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Abstract 

Since the inception of AI research, great strides have been made towards 
achieving the goal of extending natural language conversation as a medium of 
interaction with machines. Today, we find many Conversational Agents (CAs) 
situated in various aspects of our everyday life such as information access, education 
and entertainment. However, most of the existing work on CAs has focused on agents 
that support only one user in each interactive session.  

On the other hand, people organize themselves in groups such as teams of co-
workers, family and networks of friends. With the mass-adoption of Internet based 
communication technologies for group interaction, there is an unprecedented 
opportunity for CAs to support interactive situations involving multiple human 
participants. Support provided by these CAs can make the functioning of some of 
these groups more efficient, enjoyable and rewarding to the participants. 

Through our work on supporting various Multi-Party Interactive Situations 
(MPIS), we have identified two problems that must be addressed in order to embed 
effective CAs in such situations. The first problem highlights the technical challenges 
involving the development of CAs in MPIS. Existing approaches for modeling agent 
behavior make assumptions that break down in multi-party interaction. As a step 
towards addressing this problem, this thesis contributes the Basilica software 
architecture that uses an event-driven approach to model conversation as an 
orchestration of triggering of conversational behaviors. This architecture alleviates 
the technical problems by providing a rich representational capability and the 
flexibility to address complex interaction dynamics. 

The second problem involves the choice of appropriate agent behaviors. In MPIS, 
agents must compete with human participants for attention in order to effectively 
deliver support and interventions. In this work, we follow a model of human group 
interaction developed by empirical research in small group communication. This 
model identifies two fundamental processes in human group interaction, i.e., 
Instrumental (Task-related) and Expressive (Social-Emotional). Behaviors that 
constitute this expressive process hold the key to managing and regulating user 
attention and serve other social functions in group interaction. 

This thesis describes two socially capable conversational agents that support 
users in collaborative learning and group decision making activities. Their social 
capabilities are composed of a set of behaviors based on the Social-Emotional 
interaction categories identified by work in small group communication. These agents 
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demonstrate the generalizability of our methodology for designing and implementing 
social capabilities across two very different interactive situations. 

In addition to the implementation of these agents, the thesis presents a series of 
experiments and analysis conducted to investigate the effectiveness of these social 
capabilities. First and foremost, these experiments show significant benefits of the 
use of socially capable agents on task success and agent perception across the two 
different interactive situations listed above. Second, they investigate issues related to 
the appropriate use of these social capabilities specifically in terms of the amount and 
timing of the constituent social behaviors. Finally, these experiments provide an 
understanding of the underlying mechanism that explains the effects that social 
capabilities can achieve. 
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Chapter 1  
 
Introduction 
 
 

1.1 Conversational Agents 

Human Society has used conversation as an efficient, reliable and adaptive means 
of exchanging knowledge. One of the earliest grand challenges of artificial 
intelligence has been to extend this conversational medium to interactions with 
automated participants like computers or robots. We refer to these automated 
participants as Conversational Agents (CAs) or simply as Agents hereon. 

Agents are autonomous interfaces that extend Conversation (spoken or text-
based) as a medium of interaction with machines. A large number of such agents 
have been built and experimented with over the last three decades in a variety of 
interactive situations. Specifically, a number of agents have been developed and 
deployed for information access applications. They are also an extension of a history 
of interactive voice response systems (IVRS) and are commonly also referred to as 
spoken dialog systems. Some of the agents deployed in commercial / public use 
include: Amtrak Julie, AT&T How May I Help You (Gorin et. al., 1997), CMU Let’s 
Go (Raux et. al., 2005) and Siri Virtual Personal Assistant. A much larger number of 
such agents have been developed in laboratories, some of which have been deployed 
publicly for academic study and evaluation purposes. Some examples of such agents 
include NJFun (Litman et. al., 2000), ConQuest (Bohus et. al., 2007a), Project54 
(Kun et. al., 2007), AthosMail (Turunen et. al., 2004), Trains/Trips (Allen et. al., 
1996), Clarissa (Rayner et. al., 2005), etc. 

 Another application of CAs which has been extensively researched is 
automated tutoring. Various research groups have developed agents in a variety of 
domains including reading (Aist and Mostow, 2009), algebra (Patel et. al., 2003), 
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geometry (Aleven et.al., 2001), calculus (Murray et. al., 2001; Callaway et. al., 2007), 
physics (Rosé et. al., 2001a; Litman and Silliman, 2004; Jordan et. al., 2006; 
VanLehn et. al., 2007), computer literacy (Graesser et. al., 2003), programming (Lane 
and VanLehn, 2004), foreign languages (Johnson, 2007), research methods (Arnott 
et. al., 2008) and thermodynamics (Rosé et. al., 2006). Many evaluations show that 
CAs can be effective tutors (Arnott et. al., 2008; Kumar et. al., 2007a; Graesser et. al., 
2005). 

Other common applications of CAs include customer support (NoHold), 
translation assistance (Nallasamy et. al. 2008), entertainment (Foner, 1997; 
A.L.I.C.E.), marketing (Cassell et. al., 1999), navigation (Edlund et. al., 2004), 
security (Pakucs and Melin, 2001), therapy (Bickmore and Cassell, 2001; 
Weizenbaum, 1966; Ferguson et. al., 2009), personal assistance (Siri), etc. Dan Bohus 
and Staffan Larsson maintain a listing of several spoken dialog systems on their 
websites1.  

Several commercial products and platforms (Nuance Café, Voxeo) are publicly 
available which have made development tools for agents for simple task domains 
easily accessible to a large number of developers using standardized frameworks like 
VoiceXML. Besides the mass availability and presence of these agents/systems, the 
Loebner Prize, an annual competition to evaluate a class of CAs continues to 
contribute to the popularity and wide-spread interest in these conversational agents. 

However, despite their popularity and presence in the real world, most of the 
work on creating CAs over the last five decades has focused on agents that can 
engage in interaction with a single human user. More recently, there is an emerging 
interest in building agents that can be one of the many human and automated 
participants in interactive situations. 

1.2 Multi-Party Interactive Situations 

Everyday, we participate in interactive situations involving two or more people. 
These multi-party situations are as common as sharing a meal with friends and family 
to having a meeting with colleagues at our workplace. Besides serving the need for 
companionship, these situations provide opportunities for group work. In Intellective 
Tasks such as problem solving, several researchers (Laughlin, 1980; Davis, 1969) 
                                                      
 
1  http://research.microsoft.com/en-us/um/people/dbohus/SDS/index.html 
 http://www.ling.gu.se/~sl/dialogue_links.html 

http://research.microsoft.com/en-us/um/people/dbohus/SDS/index.html


  

3 
 

find that groups are more effective (more right answers) than individuals. Even 
though this increased effectiveness comes at the cost of time (“man-hours”), it is 
preferred practice to function in groups in a variety of situations. The set of situations 
where the costs of time is affordable is of interest to organizational behavior, 
communication and management scholars. 

Advances in communication technologies over the last two decades have enabled 
a larger variety of groups to participate in joint activities in a variety of interactive 
situations. These multi-party interactive situations include situations where the 
participants interact with each other face-to-face (FTF) as well as situations where 
communication is mediated through artificial environments like tele-conferencing, 
instant messengers and virtual worlds. Each environment affords different modalities 
for interaction. Comparisons of these mediums based on their affordances relative to 
face-to-face interaction are discussed widely in literature on Computer Mediated 
Communication (CMC). Some examples of Multi-Party Interactive Situations include 

• Collaborative Learning 

• Online communication 

• Collaborative Work 

• Online shopping / auctioning 

• Multi-Player games 

• Collaborative content creation 

• Social networking 

As this research in CMC continues to progress, communication technologies will 
continue to enable and create a variety of multi-party interactive situations. 

1.3 Conversational Agents in Multi-Party Interactive 
Situations 

Advances in digital telephone systems in the latter half of the twentieth century 
led to the mass proliferation of Conversational Agents that could interact with 
individual users to help them with routine interactive tasks over the telephone. We 
can see an increasing interest in Conversational Agents that can participate in multi-
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party interactive situations enabled by currently available CMC environments. An 
estimation of this increased interest can be seen from the graph in Figure 1.1 which 
shows the percentage of annual publications on conversational agents that are also 
about multi-party interactions. 

