Chunk alignment for Corpus-Based Machine
Translation

Jae Dong Kim

CMU-LTI-11-002
September 29, 2010

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Jaime Carbonell (Chair)
Ralf Brown (Co-chair)
Stephan Vogel
Andy Way, Dublin City University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in Language and Information Technologies

Copyright(©) 2010, Jae Dong Kim



Keywords: Symmetric Probabilistic Alignment, Example-Based MacHirenslation,
Statistical Machine Translation, Phrase-Based Statiskitzechine Translation, Chunk-
Based Machine Translation



To my parents with love and gratitude,






Abstract

Since sub-sentential alignment is critically importarttte translation quality of an Example-
Based Machine Translation (EBMT) system, which operates ldinfgnand combining
phrase-level matches against the training examples, walafsd a new alignment algo-
rithm for the purpose of improving the EBMT system’s perfonoa. This new Symmetric
Probabilistic Alignment (SPA) algorithm treats the souacel target languages in a sym-
metric fashion.

We describe our basic algorithm and its primary extensioatganable use of surround-
ing context, and of positional preference information, pane its alignment accuracy with
IBM Model 4, and report on experiments in which either IBM Modeair SPA alignments
are substituted for the aligner currently built into the EBIgyistem. Both Model 4 and
SPA are significantly better than the internal aligner.

Then we extend SPA to exploit external alignment informmaticom Moses and to
output non-contiguous target phrases. We also alter SPAasatte weights for its feature
scores are tuned using minimum error rate training. Our ’xyats show that exploiting
external alignment information and non-contiguous aligntrare helpful for SPA in the
EBMT system.

Even with these improvements, however, SPA still could mopprly deal with sys-
tematic translation for insertion or deletion words betwego distant languages. There-
fore, we attempt to alleviate this problem by using syntactiunks as translation units. To
do so, we developed a new chunk alignment algorithm thabésphord alignment infor-
mation to align chunks. Then we integrated a chunk-basedlaon component based
on the chunk alignment into the EBMT system that uses SPA faagath alignment. We
show that the chunk alignment performs significantly betian the baseline system that
aligns two chunks if any word pair of the two chunks has worgrathent link. We also
demonstrate that the system with chunk-based translaisignificantly better than the
baseline EBMT system with SPA in translation quality.
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Chapter 1

Introduction

1.1 Improvements we achieved

In this thesis work, we achieved substantial improvemeateming to automated eval-
uation metrics for three different language pairs in the CMkaraple-Based Machine
Translation (EBMT) system as shown in Table 1.1. To achieedrtiprovements, we in-
vestigated a new phrasal alignment algorithm and a difter@anslation unit and intro-
duced Statistical Machine Translation (SMT) techniquethenEBMT system. The im-
provements were statistically significant and consistemitgh two different widely used
Machine Translation (MT) metrics BLEU and METEOR.

BLEU | METEOR
Korean-English | 11.16 %| 7.02 %
Chinese-English 27.05%| 10.76 %
French-English | 5.38% | 2.26 %

Table 1.1: The improvements we achieved



1.2 A brief history of Machine Translation

Since Andrew Booth and Warren Weaver’s first attempt to usdynemented computers
for machine translation appeared in 1946 and 1947, many imatfanslation approaches
have been developed (Hutchins, 2007).

In the early days, researchers studied two main kinds ofcggies. The first, known
as “brute-force”, uses empirical trial-and-error appteecand applied statistical methods
targeting immediately working systems. The other, knowfpasgfectionist”, uses theoret-
ical approaches involving fundamental linguistic reskdocaim for long term solutions.

Optimism for MT lulled for a decade after the famous Autormatinguage Processing
Advisory Committee (ALPAC) report was published in 1966. Tapart pointed out that
“there is no immediate or predictable prospect of usefulhirectranslation.” Instead of
further investment in MT research, it recommended the dgveént of machine aids for
human translators and continued support of basic reseadmputational linguistics.

A decade later, however, MT revived with operational and iw@rcial systems such
as Systran. Rule-based models dominated the field until the®the 1980s. These mod-
els essentially relied on linguistic rules such as rulessfontactic analysis, lexical trans-
fer, syntactic generation, morphology, lexical rules, &aring this period, researches at-
tempted to develop advanced transfer systems building egparience with earlier in-
terlingua systems as well as to develop new kinds of intgul They investigated tech-
niques and approaches from Atrtificial Intelligence.

The dominance of the rule-based approach waned in the 18@s1@ith the emergence
of corpus-based approaches, which did not require any &jmtar semantic rules in text
analysis or selection of lexical equivalents.

1.3 Corpus-Based Machine Translation

In 1988, a group of researchers at IBM developed the Candidersythat used statis-
tical methods as means of analysis and generation (Brown,et288). They success-
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fully demonstrated statistical translation by showingegtable results: almost half the
phrases translated were acceptable. With their succedsifubnstration, Statistical Ma-
chine Translation (SMT) rose to dominance.

Other researchers extended the IBM SMT to Phrase-Based SMtuMad Wong
(2002) studied a phrase-based joint probability model ircvkhey learn translation be-
tween source n-grams and target n-grams. Others appliatstiesion the IBM word
alignment to extract phrase translation pairs (Och and B@§4; Koehn, 2004a). Chiang
(2005) extended the IBM SMT to hierarchical phrase trarstgpair extraction in the HI-
ERO system.

Nagao (1984) introduced another major corpus-based agipoadled Example-Based
Machine Translation (EBMT) in the early 1980s, although expentation on the ap-
proach did not begin until the end of 1980s. The underlyingdtliyesis of EBMT is that
translation can benefit from using previously translatead@ous examples. When EBMT
is given an input sentence, it finds similar source sentemcdsheir translations in an ex-
ample database. After dealing with the differences in tha@lar examples, it comes up
with hypothesis translations. EBMT systems are categoiigethe forms of meta data
with which they calculate similarity.

Lexical EBMT systems use the surface form of texts directlycdse finding very
similar sentences in the surface form is rare, lexical EBM3teayis typically use partial
matches (Brown, 2000a,b; Phillips and Brown, 2009) or phrasenuatches (Veale and
Way, 1997). To find hypothesis translations, they collect the traimiat of the matches
for use in decoding. To increase coverage, lexical EBMT systeptionally perform gen-
eralization on the surface form to find translation temgate

Other EBMT systems use linguistic structures to calculatglarity. Some convert
both source and target sentences in the example datalegarse trees, and when they
are given an input sentence, they parse it and calculatéasityito the stored example
parse trees. They then select the most similar source paee with their correspond-
ing target trees to generate target sentences after pyapedifying them by the differ-

1Sato (1992)’s system also uses surface form, but it usesraatbabased similarity calculation.
2In this thesis, we use an example database and trainingteethiangeably.
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ence (Sato and Nagao, 1990; Maruyama and Watanabe, 199#a%und lida, 1991; Al-
Adhaileh and Tang, 1999; Aramaki and Kurohashi, 2004). @y ttnd source sub tree
matches with their aligned target sub trees and combinehthéarget parts to generate
target sentences (Quirk and Menezes, 2006). Others cavigrtle source side to make
use of parse trees for similarity calculation (Langlais &wtti, 2006; Liu et al., 2006).
Andriamanankasina et al. (1999) converted sentences anted®?-Speech tags to measure
similarity between input sentences and examples.

1.4 The CMU Example-Based Machine Translation sys-
tem

In this thesis work, we used the CMU EBMT system which is a |exX&RBMT system.
The system is described in detail in Chapter 2.

1.5 Motivation

When we started this thesis work, we were looking for a newsai@ignment algorithm,
possibly a new translation unit and a way to integrate SMgnalient techniques into the
EBMT system because those aspects had been less studie€MtheEBMT system. The
goal was to achieve a substantial improvement in the EBMTesaydly finding problems
in the related components and developing reasonable caduti

The CMU EBMT has been focusing on increasing the training coqmverage over
input sentences to be translated by using techniques swebrdggeneralization (Brown,
2000a,b) rather than further developing accurate alignn#grthe time, its approach to
alignment was using a correspondence table for a traininggesee pair which has a bi-
nary value for a source and target word pair representiggnaent. The binary relation-
ship was obtained from an automatically trained dictionamythe training set. At trans-
lation time, a heuristics-based aligner finds translatiohpartial source matches using

4



the alignment information in the correspondence table tkisrreason, the CMU EBMT
system’s alignment related components showed potentiahjorovement.

Additionally, Statistical Machine Translation (SMT) resehers have focused on find-
ing more correct translations by finding more accurate wdighaents (Brown et al.,
1993; Och and Ney, 2000) and extracting a high quality phtasie from a training cor-
pus.

Therefore, when we decided to improve alignment in the CMU EBIM3tem, SMT'’s
word-to-word translation probability in the correspondenable in EBMT was essential
so that EBMT assigns a more accurate probability as a weigdddh corresponding word
pair, leading to better translations.

Although one may suppose that the CMU EBMT system could userémslation
table built by a Phrase-Based SMT system, the approach igasible because the CMU
EBMT system needs to find phrasal alignments at translatior tiecause it needs to
find target phrases corresponding to arbitrary source raatdhis not realistic to build
an SMT phrase table for EBMT phrasal alignment because the BiMase table that
covers arbitrary source matches would be enormous wherzihefstraining data is very
large. This requirement led us to develop an algorithm tinaisfthe most probable target
phrase for an arbitrarily long input match. This algorithealled Symmetric Probabilistic
Alignment (SPA), finds the translation with a maximum symmzed score based on a
mathematical model rather than heuristics.

The initial SPA worked on a correspondence table of wordwod translation prob-
abilities rather than binary values. This assumed the aviditly of a probabilistic dictio-
nary but not a reasonably large parallel corpus. For exarivfdeadungun which is one of
the indigenous languages in South America, has little [Eu@ddta with English. However,
there exists a dictionary between those two languag@inilarly, there may be languages
between which a comparable corpus exists but not a paraltpls. In this case, we can
train a probabilistic dictionary but do not have a paralt@ipus. However, where there are
widely used language pairs for which a large parallel coipwasailable, a probabilistic

3In this case, we need to assign a pseudo probability valuadio ganslation pair. In our experiments,
we simply use a word probability dictionary obtained fromSMT word alignment algorithm.
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word translation dictionary and word alignment informatidrawn from it is also avail-
able. We extended SPA to use the word alignment informatidnich was then used in
finding a possible target phrase range or in finding non-gantis alignment.

Often, we observe that tokens which do not have transldteanavalents cause a prob-
lem in translation. When they are in the source side, theytimselevant target words in
the translation that were automatically found in a trairphgse. When they are in the tar-
get side, they are typically missing or inserted inconsidgeA very simple example may
be a Korean phrase ‘na neun’ literally meaning ‘I NOMINATIVEVhen it is translated
into English, ‘na’ is translated to ‘I’ and ‘NOMINATIVE’ istanslated to an irrelevant to-
ken“. One way to overcome this problem is to consider ‘na neumaglsitranslation unit.
By having ‘I’ as the translation of ‘na neun’, we can translateorrectly. We investigate
this problem with linguistically motivated phrases, chsaiitkkour EBMT system.

Analyzing sentences into their chunks instead of SMT sthlapes potentially aids a
translation system in a few ways. With fewer translationtsiper sentence, overall distor-
tion decreases (or rather, the distortion has been redocetbtal and global component,
and the local reordering is accessed by rote). Hence, lese isato be expected from the
mathematical modeling techniques. For example, when wenperlignment on an En-
glish sentence “I go to the park with my dog .” and its Koream$iation “na neun na eui
gae reul derigo gongwon e gantla, we have 9 English words and 11 Korean words to
align and the second English word ‘go’ should be alignedédlibth Korean word 'ganda’.
But if we chunk them and perform alignment on the chunked seete“[l] [go] [to the
park] [with my dog] [.]” and “[na neun] [na eui gae reul deriggongwon €] [ganda] [.]",
we have 5 English chunks and 5 Korean chunks and ‘go’ and @jaan@ just 3 chunks
away. Obviously the chunked sentences are easier for afighbecause there is less dis-
tortion and higher correspondence. Another advantagaisatl can to some degree sys-
tematically translate untranslatable tokens that exist on one side. For example, when
we translate an English sentence into Korean, a word-tahwanslation systems cannot
produce a nominative case marker in Korean unless rulesias gy human experts or

4In our observation, ‘NOMINATIVE' is often translated to h
5The Korean tokens corresponds to “I NOMINATIVE | of dog ACCNBVE with park to go .”
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the systems “hallucinate” markers and use language mapieliguess whether or not the
case marker should in fact be present. This ability to geedexical tokens from their

presence in chunks is particularly useful for function ver@therwise potentially unre-
lated function words in two languages are very often aligeesh if they are not transla-
tional equivalents (Fossum et al., 2008). If this kind ofjathent is restricted by chunks,
it helps not only the word alignment but also the phrase atigmt derived from the word

alignment.

A phrasal aligner such as SPA may also find the correct chaniltation. It could find
the correct chunk translation answer as the best trans/dteve it in the topV list, or
prune it out. In this case, the translation system needs @ g@chanism to make sure that
SPA returns the correct target chunk and the decoder pidasrectly with the help of a
language model. However, because chunk alignment findsgéediarget chunk given a
source chunk, it can encourage the system to use the comaak translation.

For this reason, we investigated machine translation witmks as basic units. We
first developed a chunk alignment algorithm and evaluatethén we used the aligned
chunk translations in the CMU EBMT system to improve systenigoerance. Finally
we investigated whether we could improve a Phrase-Based $bst&ra by adding chunk
translation pairs to its phrase table.

1.6 Thesis hypotheses

Through this thesis work, we strive to validate the followimypotheses.

First, Symmetric Probabilistic Alignment (SPA) will impre the CMU EBMT system.
With a more accurate phrase level alignment than the egisturistic aligner, the EBMT
system will perform better.

Second, using state-of-the-art word alignment informmaitidcSPA will help SPA output
better target phrases. The external word alignment willdeful not only for determining
a target range in which SPA finds translation candidates Isotfar providing its own
phrasing as a good translation candidate.
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Third, non-contiguous SPA will be better for translatiomrthcontiguous SPA. With
accurate word alignment, non-contiguous SPA will have &igirecision and it will lead
to better translation.

Fourth, our chunk alignment will be better than its basalimhunk alignment by state-
of-the-art word alignment algorithm that regards chunkbasic units and chunk align-
ment in which a source chunk and a target chunk are alignea wieze is any aligned
word pair between them. Our aligner uses both word and chtatistics for alignment,
which will lead to higher chunk alignment accuracy.

Fifth, our chunk alignment method will help find high qualithunk pairs. Adding
these pairs to a Phrase-Based Statistical Machine Transi@®@BSMT) phrase table will
improve a PBSMT system.

Sixth, iteratively performing word alignment and chunlgalnent will improve both
alignments. By using chunk boundary constraints in worchatignt, word alignment qual-
ity will improve and by using improved word alignment, chuadignment will improve.

Finally, by using chunks as basic translation units with lile¢p of a lexical model
and by giving more credit to high-accuracy chunk transtegjave can surpass the lexical
model in translation quality.



Chapter 2

The CMU EBMT System

2.1 The CMU EBMT system in a nutshell

Because our intent is improving the CMU EBMT system, this chaggscribes the CMU
EBMT system at the time we began our thesis work. Later chapt#irdescribe changes
to the system, as they were made within the experiment.

Figure 2.1 shows a diagram of the CMU EBMT system. The systerteis@al EBMT
system, meaning that it calculates similarity on the s@rfimem of texts (Brown, 1996,
2004). In other words, given an input sentence to be traetslahe system finds similar
sentences in the surface form. In the system, the similaaltyulation was implemented
by finding contiguous source word matches in a stored exadgtbase. For each match
in a sentence pair, the system finds its translation phrasg asvord-to-word correspon-
dence table, in which all the word-to-word mappings havenatyi correspondence value
indicating whether they are translations or not. In the oéshis chapter, we describe the
detailed role of each component in Figure 2.1 in training rmd(translation) time.
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Training Time

Parallel
Text

Run Time

Figure 2.1: The CMU EBMT system

2.1.1 Training

During training time, the system transforms the data forcieffit matches and builds a

dictionary and correspondence tables to be used in traoslat

Pre-processing:The input for the training stage is a parallel corpus which isst
of translation sentence pairs. Once the system is givenalg@lacorpus, it performs pre-
processing on both language sides of the data.

e ThePunctuation Splittesplits punctuation marks from words. It can take abbrevia-

tions as input for each language and leave them unchanged.

e TheRegularizetransforms the form of words. For example,
transformed into “am” after detaching it from “I,” so thatfi” can be matched for

an input “l am”.

10

m” in “I'm” careb



e The Morphological Analyzemay be used for a morphologically rich language for
better word match and higher word occurrences.

e The Spell Correctorcan be used to correct misspelled words (if applicable) as de
scribed by Hogan (1998).

e The Tokenizerdecides whether a series of tokens should be split. For eeartp
will attach “AT”, “&” and “T” to have “"AT&T” as a unit.

Dictionary Building: Next, adictionary buildercollects co-occurrence statistics for
source and target word pairs. Using a pre-specified thrdgbothe co-occurrence statis-
tics, it selects co-occurring word pairs and adds them irdticionary.

Correspondence Table Building:The system then builds@rrespondence tabler
each sentence pair in which every source and target wordhpsia binary relationship. If
a pair is found in the dictionary built in the previous std@ssigns a binary value “1” to
the pair to indicate that they correspond to each other iséiméence pair as translations.
Otherwise, the pair is given “0”. Depending on the similaf the language pair, the
system may apply pruning to remove out lier correspondé&misexample, in a Spanish-
English translation sentence pair, an acceptable targed vamge of a source word is
determined by finding the earliest and latest word posit@fiite first best and the third
best target words and expanding thembynormally, 2) words on both the left and right
to allow for word-order variations (Brown, 199%)

Corpus Indexing: The system assigns each sentence pair a unique ID (seduentia
tegers were chosen for efficient retrieval), which is themest.

Word Indexing: As mentioned earlier, the system can find contiguous souatehras
of previously unspecified lengths. To support this functibbuilds an index database on
the training set so that given an input sentence to be tri@asld finds training sentence
pairs whose source side includes a fragment of the inputBlUinews-Wheeler Transform
(BWT) is used to support efficient lookups in a scalable sys@rown, 2004).

'Note that our dictionary was automatically built based orocourrence statistics and may have noisy
translations, which consequently lead to noisy correspnoel.
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2.1.2 Translation

During translation time, the system uses the data prepaneaigdthe training time.

Pre-processing:When an input sentence for translation arrives, the systeforpes
the same pre-processing as it did for the source side ofdirertg set.

Matcher: After the input is pre-processed, tMatcherfinds the longest match from
each source word position and its sub strings starting \wetsaame position. For example
if the Matcherfound “word1 word2 word3”, it also finds “word1 word2” and “wail”

Because some n-grams (including unigrams) appear very,dfiensystem can set
a limit on the number sentences to include matches. For deaitine English word “|”
appears so frequently that it does not make good sense ieveéll the “I’s throughout
the entire corpus. Instead, the system will use a subseteoéritire matched sentences
using a specified limit on the number of matched sentefdéshis limit is too large, the
speed of the system will decrease. However if the limit isgow@ll, the system will only
find a small number of translation candidates from the netdesentence pairs.

Aligner: For a source match, the system asksAligner to find its translation. The
input to theAligner consists of the matched source phrase, a sentence pain¢hates the
matched source phrase on the source side, and the correspentible of the sentence
pair. First, theAlignerfinds the shortest and longest contiguous target phrasesthade
the correspondent target words from all the matched soumnaesp words. Next, for each
substring of the longest contiguous target phrase thatiatdodes the shortest one, it
calculates an alignment score based on heuristic functiinglly, it returns the single
target substring that has the highest alignment score asetbtetranslation of the source
match.

The system puts bes{ target translation of each source match in a lattice with the
alignment score, wher® is a configurable parameter for the maximum number of trans-
lations for each source match.

Decoder:Finally, the system invokes tHgecoderto find the best possible translation

2In the experiments performed in this thesis, we set the lior#,000.
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hypothesis. Th®ecoderuses a beam and can control the size of the beam with a specified
beam size and hypothesis score ratio from the best hypstbesie.

The hypothesis score is calculated from the alignment smotdeother EBMT feature
scores. The EBMT feature scores combined during decodigdec

e Language Model Scoreis the probability of the hypothesis sentence calculated
using a language model

e Arc Weight combines engine-specific weights for each engine that ibom#s an
identical source/target pair to the lattice plus a bonusrfoltiple engines contribut-
ing the same pair.

e Scoreis the engine’s score for the quality of the translation ,paiy if multiple
identical arcs were merged, the average of the scores.

e \erbosity Penalty sets the strength of the penalty for having output that gdram
the expected length.

e Reorder Penaltyis the amount used to scale the total number of re-orderiags p
formed on a path through the lattice.

These are combined using the linear interpolation methbd.ekperiments encompassed
by this thesis were conducted using only the features alddtreough other features exist,
they were disabled for the experiments in this thesis.

2.1.3 Difference from Phrase-Based Statistical Machine Translation
systems

Like our lexical EBMT system, a typical Phrase-Based SMT (PB$B)stem such as
Moses (Koehn et al., 2007), also finds contiguous partialcgomatches and their trans-
lations in the pre-built phrase translation table durirggning time. The difference is that
PBSMTs build a phrase translation table during the trainingetand use that to find
source phrase matches and their translations. Thus givarpahsentence, they cannot
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find translations for an arbitrary source match. Their seunatches are restricted to the
source phrases in the pre-built table.

However the CMU EBMT builds a dynamic phrase table per sentdodag transla-
tion time. This means that it asks the phrasal aligner to fiadslation candidates of an
arbitrary source match during the translation time. In #spect it is very similar to the
CMU SMT system that uses PESA (Mogel, 2005) phrasal alignengdranslation time.
PESA was developed concurrently with SPA.

2.1.4 The problems with the current system

In Figure 2.1, we see room for improvement in the correspocel@éable and the aligner
(highlighted in Figure 2.2).

In considering improvements to the correspondence tablgoodl alignments for a
sentence pair, we recognized that the current correspordable is limited by aligning
words only using only a dictionary and heuristic-based pprgnit also uses binary values
even though word translation probabilities can betterag@nt the strength of relationship
between a source word and a target word.

The aligner uses only heuristic-based functions to caleutze alignment score. Ex-
amples of the heuristic-based functions include the nurab#re relationship “1” in the
correspondence table, the target phrase length discngfranc the expected target length
calculated using the source phrase length and the sourceuayed sentence length ratio,
the ratio of the source phrase length in the source sentetwe,

14



Figure 2.2: Components of the CMU EBMT system to be improved.
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Chapter 3
Symmetric Probabilistic Alignment

In this chapter, we describe our basic Symmetric Probdbikdignment (SPA) algorithm
and the restrictions we applied to it for improvement.

We performed evaluations to measure phrasal alignmentawcand translation qual-
ity. For alignment accuracy evaluation experiments, weaiioled a small hand-aligned
corpus for English-Chinese and French-English pairs. Forstation, we drew a small
amount of data from French-English Canadian Hansards capdsannotated it with
phrasal alignments using SPA. The annotated corpus wasgsettaining set from which
the EBMT system found partial matches and their alignmenmtsfut sentences.

3.1 Related work

There has been much work in the field of word alignment bec#issuch an important
task in corpus-based machine translation. Many methodsalgodthms have been devel-
oped by various machine translation groups. Some usedstietbiased methods, others,
pure statistical approaches, and still others, lingulgtiowledge in alignment.

Smadja et al. (1996) and Melamed (2000) have used similanitgtions between two
languages. Variants of the Dice coefficient, Dice (1945yeHeequently been used to cal-
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culate similarity by obtaining a matrix that includes asabon scores between each pair
of a source word and a target word at different positions &mhesentence pair. Melamed
(1997) applied a constraint on this score to overcome intlassociations so as to avoid
the association between two words that appear togetherfrezgyently but do not have a

translation relationship.

