagreement5

no active learning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people coem
disagreement2000
disagreement1500
disagreement1000
disagreement500
disagreement100
disagreement25
disagreement5

no active learning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations coem
disagreement1500
disagreement1000
disagreement500
disagreement100
disagreement25
disagreement5

no active learning

Figure 4.10: Labeling More Examples Improves Results For Disagreement-based active

learning, for people and locations while for organizations little improvement can be

seen.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en
 P

oi
nt

Number of iterations

locations coem breakeven
densityactive.2500

disagreementactive.2500

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en
 P

oi
nt

Number of iterations

people coem breakeven
densityactive.2500

disagreementactive.2500

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en
 P

oi
nt

Number of iterations

organizations coem breakeven
densityactive.2500

disagreementactive.2500

Figure 4.11: Breakeven point for each iteration. We see that most of the gains from active

learning come in the first 50 iterations (ie the first 250 examples labeled) but labeling more

continues to improve results. For the organizations class there is a dip from iterations

8 through 50. This may be due to the ambiguity in examples containing “we” which is

labeled positive for organizations but may lead the model to incorrectly identify people

as organizations until more examples have been labeled.

94

4.10 Results 95

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations, coem

wtx051--056 (101,380 docs) 300 labeled
wtx051--056 (101,380 docs) 200 labeled
wtx051--056 (101,380 docs) 100 labeled

wtx051--056 (101,380 docs) 0 labeled
7 sectors 5000 labeled
7 sectors 2500 labeled

7 sectors 0 labeled

Figure 4.12: More data more important than labels

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations active init versus active learning

no active learning
active init

active init 5 examples labeled
active init 25 examples labeled

active init 500 examples labeled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people active init versus active learning

no active learning
active init

active init 5 examples labeled
active init 25 examples labeled

active init 500 examples labeled
500 examples labeled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Pr

ec
is

io
n

Recall

organizations active init versus active learning

no active learning
active init

active init 5 examples labeled
active init 25 examples labeled

active init 500 examples labeled
500 examples labeled

Figure 4.13: Labeling with active learning has more impact than active initialization.

Combining active initialization with active learning provides modest incremental gains for

the people class.

4.10.7 Active Learning More Useful than Active Initializa-

tion for CoEM

We found that labeling pairs of noun-phrases and contexts which matched seeds at the

outset did not perform significantly better than using active learning by itself. When

our active learning method is provided a set of initial instances that are “clean” and

unambiguous, the extraction performance does not improve. This suggests that the

active learning methods are robust to ambiguous/noisy training data and can recover

from poor initial seeds. This is shown in Figure 4.13. We also find that the active

learning method (with 500 examples labeled for locations) performed better than

using bootstrapping with coEM with active initialization (with 693 examples labeled).

This is an important result since if we have a fixed amount of time to actively label

instances, active learning can be a more effective use of this time than labeling the

instances at the outset.

95

96 Active Learning for Semi-supervised IE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations em uniform active
uniform active coem init

uniform active random init
coem init

random init

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people em uniform active
uniform active coem init

uniform active random init
coem init

random init

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations em uniform active
uniform active coem init

uniform active random init
coem init

random init

Figure 4.14: Adding 500 labeled examples, examples selected uniformly at random, for

locations, people and organizations. As with coEM, EM does not benefit greatly from

examples selected uniformly at random, both for random initialization, and initialization

from coEM.

4.10.8 Active Learning with EM

Recall from Chapter 3 Sections 3.4.6 and 3.4.2 that coEM uses a split in the feature

set to label with noun-phrases and contexts in alternation, while EM uses both noun-

phrases and contexts together to label in each iteration. When we had only examples

labeled automatically from seeds with head-labeling (see Section 3.3.2), coEM provided

more accurate results. One reason may have been that EM attempts to maximize the

likelihood of the data given the model, but some of our target classes may be better

represented by models which give a lower likelihood to the data.

If we have the opportunity to provide more labels to the algorithm through active

learning, these will change the distribution of the data over which EM attempts to

maximize the likelihood. In particular, examples given definitive labels by a human

labeler in active learning have a known class label, which will affect the overall data

likelihood. Thus we may expect the performance of EM to improve with active

learning.

Uniform Labeling Less Influential than Initialization Condition for EM

As with coEM, we find that EM does not benefit greatly from adding 500 labeled

examples, with examples selected uniformly at random, as shown in in Figure 4.14.

We see in particular, that for organizations results are markedly better with ini-

tialization from coEM than with random initialization, and that this difference holds

regardless of whether we label 500 examples selected uniformly at random.

96

4.10 Results 97

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

people em 500 examples labeled
active density 500 labeled small init
active density 500 labeled coem init

active density 500 labeled random init
no active learning - small init
no active learning - coem init

no active learning - random init

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

locations em 500 examples labeled
active density 500 labeled small init
active density 500 labeled coem init

active density 500 labeled random init
no active learning - small init
no active learning - coem init

no active learning - random init

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

organizations em 500 examples labeled
active density 500 labeled small init
active density 500 labeled coem init

active density 500 labeled random init
no active learning - small init
no active learning - coem init

no active learning - random init

Figure 4.15: For EM, when we select examples for labeling according to density we see

very large improvements in results for the people class and the organizations class. This

transcends the initialization condition, unlike with uniform active labeling.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en

Iteration

people em breakeven
active density 500 labeled small init
active density 500 labeled coem init

active density 500 labeled random init
no active learning small init
no active learning coem init

no active learning random init

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en

Iteration

locations em breakeven
active density 500 labeled small init
active density 500 labeled coem init

density 500 labeled random init
no active learning small init
no active learning coem init

no active learning random init

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en

Iteration

organizations em breakeven
active density 500 labeled small init
active density 500 labeled coem init

density 500 labeled random init
no active learning small init
no active learning coem init

no active learning random init

Figure 4.16: Breakeven versus iteration, for density based active learning.

Density Based Example Selection Effective Regardless of Initialization

When we select examples for labeling according to density we see substantial im-

provements in results for the people class and the organizations class, as shown in

Figure 4.15. This mirrors the results we saw for coEM, where the most substantial

gains with density-based example selection were realized in the people class. Results

shown here are for small, random and coem initialization for examples not matching

seeds. Interestingly, the gains from labeling 500 examples selected according to den-

sity transcend the differences due to initialization condition. When we look at the

breakeven graphs in Figure 4.16 we see that the early iterations of labeling have a

substantial impact on the breakeven score.

Single Feature Set Labeling Effective for EM

We saw that two forms of single feature set labeling were reasonably successful for

coEM: NP density based selection, and context disagreement based selection. We see

in Figure 4.17 that both are reasonably successful for EM, regardless of the initializa-

tion condition. For people and organizations both appear to be equally successful.

97

98 Active Learning for Semi-supervised IE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people em single feature set labeling
small init

small init contextkldensityactive 500
coem init contextkldensityactive 500

coem init npdensity 500
small1 init npdensity 500

random1 init npdensity 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations em single feature set labeling
small init

small init contextkldensityactive 500
coem init contextkldensityactive 500

coem init npdensity 500
small1 init npdensity 500

random1 init npdensity 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations em single feature set labeling
small init
coem init

small init contextkldensityactive 500
coem init contextkldensityactive 500

coem init npdensity 500
small1 init npdensity 500

random1 init npdensity 500

Figure 4.17: Single feature set labeling is reasonably successful for EM. It provided great

benefit for the organizations and people classes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people em context disagreement active
small init

small init feature set disagreement 500
coem init feature set disagreement active 500

random init active init 500 labeled feature set disagreement
small init active init 500 labeled feature set disagreement

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations em context disagreement active
small init

small init feature set disagreement 500
coem init feature set disagreement active 500

random init active init 500 labeled feature set disagreement
small init active init 500 labeled feature set disagreement

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations em context disagreement active
small init

small init feature set disagreement 500
coem init feature set disagreement active 500

random init active init 500 labeled feature set disagreement
small init active init 500 labeled feature set disagreement

Figure 4.18: When we select examples for labeling according to disagreement between

the noun-phrase and the context, we see the largest improvements for the organizations

class, because half of the examples selected were not among the original head-labeled exam-

ples. Eliminating this manual relabeling of automatically labeled examples by using active

initialization, we see improvements in all classes.

For locations context disagreement performs somewhat better.

Feature Set Disagreement Selects Seeds; Improves with Active Initializa-

tion

When we select examples for labeling according to disagreement among contexts

(Figure 4.18) we see the biggest improvements in the organizations class. However,

when we observe which examples are selected for labeling, we see that many of these

examples contain the original seedwords. We can eliminate this effect by combining

active initialization with active learning. We then see substantial gains in accuracy

with active learning for all classes. This suggests that we should focus active learning

effort on examples not already labeled with head-labeling.

Table 4.3 shows that for the people and locations classes, feature-set disagree-

ment mostly selected examples which had seeds as heads. Active initialization elim-

98

4.10 Results 99

Class Num examples chosen with seed heads

locations 482

organizations 286

people 441

Table 4.3: For the people and locations classes, feature-set disagreement mostly selected

examples which had seeds as heads. We can eliminate this effect by performing active

initialization, or by excluding examples with seeds as heads from the pool available for

active learning.

inates this effect. However, we have seen that active initialization is in general not

important for improving results. We would expect to get similar improvements from

excluding examples with seeds as heads from active learning.

EM Robust to Choice of Initial Seeds With Single Feature Set Labeling

We wish to examine the effect of different seed sets with EM, as we did with coEM.

As a baseline we use the locations seed set, with 2500 examples labeled, using density

based labeling. Since we are using density based example selection, the set of labeled

examples will be the same for all seed sets. The difference will be between the initial

conditions for EM. Since EM tends to find local maxima, we may expect that different

initial conditions may have an important effect on the final model found.

Figure 4.19 shows that starting with random seed sets performs extremely poorly,

even if we label 2500 examples using density based selection. Active initialization does

not improve results. One reason for this may be that density based active learning

does not select examples for labeling which are likely to be in the positive class, so for

the random seed sets we may never have training data which permits us to model the

positive class. We may expect that feature-set disagreement would perform better, as

it selects examples for which the feature sets disagree on class membership, and may

provide a better range of training examples. However, Figure 4.20 shows that starting

with random seed sets performs extremely poorly, even if we label 2500 examples using

feature-set disagreement based selection.

Surprisingly, however, context disagreement based labeling greatly improves the

results. This may be because context disagreement works so well for the locations

task, by providing labels for as many different noun-phrases as possible. Recall from

Chapter 3 that the locations task has a large vocabulary which is only partially

99

100 Active Learning for Semi-supervised IE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries 20 random em
random20.4.density2500
random20.7.density2500

random20.10.density2500
random20.4.density2500 activeinit
random20.7.density2500 activeinit

random20.10.density2500 activeinit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries 20 random em
random20.1.density2500
random20.4.density2500
random20.5.density2500

random20.1.density2500 activeinit
random20.4.density2500 activeinit
random20.5.density2500 activeinit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries / locations em density 2500
allcountries.density.em.2500

locations.density.em.2500
allcountries.density.em.activeinit.2500

locations.density.em.activeinit.2500

Figure 4.19: Using different initial seed sets and labeling examples according to frequency.

Starting with random country names performs extremely poorly, when contrasted with

starting with all country names.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries 20 random em
random20.4.disagreement2500
random20.7.disagreement2500

random20.10.disagreement2500
random20.4.disagreement2500 activeinit
random20.7.disagreement2500 activeinit

random20.10.disagreement2500 activeinit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries 20 random em disagreement
random20.2.disagreement.em.2500
random20.1.disagreement.em.2500
random20.5.disagreement.em.2500

random20.2.disagreement.em.activeinit.2500
random20.1.disagreement.em.activeinit.2500
random20.5.disagreement.em.activeinit.2500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries / locations em disagreement 2500

allcountries.disagreement.em.2500
locations.disagreement.em.2500

Figure 4.20: Using different initial seed sets of random country names does not perform

well with feature-set disagreement, even with active initialization and 2500 examples labeled,

when compared with using all country names.

100

4.10 Results 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries 20 random em disagreement
random20.7.contextdisagreement.em.2500
random20.4.contextdisagreement.em.2500

random20.10.contextdisagreement.em.2500
random20.10.contextdisagreement.activeinit.em.2500

random20.7.contextdisagreement.em.activeinit.2500
random20.4.contextdisagreement.em.activeinit.2500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries 20 random em disagreement
random20.2.contextdisagreement.em.2500
random20.1.contextdisagreement.em.2500
random20.5.contextdisagreement.em.2500

random20.5.contextdisagreement.activeinit.em.2500
random20.2.contextdisagreement.em.activeinit.2500
random20.1.contextdisagreement.em.activeinit.2500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

allcountries / locations em contextdisagreement 2500

allcountries.contextdisagreement.em.2500
locations.contextdisagreement.em.2500

Figure 4.21: Using different initial seed sets of random country names is reasonably effective

with EM, when we label 2500 examples using context-disagreement.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

people em density based active learning
active density 2500 labeled
active density 1000 labeled
active density 500 labeled
active density 100 labeled

active density 25 labeled
active density 5 labeled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

locations em density based active learning
active density 2500 labeled
active density 1000 labeled
active density 500 labeled
active density 100 labeled
active density 25 labeled
active density 5 labeled

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

organizations em density based active learning
active density 2500 labeled
active density 1000 labeled
active density 500 labeled
active density 100 labeled
active density 25 labeled
active density 5 labeled

Figure 4.22: For all classes, labeling more examples greatly improves the results for EM. In

particular, for the people class, labeling 100 or more examples provides the biggest gains

in model effectiveness. With both organizations and locations, adding more examples

continues to improve the effectiveness of the model.

covered by the training set.

Labeling More Examples Improves Results for EM

Figure 4.22 shows that for all classes, labeling more examples greatly improves the

results for EM. In particular, for the people class, labeling 100 or more examples

provides the biggest gains in model effectiveness. With both organizations and

location, adding more examples continues to improve the effectiveness of the model.

We see in Figure 4.23 that when we label 2500 examples, disagreement based labeling

is somewhat better for both the locations and people classes. When we examine the

breakeven curves (Figure 4.24) we see that for locations, with active initialization,

disagreement based selection dominates density based selection, but by 500 iterations

(2500 examples labeled) results using the two methods are quite similar. For the

people class we are seeing the opposite effect. In both cases, however, once we label

2500 (just over 10% of the 23,000 unlabeled examples available for labeling) the exact

method we are using for labeled becomes of less importance.

101

102 Active Learning for Semi-supervised IE

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

people em active learning
active disagreement 2500 labeled

active density 2500 labeled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

locations em active learning
active disagreement 2500 labeled

active density 2500 labeled
active disagreement 2500 labeled active init

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

organizations em active learning
active disagreement 2500 labeled

active density 2500 labeled

Figure 4.23: With 2500 examples labeled, the people and locations classes perform

slightly better with disagreement based labeling.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en

Iteration

people em active learning
active disagreement 2500 labeled

active density 2500 labeled
active disagreement 2500 labeled

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en

Iteration

locations em active learning
active disagreement 2500 labeled

active density 2500 labeled
active disagreement 2500 labeled active init

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 50 100 150 200 250 300 350 400 450 500

B
re

ak
ev

en

Iteration

organizations em active learning
active disagreement 2500 labeled

active density 2500 labeled
active disagreement active init 2500 labeled

active density active init 2500 labeled

Figure 4.24: Breakeven score versus iteration number, for EM, with 2500 examples labeled

(5 per iteration). The people and locations class perform slightly better with disagree-

ment based labeling. Organizations is always better with density based labeling.

Corpus Size and Mismatch

We see in Figure 4.25 that labeling just 100 examples greatly improves results for

the people and organizations class on the TREC wtx corpus which comes from a

different distribution than the test set. This suggests that active learning may help

compensate for a training set which comes from a different distribution from the test

set.

4.11 Chapter Conclusion

Recall the questions we raised in Section 4.1. We will now go over the answers

provided by the experimental results in this chapter.

102

4.11 Chapter Conclusion 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

people - EM small1init
wtx051-056 (... docs) no active

7 sector no active
wtx051-056 (... docs) 100 density active

7 sector 500 density active

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

locations - EM small1init
wtx051-056 (... docs) no active

7 sector no active
wtx051-056 (... docs) 100 density active

7 sector 500 density active

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

organizations - EM small1init
wtx051-056 (... docs) no active

7 sector no active
wtx051-056 (... docs) 100 density active

7 sector 500 density active

Figure 4.25: When we use a large corpus from a different distribution, and label examples

using density-based selection, we can recover from the losses in accuracy due to train-test

corpus mismatch.

Is it more effective to correct head-labeled examples, or actively label new

examples?

Given that we have automatically labeled some examples at the outset with head-

labeling, it is more effective to label different examples during the active learning

phrase. Recall that we saw in Chapter 3 that correcting the labels automatically

assigned during head-labeling does not greatly improve bootstrapping results. In this

chapter we see that more benefit is derived from labeling examples selected with active

learning than from correcting head-labeled examples with active initialization. An

important point, however, is that we reap benefit from active learning primarily when

it selects different examples from those labeled with head-labeling. For this reason,

active learning algorithms which tend to select head-labeled examples perform better

when coupled with active initialization, as redundancy in the labeling is removed.

A more efficient and equally effective strategy would be to force the active learning

algorithm to select examples for labeling, which were not part of the initial head-

labeling set.

What is the most effective way to select new examples to actively label?