 

 
Figure 1.1: Percentage of publications on Multi-Party Interactive Situations  

out of the publications on Conversational Agents / Dialog Systems 

 

One of the earliest agents deployed in a multi-user chat room was CoBot (Isbell 
et. al., 2001). It accumulates presence information of users and shares that 
information with other users who may be looking for their friends. Isbister et. al. 
(2000) developed a Helper Agent that introduces safe topics of discussion in a multi-
cultural human-human interaction environment to improve group functioning and the 
perceptions of group participants about each other. In the context of the Virtual 
Humans project, Traum & Rickel (2002) developed an act-based model for creating 
conversational agents capable of interacting with multiple users using verbal as well 
as non-verbal interaction modalities. Elva (Zheng et. al., 2005) is an embodied tour 
guide that facilitates multi-party interaction in an interactive art gallery environment. 

In educational domains, Kumar et. al.  (2007a) have shown that agents playing 
the role of a tutor in a collaborative learning environment can lead to over one grade 
improvement. Other work (Liu & Chee, 2004; Kumar et. al., 2007b, Chaudhuri et. al., 
2008 & 2009) has explored a variety of interaction patterns and tactics that could be 
used in multi-party educational situations. 

Bohus & Horvitz (2009) have demonstrated multiple open-world interactive 
situations in which multiple human users are able to engage in interaction with an 
agent. Dohsaka et. al. (2009) created an agent that can engage a group of users in a 
quiz-style thought-evoking dialogue. 
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Besides the work on such agents in the academia, the entertainment industry has 
developed several scripted agents that can operate in massively multi-player games 
like Sims. Further, other non-conversational support tools for multi-party situations 
are being studied (Banerjee & Rudnicky, 2006). 

While situations involving one agent and multiple human participants are the 
primary focus of this thesis, it must be noted that the general case of multi-party 
interactive situations can involve multiple agents and one or more human users. An 
example of this case is explored in the TeamTalk project (Harris & Rudnicky, 2007) 
that supports a human controller during search and rescue mission using multiple 
robots. 

These initial efforts for building conversational agents to support multi-party 
interaction are based on extending existing approaches for creating agents that 
interact with one user at a time. This approach leads to two problems identified and 
addressed by this thesis. The first problem, discussed in Chapter 2, pertains to the 
assumptions made by approaches for modeling one-on-one interaction that do not 
generalize to multi-party interaction. Chapter 4 discusses the problems resulting for 
the lack of necessary communication skills that the agents must possess to participate 
in groups. 
 

1.3.1 Organizing space for Agents 

Within the collection of agents for MPIS listed above, we can see a diversity of 
applications and environments including agents that can participate in face-to-face 
interactions. In this section, I will present an organizing space to classify and 
compare between different agents. A space like this would help in generalizing 
design principles between agents by observing the similarities and differences 
between the agents. 

Isbister & Doyle (2002) proposed a taxonomy for organizing research in 
embodied conversational agents. In order to organize the agents described and 
evaluated in this thesis, a narrower organizing space is described below. This space is 
split orthogonally along two dimensions, i.e., task and role. 

 

Task 

This dimension is similar in motivation to the application domains class of the 
Isbister & Doyle. The task domain within which the agent is situated determines most 
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of the primary functions of the agent. Further the application for which the agent is 
being used specifies the metrics that must be used to evaluate the 
usefulness/effectiveness of the agent. 

 
 

 Task 
Behavioral Conceptual Cooperative Competitive 

R
ol

e 

Same CoBot Agent as peer 
learner 

Agent as team 
member 

Agent as 
another buyer 
in Marketplace 

Different 
Information 
Access (Bohus 
& Horovitz) 

Tutoring Agent 
(Kumar et. al.) 

Helper Agent 
(Isbister et. al.) 

Shop keeper / 
Auctioneer in 
Marketplace 

Table 1.1: Examples of conversational agents split across Task and Role 

 

As we design and evaluate categories of social behaviors exhibited by the agent, 
we want to study the generalizability of those behaviors across agents involved in 
different types of tasks. Broadly, the tasks can be classified along four classes under 
this dimension based on the group task circumplex proposed by McGrath (1984). 
These tasks cover most of the common types of applications of interest currently. 

 

1. Behavioral tasks: Tasks involving a sequence of physical and cognitive 
actions to achieve a predetermined objective such as asking for 
information. (Isbell et. al., 2001; Bohus & Horovitz, 2009) 

Metrics: Task completion, Reduction in time taken to complete the task, 
Task Satisfaction 

 

2. Conceptual tasks: Tasks such as problem solving that require 
participants to acquire and share knowledge to achieve conceptual 
agreement (Kumar et. al. 2007; Liu & Chee, 2004) 

Metrics: Concept coverage, Concept learning / retention, Task 
Satisfaction, Task Quality/Creativity 
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3. Cooperative tasks: Tasks such as planning and decision-making during 
which participate with shared task goals generate and evaluate options to 
achieve their goals. (Isbister et. al., 2000) 

Metrics: Cost of Resources (time, money, people, equipment), Reward, 
Group Cohesion/Bonding, Task Completion Rate, Task Satisfaction 

 

4. Competitive tasks: Tasks that involve contest over conflicting goals 
where participants attempt to maximize achievement of individual goals. 
(Dohsaka et. al., 2009) 

Metrics: User resource depletion, Agent resource accumulated, Time to 
victory, Number of exchanges 

 

Role 

Agents can play a variety of roles in different interactive situations. For example 
tutors play the roles of instructors and moderators in learning groups. An agent can 
play the role of another participant in a competitive task group and compete with the 
other participants. In a multi-lingual or multi-cultural task, agents can play the role of 
mediators as interpreters. In other tasks, agent can play the role of helpers, observers, 
referee, etc. 

The role an agent plays is crucial to the study of agent behaviors. It determines 
the relevance of various behaviors an agent could exhibit. Further, the role sets up 
expectations of performance / capability / knowledge from the agent with respect to 
the user. For example: An agent playing the role of a peer student is not expected to 
know the answers to conceptual questions while a tutor agent is expected to be 
capable of responding accurately on such matters. 

In order to keep the space of agents relatively small to allow possible 
generalizations between agent classes, the role dimension in the proposed space will 
have only two levels – i.e. same and different – defined with respect to the other 
participants. When we discuss specific agents in Chapter 3, their role will be 
subjectively elaborated in addition to categorizing the agent within these two levels. 

Note that it is possible to add other dimensions that will define this organizing 
space at an increasingly fine level of detail. Foremost in the list of those dimensions 
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would be the type of interactive environment (e.g., mobile, chatroom, voice, virtual 
worlds, face to face, etc.) employed for the interactive situation as that determines the 
affordances the agent can utilize while performing its functions. 

1.4 Thesis Objective & Organization 

In our work on building Conversational Agents for Multi-Party Interactive 
Situations, we have identified two problems that must be addressed to develop these 
agents. As discussed earlier, this thesis focuses on addressing both of these problems. 

Foremost is the problem of building these software agents. While several 
representations and formalisms have been developed for developing agents that 
interact with a single user, all of these formalisms make simplifying assumptions 
(discussed in Section 2.1) that do not hold in the multi-party case. 

Besides this technical problem, we also need to address the problem of designing 
agent behaviors that demonstrate necessary communication skills suitable for the 
interactive task and the role of the agent. In the case of agents participating in 
conversation with multiple users, the agents must perform social behaviors, which 
may be task-specific and task-independent, to engage the users as it competes with 
the other human participants to hold the floor. 

Through this thesis, we are investigating general solutions to both of these 
problems. Chapter 2 of this document elaborates the technical challenge and 
describes a new software architecture that helps in alleviating the problems related to 
building CAs for MPIS. Chapter 3 describes the implementation of three agents built 
using this architecture. Two other agents built using this architecture that have been 
used in the experiments presented here are discussed in Chapter 4 and Chapter 7 
respectively.  