At the IBM T.J.Watson Research Center in the early 1990s, Browah €1993) devel-
oped several alignment models for use with the EM algorithiich are now commonly
called IBM model 1, 2, 3, 4, and 5 and intended to provide ingiredy more accurate
models of the translation process. In their noisy channelehdhe translation model can
be written as a combination of alignment probability andi$tation probability:

Pr(fle) = ZPr(f,a|e) (3.1)
= ZPr(m\e)HPr(fj,aﬂa{*l, 1= m,e) (3.2)

= ZPr(m\e) HPr(aj|a{_1, =t m,e)Pr(f;ld), £ m,e) (3.3)
a j=1

for an English stringg = ¢} = ejey...¢;, @ French strind = f* = f, fs...f,, and their
alignmenta = a7 = a,a5...a,, *.

Model 1 assumes that for a source word position, all conoestio target word posi-
tions are equally likely (i.e., all the possible alignmeatts equally likely). The alignment
probability is

[ Pralal™, #~" m,e) = (1+ 1) (3.4)
j=1
In Model 2, they have a more realistic assumption that théadvdity of a connection

between a source position and a target position dependsegpositions it connects and
on the lengths of the two strings(i.e., a source string aadtiresponding target string in

1English and French were the original target and source kgegiin IBM’s Candide project, but "e”
and "f" are now commonly used in SMT regardless of the actaadjlages. In this thesis, we use the same
notations for source and target languages.
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a parallel corpus) The connection between positions is kreswdistortion. The alignment
probability in Model 2 is
d(ajlja m, l) (35)

In Model 3, Brown and his colleagues introduce the conceptarfiviertility. First they
choose the number of French words that are connected to dislEngrd and then follow
the procedure for Model 2. Because they choose the numbeeatkwords associated
with a given English word, the direction of the distortion debis reversed this time:

d(jli,m,1) (3.6)

Model 4 is designed to model the fact that an English striraften translated into French
as a unit. They define theenterof an English cept to be the ceiling of the average value of
the positions in the French string of the words. Model 5 iyvauch like Model 4 except
that it is not deficient. A deficient model can choose the samyet position repeatedly for
the target words given different source words and couldlr@stioo many empty target
positions. In these models, accurate parameter estimatibe key point for improving the
performance of the models and they used EM algorithms tmagti parameters. Because
EM algorithms converge to local maxima, they use the pressinodel’'s parameters as the
initial parameter values to achieve better performance.

Vogel et al. (1996) have used Hidden Markov Model (HMM) ingainent to take
into account that the previous French word’s alignmentriatstthe next French word’s
alignment position. They assume that there is a first-ordpeddence for the alignments
and that the lexicon probability depends only on the wordgiven position.

Pr(fja aj|a]i_1a f_la m, e) = p(fj7 aj|aj—1a e) (37)
= p(aj’aj—l)p(fj|€aj) (3.8)
Yamada and Knight (2002) use syntactic parse trees on thissEmsgde and plain text
on the French side. To model this pair, they use three opesateordering insertionof

French words, anttanslation of English words. They raise the prospect of training an
SMT system using syntactic information for both languages.

Many algorithms have been designed to go beyond word-tatwurdels as well.
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Wu (1997) studied inversion transduction grammar formalfer a parallel corpus.
The goal is to generate a pair of strings in two languageslsameously using a bilingual
probabilistic context-free grammar. This naturally agrot only words but also phrases.
Sub trees in a parse tree are word/phrase alignments foetherse pair.

Marcu and Wong (2002) studied a phrase-based joint prataimbdel that generates
and orders phrases in both languages employing a numbenoépts. Their model can
be described by formula

71
pef)= S TLe@n T x []dwos(F5).posen(@))  (39)
CeC|L(ef,C) c;eC k=1
whereL(e, f, C') means that a sentence pa&ndf are obtained by permuting the phrases
<, and 71 that characterize all concepts € C, pos(?f) denotes the position dfth
word in the phrase?i andposcm(?i) denotes the position of the center of the phrase
¢ . They show a significantly better score than IBM Model 4, whigkvord-based, but
their training forn-gram phrases translation table is computationally inatale for even
moderate values of due to its size.

To overcome the problems of word-to-word alignment, annafignt template by Och
and Hey (2004) and phrase extraction by Koehn (2004a) weriest. They note that
word-to-word alignment is limited by each French word beatigned to only one English
word in the IBM models. Therefore they train IBM Model 4 fét(e|f) and P(f|e) and
take the intersection of the two alignments to get a higltipien alignment as a starting
point. They then explore the union of the alignments and eatplae intersection by adding
an alignment point that aligns a word which currently has lgmanent. After building a
matrix of alignments, they extract consistent phrase pairs

Vogel (2005) and Zhao and Vogel (2005) treat phrasal aligrirag a sentence splitting
problem. Using a lexicon, they locate a target phrase wheedexicon probability is
optimal. Then they extend it to use a fertility model to betstimate the target phrase
length.

A hierarchical phrasal alignment was studied by Chiang (2@0f Chiang et al.
(2005). He and his colleagues train a synchronous contegtdgrammar from a word-
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aligned bilingual corpus to learn global reordering.

Simard et al. (2005) built a phrase-based statistical kaine model based on non-
contiguous phrases to better take into account additiamgiistic phenomena that con-
tiguous phrase-based model cannot capture. To produce-eambiguous phrase pair li-
brary, they tested two strategies: combining contiguouwiag#pairs occurring in the same
sentence, which were found by tRefined Methodescribed in Och and Ney (2003) and
combining cepts found by a matrix factorization in Gouttale(2004).

A very different tack was taken by Veale and Way (1997) in @ejin Example-
Based Machine Translation system and its successors. Tlseyitfid constituent-based
chunks mono-lingually and then attempt to match corresipgnchunks between the two
languages. Chunk boundaries are found by applying Greenkeéviadlypothesis (Green,
1979) using hand-written sets of marker words such as detersiand prepositions.

Our own previous work on alignment, Symmetric Probabdigtignment (SPA) Kim
et al. (2005), found phrase-to-phrase mappings by boptsitrg word-to-word translation
probabilities to determine the target-language phradetivé best bidirectional alignment
score for an arbitrary source-language phrase. It can fiadgett phrase for an arbitrary
source phrase. The algorithm is described in Section 3.Ziaild As previously men-
tioned, alignment is fundamental to data-driven machiaadgiation approaches. In this
chapter, we describe our sub-sentential alignment methatdfinds target fragments for
an arbitrary source match in our EBMT system.

3.2 Algorithm

3.2.1 Basic algorithm

In sub-sentential alignment, mappings are produced betwewds or phrases in the
source language sentence and those words or phrases ingbelaaguage sentence that
best express their meaning.

An alignment algorithm takes as input a bilingual corpussistimg of corresponding
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sentence pairs and strives to find the best possible alignméme second for selected n-
grams (sequences of n words) in the first language. The atigtsrare determined based
on a number of factors, including a bilingual dictionarydfarably a probabilistic one),
the position of the words, punctuation, invariants (suchwasbers), and so forth.

For our baseline algorithm, we make the following simplilyiassumptions, each of
which we then relax:

1. A fixed bilingual probabilistic dictionary is available.

2. Contiguous fragments (word sequences) of source langaapare translated into
contiguous fragments in the target language text.

3. Fragments are translated independently of surroundintggt.

Our baseline algorithm is based on maximizing the prohigtolfi bi-directional trans-
lations of individual words between a selected n-gram insthverce language and every
possible n-gram in the corresponding paired target langisagtence. The reason why we
use the probability of bi-directional translations is tie are more convinced when both
side’s fragments agree that the other sides’ fragmentdarettanslations. For example,
given a source fragmerﬁ;j, assume that the two target fragmesdtsande® are equally
probable ’best’ translations ¢f . If we consider opposite directional translations and find
thatel’s the most probable translation f& ande?’s the most probable translation f§

(i # porj# q), we will choosee!, as the translation of/.

No positional preference nor length preservation assumgtare made. That is, an n-
gram may translate to an m-gram, for any values of n or m badibhgéhe source and target
sentence lengths, respectively. Finally, we introduce allgnositive "smoothing valuet
to avoid singularities (i.e. avoiding zero-probabilities unknown words or words never
before translated in a way consistent with the dictionary).

Suppose that we are given a pair of aligned senteRoaflslength X andE of length
L where a source sentenEds

F=/fi,.. firt, o Jivk, o JK (3.10)
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and the corresponding target language sentéhise
E:61,...7€j+1,...,6j+l,...7€L (311)

and calculating the translation probabilities between lacm)fragmentﬁjf and target
fragments in{e/ ! }.

Then the fragment we try to obtain is the target fragment e. with the highest
probability of all possible fragments & to be a mutual translation with the given source

fragment, or

e = argmaxScoree (3.12)
= argmax(p(fiif < 1)) (3.13)

- argma)é(p(fi—i-lv 3 fi+k‘ & Cit1y -y €j+l)) (314)

k
—argmax(([ ] max(maxp(e;s| fisp), ) (3.15)
p=1 ~
l
x ([T max(max p(firplesiq).)1) (3.16)

q=1
Here and in the following sections for algorithm descriptiove uses = egﬂl for the target
candidate fragment.

In the above equation, (3.15) shows the unidirectionalescatculation from source
to target, and (3.16) shows the unidirectional score catmi from target to source. So,
(3.15) and (3.16) together calculate the symmetric prdiséibialignment score.

In this algorithm, given a source phrase, we chéé@ fragments wherd. is the
target language length because we will chéd¢word-long fragmentd, — 1 2-word-long
fragments, and so on.

3.2.2 Untranslated word penalty

In our basic algorithm, we calculated a symmetric probstidialignment score but did not
count how many words in the counterpart fragment are actaatkations for the given

23



fragment words. Instead we prefer an alignment that has excixeal translations in the
counterpart fragment. For example, for a given source feagih= jj{“ = fix1y oo, firn
and a given candidate target fragment- e/t = e;.1, ..., ;4 if all source words irf
are translated into a single target worckirand if all target words i are translated into
a single source word ify, this alignment is not desirable and should be penalized.

translations) A
|fragment|

So we will penalize the alignment score according to theorafi #(
modified formula would be

Score, = P(f’ifﬁegfl) (3.17)

)

= P(fi-l—la "'7.fi+k < €541, "'7€j+l)

= ([T max(maxplesiqlfirn). 0)F x (Re)®

.

p=1
l
k 1 o
x ([ [ masx(mbix p( fiplejq), €))% (Re)
g=1 P

_ # of actual translation words in the fragment p :
WhereRp " 4 of potential translation words in the fragment p’ ando Z L. Inthis fOfmUla, when

Ry is less than 1, it reducescore, and, as a result, penalizes the score. In the previous
example R, = % and it obviously reduceScore, whenl > 1.

3.2.3 Length penalty

The ratio of target fragment{gram) lengths and source fragmemtgram) lengths should
be comparable to the length ratio of the target sentenceandessentence lengths, though
certainly variation is possible. Therefore, we generatersafiy function to the alignment
probability that increases with the discrepancy betweerraktios as:/m is compared to
the target/source sentence length r%lo

If the length of the source language fragmentjshe length of a target language
fragment under considerationl/ighe dynamic sentence length ratiof—(isgiven the source
language sentendé and its corresponding target language sentdii@e Section 3.2.1,
the expected target fragment length is then given by & x % Further defining an
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allowable length differencé D4, OUr implementation calculates the length penalty
LP as follows:

L
LDallowed - LDconstant X |E’ (318)
average
=1,
LP =min((————)", 1 3.19
<< LDallowed) ) ( )

where|E|,....,c Meanghe average target sentence length in the training corpus

We wanted to ignore target candidate fragments that hagerldifferences thah D ,;;,.cq
and to give an increasingly larger penalty to the,;;,...q-Satisfying target candidate frag-
ments as they have larger differences. For equation (3H®Yth power was the one that
gave us the best experimental results among the powers ftbno@gh 6.

The score for a fragment including the penalty function enth
Scoreg <— Scoree X (1 — LP) (3.20)

Note that, as intended, the score is forced to 0 when theheﬂij;ﬂarencdl—ﬂ > LD giowed

3.2.4 Distance penalty

Closely related languages, such as French and English,ddrav& more similar word or-
der than more distantly-related languages such as KorahRmglish. In the former case,
this results in greater phrase order similarity and, consetly, similar phrase positions.

In such a close language pair, we introduce a distance péirtalincreasingly penalize
the alignment score of any candidate target fragment asvemaway from the expected
position range. Our distance penalty follows the same &aiom method as in section
3.2.3. First, we calculate the expected celtef the candidate target fragment using the

20ur distance penalty is conceptually different from thetattion penalty in SMT systems because
it assumes that a target fragment in a target sentence sheuitd a position proportional to the source

fragment position in the source sentence. The distortioipein SMT systems is defined by a probability
that a source position and a target position are connected.

25



center of the source fragmefit and the dynamic sentence length r%io

A L
C =Ct x 174 (3.21)
Then we calculatéd D,,;;....q4, the dynamic allowed distance difference of the center
- - - . - L
using a constant limit valu® D..,,....; and the dynamic sentence length rq%?—ag

where|E|,..q4 iS the average target sentence length in the training corpus

L

DDallowed = DDconstant X (322)
|E|ave7"age
Given DD .44, We calculate the distance penaliy® as follows:
. |Ce B CA1| 4
DP =min((—)", 1 3.23
(( DDallowed ( )

where(, is the actual center of the target fragmeritteing processed.

As we did in Section 3.2.3, we want to ignore target candiftaigments which have
larger differences thaw D ;... and to give larger penalties to theD,,;;....q-Satisfying
target candidate fragments as their differences incrdaseequation (3.23), as in the
length penalty calculation, the 4th power was the one the¢ g& the best experimen-
tal results among the powers from 2 through 6.

The score for a fragment including the penalty function enth
Scoree < Scoree X (1 — DP) (3.24)

Note that, as intended, the score is forced to 0 when theHedi§ference|C, — C| >
DDallowed .

It may in fact be possible to usefully apply the distance fgra language pairs in
which the language pairs have a very dissimilar word orderiged we can determine or
estimate a positional mapping between the sentences imr,aapdithen use the distance
with respect to this mapping.
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3.2.5 Anchor context

If the words adjacent to the source fragment and the caredidaget fragment are trans-
lations of each other, we expect that this alignment is mitkedyl to be correct because
adjacent source words are usually aligned to adjacentttargiels and, in this case, an
alignment of adjacent words adds supporting evidence taligament we are consid-
ering. We combineScore, with the anchor context alignment scafe.chorScore. by a
linear weighted combination in log space,

AnchorScoree = (P(f; < €j) (3.25)
XP(fithr1 < €j1141)
X P(fi <> ejy141))
X P(fipher <> €)1
Scoree + (Scoree)* x (AnchorScoree)* ™ (3.26)
Empirically, we found this combination gives the best sagnen\ = 0.8 for both French-

English and English-Chinese and it gives a better result than

Scoreg < A X Scoree + (1 — X) x AnchorScoree (3.27)

3.3 Evaluation

3.3.1 Alignment evaluation

Data We tested our alignment method on a set of French-Englisieseas taken from
the Canadian Hansard corpus and on a set of English-Chingsasestaken from Xinhua
news agency. French and English are chosen as an easy @aisbebey have very similar
word order while English and Chinese are chosen as a diffiatibgcause the word order
difference and the sentence length difference are the namigrd.

For French-English, we had 91 human word-aligned senteaicg, pnd from that, we
generated 12466 3-8 words long contiguous source fragments
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For English-Chinese, we had 3 sets of 366 human aligned seEnpairs with the same
data but are aligned by different people (The sets are nam&lakd C). In addition to
the three sets, we had 20 more human aligned sentence pgirscaby another person.
So, for the alignment evaluation, we picked one of the thete sA was picked in this
experiment - and added it to the other 20 sentences to make lauB8an aligned sentence
pair set and 27,286 3-8 words long source fragments. And\eteaused the 3 sets to see
how reliable human alignments are by evaluating each satstghe other two.

For these experiments, we pre-processed the data. We seghtbe Chinese data
into words, and expanded the contractions in the French agtidb data. We separated
the punctuation in the data in all three languages. For Chisegmentation, we used
IrSegmentor by Zhang.

Evaluation metric For the human-aligned data, we compared the results of gor al
rithm to the human alignments. Although the latter may nopédect and are sometimes
non-unique, they provide the only answer key availabledpeatable tests. As metrics, we
useprecision recall and F; (the harmonic mean of precision and recall). Sipgecision
andrecall cannot be used alone to measure the performance of the @&igmethods, we
useF; values to measure the performance and to compare the aligmnethods. In other
words, we usé; to measure the performance in both terms of lpétisionandrecall.

We calculate precision, recall ard based on answer position overlaps. Let us sup-
pose that the position sequence of our (machine) answen&agisp, p-, ..., p and the
position sequence of the correct answer (human) fragmeni;isip-, ..., hp;. Note that
the correct (human) answer fragment may be non-contigintishe combination of SPA
and EBMT to date is only capable of using the bamttiguoudargetm-gram alignment
it can find. Given that = count(p0;) andp0; is p;, which is not aligned in the human
answer, we compute the recalland precisionP as follows:

n_ thi}lﬂ {p;} (3.28)
p_ |{hp;}TO{Pj}| (3.29)

To obtain an average alignment score for evaluation, we
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e generated all the possible source language sentence fnégtaagths 3 through 8
from the human-aligned data

¢ aligned those fragments by means of our algorithm; and

e calculated the metrics given above by comparison with thednsaligned answers.

Baselines To better understand the alignment results we obtain fovendanguage pair
(and corpus), we introduce the following as baselines:daan result,” “positional result,”
and “oracle result.”

The “random result” is a randomly chosen target fragmemgfamdiess of the source
fragment, constrained to be of a length corresponding tsthkece fragment normalized
by the length ratio of the source and target sentences.

The “positional result” is a target fragment whose positiothe target language most
closely matches the position of the source fragment. Weulak the target fragment’s
start and end positions using the source fragment’s stdread positions as well as the
length ratio of the source sentence and target sentengasiticular, if the source sentence
is of lengthn and the target sentence of lengthwe expect source positiario correspond
to target positiory wherej ~ i x ™.

The “oracle result” is the best contiguous target fragmeitaeted from the human
alignments. To get the oracle result, we first get human alants for the sentence pairs
that will be used to evaluate our algorithm. Then we choosefithgment that has the
largest harmonic mean value among human alignment frageerd whole fragment.
Notice that the human alignment may not be contiguous, thex€'oracle alignment”
represents the best that our algorithm could possibly parfo

Comparison with the state-of-the-art alignment We also included the IBM Model 4
(“IBM4”) alignment accuracy to evaluate the status of SPA pamed to the state-of-the-

3In this experiment, we focused on the performance of systenmatches longer than 2 because shorter
ones can be covered by the EBMT dictionary.
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art model*.

Finally we combine the results of SPA and IBM4. We set a thriesboore for SPA
and combined SPA and IBM4 results by substituting IBM4 reswith SPA results that
have higher alignment score than the threshold(“COMBHor the significance test, we
separated the French-English human aligned data into B0seé#t of 9 sentences and the
English-Chinese human aligned data into 10 data sets of 3@rsmss and performed a
paired t-test on F1 scores.

3.3.2 EBMT performance

Since our goal is to develop a new alignment method to impilee€MU EBMT system’s
performance, we evaluated the performance of the CMU EBMTesystsing SPA, IBM
Model 4, and the original internal aligner of the system.

Data For our EBMT experiments we used a subset of the IBM Hansardus@yailable
from the Linguistic Data Consortium. This corpus is dividatbifiles of 10,000 sentence
pairs (with an occasional garbled or missing line which vweamaved prior to our use), of
which we used only files 000 through 099.

The training data consisted of the first 20,000 sentencs pdites 000 and 001 — for
EBMT and the first 700,000 English sentences for the languagkemThe development
test (“Dev”) set used for parameter tuning consisted of ttst 00 sentences of file 040
and the evaluation test (“Unseen2”) set consisted of temeats of 100 sentences drawn
from files 060 and 080. Segmenting the evaluation test sdtisnnbanner allowed us to
perform Student’s t-test as a statistical significance fasdther test (“Unseenl”) set con-
sists of 100 source sentences and 200 reference senteoses Whether the performance
is consistent we asked a person to make another refererfoe get 100 source sentences
such that each source sentence has two reference sent€heesriginal 100 sentence
pairs are mostly drawn from file 060.

“We used GIZA++ Och and Ney (2000) for IBM Model 4 alignment.
The score threshold was found empirically by measuring Fthermand aligned set.
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Evaluation methodology To minimize the initial investment of effort for the EBMT
evaluation, we performed a partial exploitation of the SRA EBMT modules rather than
fully incorporating SPA into the EBMT engirfe In this partial integration, SPA is used
to annotate the training corpus with alignments (both pdrasd word-to-word), and the
annotations in the corpus override the EBMT engine’s inteatigner. Phrasal alignments
are stored as-is, and whenever a partial match against thbex@ exactly equal to the
source half of such an alignment, the target half is outpuhascandidate translation.
The word-to-word alignments are used to build a correspoceltable (overriding the one
which would have been built in the absence of alignment atiwots) and that table is
consulted as usual to perform alignments of matches fortwtfiere is no phrasal align-
ment from SPA available.

This yields the following training regimens for the alignmenethods. To test the old
algorithm, we

1. built an EBMT dictionary from the corpus; and

2. indexed the training text using that dictionary.
To test performance with IBM Model 4 alignments, we

1. trained GIZA++ Och and Ney (2000) on the training text;

2. annotated the training corpus with phrasal alignmergrin&tion using Model 4;
and

3. indexed the annotated corpus.
To test performance with SPA, we

1. used GIZA++ to build a dictionary from the training text;

2. ran the SPA aligner on the training text using that diamgnand

5They are fully integrated in Chapter 4
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3. indexed the phrasal alignment annotated corpus geddratSPA.

The differently-trained translation systems are then exaluated on the test set using the
BLEU (Papineni et al., 2002) which is the most widely used mattic evaluation metric.

3.4 Results and analysis

3.4.1 Alignment evaluation

Test/Answer| Recall | Prec. F Len(Test)/Len(Answer
A/B 0.8588| 0.9809| 0.9158 0.8755
AIC 0.7427| 0.9829| 0.8461 0.7556
B/A 0.8968| 0.9765| 0.9350 0.9184
B/C 0.7834| 0.9877| 0.8737 0.7931
C/IA 0.9590| 0.9508| 0.9549 1.0086
C/B 0.9686| 0.9615| 0.9650 1.0074

Table 3.1: Human answer evaluation

As we already mentioned, given a set of parallel sentencesah alignments are not
unique. This problem is related to how accurate our evalnatresults are. To roughly
estimate their accuracy, we used our evaluation metricvdtuate the human answers
by regarding them as machine answers and the machine anasvbrtsnan answers for
the same data set. Table 3.1 shows the human answer evalvegigdts. In these tests,
Fy varies from 0.8461 to 0.9650. This may give us a rough ideatalvbat score we can
aim to achieve. Of course, approaching those values does@an that the automated
aligners are as good as human ones because the errors bydiratad aligners might be
linguistically serious while human errors are not. It albowss the average target phrase
length ratio for the same source phrases in the columieafTest)/Len(Answer) .

’In English/Chinese hand aligned corpus, A, B and C have akiit, 28% and 3% of unaligned target
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Key Description

random Random results

positional Results in proportional positions

oracle The best possible contiguous results from human answer
SPA-single SPA - unidirectional alignment (source to target)
SPA-basic SPA - basic bi-directional alignment

SPA-anchor SPA - basic + anchor bonus

SPA-len SPA - basic + length penalty

SPA-dist SPA - basic + distance penalty

SPA«x;-15.. x, can be substituted with a,l,d and u.

a: anchor bonus,

I: length penalty,

d: distance penalty,

u: untranslated word penalty

IBM4-cont IBM4 - considers the words between the smallest
and the largest as the contiguous answer
IBM4-cont-oracle| IBM4 - the best possible contiguous results

IBM4 IBM4 - non-contiguous results

COMB combined results of the best SPA and IBM4

Table 3.2: Key to the following alignment evaluation tables

For comparing the alignment accuracy, we chose the poaltadignment as the base
line — as this is the best we can do without any informationualtiee words at all — and
the oracle alignment as the goal. Tables 3.3 through 3.6 shewracle result obtained
by each alignment method.