We found that if we are labeling few examples, density based selection is most effective

for organizations and people, while for locations feature set disagreement was

most effective. However, when we label 2,500 examples, the gap in accuracy between

the methods is narrowed, so it may be more effective overall to label examples with

feature set disagreement.

103

104 Active Learning for Semi-supervised IE

Is it more effective to actively label just noun-phrases, or to actively label

noun-phrase context pairs, in active learning?

We saw in Section 4.10.3 that for coEM, single-feature set labeling, or asking users to

label noun-phrases out of context, occasionally leads to the incorrect label. For coEM

this lead to poor performance of bootstrapping, while for EM, this was not as much

of a problem, as we saw in Section 4.10.8. In particular, we found that single feature

set labeling with context disagreement was very effective for the locations class, even

with infrequent seeds. Thus it appears that the effectiveness of single feature set

labeling depends on the algorithm used for bootstrapping, and that for classes with

a diverse vocabulary, single feature set labeling is effective with EM.

If we have a larger corpus to choose examples from, does this lead to

greater accuracy for the same amount of user labeling effort?

We saw in Figure 4.12 that for coEM on the locations class, using a larger cor-

pus from a different distribution was more effective than labeling many examples

on a smaller corpus from the same distribution as the test set. For people and

organizations however, changing the distribution harmed accuracy as we saw in

Figure 4.25 and while labeling examples with active learning from the larger corpus

improved accuracy over no active learning, performance was not as good as when we

performed active learning on a smaller corpus from the same distribution as the test

set.

How much does increasing the number of actively labeled examples im-

prove accuracy? Do improvements tail off, or do we continue to get in-

creased accuracy as we increase the number of labeled examples?

Across both coEM and EM, for all active learning methods, we saw increased accuracy

as we increased the number of examples labeled with active learning. The increases

in accuracy continued up to 2,500 examples, the maximum number of examples we

labeled in these experiments. The largest improvements were generally in the first 5 -

100 examples labeled. This suggests that it is worth performing active learning, even

if we have only a tiny amount of user time at our disposal. If our goal is to maximize

accuracy, however, we should label as many examples as possible.

104

4.11 Chapter Conclusion 105

Does active learning make bootstrapping algorithms more robust to the

set of seeds chosen for head-labeling?

Active learning makes bootstrapping examples robust to the choice of seeds: for EM

we found that context disagreement based selection eliminated much of the difference

between performance with different seed sets, while with coEM we found that feature

set disagreement eliminated much of the difference in performance. We can conclude

that if we use active learning, we need not be too concerned with the quality of the

initial seeds used for initialization with head-labeling.

Does active learning make bootstrapping algorithms more robust to the

way unlabeled examples are initialized?

For EM, we have a number of choices about how to initialize unlabeled examples.

In Chapter 3 we found that these choices had a significant effect on bootstrapping

accuracy. In this Chapter, however, we found that most active learning methods

eliminated these differences.

Summary

We showed that employing the redundancy in feature sets and designing algorithms

that exploit this redundancy enables the combination of bootstrapping and active

learning to be effective for training information extractors. We compared different

metrics for selecting examples to actively label and found that using the disagreement

between classifiers built with the two feature sets worked well. Manually correcting

initial examples that were mislabeled due to ambiguous seeds is not as effective as

providing the active learning algorithm with an arbitrary set of seeds and labeling

examples during the learning process. However, some algorithms may select examples

which have already been labeled in the initial phase, reducing the effectiveness of

labeling. Context-disagreement used the single feature set labeling setting, and did

not perform as well as methods using standard labeling for coEM, but was very

effective for EM, when we label up to 2500 examples. Using only a single feature set

for labeling may allow inaccuracies to creep into the labeled set, if any of the examples

are ambiguous with respect to that feature set. In addition, disagreement between

members of a single feature set may reflect inherent ambiguity in the example, and

not uncertainty in the learner. We presented an active learning setting that is able

105

106 Active Learning for Semi-supervised IE

to make use of the multiple view feature sets and provided experimental evidence

of its effectiveness. Although the results shown here are specific to the information

extraction setting, our approach and framework are likely to be useful in designing

active learning algorithms for settings where a natural, redundant division of features

exists.

106

Chapter 5

Analysis

In Chapters 3 and 4 we saw empirical results of bootstrapping for learning

to extract information in the form of semantic classes specified through

the use of seed words. In this chapter we perform a deeper analysis of

some of these results. We measure properties of the noun-phrase context

connectivity graph, and show that it exhibits small-world and power-law

graph structure rather than random graph structure. We show that pro-

nouns and certain very common nouns form the hubs of the connectivity

graph, which explains the importance of stopwords and frequent seeds in

our models. We measure the mutual information between noun-phrases

and contexts in each class, in order to test our conditional independence

hypothesis. We also perform Spearman rank correlation tests over mul-

tiple experiments, to find the correlation between algorithm breakeven

point and features including the number of contexts labeled by multiple

seeds, and the percent of examples labeled positive during active learning.

These can help us pinpoint the important properties of active learning and

bootstrapping algorithms for information extraction. Comparing these

across classes also highlights the different desiderata for active learning

algorithms for classes with sparse feature sets and extremely small priors.

In this chapter we analyze the results of experiments from Chapters 3 and 4.

To do this, we first summarize the results and describe some tools we will use for

analysis, in Section 5.1. In Section 5.2 we analyze our data for small-world and

power-law properties. In Section 5.3 and show that some graph-theoretic properties

107

108 Analysis

are predictive of algorithm performance. This kind of analysis is novel, and sets the

stage for research into selecting appropriate algorithms and labeling techniques based

on examining properties of the unlabeled data.

Many machine learning algorithms assume feature set independence. A common

trait is to acknowledge that feature set independence does not hold, and show that

the algorithm is effective anyway, perhaps because exactness in the generative model

is not essential for classification (see eg. (Domingos & Pazzani, 1997)). In Section

5.4 we quantify feature-set dependence by measuring mutual information between

features, and suggest that differences in conditional dependence across classes may

translate into different algorithmic performance across classes. This novel analysis

opens up a spectrum of algorithm performance prediction based on labeled training

data, in the absence of labeled test data.

These analyses add up to some concrete suggestions for algorithm design, informed

by properties of the data, which we explore in Section 5.5. Finally we give some basic

advice about seed selection and assessing data and tasks in Section 5.6.

5.1 Analyzing Results of Experiments

In Chapter 3 we saw the results of experiments with algorithms for bootstrapping

semantic classes, initializing with small sets of seed example words. In Chapter 4, we

saw the results of experiments adding a variety of active learning algorithms on top

of the basic bootstrapping algorithms. In this chapter we will step back and examine

the overall lessons learned through these experiments, by examining the trends and

exploring several possible explanatory factors.

In Table 5.1 we provide an overview of the experimental conditions we explored

in Chapters 3 and 4, along with the tentative conclusions we drew from those. In the

following sections we will explore the issues of stopword and example frequency, by

examining our data in graph-theoretic terms. We will also tease apart the effect of

adding more examples, and more positive examples, by examining their effect across

different active learning methods. Finally we will examine the degree to which our

data fails to exhibit the class conditional independence which we have assumed, by

measuring the mutual information between noun-phrases and contexts within classes.

108

5.1 Analyzing Results of Experiments 109

Bootstrapping

Experimental condition Summary of Results Section

Bootstrapping algorithm Metabootstrapping: poor; cotraining: poor 3.7

EM: mixed; coEM: okay 3.8.5

Seed word labels corrected Unimportant 3.7.4

Train and test from same distribution people: important, organizations: important

locations: not important 3.7

Allow stopwords (pronouns) in the model Important for people, organizations 3.7.2

Use example frequency organizations: important with EM 3.8.2

Seedword frequency in training set High frequency important 3.7.5

Training set size locations: large training set best 3.7.6

Transduction organizations: helpful; people: deleterious 3.7.7

Bootstrapping with Active Learning

Experimental condition Summary of Results Section

Train and test from same distribution Less important with active learning 4.10.8

What user labels whole example labeling: effective 4.10.3, 4.10.8

Noun-phrase labeling: effective 4.10.3, 4.10.8

Number of examples labeled Improvements with just 5 labeled examples; increasing

number labeled gives continuing improvements 4.10.6

Algorithm used to select examples • uniform random: poor 4.10.1

• density: effective 4.10.2, 4.10.8

• feature set disagreement: effective 4.10.4

• context disagreement: effective 4.10.3

Initialization conditions EM: large effect 4.10.8

Seedword frequency in training set Less important with active learning 4.10.5, 4.10.8

Seed word labels corrected Unimportant 4.10.7, 4.10.8

Allow stopwords in the model More important than labeling 500 random instances 4.10.1

Algorithm used for bootstrapping coEM: most effective across conditions 4.10.2

EM: sensitive to class and active-learning algorithm 4.10.8

Table 5.1: Summary of experiments in Chapters 3 and 4, along with the general

trends we saw.

109

110 Analysis

5.1.1 Breakeven Score as Summary of Result

In Section 3.6.2 we defined our evaluation metrics of precision, recall and breakeven,

and for most experiments in this thesis we showed results by plotting the entire

precision-recall curve. Now we are looking at the results of many experiments si-

multaneously, we would like to summarize the results of each experiment with just

one number. While using a single number does not capture all the nuances of the

experimental result, it captures much of the performance, and allows us to compare

across experiments.

There are several single number evaluation scores we can use to compare exper-

iments. We will describe several candidates, and summarize the pros and cons in

Table 5.1.1.

Accuracy

Accuracy is a measure commonly used in machine learning. We generally assume that

we make a prediction for every example in the test set, so the accuracy is then the

percentage of test examples for which we make a correction prediction.

Ac =
correctPredictions

TotalPredictions
(5.1)

A draw-back of accuracy as a measure of efficacy is that when one of the classes is

very sparse (for example, our locations class, which constitutes about 225/8081 =

2.8% of the test instances), a naive classifier which classifies every example as negative

can appear to perform well (say with accuracy above 95%), while being wrong about

all examples in the class of most interest.

F-measure

The F-measure (Van Rijsbergen, 1979) combines precision and recall with a parameter

α which quantifies the importance the user attaches to each. The general form of the

F-measure is given by the weighted harmonic mean of precision and recall:

F = [
α

P
+

1− α

R
]
−1

=
PR

(1− α)P + αR
, 0 ≤ α ≤ 1 (5.2)

110

5.1 Analyzing Results of Experiments 111

Accuracy Insensitive to performance on sparse class

F-measure Score is dominated by the lower of precision and recall

Breakeven F score at α = 0.5 where precision and recall are equal

.

Table 5.2: Comparison of Single-number summary statistics of Experimental Results

where P is precision and R is recall (defined in Section 3.6.2 in Chapter 3). When

α = 0.5, we weight precision and recall as equally important, and obtain

F =
2PR

P + R
, α = 0.5 (5.3)

When we have a set of pairs of precision and recall scores, we combine them by

first calculating average precision and average recall. To calculate average precision,

we take recall values at intervals of 0.1 (interpolating where necessary) and average

precision at these points. Average recall is calculated similarly, by averaging over

fixed precision points.

Breakeven Point

When we have a precision recall curve, we find the breakeven point by finding the

point where precision and recall are equal, interpolating where necessary. Note that

the breakeven score is a specific value of the F-measure at α = 0.5, when P and R are

equal. The breakeven is always less than the optimal F-measure score for a system.

We chose to work with the breakeven score because of the simplicity of computation.

5.1.2 Spearman Rank Correlation Test

To understand the extent to which a variety of experimental conditions predict per-

formance, we can consolidate results from Chapters 3 and 4, and see if general trends

emerge. By focusing on different properties of experiments, such as the number of

examples labeled by seeds, or the number of examples labeled during active learning,

and aggregating over multiple experiments, we can measure the degree to which each

property affects the results. While each individual experimental result is affected by

the combination of conditions, over many different experiments we can see general

trends.

111

112 Analysis

To measure these trends, we can perform the Spearman rank correlation test over

the results of the experiments, in combination with a candidate predictive property

of the experiments. If we have a ranking function R and a ranking function S, the

formula for the Spearman correlation test is:

rs =

∑

i(Ri −Ri)(Si − Si)
√

∑

i(Ri − Ri)2
√

∑

i(Si − Si)2
(5.4)

where Ri is the rank of point i according to R, and Si is the rank of point i

according to S.

The Spearman rank correlation test is a non-parametric test, ie it does not make

assumptions about the form of the relationship between two variables. For example,

in this chapter we will use the Spearman rank correlation test to test whether the

rank of algorithm performance is predicted by the rank of the number of examples

labeled. This means that we can detect a positive relationship between algorithm per-

formance and number of examples labeled with active learning, without making any

assumptions about the form of that relationship (for example, without assuming the

relationship is linear). The Spearman rank correlation test is related to the Pearson

correlation test, but uses the rank of the value rather than the value itself. For our ex-

ample of measuring how the number of examples labeled with active learning predicts

performance, we will order the number of examples labeled, such that each experiment

has a rank in that ordering, and order the results, such that each experiment has a

position in the ordering of results. Then for all n experiments, the ith experiment gives

the pair of < breakevenScorei, numExamplesActivelyLabeledi >. For each experi-

ment i we find both the rank by breakevenScore: Ri = rank(breakeveni) and the rank

by number of examples labeled with active learning: Si = rank(examplesLabeledi).

Ties are assigned their average rank. The formula for the Spearman rank correlation

test is then found by using ranks in the Pearson linear correlation formula (and is

given in Equation 5.4 (Press et al., 1992)). A Spearman correlation score rs close to

1.0 shows a positive correlation in the ranks. A Spearman correlation score close to

-1.0 shows a negative correlation, while scores close to 0 show little correlation.

r2
s gives the percentage of variability in rank ordering that is explained by the

predictor variable. For example, for rs = 0.6, 36% of variability in the rank ordering

of datapoints using S is explained by R.

To see whether a measured value rs is significantly different from 0 (the null

112

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph113

hypothesis) we measure the variable

t =
rs

(1− rs
2/(n− 2)

(5.5)

which is distributed according to a t-distribution with 2 degrees of freedom, where

n is the number of points used in the Spearman correlation test. We can then use

standard t-tables to obtain a significance score. A significance score near 0 shows that

our measurement of the correlation is statistically significant. Typically we would like

to see significance scores below 0.05 to have confidence in the correlation score.

To test whether the difference between two correlation coefficients rs1
and rs2

is

significant, we must use another test: the r to Z transformation:

Zf =
1

2
ln(

1 + r

1− r
) (5.6)

Assuming we have transformed rs to Zf , and transformed rnull (the correlation

coefficient for our null hypothesis) to Znull, we can then compute a test statistic:

Z =
Zf − Znull

√

1
N−3

(5.7)

If |Z| > 1.96 then rs differs from rnull with α = 0.05.

We will use these significance tests when we compare different properties of the

data, to find whether some properties are more predictive of algorithm performance

than others.

5.2 Small World Nature of Noun-phrase Context

Cooccurrence Graph

We will now analyze our experimental results by focusing our attention on the first of

three different aspects of the data and the labeled examples: the small world nature

of the noun-phrase context cooccurrence graph. In this section we describe the data

in terms of the cooccurrence graph, and test whether it has small-world and power-

law properties (to be defined below). In Section 5.3 we analyze the effects of graph

properties on algorithm performance.

113

114 Analysis

Graph Property Brief description Hypothesis

Small-world Short path-lengths All nodes in component reachable in few steps

probabilistic labeling best

Power-law One large component, many small components Distribution of seeds over components affects learning

Power-law Skewed distribution of node degrees Node degree of labeled examples affects learning

Table 5.3: High-level graph properties of the data we will examine, as well as conjectures

that we will test about their effect on algorithm performance

We can view our data consisting of pairs < n, c > of noun-phrases and contexts as

a graph, if we represent each noun-phrase and each context as a node, and each pair

as an edge in the graph. We will give more detail about this mapping in the sections

below. The bootstrapping algorithms we explored in Chapter 3 exploited cooccur-

rence information to propagate evidence of class membership. Thus examining the

graph structure of the data may provide insight into the expected effectiveness of algo-

rithms on the data. In addition, the extent to which nodes are connected into many or

few components will affect the likely performance of algorithms, since cooccurrence

information will provide evidence only among nodes in the same component. The

presence of seeds in different components may provide insight into the performance

of bootstrapping algorithms with a given seed set. Any tendency of active learning

to pick out examples in different components may explain how active learning con-

tributes to bootstrapping over data initially labeled with seeds. We will examine the

consequences of this structure later in this section.

In Table 5.3 we see a brief summary of the graph properties we think may affect

learning performance. In the following sections we will define each of these properties,

then, in Sectionsec:correlations:performance where appropriate and possible using the

experimental data from Chapters 3 and 4, test whether the hypothesized effect on

learning performance holds by examining related graph properties.

5.2.1 Small-world Graphs of Data

We are accustomed to thinking of examples in machine learning as vectors of features,

where an example xi is made up of n features: xi =< xi1 ..xin >, and may also be

accompanied by a label yi. In this section we describe how we can view a set of

examples X = {x1..xm} as a graph.

We describe two representations of examples: (i) examples with splittable feature

sets, which we represent as bipartite graphs and (ii) the more general representation

of examples as nodes and edges in a graph.

114

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph115

f1 f2 label

australia flew to < x > ?

australia headquartered in < x > +

australia < x > broadened ?

china flew to < x > ?

france headquartered in < x > ?

thailand < x > broadened +

thailand gulf of < x > ?

director < x > of multinational company ?

leader < x > in its industry ?