Chapter 4 motivates the need for socially capable conversational agents in multi-
party interactive situations and presents a model of social behavior. We also describe 
an implementation of an agent with these capabilities. Chapter 5, Chapter 6 and 
Chapter 7 describe a series of experiments conducted using our socially capable 
agents to study their effects on user productivity and perception ratings. 
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Chapter 2  
 
Basilica: Software Architecture 
 
 

2.1 Desiderata 

The first challenge that must be addressed towards building Conversational 
Agents in Multi-Party Interactive Situations is the technical challenge of 
implementing such agents as software.  

Work on conversational agents and dialog systems in single user applications has 
explored several representations (Constantinides et. al., 1998; Rudnicky and Xu, 
1999; Freedman, 2000; Rosé et. al., 2003; Bohus and Rudnicky, 2003) and 
implementation solutions (Seneff et. al., 1998; Turunen and Hakulinen, 2003; Bohus 
et. al., 2007b; Nakano et. al., 2008) that can be potentially extended to CAs in the 
multi-party case. However, as we borrow these approaches to build agents in multi-
party situations, we note that there are certain shortcomings in these approaches. In 
this chapter, we will present these shortcomings that led us to define the desiderata 
for a new architecture, Basilica. 

2.1.1 Lack of Rich Representational Capability 

To achieve autonomous behavior by agents, characterized as involving a 
combination of simulated cognition and control, it was important to achieve a level of 
representational richness that allows us to model the agent in the concerned general 
class of conversational situations.  However, while it would be relatively simple to 
add complexity to the representation if that was the only consideration, it could easily 
lead to the downside that the effort involved in authoring (or programming) the 
knowledge and the procedures that enable the agent to participate in specific 
situations would increase beyond what is practical. Thus, the consideration of 
representational adequacy and efficiency of implementation often conflict with each 
other. 
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For example, a simple representation like a finite state machine (Rosé et. al., 
2003) is suitable only for relatively short and simple interactions, but the advantage 
of using them is that the development effort involved is relatively small and is often 
facilitated using state-machine authoring tools (Jordan et. al., 2007). Richer 
representations like the ones used in plan-based approaches (Freedman, 2000; Bohus 
and Rudnicky, 2003) model the conversational goal(s) of the agent and use planning 
algorithms to determine a sequence of steps that can achieve the goal(s). While such 
approaches have been shown to be flexible and robust in conversational situations 
like mixed-initiative dialog, a considerable amount of effort is involved in specifying 
the goal representations, operators, potential steps, pre-conditions, etc., required by 
the underlying planning algorithms. 

In the new architecture proposed here, we adopt a rich representational capability 
that is not restricted by a small set of interaction operators. The interactive behaviors 
are specified using the full representational capability of a high-level programming 
language. This enables the developers of CAs in multi-party interactive situations to 
program complex interactive behaviors like the ones we describe in the case-studies 
in Chapter 3. 

2.1.2 Inflexibility to address Complex Interaction Dynamics 

Considering the amount of research that has gone into developing approaches for 
building CAs that are capable of conversational interaction with one user in each 
session, it is natural to push the envelope in order to deploy agents in multi-user 
interactive situations. However, typical approaches to developing CAs for single user 
settings make heavy use of the simplifying assumption that there are only two 
participants in the interaction, namely the human user and the agent.  From this 
fundamental assumption come two more practical assumptions.  One is that there will 
be a relatively even participation of both parties, which will typically mean that 
speakers take turns alternately.  And the other assumption is the known addressee 
assumption, namely that if there are only two participants, then the addressee must 
always be the one who is not the speaker.  Here we discuss why these assumptions 
break down in multi-party scenarios and what practical implications that has. 

Figure 2.1a represents a typical interaction in a single user (two-party) scenario.  
The white dots represent the agent turns and the grey dots represent the user turns.  
Notice that typically white and grey alternate with one another.  This is not the case 
100% of time.  Nevertheless, it is true often enough that if the system behaves in a 
way that presupposes that this will always be the case, it won’t make mistakes very 
often.  In this specific example, at turn 7, imagine that the user is responding to a 
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agent prompt for information, and after the user has provided an initial answer, he 
then provides additional information (or a correction) to the system. However, since 
the agent (system) is based on an even participation assumption, at turn 8, the system 
is still trying to respond to turn 6 from the user and ignores the information provided 
in turn 7. In the last few years, work on flexible turn taking (Raux, 2008; Benuš, 
2009) has proposed sophisticated models that can help the system anticipate the 
possibility of failure of such an assumption and avoid (or recover from) potential 
failure in the interaction. However, as illustrated in Figure 2.1b, in the case of a 
multi-party interaction, the failure of even-participation assumption is not an 
exception to be recovered from. Instead it is a normal characteristic of the dynamic 
interaction in multi-party settings.  In this example, each color represents a different 
speaker.  As can be seen, speakers do not alternate in any predictable pattern of even 
participation.  Assuming the white dots represent the agent turns, we can see that 
ambiguity about which contribution to consider as an answer to its prompts is 
common rather than a rare exception. 

 

 
Figure 2.1: Failure of Even Participation assumption in  

(a): Two-Party Interaction and (b): Multi-party interaction 

 

Related to the problem just described is the problem of knowing who is the 
addressee of an utterance.  When there are multiple speakers, sometimes the speakers 
will be talking to each other, and not the agent.  Mainly the agent needs to know 
when it is being addressed, but this is far from trivial in this multi-user case.  The 
known addressee assumption on which conversational agents for two-party 
interactions are developed implies in the two-party case that the addressee is the other 
speaker.  A naïve extension of this assumption to the multi-party case would be that 
contributions from each participant are addressed to all the other participants, which 
includes the agent.  Failure of this assumption happens when the user says something 
that is not addressed to the agent, or even if the agent is among the users addressed, 
but the agent’s prompts are not addressed. This is illustrated in the excerpt from a 
thermodynamics tutorial dialog system shown in Table 2.1. 

When Student2 asks Student1 to respond to the tutor’s first question, the tutor 
follows the known addressee assumption and considers Student2’s turn as a response 
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to its previous question. The response is evaluated as an incorrect (or non-
understandable) answer and the tutor provides the correct answer. Meanwhile, 
Student1’s response to the first question is considered as a response to the second 
question from the tutor. 

 

Student1 OK, lets start 

Tutor What would happen to the power output of a Rankine Cycle at a 
higher operating temperature? 

Student2 hmmm … Can you answer that? 

Student1 I think it will increase. 

Tutor 
The correct answer is that at a higher operating temperature, more 
heat is added to the cycle and hence the power output increases 
too. What about the heat rejected by the cycle though? 

Student1 You are right S1. It increases too. Lets move on to the next topic. 

Table 2.1: Excerpt of a conversation between two students and a tutor 

 

State-of-the-art conversational agents implement error recovery strategies 
(Bohus, 2007) designed to deal with non-understandings or mis-understandings in 
order to recover from local failures of the known addressee assumption. In multi-
party scenarios, the dynamics of responding to a turn from the user becomes 
increasingly complicated and task specific. For example, in a collaborative learning 
setting, students may choose to discuss the answer to a tutor turn among themselves 
before responding to the tutor. 

An additional complicating factor is the duration of interaction with agents in 
typical collaborative learning scenarios. Agents that interact with one user at a time 
have been developed for interactive situations that do not require any more than a few 
minutes of interaction. As we extend the application of these agents to applications 
such as collaborative learning where a learning session could last from 30 minutes to 
multiple hours, the structure of the conversation becomes increasingly complex, and 
the breakdown of the above assumptions become increasing likely. 

Group dynamics is another consideration. As the number of users participating in 
the interaction increases, the exchange between them becomes an increasingly larger 
factor in the interaction. This interaction may include interpersonal conflict, free 
riding, or other sources of process loss. Thus, agents may have to monitor and 
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regulate the interaction between users in order to provide appropriate support. For 
example, in an extended collaborative learning interaction, the tutor may elicit 
participation from students who are contributing less than other students. Such task / 
interactive situation specific interaction dynamics may be more complex than the 
scenarios that have been explored in current work. 