Table 3.3 and Table 3.5 show the best performance by eacdteakond Table 3.4 and
Table 3.6 show the possibility of improvement for SPA alignén Table 3.4 and Table 3.6,

words respectively. And in French-English hand alignedousr there are about 5% of unaligned target
words.
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Aligner Recall | Prec. Fy Len(M)/Len(H)
random 0.3220| 0.3722| 0.3453 0.8651
positional 0.5823| 0.5762| 0.5792 1.0105
oracle 0.9056| 0.8614| 0.8830 1.0513
SPA-single 0.9426| 0.3560| 0.5168 2.6480
SPA-basic 0.8699| 0.4739| 0.6135 1.8357
SPA-anchor 0.7924| 0.4722| 0.5918 1.6780
SPA-len(7) 0.7867| 0.6104| 0.6874 1.2889
SPA-dist(10) 0.8779| 0.4673| 0.6100 1.8784
SPA-I-u 0.7335| 0.6939| 0.7131 1.0571
SPA-a-| 0.7146| 0.5694| 0.6338 1.2551
SPA-a-d 0.7981| 0.4720| 0.5932 1.6910
SPA-I-d 0.7881| 0.6036| 0.6836 1.3058
SPA-I-d-u 0.7350| 0.6841| 0.7086 1.0744
SPA-a-I-d 0.7183| 0.5687| 0.6348 1.2632
SPA-a-I-d-u 0.7034| 0.5985| 0.6467 1.1754
IBM4-cont 0.8167| 0.6043| 0.6946 1.3516
IBM4-cont-oracle| 0.7271| 0.7003| 0.7134 1.0383
IBM4 0.7390| 0.8075| 0.7717 0.9152
COMB 0.7563| 0.8042| 0.7795 0.9405

Table 3.3: English-Chinese: Best alignment results evalnati
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we reported the best of the top 10 results of the SPA. This stmw closely we pulled
the best results toward the top.

Of note, the experiments support the hypothesis that a synenmeethod performs
better than a unidirectional method: SPA-basic outperéal®PA-single in both Table 3.3
and Table 3.5. Note that the recall of SPA-single is the hegihecause there is not a
length restriction on the target phrases. According to trenfila of SPA-single, all the
target phrases that include all the maximum probabilitydvoanslations have the same




Aligner Recall | Prec. F Len(M)/Len(H)
SPA-single | 0.9865| 0.4739| 0.6402 2.0817
SPA-basic | 0.9405| 0.6201| 0.7474 1.5167
SPA-anchor | 0.8980| 0.6747| 0.7705 1.3310
SPA-len(7) | 0.8889| 0.7645| 0.8220 1.1627
SPA-dist(10)| 0.9473| 0.6111| 0.7429 1.5501

SPA-I-u 0.8767| 0.8112| 0.8426 1.0807
SPA-a-| 0.8621| 0.7723| 0.8147 1.1162
SPA-a-d 0.9036| 0.6692| 0.7687 1.3502
SPA-I-d 0.8889| 0.7557| 0.8169 1.1763

SPA-a-I-d 0.8614| 0.7677| 0.8119 1.1221
SPA-a-I-d-u | 0.8579| 0.7805| 0.8174 1.0992
COMB 0.7639| 0.8180| 0.7900 0.9338

Table 3.4: English-Chinese: Top 10 alignment results evalna

alignment score.

Table 3.3 and Table 3.4 show the performance of SPA on En@lishese data. Here
we observe that only two of the penalties (length and unka#ed words) helped individ-
ually, and the highest overall score was obtained when ttvasare applied together. Be-
cause English and Chinese sentence structures are vemediffdistance penalty which
assumes the same word orders did not help. However, thehl@egialty worked as ex-
pected because it is rare that a target phrase is much longerah shorter than its source
phrase even in a distant language pair. In this languaggtpaiuntranslated word penalty
also helped throwing out irrelevant words from the targetphs. But the anchor context
did not help as expected. It is possible that 1-to-1 wordesgondence is low for this
language pair and automatically learned word translatiobability is not very discrimi-
native, which consequently leads to less discriminativehancontext score

8Fossum et al. (2008) reported that noisy alignments are riiegrient between function words in
Chinese-English pair.
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Aligner Recall | Prec. Fy Len(M)/Len(H)
random 0.1939| 0.2384| 0.2139 0.8136
positional 0.6688| 0.7290| 0.6976 0.9175
oracle 0.9805| 0.9377| 0.9586 1.0456
SPA-single 0.8810| 0.2817| 0.4269 3.1276
SPA-basic 0.7078| 0.7121| 0.7099 0.9940
SPA-anchor 0.7798| 0.6722| 0.7220 1.1602
SPA-len(4) 0.6994| 0.7482| 0.7230 0.9348
SPA-dist(4) 0.7707| 0.7290| 0.7493 1.0572
SPA-a-I 0.7522| 0.7750| 0.7634 0.9705
SPA-a-d 0.8106| 0.7096| 0.7567 1.1423
SPA-I-d 0.7521| 0.7888| 0.7700 0.9535
SPA-a-I-d 0.7831| 0.7995| 0.7912 0.9795
SPA-a-I-d-u 0.7815| 0.8014| 0.7913 0.9751
IBM4-cont 0.8528| 0.8293| 0.8409 1.0282
IBM4-cont-oracle| 0.8132| 0.9146| 0.8609 0.8891
IBM4 0.7771| 0.9656| 0.8611 0.8048
COMB 0.7817| 0.9607| 0.8620 0.8137

Table 3.5: French-English: Best alignment results evajnati

In Table 3.3, both IBM4 aligners and SPA aligners outperfatrie baseline signifi-
cantly. We evaluated the IBM4 results in three ways: regarthie whole part between the
smallest and the largest positions as a contiguous ansaggnént ("IBM4-cont”), regard-
ing its best possible contiguous fragment as a contiguosswemfragment ("IBM4-cont-
oracle”) and considering it as it is ("IBM4”). Overall the IBM diel 4 aligner showed
the best performance and SPA-I-u approached to IBM4-catter This means, for the
contiguous alignment, IBM4-cont-oracle and SPA-I-u haveadt the same performance.
The best SPA in Table 3.4 is better than IBM4 in Table 3.3 whigans that it is possible
to improve SPA and after improvement, SPA might outperfoBl4.
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Aligner Recall | Prec. F Len(M)/Len(H)
SPA-single | 0.9680| 0.3460| 0.5098 2.7977
SPA-basic | 0.9038| 0.8209| 0.8603 1.1010
SPA-anchor| 0.9294| 0.8432| 0.8842 1.1023
SPA-len(4) | 0.8822| 0.8754| 0.8788 1.0078
SPA-dist(4) | 0.9382| 0.8338| 0.8829 1.1252
SPA-a-| 0.9096| 0.9026| 0.9061 1.0078
SPA-a-d 0.9432| 0.8574| 0.8983 1.1000
SPA-I-d 0.9159| 0.8882| 0.9018 1.0312
SPA-a-I-d | 0.9231| 0.9045| 0.9137 1.0205
SPA-a-I-d-u| 0.9229| 0.9054| 0.9141 1.0193
COMB 0.7945| 0.9651| 0.8715 0.8233

Table 3.6: French-English: Top 10 alignment results evaloa

Test-set-id COMB(en-cn)| IBM4(en-cn) | COMB(fr-en) | IBM4(fr-en)
0 0.6502 0.6223 0.8737 0.8725
1 0.7506 0.7401 0.8696 0.8715
2 0.7413 0.7348 0.8240 0.8182
3 0.7386 0.7332 0.8776 0.8770
4 0.7879 0.7835 0.8995 0.9034
5 0.8363 0.8328 0.8659 0.8635
6 0.7936 0.7869 0.8164 0.8169
7 0.7964 0.7956 0.8201 0.8157
8 0.7686 0.7599 0.8906 0.8953
9 0.8048 0.8012 0.8683 0.8638

P-value 0.01 0.5

Table 3.7: The significance test for COMB and IBM4
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Table 3.5 and Table 3.6 show the performance of SPA on FrEngfish data. Here we
observe that each penalty (length, distance, anchor, amdnstated words) helped SPA
individually, and that, in fact, the highest score was aigdiwhen all the four penalties
were applied together. French and English are very sinalaguliages in their grammatical
structures. The length and distance penalties are helpfiduse for a pair of translation
phrases, their lengths are comparable, and their posiiomsimilar in their sentences.
The anchor context supported the target phrase by the swlirayword translation score.
The untranslated word penalty helps throw out irrelevantdsdrom the target phrases.
Interestingly, the “positional” result is very close to SBasic” in F1, and this shows that
the two languages are very close in sentence structure. Betlag oracle SPA alignment
gives higher scores than IBM4 in the top 10 as seen in Tables2l@.5, SPA shows the
potential for improvement and ,with such, might outperfdBi4.

Table 3.7 shows the results of the combined aligner (“COMB’pimth language pairs,
and the COMB outperforms IBM. We use!! ande='2 for French-English and English-
Chinese thresholds respectively in probability space (Bsxawe use log space instead of
probability space for efficient computation in our actuaplementation, we have these
empirically obtained values as thresholds.). Our signifteatest shows that for English-
Chinese, the combined version significantly outperforms IBiMle for French-English,
the difference is only slightly significant.

3.4.2 EBMT performance

Because we developed SPA to help the EBMT system generate toattslation, so we
also evaluate its effect on EBMT translation quality.

After tuning several key parameters in the EBMT system segigrior each alignment
algorithm in use, we obtained the scores shown in Table 3.8.

In Table 3.8, we observe that SPA outperforms EBMT - the olgn&r in the CMU
EBMT system by a marked difference. For the Dev, Unseenl, arsg&h?2 data set, SPA
has 35%, 20%, and 28% higher BLEU scores than EBMT, respegtiviich is a great
improvement.
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Dev | Unseenl| Unseen2
EBMT | 0.1632| 0.2400 | 0.1346
SPA | 0.2214| 0.2896 | 0.1729
IBM4 | 0.2197| 0.2785 | 0.1755
COMB | 0.2240| 0.2815 | 0.1751

Table 3.8: French-English BLEU scores by aligners

We also observe that IBM4 and COMB significantly outperformteel EBMT but the
performance differences among SPA, IBM4, and COMB are venfisiar Dev, Un-
seenl, and Unseen2, the winners are different - COMB for Des f8r Unseenl, and
IBM4 for Unseen2.

Our significance test shows that SPA, IBM4, and COMB performiBaantly better
than EBMT, but that the differences among SPA, IBM4, and COMBaxtesignificant
(0.38 < p <0.45).

In this chapter, we have demonstrated that, with propertyseh constraints, SPA
shows nice performance in both alignment accuracy andlatams. However, for each
constraint, we simply combined the feature score one-l&/4®ing linear interpolation.
We need a reasonable framework where the weights of comistieie automatically tuned
together. Furthermore, we did not use word alignment inégrom, which is a by-product
when we build a dictionary using word alignment modI3he word alignment infor-
mation has source/target word mappings per sentence pédiwa think it will be bene-
ficial for SPA, which finds translations from each sentende yrader consideration, be-
cause word translation probabilities in the dictionariesaalculated over the whole train-
ing corpora. SPA also outputs only contiguous target plsréss may include irrelevant
words, but we did not show how it affected both alignment ipaind translation quality.

In the next chapter, we investigate a framework in which waloioe the constraint fea-
ture scores together, use external word alignment infoomaénd employ non-contiguous
phrasal alignment to exclude irrelevant target words.

%1BM word alignment models in our experiments.
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Chapter 4
SPA enhancements

In Chapter 3, we investigated the improvements SPA made bedrdseline EBMT sys-
tem. In spite of these initial improvements, we discusseektipoints for further improve-
ment at the end of the chapter. First, SPA provides a singh finrasal alignment score
to the translation system by using a heuristic-based fondbr each constraint feature
and combining them one-by-one in a simple linear interpatathat might be improved
by considering a more sophisticated way of combining featmores. Secondly, the im-
provements described in Chapter3 did not use word alignmémtnnation, a by-product
of building a dictionary using IBM word alignment models. Wdranslation probabili-
ties in the dictionaries are calculated over the whole ingirtorpus. However, because
the word alignment information has source/target word rreggpfor each sentence pair,
we think its use will be beneficial for SPA, which finds tratiglas from each sentence
pair under consideration. Finally, the SPA outputs onlytiguous target phrases that may
include irrelevant target words. We need to investigatepibesibility of excluding such
irrelevant target words.

In this chapter, we first discuss modifying SPA to return fiplét translations with
multiple features and to tune weights for the various fezgwa minimum error rate train-
ing. Then we consider how to employ external alignment mi@tion in SPA. Finally, we
investigate non-contiguous alignment.
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4.1 Multiple Translations

We made two immediate modifications to SPA. We first change tSFPeturn multiple
feature values instead of a single combined final value. W& made changes on some
feature values. The final SPA feature functions are expthiné&ection 4.4.3. Note that,
in the feature function list, eaclex function is a uni-directional SPA scoregnus is
an extended version @&nchor Context eachuntrans is a uni-directionalntranslated
Penalty, p is a modified version dfength Penaltypenalty was newly introduced, and the
old featureDistance Penaltyvas removed because it is language specific.

Second, SPA can return tQ@gsp4 candidates for a source match whév¥ep 4 is the
maximum number of alternative translations. Now, in SPA ame given a source phrase
f = ffjf = fi1, .-, fizr @nd a source/target sentence pé&ir ). We first set a range

[7start, Tena) from which we draw potential translation candidates usirgggosition of the
source phrase in the source sentence.

_ (i E|

Tstart = (Z + ]-) X |F’ (41)
— E|

Tend = (14 k) X 7 (4.2)

These are then modified by applying a pre-defined window1siZe
Tstart A mam(l, Tstart — W) (43)

Tend < Min(L, Tepq + W) (4.4)

Next all the possible contiguous target fragments from émge defined by, andr,4
are assessed as candidate translations of the given sduwesepNow the candidate sét
is:
C ={cklek = em, o, m <=n,m >= Tgart, N <= Tenda ) (4.5)
Figure 4.1 shows an example of a calculated range with a wirsiioe of 2.

We used\=3 which is empirically obtained.
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(a) find Mnt and r.,
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(b) Initial Range

(c) Extended Range with W=2

Figure 4.1: Defining a candidate range from external alignsie

This approach enables SPA to reduce the search space irgftadget candidates. The
basic SPA theoretically asses%éj—l) candidates when the target sentencé iwords
long. However this approach allows SPA to assess at #\%%ﬂ candidates wheré’ =
rstart — Tend + 1. These candidates are then filtered before score calaulstidhat they
are not too much longer or shorter than the source phraseniove unrealistically long
or short target candidates, we apply a predefined length t@the source phrase length
and filter out those that are not within the calculated rarfdermth.

c = {Ck|ck = Cmy ---Cpy M <=M, TN >= Tgspart, N <= Tend, (46)

n—m+1<=|f]|* Ruge,n —m+1>=|f| % Rpin}
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wheref denotes the source phrase arg;, and R,,,.., denote the acceptable maximum
ratio and minimum ratio respectivety

For the considered candidates(in SPA calculates their feature values. Then it multi-
plies twolex values angh(|e|) value to get amlignment scorehat will be used in obtain-
ing Corieq Which is a sorted set af.

Csorted = {€p|0 < p < |C|, AS(cp—1) > AS(c,) where 0 < p < |C|} 4.7)

where AS(c,) is the alignment scoreof the candidate:,. Finally it returns topNgpa
candidates whose alignment score satisfies a score rago@n

CNSPA = {CplAS(Cp) Z RatiOSpA X AS(C()),O S P < min(NSPA, |Csorted|)} (48)
where Ratiosp 4 is a ratio value between 0.0 and 1.0. TNep4 and Ratiogp4 are con-
figurable parameters in the EBMT system.

The AS(c,) is passed to the EBMT system along with the SPA feature scotes.
EBMT engine usesiS(c,) when it prunes candidate translations to have a¥ijys
translation candidates for each source match. Yhg,,r is a configurable parameter in
the EBMT system to specify the maximum number of translatiber@atives for each
source match. TheS(c,) is also used in decoding like other SPA feature scores.

4.2 Framework for parameter tuning

Decoder
Then we modified our decoder to work in a log-linear model. &source sentence
F=f="f,..f. frand apossible target senteiee= e/ = ¢y, ..., ¢;, ..., e;,
PrEF) = pu(E[F) (4.9)
exp[Y ey Ambin (B, F)]
D et exp[S M Ah ('] F)]

2We used 3 and 5 foR,,;,, and R,,.. respectively in our experiments. They were empiricallyseo
and worked reasonably well.

(4.10)
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where we have a set dff feature functiong.,, (e, f),m = 1, ..., M and for each feature
function, there exists a model parametgr,m = 1, ..., M.

The decoder uses the feature scores calculated by the EBMieeitgelf and the
feature scores returned by SPA. The EBMT feature scores arzibled in Section 2.1.2
and the SPA feature scores consist of the alignment sé6ife) and the feature scores
described in Section 4.4.3.

Parameter Tuning

To optimize the parameter set, we use the Minimum Error Radéénifrg (MERT)
approach described by Och (2003) usiBg EU as the error criterion. Zhao and Waibel
(2005) used MERT to extract translation phrases indepelydeiha decoder, but we use
it in our decoder so that the feature weights are optimizeetctly for translation quality.
The approach assumes that the number of errors for a set @hsesE; is obtained
by summing the errors for the individual sentencB§R;, E;) = Zle E(R,, Ey). The
goal is to obtain a minimal error count for a representatoguasF; with given reference
translationsﬁ]f and a set o different candidate translatiodg = E, i, ..., E; x for each
input sentenc®",.

S
M = argming Y ER, B(F; ) (4.11)
s=1
S K .
= argminyy > E(Ry, B )d(B(Fg M), Eqp) (4.12)
s=1 k=1
with
R M
E(F ;A1) = argmaerCSZ A (E|Fy) (4.13)
m=1

In this work, we use the minimum error rate implementatiothi@ Moses system by
Koehn et al. (2007).

Figure 4.2 shows the MERT integration into the EBMT systemcé&the EBMT sys-
tem builds a dynamic phrase table which is basically a ktitcstores the table in a file.
The rest of the MERT process is almost the same as the MEREgs00 the Moses sys-
tem.
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Figure 4.2: Modified components for parameter tuning

1. The EBMT decodet loads parameter weights (feature weights) and the table.

2. Itfinds top4V hypothesis translations.

3. MERT finds new optimized weights for feature scores.

4. The EBMT returns to step 1 if the weights did not converge.

The tuned feature weights are used in future translations.

3The EBMT decoder can run as a stand-alone version takingicelais input.
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4.3 Exploiting external word alignment

In Chapter 3, we assumed that we have only bilingual prolsiciliranslation dictionar-
ies. In general, these dictionaries are trained in two wa@y® group calculates translation
likelihood from the number of co-occurrences of word paira comparable corpus. They
count the occurrences of all the possible source and target pairs in each possible
translation segments. They then accumulate these statibtiough the entire corpus and
calculate translation likelihood. For example, when thefiree translation likelihood con-
ditional probability, they calculate it as:

_ count(e;, f;)
p(ej‘fl) - Zk count(fi, €k> (414)

The other group learns word alignment, which is a set of wiksl*, or translated
word pairs in a parallel corpus. They then calculate coonél probability based on the
word links from the alignment.

~ link_count(f;, e;)
plejlfi) = S link_count(fi, ex) (@19

Among the statistical alignment methods, IBM Model 4 is cltsé¢he state-of-the-
art aligners. Although some researchers using other akghmethods have reported im-
provements over the IBM model, the improvements are not Jange often they use IBM
Model 4 alignments as an important factor as in Taskar eP@Dg)’s work.

For the research discussed in Chapter 3, we had trainedrdicigs using IBM Model
4, hence we had high quality word alignment information whice did not use. In this
chapter, we investigate how to use external word alignnr@otmation in SPA. We first
use the external alignment information for our contiguoB8 &nd then investigate non-
contiguous alignment in the next section.

For contiguous SPA, we use external alignment informatdimtl a range from which
we draw target candidates. This is helpful when the propoali range does not include
real alignments. Now, in SPA, we are given a source phrasgyrae/target sentence pair,

4We use word links and mappings interchangeably hereaftiisrihesis.
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and word alignments for the pair. From the target words thatfigned from the source
phrase words, we first find the ones with the smallest indextlamdargest index and set
Tstart @NATe,q With them respectively to define a ran@€;.,+, renq) from which we draw
possible target candidates. The rest of process is the sathe modified contiguous SPA
in Section 4.1. Figure 4.1 shows an example of a calculategeravith a window size of
2.

4.4 Non-contiguous alignment

Given a pair of translation sentences and a source phragmadagetarget translation phrase
that consists of aligned target words from the source wardsa source phrase. When all
the target words between the first aligned target word anth#teligned target word are
aligned from any of the source words in the source phraseawéhst the target phrase is
contiguous But when there is any unaligned target word, we say that tiget@hrase is
non-contiguousnd call a series of consecutive unaligned target wogiga

For the hand-aligned data we used in Chapter 3, we counted lzow times the 3-8
words long source phrases are aligned to non-contiguogsttahrases. Depending on
whether we count an unaligned target word by human as a pargap (case 1) or not
(case 2), the portions of non-contiguous alignments afferdiiit. The statistics are re-
ported in Table 4.1. For English-Chinese, 41.7% to 63.8% of@®phrases are aligned to
non-contiguous target phrases and for French-Englisip 90129.6% of source phrases
are aligned to non-contiguous target phrases. These pstéie significant and led us to
study non-contiguous SPA. Another observation is that kbgedanguage pair of French-
English has less word order discrepancy which leads to lesscantiguity than the dis-
tance language pair of English-Chinese, and we may benef# byarsing non-contiguous
SPA for the distant language pair.

In this section, we describe our basic idea of scoring. Singplen a source phrase and
atarget phrase with a single gap, we can calculate the adighscore for them by boosting
the alignment score when the gap and the outside of the stvagreent have a translation
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Language Pair English-Chinese French-English
Number of sentence pairs 386 91
Number of source phrases 27,286 12,446
Number of non-contiguous target phrases (case 1) 63.8% 41.7%
Number of non-contiguous target phrases (case 2) 29.6% 9.1%

Table 4.1: Non-contiguous alignment statistics on the keligghed corpora

relationship or the outside of the candidate target fragraad the outside of the source
fragment have a translation relationship. On the other haredoenalize the score when
the candidate target fragment and the outside of the soumgenent have a translation
relationship, when the gap and the source fragment havasldteon relationship, or when
the outside of the candidate target fragment and the sowsgenent have a translation
relationship.

Figure 4.3 shows the boosting area and the penalizing areas/3 and 6 represent
non-contiguous alignment for the source and target fragsnareas 1, 2, 4, 5, 7 and 8 are
the boosting areas, and areas A, B, C, D, E, F and G are the astasdlpenalized.

One example of the formula for the alignment score could bgemras follows:
Scores +  « x ScoreF (i) (4.16)
—0 x ScoreF (i, g)
—v X ScoreF(i,0)
+6 x ScoreF (o, 0)
(

+e X ScoreF (o, g)

—( X ScoreF(o,i
where
ScoreF(i,g) = P(i <> g) (4.17)

given a target fragment anda, 3, 7, 4, ¢, and( are all positive. Here the first argument
of ScoreF() is an area in the source sentence, and the second argumentigain
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Figure 4.3: Non-contiguous alignment

the target sentence. The area labels, andg represeninside of the fragmenbutside
of the fragment in the sentencandthe gap in the fragmenespectively. Therefore, in
Figure 4.3,ScoreF (i, 1) is the score for area 3 and 8¢ore F (i, g) is the score for area D,
ScoreF (i, 0) is the score for area A and GroreF'(o, 0) is the score for area 1, 2, 7 and
8, ScoreF (o, g) is the score for area 4 and S¢oreF (o, 1) is the score for area B, C, E
and F. For example, given a candidate target fragraefitore F'(i, g) function calculates
the alignment score between the source fragment and thedgle farget fragment.
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4.4.1 A computationally feasible approach

To calculate the score for a target phrase with multiple geyescan extend the scoring
approach described in the previous section. We calculate#iide score and outside score
and use them to boost or penalize the score.