Table 5.4: Training examples in feature vector format. Each example has two features, f1

(the noun phrase) and f2 (its context). Some examples are labeled positive, while all other

examples are unlabeled.

We will consider a unique instantiation of a feature or features to be a node in the

graph, and cooccurrence among features or feature sets to be an edge in the graph.

Bipartite Graphs over Examples Represented with Two Feature Sets

Table 5.4 shows training examples for the semantic labeling task which we described

in Chapter 3 Section 3.2.3. Each example has two features, f1 (the noun phrase) and

f2 (the context). Some examples are labeled positive, while all other examples are

unlabeled.

In Figure 5.1 we see a bipartite graph representing the same instances. Each

instance is represented by an edge joining two nodes in the graph. For example,

the instance “flew to china” is represented by the two nodes “flew to < x >” and

“china”, with an edge joining them. In this graph, the node “australia” is connected

to three other nodes, so it has degree 3. This also represents the fact that “australia”

occurred in 3 unique examples, with three unique different contexts: flew to < x >,

headquartered in < x >, and < x > broadened.

In supervised machine learning, viewed from this graphical perspective, we are

given a set of nodes and edges, with a label provided for each of the edges in a

training set. We use these labels to learn to predict labels on edges in a held-out test

set graph.

115

116 Analysis

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

china

australia

france

thailand

director

leader

flew to <x>

headquartered in <X>

<x> broadened

gulf of <x>

<x> of multinational company

<x> in its industry

Figure 5.1: Each instance represents an edge joining two nodes in the graph. For example,

the instance “flew to China” is represented by the two nodes “flew to < x >” and “china”,

with an edge joining them.

For this work we are concerned with semi-supervised learning. Our training set

is a collection of documents which we parse into noun-phrases and contexts, which

we then identify as nodes in a graph, with cooccurrences forming the edges in the

graph. We are given a small number of labeled examples, that is, a small number of

labeled edges, and we use an algorithm to infer labels for other edges based on the

partially labeled initial set. Our held-out test set is a set of distinct web pages parsed

in the same manner to form a graph of cooccurring noun-phrases and contexts, and

with edges assigned class labels. The set of nodes and edges in the test-set graph

may not be identical to those in the training set. There may be both nodes and edges

that were not seen in training. We measured the degree of overlap between train and

test set in chapter 3 Section 3.5.3 and found that 41% of labeled test noun-phrases,

and 91% of labeled test contexts had been seen in the training set. We then use the

learned model to infer labels on the held-out test set.

In general this graph is an incomplete sample from the underlying distribution, as

discussed in Section 5.2.2.

Our example in Figure 5.1 has two feature sets, each of which contain exactly

one feature. More generally, this bipartite graph representation can have multiple

features in each feature set. Blum and Mitchell (Blum & Mitchell, 1998) described

116

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph117

their data in graph-theoretic terms, by splitting the feature set into two redundant

sets. For an example xi =< xi1 ..xik , xik+1
..xin >, we view the instantiations of the

features < xi1 ..xik > to be one node in the graph, and the example’s second set of

features < xik+1
..xin > to be a second node. Nigam and Ghani (Nigam & Ghani,

2000) formed similar bipartite graphs with their data by dividing their feature set

randomly into two sets, and showed improvements on semi-supervised learning by

using this feature set split.

Unipartite Graphs over all Example Features

More generally, if we consider each unique feature instantiation as a node in the

graph, then an edge between two nodes represents cooccurrence between the two

feature instantiations, and an example consists of the set of nodes which are its

feature values, and the fully connected graph over them.

Unipartite Graphs over Single Feature Set By Projections

When working with a bipartite graph, we can also project it onto a unipartite graph,

by considering the two feature sets as the set of nodes ni ∈ N and ck ∈ C, then

projecting as follows:

for all ni, nj ∈ N create an edge eij from ni to nj if there exists a context in the

bipartite graph ck with eik and ejk. Remove all context nodes ck.

The projection is analogous for creating a unipartite graph for the context nodes

ck.

5.2.2 Graph Samples from an Underlying Distribution

We are working with a set of data collected for running experiments. The size of

the dataset is limited by constraints such as disk space and algorithm run-time. We

specifically sample web-pages, and each web-page contributes multiple <noun-phrase,

context> edges to the graph. It is likely that if we sampled more web-pages, we would

wind up with a graph with more nodes and edges. We can think of an underlying

true distribution, and our dataset as a sample from that distribution. Figure 5.2

shows illustratively how a sample might differ from the underlying distribution, by

containing fewer nodes and edges, though the general structure is similar.

117

118 Analysis

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

china

australia

france

thailand

director

leader

flew to <x>

headquartered in <X>

<x> broadened

gulf of <x>

<x> of multinational company

<x> in its industry

peru

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

china

australia

france

thailand

director

leader

flew to <x>

headquartered in <X>

<x> broadened

gulf of <x>

<x> of multinational company

<x> in its industry

Figure 5.2: The whole graph is as shown at left. If we take a sample from the graph, we

may wind up with a graph as shown at right. Some edges and some nodes are missing,

though the general structure is similar.

The number of samples from a random graph affects whether the sample contains

the full connectivity information (Karger, 1994). Our graph may not be random, so

we will measure the effects of this sampling by checking graph properties for different

size graphs.

5.2.3 Small World and Power-law Graph Properties

Recent work on naturally occurring graphs and networks has identified interesting

properties of small-world and power-law (or scale-free) graphs (Albert & Barabási,

2002). Small-world graphs are graphs in which most nodes are within a few steps

from most other nodes. Power-law graphs are those in which the degree distribution

of nodes can be observed to obey a power law.

When looking for small-world characteristics, we can characterize graphs according

to their behavior with respect to two properties:

• clustering coefficient C: the extent to which nodes tend to form fully con-

nected cliques or mostly connected cliques

118

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph119

• characteristic path length L: the shortest path between a pair of nodes,

averaged over all pairs of nodes

When looking for graphs with the power-law property, we measure

• power-law coefficient α: how well the node degrees fit a power law.

In this section we describe these and other graph properties in more detail, and

highlight how we can expect algorithms to be affected when the data they are run on

exhibit these properties.

Small World Properties: clustering coefficient and path length

To see whether our data exhibits the small-world property, we will examine the clus-

tering coefficient (Newman et al., 2002). Intuitively, the clustering coefficient mea-

sures how densely connected the graph is, by measuring, for each node, how many

of its neighbors are also neighbors of one another. For a node vi which has a set of

neighbors n(vi), we calculate this percentage of connected neighbors:

c(vi) =

∑

j∈n(vi)

∑

k∈n(vi) Ijk

n(vi)(n(vi)− 1)
(5.8)

where Ijk = 1 if j 6= k and j ∈ n(k), 0 otherwise.

Then the formula for the clustering coefficient of the graph is given by averaging

over all nodes:

C =

∑

vi∈V c(vi)

|V |
(5.9)

where V is the set of nodes in the graph. Note that there is an alternative definition

of clustering coefficient, which weights each edge equally. Rather than averaging for

each node, than averaging over nodes, using the alternative definition we perform the

average over the edges. This gives greater weight to higher degree nodes. We will

stick to the formulation in equation 5.9.

By definition, the clustering coefficient is always 0 for a bipartite graph, so we

will perform a projection of the bipartite graph onto a unipartite graph, by joining

any pair of noun-phrases with a common context, then calculating the clustering

coefficient over the noun-phrases. We will perform the analogous projection to obtain

the clustering coefficient for contexts.

119

120 Analysis

For a random graph, the clustering coefficient is given by

Crandom =
2× (|E|)

|V | × (|V | − 1)
(5.10)

where |V | is the number of nodes in the graph.

The characteristic path length L is the average of the distances of all-pairs-

shortest-paths over the entire graph. Note that for a disconnected graph, that is, one

with multiple components, the path length for a pair of nodes in different components

is infinite. The characteristic path length for a graph with multiple components will

therefore also be infinite. We will therefore calculate the characteristic path length

only over the largest component in the graph.

The characteristic path length for a random graph is given by:

Lrandom =
ln(|V |)

k̄
(5.11)

where |V | is the number of nodes in the graph, and k̄ is the average node-degree

in the graph.

Watts and Strogatz relate the characteristic path length L and the clustering

coefficient C (Watts & Strogatz, 1998) of a graph. They define a small-world graph

to be one on which L ≥ Lrandom (the characteristic path length of a random graph of

the same size) but C � Crandom (the clustering coefficient of a random graph of the

same size).

Small-world graphs are those which lie in between, at the one extreme, regular

graphs, which require a large number of steps to move between arbitrary pairs of

nodes, but are locally highly clustered, and at the other extreme random graphs,

which require only a small number of steps to move between arbitrary pairs of nodes.

It has been shown that word cooccurrence graphs and synonymy relationships do

not exhibit random graph structure, but rather a small-world structure, with most

nodes reachable from most other nodes within two to three steps (Ferrer i Cancho

& Solé, 2001; Sigman & Cecchi, 2002). If our noun-phrase context pairs exhibit

this kind of structure, and pronouns and very common nouns form the hubs of the

connectivity graph, it may explain the importance of stopwords and frequent seeds

in our models. Recall from Chapter 3 Section 3.7.2 that that if we did not permit

stopwords (including pronouns) in the model, it had a deleterious effect on learning the

120

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph121

people and organizations classes. Understanding the effects of removing stopwords

on the connectivity of the graph may help explain this.

Steyvers and Tenenbaum (2005) studied the graph structure of semantic relation-

ships from WordNet (Miller et al., 1990), constructed with great care by psycholin-

guists, as well as word associations from people prompted to respond spontaneously

to word cues (Nelson et al., 1999). They found that the graphs exhibited both small-

world and power-law structure, and hypothesized a model of language acquisition,

in which newly learned concepts are attached to well-known concepts with greater

likelihood.

Average Node Degree

The average node degree is a simple measure of the local connectivity within a graph.

If on average, nodes are connected to many other edges, then a bootstrapping algo-

rithm labeling one node will affect many more nodes, on average, after few steps. If

the average node degree is small, more bootstrapping steps may be required to impact

many nodes in the graph.

Power-law Distribution of Node Degree

In power-law graphs the distribution of node degrees follows a power law, where the

probability pk of a node having k neighbors is given by

pk ∼ ck−α (5.12)

where c is a constant, and α is the power-law coefficient, which reflects how extreme

the disparity of node-degree in the graph is.

This means that most nodes are connected to few other nodes, while a few nodes

are connected to a large number of other nodes. If our data has this property, then

we might expect the degree of the nodes representing our labeled examples to be of

some importance in predicting algorithm effectiveness on a data set. It could affect

the propagation both of accuracies and inaccuracies in the model. For example, in the

cotraining setting, if we correctly label a high-degree node, we obtain correct labels

for many different adjacent nodes. Many different examples sharing one half part of

the split feature set can be labeled correctly via this node. Conversely, an incorrect

label on a high-degree node can propagate the error to many other examples.

121

122 Analysis

The smaller the exponent, the more extreme the difference in node degree between

high-degree nodes and low-degree nodes. In a graph of word-cooccurrence data (Ferrer

i Cancho & Solé, 2001; Sigman & Cecchi, 2002), the coefficient of the power law was 3

if measurement was restricted to the largest connected component of the graph, and

1.8 otherwise. Ferreri Cancho and Solé explain this in terms of a core vocabulary,

found in the main connected component, and specialized vocabulary which falls into

the other components. From a node-degree perspective, we can see that considering

the components outside the many connected component adds many low degree nodes

to the computation.

A graph divided into underlying groups or communities may explain degree cor-

relations (degree of adjacent nodes positive correlated) and clustering. Newman and

Park (2003) show that the value of α from the power law is also predictive of the

clustering coefficient. In particular, for α < 7
3
, we expect to see large values of the

clustering coefficient C, as C increases with increasing system size. Strogatz (2001)

suggests that if 1 < α < 3.47, the nodes in the graph form a large, but not fully

connected component, whereas if α < 1 there are so many high-degree hubs that

the network forms one connected component. Steyvers and Tenenbaum (2005) men-

tion that α typically lies between 2 and 4 for systems like the WWW and metabolic

networks. For the three semantic networks: WordNet, Roget’s thesaurus and asso-

ciative networks, α was between 3.01 and 3.19. This was calculated by calculating

node-degree separately for each of words and classes, only on the largest connected

component. For the graph consisting of header files included in C files, α ranged be-

tween 1.9 and 2.9 (de Moura et al., 2003). For graphs linking users when they access

the same data resource (Iamnitchi et al., 2004), the graphs are small-world, but the

degree distribution does not necessarily follow a power-law.

In their analysis of cotraining, Blum and Mitchell assume random graphs with

connected sub-components (Blum & Mitchell, 1998), which are disjoint from one an-

other. Instead as we will see, the data has power-law distribution. Pastor-Sartorus

and Vespignani (Pastor-Sartoras & Vespignani, 2001) showed that as the infectious-

ness of a disease increases, scale-free or power-law graphs show more gradual rates

of infection than do random graphs. We can think of properties of the labeling

component of semi-supervised learning algorithms as analogous to infectiousness. A

labeling algorithm which requires more information before labeling can be viewed as

less infectious.

122

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph123

Connected Components

In chapter 3 we discussed several bootstrapping algorithms that use cooccurrence

of noun-phrases and contexts to propagate label information from a few labeled ex-

amples to the entire unlabeled set. In Section 3.5.1 we drew attention to one of

the assumptions underlying this approach, that the seeds chosen by the user will be

present in the data. We measured variable density of seeds according to the seed set

chosen.

We would now like to draw attention to another critical assumption underly-

ing these algorithms that has remained implicit till now. Each of the algorithms

we described made use of cooccurrence of noun-phrases and contexts to propagate

labels. Since we hope to learn about a phrase from its cooccurrences, and our algo-

rithms transmit information about likelihood of class membership through cooccur-

rence links, we are dependent on the existence of links between portions of the graphs

which have labels on the edges, and portions of the graphs which have no labels on

the edges. In Figure 5.1, the portion of the graph which contains “<leader, < x > in

its industry>” is a separate component. We have no labeled edges in this component.

If some of the data we need to learn about is in a disconnected component from

the region labeled by the initial seeds or examples labeled during active learning, no

algorithm using connectivity information will be able to learn the true labels of these

disconnected examples. Thus the connectivity of the cooccurrence graph is key to

the success of any bootstrapping algorithm. Agichtein et al. (2003) measured reach-

ability of data for query-based sampling strategies, taking into account the power-law

distribution of their data, with a large connected component and many smaller com-

ponents, and quantified the learnability of two different tasks over several corpora.

We will examine not only reachability, but examine the correspondence between the

distribution of labeled data over connected graph components and algorithm perfor-

mance.

Graph Connectivity and Initialization Conditions

We can propagate label information only through edges on the graph. In particular,

we cannot propagate label information from one component of the graph to another

disconnected component. In Figure 5.1, we cannot use labels from other portions of

the graph to learn to label the edge in the disconnected component which contains

123

124 Analysis

“<leader, < x > in its industry>”. Thus our set of initial examples and their distribu-

tion over components in the graph will be key in our how effective the semi-supervised

learning algorithm can be.

Graph Connectivity and Active Learning

The connectivity of the graph may also explain the importance of active learning for

algorithm effectiveness. Active learning may compensate for the lack of component

coverage in initial examples, by selecting examples for labeling which lie in different

components of the graph.

5.2.4 Measuring Graph Properties of Noun-phrase Context

Data

In this section we measure the graph-theoretic properties of our data, and where

appropriate show whether the graph properties of labeled examples are predictive of

algorithm performance.

Average Node Degree

The mean degree of noun-phrases is 2.32 in the 7sector training data, while the

mean degree of contexts is 7.56. This indicates that class information about a noun-

phrase can be propagated to just over two different contexts on average, while class

information about a context can be propagated to over seven different noun-phrases.

Labeling a noun-phrase in isolation will affect fewer nodes than labeling a context

in isolation. We also can expect a variety sources of information about the label

of a context, since on average seven different noun-phrases will be connected to it,

providing more information than the two contexts connected on average to a ran-

domly selected noun-phrase. This suggests that a bootstrapping algorithm such as

metabootstrapping, which labels all noun-phrases cooccurring with a given context,

will propagate information, or noise, quickly throughout the graph.

We also examined average node degree k̄ by class in the 7sector test set, for both

noun-phrases and contexts. We see in Table 5.2.4 that nodes in our target classes

tend to have higher average degree than the overall average node degree in the test

set. This could be explained by the fact that pronouns are included in these classes.

124

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph125

Class k̄np k̄context

locations 1.6 5.1

organizations 2.7 4.6

people 3.3 3.6

whole test set 1.6 3.6

Table 5.5: Average node degree k̄ by class in the 7sector test set, for both noun-phrases

and contexts. We see that nodes in our target classes tend to have higher average degree

than the overall average node degree in the test set. This could be explained by the fact that

pronouns are included in these classes. The presence of “he” and “we” may well explain the

high average node degree for noun-phrases in the organizations and people classes. The

higher average node degree for contexts in the locations class may be explained by the fact

that there are more varied ways of referring to locations than to people and organizations.

The presence of “he” and “we” may well explain the high average node degree for

noun-phrases in the organizations and people classes. The higher average node

degree for contexts in the locations class may be explained by the fact that there are

more varied ways of referring to locations than to people and organizations.