The proposed architecture provides the flexibility to develop conversational 
agents that can implement interaction strategies (and tactics) which would enable 
them to participate in multi-party interactive situations without failure as mentioned 
earlier in this section. 

2.1.3 Development Effort 

While the primary motivations that guided the design of our new architecture was 
to increase the representational capability that encodes the knowledge and the 
behavior of the agent, as well as implement agents capable of performing 
sophisticated interaction tactics and strategies, we note that these improvements could 
easily increase the effort involved in developing the conversational agents. Thus, a 
final objective of our effort has been to develop the architecture in a way that reduces 
development effort.  To alleviate additional effort to some extent, the architecture 
adopts principles of object-oriented design. Modeling the agent as a collection of 
appropriately sized, independent objects allows incremental development as well as 
reusability as discussed in the next section. Earlier related work on architectures for 
conversational agents (O’Neill et. al., 2003) has also employed similar object-
oriented programming principles for developing conversational agents. 

Before we proceed to discuss the details of the architecture for building 
conversational agents proposed in this chapter, we present a model of interaction 
between a conversational participant and the environment. 

2.2 A Model of Interaction 

The participant could be a human user or an agent and the environment includes 
other participants and observers. The environment also specifies the modalities of 
interaction (e.g., text, voice, video, gesture, etc.) based on its affordances. 

In the model of interaction shown in Figure 2.2, the participant (Agent) observes 
environmental stimuli (like entrance of a new participant, action by one of the current 
participants, change in environment such as server notifications, etc.). These stimuli 
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are conveyed to the perception components of the agent, which process the stimuli in 
order to determine whether any relevant behavior is to be triggered in response to the 
stimuli. For example, in a telephone based interaction, the listener component (ears) 
triggers the behavior of hearing upon receiving the voice stimulus from the handset 
(medium/environment). The triggered behavior may respond by generating events 
(that are internal to the agent) as well as by sending a response back to the 
environment. The generated events are transferred to other components. This way the 
environmental stimulus is propagated through a collection of components that 
implement all the singular behaviors an agent can perform. As a result of the stimulus 
propagation, a response may be sent back to the environment, and internal states of 
each component may be updated. 

 

 
Figure 2.2: A behaviorist model for Conversational Agents 

 

2.3 Basilica: The new architecture 

The Basilica architecture is based on the above described model of interaction 
between conversational participants and the environment. Agents built using the 
Basilica architecture are implemented as a collection of what we refer to as 
behavioral components. Computational capabilities like perception, action, cognition 
and memory are implemented as behaviors. The selection function (si) for each 
component (ci) is implemented as a one to one mapping function that maps the type 
of event (ej) to behavior (bij). Each behavior is programmatically defined as a 
function that responds to a type of event by generating a set of zero or more events 
(ek).  
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  (2.1) 

 

The transfer function (T) is specified by a network of components. Events 
generated by a behavior bij are propagated to all components that are connected to 
component ci. The connections of the network are unidirectional, i.e., if component c1 
can receive events from c2, then c2 do not necessarily receive events from c1 (unless 
so connected). For example, in the network shown in Figure 2.3, only components c2 
and c3 receive events generated by c1. 

 

 
Figure 2.3: Example of an Agent’s Component Network (T) 

 

The Basilica architecture provides a set of core abstract classes (implemented in 
Java) for defining agents, components, connections and events. While the behaviors 
performed by the agent are specific to the agent’s implementation and change 
between agents, the Basilica architecture provides low-level functionality required to 
implement the agents. 

Foremost within this scope is the control mechanism for propagating events 
between components. Events are propagated as a broadcast to all connected 
components. For example, all events generated by c1 are received by c2 and c3. While 
sometimes this might cause components to receive events that they do not need to 
process, the broadcast mechanism allows for relatively simpler specification of the 
network. Additionally, the architecture provides developers the ability to selectively 
transmit events to a subset of all connected components. Basilica is responsible for 
initializing and maintaining the connection between components over which events 
are transmitted. Besides maintaining these connections, the architecture provides 
observer interfaces that allow developers to observe events as they are transmitted 
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over the connections. This supports creation of graphical displays that can be used by 
facilitators and moderators. The debugging interface discussed in section 3.5 uses this 
mechanism. 

 
Figure 2.4: Logic Diagram of Behavioral Components 

 

Second, the abstract classes used for defining behavioral components provide a 
generic mechanism for initializing, executing and observing each component. Figure 
2.4 shows a logic diagram of behavioral component. By default this mechanism 
allows each component to perform its behaviors asynchronously by allowing each 
component to run in a separate thread. So, if a particular component (like a parser) 
takes an extended amount of time for processing its events, the other components are 
not blocked from processing their events. 

Third, the selection function (si) within each component is responsible for 
accumulating incoming events and triggering their corresponding behaviors (bij). 
Basilica implements a generic mechanism for this function. By default, events are 
buffered and processed sequentially in the order in which events are received. 
However, the object oriented implementation of Basilica allows developers to 
override this default mechanism for special purpose components to prioritize certain 
kinds of stimuli (like a user barge-in or a resource unavailability notification). 
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Figure 2.5: Example XML Specification of a Basilica Agent 

 

Besides the core classes, Basilica provides a generic class for a memory 
component that provides the ability to keep state-based information accessible across 
components. An application of the memory component is discussed in Section 4.5. 
Additionally, the architecture provides an agent factory class that allows runtime 
agent construction from an XML specification like the one shown in Figure 2.5, 
which also enables more dynamic forms of behavior. 

2.4 Integrating existing behavior within Agents 

Basilica allows for integration of a wide range of behavioral components, but one 
that we have used frequently in our agents is the TuTalk dialog engine (Jordan et. al., 
2007).  In the next section, we will discuss its role within an example Basilica agent, 
illustrated in Figure 2.6. TuTalk is a state-based dialogue engine that operates using 
what are referred to as tutoring scripts.  Tutoring scripts compatible with the TuTalk 
dialog engine define directed lines of reasoning composed of a sequence of steps that 
implement an Initiation – Response – Feedback interaction pattern with the goal of 
leading a student to construct a correct explanation for a complex concept as 
independently as possible. The dialog engine executes these steps by presenting the 
Initation question, matching the student response and presenting appropriate feedback 
before moving on to the next step. The script formalism also allows introducing 
another intervening sequence of remedial steps as feedback to incorrect responses. 
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Thus, support is provided on an as-needed basis. In order to facilitate authoring of 
these scripts, TuTalk provides a set of authoring tools for rapid development of these 
scripts by subject matter experts who may not be technology experts. 

Integration of TuTalk within Basilica’s tutoring components demonstrates the 
flexibility to integrate existing tools and interactive representations within agents 
built using this architecture. Note that the TuTalk dialog engine inherently does not 
provide a mechanism to address the issues related to multi-party interaction discussed 
earlier. However, Basilica allows us to augment these tutoring components with other 
necessary behavior to address the issues related to complex interaction dynamics 
without needing to add any sophistication to component technologies themselves. 
Table 2.1 and Table 2.2 illustrate example interactions with authored TuTalk agents. 

2.5 An Example Agent: SecondLife Tutor 

 

 
Figure 2.6: Two students interacting with the Second Life Tutor 
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Now we will demonstrate how an agent built using the Basilica architecture 
works using an example agent that tutors a team of students in the SecondLife (SL) 
virtual environment. The SecondLife Tutor shown in Figure 2.6 is implemented as a 
SecondLife object (see as the spherical object in the figure). 

The SecondLife tutor performs two types of user observable behaviors, i.e., 
greeting and tutoring. To customize the tutoring behavior, the tutor can be augmented 
with a list of TuTalk scripts and the tutor sequentially executes those scripts. We see 
two students interacting with the tutor object using text chat. The users activate the 
tutor by clicking on it (touch stimuli). 