However, identifying the gaps in an efficient way is a chajieg task. Given a source

phrase in basic SPA, we had
Lx(L+1)
2
target candidates whetkis the target sentence length. In the non-contiguous akgrm

we have

(4.18)

ol (4.19)

possible candidates because each target word can be idauaxcluded from a candi-
date. Because Moses implements an accurate and widely-yrsaeaedric word alignment
method, theRefined Methodand the alignment is inherently non-contiguous, we invest
gate exploiting it for our non-contiguous alignment base.

First, given a source phrase, we start from all of the targetie/that are aligned to any
of the source phrase words in the Moses word alignment. $&gave check all the target
words near the boundaries within a window sizé16f. If a target word is already aligned
and its outside score is larger than the inside score, thd warld potentially be removed
and we say it igemovable If a target word is not aligned and its inside score is larger
than the outside score, the word could potentially be iretuand we say it isicludable
Thirdly, by excluding or including each removable/inclbtiaword, we generate target
candidates. So, if we havancludable words and removable words, we then have

9itr (4.20)

target candidates. For-r <= L, 2" <= 2L butinrealityi+r << L and2*" <<< 2L,

Figure 4.4 illustrates a non-contiguous alignment prooedising Moses alignment
as its basis. Solid black boxes denote non-contiguousredterord alignment, or Moses

SWe usedV = 1 in our experiments assuming that target words are closecto@taer.
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(a) Moses Alighment

0

(b) Determine includable words

- | Nl

(c) Determine removable words

Figure 4.4: Non-contiguous alignment extended from Mosgmment with W=1: (a)
Moses alignment, (b) includable words are determined, o)avable words are deter-
mined.

word alignment output in this case. The striped boxes deimotadable words, and the
gray boxes denote removable words. Because we have thneedsbhoxes and two gray
boxes, we generat? = 2° = 32 candidate alignments in this case.

We then calculate feature scores, including supportintufeascores and penalizing
feature scores for each candidate, and pass them to theatesmothat they are used in the
translation with their tuned parameters in a separate step.

In this thesis work, we used the decoder in the EBMT system hwhid not re-
move gaps in non-contiguous alignments by interlockinggaphrases. Instead, it sim-
ply dropped gaps from non-contiguous alignments if it gigelsetter LM score or dis-
carded non-contiguous alignments.
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4.4.2 Pre-processing for unsupervised external alignment

In general, unsupervised alignment is particularly ditti¢ar linguistically distant lan-
guage pairs. For example, some languages are SVO and soi8®¥®e Some have de-
terminers and some do nGtSome have detailed case markers and some db. iEnten
if we have a fairly good amount of data, we have a lot of inattrreord alignments due
to such linguistic differences. Finding these incorregrahents is as difficult as finding
correct alignments.

We sometimes observe that our external aligner finds velgtesshwords (out-liers) as
alignments and that most of them are incorrect alignments.

English
| 11 2| 3| 41 5| 6] 7| 8| 9/10/11]12]13|14|15|16]17]18]19]20]21]22|23|24|25|26]27|28]29|30|3132|33|34|35|36/3738[39]
T T T T T O T Y O A B B A

4

5| 5| 5 5

asauIyd

FiE R SR, ZH, B BE, kT #E, B BiR, B 0E  fEH, 7, X

16 m 17 ‘ 18 ﬁ 19 :%: 20 ’ 21 *—\} 22 Fj‘ﬁf\‘ 23 %U/’_f 24 ‘23 +£ 26 ’ 27 -ﬁ—ﬁu 28 ' 29 XTJ— 3;) @i 31 m 32 ER% 33 &_‘
E 34 Eﬁ 35 Eg 36 %X ar 738 éﬁ,ﬁ] 39 )r:f 40 j’ﬂ 41 E%B 42 j( 43 ﬁﬁ 4 s *\:I'gi 46 % a7 @ 48 % 49 mﬁ
Vl_ 0 m% 51 : 3

beijing, ,, 2, mar, (; xinhua, ), --, ", the  upcoming . ' two,, sessions ' [  national , people 's g
congress, (,, npc,, ), session  and, chinese  people, 's, political A consultative, conference  (,,

20 "21 22 '23
cppcec,, ), session 1 will  discuss . and,, draw, up, the, 10th _ five year, plan which

35 136 44 45
will, have, great , importance_ for,, the  future  national , development

47 '48

58 '59

Figure 4.5: Removing isolated alignment links

Figure 4.5 shows an example of an unlikely isolated alignmf@ma Chinese-English

6SVO languages include English, French and Chinese and S@wim Korean, Japanese and Turkish.
"For example, English determiner 'the’ does not exist in l&ore
8For example, Korean has subject case markers but Englishraae
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sentence pair. The latter parentheses far away from therityapd aligned target words
are incorrect. We want to remove those isolated word aligrigninat are potentially erro-
neous. Given a source phrage..., fi+,, and a non-contiguous target phrase..., e;,,
we can improve the alignment by removing the out-lier alignis as follows:

1. We collect all the contiguous target fragmefits= {cy, ..., cx, } and calculate their
average inside score.

2. From the center of source phrase positigns= (Z;J;T p)/(m + 1), we calculate
an expected target positi@p.,pectca = Sp X % In this approach, we assume that

the source and target sentences have the same word order.

3. If the target fragments are scattered within a range whicR times the length
of the fragments, we stop. Formallyst_word(cy,) — first word(c;) + 1 <=
Rx Y. .o lcm| whereR >= 1, stop®

4. If the first fragment score is less than that of the last argeremove the first frag-
ment. Formallyscore(c;) < score(cg,), thenCy,, < C; — {c, } and go to step 3.

5. If the last fragment score is less than that of the first areeremove the last frag-
ment. Formallyscore(c;) > score(cy,), thenCy,, < C; — {ck, } and go to step 3.

6. If score(c;) == score(cy,), we remove the more distant fragment frép, cctcq
in C; to getC},; and go to step 3 (Remove a random one if their distances from
tPexpected Are the same).

The score function we used in this approach calculates average wangiation probabil-
ity.
score(cg) = (H maz(maz Tp(e|f;), €)1k (4.21)

J=t
eccy,

We also considered filling gaps in non-contiguous alignméfe wanted to fill gaps that
have reasonably good inside scores compared to their taéspedatside scores. But in
Moses alignment, which we used as external alignment sptiveee were so few gaps
which satisfied our criteria that we did not consider it anyreno

%We empirically obtained? = 4.
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4.4.3 Alignment score features

For each target candidate translation for a given sourcasghive calculate multiple fea-
ture scores. To help find the best possible translationetfesture scores are then com-
bined for use in decoding.

We denote the given source phrasefbgnd outside word sequences in the source
sentence byf“. Likewise, we uses and e’ for the current target candidate phrase and
outside the target phrase in the target sentence resggcfeeording to our settingf is
contiguous and¢, e, ande® can be either contiguous or non-contiguous.

o lex(elf)
This feature holds source-to-target lexical translatidence. A very small proba-
bility value ¢ was used to avoid zero production. We used one tenth of thiéesna
translation probability value in the dictionary as

lex(elf) = (H max(maz j,eetr (e f;), €))lel (4.22)

e;€e

o lex(f|e)
This feature holds target-to-source lexical translatiidence.
lex(fle) = (H max(maze;eetr(file;), e))‘f‘ (4.23)
fief

e bonus(f,e)
This feature holds lexical translation evidence of theidetsof the source and target
phrases.

bonus(f,e) = (H maz(maz g, eetr(e;] f;), €)1 (4.24)

e;cec

X ( H maz(maxe,cetr(file;), €))E!

fiefe

e penalty(f,e)
This feature holds lexical translation evidence that shthescurrent pair is not a
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good translation pair. The lexical translation score iswiated betweeimside and
outside phrases.

penalty(f,e) = (H maa:(maa:fjeftr(ei|fj),e))‘ecl (4.25)

e;ce’
X ( H maz(maze,cetr(file;), )

fiefe

X(H maz(maz ,etr(e;] f;), €)'

e;€e

X (H max(maze,eetr(file;), e))‘f‘

fief

e untrans(f)
This feature counts the number of source words timat are not translation words
from the target words ie.

untrans(f) = Z f(fi,e) (4.26)
fief
wheref(f;,e) is 1 if maz,,cctr(file;) == ¢, 0 otherwise.
e untrans(e)

This feature counts the number of target word ihat are not translation words
from the source words ih

untrans(e) = Z flei, f) (4.27)
e;ce
wheref (e;, f) is 1 if maxy,cetr(e;|f;) == ¢, O otherwise.
* p(lel)

Given a source phradewe assume that the length of its translation is a Gaussian
distribution withy, = |f| ando = 1.

1 _ (el=IfD?
p(lel) = N (4.28)

o = 1 was chosen empirically.




4.5 Evaluation

In this evaluation we measured translation performanderéiices among SPA variants.
The phrasal aligners we compared are:

e CSPA-mX
This is the modifieadtontiguous SPA described in Section 4.1. It retukhsnultiple
translation alternatives drawn from a proportionally deti@ed target range.

e CSPA-amX
This is the same asSPA-mXexcept that this uses external wadignment infor-
mation to find a target range for translation candidatess @ahgner is described in
Section 4.3.

e CSPA-A
This is an SPA aligner that returns a single contiguous tgigease that spans from
the first aligned target word position to the last alignede¢amord position. The
positions are obtained from the external alignment infdroma

e CSPA-AmX
This SPA aligner returns multiple target alignment cantiidavith the contiguous
external alignment phrase at the top. The multiple candglate obtained from the
range which was set using the external alignment informaiio place the external
alignment at the top, we assigned it an alignment score whkibtD01 times larger
than the best alignment score to all scores not initiallg@tbat the top. This can be
seen as a combination c6PA-amXandcSPA-A

e NSPA-A
This non-contiguous SPA aligner that simply returns the exteatighment as the
answer.

e NSPA-AmX
This is our non-contiguous SPA aligner using external atignt information as
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explained in Section 4.4.1. This returns multiple non-gprdus target candidates
with the external alignment at the top.

o NSPA-AmXr
This is a modifiechSPA-mAhatremoves out-lier alignment links before the external
alignments are used as described in Section 4.4.2.

All of these aligners return the multiple feature scorescdbed in Section 4.4.3 so that
they are combined in the decoder with the learned paranfetaghts) in a separate pa-
rameter optimization stage. To get the external alignmevésan the Moses toolkit on our
training sets and used tlggow-diag-finalrefinement method. We annotated the training
sets with the alignment information so that SPA can use WenBEBMT system.

After that, we measured the translation performance diffees between the contigu-
ous SPA and non-contiguous SPA. The metrics we used to nee&rsunslation perfor-
mance are BLEU by Papineni et al. (2002) and METEOR by Banerjdd._avie (2005).
We optimized parameters using Minimum Error Rate Training8ibEU on the develop-
ment sets and measured performance on both BLEU and METEORddest sets. We
set METEOR to do stemming and stemmed synonym matching.

For significance test, we used Paired Bootstrap ResamplingoleyK (2004b) with
n=10001°.

451 Data

We investigated the phrasal aligners with three languags:pgéorean-English, Chinese-
English , and French-English

Our Korean-English training data consists of 28,000 se@@airs. Because these sen-
tences are from conversations in the travel and businessidenthey are much shorter
than the Chinese-English and French-English sentencesiers® length. The develop-
ment seDevconsists of 966 sentences with one reference, and the utestesetnseen
has 2,170 sentences with one reference. Both test sets doeiain.

0This is a paired t-test on re-sampled data sets.
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To build a Chinese-English training set, we drew sentenas paih 70 or fewer words
on the source side from the FBIS data. These are 341,636 sergairs, and the Chinese
side was segmented using the Stanford Chinese segmenter hg €hal. (2008). Our
development sdbev consisting of 919 sentences was used as a test set in NISTidach
Translation Evaluation 2003, and our unseen testysseens the newswire test set with
691 input sentences that was used in NIST Machine Transl&i@luation 2008. Both
sets have 4 reference translations.

For French-English, we drew 300,000 sentence pairs froratinepal corpus. We used
the dev2006 set as our development3etand the nc-test2007 as our unseenseteen
from WMT 2006 and 2007 respectively. These test sets haveedernce translation.

sentences source words target words| references
Training set| 28,034 248,263 266,583 1
Dev 966 8,591 - 1
Unseen 1,170 10,441 - 1

Table 4.2: Korean-English data

sentences source words target words| references
Training set| 341,636 | 9,155,903 | 11,571,657 1
Dev 919 42,946 - 4
Unseen 691 31,708 - 4

Table 4.3: Chinese-English data

Tables 4.2, 4.3, 4.4 describe the data we used in this el@iufar Korean-English,
Chinese-English, and French-English, respectively.
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sentences source words target words| references
Training set| 300,000 | 9,074,621 | 8,355,970 1
Dev 285 9,174 - 1
Unseen 2,007 58,168 - 1

Table 4.4: French-English data

4.5.2 Results and analysis
Korean-English results

Table 4.5 shows Korean-English results.

cSPA-mXshows that the number of alternatives that SPA returns grertant. As the
number of alternativeX increases, the BLEU score fDevincreases and it is the highest
whenX s 3. WhenX is 4, the BLEU score is slightly lower. This means that moreralt
natives are helpful in increasing translation performaitce too many alternatives may
include noisy alternatives and make the system confusedagiching good alternatives
for translation with given feature scores.

cSPA-amXshows about 0.5 BLUE score improvements o¥8PA-mXfor the same
Xs. BecauseSPA-amXdetermines a target range based on external word alignmhént,
shows that we had slight improvements by using external \abgsthment in determining
target ranges although the improvements are not statlgtgignificant with0.05 < p <
0.1. This shows that the word order difference in Korean and iEhgentences should be
taken into account when we determine target ranges bec&®&-mXxcomplete ignores
word order differences.

cSPA-AmXs significantly better thacSPA-mXwith p < 0.0001 and slightly better
thancSPA-amXwith 0.05 < p < 0.1. ThecSPA-AmXs also much better thaoSPA-A
looking at their BLEU scores. This means that the contigugas ©f the external non-
contiguous alignment is a good translation candidate aimgj itsvith the derived multiple
alternative translations can increase the system perfurena

60



NSPA-AmXs significantly better thanSPA-Aas well withp < 0.0001. In this case,
multiple non-contiguous alignments derived from the exdénon-contiguous alignment
also increased the system performance. #ISPA alts on Dedenotes the number alter-
natives returned by non-contiguous SPA, which shows tiiadadjh not many alternatives
were added, they were very helpful because they increasexy#item performance signif-
icantly withp < 0.0001.

cSPA-AmXs slightly better thamSPA-Am>at their bests (i.e GSPA-Am&anNdnSPA-
Am4), but not significantly § = 0.146). The system achieved comparable BLUE scores
with nSPA-Am>although the number of alternatives is much smaller (e #tSPA alts
on Devis much smaller). The differences of the best BLEU scoresSRA-AmXand
nSPA-AmXare not significant for botlbev and Unseen Although nSPA-AmXdid not
outperformcSPA-AmXit is still meaningful because its execution time was muubrter.
We measured the execution timesn8PA-Am4and cSPA-Am&and they were 566 and
9,691 seconds.

Table 4.6 compares selected phrasesf8iPA-AmAandcSPA-AmY7In this table SPC
denotes Selected Phrase Co8PL denotes Average Source Phrase LengiL de-
notes Average Target Phrase Length, NI PCdenotes Selected Non-contiguous Target
Phrase Count. Overall the average phrase lengths are shetause only 5.9% of non-
contiguous phrases are selected in decoding. The decatieotinterlock non-contiguous
target phrases and this gave lower language model scorée taon-contiguous align-
ments. Note that the number of selected source words aranldss non-contiguous case.
This is because the decoder did not use non-contiguousnadigis that hurt hypothesis
scores.

Analysis of score difference between BLEU and METEOR

In our translation experiments, we provided METEOR scosesvell as BLEU scores.
In general, METEOR scores are consistent with BLEU scoresawve have significant
improvements and this supports our improvements. For elegmyen we look atSPA-
m3 and cSPA-Am3Jesults, we see that for both Dev and Unseen sets, METEORScor
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increased as BLEU scores increased. However, sometimes MRT4€ores drop when
BLEU scores increase. For example, when we loaddSRA-AmAandcSPA-Ambthe ME-
TEOR scores drop when the BLEU score increases. Table 4.7sshow this happened.
cSPA-Amenerated shorter hypotheses with higher precision anerloeecall compared
to cSPA-Am4in METEOR, recall is weighted 9 times more than precisiors t&PA-Am4
received a higher score thaBPA-Am5But in BLEU, recall is not taken into account. In-
stead, the brevity penalty penalizes short hypothese4, didtnot affect the score enough
to offset the higher precision @aSPA-Am5In the table, the brevity penalty decreased the
BLEU score only from 0.2615 to 0.2468 fo6PA-Am5We had the same analytical results
when we comparedSPA-Am30 cSPA-Am6Another interesting point is the comparison
of cSPA-Am4AndcSPA-AmM6CcSPA-Amaas higher precision and recall, but it has a lower
BLEU score while it has a higher METEOR score. This is becatis@as penalized more
by the shorter hypothesis length.

Chinese-English results

Table 4.8 shows Chinese-English translation results.

Firstly, as in the Korean-English translation resuttSPA-m3erformed significantly
better tharcSPA-mwith p < 0.0001. We also observed a slight BLEU score drop when
X'is 4 as in the Korean-English results.

Secondly,cSPA-amXare better thatSPA-mXThe improvement oESPA-am4over
cSPA-m3s statistically significant witlp = 0.023. This shows that there are significant
word order mismatches between Chinese and English bec&gem>Xassumes the same
word orders in the language pair.

Thirdly, cSPA-am4s better tharcSPA-AandcSPA-Am3Ss better tharcSPA-am&ig-
nificantly with p < 0.0001. This shows that the external alignment itself is a very use-
ful candidate as well as the derived multiple alternativedidates. The combined system
cSPA-Am)outperforms any of the single syste8PA-am>XandcSPA-A

Fourthly, we used the external alignment itselfr&PAs only translation candidate.
This is denotechSPA-Aand performs significantly better tha®PA-A However it is not
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as good as the best c6PA-Am>because there is a better contiguous alignment candidate
among the multiple contiguous candidates than the extaoretontiguous alignment. We
also derived multiplenSPAalternative translationsi§6PA-AmXbut it did not outperform
cSPA-Amither. In fact, it underperformezSPA-Am®becauseSPAwas not able to gen-
erate many translations. It created less than 1.3 candidataverage which did not give
the translation system chances to outperfeB8RPA-AmXTable 4.9 shows selected phrase
statistics from our decoder. In this tab®PC denotes Selected Phrase CoukBPL de-
notes Average Source Phrase LenghPL denotes Average Target Phrase Length, and
SNTPC denotes Selected Non-contiguous Target Phrase Count. didigigous phrases
are only 1.6% and 7% for the Dev and Unseen sets respectigebulse the decoder can-
not interlock non-contiguous target phrases which lead®ter language model scores.

Finally we removed outliers from the external alignment anestigated translation
results ASPA-AmX). This approach did not help ddey, but onUnseenit slightly helped
overnSPA-AmXAnd the improvement was statistically significant wjitk= 0.05.

French-English results

Table 4.10 shows our French-English translation resutlierd are three observations we
noticed for this language pair.

Firstly, the scores do not increase as the number of alieesaincreases. Because
French and English are very close languages in their stegtthe external alignment
may be accurate enough that the additional SPA translaliematives derived from that
are not helpful for translation.

Secondly, orDev, cSPAandnSPAdo not perform significantly differently in BLEU.
Because the sentence structures of the two languages ala sivoi many non-contiguous
alignment are actually selected in decoding. Table 4.1tvshbat only 3.5% and 3.2% of
phrasal translations are non-contiguousdderandUnseemrespectively. In this tabl&§PC
denotes Selected Phrase Co&i8PL denotes Average Source Phrase LengiL de-
notes Average Target Phrase Length, &NITPC denotes Selected Non-contiguous Tar-
get Phrase Count.
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Finally, nSPAperforms significantly better odnseen Based on the average lengths
of the selected source and target phrases in Table 4.11, speduthe two data sets are
different enough thatUnseentakes more advantage with shorter phrasal translations by
chance.

Summary

To summarize, firstly, returning multiple translation atigtives from SPA helps the sys-
tem perform significantly better. The system performancegases as the number of al-
ternatives increases up to 3 or 4 and then stays or decreasexa candidates come in to
the search space. Secondly, using the external word alignmedetermining target range
is useful when language pairs are different in word ordeounexperiments, we did have
improvements with external word alignment for Korean-Estgand Chinese-English. But
for French-English, which is a close language pair, we didsee improvements. Thirdly,
in addition to multiple translation alternatives drawnnfrdhe target ranges determined
based on external word alignment, we achieved more impremeswhen we used the ex-
ternal word alignment itself as the best candidate. Finathn-contiguous alignment did
not help the system performance. For Korean-English andeSkuinglish, contiguous
SPA performed better than non-contiguous SPA. HowevethiFrench-English unseen
set, non-contiguous SPA outperformed contiguous SPA.
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Phrase Aligner bev unseen # SPA alts on Dev
BLEU | METEOR | BLEU | METEOR
cSPA-m1 0.2231| 0.4400 | 0.2331| 0.4271 1
cSPA-mM2 0.2306| 0.4436 | 0.2410, 0.4438 2
cSPA-m3 0.2346| 0.4484 | 0.2414| 0.4364 3
cSPA-m4 0.2336| 0.4553 | 0.2422| 0.4417 4
cSPA-aml 0.2284| 0.4462 | 0.2425| 0.4406 1
cSPA-am2 0.2350| 0.4526 | 0.2484| 0.4469 2
cSPA-am3 0.2393| 0.4660 | 0.2532| 0.4593 3
cSPA-am4 0.2415| 0.4638 | 0.2507| 0.4528 4
cSPA-am5 0.2396| 0.4633 | 0.2522| 0.4575 5
CSPA-A 0.2224| 0.4421 | 0.2377| 0.4410 1
cSPA-Am3 0.2412| 0.4568 | 0.2536| 0.4571 3
cSPA-Am4 0.2426| 0.4722 | 0.2543| 0.4674 4
cSPA-Am5 0.2468| 0.4687 | 0.2552| 0.4603 5
cSPA-Am6 0.2435| 0.4720 | 0.2543| 0.4638 6
NSPA-A 0.2289| 0.4607 | 0.2452| 0.4592 1
nSPA-Am3 0.2419| 0.4654 | 0.2555| 0.4656 1.240
nSPA-Am4 0.2430| 0.4741 | 0.2539| 0.4678 1.263
nSPA-Am5 0.2422| 0.4702 | 0.2573| 0.4693 1.270
Table 4.5: Korean-English results: BLEU/METEOR
Dev Unseen
NSPA-Am4 | cSPA-Am5| nSPA-Am4 | cSPA-Am5
SPC 4,447 4,502 5,316 5,320
ASPL 1.49 1.49 1.48 1.50
ATPL 1.61 1.64 1.64 1.66
SNTPC 263 0 312 0

Table 4.6: Korean-English selected phrase statisticsdndliag
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cSPA-Am4| cSPA-Am5| cSPA-Am6
BLEU 0.2426 0.2468 0.2435
BLEU w/o Brevity Penalty| 0.2435 0.2615 0.2435
METEOR 0.4722 0.4687 0.4720
Hyp. Length 6,583 6,153 6,615
Ref. Length 6,932 6,932 6,932
Precision 0.5501 0.5761 0.5459
Recall 0.5224 0.5114 0.5209