Power-law distribution of Node Degree

When we look at just the noun-phrases in our corpus, we see in Figure 5.3 that the

distribution of the number of contexts they are linked to follows a power law. In

Table 5.6 we see the noun-phrases with the highest degree, which are connected to

the most different contexts, ie these are the hubs of the graph. Note that some of

these examples, such as “company” and “customers” are common nouns which are

members of our target classes. Others are pronouns which would also be members of

our target classes; “he” for example is a member of the people class.

Figure 5.3 also shows the distribution of outdegrees for contexts. Table 5.6 also

shows the contexts with the highest degree. This list contains a mixture of very

ambiguous contexts, like “including”, which could occur with almost any noun-phrase,

and quite unambiguous ones, like “said” which would occur primarily with people and

occasionally with organizations.

We can find the coefficient of the power law, by fitting a line to the log-log graph.

We have the probability pk of a node having k neighbors given by the formula

125

126 Analysis

Noun-phrase Outdegree

you 1656

we 1479

it 1173

company 1043

this 635

all 520

they 500

information 448

us 367

any 339

products 332

i 319

site 314

one 311

1996 282

he 269

customers 269

these 263

them 263

time 234

Context Outdegree

<x> including 683

including <x> 612

<x> provides 565

provides <x> 565

provide <x> 390

<x> include 389

include <x> 375

<x> provide 364

one of <x> 354

<x> made 345

<x> offers 338

offers <x> 320

<x> said 287

<x> used 283

includes <x> 279

to provide <x> 266

use <x> 263

like <x> 260

variety of <x> 252

<x> includes 250

Table 5.6: The twenty noun-phrases and contexts with the highest out-degree. The out-

degree is the number of different contexts that the noun-phrase cooccurs with. The noun-

phrase list contains a mixture of pronouns, anaphora and common nouns. The context

list contains a mixture of very ambiguous contexts, like “including”, which could occur

with almost any noun-phrase, and quite unambiguous ones, like “said” which would occur

primarily with people or organizations.

126

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph127

1

10

100

1000

10000

100000

1 10 100 1000 10000

fr
eq

ue
nc

y
of

 o
ut

de
gr

ee

outdegree

Power Law Distribution of Node Degree in Bipartite Graph

noun-phrases
contexts

Figure 5.3: Some noun-phrases occur with many different contexts, while most occur with

few; the distribution of links follows a power-law, suggesting a small-world graph structure.

pk = ck−α (5.13)

log(pk) = log(ck−α) (5.14)

log(pk) = log(c)− α log(k) (5.15)

where c is a constant that accounts for the intercept. Then −α is the slope of a

line we fit to the data points, when plotted on log-log axes.

For contexts, the coefficient of the power law α is 1.95, ie we can express the

formula for the number of noun-phrases for each context as

pk ∼ k−1.95 (5.16)

while for noun-phrases, the constant α in the power law is 2.24, ie

pk ∼ k−2.24 (5.17)

Figure 5.4 shows the lines we fit to the graph of node degrees in the noun-phrase

context graph. Since fitting power-laws graphically is difficult due to the sparsity

in counts of the high-frequency elements (Goldstein et al., 2004), these lines were

fit by manually adjusting the cut-off of node degree to be considered in fitting the

line. All following coefficients were made without such adjustment, and as such may

have significant bias. Nevertheless, we can still make comparisons between power-law

127

128 Analysis

-12

-10

-8

-6

-4

-2

 0

 0 1 2 3 4 5 6 7 8

lo
g(

p(
D

eg
re

e)
)

log(Degree)

Lines Fit to Power Law Distribution of Node Degrees

NPs
power law for for NPs, alpha = 2.24

Contexts
power law for for Contexts, alpha = 1.95

Figure 5.4: When we fit a line to the log-log plot, we find the power law parameter α is

2.24 and 1.95 for noun-phrases and contexts respectively.

coefficients calculated with the same kind of bias. Thus we will still be able to examine

questions about the effect of sample size, and whether we consider only nodes in the

same component, though the coefficients we measure may not be reliable.

Is our measured value of α the power law coefficient related to our sample size?

As we discussed in Section 5.2.2, the exact set of nodes and edges in our graph

may differ depending on the sample size. To test the effects of sample size for our

data, we calculated the power law parameter α for samples of different sizes from the

7sector data, as well as the TREC wtx051-053 data. In Figure 5.5 we see that the

coefficient converges for both datasets1. For contexts, it converges to around 1.5 for

both corpora, while for noun-phrases it converges to just under 1.6 for the 7sector

data, and just under 1.4 for the TREC data. This may suggest that the properties of

context distribution are independent of corpus type or origin, though the properties

of noun-phrase distribution do depend on the corpus type.

Finally, note that we measured our power-law coefficients over the entire graph,

while other researchers have restricted their attention to the largest component. The

nodes in the smaller components may tend to have lower degree, so measuring degree

on the largest component only may lead to a smaller power law parameter α. To

be able to compare our measurements of α with those of other researchers, we also

calculated them on the largest component. Table 5.2.4 shows these numbers. We see

1though larger and larger subsamples of the same graph are less and less independent of

one another.

128

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph129

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

α

sample size

Noun-phrases

TREC data
7sector data

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

α

sample size

Contexts

TREC data
7sector data

Figure 5.5: Asymptotic values for the power law coefficient α, calculated over two corpora.

The coefficient converges for both datasets. For contexts, it converges to around 1.5 for

both corpora, while for noun-phrases it converges to just under 1.6 for the 7sector data,

and just under 1.4 for the TREC data. This may suggest that the properties of context

distribution are independent of corpus type or origin, though the properties of noun-phrase

distribution do depend on the corpus type.

noun-phrase degrees context degrees all node degrees

αwholeGraph 1.56 1.76 1.77

αlargestComponent 1.55 1.75 1.77

Table 5.7: Power-law coefficients of node degree, over noun-phrases connected to contexts,

over the whole graph and the largest component. We see that measuring the power law

coefficient over the whole graph does not give a very different result to measuring it over

the largest component.

that the coefficients do not vary greatly. This contrasts with the results obtained by

Ferreri Cancho and Solé (2001; 2002) on a graph of word-cooccurrence data (Ferrer

i Cancho & Solé, 2001; Sigman & Cecchi, 2002), and suggests that our data has

more extreme power-law properties: the degrees of the most frequent nodes are much

higher than those of the next highest-degree nodes. This may be explained by the

different types of underlying data: our data includes an edge if a pair of phrases

has any cooccurrence, while Ferreri Cancho and Solé include edges only when words

cooccur with probability greater than chance.

Recall that when we have a graph with the power-law property, this means that

most nodes are connected to few other nodes, while a few nodes are connected to a

large number of other nodes. Since our data has this property, then we might expect

129

130 Analysis

the degree of the nodes representing our labeled examples to be of some importance in

predicting algorithm effectiveness on a data set. It could affect the propagation both

of accuracies and inaccuracies in the model. For example, in the cotraining setting,

if we correctly label a high-degree node, we obtain correct labels for many different

adjacent nodes. Many different examples sharing one half part of the split feature set

can be labeled correctly via this node. Conversely, an incorrect label on a high-degree

node can propagate the error to many other examples.

This simple observation suggests a hybrid approach to semi-supervised learning

that has not been proposed previously, in which greater confidence is required for

labeling high-degree nodes than low-degree nodes.

This power-law structure may also explain the poor performance of metaboot-

strapping and cotraining on our data. Both metabootstrapping and cotraining la-

bel examples positive or negative, unlike the probabilistic labeling of cotraining and

coEM.

In addition, the power-law distribution of node degree is a likely explanatory factor

for the different behavior of bootstrapping across classes. people and organizations

both contain high-degree nodes (pronouns) as members of the class, leading to more

volatile behavior depending on whether these nodes are labeled as positive or negative.

We will examine the effect of labeling examples with high node degree later in this

section.

Clustering Coefficient

On the 7sector training data, we find that the clustering coefficient is 0.83 for noun-

phrases and 0.67 for contexts. This means that noun-phrases exhibit more “transitive”

behavior, that is, noun-phrases tend to share common neighbors. When we restrict

attention to the largest component, the clustering coefficients are 0.86 and 0.74 for

noun-phrases and contexts respectively. In Table 5.9 we see these results along with

the results for characteristic path length. We see that paths are short, and similar

to the path-length in a random graph, while the clustering coefficient is much higher

than for a random graph. This means our graph has small-world properties.

130

5.2 Small World Nature of Noun-phrase Context Cooccurrence Graph131

noun-phrases contexts

whole graph 0.83 0.67

largest component 0.86 (0.0018) 0.74 (0.025)

Table 5.8: Clustering coefficients C for unipartite graphs of noun-phrases and contexts, for

both the entire graph, and for the largest component. Crand, the clustering coefficient for a

random graph of the same size, is shown in parentheses for the largest component.

|V | k̄ Lrand L C Crand

noun-phrases 71,090 62 2.7 2.7 0.86 0.0018

contexts 21,039 265 1.78 2.54 0.74 0.025

bipartite 92,129 1.86 18 5.4 - -

Table 5.9: Characteristic path length L, or average average path length within the graph,

and clustering coefficient C, for the largest component in the graph. We see that paths are

short, and similar to the path-length in a random graph, while the clustering coefficient is

much higher than for a random graph. This means our graph has small-world properties.

Characteristic Path Length

We measured the characteristic path length over the unipartite graph on noun-phrases

in the largest component, as well as the unipartite graph over contexts in the largest

component. For contexts the characteristic path length was 2.5 , that is, the average

number of context-steps between a pair of contexts is 2.5. For the noun-phrase uni-

partite graph, the characteristic path length was 2.7. Over the bipartite graph, the

characteristic path length was 5.4. This means that an algorithm which alternates

taking suggestions from noun-phrases and contexts can relabel all nodes in the largest

component within 6 steps. Table 5.9 shows these values for the largest component

of our graph, for both the bipartite graph, and both unipartite projections. We see

that paths are short, and similar to the path-length in a random graph, while the

clustering coefficient is much higher than for a random graph. This means our graph

has small-world properties. Labeling a node may affect any other node in the graph

in just a few steps, and a node may acquire labels from its tightly coupled neighbor-

hood. This mean we need bootstrapping algorithms which are accurate or cautious

with each label assignment, as errors will be easily propagated.

131

132 Analysis

1

10

100

1000

10000

1 10 100 1000 10000 100000

fr
eq

ue
nc

y
of

 c
om

po
ne

nt
 s

iz
e

component size

7sector component size

1

10

100

1000

10000

1 10 100 1000 10000 100000

fr
eq

ue
nc

y
of

 c
om

po
ne

nt
 s

iz
e

component size

7sector component size on np unipartite graph
7sector component size on context unipartite graph

Figure 5.6: The 7 sector data has many components with 2 or 3 nodes. When we project

down to unipartite graphs, we see that this distribution holds for both noun=phrases and

contexts.

Connected Components

The connectivity of the cooccurrence graph is key to the success of any bootstrap-

ping algorithm. Since we hope to learn about a phrase from its cooccurrences, and

our algorithms transmit information about likelihood of class membership through

cooccurrence links, we are dependent on the existence of links between labeled and

unlabeled portions of the graph.

Measuring the connectivity of the 7sector-train corpus, we find 1945 separate

connected components. 92129 nodes of 99014 are in the largest component, ie 93% of

all nodes are connected. However, this leaves 7% of nodes which are not part of the

large connected component. The second largest component contains only 107 nodes,

with most components containing less than 10 nodes. We can see this graphically in

Figure 5.6 shown on a log-log scale. The 7 sector data has many components with 2

or 3 nodes. When we project down to unipartite graphs, we see that the distribution

of nodes in components is similar for both noun-phrases and contexts, with most in

the largest component, and many smaller components containing few nodes. And

viewed as unipartite graphs of noun-phrases or contexts, the majority of components

contain a single isolated node. Labeling any node in a singleton component like this

cannot affect any of the other nodes in the graph.

132

5.3 Predicting Performance with Graph Properties 133

5.3 Predicting Performance with Graph Proper-

ties

In the previous section we showed that our graph shows small-world and power-law

properties. We now examine the interaction between these properties, our training

data, and algorithm performance.

Recall from Section 3.3 that we initialize our bootstrapping algorithms with a

small set of seed words, which are examples of the target class. We could conjecture

that seed set frequency will be more important if a graph consists of many uncon-

nected components, and the seeds occur in the largest connected component, or many

different components. We observed that frequently occurring examples are important

to algorithm effectiveness. Thinking of our data now in small-world graph-theoretic

terms, we can see that frequently occurring terms are more likely to be hubs, and are

more likely to be connected to many other examples.

We find that for the basic seed sets for the classes people, locations and

organizations, given in Table 3.8 in Chapter 3, all 10 seeds can be found in the

main connected component of the graph. Thus difference between the performance

of algorithms over these tasks cannot be explained by differing presence in the main

connected component.

For the random sets of country names, described in Section 3.5.1, more varied

distribution can be found in the training set. We showed in Chapter 3 Table 3.10

that different sets of seeds have quite a large variance in the number of examples they

label in the training set, both in absolute numbers of examples, and in the number of

unique examples. We note that the number of unique examples labeled by the seeds

is exactly the sum of node degrees of the noun-phrases labeled, since each unique

example labeled corresponds to one edge from a noun-phrase to a context. We will

first consider how predictive this is of algorithm performance, then contrast it with

the number of seeds found in the large connected component.

Figure 5.7 shows a scatter plot of the total node degree of seeds, against the final

breakeven score, for multiple experiments with random subsets of country names as

seeds. On the left is a scatter plot of the node degree of seeds, against breakeven

score. On the right, we have converted each to ranks, to allow us to find correlations

that may be non-linear. We see that the node degree of seeds is correlated with

algorithm performance, both linearly (left, Pearson correlation of 0.772) and in ranks

133

134 Analysis

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 200 400 600 800 1000 1200

Fi
na

l a
lg

or
ith

m
 b

re
ak

ev
en

Sum of node degree of seeds

Sum of node degree of seeds predicts algorithm performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90

R
an

k
of

 f
in

al
 a

lg
or

ith
m

 b
re

ak
ev

en

Rank of Sum of node degree of seeds

rank of sum of node degree of seeds predicts rank of algorithm performance

Figure 5.7: Total node degree of examples labeled with seeds is correlated with algorithm

performance, both linearly (left, Pearson correlation of 0.772) and in ranks (right Spearman

correlation of 0.670). Both correlations scores are significant at the 0.01 level.

(right Spearman correlation of 0.670). All correlations scores are significant at the

0.01 level. In this case, the linear correlation is stronger than the rank correlation,

but we will continue to use rank correlations with all our predictive variables, to allow

for non-linear but monotonic correlations.

In Table 5.10 we see a list of features which are predictive of algorithm perfor-

mance, along with their Spearman correlation scores. All correlations are significant

at the 0.01 level. We will now go through each, explaining why each may be relevant.

5.3.1 Number of unique seeds head-matching some NP in

graph

When we choose a set of seeds for initial labeling, we make the assumption that those

seeds will appear in the data. If we choose the seeds without inspecting the data,

however, we may find that some of the seeds are not present at all. In addition, we

may have better results, the more matching seeds are present in the graph. We found

in fact, a weak but statistically significant positive correlation between the number of

unique seeds matching noun-phrases heads in the graph. The Spearman correlation

coefficient was 0.295.

134

5.3 Predicting Performance with Graph Properties 135

Feature rs

Number of unique seeds head-matching some NP in graph 0.295

Number of unique seeds exact-matching some NP in the graph 0.302

Number of unique seeds head-matching NPs in the largest component 0.295

Number of unique examples labeled (sum node degree) 0.670

Total examples labeled 0.678

Number of components containing at least one seed 0.541

Number of unique seeds-examples or positive example in the largest component 0.669

Number of unique contexts covered by seeds 0.657

Number of unique contexts covered by more than one seed 0.716

Table 5.10: Features predictive of algorithm performance, along with their Spearman cor-

relation coefficients.

5.3.2 Number of unique seeds exact-matching some NP in

the graph

If a seed matches a noun-phrase exactly, that is, there is no modifier, it may be more

unambiguously correct as an initial example. We found in fact that the number of

unique seeds exact matching noun-phrases was statistically significantly correlated

with breakeven score, with a Spearman correlation of 0.302. This is slightly higher

than for unique seeds head-matching some noun-phrase in graph (though the differ-

ence is not statistically significantly different).

5.3.3 Number of unique seeds head-matching NPs in the

largest component

Since most examples are in the largest component, as we saw in Section 5.2.4 we may

expect that the distribution of seeds in the largest component may be predictive of

algorithm performance. While there is a positive correlation of 0.295, this correlation

is no stronger than the number of seeds found in the total graph.

135

136 Analysis

5.3.4 Number of Unique Examples labeled - Sum of Seed

Node Degrees

As we have discussed already, the number of unique examples labeled by seeds, that

is, the total unique < n, c > pairs labeled with seeds, is correlated with performance,

with a correlation score of 0.670.

5.3.5 Total examples Labeled By Seeds

In machine learning, it is customary to measure the relationship between examples

labeled and algorithm performance. The total examples labeled is slightly higher than

the number of unique examples, since some examples occur more than once. It is not

obvious whether this feature would be more predictive of algorithm performance than

unique examples labeled, since it does not strictly speaking introduce new information

about example types, though it does introduce more information about the distribu-

tion. We find in fact that the number of examples labeled by seeds correlated with

algorithm performance with a score of 0.678. This is higher than the score for the

number of unique examples labeled, though not statistically significantly different.