Connectivity between the tutor and SecondLife environment is enabled using a 
HTTP Middleware (Weusijana et. al., 2008). The component network of the 
SecondLife tutor, shown graphically in Figure 2.7, is made of nine components and 
twelve connections. It receives two types of stimuli from the SecondLife 
environment, i.e., 

1. the user touching the agent to activate it and  

2. the user sending message in the agent’s vicinity 

 

 
Figure 2.7: Component Network of the Second Life Tutor 

 

When the tutor is activated, a LaunchEvent is propagated to the GreetingActor 
and the TutoringManager. GreetingActor sends a greeting message back to the 
environment via the OutputCoordinator and the SLActor. The TutoringManager 
encapsulates the TuTalk dialog engine. When triggered, it starts tutoring by 



  

20 
 

sequentially executing the available TuTalk scripts. Tutor turns (questions and 
feedback) are sent to the environment via the TutoringActor, the OutputCoordinator 
and the SLActor. Student answers received via the MessageFilter are collected by the 
TurnTakingCoordinator when the Tutor is expecting the students to respond to its 
question (e.g. after the first turn of Table 2.2). If multiple students respond within a 
few moments of each other to the same tutor turn, the TurnTakingCoordinator 
accumulates those responses and sends them to the TutoringManager to be matched 
to the tutor’s question. The TutoringManager filters responses collected by the 
TurnTakingCoordinator through prioritization rules that look for a correct or an 
incorrect answer, i.e., a relevant response to the tutor’s questions. 

 

[09:21] Tutor Consider the effect of T-max on the efficiency of a cycle. 
Do you know whether T-max should be kept high or low? 

[09:22] Student1 we should keep tmax high 

[09:22] Tutor 
But let's think about one important consequence of 
keeping T-max high. At high T-max what happens to the 
quality of steam. 

[09:24] Student2 it increases i believe 

[09:24] Tutor 

The turbine exit will have better steam quality when T-
max is increased. So increasing steam quality and 
efficiency means high T-max is good. Nevertheless, there 
are limitations to how high you can increase T-max. There 
are mainly two problems. Can you name them? 

[09:25] Student2 safety is one... efficiency is the other? 

[09:25] Tutor 

Mainly, safety concerns and exceeding the maximum 
temperature the material can withstand. Keeping Tmax 
high increases efficiency and also steam quality. Make 
sure you and your partner both understand these ideas. 

Table 2.2: Excerpt of a conversation between two students and the Second Life Tutor 

 

Here we have adopted a solution that is specific to the situation of tutoring 
interaction to deal with the problem of not knowing the addressee of a student turn 
since responses that are relevant to the tutor’s question can be considered as 
addressed to the Tutor. If no relevant responses are received for an extended amount 
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of time, the TutoringManager can employ interaction tactics such as repeating the 
question, urging the students to respond, giving a hint or moving on. 

As mentioned earlier, the flexibility to incorporate components such as the 
TurnTakingCoordinator and TutoringManager is an example of how Basilica allows 
developers to address the complex interaction dynamics of multi-user interactive 
situations. 

2.6 Supporting the Agent Development Process 

2.6.1 Re-Use of Decomposable Components 

We have a growing set of behavioral components which can be re-used to build 
tutors for several learning situations. For example, as shown in the example in the 
previous section, the TutoringManager and the TutoringActor can be used to include 
tutoring scripts developed for the TuTalk system within the agent’s interactive 
behavior. The agents discussed in Chapter 3 show extensive re-use of these 
components. 

Furthermore, the interaction with the SecondLife environment is isolated to the 
SLListener and SLActor components. These components can be replaced to make the 
same agent work in other similar environments (like chatrooms or other multi-user 
virtual environments). It is useful to allow agents to operate in multiple environments 
with comparable affordances especially in the online learning situation to allow the 
students to be able to interact with the agent from an environment of their choice. 
Overall, decomposing agents into small, loosely coupled components that encapsulate 
behavior allows application of object-oriented programming principles that facilitate 
incremental and distributed development in teams. Just as these principles have 
enabled scalable software development, we believe that they will facilitate 
development of complex and highly interactive instructional agents for mass use. 

2.6.2 Development Tools 

Besides the core classes of the architecture, Basilica provides a variety of 
debugging utilities through loggers and observer classes. A visual debugging 
interface is available as a part of these utilities to help developers verify the 
connections between components and track event propagation as components are 
incrementally added to the agent. Figure 2.8 shows a screenshot of this debugging 
interface. The component network shown in the interface is animated as events 
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propagate through the network. Developers can click on any component or 
connection to get a detailed look at the events generated and processed by each 
component. 

 

 
Figure 2.8: Basilica Visual Debugging Interface 

 

To support the deployment of agents built using the Basilica architecture for large 
experiments, the architecture provides an operation class that can launch and manage 
several agents. Another utility built within the architecture is the Timer which can has 
been useful for implementing behaviors that should be triggered periodically rather 
than in a state-based fashion (e.g., checking for student participation). 

Additionally, we have developed a set of simulated environment listener and 
actor components that allow developers to simulate user input from a previously 
available transcript of interaction between the user and a tutor. These transcripts can 
serve as extended testing scripts during development. Replacing the agent’s 
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environment listener and actor components with these components can help the 
developers in consistently and effortlessly test for previously known bugs. 

2.7 Related Work 

Recently, there has been other work on modeling conversational agents as a 
decomposition of components. Queen’s Communicator (O’Neill et. al., 2003) applies 
principles of Object-Oriented programming to decompose CAs into classes that 
abstract task-independent conversational behavior and allows developers to 
programmatically extend them to create task-dependent behaviors. 

Jaspis (Turunen and Hakulinen, 2003) models the agent as a collection of 
managers, agents and evaluators which synchronize with each other through 
transactions. Also, while Jaspis agents are stateless, actors in our architecture need 
not be stateless. RIME (Murray et. al., 2001) R. Charles Murray, Kurt VanLehn and 
Jack Mostow, 2001, A decision-theoretic architecture for selecting tutorial discourse 
actions, AIED-2001 Workshop on Tutorial Dialogue Systems, San Antonio, Texas  

(Nakano et. al., 2008) distributes cognitive capabilities across a collection of 
experts of two types. In contrast to Basilica that allows components to be connected 
in any manner, in these architectures, the evaluators and the agents are configured as 
a collection of parallel modules. Hence, designing conversational agents with Basilica 
gives the flexibility to change the network topology. A recently proposed multi-
policy approach to dialog management (Lison, 2011) models the agent as a collection 
of hierarchically connected concurrently operating policies. This approach is very 
similar to the Basilica architecture in terms of the flexibility it provides for modeling 
individual policies using different dialog modeling techniques and for interconnecting 
each of these policies. 

In other work on event-based multi-layered architectures (Raux and Eskenazi, 
2007), events are used for communication between layers as a mean to provide higher 
degree of reactivity compared to pipeline architectures. While we share this 
motivation, definition of events is extended here as events are used for all kinds of 
communication, coordination and control in Basilica. Also, recent interest in the use 
of incremental processing techniques for various components as well as entire dialog 
systems (Skantze and Schlangen, 2009; DeVault et. al., 2009) is enabled by the use of 
event-driven architectures. While Basilica does not explicitly model the input and 
output (left and right) buffers for all of its components by default, the principle that 
updates from preceding components in a pipeline should be incrementally processed 
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by subsequent components is applied within agents built using Basilica by conveying 
updates as events. 

Through this comparison of the Basilica architecture with the other approaches 
discussed here in terms of their similarities and differences, we find that the event-
driven approach that the Basilica architecture is based on allows this architecture to 
serve as a meta-architecture. Basilica allows systems developers to combine 
representations and design principles from multiple approaches to create highly 
complex agents with rich behavioral capabilities. 

In the next chapter, we will describe three agents building using Basilica. These 
agents will demonstrate the advantages of using the Basilica architecture while 
providing design patterns that can be used to develop other agents. 
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Chapter 3  
 
Agents built using Basilica 
 
 

The Basilica approach is applicable for building a variety of conversational 
agents that are situated in complex, extended, multi-party interactive situations. In 
this chapter, we will describe our work on developing Conversational Agents that 
support teams of two or more users in broad classes of multi-party interactive 
situations like Collaborative Learning and Mediated Interaction. 