Table 4.7: BLEU and METEOR score comparison
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Phrase Aligner bev unseen # SPA alts on Dev
BLEU | METEOR | BLEU | METEOR

cSPA-m1 0.2000| 0.4787 | 0.1664| 0.4484 1
cSPA-m2 0.2247| 0.5009 | 0.1831| 0.4662 2
cSPA-m3 0.2307| 0.5053 | 0.1864| 0.4646 3
cSPA-m4 0.2279| 0.5054 | 0.1860| 0.4674 4
cSPA-aml 0.2075| 0.4962 | 0.1711| 0.4655 1
cSPA-am2 0.2247| 0.5034 | 0.1866| 0.4695 2
cSPA-am3 0.2314| 0.4896 | 0.1866| 0.4385 3
cSPA-am4 0.2355| 0.4991 | 0.1922| 0.4520 4
cSPA-am5 0.2351| 0.5060 | 0.1912| 0.4621 5
CSPA-A 0.2155| 0.4988 | 0.1714| 0.4698 1
cSPA-Am3 0.2346| 0.5184 | 0.1980| 0.4775 3
cSPA-Am4 0.2401| 0.5177 | 0.1980| 0.4831 4
cSPA-Amb5 0.2423| 0.5242 | 0.1996| 0.4774 5
cSPA-Am6 0.2396| 0.5057 | 0.1926| 0.4594 6
nSPA-A 0.2352| 0.5330 | 0.1785| 0.4765 1
nSPA-Am3 0.2356| 0.5371 | 0.1846| 0.4932 1.243
NSPA-Am4 0.2377| 0.5271 | 0.1864| 0.4848 1.267
nSPA-Am5 0.2377| 0.5377 | 0.1875| 0.4945 1.274
NSPA-AM6 0.2356| 0.5390 | 0.1878| 0.4980 1.281
NSPA-Am3r 0.2364| 0.5294 | 0.1860| 0.4906 1.208
NSPA-AmAar 0.2373| 0.5285 | 0.1903| 0.4841 1.224
NSPA-Amb5r 0.2358| 0.5307 | 0.1908| 0.4847 1.231

Table 4.8: Chinese-English results: BLEU/METEOR
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Dev Unseen
NSPA-Am5| Am5 | cSPA-nSPA-Am5 cSPA-Am5
SPC 14,216 | 14,480 10,170 10,323
ASPL 1.39 1.42 1.44 1.47
ATPL 1.55 1.58 1.57 1.62
SNTPC 240 0 164 0

Table 4.9: Chinese-English selected phrase statisticsciodiieg

Phrase Aligner bev Jnseen # SPA alts on Dey
BLEU | METEOR | BLEU | METEOR

cSPA-m1 0.2378| 0.5384 | 0.1912| 0.5382 1
CcSPA-m2 0.2385| 0.5371 | 0.1902| 0.5380 2
cSPA-m3 0.2354| 0.5325 | 0.1895| 0.5300 3
CcSPA-m2 0.2335| 0.5307 | 0.1901| 0.5373 4
cSPA-aml 0.2359| 0.5343 | 0.1907| 0.5374 1
cSPA-am2 0.2320| 0.5319 | 0.1878| 0.5364 2
cSPA-am3 0.2360| 0.5364 | 0.1895| 0.5401 3
cSPA-am4 0.2365| 0.5369 | 0.1932| 0.5381 4
CSPA-A 0.2383| 0.5377 | 0.1914| 0.5423 1
cSPA-Am3 0.2407| 0.5374 | 0.1930| 0.5367 3
cSPA-Am4 0.2378| 0.5377 | 0.1918| 0.5316 4
cSPA-Am5 0.2409| 0.5390 | 0.1924| 0.5368 5
cSPA-Am6 0.2362| 0.5375 | 0.1908| 0.5346 6
nSPA-A 0.2450| 0.5416 | 0.1874| 0.5492 1
NnSPA-Am3 0.2419| 0.5420 | 0.2005| 0.5444 1.244
nSPA-Am4 0.2416| 0.5418 | 0.2003| 0.5468 1.263
nSPA-Am5 0.2423| 0.5425 | 0.2019| 0.5489 1.268
NnSPA-Am6 0.2412| 0.5416 | 0.2026] 0.5493 1.273

Table 4.10: French-English results: BLEU/METEOR
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Dev Unseen
NSPA-Am5| cSPA-Am5| nSPA-Am5| cSPA-Am5
SPC 4,203 3,690 30,377 27,427
ASPL 2.16 2.49 1.85 2.09
ATPL 1.95 2.24 1.67 1.89
SNTPC 147 0 960 0

Table 4.11: French-English selected phrase statisticecoding
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Chapter 5
Chunk alignment

SPA finds translation phrases based on word translatiorapiities. This means that the
boundaries of the target phrases are determined by wordldtaon probabilities. How-
ever, in the real world, we observe that a source phrase aadjet {phrase are a perfect
translation pair even if they include words that do not haaedlational equivalents in the
other side. For example, a Korean phrase ‘sa-moo-sil gitdity meaning ‘office NOM’
and an English phrase ‘the office’ are a good translation Bairin word level, ‘yi’ does
not have a translational equivalent in English and 'the’ddoat have a translational equiv-
alent in Korean. For this example case, although SPA may tieveorrect translation in
the list of multiple alternative translations for the Kongzhrase, SPA does not use linguis-
tic knowledge to indicate it as a perfect translation.

However, if we consider each of the source and target pheages and translate them
as a unit, we can guarantee their correct translation. Fore¢hson we investigate chunks
as our basic translation units. The phrases above are legaks and show a nice example
of translation by chunks. In this chapter, we discuss a namkllignment algorithm and
methods for finding good chunk translation pairs.
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5.1 High quality chunk

5.1.1 Whatis a chunk

Chunk is a linguistic concept pioneered by Abney (1991). Ankhis a non-recursive
core of an intra-clausal constituent, extending from thgirb@ng of the constituent to
its head, but not including post-head dependents. A maxahnahk is a chunk that is
contained in no other chunk and in this thesis work, we ref@rrinaximal chunk when we
mention a chunk. Furthermore, chunks are defined strictiyegyically, not semantically,
functionally, or lexically*. A typical chunk consists of a single content word surrouhde
by function words related to it. The order in which chunkswcds much more flexible
than the order of words within chunks. When spoken, a straregswill fall only once a
chunk and pauses are most likely to fall between chunks.

1 Only a relative handful of such reports was received , thegaid , considering the
widespread interest in the election , the number of votedslaa size of this city .

2 Only [arelative handfulpf [such reports] [was received]the jury] [said], [consid-
ering] [the widespread interest] [the election], [the number]of [voters]and[the
size]of [this city] .

3 [Only] [a relative handful] [of such reports] [was receaiNd,] [the jury] [said] [,]
[considering] [the widespread interest] [in the electioifhe number] [of voters]
[and] [the size] [of this city] [.]

The above example shows how Abney defined chunks and how wédiadothem
for our machine translation purpose. The first sentence) Shbdws the original sentence
and the second sentence (“2”) shows chunking performed®nrilyinal sentence. Note

1Chunks are contiguous in most languages although thereareantiguous chunks in some languages.
In some cases, even non-contiguous chunks can be transtatedtly. For example, in an English sentence

"The more | read the more tired my eyes get.”, "the more” aedlyeone disjoint chunk, but translations are
usually fine when treated as two smaller separate chunks.
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that adverbs and punctuation marks are not chunks. Neitbgorapositions included in
chunks. We define adverbs and punctuation marks as chunksande prepositions into
the following phrases. The third sentence (“3”) shows meditthunking by our modified
chunk definition.

5.1.2 Advantages of using chunks

To begin, we discuss several advantages of using chunkssastkanslation units. First,
to some degree, we can systematically translate untrabsabkens (words, morphemes)
that exist only on one side of the language pair. These tokande translated properly
using a phrase aligner such as SPA; however, additionatteféme needed to make the
tokens selected in decoding because phrasal aligners ey reultiple target candidate
phrases and the correct translation may be one of them. 8gcas chunks are n-gram
phrases, they convey local reordering and context as wiidbugh this advantage is also
true for n-grams in phrasal translation. In addition, thenber of chunks may better match
across languages than the number of words, which may yi#terizdignment at the chunk
level. Furthermore, because the order of chunks is morebfeehan the order of words
within a chunk, using chunks as blocks in translation hasenfiexibility in re-ordering
than arbitrary n-grams crossing syntactic chunk boundafieis is an important advantage
when we translate from or into a language with relativelyskeroword-order than English
or the Romance languages.

5.1.3 Uniqueness of our work

Our chunk-based work is different from previous work in tbédwing ways:

First, our chunking is neither fully automatic nor bilinduk: exploits existing mono-
lingual chunkers that use machine learning techniques tbdimunk boundaries trained
on a hand-annotated corpus with chunk boundaries. Mostreateal chunk detection al-
gorithms heavily depend on human resources such as hunamedites (Le et al., 2000;
Hwang et al., 2004) and hand-written grammars (Wu, 1997)redseothers depend on
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co-occurrence statistics either bilingually or monoliatiyi (Zhou et al., 2004; Watanabe
et al., 2003). In this work, we use existing chunkers to awiwrs that can be caused
by automatic chunking or insufficient bilingual resourddswever, since we use mono-
lingual chunkers, we do not maximize chunk correspondeeteden source and target
languages.

Secondly, our work uses a new chunk alignment algorithm ighéghtly combined
with IBM word alignment models. In this chapter, we introdwceew chunk alignment
algorithm. The basic idea is to apply the well-known IBM wotdjament algorithms to
chunk alignment by treating a chunk as a token and explommgl translation probability
to boost chunk alignment because a chunk is composed ofpteultords. In other words,
to alleviate data sparsity problems caused by using chumkasic units, we will use word
alignment information between a source chunk and a targetkctvhen we align them.

Third, in decoding, it combines target chunks as well astigfrggments which are not
chunks. Unlike the current EBMT system (Brown, 1996, 2005%, thunk-based system
is a hybrid system that combines a typical string-based EBy&tesn and a chunk-based
EBMT system. It uses a chunk as the basic translation unit wihere is a good chunk
level translation, otherwise it falls back to the stringséad model.

5.2 Related work

Since translation by chunks can naturally add or remove svtbralt exist only on one side
of a language pair, some researchers have studied explohimks in translation.

Le et al. (2000) used chunk alignment to get better word aligmt. Given a dictionary
and chunked English sentences, they made corresponding<elsentences chunked via
chunk projection. More specifically, the citation for eacbrd/in an English chunk was
found in the dictionary to discern its translation in theregponding Chinese sentence.
After resolving translation disambiguation using heiggtthe shortest Chinese word se-
guence including all the translation words is recognized @sunk. The resulting Chinese
chunk then becomes the translation of the English chunk.
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Hwang et al. (2004) used chunk alignment to extract Koregeud@ency parse trees
given Japanese dependency parse trees and a human dictidreyr first align words con-
sulting a Japanese-Korean dictionary to find chunk bouadamnd alignment and then they
align the remaining words. They finally extracted bilingkabwledge from the aligned
chunk pairs.

Zhou et al. (2004) extracted chunk pairs automatically ®minsan SMT system. Their
chunk detection is based on the assumption that the mostagfent word sequence
may be a potential chunk. After aligning chunks using thetoccurrence similarity, they
extract chunk pairs and report a significant improvememntandlation quality.

Ma et al. (2007) studied an adaptable monolingual chunkppyaach. They learned
word alignment in a parallel corpus and used this alignmefarimation to find chunk
boundaries in both languages.

Wu (1997) studied inversion transduction grammar (ITGirfalism for bilingual pars-
ing for a parallel corpus. In this parse tree pair, the methatdirally provides bilingual
bracketing and alignment so that we can obtain aligned clpank&. However, it remains
difficult to write a broad bilingual ITG grammar to deal withnlg sentences.

Watanabe et al. (2003) built a chunk-based statisticatlaéion system. They decon-
struct the translation modél(J|E) = >, P(J,A|E)to P(J|E) = >, > ¢ P(J,J,E|E)
where 7 and £ are the chunked sentences fbrand £ respectively. Then they decon-
structedP(J, 7, E|E) furthertoP(J, J,E|E) = >, > 1 P(J,J, A, A E|E) whereA is
chunk alignment andl is word alignment for each chunk translation.

Koehn and Knight (2002) deconstructed a translation mattel Sentence level re-
ordering (SLR)chunk mapping (CMandword translations (W)

p(fle) = p(SLR|e) x H p(CM;le, SLR) x H(WMCMZ»,SLR, e)  (5.1)

SLRdefines how source and target chunks are connecteihdefines an alignment
of source to target POSs. FinalW sets the lexical composition of the target language
sentence. They reported improved performance over IBM Mddah a short sentence
translation task.
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Our approach uses monolingual chunkers and IBM word alignmexdels. For chunk
alignment, we develop a new algorithm that uses word aligrirméormation as chunk
alignment evidence. To overcome lower chunk corresporeldue to monolingual chunk-
ing, we use th&efined Methotb find consistent chunk translation sequences that Och and
Ney (2003) have used in phrasal translation detection. Vjgaexthis approach in more
detail in Section 5.4.3.

5.3 Chunk detection

We first tried to detect chunks in a corpus automatically das® word co-occurrence
statistics. However, due to the quality of our preliminaggults and the difficulty of the
task, we decided to use existing monolingual chunkers basedachine learning tech-
niques that need some hand annotated training data for diaumdaries.

In the next two subsections we describe the approach thaiedewith the possibility
for further investigation in the future. And in the final sebton of this section, we de-
scribe the monolingual chunkers we used.

5.3.1 Methods for deriving chunks and idiom information from cor-
pora

Several methods have been proposed for deducing idiomatases from corpora, both
monolingually and bilingually.

Monolingually, Mutual Information (Cover and Thomas, 19%l)he commonly-used
metric for determining the coherence of word sequencedewilingually, cooccurrence
counts are typically used.

Melamed (2001) uses (bilingual) Mutual Information (MI) ¢ompute an objective
function. However his method allows for only two words or qgmunds to be combined
into a non-compositional compound, which may be insufficierderive longer idiomatic
phrases.
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Often, the core of the meaning in a phrase (or sentence) \gdauw by one or more
relatively infrequent — but highly salient — words. The sasmeommonly true for phrases
or sentences that are translations of each other, evenciuise of idiomatic usage, the
kernel words themselves are not in translational corredgoce. For example

Dutch Het regent pijpenstelen
[it] [rains] [pipe stems]
English It israining cats and dogs

One measure to approximate salience idterse Document Frequen@pF) by Jones
(1972) which is commonly used in the Information Retrievahoaunity:

N

IDF(w) = log(—)
Cw
wherew is the word or term under consideratiaM, is the corpus size (for our purpose,

the number of sentences), andis the number of sentences in whietoccurs.

We also usd D F' in detecting chunk boundaries and aligning the detectedksh®ur
approach is described in the following:

1. Select words witiDF(w) > 6 as salient words, in both the source and the target
languages.

2. Align salient words only.

3. Re-attach function words to salient words based on autoatigtderived linguistic
rules.

First, we select salient words in a sentence usindg @&’ threshold. We consider these
salient words the core meaning of each chénkext, we align the salient words to align
chunks. Finally we attach function words to salient wordsdabon automatically derived
linguistic rules to detect chunk boundaries. Our methodetavd the rules is explained in
Section 5.3.2.

2When there are consecutive salient words, we regarded thbeiteluded in a single chunk.
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1. Find salient words

(wind NOM soon stop will J)

g & mA el A Zloftt .
The wind will drop soon .

2. Align salient words
(wind NOM soon stop will J)
g & #AIZel HE Zlojt} .

The wind will drop soon .

3. Constituent-to-constituent alignment

Figure 5.1: Constituent-to-constituent alignment

Figure 5.1 illustrates this method on an example. It firstdisdlient words. In this
example, the black Korean words “wind”, “soon”, “stop” artetblack English words
“wind”, "drop”, “soon” are salient words. Next, it aligns ¢m. In this example, there
are 3 salient words in each sentence and they are aligneallyf-ihattaches non-salient

(function) words in gray to a salient word based on autoraiyicerived chunk formation
rules.

The threshold® may be trained using any standard optimization algorithchsas

hill climbing or simplex, using alignment accuracy (comguito a gold-standard human
alignment) as an objective function.
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5.3.2 Automatic derivation of chunk formation rules

Instead of assuming linguistic knowledge about each laggimthe pair (e.g., predomi-
nantly post-position, as in Korean or Japanese, or prdatposas in English, of function

words), these can be derived statistically from large miagakl corpora, which are read-
ily available for most languages.

Instead of the normal calculation of collocation (Mutudioimation with the follow-
ing word, the following content word, or words in the othendaage), we now focus on
MI between (classes of) high-IDF words and surroundingsge#a of) low-IDF words.
High-IDF words predominantly collocated with their righeighbor will by preference
absorb post-positions, whereas those with higher MI withirtleft neighbor will favor
pre-positions.

From a given corpus, rules can be derived that are eithergleoeer the corpus or
specific to certain content words. In addition to Mutual mnfation, other metrics for
phrasal cohesion can be explored. well.

5.3.3 Monolingual chunkers

We started experiments with the Chinese-English languaigeipdhe time we started the
experiments, there was no Chinese chunker available to usbAcause the data we had
was already parsed, we decided to use the Chinese parse ¢ressigd using Stanford
parser (Klein and Manning, 2003b,a). We wrote a simple @agthat splits a parse tree
into chunks. We took the same strategy for the English sidaulme English sentences
were also already parsed.

Next, we did experiments with the Korean-English pair. L{&einese, we could not
find a Korean chunker and wrote a rule-based Korean chunkémthkes use of Part-
Of-Speech tags returned by the Korean morphological aealye used (Shim and Yang).
For English, instead of asking the Stanford parser to pasiesces and recognize chunks,
we used an existing monolingual chunker. We used SNoW shaérser (Carlson et al.,
1999) for English.
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When we later began experiments on the French-English Igegpair, we found
and used TreeTagger (Schmid, 1994, 1995) for French. Bedaalse supported English
chunking, we decided to use it for English chunking n the lexgg pair as well. A simple
program was written to extract chunkers from its hierarahstructures of results.

Note that all three language pairs include English but eaed different chunkers. We
hoped that monolingual chunkers developed by the sameammrelere designed with
the concept of chunk, although we do not prove this assumptithis work.

5.4 Chunk alignment

In general, aligning chunks is a harder task than aligningdeon the same training data
set if we use an unsupervised method such as IBM Model 4. Tisemdaa that by using
chunks as a basic unit, we have much less evidential statigtan we do when we use
words as basic units.

For example, “in the office” is a chunk and appears much lems #ach of the com-
prising words “in”, “the” and “office” in a corpus. The statisal evidence for aligning the
chunk is less obvious than that of aligning the comprisingds@nd this results in poorer
alignment quality for chunks. Hence aligning words and gsimis alignment information
in chunk alignment is an important idea unless we have a ggaarpus in which sta-
tistical evidence for chunk alignment is reasonably sudfiti But in reality, it is hard to
build such an enormous corpus. Instead, we investigate amethod that induces chunk
alignment from word alignment together with chunk co-ocence statistics.

5.4.1 The baseline system

Our baseline system is simply the Moses alignment systehregards chunks as basic
translation units and performs bi-directional alignmdtdr that, we concatenate all the
member words in a chunk and run Moses on word-concatenatedkshThe problem with

this method is that when the data becomes sparser, the sigatelass statistical evidence
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for chunk alignment. For this reason, chunk alignment dquatiay become poorer than
word alignment quality.

5.4.2 Word-mapping-based chunk alignment

To overcome the data sparseness problem in the baselirersyse first perform word
alignment and align a chunk pair when there is at least onel wwapping among the
source and target words in the chunk pair. Formally,

e Letf ande be chunks andl be f|* = f, f»...f, ande beel" = ejes...€,,.

e f ande are aligned if there exist any word alignmerfit,¢;) wherel < i < n and
1<j<m.

In the first stage, we align words by running GIZA++ on a traghcorpus bi-directionally
in Moses. And then we find chunk boundaries monolinguallpaly, we align chunks
based on word mappings for the words in a chunk pair. This atetiompensates for the
data sparseness problem to some degree.

However, this approach only counts word mappings and igncnenk level statistics
and fertility. Fossum et al. (2008) also pointed out thatcfion words that do not have
translational equivalents can be aligned to function wondgch in this case, can produce
erroneous chunk alignments.

5.4.3 Using GIZA++ for chunk alignment

To take advantages of the baseline system and word-mappgised chunk alignment sys-
tem, we designed a hybrid system. In the hybrid system, wechrscatenate all the words
in chunks in a specially designed way (i.e., we can place eialpaelimiter character in
between words belonging to the same chunk) to use as basinGIZA++. Next, we
modify GIZA++ to take the source and target chunks and assitzdi word translation dic-
tionary as input. The modified GIZA++ uses the dictionarygenweight chunk translation
evidence by word translations within chunk pairs.
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e Letf ande be chunks andl be f|* = f f»...f, ande bee!" = ejes...e,,.

e T'(f|le) in IBM models is

. Clfe)
T(fle) = —Zk O (5.2)
o \We redefine it as, O o)
! e
= Eothe 9
where
C'(f,e) = C(f,e) x F(f,e) (5.4)

whereF (f, e) is a weighting function and for this, we uspdwer meansvith power
p=23%

F(f.e) = (% Zmame(mej))p) 55)

5.4.4 Word alignment boosted by character n-gram

Like word boosting in chunk alignment, we can also use characgrams in a word to
boost word alignment. This technique is most helpful wheadidg with morphologically-
rich languages for which parallel data is insufficient. Frewtly, to make parallel data
correspond at the word level, we apply a morphological a®l\still, this technique has
its own problems. We may be unable to find a correspondingitakéhe other side for
a morpheme. It is also difficult to decide which level of as&yis adequate. For exam-
ple, an inflected Korean verb, often, has more than 5 morpbebut the corresponding
English tokens number only two or three. In this case, ushragactem-grams as pseudo
3The power mean is also known as a generalized mean with exppn®epending on the value,
it can be a minimumy = —infinity), harmonic meam( = —1), geometric meap( = 0), arithmetic
meang = 1), quadratic meap(= 2) or maximumg = in finity) and this variation allows us to efficiently

investigate which mean works the best. We empirically chose 2 to maximize our chunk alignment
accuracy.
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morphemes rather than completely splitting Korean morggsecan produce an improve-
ment in word alignment. Of course, the best case will be whean use real morphemes
instead of character-grams.

In this case, the formula will be the same as Equation 5.4inste¢ad of using word
translation probability, we use charactegram translation probability, which is trained
separately.

We employ this approach in our Korean-English translatiopeements. To obtain
charactem-gram translation probability, we replace Korean tokerst tire 4 words or
longer with character bi-grams from them and English tokitwas are also 4 words or
longer with characted-grams from them. These were empirically set up by looking at
alignment results.

5.4.5 lterative refinement

Kim and Vogel (2007) showed that word alignment and phralégthiment can help each

other. By giving back phrasal alignment information to theavaligner, they built a better

lexicon, and this improvement on word alignment produceeétteb phrasal alignment in

turn. This is applicable to our chunk alignment since chuaresalso phrases (n-grams).
This is particularly beneficial for word alignment improvent because we have strict
chunk boundaries that prevent a word aligner from mappinglg/orossing chunk bound-

aries.

A simple way to investigate this technique is to iterate the $teps until convergence
is reached. Formally we start with iteration= 0, performance&), = 0, corpusCy = C'
(the initial corpus), and aligned chunk sequence péajrs- ¢.

l.i+1+1

2. We add aligned chunk sequence pairs to the corpus to update= Cy U P,_;.
3. We align words irC; and calculate alignment quality;.

4. We stop ifQ); — Q;—1 < €
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5. We align chunks in the original corptd% and extract aligned chunk sequence pairs
P

6. We return to step 1.

In step 5, we used the Moses alignment system that works khatinbdified GIZA++
for our word-boosted chunk alignment model.

5.5 Evaluation

5.5.1 Metric

In this evaluation, we measure precision, recall &ntbr chunk alignment. When we have
hand-aligned target chunks = {h;|j = 0, ..., [} and target chunks fountd = {m,[k =
0,...,m} by a chunk alignment algorithm for each source chfjnlve calculate precision
P = ‘}wl”‘ and recallR = “ﬁ;}]‘”'. Note that, unlike SPA alignment accuracy evaluation,
we did not exclude target chunks that arelinbut not aligned in the hand-aligned corpus
We decided to include them this time because they are agfoadised to our decoder and

used in translation.