They are strongly correlated with one another, with a Spearman correlation score of

0.997.

5.3.6 Number of components containing at least one seed

Knowing that our data falls into multiple components, albeit of disparate sizes, we

might expect the number of components containing seeds to be predictive of algorithm

performance. Recall, however, from Section 5.2.4 that only 7% of examples were

found outside the largest component, so using seeds to label examples in the largest

component may be sufficient. On the other hand, bootstrapping can only propagate

labels to other examples in the same component. Figure 5.8 shows the breakeven

score against the number of components covered by seeds in the locations class,

once again using a variety of sets of country names as seeds. The experiments with

seeds in four components appear to have better results than the experiments with

seeds in only 1 or 2 components.

The correlation is 0.541, larger than the correlation with the number of seeds in

the graph, which had a correlation of 0.295. This difference is statistically significant,

136

5.3 Predicting Performance with Graph Properties 137

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 1 2 3 4 5

Fi
na

l a
lg

or
ith

m
 b

re
ak

ev
en

Number of components containing seeds

Number of components containing seeds versus algorithm performance

Figure 5.8: We find that the number of components covered by seeds (Spearman rank cor-

relation of 0.541) is more predictive than the total number of seeds in the graph (Spearman

rank correlation of 0.295).

which means it may be important to choose seeds spanning multiple components of

the graph.

5.3.7 Number of unique seed-labeled examples in the largest

component

Now we examine the number of seeds contained in the largest component for the

random country seeds sets. Since the bulk of our data is in the largest component,

it is important that we have some seeds providing initial labels for members of the

largest component. We would clearly expect that having having a single seed in the

largest component would be better than having none. In addition, if some seeds are

better than others (for examples, by being less ambiguous, or occurring with more

informative contexts in our training data), then having more seeds in the largest

component increases our chance of having a good seed in the largest component.

Finally, if seeds are noisy or ambiguous, having multiple seeds provides different

types of noise, with an amplification of the useful signal we can learn from. Seeds

in disjoint components cannot interact in labeling contexts, while multiple seeds in

the same component, particularly the largest component, are likely to interact in

ways which may counteract the effects of ambiguity or noise. When we look at the

number of unique examples labeled by seeds in the largest component, we find a

strong positive correlation of 0.669. This may reflect the fact that we are doing a

good job of providing initial examples which will then propagate to the majority of

137

138 Analysis

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 10 20 30 40 50 60 70 80 90 100

Fi
na

l a
lg

or
ith

m
 b

re
ak

ev
en

Number of contexts labeled by multiple seeds

Num contexts labeled by multiple seeds predicts algorithm performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

Fi
na

l a
lg

or
ith

m
 b

re
ak

ev
en

Number of contexts labeled by multiple seeds

Rank of num contexts labeled by multiple seeds predicts rank of algorithm performance

Figure 5.9: The number of contexts labeled by more than one seed is strongly predictive of

algorithm performance both linearly (left, Pearson correlation of 0.80) and in rank (right,

Spearman correlation of 0.72)

examples, due to short path-lengths and the power-law distribution of node degrees.

5.3.8 Unique Contexts Covered By Seeds

Each example labeled by a seed implicitly assigns a label to the associated context.

The number of unique contexts labeled by seeds has a correlation of 0.657, while

the number of unique contexts covered by more than one seed 0.716. Looking back

at Table 5.10, we see that the number of contexts labeled by multiple seeds is the

strongest predictor of algorithm performance (Spearman correlation of 0.72). To

understand this better, we show scatter plots of raw counts and scores, and their

ranked equivalents in Figure 5.9.

In Table 5.11 we show example contexts that were extracted by multiple seeds in

the original locations seed set (given in Table 3.8 in Chapter 3), as well as contexts

extracted by only one of these seeds. We see that those selected by more than one

seed appear to be more unambiguously indicative of the target class locations.

5.3.9 Combinations of Predictors with Multivariate Regres-

sion

Next we would like to know whether some combination of the features shown in Table

5.10 is more predictive than any of the features individually. To do this, we performed

138

5.3 Predicting Performance with Graph Properties 139

Context Num Seeds Selected By

OPERATIONS:IN 10

LOCATIONS:IN 9

<X> COMMENTS 8

<X> UPDATED 7

OFFICES:IN 6

OPERATES:IN 6

HEADQUARTERED:IN 6

FACILITIES:IN 5

CUSTOMERS:IN 5

OWNED:IN 1

ORIGINATED:IN 1

GROWN:IN <X> 1

FOUND:IN <X> 1

FILED:IN <X> 1

DUE:IN <X> 1

TARGETING < X > 1

COVERING <X> 1

Table 5.11: The number of contexts labeled by more than one seed was most predictive

of algorithm performance. We see from a sample of contexts, that those selected by more

than one seed appear to be more unambiguously indicative of the target class locations.

139

140 Analysis

Feature Coefficient

Number of unique seeds head-matching NPs in the largest component -0.267

Total examples labeled 2.059

Number of unique seed-labeled-examples in the largest component -2.370

Number of unique contexts covered by more than one seed 1.210

Table 5.12: Using the interactions between multiple predictor variables, we obtain a

correlation of 0.78 with the rank of algorithm breakeven, higher than the correlation of 0.72

that we obtained from the best predictor (unique contexts covered by more than one seed)

in isolation.

multiple linear regression over the ranks of the features. This gives us the Spearman

correlation between linear combinations of the ranks of those features and the rank

of algorithm breakeven. We performed backwards regression, in which features are

greedily removed until removing another feature changes the correlation score by more

than a small amount. The final set of feature in the model is shown, along with their

normalized coefficients, in Table 5.3.9. Using the interactions between multiple pre-

dictor variables, we obtain a correlation of 0.78 with the rank of algorithm breakeven,

higher than the correlation of 0.72 that we obtained from the best predictor (unique

contexts covered by more than one seed) in isolation. While the coefficients here show

how the line was fit against the ranks of these variables, interactions between these

and the other variables mean that we cannot draw precise conclusions from these co-

efficients. Nevertheless, the strong correlation with breakeven scores means that we

could use a combination of these features to design better seed selection algorithms.

.

5.3.10 Cross-class Comparison of Node Degree as Predictor

Overall we find that the total node degree of examples labeled is more predictive of

algorithm performance than the number of components we find seeds in, or the number

of seeds we find in the largest component. These comparisons have all been over the

locations class. We will now measure the predictiveness of node degree of algorithm

performance, across the three classes locations, people and organizations. We

see in Figure 5.10 that node degree is predictive of performance, even across classes.

The number of data-points here is too few to calculate Spearman rank correlation

meaningfully, but by visual inspection we can see that the correlation seems to hold

140

5.3 Predicting Performance with Graph Properties 141

Feature rs

Number of unique seeds head-matching some NP in graph 0.282

Number of unique seeds exact-matching some NP in the graph 0.285

Number of unique seeds head-matching NPs in the largest component 0.282

Number of unique examples labeled (sum node degree) 0.630

Total examples labeled 0.628

Number of components containing at least one example 0.501

Number of components containing at least one seed or positive example 0.529

Number of unique seed-examples or positive example in the largest component 0.624

Number of unique contexts covered by seeds 0.551

Number of unique contexts covered by more than one seed 0.581

Number of examples labeled during active learning 0.434

Number of positive examples labeled during active learning 0.460

Percent positive examples labeled during active learning 0.167

Number of nonseed examples labeled during active learning 0.434

Number of nonseed examples labeled positive during active learning 0.460

Percent of nonseed examples labeled positive during active learning 0.167

Table 5.13: Features predictive of algorithm performance, along with their Spearman cor-

relation coefficients, when we consider experiments conducted with active learning, over 255

combinations of random sets of locations seeds, number of example labeled with active

learning, and active learning method. All correlations are significant are the 0.01 level.

in these cases.

5.3.11 Graph Features and Active Learning

Next we would like to check how these features correlated with algorithm performance

when we perform active learning. Some of the seed dependence may be reduced, as

the examples selected during active learning compensate for poor initial seeds. Table

5.13 shows that some of the seed-based features are stronger than the active-learning

based features. We see that while the correlation with number of contexts covered by

more than one seed is reduced, from a correlation of (0.72) without active learning,

to 0.58 with active learning, it still seems to be an important factor.

We now perform multivariate regression with the experiments using active learn-

ing. In Table 5.14 we see the variables selected for inclusion in the model, along with

their coefficients. The correlation of this model with algorithm performance is 0.73,

141

142 Analysis

Feature Coefficient

Number of unique seeds head-matching NPs in the largest component -5.475

Number of unique examples labeled -1.747

Total examples labeled 2.400

Number of unique contexts covered by seeds -2.756

Number of unique contexts covered by more than one seed 6.230

Number of positive examples labeled during active learning 3.514

Table 5.14: A combination of features for predicting algorithm performance for bootstrap-

ping with active learning, over random seeds sets for locations. The correlation of this

model with algorithm performance is 0.73, greater than the correlation of any individual

feature in isolation.

greater than the correlation of any individual feature in isolation. We see that the

number of contexts selected by more than one seed continues to be important, as does

the number of positive examples labeled during active learning.

5.4 Feature Set Independence

We will now switch gears from examining the relationship between graph properties

and algorithm performance, to looking at the way the two feature sets are interre-

lated, in an information-theoretic sense. Specifically we will examine the assumption

that the two features noun-phrases N and contexts C were conditionally indepen-

dent, given the target class. This kind of independence assumption is common in

machine learning, and is generally stated but not examined. Exceptions are Nigam

and Ghani (2000) and Muslea (2000) who performed empirical evaluations by delib-

erately manipulating the level of independence between the features). Jensen and

Neville (2002) examine the effects of feature dependence in relational learning. We

will examine the independence assumption in greater detail, by measuring mutual

information between feature sets, exploring the dependence of this on sample size,

and drawing some tentative conclusions about its importance in our task.

We assumed that the two features noun-phrases N and contexts C were condi-

tionally independent, given the target class. This means that we assumed:

∀n ∈ N ∀c ∈ C ∀ class ∈ Classes P (n, c|class) = P (n|class)P (c|class) (5.18)

142

5.4 Feature Set Independence 143

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

500 1000 1500 2000 2500 3000 3500

Fi
na

l a
lg

or
ith

m
 b

re
ak

ev
en

 s
co

re

Total node degree of noun-phrases labeled by seeds

Node degree of examples labeled by seeds predicts algorithm performance

people, locations and organizations

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Fi
na

l a
lg

or
ith

m
 b

re
ak

ev
en

 s
co

re

Total examples labeled by seeds

Total examples labeled by seeds predicts algorithm performance

people, organizations and locations

Figure 5.10: Node degree of examples labeled with seeds versus breakeven, across

classes (left) and total number of examples labeled with seeds versus breakeven (right).

We find that even across classes, the total node degree of examples labeled with seeds

is predictive of algorithm performance.

In Table 5.15 we see some examples of noun-phrases and contexts, and their joint

and marginal probabilities given the target class locations. We see that empirically,

conditional independence given the target class does not hold, since P (n|class) ×

P (c|class) 6= P (n, c|class). In this section we measure how far from the ideal the

distributions are, by measuring the mutual information between the feature sets,

given the target class.

We used the assumption of class-conditional feature independence in two ways: (1)

to assign the probability of class membership to an example (as described in Section

3.4.6 in Chapter 3) and (2) as the basis for multiview algorithms (it underlies the

coEM algorithm (Nigam & Ghani, 2000), as well as the probabilistic model for EM

described in Section 3.4.2). We will now examine this assumption more closely, as a

way of understanding the performance of the algorithms we explored in Chapter 3,

as well as their performance with active learning, which we explored in Chapter 4.

We can explore the degree of dependence between NPs and contexts by calculating

the mutual information between them. The mutual information between two discrete

probability distributions X and Y is defined to be

I(X; Y) =
∑

x

∑

y

P (x, y) log2

P (x, y)

P (x)P (y)
(5.19)

Note that if X and Y are independent, then P (X|Y) = P (X). Since P (x|y) =
P (x,y)
P (y)

, when X and Y are independent P (x,y)
P (x)P (y)

= 1, so log2
P (x,y)

P (x)P (y)
= 0, so I(X; Y) =

143

144 Analysis

noun phrase context class P (n|class) P (c|class) P (n|class)× P (n, c|class)

P (c|class)

united states plants in <x> 1 0.0383 0.0109 0.0004 0.0109

united states one in <x> 1 0.0383 0.0164 0.0006 0.0164

united states organizations in <x> 1 0.0383 0.0055 0.0002 0.0055

united states <x> experienced 0 0.0001 0.0003 0.0000 0.0001

united states <x> is called 1 0.0383 0.0055 0.0002 0.0055

company <x> markets 0 0.0066 0.0014 0.0000 0.0003

company <x> mines 0 0.0066 0.0003 0.0000 0.0001

company <x> offers 0 0.0066 0.0033 0.0000 0.0004

company <x> operates 0 0.0066 0.0008 0.0000 0.0001

company <x> owns 0 0.0066 0.0008 0.0000 0.0001

company <x> produced 0 0.0066 0.0003 0.0000 0.0001

company <x> produces 0 0.0066 0.0005 0.0000 0.0003

you allows <x> 0 0.0346 0.0019 0.0001 0.0001

you did <x> 0 0.0346 0.0009 0.0000 0.0005

you do <x> 0 0.0346 0.0014 0.0000 0.0006

you enjoy <x> 0 0.0346 0.0003 0.0000 0.0001

Table 5.15: Some examples of noun-phrases and contexts, and their joint and marginal

probabilities given the target class locations. We see that empirically, conditional inde-

pendence given the target class does not hold, since P (n|class)×P (c|class) 6= P (n, c|class).

In this section we measure how far from the ideal the distributions are, by measuring the

mutual information between the feature sets, given the target class. “United States” is used

as an organization rather than a location in the example “United States experienced”.

144

5.4 Feature Set Independence 145

0. Thus the mutual information between two variables is bounded below by 0, when

the two variables are completely independent. As the dependence between the vari-

ables increases, the mutual information increases. To find an upper bound for I(X;Y)

we observe first that it can be rewritten in terms of entropies:

I(X; Y) =
∑

x

∑

y

P (x, y) log2

P (x, y)

P (x)P (y)

=
∑

x

∑

y

P (x, y)[log2

P (x|y)

P (x)
]

=
∑

x

∑

y

P (x, y)[log2 P (x|y)− log2 P (x)]

=
∑

x

∑

y

P (x, y) log2 P (x|y)−
∑

x

∑

y

P (x, y) log2 P (x)

= −H(X|Y)−
∑

x

log2 P (x)
∑

y

P (x, y)

= −H(X|Y)−
∑

x

log2 P (x)P (x)

= H(X)−H(X|Y)

Similarly

I(X; Y) = H(Y)−H(Y |X)

Now H(X|Y) ≥ 0 and H(Y |X) ≥ 0 by the definition of entropy, so I(X; Y) ≤

H(X) and I(X; Y) ≤ H(Y) so we have

I(X; Y) ≤ min(H(X), H(Y)) (5.20)

So the mutual information between X and Y is bounded above by the minimum

of the entropy of the two random variables X and Y .

Ignoring the class variable for the time being, we can measure the mutual in-

formation between noun-phrases and contexts over corpora of different sizes. Table

5.16 gives the mutual information between the noun-phrases and contexts for several

different training corpora. Note that the mutual information does not grow strictly

with the size of the corpus.

145

146 Analysis

dataset size in examples I(N;C)

7sector-test 8,081 9.05

7sector-train 228,574 9.90

wtx052 1,726,025 10.56

wtx051-052 3,555,045 10.52

wtx051-056 10,588,096 10.26

Table 5.16: Mutual Information between noun phrases and contexts

Now consider the joint distribution of noun-phrases and contexts P (N , C). We can

consider any corpus of noun-phrase context pairs to be a sample from this underlying

distribution. So when we calculate I(N;C) over a given corpus, we are estimating

I(N ; C) based on a finite sample. If |N | and |C| are large and our sample is small,

we may underestimate I(N ; C) when we use the sample to make the estimate, since

there may be instances of < n, c > pairs that we never see in our sample.

We can view the cooccurrences of < n, c > pairs as links in a bipartite graph, as

described in Section 5.2.1; our measurement of I(N ; C) as another measurement of

the connectivity structure in that graph. Karger (1994) showed that we can place a

bound on the number of examples which we must see sampled from a graph, to find

a spanning tree with high probability. However, Karger assumed a random graph,

whereas we showed in Section 5.2 that our data exhibits small-world graph properties.

We will estimate bounds on the number of examples we must see to reliably estimate

mutual information empirically, by measuring changes in I(N ; C) against changes in

corpus size.

In order to understand how sample size affects the measured value of mutual

information, we took random samples of instances from the test data (which contains

8081 instances), with 30 samples at each sample size, from 50 instances up to 8000

instances. We then calculated the mutual information between noun-phrases and

contexts for each sample, and calculated the mean and standard deviation for mutual

information at the given sample size. We see in Figure 5.11 that estimates of the

mutual information between noun-phrases and contexts are dependent on the sample

size, for samples of less than 2000 instances. Note that our classes of interest are

all represented by less then 2000 instances in the test set (228 for locations, 888

for people and 1632 for organizations), so we expect the mutual information we

measure over these samples will be smaller than for larger samples. Nevertheless,

since the standard deviations for all sample sizes are small, we can expect that our

146

5.4 Feature Set Independence 147

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ut

ua
l i

nf
or

m
at

io
n

be
tw

ee
n

N
 a

nd
 C

Number of pairs in sample

Mutual Information Versus Sample Size on Test Set
I(N;C)

Figure 5.11: Mutual information between noun-phrases and contexts over random subsets

of the test set. For each sample size, 30 random subsets were sampled; error bars of one

standard deviation are shown. We see that as the sample size increases to around 2000

pairs, the mutual information is close to converging. However, at every sample size, the

error bars are relatively small.

estimates of the mutual information between noun-phrases and contexts for each class

will be fairly reliable.