We will discuss the implementations of three agents developed by us using the 
Basilica architecture to highlight how these agents showcase the strengths of the 
proposed architecture. These agents explore the organization space of agents 
described in Section 1.3.1 both in terms of tasks and role. While the CycleTalk tutor 
and the PsychChallenge peer presented in Section 3.1 and 3.2 respectively support 
conceptual tasks, the 9-1-1 emergency response interpreter presented in Section 3.3 
supports a behavioral task. The PsychChallenge peer agent plays the same role as the 
users while the other two agents play a role that is different compared to the users. 

A study of the component networks of the agents described here as well as the 
agents described in Chapter 4 and Chapter 7 will show some common patterns. First 
of all, we notice that these agents use different types of components. Section 3.4 
discusses the types of components commonly used in our agents. 

Second, we can notice that the agents built using the Basilica architecture are an 
extension of the traditional pipeline approaches. We can observe multiple input-
process-output pipelines that transport events from right to left in Figure 3.2, Figure 
3.4, Figure 3.5, Figure 4.1 and Figure 7.1. We note that many components especially 
filters that perceive and process user input are often shared between these pipelines.  

Third, we note that by choosing an appropriate level of decomposition of 
behaviors into different components, we can reuse components across agents. An 
example of this reuse can be seen between Figure 3.2 and Figure 4.1 where the 
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TutoringManager, TutoringActor, TurnTakingCoordinator and RequestDetector 
components are reused. The RequestDetector component that implements the Ask 
When Ready strategy discussed in the next section. It is separated from the 
TutoringManager because other components such as the PlanExecutor in Figure 4.1 
that wait on verbal triggers from users to precondition the move to next steps can also 
use the RequestDetector’s capabilities. So, we can see that appropriate decomposition 
allows reuse of different types. 

Additionally, the choice of level of decomposition of behaviors is determined by 
the need to change certain components without changing the behavior of other 
components. The TutoringManager component needs to be connected to a 
component that generates events to trigger the start of a directed tutoring episode. In 
Figure 3.1 the AttentionGrabbingFilter provides this event whereas in Figure 4.1 the 
PlanExecutor provides this event. 

3.1 CycleTalk Tutor 

CycleTalk is an intelligent tutoring system that helps sophomore university 
students learn principles of thermodynamic cycles (specifically Rankine Cycle) in the 
context of a power plant design task. Teams of two students work on designing a 
Rankine cycle using a Thermodynamics simulation software package called 
CyclePad (Forbus et. al., 1999). As a part of the design lab during which this learning 
task is performed, students participate in a collaborative design interaction for 30-45 
minutes using ConcertChat, a text based collaboration environment (Mühlpfordt and 
Wessner, 2005) shown in Figure 3.1. Our work (Kumar et. al., 2007a) has shown the 
effectiveness of this collaborative design activity. 

An automated tutor participates in the design interaction along with the two 
students. The CycleTalk tutor provides instructional support to the students to ensure 
that they learn underlying thermodynamic concepts as they design. The CycleTalk 
tutor was the first tutor implemented using the Basilica architecture and has been 
modified over the last three years in accordance with the evolution of the research 
studies conducted using this tutor. Improvements to the CycleTalk tutor served as 
requirements for improving the the Basilica architecture. Specifically, these 
improvements included development of various types of components, efficiencies in 
the architecture’s event propagation mechanism and creation of suitable abstractions 
and interfaces to the architecture’s core classes to facilitate development and re-use. 
Some of these aspects are discussed below as we present a recent implementation of 
the CycleTalk tutor implemented using the Basilica architecture. 
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Figure 3.1: ConcertChat Collaboration Environment 

 

 
59 [09:35:07] Student2 the pressure stays constant through the boiler? 

60 [09:35:47] Student1 Yeah 

61 [09:35:55] Tutor Now might be a good time for some reflection. 

62 
 

[09:36:00] 
 

Tutor 
 

Consider the effect of increasing Qin. What 
happens to power out when Qin is increased? 

64 [09:36:46] Student2 i am pretty sure we want high Qin 

Table 3.1: Excerpt showing the Attention Grabbing Strategy (Turn 61) 

 

While we have shown that instructional support provided by automated tutors is 
effective, as compared to students working individually, we have observed that teams 
of students often ignore and abuse the tutor (Kumar et. al., 2007a). In our recent 
studies in this thermodynamics learning domain, we have investigated the use of 
interaction strategies that can help in engaging the students more deeply in the 
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instructional conversation with the tutors. One of these strategies (Attention 
Grabbing) was designed to intrusively grab the student’s attention (Chaudhuri et. al., 
2008).  It prompts the students to pay attention to the tutor before the tutor starts the 
instructional conversation. An excerpt of this strategy is shown in Table 3.1. The 
tutor prompts the students (Turn 61) to grab their attention and waits for a silence (5 
seconds) between the students to infer that the students are now paying attention to 
the tutor. 

Another strategy (Ask when Ready) developed as an improvement to the Attention 
Grabbing strategy informed the students that the tutor has a relevant instructional 
topic to discuss and asks them to let the tutor know when they were ready to talk 
about the topic (Chaudhuri et. al., 2009). This strategy allows the students to 
complete their current topic of discussion before engaging in conversation with the 
tutor. An example of this strategy is shown in Table 3.2. The tutor informs the 
students that it is ready to talk about Pmax (maximum pressure in a rankine cycle) in 
turn 41 & 42. The students finish their current topic of discussion and indicate that 
they are ready to discuss Pmax in turn 47. Note that the turn 41 is similar to principle 
to the attention grabbing prompt shown in turn 61 in Table 3.1. 

 
40 [08.52.24] Student5  and then Power out vs. the same things 

41 [08.52.26] Tutor Lets review the effect of changing P-max on the 
cycle. 

42 [08.52.27] Tutor Type: HELP WITH PMAXKCD if you want to 
discuss it with me. 

...     ... 

47 [08.54.08] Student7  HELP WITH PMAXKCD 

48 [08.54.14] Tutor When P-max increases, is the need to reject heat 
from the cycle increased or decreased? 

49 [08.54.51] Student5  decreased 

Table 3.2: Excerpt showing the Ask when Ready Strategy (Turn 41 & 42) 

 

Both these agents employ the turn-taking and tutoring components discussed in 
the example agent in Section 2.5. Figure 3.2 shows the component network 
implemented for a tutor that employs the Ask when Ready strategy. It is made of 13 
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components and 21 connections. There are six types of components, i.e., Listeners, 
Actors, Filters, Detectors, Coordinators and Managers. Listeners listen to stimuli 
from the environment and translate them into events internal to the agent. Actors 
perform actions which may be directly observable by other participants in the 
environment. Filters process information that events carry and propagate them further 
based on their programmed conditions. Detectors are special kinds of Filter which 
detect specific semantic concepts/phrases and send out a detection event. 
Coordinators control the flow of events between related components to achieve 
coordinated behavior. Manager components exhibit a variety of behavior like 
planning, execution and control. A summary of the various types of components used 
in the agents developed in our work can be found in Section 3.4. 

 

 
Figure 3.2: Component Network of the CycleTalk Tutor 

 

We can note that components shown in the shaded area labeled as 1 in Figure 3.2 
are connected the same way as those components in the example agent. In order to 
implement the behavioral capabilities that allow the agent to use the Attention 
Grabbing and Ask when Ready interaction strategies, we have added three new 
components shown in the shaded area labeled 2. When the TutoringManager decides 
that an instructional topic is relevant to the current discussion, it informs the 
AttentionGrabbingFilter to grab the students’ attention using an appropriate 
interaction strategy. The TutoringManager also informs the RequestDetector to look 
out for the appropriate trigger phrase. Once the trigger phrase is detected, the 
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TutoringManager starts the TuTalk script corresponding to the requested 
instructional topic. Besides the tutoring behavior, the CycleTalk tutor has a hinting 
behavior implemented using the HintingManager and HintingActor that use a topic 
model to provide relevant hints based on the interaction between the students (Kumar 
et. al., 2007a). 