5.5.2 Systems compared

We essentially compared three chunk alignment systemgh@Bystems are trained using
the Moses alignment system.

1 Baseline This is the pure chunk-based system. We concatenatedeaidinds in a
chunk in the training and test sets.

2 Word-map This system is the word-mapping-based chunk alignmeriesysBe-
causeBaselineis very weak due to data sparseness, we consider this systben t
our actual baseline system to which we will compare our nepvagch.
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3 Word-boost This is our new approach in which chunk translation proliss are
weighted by word translations by using our modif@tz A++.

For theBaselinesystem, we used tlggow-diag-final (G-D-F)heuristic when we com-
bined both directional alignments. For tiéord-mapsystem, we compared different re-
finement heuristics such as tgeow (Grow) grow-diag (G-D) grow-diag-final (G-D-F)
union (Union) andintersect (Intersect)For theWord-boostsystem, we compared differ-
ent refinement heuristic combinations for both word aligntraad chunk alignment.

55.3 Data

We use French-English and Chinese-English language pacsrpare the alignment
algorithms in alignment accuracy.

For French-English, we use 300,000 sentence pairs as thmgraet and 37 sentence
pairs as the hand-aligned set. The training set was drawm @anadian Hansards and the
hand-aligned corpus was obtained from ACL WMT 2008.

In the training set, the French sentences are an average3tidnks and 25.7 words
long and the English sentences are an average of 14.3 chndk&eb words long. The
chunks are 1.8 words long and 1.7 words long on average irckhrand English respec-
tively. Table 5.1 describes the training data we use in tkegment.

sentences chunks words
French | 300,000 | 4,282,828 7,706,060
English| 300,000 | 4,292,017| 7,347,401

Table 5.1: Training set for French-English

Table 5.2 shows the French-English hand-aligned set weTlsedata is originally
hand-aligned at the word level but we derive a chunk-aligsetdby aligning chunk pairs
whenever any word pair in a chunk pair is aligned by humantéxas in Word-map In
French, the sentences have an average of 10.6 chunks anddrl§ and the chunks are
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an average of 1.8 words long. The English sentences havesaagavof 10.9 chunks and
17.9 words and the English chunks are an average of 1.6 wands One thing to note in
this table is that for French-English, word alignment hdatieely high fertility (i.e., the
number4+ link is very large) because the human aligner was not able to cgmath
word to word alignment in many cases and just aligned a mudtd phrase to a multi-
word phrase which are then fully aligned at the word level.

sentences unit | count| Olink | 1link | 2 link | 3link | 4+ link
word | 721 43 366 93 34 185
chunk| 392 27 218 49 42 56
word | 661 35 296 91 52 187
chunk| 403 18 217 79 39 50

French 37

English 37

Table 5.2: Hand-aligned corpus for French-English

For Chinese-English evaluation, we use the same trainingssit Chapter 4 and the
same hand-aligned set as in Chapter 3.

On average, in the training set, the Chinese sentences toh2i.8 words and 18.1
chunks in which the chunks are composed of 1.5 words. Likewie English sentences
consist of an average of 33.9 words and 18 chunks in which tibaeks are 1.8 words
long. Table 5.3 describes the Chinese to English training. d&@dth the French-English
and Chinese-English language pairs show that the chunk ¢éevetspondence is higher
than the word level correspondence.

sentences chunks words
Chinese| 341,636 | 6,177,252 9,155,903
English | 341,636 | 6,419,184| 11,571,835

Table 5.3: Training set for Chinese-English

Table 5.4 shows the Chinese-English hand-aligned set. Tinekehligned version is
obtained in the same way as the French-English chunk aligeesion is obtained. In
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Chinese, the sentences have an average of 9.6 chunks and di8l8 and the chunks
are an average of 1.4 words long. On average, the Englisbrs=sd have 9.3 chunks and
16.1 words, and the English chunks are 1.7 words long. Utiiked=rench-English hand-
aligned corpus, this corpus does not have as many hightievtibrds.

sentences unit | count| Olink | 1link | 2 link | 3link | 4+ link
) word | 5,337| 1,419 | 3,316| 544 55 3
Chinese 386
chunk| 3,721| 1,112| 2,095| 372 96 46
] word | 6,277| 2,329 | 3,393| 488 60 7
English 386
chunk| 3,592 | 1,155| 1,797 | 459 120 61

Table 5.4: Hand-aligned corpus for Chinese-English

5.5.4 Results and analysis
Chunk alignment

Table 5.5 shows French-English chunk alignment performa@ur secondary baseline
Word-mapperforms much better than the origifgdseline This difference in performance
can be explained bword-mays basis on word alignment, for which we have much bet-
ter statistical evidence for alignment, compared®#selines sole reliance on chunk co-
occurrences. Our approach shows better overall scorestbatrong baselind/ord-map
and is the best witls-D for word alignment and>-D-F for chunk alignment.

Table 5.6 shows Chinese-English chunk alignment performartee Chinese-English
results show a similar trend to the French-English aligrinaeouracy resultd/Nord-map
is a much stronger baseline aiébrd-boostoutperforms it in the best case wi@®D &
G-D-F or G-D & Unionfor word alignment and chunk alignment respectively.

For the following experiments on chunk-based translatimpseds-D & G-D-F for
word alignment and chunk alignment respectively becausetmbination gives the best
performances for both language pairs.
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System | Word H. | Chunk H.| Recall | Prec. F |M|/|H|

Baseline | N/A G-D-F 0.4753| 0.5599| 0.5141| 0.8489
Word-map | Grow Link 0.4629| 0.7125| 0.5612| 0.6497
Word-map | G-D Link 0.5247| 0.7461| 0.6161| 0.7033
Word-map | G-D-F | Link 0.6085| 0.7111| 0.6558| 0.8558
Word-map | Union Link 0.6250| 0.6791| 0.6509| 0.9203
Word-boost| G-D G-D 0.5659| 0.8158| 0.6683| 0.6937

Word-boost| G-D G-D-F 0.5865| 0.8196| 0.6837| 0.7157
Word-boost| G-D Union 0.5934| 0.7985| 0.6809| 0.7431
Word-boost| G-D-F | G-D-F 0.5852| 0.8068| 0.6783| 0.7253
Word-boost| Union G-D-F 0.5852| 0.8161| 0.6816| 0.7170
Word-boost| Union Union 0.6003| 0.7874| 0.6812| 0.7624

Table 5.5: Chunk alignment results for French-English

Table 5.7 shows significance test results for French-Bmgiml Chinese-English. The
systems compared avéord-map the word-link based chunk alignment which uses G-D-F
for word alignment (S1) an@/ord-boostthe chunk alignment system which uses G-D for
word alignment and G-D-F for chunk alignment (S2). We do ramnpare the baseline
system because it is obviously significantly worse for batiguage pairs.

For both language pairs, we compdreof the alignment results by the two systems
for each source chunk. After removing tied chunks, we cateypaired-test and obtained
p of 0.001 and 0.0001 for French-English and Chinese-Engiesipectively.

Iterative refinement

Table 5.8 shows word and chunk alignment performance wititeaative refinement ap-
proach on French-English. In the second iteration, theltseshow thatWord-mapand
word alignment \Vord-align) improved significantly , which is what we expect when ap-
plying iterative refinement. However, we do not see improsetron chunk alignment.
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System | Word H. | Chunk H.| Recall | Prec. F |M|/|H|
Baseline | N/A G-D-F 0.4519| 0.3105| 0.3681| 1.4552
Word-map | G-D Link 0.4993| 0.4228| 0.4579| 1.1807
Word-map | G-D-F | Link 0.5712| 0.4080| 0.4760| 1.4001
Word-boost| Intersect| Intersect | 0.4022| 0.4125| 0.4073| 0.9748
Word-boost| Grow Grow 0.4456| 0.4052| 0.4244| 1.0998
Word-boost| G-D G-D 0.5367| 0.4577| 0.4941| 1.1726
Word-boost| G-D G-D-F 0.5538| 0.4582| 0.5015| 1.2086
Word-boost| G-D Union 0.5625| 0.4525| 0.5015| 1.2430
Word-boost| G-D-F | G-D-F 0.5514| 0.4530| 0.4974| 1.2173
Word-boost| Union Union 0.5835| 0.3911| 0.4683| 1.4918

Table 5.6: Chunk alignment results for Chinese-English

Lang. pair chunks| S1>S2| S1=S2| S1< S2 P
French-English | 392 37 292 63 0.001
Chinese-English 3,718 164 3,196 358 0.0001

Table 5.7: Significance tests

89

The score actually decreased slightly, but not signifigafithis decrease probably occurs
because the constraints that the chunk aligner gives to tine aligner are stronger than
the constraints that the word aligner gives to the chunknaligin other words, the chunk
aligner encourages the word aligner to respect chunk baoiasidéut the word aligner en-
courages the chunk aligner to respect word alignment irdidady aligned chunk pairs
in the previous iteration which may not have a great impact.

The fact that we improve word alignment is very noteworthgeaese we are building
a translation system that uses both chunk alignment and &lgngment. Word alignment
will be utilized in translation when sufficiently good chuakgnments are absent.

Table 5.9 shows iterative word and chunk alignment perfoceavith modified recall




Iteration| System | Word H. | Chunk H.| Recall | Prec. F |M|/|H|
Chunk alignment

L Word-map | G-D Link 0.5247| 0.7461| 0.6161| 0.7033

Word-map | G-D-F | Link 0.6085| 0.7111| 0.6558| 0.8558

Word-boost| G-D G-D-F 0.5865| 0.8196| 0.6837| 0.7157

Word-map | G-D Link 0.5508| 0.7786| 0.6452| 0.7074

5 Word-map | G-D-F | Link 0.6071| 0.7530| 0.6722| 0.8063

Word-boost| G-D G-D-F 0.5865| 0.8057| 0.6789| 0.7280

Word-boost| G-D-F | G-D-F 0.5838| 0.8080| 0.6778| 0.7225
Word alignment

Word-align | Grow N/A 0.2479| 0.5676| 0.3451| 0.4368

1 Word-align | G-D N/A 0.2947| 0.6547| 0.4065| 0.4501

Word-align | G-D-F | N/A 0.3415| 0.6934| 0.4576| 0.4925

Word-align | Union N/A 0.3543| 0.6632| 0.4541| 0.5343

5 Word-align | G-D N/A 0.3304| 0.7127| 0.4515| 0.4635

Word-align | G-D-F | N/A 0.3655| 0.7412| 0.4896| 0.4930

on French-English alignment. In Table 5.8, we saw that wdigheent F; scores are
significantly lower than chunk alignmeht scores. The lower scores are the result of word
alignment’s much lower recall due to high word fertility imet hand-aligned set, as shown
in Table 5.2. Chunk alignment recall alleviates this problenause usually consecutive
words are split into fewer chunks. Therefore, to make themensomparable, we modify

Table 5.8: Iterative refinement results for French-English

our recall calculation for each source unit= 1if |[H N M| > 0 and 0 otherwise.

Table 5.10 shows word and chunk alignment performance asinigrative refinement
approach on Chinese-English alignment. As seen in FrenghdBralignment evaluation,

the results from the second iteration show tard-mapand word alignmentf/ord-align
improved significantly, but chunk alignment does not.
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Iteration| System | Word H. | Chunk H.| Recall | Prec. F |M|/|H |
Chunk alignment

L Word-map | G-D Link 0.8411| 0.7461| 0.7908| 1.4027

Word-map | G-D-F | Link 0.9342| 0.7111| 0.8075| 1.7068

Word-boost| G-D G-D-F 0.9479| 0.8196| 0.8791| 1.4274

Word-map | G-D Link 0.8849| 0.7786| 0.8284| 1.4110

5 Word-map | G-D-F | Link 0.9370| 0.7530| 0.8350| 1.6082

Word-boost| G-D G-D-F 0.9370| 0.8057| 0.8664| 1.4521

Word-boost| G-D-F | G-D-F 0.9370| 0.8080| 0.8677| 1.4411
Word alignment

Word-align | Grow N/A 0.6077| 0.5676| 0.5870| 1.1563

L Word-align | G-D N/A 0.7168| 0.6547| 0.6844| 1.1917

Word-align | G-D-F | N/A 0.8230| 0.6934| 0.7527| 1.3038

Word-align | Union N/A 0.8333| 0.6632| 0.7386| 1.4145

5 Word-align | G-D N/A 0.7847| 0.7127| 0.7470| 1.2271

Word-align | G-D-F | N/A 0.8599| 0.7412| 0.7962| 1.3053

Table 5.9: Iterative refinement results with relative refaal French-English

Comparison to SPA

As mentioned in the introduction, SPA can detect chunk tedios as well. Given a source
chunk, SPA returns a list of possible translations and thlieecbtarget chunk can be in-

cluded in the list.

To see howMNord-boosttcompares to SPA, we compared their alignment performance
for source chunks. We first categorized the source chuné&ghinte classes.

e Chunk: all the single source chunks.

e C_Chunk_H: the source chunks that are aligned consistently by hunfanexpla-

nation of consistency can be found in Och and Ney (2003) oti@e6.2.1.
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Iteration| System | Word H. | Chunk H.| Recall | Prec. F |M|/|H |
Chunk alignment

L Word-map | G-D Link 0.4993| 0.4228| 0.4579| 1.1807

Word-map | G-D-F | Link 0.5712| 0.4080| 0.4760| 1.4001

Word-boost| G-D G-D-F 0.5538]| 0.4582| 0.5015| 1.2086

Word-map | Grow Link 0.4810| 0.4252| 0.4514| 1.1313

Word-map | G-D Link 0.5199| 0.4357| 0.4741| 1.1933

2 Word-map | G-D-F | Link 0.5715| 0.4321| 0.4921| 1.3224

Word-boost| G-D G-D-F 0.5514| 0.4591| 0.5010| 1.2011

Word-boost| G-D-F | G-D-F 0.5535| 0.4576| 0.5010| 1.2095
Word alignment

Word-align | Grow N/A 0.5816| 0.7655| 0.6610| 0.7598

Word-align | G-D N/A 0.6417| 0.7287| 0.6824| 0.8806

1 Word-align | G-D-F | N/A 0.7105| 0.6546| 0.6814| 1.0855

Word-align | Union N/A 0.7289| 0.6191| 0.6696| 1.1773

Word-align | Intersect| N/A 0.4852| 0.8877| 0.6275| 0.5466

Word-align | Grow N/A 0.6263| 0.7355| 0.6765| 0.8516

2 Word-align | G-D N/A 0.6767| 0.7127| 0.6942| 0.9496

Word-align | G-D-F | N/A 0.7320| 0.6704| 0.6998| 1.0918

Table 5.10: Iterative refinement results for Chinese-Ehglis

e C_Chunk_W: the source chunks that are aligned consistentl\Woyd-boost

And for each of them, we compared word le¥d of three chunk/phrase alignment
algorithms:SPA SPA(Top-10land Word-boost SPA(Top-10picks the oracle alignment

(alignment with the bed¥l) in the top-10 list from SPA.

Table 5.11 and Table 5.12 show word leel of the three aligners for Chinese-

English, and French-English and Figures 5.2 and Figurel®® shem in bar graphs.

For Chunk SPAandSPA(Top-10performs much better thaword-boosfor both lan-
guage pairs. This means th&brd-boostends to have a lot of non-one-to-one chunk align-
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Chunk type | Count Aligner Recall | Precision| F1 Len(M)/Len(H)
3718 SPA 0.6332] 0.6913 | 0.6610 0.9160
Chunk SPA(Top-10)| 0.9174| 0.8170 | 0.8643 1.1230
Word-boost | 0.8271| 0.4622 | 0.5930 1.7893
1752 SPA 0.7243| 0.7890 | 0.7552 0.9108
C_ChunkH SPA(Top-10)| 0.9584| 0.8968 | 0.9266 0.1069
Word-boost | 0.9080| 0.6950 | 0.7874 1.3064
2313 SPA 0.7141| 0.7631 | 0.7378 0.9357
C_ChunkW SPA(Top-10)| 0.9525| 0.8532 | 0.9001 1.1163
Word-Boost | 0.8634| 0.7286 | 0.7903 1.1850

Table 5.11: Chinese-English: Word alignment accuracy by, SR\ (Top-10) andVord-
boost

ments and returns all the linked target chunks for them. G&isses lower precision values
and consequently leads to lowet values. For the same reason, ttes(M)/Len(H)value
for Word-boosis much higher than those of the others.

For consistently aligned source chur®&sChunkH andC_ChunkW, Word-boosbut-
performsSPA But it performs worse thaBPA(Top-10Wwhich is an oracle alignment for
the top-10. It performs close ®PA(Top-10jor French-English while the differences are
larger for Chinese-English.

The results show that for consistently aligned source chord-boostperforms
much better thaisPAalthough it performs worse the®PA(Top-1Q)This leads us to use
Word-boosfor consistently aligned source chunks\Wprd-boosin translation. Note that
C_ChunkW is obtainable whileC_ChunkH is not. C_ChunkH is available only from a
hand-aligned corpus. On the other hand, @@intcolumns in both tables show that the
coverage with the consistently aligned source chunks dsopstantially. This means that
SPAshould play a very important role in finding translationstfug uncovered chunks.

Note thatSPA(Top-10js the oracle alignment in the top-10 list and % is higher
than that ofWord-boost This implies thatSPA(Top-10has the potential to outperform
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Figure 5.2: Chinese-English: Word alignment accuracy by,S®A(Top-10) andVord-
boost

Word-boosin translation.

Summary

To summarize, our new methdtford-boostimproves chunk alignment quality signifi-
cantly over our strong baselin®dord-map These improvements are consistent through
the different language pairs, Chinese-English and Fremgiigh. Furthermore, when we
use chunk alignment to help word alignment, we find significanprovements on word
alignment. These improvements are also consistent for®bihese-English and French-
English alignment.

We also compareword-boosto SPAand showed that it performs better for the con-
sistently aligned source chunks in alignment accuracys ghides us to us@/ord-boost
alignment for consistently aligned source chunk matché&saimslation.

In the next chapter, based on our chunk alignment analygsnwestigate a hybrid
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Chunk type | Count Aligner Recall | Precision| F1 Len(M)/Len(H)
392 SPA 0.4441| 0.6951 | 0.5420 0.6390
Chunk SPA(Top-10)| 0.6828| 0.8206 | 0.7454 0.8320
Word-boost | 0.4044| 0.4114 | 0.4078 0.9831
216 SPA 0.8202| 0.7820 | 0.8007 1.0489
C_ChunkH SPA(Top-10)| 0.9180| 0.8946 | 0.9061 1.0262
Word-boost | 0.9511| 0.8321 | 0.8876 1.1431
242 SPA 0.6107| 0.8113 | 0.6968 0.7527
C_ChunkW SPA(Top-10)| 0.7746| 0.9014 | 0.8332 0.8593
Word-boost | 0.6708| 0.9009 | 0.7690 0.7445

Table 5.12: French-English: Word alignment accuracy by SHPA(Top-10) and\Vord-
boost

translation system that us®¥¢ord-boostfor chunk-based translation and SPA for phrasal
translation.

95



B SPA W SPA(Top-10) [ Word-boost

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Alignment Accuracy F1

Chunk C_Chunk_H C_Chunk_W
Chunk Type

Figure 5.3: French-English: Word alignment accuracy by SHRA(Top-10) andMord-
boost
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Chapter 6
Chunk-Based translation

In Chapter 5, we detected chunks and aligned them in a pacaligls. In this chapter, we
describe how we use the aligned chunks in translation.

We first explain how we extract consistent chunk sequenaosltdons and assign them
feature scores to be used in translation.

We next investigate chunk fuzzy matching. as an effort tor@wae the unknown
chunk problem As mentioned before, we usually have a high&nawn unit rate for
chunks than for words because a chunk is a combination of om®e words. Although
the chunk fuzzy matching helps the unknown chunk problemstiliehave a significant
number of unknown chunks because the chunk fuzzy matchimgtisufficient to cover a
significant number of unknown chunks.

For this reason, we will eventually need the word/phrassetaCMU EBMT system
that provides translations for chunks that have very paamdiations or for which we
cannot find translations. We finally describe a system thatbtwes SPA with a chunk-
based translation system.
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6.1 Baseline system

By using the SPA phrasal aligner in the CMU EBMT system, we a@uesignificant
improvements in translation performance. Since then, we baen investigating further
approaches for continued improvement of the EBMT system 8RA. Naturally, we use
our CMU EBMT system with SPA as our baseline system in this werell.

6.2 Chunk-based system

6.2.1 Consistent chunk alignment

In the previous chapter, we investigated algorithms tanatigunks in parallel texts. How-
ever, the source and target sentence chunks we use are ectedah a synchronous way.
Therefore, as in word alignment, we have a lot of one-to-marany-to-one, and many-
to-many relationships between source chunks and targeksh&or this reason, we need
to find consistently aligned chunk sequence paias translation pairs using thefined
Methodthat Och and Ney (2003) used for phrase extraction. We expihé$ using the
version implemented by Koehn in Moses. We start with thergaetion of the two chunk
alignments adding new alignment points that exist in th@mmf two chunk alignments
and connecting at least one previously unaligned chunkt,Rire expand only to align-
ment points that are directly adjacent. We check for paa¢@iignment points starting
from the top right corner of the alignment matrix, checkiog &lignment points for the
first target chunk, then continuing with alignment pointstfte second target chunk, and
so on. We iterate this until we find no more alignment pointadd. In the final step, we
add non-adjacent alignment points the same requiremetitgivei exception of adjacency.

We collect all aligned chunk sequence pairs that are camistith the chunk align-
ment: Only the chunks in a legal chunk sequence pair areeigm each other, and not
to chunks outside. In our translation, if there is a partiatech from the source side of an

1The chunks in a legal chunk sequence pair are only aligneado ether and not to chunks outside.
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atomic legal chunk sequence pairswe do not use this chunk alignment because chunk
alignment is not consistent in such a case.

[0
=
o
)
"

[9M

buljjed w,
J9pJo ue jnoqge
S|aued pdj JO

Figure 6.1: Chunk translation sequence pair extraction

Figure 6.1 illustrates how thRefined Methodefines chunk alignment for machine-
detected chunks and how chunk translation sequence paiexaacted afterwards on a

2An atomic legal chunk sequence pair is a legal chunk sequeaicéhat does not include a legal chunk
sequence pair.
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Korean and English sentence pair. The transliteration @kibrean sentence is “[jeo] [,]
[aekjeongpaeneol] [joomoon e] [gwanhae] [jeonhwadeury@mdaeyo] [.]” which liter-
ally means “[well] [,] [lcd] [order to] [related/about] [amalling] [.] ®”. The black boxes
denote the intersection of Korean to English alignment amglieh to Korean alignment.
The gray boxes are the alignment points that are in the unibmdx in the intersection.
Three of them are added to the final alignment byRleéned Methodhethod. After align-
ment refinement is done, chunk translation sequence paiextiacted based on the align-
ment. The rectangular areas with thicker lines denote ttra@ed chunk translation pairs.
The phrase length limit (or the maximum match length in the HBdstem) can control
the extraction of pairs.

6.2.2 Chunk fuzzy matching

Hewavitharana et al. (2005) studied translation by sinsitairce sentences. By calculating
edit distance, they found similar source sentences. Torgen&arget translation hypothe-
sis, they inserted/replaced/deleted target words thatl@yeed to the edited source words.

We take a similar approach in our chunk fuzzy matching. bubtef finding similar
sentences, we find similar source chunks for unknown chunis input sentence.

i) office | Af24!]0.8

i) school | &1 | 0.9

iii) in the school | &t 0 | 0.45

iv) in the office | AtR24! 0f | (0.45/0.9)*0.8 = 0.4

Figure 6.2: Chunk pair generation

Figure 6.2 shows an example of how we generate a new chunkrpairthe chunk
pairs extracted by chunk alignment. Suppose that we alreadyed the chunk translation

3The Korean sentence is missing a subject. And there is aniertte Korean sentence chunking. [order
to] and [related/about] should be merged into one chunk. é¥ewthis error was resolved by consistent
chunk translation sequence pair extraction.
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pairsi, ii, iii and now we have a new chumkto translate. Although we do not have a
complete match for the source chunkmit is composable using already learned transla-
tion pairs and we can modify the target translation chunloatingly.