The conditional mutual information is conditioned on the class label and is defined

as in equation 5.21 (Cover & Thomas, 1991):

I(X; Y |Class) =
∑

x

∑

y

∑

c∈Class

P (c)P (x, y|c) log2

P (x, y|c)

P (x|c)P (y|c)
(5.21)

We will compare the estimate for mutual information between the noun-phrases

and contexts in a given class with a given size with upper bounds calculated from

the entropy of the variables, and the mean value computed over a random sample

of the same size. Recall from Equation 5.20 that the upper bound for I(X; Y) is

min(H(X), H(Y)). For I(X; Y |Class) we find an upper-bound analogously:

I(X; Y |Class) =
∑

x

∑

y

∑

c

P (c)P (x, y|c) log2

P (x, y|c)

P (x|c)P (y|c)

=
∑

x

∑

y

∑

c

P (c)P (x, y|c) log2

P (x|y, c)

P (x|c)

=
∑

x

∑

y

∑

c

P (c)P (x, y|c)[log2 P (x|y, c)− log2 P (x|c)]

147

148 Analysis

=
∑

x

∑

y

∑

c

P (c)P (x, y|c) log2 P (x|y, c)−
∑

x

∑

y

∑

c

P (c)P (x, y|c) log2 P (x|c)

=
∑

x

∑

y

∑

c

P (c)
P (x, y, c)

P (c)
log2 P (x|y, c)−

∑

c

P (c)
∑

x

log2 P (x|c)
∑

y

P (x, y|c)

=
∑

x

∑

y

∑

c

P (x, y, c) log2 P (x|y, c)−
∑

c

P (c)
∑

x

log2 P (x|c)P (x|c)

= −H(X|Y, Class)−
∑

c

∑

x

P (c)P (x|c) log2 P (x|c)

= −H(X|Y, Class)−
∑

c

∑

x

P (x, c) log2 P (x|c)

= −H(X|Y, Class) + H(X|Class)

= H(X|Class)−H(X|Y, Class)

and since by the definition of entropy, H(X|Y, Class) ≥ 0, I(X; Y |Class) ≤

H(X|Class). Similarly, I(X; Y |Class) ≤ H(Y |Class), so we have

I(X; Y |Class) ≤ min(H(X|Class), H(Y |Class)) (5.22)

We now have lower and upper bounds on the mutual information between noun-

phrases and contexts given the class. Let us now consider what values at these extrema

would mean for bootstrapping approaches to learning semantic classes.

At the lower bound, when the two variables are completely independent given

the target class, the mutual information between two variables is 0. An example

graph structure for this state of affairs is shown in Figure 5.4a. There are two dis-

connected components in the graph, one for each class. Within each component, the

bipartite graph is fully connected. Clearly this graph structure would be ideal for a

bootstrapping algorithm, since assigning labels to an edge (example) based on the

label of the nodes will lead to a correct assignment. In addition, given the existence

of one correct label in the component, all other examples are reachable within two

steps. This argument is interesting when we consider the small-world properties of

our data, described in Section 5.2.3. Since our data observes small-world properties,

and therefore has small average path-length, the propagation of labels will be rapid.

However, another graph which also has small path lengths and zero mutual informa-

tion between noun-phrases and contexts is shown in Figure 5.4b. Here the labels are

shown on edges (bold for positive). In this graph, no bootstrapping algorithm can

learn a good model of the classes. Here the feature sets are not sufficient. Thus low

148

5.4 Feature Set Independence 149

(a) (b) (c) (d)

Figure 5.12: Example graphs which attain (a,b) the lower bound, 0, on the mutual in-

formation between noun-phrases and contexts given the class, and (c,d) the upper bound

min(H(X),H(Y)). Positive examples are shown as bold edges.

mutual information of feature sets given the target class is not sufficient to expect

good learning performance from bootstrapping algorithms.

As an example of a graph attaining the upper bound on mutual information given

the class, we see the “step-ladder” graph configuration in Figure 5.4c. Here knowing

the noun-phrase uniquely determines the context. Bootstrapping on this configuration

would require a seed example for every component, ie as many labels are there are

examples. Again in Figure 5.4d, the mutual information attains its maximum, but

the lack of feature-set redundancy means that learning would be difficult.

Let us now consider how we can relate mutual information given the target class

back to the small-world and power-law graph properties of our data that we saw in

Section 5.2. Short path lengths, as discussed above, may not be predictive of high

mutual information, since the labeling of edges with class information may increase

the mutual information. We know that our graph has a large clustering coefficient,

meaning that node neighborhoods tend to be tightly connected. This would suggest

higher mutual information, but again the edge labeling may affect this. The power-

law distribution shows that our graph has great degree disparity. The low-degree

nodes would contribute to higher mutual information.

We notice in Table 5.17 that the mutual information between noun phrases and

contexts given the positive class is lower than the mutual information given the neg-

ative class. Based on our observation that smaller samples lead to lower estimates of

149

150 Analysis

task I(N ;C|pos) (max) I(N ;C|neg) (max) I(N ;C|Class) (max)

locations 0.14 (0.15) 8.81 (10.23) 8.95 (10.4)

organizations 0.94 (1.09) 7.86 (8.99) 8.80 (10.16)

people 0.43 (0.50) 8.40 (9.38) 8.84 (10.22)

Table 5.17: Mutual information between noun phrases and contexts, given class labels of

test examples. Shown in parentheses are the maximum possible value for mutual informa-

tion, which is min(H(N |Class),H(C|Class). The minimum possible value is 0.

mutual information, as shown in Figure 5.11, we might assume that this is completely

explained by the fact that the positive class has a small prior and is based on a small

sample. We can compare to a uniform random subsample of the data, of the same size

as the positive class, and see that the mutual information for the random sample is

higher. Thus the assumption of statistical independence given the positive class label

is somewhat true for these classes. For the negative class, the mutual information is

higher for the negative class than for a similar sized random subsample of the data.

This suggests that for the negative class the assumption of independence given the

class label does not hold. Our negative class in reality consists of several subclasses

(specifically the negative class for organizations for example, contains the classes

people and locations, as well as other classes we have not examined here). Thus

we would not expect independence given the class label, for the negative class.

Overall, the mutual information between NPs and contexts given the class label

is lowest for the people class, then organizations, then locations. Thus when

class-conditional statistical independence is important, we would expect the people

class to outperform organizations, which would outperform locations.

We observe this ordering among the classes when we label many examples; 2500

examples actively labeled for both coEM and EM in Chapter 4. This suggests that

once we have 2500 examples actively labeled, our models are reliable enough for levels

of statistical dependence between noun-phrases and contexts to make a difference in

importance. It also suggests that violations of statistical independence are not the

most important factor in predicting algorithm importance, since this ordering emerges

only when many examples are labeled with active learning.

150

5.5 Algorithm Desiderata for Small Worlds 151

5.5 Algorithm Desiderata for Small Worlds

On the basis of the arguments and empirical results presented in this chapter, we sug-

gest the following for semi-supervised learning on data exhibiting small-world prop-

erties:

• algorithm sensitivity to node degree: a hybrid approach, in which greater con-

fidence is required for labeling high-degree nodes than low-degree nodes

• initial examples selected to have high degree

• initial examples selected to span many components of the graph

• examples selected for active learning chosen for high degree

• node degree used as part of feature-set selection criteria

5.6 Questions about Designing Bootstrapping Al-

gorithms

5.6.1 How Can I Know if a Set of Seeds Will Lead to Suc-

cessful Bootstrapping?

For a given set of seed-words S = {s1..sk} and dataset X = {< np1, context1 >

.. < npn, contextn >} we can measure how many of the seeds are heads of one of the

noun-phrases.

No Seeds are Heads of Noun-phrases in the Dataset

If no seeds are heads of noun-phrases in the dataset, this combination of seeds and

data cannot lead to learning anything about the target class. We have no training

information to use for learning.

No Seeds are Heads of noun-phrases in the Largest Component

Knowing that our data exhibits small-world properties as described in Section 5.2,

we know that the bulk of examples are in the largest component. If we have no seeds

151

152 Analysis

which are heads of noun-phrases in the largest component, we will only be able to

learn properties of a tiny fraction of the data.

Few Seeds Are Heads of Noun-Phrases in the Dataset

We saw that performance improves when more seeds are heads of noun-phrases in

the dataset, and in particular, when more are heads of noun-phrases in the largest

component. Bootstrapping may not perform well if few seeds are found in the dataset.

Seeds are Ambiguous in the Dataset

If the seeds chosen are ambiguous, this may lead to poor bootstrapping performance.

If we have two or more sets of seeds for distinct classes, we can measure their overlap

in the contexts they select. High overlap may lead to poor performance. If we have

only one seed set, using only seeds with intersecting sets of contexts they cooccur

with may lead to improved performance, by eliminating the ambiguous seeds. We

saw that when many contexts cooccur with two or more different seeds, we have

improved performance.

Seeds Are In Basic-Level Category

The psycho-linguistic notion of basic-level categories (Rosch et al., 1976) captures the

standard names we apply to objects (such as “dog”, and “chair”) and are the first

categories learned by children. Superordinate categories (eg. “animal”, “furniture”)

are generalizations of these categories, and are less easily visualized. Subordinate cat-

egories (eg. “dalmatian”) are more specific than is required for general conversation,

and are learned later by children.

All the examples we worked with were super-ordinate categories. Our seeds were

descriptions of the super-ordinate category, or category members of the basic level or

subordinate level categories. We learned both basic level and subordinate caetgory

members. Attempts to learn more specific or more general categories may require

larger corpora, to cover more instances of the use of these phrases.

152

5.6 Questions about Designing Bootstrapping Algorithms 153

5.6.2 How Should I Select Seeds For Bootstrapping?

We saw that the node degree of noun-phrases labeled by heads was most predictive

of algorithm performance. Thus in order to select seeds for an arbitrary new learning

task, we should identify the heads of noun-phrases, sort by their node degree (the

number of unique contexts they co-occur with) then examine this list on order of

frequency. We should continue labeling seeds till we have seen about 5 seeds in our

target class, and till we have seen at least one seed in the largest component.

5.6.3 How Can I Decide if Two Classes Represented By Seeds

Are Confusable?

The ambiguity of seeds can be measured by calculating the intersection of the contexts

they co-occur with. If there is a high degree of co-occurrence of these contexts, the

seeds are ambiguous.

5.6.4 How Can I Know if I Have Enough Data

Is There Sufficient Data to Represent the Underlying Graph?

By measuring the connectivity structure we can measure whether there is sufficient

data sampled from the underlying graph. If there is sufficient data, the bulk of the

nodes should form one large connected component. If there is not one large connected

component, there may not be sufficient data.

Is There Sufficient Data to Learn My Target Class?

If examining high frequency head-nouns does not lead to identifying candidate seeds,

there is not enough data. One way to remedy this is to gather data specifically

containing the seed terms. Several systems have been proposed to do this (Agichtein

et al., 2003)(Ghani & Jones, 2002).

153

154 Analysis

5.6.5 Should I Correct Examples Labeled By Seeds if I will

be Performing Active Learning?

We learned in Chapter 3 that there is not a great deal of utility in correcting the

examples labeled by seeds. Any extra labeling time would be better off spent labeling

during active learning, as we saw in Chapter 4.

5.6.6 What Properties Should My Active Learning Algo-

rithm Have?

An active learning algorithm for learning semantic classes from text should choose

frequently occurring examples, as well as examples likely to be positive. For example,

in uncertainty sampling we choose examples for which the algorithm is uncertain, ie

examples near the decision boundary. In order to select positive examples, we should

select examples slight further to the positive side of the decision boundary.

5.7 Chapter Conclusions

In this chapter we explored some of our experimental results in more detail. We found

that the total node degree of examples labeled by seeds during initialization was an

important predictor of algorithm performance. This is explained by the small-world

graph structure of the data, which we also established in this chapter. We found

that our data strayed from conditional independence. In addition we found that

the number of examples labeled positive was an important predictor of performance

with active learning, particularly for locations, the class with the most skewed

distribution.

We have laid out a set of properties of data sets which we should examine when

applying semi-supervised learning, together with a description of their likely impact

on learning performance. We have shown that a real world data set, which has

been explored in the the context of semi-supervised learning, exhibits small-world

graphs properties. We measured algorithm performance in terms of these graph-

theoretic properties, showing that node degree of initial examples is predictive of

algorithm performance, and that the distribution of labeled examples over components

on the graph is also predictive of performance. We also suggested some ways in which

154

5.7 Chapter Conclusions 155

algorithms and labeling might be customized around these properties, opening up

a range of approaches to algorithm design and application that is sensitive to the

underlying distribution of the data.

155

156 Analysis

156

Chapter 6

The Held-out Task

We have been making suggestions for methods of bootstrapping semantic

classes on the basis of three classes we have worked with, on two different

datasets (7sector and TREC wtx10g). There is always a risk in this kind

of work, of learning a great deal about the specifics of one’s own dataset

and tasks, and therefore producing a method which does not generalize

well to new tasks, datasets or domains. In this chapter we describe a short

experiment on applying to new domains the methods we have explored

and recommended. This will also be an exercise in applying some of the

recommendations and diagnostics for learnability that we have developed.

6.1 Task Selection

The experiments we have conducted have been on classes with largely open-ended

vocabularies. These are classes for which obtaining an exhaustive list or dictionary

of class members is unrealistic. For example, there may always be new companies

or people we haven’t heard of, as well as misspellings or novel ways of referring to

locations or points of interest. They have also been classes which we can expect to

find many instances of in our training and test corpora, which consist of company

web pages.

Recall from Chapter 5 Section 5.3 that the number of examples labeled by seeds is

highly predictive of performance. If we wish to perform a bootstrapping experiment

with this data, we would be well advised to choose a class which is likely to have

157

158 The Held-out Task

many examples in our training corpus. If we must learn a class which is not likely

to occur often in our training data, we would be well advised to collect new training

data. We can detect whether there are instances of the target class in our training

corpus, by seeing if we can find seeds which extract many examples.

We expect that the products class will be reasonably well-represented, both on

the general web pages in the wtx051-053 training collection, and our 7sector test

set. In addition, the products class likely consists of a relatively open-ended vocab-

ulary which may be difficult to write down or obtain, so could benefit well from a

bootstrapping approach. Thus we choose to perform experiments on the products

class.

In general we expect the bootstrapping approach to learning semantic classes

to work well for classes which can be disambiguated using the immediate context.

It is most useful for classes for which it is difficult to obtain an exhaustive list of

class members, but may also have utility in cases where the class members can be

exhaustively enumerated or described, but some may be ambiguous.

The class dates / times may be well-represented using regular expressions.

We can list exhaustively the months and days of the months, as well as the likely

years, and write down common ways they are composed together. However, there

may be other expression we do not expect, such as “third quarter”. In general our

representation here is not ideally suited to learning time and data expressions, since

we do not have a general feature for representing digits. Nevertheless, we will also

conduct a brief experiment with extraction of the dates / times class to see how

the general framework is applicable here.

6.2 Seed Selection

We selected the semantic categories products and dates / times. We will need a

small number of noun-phrases we think may be examples of our target class (that is,

a small number of words which may be products, or dates / times as appropriate)

to provide the training information. These are called our seeds. Recall from Chapter

3 that an assumption in the bootstrapping approach we are using is that the set of

seed-words we choose will be present in the data. We found in Section 3.5.1 that when

using random subsets of country names as our seed-words, there was a highly variable

distribution of those seed-words in our training corpus. We found in Chapter 5 Section

158

6.2 Seed Selection 159

5.3 that the number of examples labeled by seeds is highly predictive of performance.

Thus we would like our seed-words to be relatively frequently occurring in our training

data. There are two ways of ensuring this: (1) to collect the training documents to

correspond to the seed examples, as suggested in previous work (Agichtein et al.,

2003), (Ghani & Jones, 2002), or (2) to select the seed words using the training data.

For this held-out experiment, we will select the seed words using the training data,

though for the products class we will also conduct a baseline experiment asking

people to supply seeds for the target class.

6.2.1 Choice of Training Data

We decided to use a fixed corpus and select seeds from this training corpus, rather

than collect a corpus specifically for use with pre-selected seeds. One good reason for

this is that a training corpus collected to contain seeds may have special properties

(such as over-representation of seeds, and under-representation of other vocabulary)

which are unlike general data we may need to test on, and thus our generalization

power may be reduced.

There remains the question of which training corpus to use. Recall from Chapter

3 Section 3.7.6 that we compared the use of a smaller corpus (7sector) and a larger

corpus (wtx10g) as training data. The smaller corpus was drawn from the same

distribution as the test data (the test data was subsampled from the original 7sector

crawl of company websites, and the training corpus is a disjoint subsample from

the same data). The wtx10g corpus is larger, but from a different, more general

distribution (web pages, not selected specifically to be company web pages). We

found that for the locations task, using the larger disjoint corpus was more effective,

while for people and organizations the smaller corpus from the same distribution

was more effective. This may be because of the overlap of organization and people

names in training and test collections.