Using the Basilica architecture to develop the CycleTalk tutor has supported this 
line of investigation in multiple ways. Foremost, it may be noted that components 
corresponding to behaviors that do not change because our experimental strategies 
remain constant between prototypes because they can be isolated within the agent 
network in a modular way. This allows us to incrementally add behavioral 
components that implement the experimental strategies. Further, because of the use of 
a programmatic approach to building these agents, we are not restricted to a small set 
of operators provided by typical agent authoring languages making it possible to 
implement strategies like Attention Grabbing and Ask when Ready. Finally, the 
ability to integrate existing natural language processing modules as Filter 
components makes Basilica a helpful architecture for creating complex and highly 
interactive conversational agents. 

Besides implementing strategies for beginning tutoring conversations with a team 
of students, we have been investigating the use of role assignment to the students 
(Chaudhuri et. al., 2008, Ai et. al, 2010). Teams of students are divided into Pro-
Environment vs. Pro-Power roles to elicit broad coverage of arguments within the 
team during the learning interaction. Basilica has allowed us to create components 
that can take into account the task-specific learner roles while presenting instructional 
content to the students. 

3.2 PsychChallenge Peer 

The Basilica architecture does not make any specific assumptions about the role 
of the agent in the interaction. Agents supporting learners may not only be tutors. In 
this section we will discusses an agent that demonstrates the ability to build agents 
that play a variety of roles. 

PsychChallenge is a vocabulary game that is part of a learning portal of an 
introductory psychology text book. Students play this game as part of an assignment 
as they progress through each chapter of the book. The game involves learning 
vocabulary related to the each chapter by helping each other guess terms related to 
the chapter by providing hints about the term. One of the players takes on the role of 
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a hint Giver and the other players play the Guesser role. The game is accessible to the 
students through a special purpose web-interface shown in Figure 3.3. 

 

 
Figure 3.3: The PsychChallenge Game Web-Interface  

(Showing the Guesser Interface) 

 

Students can choose to play the game with other students who are online at the 
same time. Teams (or individuals) can choose to add the PsychChallenge peer agent 
to the game. Note that this agent is different from the other agents discussed in this 
chapter in that it plays the role of a peer with respect to the student instead of a tutor. 
Figure 3.4 shows the component network of the peer agent. The agent is connected to 
the web-interface through a middleware component that operates in a way similar to 
the SecondLife HTTP middleware (Weusijana et. al, 2008). The peer agent plays the 
role of the Guesser or the Giver based on the role that it is assigned by the game. The 
GuessingActor and the HintingActor components are augmented with instructional 
content corresponding to each term in the game’s vocabulary to allow the agent to 
behave intelligently. When the agent is playing the Guesser role it tries to elicit better 
hints from the Giver. When the agent is the Giver, it provides useful hints to the 
students to help them guess the correct term. Other behavior that this Peer agent 
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displays includes greeting the students at the start of the game and informing them 
about its role at the change of every round. 

 

 
Figure 3.4: Component Network of the PsychChallenge Peer 

3.3 Emergency Response Interpreter Agent 

The interactive situations for the agents described earlier support involve two or 
more users where all the users have the same explicit task objectives (e.g. designing a 
power plant, or winning a game). Also, the implicit goals of the users (learners), 
which shape their interaction with the agents, are similar (i.e. learning the underlying 
domain concepts). In contrast to that, the emergency response interpreter agent 
described in this section supports an interactive situation where the two users have 
very different task objectives and goals of interaction. 

The emergency response interactive situation involves two human participants 
i.e. a distressed caller and an emergency dispatch operator such as people employed 
at 9-1-1 response centers (Nallasamy et. al., 2008). In states such as Louisiana, 
emergency calls from Spanish speakers (especially at night) are mediated by third 
party human translation service that is dialed in when the dispatch operator 
determines that he/she cannot communicate with the caller because of the language 
barrier. 
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The emergency response interpreter agent is designed as a replacement to the 
third party translation service (for at least a subset of calls). The caller, dispatch 
operator (dispatcher) and the agent communicate using eJabberd, a general purpose 
communication backend based on the XMPP protocol. Caller dials in to the response 
center where a caller proxy makes a connection to an available dispatcher through the 
XMPP server. The caller proxy is responsible for packaging and broadcasting speech 
and recognition output of the caller turns to all participants in the call (dispatcher / 
agent). 

We have developed a special purpose GUI for the dispatcher that allows the 
dispatcher to attend to the callers as well as interact with the agent using a variety of 
actions. Specifically the dispatcher can command the agent to perform: 

• MetaAct (e.g. Ask-Emergency-Type) which are available at all times 
during the interaction 

• IQAAct (e.g. Ask-Victim-Bleeding) which are specific to type of incident 
the caller is reporting based on the response center’s protocols 

• ConfirmationAct to ask the caller to confirm a piece of information that 
was provided earlier (e.g. confirming address of the victim) 

Besides these controls, the GUI lets operators communicate with the available / 
dispatched units with updated information that the caller provides. A discourse 
history display in the GUI allows the operator to read the text of all the turns in a call 
(along with partial translations). 

We can note that in this situation the agent providing a channel for 
communication between two users (the caller and the dispatch operator) who have 
very different task roles and hence different objectives. The caller’s objective is to the 
get the required emergency resources (like ambulance, police, fire-truck) based on the 
incident. The dispatcher’s objective is to ask the caller for the details of the incident 
and follow protocols to dispatch all the required resource and provide the dispatched 
resources with the information they require. While the objectives of the two 
participants do not conflict with each other, the agent must communicate with both 
the participants in a way that serves the individual objectives of each of the 
participant. 

Figure 3.5 shows the components network of an agent we developed to 
participate in this interactive situation. We can notice that at a high level this network 
implements two pipelines (events flows right to left). One of the pipelines (shown in 
the shaded area marked as 2 in Figure 3.5) 
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• Takes information from the caller 

• Annotates it with the syntactic as well as domain specific semantic 
information 

• Identifies the type of incident or a piece of information related to the 
incident being reported 

• Communicates that information to the dispatcher with appropriate 
displaying information such that it is organized properly on the dispatcher 
GUI 

 

 
Figure 3.5: Component Network of the Emergency Response Interpreter Agent 
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The other pipeline (shown in the shaded area marked as 1) takes commands from 
the dispatcher and performs the corresponding action to provide or elicit information 
to/from the caller. The choice of which pipeline should a message over the XMPP 
broadcast channel be passed through is made by the MessageFilter components based 
on the sender of the message packet. 

The implementation of this agent demonstrates the flexibility the Basilica 
architecture provides to build agents that can interact with users with different roles 
within the same interactive session. Agent behaviors required to understand and 
communicate with the two participants are implemented in the corresponding 
pipeline. This helps us in incrementally adding additional behaviors required to 
interact with the user (e.g. additional types of incident report from the caller). 

3.4 Types of Behavioral Components 

Based on the three agents developed using the Basilica architecture that are 
described in this chapter, we can identify the characteristics of different types of 
behavioral components that are necessary and/or common to most agents 
implemented using Basilica. 

Foremost of these are the environment listener and environment actor 
components. They are necessary for all agents as they integrate the agent with a 
collaboration environment such as SecondLife (SLListener and SLActor) or 
ConcertChat (ConcertChatListener and ConcertChatActor). These can be readily re-
used for new agents being developed for already supported environments. On the 
other hand, these components are among the first components to be implemented 
while developing agents for a new environment. 

We can find multiple filter and detector components being used among the three 
agents. They perform a variety of operations (like parsing, classification, annotation, 
etc.) and transformations on the data encapsulated within events they receive. Further 
these components can be used to control the flow of events. For example the 
MessageFilter keep the presence events from the environment from propagating to 
components that do not need those events. All agents the process student input have 
atleast one of these components. 

Different types of manager components make up the controllers of the different 
user observable behaviors of the agent. These managers keep track of knowledge 
resources and interaction states for the behaviors they perform and provide triggers to 
other components that realize the behaviors these managers control. All agents that 
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actively interact with students have atleast one of these manager components. Note 
that for very simple behaviors the management logic is sometimes built within the 
actor components that realize those behaviors (e.g. the GreetingActor in Figure 3.4 
and Actors in Figure 3.5). 