We use this approach when there is any chunk that does noahanatch for a given
source sentence to be translated. When an input senteneelis gie first analyze it into
chunks. Then for an unseen input chunkom the input sentence, we find a set of similar
source chunks' and their translations

S = {(fi,e)lfi €V,
fi ~ u,

p(eilf;) > 0}

from the training set. These similar source chufajkahich belong to the chunk vocabulary
V. of the training set, differ fronm by at most: words. In our experiments, we used-= 1
because we wanted to maximize the context similarity. Ireiothords, we prefer source
chunks that are different by one word so that the similar &hfigand the unknown input
chunku share more contexts.

After collecting a similar chunk;, we create a template from it by replacing the differ-
ent source word with a variable. The creation of this tengplatlone on the target side as
well by replacing the target word with a variable which igakd to the different source
word (i.e., in the target chund;, we replace the translational equivalent of the different
source word with the same variable as the source word vajiabl

(fi,e;) — (f,€})

19 1

Next, for the different source word i, we use a translation word dictionary to find
translational equivalents. With the translation word paive replace the variables in the
chunk translation pair templates to get chunk translatairsgor the unknown chuni.

(£, ;) = (u, )

R

The synthesized source chunks from the source chunk tessfilaire exactly the same as
the original unknown input source chuk However, the generated target chueksare
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novel, and these may be equally likely or unlikely to appeahe real world. If they are
realistic, we have a chance of acquiring a good translatiomgt, we should discard them
because of their potential to lower the translation qualityfilter out unrealistic generated
target chunks, we use a large monolingual language modeataldelate a language model
score for each target chureK and normalize it by the chunk length which is the number
of words in the chunk.

In this way, we can virtually expand our corpus and expectemmatches from the
corpus at translation time. Furthermore, by generatingklpairs from existing pairs, we
anticipate exploiting the context and reordering that istamed in the existing pairs as
well.

For better understanding, we explain this process agaim avitexample. For an un-
known source chunk?] 4 3}1} 2’ (guest-room one ACCUSATIVE),

e The system first retrieves similar source chunks througbtgubion and their trans-
lations from the consistently aligned chunk pairs. The boeds in Korean are dif-
ferent words in similar chunks and the blue words in Englishtheir translations

in the translation chunks.
54 3} 2 | choose dotel

HA] st S | took aletter
7}= vt = | acard
132 | aroom
e Next it generalizes them into templates using word alignniigks. It replaces the
different words with the same variable when they are difiefeom the same word
in the unknown chunk.
@13}} & | choose a @
@13} S | tooka @1
@l = | a@1l
@lstv = | a@1
¢ And it looks up the different word in the automatically dexivdictionary for word
replacement. The dictionary entries should be above atbles
| A4 | room | 0.3125000
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e With translation word pairs (dictionary entries), it req@a the variable and adds the
generated chunk pairs to the lattice if the target phrase¢dviesis above a threshold.
244 &} L | choose aroo
A4 3 & | took a room
A4 s & | aroom
A4 s 2 | aroom

e The new chunk pairs are given the feature scores of the @amelsng similar chunk
pair.

6.2.3 System integration

Figure 6.3 shows how the components are integrated to bahdiak-based system. When
an input sentence is given, the system takes following stefpe given order:

1. It finds chunk boundaries for the input sentence using aofimayual chunker.

2. It performs normal surface form matching over the tragnset for the input sen-
tence.

3. Itrecognizes chunk matches among all possible matchasibg the chunk bound-
aries found in step 1 and finds chunk translations for theitnateaalready stored in
its example-base. The system assigns chunk translatiahgdescores through the
SPA feature scoring functions and an additional featureititicates these transla-
tion are from chunk alignment. Finally, it puts the pairiatlattice.

4. For the chunks that do not have matches, it tries fuzzy mragc Successfully gen-
erated chunk translation pairs are added into the lattice.

5. It performs SPA on the remaining matches to find transiataf them.

6. The system uses chunk translations and phrase tramsl@iodecoding with a word
language model.
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Figure 6.3: System integration

When there is an input sentence, the system first finds chunkdaoies monolin-
gually. We use the same monolingual chunker that is useddafinnk boundaries for the
source side of the training data. This chunk boundary in&tion is then used in recog-

nizing chunk matches later.

Next, the system performs the same general surface formhingtover the training
set for the input sentence that the lexical CMU EBMT system dbles matches found in
this include both chunk matches and non-chunk matches.
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For the chunk matches, we look up the chunk translation tlaat built in the chunk
alignment stagé. Once a chunk translation is found, we put it into a latticethsat our
decoder can consider its use in the final translation.

For the unknown chunks (i.e., the chunks for which the systemld not find any
match in the training set), the system tries fuzzy matchiggirest a chunk translation
table which was built during the training time. Then high kijyagenerated chunk pairs
are added to the lattice.

For non-chunk matches or chunk matches with no translatibasystem invokes SPA
to find translation candidates for them and put the trarmsiatinto the lattice.

After adding all the translations of chunk matches and nwm& matches, the system
loads a chunk label language model and a lexical languagelntmdse in decoding.

In addition to SPA features, we add a feature to the lattie¢ itidicates whether the
translation was found by chunk alignment or not. The EBMT eystollects some more
feature values outside the aligner to be used in decoding.

Finally, the translation with the highest score is chosethadest translation hypoth-
esis. The score is calculated as a combination of featuuesatith their weights tuned in
a separate tuning process in a log linear model.

6.3 Evaluation

The chunk-based approach is potentially more beneficiahfdistant language pair. If
we have a very similar language pair in terms of sentencetsttes and word correspon-
dence, we have very accurate alignment, which gives highitgtranslation. However, if
we have a very distant language pair, it is much harder toaligrds due to lower sen-
tence structure agreement and word correspondence. Tawiatislation quality will be
much poorer. But those disagreements are less importantitkdével alignment because
sentence structures are much simpler at the chunk leve§@arde and target chunks have

4The extracted chunk translation pairs are annotated indhgle database in our implementation.
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higher correspondence than source and target words. Dheiiefve align chunks in a dis-
tant language pair and translate by chunks, we can obtatier ietnslation quality.

To evaluate this chunk-based translation approach, we use$&English and Korean-
English which are relatively distant language pairs andh&meEnglish which is a close
language pair.

Although Chinese is classified as an SVO language like Englishalso very different
from English in that it is a topic-prominent language, hgseas and mood patrticles, and
it requires a classifier in counting nouns. It also lacks afatorrespondents to English
function words. Therefore if we translate Chinese to Engbiglthunks, we are likely to
have benefit by including English function words that do renténtranslational equivalents
in Chinese in output translations. For example, the traiosiak equivalents of ‘a’, ‘an’
and ‘the’ do not exist in Chinese, and we may expect those todeegted in translation by
chunks.

Korean is also very different from English. Foremost amdrese differences, it is an
SOV language where a verb follows an accusative. It also &ses markers that are absent
in English, and it lacks some of the English functional worgsr example, it does not
have articles. Instead it uses numbers for ‘a/an’ and duefor ‘the’ or omits them. In
translation into English, some Korean case markers shatéinoved, and some English
articles should be inserted. For example, when we transateoo-sil yi’ into English,
which means ‘office NOMINATIVE’, we have to drop ‘yi’ and adchaan’ or a ‘the’ in
front of ‘office’ depending on the context. Moreover, wheerthis a correspondent for a
case marker, their positions are different. In English, eppsition comes before a head
word but its correspondent case marker in Korean followst#se word. For example, in
the ‘to the office’ and ‘sa-moo-sil |0’ translation pair, *tis located in front of its head
word ‘office’, but its correspondent ‘lo’ in Korean is locdtafter its head word ‘sa-moo-
sil'. Chunk-based translation can be helpful in this cadeoaltjh it does not fully resolve
the context recognition problem.

Since we think that this approach is most beneficial for liatically distant language
pairs, we chose the above two languages. However, althdweyhare both distant from
English, there is no significant similarity in their senterstructures. So this choice will
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show not only that our approach is useful for a single disemjuage pair, but also that it
works for distant language pairs in general.

We compare the chunk-based system with the CMU EBMT systemS®# in this
evaluation. We measured translation performance diftareamong:

e The best SPA
This is the best of cSPA-AmX and nSPA-AmX from Chapter 4.

e CCHUNK-AMX
This is a chunk-based system which is a combination of chlighraent and cSPA-
AmX. We added one more feature that indicates whether a phrasslation is by
chunk alignment or not.

e NCHUNK-AMX
This is a chunk-based system which is a combination of chigkraent and nSPA-
AmX. We added one more feature that indicates whether a @lrasslation is by
chunk alignment or not.

We also used Moses to compare with a state-of-the-art sy3Masmuse exactly the
same data with the same pre-processing in Moses for bothrigaand testing. Moreover,
to test the usefulness of the aligned chunks, we extraatedighunk pairs and add them
to a Moses phrase table. We run Moses on both the originabphedle and the chunk-
pair-added phrase table.

To compare their performances, we used BLEU as our evaluat&tnc because itis a
widely accepted metric in the machine translation comnyuie also provide METEOR
scores to see if the improvement is consistent across eliffenetrics. The METEOR was
set to use stemming and stemmed synonyms to evaluate parfoenbeyond exact match.

For significance test, we used Paired Bootstrap Resamplingoeyiik (2004b) with
n=1000.
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6.3.1 Data

For all the language pairs, we used the same training setseahdets described in the
evaluation in Chapter 4.

Table 6.1 describes Korean-English training data. In Koyé¢laey are an average of
6.5 chunks and 8.9 words long, and in English, they are arageesf 6.4 chunks and 9.5
words long. Chunks are 1.4 words and 1.5 words long on averal§erean and English
respectively.

sentences chunks | words
Korean| 28,034 | 182,549| 248,263
English| 28,034 | 178,540/ 266,583

Table 6.1: Training set for Korean-English

Table 6.2 shows the test sets for Korean-English. On avetlagsentences in the Dev
set are 6.3 chunks and 8.9 words long. The chunks are an avefrdgt words long. The
Unseen set also has an average of 6.3 chunks and 8.9 wordsdosgntence with chunks
an average of 1.4 words long.

sentences chunks| words | number of references
Dev 966 6,071 | 8,591 1
Unseen| 1,170 7,422 | 10,441 1

Table 6.2: Test sets for Korean-English

Table 6.3 shows the coverage of the training set on the tissirsiéorean. We calculate
word, chunk, and multi-word chunk coverages. First, we ate the word coverage to
determine the percentage of words that can be translateg asypical word/phrase-based
translation system. Second, the chunk coverage is cadécllatascertain what portion can
be translated by chunks. Finally, we measured the multdvabrunk coverage because
we are most likely to reap benefits by translating chunks whre longer than 1 word to
properly deal with word deletion and insertion as previg@siplained.
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word (%) chunk (%) | multi-word chunk (%)

type | token| type | token| type token
Dev 82.58| 94.53| 74.11| 86.23| 69.80 79.08
Unseen| 87.57| 96.09| 83.12| 92.48| 81.94 89.26

Table 6.3: Training set coverage for Korean-English

Table 6.4 describes Chinese to English training data. OrageeiChinese sentences
are 18.1 chunks and 26.8 words long with chunks composedboivdrds. And English

sentences are an average of 18 chunks and 33.9 words longhwittks composed of 1.8
words.

sentences chunks words
Chinese| 341,636 | 6,177,252 9,155,903
English | 341,636 | 6,419,184/ 11,571,835

Table 6.4: Training set for Chinese-English

Table 6.5 shows Chinese-English test sets. On average, ritenses in the Dev set
are 17.5 chunks and 46.7 words long. The chunks are an avefragg’ words long. The
Unseen set also has an average of 17.0 chunks and 45.9 woglpédo sentence with
chunks an average of 2.67 words long.

sentences chunks| words | number of references
Dev 919 16,083 | 42,946 4
Unseen 691 11,786 31,708 4

Table 6.5: Test sets for Chinese-English

Table 6.6 shows the coverage of the training set on the téstirs€Chinese. Word,
chunk, and multi-word chunk coverage are reported as irefa for Korean. The multi-
word chunk coverage is much lower for Chinese compared todfo{84.09% vs 69.80%
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on chunk type for the Dev sets). On average the covered chuenkes 2.22 words and
the uncovered chunks have 3.66 words in the Chinese Dev sstnidans our Chinese
chunker tends to find long chunks, which leads to low multrevohunk coverage. This
may be improved by looking at the chunked data to change chgskrategies for finding
shorter chunks.

word (%) chunk (%) | multi-word chunk (%)
type | token| type | token| type token
Dev 88.00| 96.24| 59.45| 81.83| 34.09 38.71
Unseen| 89.09| 95.88| 63.19| 82.50| 38.70 43.63

Table 6.6: Training set coverage for Chinese-English

Table 6.7 describes French to English training data. OregesiFrench sentences are
17.3 chunks and 30.5 words long with chunks composed of 1r8sv&nglish sentences
are an average of 16.0 chunks and 28.0 words long with chumtkpased of 1.7 words
long on average.

sentences chunks words
French | 300,000 | 9,143,101| 5,191,557
English| 300,000 | 4,814,544| 8,402,980

Table 6.7: Training set for French-English

Table 6.8 shows French-English test sets. On average, ttenses in the Dev set are
18.6 chunks and 32.2 words long and the chunks are an averdgé3onords long. The
Unseen set also has an average of 16.7 chunks and 30.0 worsisrpence with chunks
an average of 1.74 words long.

Table 6.9 shows the coverage of the training set on the testrsErench. The cover-
ages for the three types are comparable to those in the Ktesbsets.

In addition to the chunk-based system evaluation, we algestigate if the aligned
chunk pairs can help an SMT system for which we chose Mosesdd@ur chunk trans-
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sentences chunks| words | number of references
Dev 285 5,302 | 9,174 1
Unseen, 2,007 33,482 | 58,168 1

Table 6.8: Test sets for French-English

word (%) chunk (%) | multi-word chunk (%)
type | token| type | token| type token
Dev 97.93| 99.48| 85.00| 91.70| 79.95 83.16
Unseen| 91.38| 98.19| 69.34| 85.74| 62.45 73.41

Table 6.9: Training set coverage for French-English

lation pairs to the extracted phrase pairs found by Mosaghiab, we first pause the Moses
training process after step 5 and add our chunk translatns o the intermediate data
(extracted phrase pairs). Then we resume the training psoe@ that Moses can assign
feature scores to the chunk translation pairs as well. finak execute the Moses de-
coder on the phrase table generated by the above method.

6.3.2 Results and analysis

) Dev Unseen
Phrase Aligner # SPA alts on DeV
BLEU | METEOR | BLEU | METEOR
CcSPA-Am5 0.2468| 0.4687 | 0.2552| 0.4603 5
CcCHUNK-AM7 | 0.2480| 0.4709 | 0.2565| 0.4662 7
NCHUNK-AmM3 | 0.2456| 0.4654 | 0.2561| 0.4618 1.234
Moses 0.2203| 0.4323 | 0.2353| 0.4362 N/A

Table 6.10: Korean to English translation performance (BIMMETEOR)

Table 6.10 shows performance comparisons between ouifsgstem (CSPA-AmMb)
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and the new Chunk-Based EBMT, cCHUNK-AmM7. For both the developrset and
unseen set, cCCHUNK-AmM7 performs slightly better than theelias system. Our sig-
nificance test indicates that the improvements are notfgignt withp = 0.378 and

p = 0.318 respectively.

We also compared the Korean-English results with the pedioce of the Moses sys-
tem to see how closely the EBMT performs to one of the well knetate-of-the-art sys-
tems. To make them comparable, we trained the Moses systehe@ame data and set
the decoding parameters of both systems comparably. ieeysed the same values for
the corresponding parameters of the Moses system and the E3M&m. For example,
we used the same value for “distortion-limit” in the Mosestsyn and its corresponding
parameter “reorder-window” in the EBMT system. In Table 6th@ EBMT system out-
performs the Moses system for both Dev and Unseen mvith0.0001.

Aligner SPC | ASPL | ATPL | SNTPC
cSPA-Am5 Total 4,502| 149 | 1.64 0
NSPA-Am4 Total 4,447 149 | 161 263

Chunk 1616 | 1.38 | 1.45

0
cCHUNK-AM7 Chunk{P} | 922 | 1.66 | 1.80 0
Non-chunk 2932 | 153 | 1.64 0

Total 4548 | 1.48 | 1.57 0
Chunk 1215| 1.45 | 1.42 0
NCHUNK-AmM3 Chunk{P} | 764 | 1.72 | 1.67 0
Non-chunk 2848 | 1.72 | 1.74 78
Total 4063 | 1.64 | 1.65 78

Table 6.11: Korean-English selected phrase statisticedoding on Dev

Table 6.11 shows selected phrase statistics in decodinhislitable SPCdenotes Se-
lected Phrase CounSPL denotes Average Source Phrase LenglfPL denotes Av-
erage Target Phrase Length, @MW TPC denotes Selected Non-contiguous Target Phrase
Count.Chunk -{P} denotes that we did not count punctuation translations bykhlign-

112



ment.Chunkdenotes that the translation phrase pairs are from chugkraént,SPAde-
notes that the translation phrase pairs are from SPA alighraedTotal denotes all the
translation pairs. Since chunk translations include aflpumctuation translationswhich
can also be provided by SPA algorithms, we counted chunklatians excluding punctu-
ation translations ilChunk -{P}. When we compare cCHUNK-AmM7 and nCHUNK-AmM3
systems, we note that cCHUNK-AmM7 selected more chunk traostathan nCHUNK-
Am3, and the number of source words covered by chunk phradasger in cCHUNK-
Am7. This shows the use of cSPA leads the combined systenteict seore chunk trans-
lations and achieve better translation performance wiimth

) Dev Unseen
Phrase Aligner # SPA alts on DeV
BLEU | METEOR | BLEU | METEOR
cSPA-Am5 0.2423| 0.5242 | 0.1996| 0.4774 5
cCHUNK-AmMS5 | 0.2467| 0.5196 | 0.2020| 0.4795 5
NCHUNK-AmM5 | 0.2541| 0.5302 | 0.2059| 0.4885 1.295
Moses 0.2593| 0.5365 | 0.2070| 0.4974 N/A

Table 6.12: Chinese to English translation performance (BIMETEOR)

Table 6.12 shows the BLEU/METEOR scores for the Chinese téestiSer both sets,
the chunk-based system, nCHUNK-AmM5 demonstrates significgamovements over cSPA-
Am5 with p < 0.0001 andp = 0.027 respectively. Of note, NCHUNK-AmM5 is better than
cCHUNK-AmMS5, which is opposite to what we observed in Chaptdn4Chapter 4, con-
tiguous SPA was better than non-contiguous SPA, but in ¥ps@ment, when combined
with chunk translation, non-contiguous SPA is better thamtiguous SPA.

Table 6.13 shows selected phrase statistics in decodir@hioese-English translation.
In this table, SPCdenotes Selected Phrase Co&BPL denotes Average Source Phrase
Length,ATPL denotes Average Target Phrase Length,8NdPC denotes Selected Non-
contiguous Target Phrase CouBtunk -{P} denotes that we did not count punctuation

SForms of punctuation are also chunks according to our diegiimand they are aligned accurately by
the chunk aligner. This alignment information is storednia éxample-bases of the EBMT system. For this
reason, when an input sentence has punctuations, theyaastatted by chunk alignment.
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translations by chunk alignment. When we compare the SPABES(cSPA-AmS5 and
NSPA-AmM5) with CHUNK systems(cCHUNK-AmM5 and nCHUNK-AmMS5), weta that the
chunk-based systems selected longer phrases on averathierfore, when we compare
cCHUNK-AmM5 and nCHUNK-AmMS5 systems, we note that n"CHUNK-Am%es&td more
chunk translations than cCHUNK-AmM5 and that the averagetteofjthe selected chunk
phrases is much longer in N"CHUNK-AmMS5. This shows the use oAr&&ds the combined
system to select more chunk translations and achieves battslation performance. Also
of interest, the length ratio of target phrases over souncages is much larger by chunk
translations than by non-chunk translations. For examplaCHUNK-AmMS5, the ratios
are 1.23 and 1.09 by chunk translations and non-chunk atims$ respectively. Because
forms of punctuation were translated by chunk alignmentcammparedChunk {P} and
Non-chunk

For the Dev set, Moses performs the best, but for the UnseemGelUNK-AmM5
performs as well as the Moses system.

Aligner SPC | ASPL | ATPL | SNTPC
cSPA-Am5 Total 15,850| 1.41 | 1.57 0
NSPA-Am5 Total 16,005| 1.37 | 1.52 270

Chunk 2,763 | 1.15 | 1.30 0
cCHUNK-AmM5 Chunk{P} | 1,423 | 1.29 | 1.58 0
Non-chunk 12,831 1.50 | 1.64 0
Total 15,569| 1.44 | 1.58 62
Chunk 3,870 | 1.23 | 1.44 0
NCHUNK-AmM5 Chunk{P} | 2,455 | 1.37 | 1.69 0
Non-chunk 11,752 1.48 | 1.61 353
Total 15,607 1.42 | 1.57 353

Table 6.13: Chinese-English selected phrase statistiosaoding on Dev

Table 6.14 shows translation results for French-EnglistnoAigh both cSPA-Am5 and
NCHUNK-AmM4 perform worse than Moses, nCHUNK-Am4 demonsgateprovement
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) Dev Unseen
Phrase Aligner # SPA alts on DeV
BLEU | METEOR | BLEU | METEOR
CcSPA-Am5 0.2409| 0.5390 | 0.1924| 0.5368 5
CcCHUNK-AmMS | 0.2451| 0.5351 | 0.1925| 0.5224 5
NCHUNK-AmM4 | 0.2506| 0.5506 | 0.2040| 0.5545 1.303
Moses 0.2516| 0.5527 | 0.2102| 0.5511 N/A

Table 6.14: French to English translation performance (BINEETEOR)

over cSPA-Am5 on both Dev and Unseen with= 0.001 andp < 0.0001 respectively.

Aligner SPC | ASPL | ATPL | SNTPC
cSPA-Am5 Total 3,700 2.49 | 2.24 0
NSPA-Am5 Total 4,214| 2.16 | 1.95 147

Chunk 477 | 1.07 | 1.00 0
cCHUNK-AmM5 Chunk{P} | 285 | 1.12 | 1.00 0
Non-chunk 4,730 1.78 | 1.58 0
Total 5201 1.71 | 1.53 0
Chunk 474 | 2.01 | 1.87 0
NCHUNK-AmM4 Chunk{P} | 373 | 2.28 | 2.11 0
Non-chunk 3,433| 2.41 | 2.15 105
Total 3,903| 2.36 | 2.11 105

Table 6.15: French-English selected phrase statisticedénding on Dev

Table 6.15 shows selected phrase statistics in decodirfgémch-English translation.
In this table, SPCdenotes Selected Phrase CoPL denotes Average Source Phrase
Length,ATPL denotes Average Target Phrase Length,8NdPC denotes Selected Non-
contiguous Target Phrase Couthunk -{P} denotes that we did not count punctua-
tion translations by chunk alignment. When we compare the 8Rtems (cSPA-Am5
and nSPA-Am5) with CHUNK systems(cCHUNK-AmM5 and nCHUNK-AmM&)e note
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that the chunk-based systems selected longer phrases @gavAnd when we compare
cCHUNK-AM5 and nCHUNK-AmM4 systems, f&hunk -{P}, we note that nCHUNK-
Amb5 selected more chunk translations than cCHUNK-AmM5 and ttieaverage length
of the selected chunk phrases is much longer in nCHUNK-AmM4s $hows that the use
of NSPA leads the combined system to select more chunk &taos$ and achieves better
translation performance.

Table 6.16 reports the portions of phrasal translations dh& chunk translations in
decoding. The portions of chunk translations are about®8557.7%, and 9.2% in the
Korean to English, Chinese to English, and French to EndhlisiDiev set translation tasks
respectively. We notice that the portion is the highest ing&n to English translation, and
the lowest in French to English translation. We think thibéxause of the ratio of the
words that do not have translational equivalents. In othede; chunk translation is more
critical to Korean to English translation in order to prdgetteal with the multitude of
words which do not have translational equivalents whilentttuanslation is less important
in French to English translation due to better word alignnaecuracy.