For realism, for the products class we will use the wtx051-053 corpus (described

in detail in Chapter 3, Section 3.7.6) for this held-out task. This is disjoint from the

test set, and will show us how well our methods perform when applied to a brand-new

test collection sampled separately from the training collection, which may be a quite

realistic setting when a system is deployed.

For the dates / times class we will use the 7sector training corpus. Since we

159

160 The Held-out Task

Seeds n

1-a 20GB iPod, Jetclean II, Tungsten T5, InFocus ScreenPlay 4805 DLP

Projector, Sony PSP, Barbie Fairytopia, Crayola Construction Paper

Crayons, Kodak Advantix 200 Speed Color Film, Timbuk2 Commute

Messenger Bag, Sony MDR-V6 Stereo Headphones

0

1-b mp3 player, Maytag dishwasher, Palm Pilot, home theater projector,

PSP, Barbie, crayons, 35mm film, messenger bag, headphones

100

2-a* Nestle, disposable razor, Toyota Prius, SUV, Armani Suit, Yemen

Mocha Matari, 8” 2x4, cheddar cheese, HP Compaq nc6000, q-tips

5

2-b Lipton Tea, 00 buckshot, Tomatoes, Loose-leaf paper, Nike shoes, Basil

seeds, 2004 Toyota Camry SE, Laptop battery, Gummibears, M&Ms

83

3 Leather sofa, Electric violin, Chocolate cake, Mountain bike, Pair of

glasses, K2 Rollerblades, Ipod, Dress shirt, Headphones, Webcam

20

Table 6.1: Five sets of seeds for the products class, chosen by introspection by three

labelers. The set 2-a was chosen to be difficult. n indicates how many examples in the

training corpus matched each seed set.

do not have digit features to allow us to generalize outside the vocabulary learning

during training, a mismatched train-test corpus may be harmful.

6.2.2 Seed Selection By Introspection

We asked three employees of a web search company to supply lists of possible products.

These lists are shown in Table 6.1. For each seed-set, n indicates the number of

examples in the wtx-051-053 training corpus which which one of the seeds. Set 1-

a was chosen to be very specific product names, and matching no examples in the

training corpus at all. Set 1-b consisted of somewhat more general names for the same

products as in set 1-a, and matched 100 examples in the training corpus. Set 2-a was

chosen to be difficult, to contain ambiguous words. It matched only 5 examples in the

training corpus. Set 2-b was chosen to be unambiguous, and matched 83 examples in

the training corpus. Finally labeler 3 chose to list objects he had recently purchased

or planned to purchase. This set of seeds matched 20 examples in the training corpus.

160

6.2 Seed Selection 161

6.2.3 Select Seeds Using the Training Data

We have chosen to select our seeds using the wtx051-053 training corpus. From

Chapter 5 Section 5.3 we know that the frequency of these seeds will be predictive of

algorithm performance, even when we use active learning. Specifically we know that

when using active learning, algorithm performance is predicted by:

1. Number of unique seeds head-matching some NP in graph (Spearman correla-

tion of 0.282)

2. Number of unique seeds exact-matching some NP in the graph (Spearman cor-

relation of 0.285)

3. Number of unique seeds head-matching NPs in the largest component (Spear-

man correlation of 0.282)

4. Number of unique examples labeled (sum node degree) (Spearman correlation

of 0.630)

5. Total examples labeled (Spearman correlation of 0.628)

6. Number of components containing at least one example (Spearman correlation

of 0.501)

7. Number of components containing at least one seed or positive example (Spear-

man correlation of 0.529)

8. Number of unique seed-examples or positive example in the largest component

(Spearman correlation of 0.624)

9. Number of unique contexts covered by seeds (Spearman correlation of 0.551)

10. Number of unique contexts covered by more than one seed (Spearman correla-

tion of 0.581)

According to this list, the best criterion we could use for seed selection is to

optimize 4, the number of unique examples labeled (though this criterion also includes

examples labeled during active learning). We also found that item 5, the total number

of examples labeled, is not statistically significantly different in predictive power.

161

162 The Held-out Task

Thus if we choose seeds to maximize the number of examples labeled, we should be

providing a good starting point to bootstrapping.

Thus we sorted noun-phrases in the wtx051-053 corpus by frequency, then labeled

the members. For the task products we examined the 200 most frequent noun-

phrases and labeled each as either unambiguously likely to correspond to an example

of products and therefore a relevant seed, or not relevant. Of these two hundred most

frequent noun-phrases, we found three seeds which we thought unambiguously likely

to correspond to an example of products: “services”, “software” and “products”.

Some numbers relating to the distribution of these seed words in the wtx051-053 are

given in Table 6.2. 20,331 examples total were labeled by these three seeds. This

contrasts with the seeds chosen by introspection, which matched between 0 and 100

examples in the training corpus.

Looking at the top three contexts labeled by each of the three high-frequency

seeds, we see that there is some overlap (“range of <x>” was covered by both “ser-

vices” and “products”), as well as some variation – “services” selects “provides <x>”,

while “software” selects “<x> provides”. It makes intuitive sense that a product is

something that can provide utility to a customer, as well as something which is pro-

vided by a company. However, this suggests that these contexts will also be likely to

cooccur with noun-phrases which represent vendors and customers. To distinguish

these we may need even more context, for example by adding another disambiguating

noun-phrase, as in, “the company provides <x>”. Thus our contexts may not be as

extensive in expressive power as we might like.

For the dates / times class we found the years 1993, 1994, 1995, 1996 and

1997 in the first 200 most frequent noun-phrases of the 7sector corpus, and so used

these as our seeds. These matched 1753 examples in the 7sector training corpus.

Contexts occurring frequently with these seeds include: “increased in <X>”, “million

in <X>” and “months of <X>”.

6.2.4 No Active Initialization

Recall from Chapter 3 Section 3.7.4 that correcting the examples labeled through

automatic labeling using the seed-words did not contribute substantially to learning

performance. Therefore we will not correct the examples labeled by seeds.

162

6.3 Bootstrapping and Active Learning Algorithm 163

Seed-word nps exs/ np-heads u. np-heads u. Cont’s ex. Cont’s

services 2711 7236 2427 4333 provides <x>, offers < x >,

range of <x>

software 2679 7100 2159 4581 use of <x>, use <x>,

<x> provides

products 2113 6281 2267 3952 information on <x>,

range of <x>, line of <x>

Table 6.2: Seeds for products task. Seeds were selected by examining the top 200 most fre-

quent noun-phrases, and identifying the terms that seemed most unambiguously like prod-

ucts. Shown are the number of times the seed words occurred as whole noun-phrases (“nps”),

the number of times the seed-words occurred as heads of noun-phrases (“np-heads”), the

number of unique noun-phrases with the seed as head (“u. np-heads”), the number of

unique contexts labeled by the seed (“u. contexts”) and the three most common contexts

labeled by the seed. 20,331 examples total were labeled by these three seeds.

6.3 Bootstrapping and Active Learning Algorithm

6.3.1 Bootstrapping Algorithm

We used 500 iterations of coEM (described in Chapter 3 Section 3.4.3), which we

found to be robust across classes. We found in Chapter 3, Section 3.7.2 that allowing

stopwords in the model improves results greatly for the people and organizations

classes, without having a deleterious effect on the locations class. “We” is a very

good indicator for organizations, and “he” and “she” are very good indicators for

people. It is plausible that “it” may be a weak positive predictor for products,

whereas “he”, “she” and “we” will be negative predictors. Thus we allowed stopwords

in the model.

6.3.2 Number of Examples Labeled With Active Learning

We found in Chapter 4, Section 4.10.6 that most of the benefit of active learning comes

in the first few iterations. While we also saw statistically in Section 5.3.11 of Chapter

5 that the number of examples labeled is positively correlated with performance, we

will label just 25 examples with active learning, to make this a real test of minimally

supervised training for the the products class. For the dates/ times class, we

labeled 500 examples, as the contexts for this class are relatively ambiguous (dates

163

164 The Held-out Task

and times can occur in similar contexts to locations). In earlier experiments described

in this thesis, we excluded numbers from being labeled with active learning. For the

dates / times experiments, we removed this exclusion.

6.3.3 Active Learning Algorithm

In Section 5.3.11 in Chapter 5 we saw that the number of positive examples labeled

is correlated with algorithm performance. Our active learning algorithm cannot have

access to the true labels of examples when selecting them, though we could modify the

algorithm to select examples it thinks are more likely to be positive. We will simplify

matters here by using disagreement between the noun-phrases and the context to

select examples (feature-set disagreement, which was described in Chapter 4 Section

4.6). This selects examples about which there is some uncertainty as to the label (and

therefore the example could be positive). This method performed well in experiments

on other classes, as we saw in Chapter 4 Section 4.10.8. In order to remove the

redundancy in relabeling seeds that we saw in Section 4.10.8, we restricted the set of

possible examples to be labeled to be those that did not contain seeds.

6.4 Evaluation

We used the model to extract on the 7sector test set. We sorted extracted examples

by confidence score, and labeled the top 200 examples according to whether or not

they contained member of the target class (a product or date/time, depending on

the task). We then calculated precision at 10, 50, 100 and 200. We also examined the

dictionary of noun-phrases produced on the training, and similarly scored the first

200, to obtain precision at 10, 50, 100 and 200. For the products class, he test set

contained many noun-phrases whose heads were the words “services”, “products” or

“software”. These noun-phrases could be extracted using just the seed words, so for a

fuller evaluation of the effects of bootstrapping and active learning, we performed an

analogous evaluation in which we removed examples with “services”, “products” or

“software” as the head of the noun-phrase, then labeled the top 200 of the remaining

examples.

164

6.5 Results 165

1-a 1-b 2-a 2-b 3 freq-noseeds freq

P@10 0.2 0.2 0 0.1 0.4 0.4 1.0

P@50 0.2 0.18 0.02 0.14 0.22 0.56 1.0

P@100 0.21 0.19 0.03 0.23 0.31 0.55 0.8

P@200 0.185 0.22 0.055 0.245 0.39 0.535 0.685

Table 6.3: Results of extracting test examples based on models obtained by bootstrapping

the products class, using the seeds created by introspection (1-a - 3), and seeds chosen by

frequency (freq). Set 1-a matched no seeds, and can be seen as a baseline reflecting the prior

distribution of products terms in the test corpus. Set 2-a was chosen to be ambiguous,

containing brand-names which may also be company names. This set performed much

worse than the baseline. The frequency based seeds (freq) with 25 instances labeled with

active learning perform best, even when we remove test examples which match a seed (freq-

noseeds).

6.5 Results

6.5.1 Products

In Table 6.3 we see results of extracting test examples based on models obtained by

bootstrapping the products class, using the seeds created by introspection (1-a - 3),

and seeds chosen by frequency (freq). Set 1-a matched no seeds, and can be seen as a

baseline reflecting the prior distribution of products terms in the test corpus. Set 2-a

was chosen to be ambiguous, containing brand-names which may also be company

names. This set performed much worse than the baseline. The frequency based seeds

(freq) with 25 instances labeled with active learning perform best, even when we

remove test examples which match a seed (freq-noseeds)

In Table 6.4 we show more detail of the results from the frequency selected

products seeds. Observing the dictionary construction, we can see that including

seeds in our evaluation we see 98% correct noun-phrases in the dictionary (though all

but 4 were based on the original seeds). When we remove examples based on seeds,

the precision of the dictionary ranges from 60% to 35% over the top 200 noun-phrases.

This is within the range achieved by Basilisk (Thelen & Riloff, 2002) which learned the

categories building (40 - 35% precision), event (61 - 57% precision), human (84-87%

precision), location (84-87% precision), time (30-15% precision) and weapon (42 -

31% precision). Basilisk’s results were obtained by bootstrapping multiple classes

165

166 The Held-out Task

nps nps (non-seed) Examples Examples (non-seed)

P@10 1.0 0.6 1.0 0.4

P@50 1.0 0.56 1.0 0.56

P@100 0.97 0.56 0.8 0.55

P@200 0.975 0.345 0.685 0.535

Table 6.4: Precision at different numbers of extracted test examples or training dictionary

noun-phrases examined, for bootstrapping products with coEM with 3 initial examples

(selected from 200 candidates) and 25 examples labeled with active learning using noun-

phrase-context disagreement. Many of the test examples contained the seed-words, so we

show also results on examples filtered to remove seeds (“non-seed”).

simulataneously, which improved results over learning a single class at a time.

Now let us consider in more detail the examples extracted from the held-out test

set, that is, the combined noun-phrase context pair evaluated for correctness. Among

the 200 top-ranked extracted examples (extracted using both noun-phrases and con-

texts), a minority were based on the seed-set (“services” with 25 and “products” with

30, though 0 with “software”). Among these 70% were correct. When we remove

the examples aided by the presence of seeds, we still have 40-55% correct extraction

on held-out unseen data. These results are promising, as we did not use any extra

constraints (such as bootstrapping multiple classes simultaneously and assuming one

sense per discourse). Using such constraints should lead to even better results.

6.5.2 Dates / Times

In Table 6.5 we see the results of bootstrapping to learn to extract dates / times

from company web pages, using the years 1993 through 1997 as seeds. We see that

without needing to write out rules defining the form of a date, we are able to identify

dates and times in the highest scoring extractions with around 60% precision. This

exceeds the accuracy achieved by Basilisk (Thelen & Riloff, 2002).

Errors in extraction resulted from ambiguous contexts, such as “growth in <X>”

which occurred with both “1970s” and “revenue”; and “founded in <X>” which

occurred with “1937” “1982”, “1886”, “1987”, “1907”, “1832”, and “london”.

The kinds of date / time expressions we were able to extract included:

166

6.6 Chapter Conclusions 167

noactive noactive-noseeds active500 active500-noseeds

P@10 1 0.4 0.9 0.6

P@50 0.8 0.5 0.88 0.62

P@100 0.68 0.48 0.74 0.56

P@200 0.54 0.385 0.52 0.34

Table 6.5: Results of extracting test examples based on models obtained by bootstrapping

the dates / times class, using the seeds created by looking at frequent noun-phrases in

the training corpus (seeds were the years 1993 - 1997).

• generic words for time-frames (“month”, “year”, “century”)

• business time-frames (we learned all of “quarter”, “first quarter”, “second quar-

ter”, “third quarter” and “fourth quarter”)

• approximate dates (“early 1994”, “spring/summer 1996”)

• four-digit years (we learned 19 four-digit years other than the initial seeds)

• relative time descriptions (“previous year”, “year following”, “following year”)

• month names concatenated with years (“march 1998”, “february 1997”)

• month names in isolation (we learned every month name)

• days of the week in isolation (we learned every day of the week)

• very precise times (“jan 6 23:00:00 1996”)

• other date formats (“6/30/96”, “fy97”)

This suggests that this approach is a good way of initializing a date extractor.

In order to build a complete date extractor, it would be good to generalize some of

these, for example, 4 digit years would be well-represented with a regular expression.

6.6 Chapter Conclusions

We have shown that we can use the methods we demonstrated in this dissertation

to extract data from a held-out test set, for a new task not used during algorithm

167

168 The Held-out Task

development. For the products task, with human-labeled input of (1) 200 noun-

phrases examined to obtain three seed-words, and (2) 25 additional examples labeled

with active learning, we obtain precision of 40-55% correct extraction on held-out

unseen data. We used a disjoint training set from a different distribution than the

test-set, and did not use the full set of information which could be used for information

extraction, such as features incorporating the presence of digits and capital letters,

and learning multiple classes simultaneously to. Adding this kind of information

should lead to even stronger results.

For the dates / times tasks, our input was 5 4-digit years selected from the 200

most frequent non-phrases in the 7sector training corpus, and 500 examples labeled

with active learning. We learned days-of-the-week and months-of-the-year, as well as

combinations of days and dates. These learned patterns could be used as is, for lower

precision date and time extraction, or to initialize a hybrid extractor which would

have rules added to identify all four-digit years.

These results are likely to generalize to other classes and data, since we were

conservative in selection of training data, as well as the amount of data labeled.

168

Chapter 7

Conclusions and Future Work

We have examined in depth bootstrapping algorithms and active learning

for learning to extract entities belonging to a particular semantic class.

We now summarize the main conclusions we have reached as a result of

this depth of study. In addition, for this depth we have sacrificed some

breadth. In this chapter we also describe future work that would make

interesting follow-ons to this work.

7.1 Conclusions

Out conclusions tie together results found in Chapter 3 on bootstrapping algorithms

and their assumptions, in Chapter 4 on incorporating active learning into these boot-

strapping algorithms, and in Chapter 5 on measuring the graph properties of the

labeled and unlabeled data, and tying it back to learning performance.

7.1.1 Active Learning has More Impact then Correcting Ini-

tial Examples

We used weak labeling, in which labels are assigned to examples based on, for example,

the presence of a single seed word, but without any manual examination of those

labels. While it is natural to think that correcting those labels by manually inspecting

them could be used to improve performance, we found that a better use of a labelers

time is to label new examples with active learning. From this we can conclude that

169

170 Conclusions and Future Work

the choice of examples we label is key, for a fixed amount of labeling.

7.1.2 Highly Connected Noun-phrases are Important In Learn-

ing

We found experimentally in Chapter 3 that removing pronouns from the model used

in bootstrapping could lead to reduced learning performance. We found statistically

in Chapter 5 that we can predict learning performance, using the node degree of

examples labeled during seeding and active learning, the number of contexts connected

to more than one of those seeds, and the distribution of seeds over components.

We can conclude from these results that it is useful to take into account the

graph structure connecting noun-phrases and contexts for bootstrapping information

extractors. The pronouns form highly connected nodes in the graph, which are highly

influential, even when only weakly predictive. Other nodes are useful depending on

their connectivity within the graph too.

7.1.3 Overall Graph Structure is Important in Learning

We found that the distribution of labeled examples over components of the graph

affected learning outcome. This suggests that we should take into account the graph

structure, and in particular, the distribution of data into components, when selecting

examples for labeling.

7.2 Future Work

7.2.1 Using Pre-existing Dictionaries

We have worked almost exclusively with small lists of words as input. It would also

make sense to start with large dictionaries if we have them available. We looked at

using a longer list of 253 country names in Chapter 3 and saw slight improvements,

though the differences were lessened with active learning, as we saw in Chapter 4.

Still for even larger pre-existing dictionaries there may be benefits and interactions

that we have not considered here.

170

7.2 Future Work 171

7.2.2 Applicability to a Range of Semantic Classes

In Chapter 5, we mentioned the psycho-linguistic notion of basic-level categories

(Rosch et al., 1976) which captures the standard names we apply to objects (such as

“dog”, and “chair”) and are the first categories learned by children. Superordinate

categories (eg. “animal”, “furniture”) are generalizations of these categories, and are

less easily visualized. Subordinate categories (eg. “dalmatian”) are more specific than

is required for general conversation, and are learned later by children.

All the examples we worked with were super-ordinate categories. Our seeds were

descriptions of the super-ordinate category, or category members of the basic level or

subordinate level categories. We learned both basic level and subordinate caetgory

members. Attempts to learn more specific or more general categories may require

larger corpora, to cover more instances of the use of these phrases.

It would be useful to conduct experiments to see whether we can characterize

the set of semantic classes learnable by this approach, either in terms of Rosch’s

categories, or other categories of semantic classes.

7.2.3 Applicability Across Languages

We have looked at learning to identify semantic classes in English text. We may

find that transferring this approach to other languages requires different treatment of

words and phrases. For example, for languages with more complex morphology than

English, the interaction between tokenization and extraction should be explored.

7.2.4 Alternative Data Representations and Sources

Another area for future work is examining the implications of the simplification we

performed by having only two features. We noted in Chapter 3 Section 3.5.2 that

when labelers had access to the noun-phrase, context, and the full sentence they

occurred in, they agreed on the labeling 90.5% of the time. However, when one did

not have the sentence (only the noun-phrase and context), agreement dropped to

88.5%. Our algorithms have only the noun-phrase and contexts to use for learning.

Based on the agreement of our human labelers, we conjecture that the algorithms

could do better with more information.

171

172 Conclusions and Future Work

We should examine the effect that adding more features would have on our results

and analyses. We also ignored capital letters and other syntactic clues which can

be useful in identifying entities. It would be useful to generalize the representation

from noun-phrases and their local lexico-syntactic contexts to sequences of words or

ngrams. This would allow this approach to be applied to, for example, web search

queries, or other text types with less grammatical structure.

7.2.5 Automatically Acquiring Relevant Training Data

We saw in Sections 3.7.5 and 3.7.6 that both number of seeds in the training corpus

and corpus size affect results. We may wonder if there is a way of increasing the

number of seeds in the training corpus without greatly increasing the corpus size,

for greater computational efficiency. One way may be to label more examples. We

addressed this question in Chapter 4 by examining the most efficient ways to choose

examples for labeling, using active learning. A different approach, motivated by

related work in acquiring documents in a target language (Ghani et al., 2003) and

relevant semantic relationships (Agichtein et al., 2003), would involve automatically

acquiring training data that is likely to contain many instances of the seeds and the

target class. This may be a promising direction for future work.

7.2.6 Applicability Across Domains and Data Types

We explored learning from few examples within the domain of entity extraction in

text documents. The methods we explored may be applicable to text classification

at the document level, or extraction and classification with completely different data,

such as image data or time series data.

7.2.7 Predicting and Improving Algorithm Performance Based

on Data Structure

Finally, we showed how for one kind of machine learning task, we can find correlations

between the structure of the labeled and unlabeled data and the learning performance.

This kind of analysis may be usefully applied to other learning tasks.

172

Bibliography

Agichtein, E. (2004). Extracting relations from large text collections. Doctoral dissertation,

Columbia University.

Agichtein, E., Ipeirotis, P., & Gravano, L. (2003). Modeling query-based access to text

databases. Proceedings of the Sixth Annual Workshop on the Web and Databases.

Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews

of Modern Physics, 74. http://xxx.lanl.gov/abs/cond-mat/0106096.

Appelt, D. E., & Israel, D. J. (1999). Introduction to information extraction technology. A

Tutorial Prepared for IJCAI-99.

Bailey, P., Craswell, N., & Hawking, D. (2003). Engineering a multi-purpose test collection

for Web retrieval experiments. Information Processing and Management, 39.

Baker, L. D., & McCallum, A. K. (1998). Distributional clustering of words for text clas-

sification. Proceedings of the Twenty-first Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR-98).

Balcan, N., Bluem, A., & Yang, K. (2004). Co-training and expansion: Towards bridging

theory and practice. Proceedings of the Eighteenth Annual Conference on Neural Infor-

mation Processing Systems (NIPS-2004).

Bean, D., & Riloff, E. (2004). Unsupervised learning of contextual role knowledge for

coreference resolution. Proceedings of the Human Language Technology conference /

North American chapter of the Association for Computational Linguistics annual meeting

(HLT/NAACL-2004).

Bensaid, A. M., Hall, L. O., Bezdek, J. C., & Clarke, L. P. (1996). Partially supervised

clustering for image segmentation. Pattern Recognition, 29, 859–871.

Blum, A., Lafferty, J., Rwebangira, M. R., & Reddy, R. (2004). Semi-supervised learning

using randomized mincuts. Proceedings of The Twenty-First International Conference on

Machine Learning (ICML-2004).

173

174 BIBLIOGRAPHY

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.

Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT-

98).

Bockhorst, J., & Craven, M. (2002). Exploiting relations among concepts to acquire weakly

labeled training data. Proceedings of the Nineteenth International Conference on Machine

Learning (ICML-2002).

Brown, P., Pietra, V. D., deSouza, P., Lai, J., & Mercer, R. (1992). Class-based n-gram

models of natural language. Comutational Linguistics, 18, 467–479.

Califf, M. E., & Mooney, R. J. (1997). Relational learning of pattern-match rules for

information extraction. Proceedings of the ACL Workshop on Natural Language Learning

(pp. 9–15).

Cardie, C. (1997). Empirical methods in information extraction. AI magazine, 18, 65–79.

Cohen, W. W., Hurst, M., & Jensen, L. S. (2002). A flexible learning system for wrapping

tables and lists in HTML documents. Proceedings of the Eleventh International World

Wide Web Conference (www-2002).

Collins, M., & Singer, Y. (1999). Unsupervised models for named entity classification.

proceedings of EMNLP/VLC-99.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: John

Wiley and Sons.

Cozman, F., & Cohen, I. (2002). Unlabeled data can degrade classification performance

of generative classifiers. Fifteenth International Florida Artificial Intelligence Society

Conference (pp. 327–331).

Dagan, I., Justeson, J., Lappin, S., Leass, H., & Ribak, A. (1995). Syntax and lexical

statistics in anaphora resolution. Applied Artificial Intelligence, 9, 633–644.

Dagan, I., Lee, L., & Pereira, F. C. N. (1998). Similarity-based models of word cooccurrence

probabilities. http://xxx.lanl.gov/abs/cs/9809110.

de Moura, A. P. S., Lai, Y.-C., & Motter, A. E. (2003). Signatures of small-world and

scale-free properties in large computer programs. Physics Review E, 68.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier

under zero-one loss. Machine Learning, 29, 103–130.

174

BIBLIOGRAPHY 175

Ferrer i Cancho, R., & Solé, R. V. (2001). The small world of human language. Proceedings

of the Royal Society of London, B, 2261–2265.

Freitag, D. (1998). Multistrategy learning for information extraction. Proceedings of the

Fifteenth International Conference on Machine Learning (ICML-1998).

Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997). Selective sampling using the

query by committee algorithm. Machine Learning, 28, 133–168.

Ghani, R., & Jones, R. (2002). Automatic training data collection for semi-supervised

learning of information extraction systems (Technical Report). Accenture Technology

Labs. http://labs.accenture.com/techreports/ghani jones TR2002.pdf.

Ghani, R., Jones, R., & Mladenic, D. (2003). Building minority language corpora by learning

to generate web search queries. Knowledge and Information Systems.

Glickman, O., & Jones, R. (1999). Examining machine learning for adaptable end-to-

end information extraction systems. AAAI 1999 Workshop on Machine Learning for

Information Extraction.

Goldstein, M. L., Morris, S. A., & Yen, G. G. (2004). Problems with fitting to the power-law

distribution. http://arxiv.org/abs/cond-mat/0402322.

Gooi, C. H., & Allan, J. (2004). Cross-document coreference on a large scale corpus.

Proceedings of the Human Language Technology conference / North American chapter of

the Association for Computational Linguistics annual meeting (HLT/NAACL-2004).

Grishman., R. (1995.). The NYU system for MUC-6 or where’s the syntax? Proceedings

of the Sixth Message Understanding Conference (MUC-6),. Columbia, MD,. Morgan

Kaufmann. 10.

Hofmann, T. (1999). Probabilistic latent semantic indexing. Proceedings of the Twenty-

Second Annual SIGIR Conference on Research and Development in Information Retrieval.

Huffman, S. (1996). Learning information extraction patterns from examples. In S. Wermter,

E. Riloff and G. Scheler (Eds.), Connectionist, Statistical, and Symbolic Approaches to

Learning for Natural Language Processing, 246–260. Springer-Verlag, Berlin.

Hurst, M. (2000). The interpretation of tables in texts. Doctoral dissertation, University of

Edinburgh.

Iamnitchi, A., Ripeanu, M., & Foster, I. (2004). Small-world file-sharing communities. The

23rd Conference of the IEEE Communications Society (InfoCom 2004). Hong Kong.

175

176 BIBLIOGRAPHY

Jensen, D., & Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in

relational learning. Proceedings of the Nineteenth International Conference on Machine

Learning (ICML2002) (pp. 259–266).

Joachims, T. (2001). Learning to classify text using support vector machines. Doctoral

dissertation, University of Dortmund.

Joachims, T. (2003). Transductive learning via spectral graph partitioning. Proceedings of

the International Conference on Machine Learning (ICML-2003).

Jones, R., Nigam, K., McCallum, A., & Riloff, E. (1999). Bootstrapping for text learning

tasks. IJCAI-99 Workshop on Text Mining: Foundations, Techniques and Applications.

Kamvar, S., Klein, D., & Manning, C. (2002). Interpreting and extending classical ag-

glomerative clustering algorithms using a model-based approach. Proceedings of the 19th

International Conference on Machine Learning (ICML-2002).

Karger, D. R. (1994). Random sampling in cut, flow, and network design problems. Pro-

ceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing (pp.

648–657).

Knoblock, C., Lerman, K., Minton, S., & Muslea, I. (2000). Accurately and reliably extract-

ing data from the web:a machine learning approach. IEEE Data Engineering Bulletin,

23, 33–41.

Kou, Z., Cohen, W. W., & Murphy, R. F. (2005). High-recall protein entity recognition

using a dictionary. Proceedings of the 13th Annual International conference on Intelligent

Systems for Molecular Biology.

Lee, L. (1997). Similarity-based approaches to natural language processing. Doctoral disser-

tation, Harvard University.

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information

retrieval. Proceedings of the 10th European Conference on Machine Learning (ECML-98)

(pp. 4–15). Chemnitz, DE: Springer Verlag, Heidelberg, DE.

Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text classifiers.

Proceedings of the Seventeenth Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR-94) (pp. 3–12).

Liere, R., & Tadepalli, P. (1997). Active learning with committees for text categorization.

Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97)

(pp. 591–596).

176

BIBLIOGRAPHY 177

Liu, B., Lee, W. S., Yu, P. S., & Li, X. (2002). Partially supervised classification of text

documents. Proceedings of the Nineteenth International Conference on Machine Learning

(ICML-2002).

Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing.

MIT Press.

McCallum, A., & Nigam, K. (1998a). A comparison of event models for naive Bayes text

classification. AAAI-98 Workshop on Learning for Text Categorization. Tech. rep. WS-

98-05, AAAI Press.

McCallum, A., Rosenfeld, R., Mitchell, T., & Ng, A. (1998). Improving text clasification by

shrinkage in a hierarchy of classes. Proceedings of the Fifteenth International Conference

on Machine Learning (ICML-1998) (pp. 359–367).

McCallum, A. K., & Nigam, K. (1998b). Employing EM in pool-based active learning for

text classification. Machine Learning: Proceedings of the Fifteenth International Confer-

ence (ICML 1998) (pp. 350–358).

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. (1990). Five papers on

wordnet (Technical Report CSL 43). Cognitive Science Laboratory, Princeton University.

Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

MUC-6 Proceedings (1996). Proceedings of the sixth message understanding conference

(muc-6). San Francisco, CA: Morgan Kaufmann.

Muslea, I. (1999). Extraction patterns for information extraction tasks: A survey. AAAI

1999 Workshop on Machine Learning for Information Extraction.

Muslea, I., Minton, S., & Knoblock, C. A. (2000). Selective sampling with redundant views.

Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth

Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI-2000).

Nelson, D. L., McEvoy, C., & Scheiber, T. A. (1999). The University of South Florida word

association norms. http://www.udf.edu/FreeAssociation/.

Newman, M. E. J., & Park, J. (2003). Why social networks are different from other types

of networks. Physics Review E.

Newman, M. E. J., Watts, D. J., & Strogatz, S. H. (2002). Random graph models of social

networks. Proceedings of the National Academy of Sciences of the USA, 99, 2566–2572.

177

178 BIBLIOGRAPHY

Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training.

Ninth International Conference on Information and Knowledge Management (CIKM-

2000) (pp. 86–93).

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (1998). Learning to classify text from

labeled and unlabeled documents. AAAI-98.

Pastor-Sartoras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks.

Physical Review Letters, 86, 3200–3203.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical

recipes in C. Cambridge University Press. second edition edition.

Proceedings, M.-. (1991). Proceedings of the third message understanding conference (muc-

3). San Mateo, CA: Morgan Kaufmann.

Radford, A. (1988). Transformational grammar: A first course. Cambridge University

Press.

Raghavan, H., Madani, O., & Jones, R. (2005). Interactive feature selection. Proceedings

of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-2005).

Riloff, E. (1993). Automatically constructing a dictionary for information extraction tasks.

Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93) (pp.

811–816). AAAI Press/The MIT Press.

Riloff, E. (1996a). Automatically Generating Extraction Patterns from Untagged Text.

Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96)

(pp. 1044–1049). The AAAI Press/MIT Press.

Riloff, E. (1996b). An empirical study of automated dictionary construction for information

extraction in three domains. Artificial Intelligence, 85, 101–134.

Riloff, E., & Jones, R. (1999). Learning Dictionaries for Information Extraction Using

Multi-level Boot-strapping. Proceedings of the Sixteenth National Conference on Artificial

Intelligence (AAAI-99) (pp. 1044–1049). The AAAI Press/MIT Press.

Riloff, E., & Phillips, W. (2004). An introduction to the sundance and autoslog systems

(Technical Report UUCS-04-015). University of Utah School of Computing.

Rooth, M., Riezler, S., Prescher, D., Carroll, G., & Beil, F. (1999). Inducing a semantically

annotated lexicon via EM-based clustering. Proceedings of the 37th Annual Meeting of

the ACL.

178

BIBLIOGRAPHY 179

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Bream, P. (1976). Basic

objects in natural categories. Cognitive Psychology, 8, 382–439.

Sarawagi, S., & Cohen, W. W. (2004). Semi-Markov conditional random fields for informa-

tion extraction. Proceedings of the Eighteenth Annual Conference on Neural Information

Processing Systems (NIPS-2004).

Seymore, K., McCallum, A., & Rosenfeld, R. (1999). Learning hidden Markov model struc-

ture for information extraction. AAAI-99 Workshop on Machine Learning for Information

Extraction.

Sigman, M., & Cecchi, G. A. (2002). The global organization of the WordNet lexi-

con. Proceedings of the National Academy of Sciences of the USA, 99, 1742–1747.

http://www.pnas.org/cgi/reprint/99/3/1742.pdf.

Sleator, D. D., & Temperley, D. (1993). Parsing English with a link grammar. Third

International Workshop on Parsing Technologies.

Soderland, S. (1999). Learning information extraction rules for semi-structured and free

text. Machine Learning, 34, 233–272.

Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic net-

works: Statistical analyses and a model of semantic growth. Cognitive Science, 29.

http://arxiv.org/abs/cond-mat/0110012.

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268 – 276.

Thelen, M., & Riloff, E. (2002). A bootstrapping method for learning semantic lexicons

using extraction pattern contexts. 2002 Conference on Emprirical Methods in Natural

Language Processing (EMNLP 2003).

Thompson, C. A., Califf, M. E., & Mooney, R. J. (1999). Active learning for natural language

parsing and information extraction. Proceedings of the 16th International Conference on

Machine Learning (ICML-1999).

Van Rijsbergen, C. J. (1979). Information retrieval, 2nd edition. Dept. of Computer Science,

University of Glasgow.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks.

Nature, 393, 440–442.

179