Language Pair Set | Phrasal TranslationsChunk Translations %
Dev 4,548 1,616 35.5

Kr-En
Unseen 5,333 1,472 32.7
Dev 15,569 2,763 17.7

Cn-En
Unseen 11,343 2,288 20.2
Dev 5,201 477 9.2

Fr-En
Unseen 32,288 3,641 11.6

Table 6.16: Chunk translations used in decoding

Figure 6.4 shows an excellent actual translation examplevifidich chunk translation
was beneficial. In the baseline system, the Korean nommatige marker was translated
to ‘the’ in English although it should be dropped or transtato ‘I’ together with the
Korean word ‘na’. But in the chunk-based system, the Koreamkfconsisting of ‘na’
and the nominative case marker was translated into the &ngftiunk ‘I’ correctly.
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GLOSS: I NOM travel ACC do to am
Transliteration: na neun yeohaeng eul hal geos ida

| am going to take a trip . the

Translation by cSPA-Am5

GLOSS: I NOM travel ACC do to am
Transliteration: na neun yeohaeng eul hal geos ida

T TR N N N A

[I] am going to take a trip [~]

Translation by cCHUNK-AmM7

Figure 6.4: Translation example by cCHUNK-AmM7

Chunk pair generation

As shown in Tables 6.3, 6.6, and 6.9, there are many unknowt-ward chunks. We

investigate if chunk translation pair generation can helpglation.

For the Korean Dev set, we have 830 OOV chunks and 193 churilaf them con-
sist of three or more words From the extracted chunk translation pairs, we find similar
chunks’ for 135 chunks out of the 193 chunks with a phrase (chunk}tagion probabil-
ity threshold of 0.1. Sixty-seven in the 135 different woads of the 135 chunks are iden-
tified to have a translation word in a word translation diectioy with a threshold of word

6\We use the OOV chunks that are at least three words long tomisxicontext similarity.
"We define a similar chunk to be different by one word from th€©&V chunk.
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translation probability 0.2, which was empirically choseith regard to the dictionary.
Finally, by applying a language model probability threshof 0.0001 for the generated
target side, we filter out the generated chunks that arekeylto appear in the real world
and obtain chunk translation pairs for the OOVs in 21 out ef366 sentences.

We also assess the approach for Chinese to English tramsl&¥e apply the same
threshold values and generate chunk translation pairsSfoutiof 230 sentences.

Table 6.17 records the development scores in BLEU for botluage pairs. Although
we cannot claim statistically significant improvementshtwstich a small number of sen-
tences, we think it may be meaningful that we had improverf@niboth language pair
cases, particularly because our results indicate a pedsiprovement in a case where we
have many unknown chunks.

Lang. Piar EBMT(Chunk) | EBMT(Chunk) w/ Generation
Korean-English (21 sentences) 0.1696 0.1780
Chinese-English (49 sentences) 0.2755 0.2817

Table 6.17: Chunk translation pair generation results

Chunk translation pairs for Moses

We investigated whether our chunk translation pairs cap adthrased-Based SMT sys-
tem in Korean-English and Chinese-English translation. W&se Moses as the PBSMT
system since it works on phrase pairs and is consideredeaditdlhe-art system. To com-
bine chunk translation pairs and Moses phrase pairs, wendppechunk pairs to extracted
Moses phrase pairs before the phrase score calculatioastbpt they are assigned Moses
feature scores in the same way. As in Table 6.18, the imprem&nn Korean-English are
statistically significant for botiDevandUnseensets. In the Chinese-English translation,
the improvement fonseens significant although it is difficult to demonstrate thersfg
icance of the improvement f@ev.

We added all the chunk translation pairs to Moses in Korelagligh, but in Chinese-
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Dev Unseen
BLEU | METEOR | BLEU | METEOR

Lang. Pair| System

Kr-En Moses 0.2203| 0.4323 | 0.2353| 0.4362
Moses w/ chunks 0.2282| 0.4459 | 0.2408| 0.4455
Moses 0.2593| 0.5365 | 0.1938| 0.4930
Cn-En

Moses w/ chunks 0.2605| 0.5406 | 0.2051| 0.5048

Table 6.18: Improvements in Moses with chunk translatiarspa

English, the results were the best when we added chunk &teorsbpairs with frequency
three and higher.

This means that we should exercise caution when filterindgpsutjuality chunk trans-
lation pairs depending on the training set size. Table 6H@vs the phrase table size
changes after we added the chunk translation pairs to thedjuwase tables. In this table,
#PP denotes number of phrase pa#§Pdenotes number of unique source phrases and
#WTdenotes number of word types. For both language pairs, theotiedded new source
phrases and words and the added amount is relatively srivatlee Chinese-English case.
We think this is because the training set is much larger thahdf the Korean-English
case. A larger training set led to better word alignmentsamsequently helped in build-
ing a better phrase table. In other words, the Korean-Bmgilggning set was very small
and Moses built a low quality phrase table because word mkgns were not accurate.
So, even less accurate chunk translation pairs were hetpfiois case.

Overall, the results show that we can improve Moses by adzhnefully chosen chunk
translation pairs.

Summary

To summarize, firstly, the chunk-based system shows significnprovements over our
baseline EBMT system that uses SPA for phrasal alignmentdlfof the three language
pairs of Korean-English, Chinese-English and French-Bhgli
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Dev Unseen
#PP #SP | #WT | #PP #SP | #WT

Lang. Pair| System

Kr-En Moses 11,040 | 4,140 | 1,683 | 12,492 | 4,918 | 1,926
Moses w/ chunks 12,492 | 4,598 | 1,781| 15,819 | 5,392 | 2,016
CnEn Moses 330,951 15,599 4,226 | 321,083| 13,330 3,562

Moses w/ chunks 337,546 15,619| 42,33 | 327,665| 13,339 3,563

Table 6.19: Moses phrase table size

Secondly, the chunk translation pair generation helpedried! amount of input data.
However, because the number of affected sentences is tdg srmaannot sufficiently
demonstrate the statistical significance of the improventut we suspect the possibility
of potential improvement where we have a significant porbdbrunknown multi-word
chunks.

Finally, chunk translation pairs identified by our chunlgalinent algorithm helped a
statistical machine translation system, Moses in this exyant. By using carefully chosen
additional chunk translation pairs, we were able to imprblases for Chinese-English
and Korean-English translation.

6.3.3 The effect of ideal chunking

Table 6.20 shows some example sentences chunked by diftdrenkers®. The Korean
sentence were chunked by a human to show an ideal chunkirgramallowed by glosses.
The corresponding English sentences were chunked by tiereht chunkers®, and
Ep. When we ran the two English chunkers on the Korean-Englahiig set, 10,741
English sentences were chunked differently by them whietbaut 38.3%. Note that this
difference is on short sentences and if we apply them on losgetences, we will have

8NOM denotes nominativeQUA denotes quantativédCCU denotes accusativASK denotes a ques-
tion case marker an@OPIC denotes a case marker for topic. Numbers in parenthesigigltsses mean
that the word corresponds to as many words in Korean as theerum
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even more differently chunked sentences.

Chunking errors: The chunking is different due to mainly wrong chunking by a
chunker. In our examples, the chunkEy produces more wrong chunks compared to
the chunkerE'z. For example, the chunké?, malfunctioned by combining two chunks
in “at+the+hotel+last+night” and “a+plane+slides” in gamce 98 and 113 respectively,
not combining multiple words into one chunk in “a one-wayd, sightseeing train” and
“about how much” in sentence 107, 114 and 127 respectivalyodigh the chunkeE's
chunked “to+new york” and “about how+much” wrong in sentedd 8 and 127 respec-
tively, it produces fewer errors in our examples. Chunkinghmr corresponding Korean
sentences clearly shows that these errors are not desbabéeise they hurt correspon-
dence’.

Bilingual chunking: In our example, the chunking errors shown above may be over-
come to some degree if they are provided with a good algonilmeh involves phrase
detection and takes into account good chunking on the o#tmguage. For example, “to
new york” and “about how much” can be chunked correctly byking at the correspond-
ing Korean sentences.

Structural problems: Sentence 123 shows a structural problem in chunking caused
the structural difference of the two languages. The Kordéamks “delayedor route+ACCU
change+do+may(2)” is only meaningful when it is alignedhe English chunks
“may+be+delayed+or+forced to+re-route”. There is no @nene mapping between those
two parts. In this case, we have to use the Korean chunks asitie translation, but this
in turn causes lower coverage.

In these observations, the chunkég gives lower chunking errors and better corre-
spondence to Korean chunks, given that the Korean side iskelduideally. It may also
be possible that having bilingual chunking adjustmentshanking may reduce chunk-
ing errors. From these examples, it is not difficult for onesé@ that erroneous chunk-

9For sentence 107, combining “a one-way” into a chunk hurtallchunk correspondence because the
corresponding Korean words are chunked into two chunkse Yeany+ticket” and “1-QUA’. However, be-
cause the English word “a” is not a good translation of thegdg&orchunk “1-QUA", splitting “a” and “one-
way” in the English sentence is not good chunking.
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ing hurts correspondence and, consequently, transldhaour experiments for Korean-
English translation, we used the chunk&r which yields more chunking errors because
we were not aware of the chunkBg when we started the experiments. It may be possible
that we can achieve better translation performance witicthumker £z as our English
chunker.
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ID | Chunker| Chunked sentence pair
H o] A RH+o] Z+Z H+of] E+0] Tt
98 last night-in that+hotel+at fire+NOM brokeut .
Ea atfire broke out at+the+hotel+last+night .
Ep a+fire broke out at+the+hotel last+night .
H M AE+T 1+3 FA L.
107 seoul oneway+ticket 1+QUA giveme please .
Ey a one-way to+seoul , please .
Ep a+one-way to+seoul , please .
H H| 3 7]+0] =+9+= EF30t.
113 plane+NOM water+over+ACCU slides .
E4 a+plane+slides over+the+water .
Eg at+plane slides over+the+water .
H HAFEA] ?
114 sightseeingrain ASK ?
Ex a sightseeing train ?
Eg atsightseeing+train ?
H FE+7HA] 1+% FAA L.
118 new.york+to 1+QUA giveme please .
E, a+tticket to+new+york , please .
Eg a+ticket to+new york , please .
H o+ o 2+7tA+ol -+ & A A H A o H+5 vHH oD+ =490 T
123 trip+NOM various(2)+reason+for delayex route+ACCU change+do+may(2) .
Ey a+trip may+be+delayed or forced to+re-route for+varioessons .
Ep a+trip may+be+delayed+or+forced to+re-route for+vasine@asons .
H | 2+5@+7A+E 23+0] tfe+dutE 91712
127 that+hotel+to+TOPIC fare+NOM about+howuch is ?
Ey about how much is the+fare to+the+hotel ?
Exp about how+much is the+fare to+the+hotel ?

Table 6.20: Different chunking for Korean-English
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Chapter 7

Conclusions

7.1 Conclusions

This work contributes significantly to the field of corpussbd machine translation.

Firstly, SPA improved the translation quality of the CMU EBMyistem. Before this
work, the CMU EBMT system used a heuristic phrasal alignerctwigimployed binary
correspondence between source words and target wordsetonile¢ a target translation
phrase given a source phrase. It used all the sub-phrasée tdrigest possible target
phrase that completely include the shortest possiblettatyase as candidates based on
the binary correspondence and returned the one having ¢iedti heuristic score as a
translation. Cognizant of the recent strides in the SMT fielel wanted to use a more so-
phisticated score calculation method instead of the hisziose. Our new phrasal aligner
SPA gave us statistically significant improvements in ti@ien quality. In our small
French-English translation experiments, it gave us28% improvements in BLUE score.

Secondly, the state-of-the-art external word alignmehgdteSPA. In our experiments
we used Moses word alignment as external word alignmenttdmelped the SPA in two
ways. First, it helped SPA in determining a target range frehich SPA draws target
translation candidates. For Korean-English and Chineggidbnwhich are distant lan-
guage pairs, SPA performed better in translation with @iget range than a proportion-
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ally determined target range which assumes that the soncttagget languages have the
same word orders. Secondly, the external word alignmeelf igas a good translation

candidate. When we made SPA return the external word alighasetie best target can-
didate phrase along with other derived target candidatagels; the EBMT system per-
formed significantly better for all three language pairs.

Thirdly, non-contiguous SPA (nSPA) did not perform bettart SPA (cSPA) except
for the French-English Unseen set. Moreover, for Chinesgigin it performed signif-
icantly worse. The nSPA returned less than 1.5 translatonlidates on average which
gave lower coverage. However, nSPA is more than 10 timesrfestranslation time which
includes both alignment and decoding time because its semace is much smaller by
investigating only includable/removable words. Impotitgrwhen there are a lot of in-
cludable/removable words, the system can become very stoause it investigatex™
candidates. This slowing did not occur in our experimentgiwikised a setting of maxi-
mum source phrase length being 7.

Fourthly, chunk alignment was better when it used both chpaikstatistics and word
pair statistics than when it used only one of the two. Afteestigating SPA we moved
to exploring the benefits of using chunks as basic translatiots. To investigate chunk
translation in the EBMT system, we first investigated chungramhent. We developed
a chunk alignment algorithm that boosts a chunk pair aligrtmaéhen included source
and target words are aligne@d/¢rd-boost This was better than when we simply aligned
a chunk pair when there is a word alignment liznkgrd-map and when we regarded a
chunk as a unit in alignment by concatenating all the words echunk and aligned them
(Baseling. Then we recognized consistently aligned chunk sequeaice o use in trans-
lation. When we restricted alignment evaluation to consistealigned chunk sequence
pairs,Word-boostwvas better than SPA phrasal aligner. However, because #ssmarse
than the SPA aligner with top-10 candidates (SPA-(Top-1®PA can potentially perform
better thanNord-boost

Fifthly, chunk-based translation improved translatioralgy when used with SPA.
When we combinedVord-boostwith SPA or non-contiguous SPA, it performed better
than SPA and nSPA. The best performing variants had tramslgtiality improvements
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over the best performing SPA and nSPA. The improvements signdicant for Chinese-
English and French-English, but slight for Korean-Engli€}f note, chunk alignment
worked better when it was combined with nSPA than cSPA athooSPA performed
worse than cSPA. Our analysis showed that more longer chianklations were selected
when we combined it with nSPA, which is not surprising beeanSPA is more likely
to return non-contiguous alignment for longer source prsaghich have lower language
model scores and thus are hard to be selected by the decatleloths not interlock non-
contiguous target phrases.

Sixthly, chunk alignment can provide useful chunk transhapairs to PBSMT. We
added consistent chunk translation pairs to a Moses phaiate Moses performed better
when we added the chunk pairs. However, we had to apply autditefring mechanism
to discern convincing translation pairs and include ongnth

Finally, our goal was to attain a 5% relative improvement amdalmost achieved it.
Table 7.1 shows our achievement. For the baseline systenompare with, we picked
cSPA-mlwhich is the worst performing SPA variant because we did avttthe perfor-
mance results for the original heuristic aligner for theegattest sets we used. Because
cSPA-m1s better than the heuristic aligner, our achievementsheileven higher against
the heuristic aligner. As the best performing chunk-basedesn CHUNK), we used
cCHUNK-Am7for Korean-EnglishhnCHUNK-Am5for Chinese-English andCHUNK-
Am4for French-English. Our achievements are huge for Koreaglih and Chinese-
English with 11.06% and 27.05% improvements in BLEU. Intengdy, the achievement
is larger for BLEU than METEOR. This is because BLEU tends toiod#ehigher BLEU
score by having higher precision compared to METEOR whiclglte 9 times more on
recall.

7.2 Future work

The following topics merit further investigation.

Firstly, more features in SPA can be developed for the piiggibf improving the
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BLEU METEOR
cSPA-m1| CHUNK Imp. cSPA-m1| CHUNK Imp.
Korean-English| 0.2231 | 0.2480 | +11.16%| 0.4400 | 0.4709 | +7.02%
Chinese-English 0.2000 | 0.2541 | +27.05%| 0.4787 | 0.5302 | +10.76%
French-English | 0.2378 | 0.2506 | +5.38% | 0.5384 | 0.5506 | +2.26%

Lang. Pair

Table 7.1: Improvements achieved

system. Specifically we would investigate word collocaseore. For that we would learn
word collocation scores and use them for source phrasesiaget phrases. Given a source
phrase and a target translation candidate phrase, if thesiage collocation scores are very
different, they are less likely to be a good translation.paithis case, we assumed that, in
a good translation pair, average source word relationsidmserage target word relation-
ship are similar and we can use the word collocation scoresetasure the relationship.
Orliac and Dillinger (2003) extracted collocations basedwaes using grammatical fea-
tures and semantic contexts and Liu et al. (2010) learndooation scores on word tokens
tweaking IBM models. In our case, we can deploy Liu et al. (36I0ethod to learn word
collocations because it does not require additional lisiguinformation. Given a source
phrasd = f.ijl’“ = fis1, .-, firx, We can calculate a collocation scaré (f) as following:

7

Z(fm,fn)eP Collocation_score( fum, fn)
| P|

CL(f) = (7.1)

whereP = {(fn, fu)li +1 <m <n <i+k}

Secondly, using word links directly iiMord-boostwould also be of interest. In our
work, we calculated word translation probability from therd alignment and used it
in the formula 5.5. This time, in addition to boosting chunkpping counts by word
translation probability, we could boost chunk mapping ¢@again by the average of word
link score. For example, we can assign a value of 1 to a linkexdlyair and a value of
0.5 to an unlinked word pair and calculate average word lotkesin a chunk pair.

Thirdly, detecting/filtering out noisy chunk translatioaigs in the EBMT system could
be beneficial. We observed that filtering out noisy/less/taing pairs is helpful when we
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added chunk translation pairs to the Moses system. For the szason, we think this will
be helpful for the EBMT system as well.

Fourthly, we have only initial results for fuzzy chunk mataip The data set we used
was very small, and there were not many generated chunksgfget because we used only
substitution in similarity calculation. If we use word imgen/deletion as in Hewavitharana
et al. (2005)’'s work, we could generate more chunks. Also djysting thresholds for
phrase translation score, word translation probabilitg Bnguage score, we could see a
different result.

Finally, we could use METEOR as our tuning objective functids it turned out that
METEOR is a better objective function than BLEU for 1 referesets for tuning by He
and Way (2009) and our Korean-English and French-Englishdets have 1 reference
translation, it will be of interest to tune our parametensMETEOR and see if the im-
provements are consistent.
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Appendix A

Korean to English Translation Examples

In this appendix, we compared some translation examplesEBMT(SPARNdEBMT(Chunk)
Chunks in the source sentences are wrapped with brackets.thiitthere are errors in
this automatic chunking.

In the example of Table A.1;2 & o] £’ was translated to ‘the sea this summer’ in
EBMT(SPAWhile ‘1 £’ and ‘& o]&’ were translated to ‘she’ and ‘this summer’.
Note that the Korean chunker spli&”’ and ‘o] &’ mistakenly, the chunk aligner made
them to be translated together.

Source Ey 2] [=][AE5][+3 2] [A1F A []

Gloss [she NOMINATIVE] [this] [summer] [europe ACCUSATIVElrpveled] [.]
EBMT(SPA) she traveled through europe . the sea this summer

EBMT(Chunk) she traveled through europe this summer .

Reference she traveled in europe this summer .

Table A.1: Translation Example

In the example of Table A.2;2’ was erroneously translated to ‘they’ IBBMT(SPA)
while ‘721 2’ was translated to ‘she’ bBMT(Chunk)

In the example of Table A.3¢]" was translated to ‘been’ bgBMT(SPAWwhile ‘<=
< o]’ was translated to ‘what’ bEBMT(Chunk)
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Source Y 2][eld el [ekotoH [E4] ZET []

Gloss [she NOMINATIVE] [where at] [sit-down] [to do-not-kmv] [.]
EBMT(SPA) they do not know where to sit down . she

EBMT(Chunk) she does not know where to sit down .

Reference she does not know where to sit down .

Table A.2: Translation Example

Source BIILI[F< & ol [ A= (7]

Gloss [why] [,] [what matter NOMINATIVE] [happened-QUESDN] [?]
EBMT(SPA) why , what happened ? been

EBMT(Chunk) why , what happened ?

Reference why , what happened ?

Table A.3: Translation Example

In the example of Table A.4;2’" was translated to ‘i' byEBMT(SPAWwhile ‘1 2’
was translated to ‘he’ bgEBMT(Chunk)‘ % 2] 3} 7" is an unknown token.

Source 212 [QAASA][AA =] [ [

Gloss [he NOMINATIVE] [very] [seriously] [letter ACCUSATIVIE[wrote] [.]
EBMT(SPA) I wrote a letter . he is a real

EBMT(Chunk) he wrote a letter . really

Reference he wrote a letter in all seriousness .

Table A.4: Translation Example

In the example of Table A.5, although the translatio®28MT(SPA)s good and closer
to the reference, the translation BBMT(Chunk]s also legitimate.

In the example of Table A.6, although both translations sdiuent except the second
‘it’, the translation byEBMT(Chunk)makes more sense.

In the example of Table A.7, although both systems have @seatevel BLEU scores,
EBMT(Chunk)has more possibility for improvement by translating ‘21 ©] 2’ to ‘can
i have’. In this case, chunking for the Korean sentence iggood but consistent chunk
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Source Pl =2 o] [AA et =] [oll Fstaz] [As5 YT [

Gloss [this weekend on] [room one ACCUSATIVE] [reserve] [wémit|.]
EBMT(SPA) i 'd like to make a reservation for a room on weekend .
EBMT(Chunk) i’d like to make a reservation for a single roomheg €nd of this week .
Reference i 'd like to book a room for this weekend please .

Table A.5: Translation Example

Source R oA [o] 2 7HA [ [LuhH [ 231 Y2] [?]
Gloss [home from] [this place to] [to-come] [how-long] [RdQUESTION] [?]

EBMT(SPA) how long does it usually take it from here to the heofas
EBMT(Chunk) how long does it usually take it to this place from home ?
Reference how long does it take to get here from your home ?

Table A.6: Translation Example

alignment overcame it to some degree.

Source REllvs A [AZN[Z] [ IRAA [N [Z] [ [ [ ][]

Gloss [today] [later at] [there] [gO] [to] [to-be-able] ervation] [please] [make] [to] [be-able
EBMT(SPA) today there later reservation , please ? can yoblect@

EBMT(Chunk) be able to get there on today can i have a reservafilease ?

Reference can i make an appointment for later today ?

Table A.7: Translation Example

In the example of Table A.&EBMT(SPAhas an alignment error to include ‘operating’
while EBMT(Chunk)could not deal with ‘is’ and “m’ properly when ‘he is’ was cken
as a translation of”Z 2’ by the chunk aligner erroneously.

In the example of Table A.EBMT(SPA)erroneously translated®’ to 'the’ while
EBMT(Chunk}ook it as a part of t} 2’ and translated into ‘i’

In the example of Table A.104 7] 7 <’ was better translated to 'at the station’ by
EBMT(Chunk)
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Source [ 21 [N A9 [A 2 ofl] [ = stA] [eFors] [
Gloss [he NOMINATIVE] [this] [area] [ways at] [good] [be-id.]
EBMT(SPA) he is not used to operating this area .

EBMT(Chunk) he is not ’'m used to this area .

Reference he is not familiar with this area .

Table A.8: Translation Example

Source H 21043 =] [21[A e []

Gloss [i NOMINATIVE] [trip ACCUSATIVE] [do] [to be] [.]
EBMT(SPA) I am going to take a trip . the

EBMT(Chunk) iam going to take a trip .

Reference i 'm going to make a journey .

Table A.9: Translation Example

Source T2 [RF & [ A% A [Py [

Gloss [many] [friend PLURAL NOMINATIVE] [station at] [camés-see] [.]
EBMT(SPA) the station is a lot of friends .

EBMT(Chunk) at the station is a lot of my friends .

Reference many friends came down to see me at the station .

Table A.10: Translation Example
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