Memory components while not mandatory to any agent implementation are often 
used for agents that need to have several managers. Finally, we find that all agents 
implement several special purpose components like actors that realize the user-
observable behaviors and coordinators that facilitate agent participation in complex 
interaction dynamics. As discussed in section 2.6.1, many of these components can be 
reused among agents that display the same behaviors. 
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Chapter 4  
 
Socially Capable Conversational Agents 
 
 

4.1 Need for Social Capabilities 

In our prior work on supporting Collaborative Learning, which is a type of Multi-
Party Interactive Situation as it involves multiple students working together on a 
learning task, we have shown that students benefit both by learning as a group and 
receiving tutorials from agents (Kumar et. al., 2007a). However, students learning in 
groups ignore the tutor’s messages most of the time, unlike the case where students 
were individually tutored. Also, groups often abused tutors as shown in the excerpt in 
Table 4.1. 

 
Tutor There will be more potential for cooling. Is there more or less 

potential for power generation? 

St16 not necessarily 

Tutor There will be more potential for power generation ... Where might 
the increased heat input go instead? 

St16 this tutor is really annoying 

St5 Agreed 

Table 4.1: Excerpt of an interaction between a CA (tutor) and a group of students 

 

We reason that the presence of other students in collaborative learning scenarios 
caused the agents to compete for the attention of the students. Since the agents were 
not adept at performing social interactive behavior, which is a significant part of the 
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formative phase of the group interaction, the agents were quickly pushed to the 
periphery of the learning group. 

This observation demonstrates that besides the technical challenges underlying 
the development of CAs, we also find ourselves with a shortage of design principles 
that can help us make effective CAs in multi-party interactive situations. In particular, 
the presence of multiple human users in the interaction initiates additional 
communication processes within the group. We should design agents which can 
observe and participate in all of these processes with reasonable effectiveness when 
necessary. 

Towards addressing this goal of creating agents as effective communicators, we 
must adopt principles of effective communication into agent design. Specifically in 
the case of multi-party interactive situations, investigations on small group 
communication offers relevant theories which are largely ignored in work on 
Conversational agents. One of the goals of this work is to bridge this gap between 
computational aspects of realizing CAs and theories in small group communication. 

As discussed in the next section, we find that the agents which were being used in 
our earlier work do not perform social behaviors which are prominent and necessary 
in human group interaction. 

4.2 Small Group Communication 

Theoretical and empirical study of group interaction processes has been of 
interest in sociology and communications research communities since the 1950’s. 
McGrath (1984) reviews various theories that address the functions of group 
interaction processes. Of particular interest among these are the theories proposed by 
Robert F. Bales (1950) and Wilfred R. Bion (1961). 

Both of these theories propose that two fundamental processes operate within 
groups. Bales identified that these two process correspond to instrumental (task-
related) and expressive (socio-emotional) interaction. Bion divides group interaction 
between similar categories of Work and Emotion processes. Over attention to any one 
of these processes causes lapses on the other. Hence, interaction shifts between these 
two in order to keep the group functional. 

Bales developed an Interaction Process Analysis (IPA) scheme to analyze group 
interaction along twelve interaction categories shown in Table 4.2. Six of these 
interaction categories correspond to instrumental (task-related) interaction and the 
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other six correspond to expressive (social-emotional) interaction. IPA is of particular 
interest from the point of view of designing appropriate social behavior for CAs 
because the units of interactions that IPA is applied to are fine grained and 
correspond roughly to the size of conversational turns. Another analysis scheme 
developed by Bion and Thelen (1956) analyzes units at a coarse level of granularity 
such that each unit is made of about 30 - 50 utterances. 

 

Positive Expressive 
Interaction Categories 

Shows Solidarity 
Shows Tension Release 
Agrees 

Instrumental 
Interaction Categories 

Gives Suggestion 
Gives Opinion 
Gives Orientation 
Asks for Orientation 
Asks for Opinion 
Asks for Suggestion 

Negative Expressive  
Interaction Categories 

Disagrees 
Shows Tension 
Shows Antagonism 

Table 4.2: Interaction Categories of Bales’ Interaction Process Analysis Scheme 

  

Most of the existing research on interaction strategies for Conversational Agents 
used in various interactive settings has focused on task-related strategies. In the case 
of conversational tutors, the task (or work) related interaction include aspects like 
instructing students about the task, delivering appropriate interventions in suitable 
form (e.g. socratic dialog, hints), providing feedback and other such tactics (Graesser 
et. al., 2001). Some studies (Rosé et. al., 2001b; Wang and Johnson, 2008) have 
evaluated the effect of these task related conversational behavior in tutorial dialog 
scenarios. Work in the area of affective computing and its application to tutorial 
dialog has focused on identification of student’s emotional states (D’Mello et. al., 
2008) and using those to improve choice of task related behavior by tutors. 
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However, there has been only limited study of expressive (socio-emotional) 
aspects of the agent’s conversations. The focus of our work is to systematically use 
research in Small group communication to design expressive behavior that is relevant 
and appropriate for conversational agents in the interactive situations we are 
investigating. 

4.3 Social Interaction Strategies 

1.   Showing Solidarity: Raises other's status, gives help, reward 
1a. Do Introductions: Introduce and ask names of all participants 
1b. Be Protective & Nurturing: Discourage teasing 
1c. Give Reassurance: When student is discontent, asking for help 
1d. Compliment / Praise: To acknowledge student contributions 
1e. Encourage: When group or members are inactive 
1f. Conclude Socially 
 
2.   Showing Tension Release: Jokes, laughs, shows satisfaction 
2a. Expression of feeling better: After periods of tension, work pressure 
2b. Be cheerful 
2c. Express enthusiasm, elation, satisfaction: On completing significant task steps 

 
3.   Agreeing: Shows passive acceptance, understands, concurs, complies 
3a. Show attention: To student ideas as encouragement 
3b. Show comprehension / approval: 
      To student opinions and orientations 

Table 4.3: Social Interaction Strategies based on  
three of Bales’ Socio-Emotional Interaction Categories 

In this section, we present our process of designing and implementing Social 
Behavior motivated from the literature in Small Group Communication discussed in 
the last section. 
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As discussed earlier, current state-of-the-art conversational agents do not perform 
the socio-emotional function of interaction that is known to be a fundamental aspect 
of group interaction. Hence, we hypothesize that socially capable agents will be able 
to perform better in multi-party interactive situations. In order to further specify 
social capability, we use the interaction process analysis (IPA) schema developed by 
Bales (1950). 

IPA identifies three positive socio-emotional interaction categories: showing 
solidarity, showing tension release and agreeing. We have mapped these categories to 
practically implementable conversational strategies that are relevant to collaborative 
learning situations since this is the multi-party interactive situation we will use in 
most of our experiments. This mapping from IPA categories to Social Interaction 
Strategies is shown in Table 4.3. 

These strategies were developed over two iterations. We conducted a pilot 
evaluation with 6 subjects between the iterations to verify if the strategies were 
successful at eliciting their intended perception from users. Subjects were shown 
crafted excerpts of interactions between users and an agent. The agent’s turns in the 
excerpts that corresponded to social interaction strategies were highlighted and the 
subjects were asked to report their perception of friendliness, tension release and 
agreeing after reading each excerpt. Some strategies and corresponding prompts were 
modified in the cases where the reported scores were relatively low. 

4.4 Related Work 

While our work employs research in small group communication to design social 
behaviors for conversational agents, there has been some other work on CAs that 
employ social (non-task) behavior. 

Bickmore et. al. (2009) report that users found agents with autobiographies i.e. 
back stories in first person more enjoyable and they completed more conversations 
with such agents. Dybala et. al. (2009) found that agents equipped with humor were 
evaluated as more human-like, funny and likeable. In a multi-party conversational 
scenario, Dohsaka et. al. (2009) found that an agent’s use of emphatic expressions 
improved user satisfaction and user rating of the agent. 

In educational applications, Wang and Johnson (2008) found that learners who 
received polite tutorial feedback reported higher increase in self-efficacy at the 
learning task. In our earlier work (Kumar et. al. 2007b) we used personal preferences 
determined from engaging in small talk with learners to construct word problems to 
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engage the learners in the problem solving activity. Other work in affective 
computing has attempted to endow spoken dialog systems with emotional intelligence 
(Andre et. al., 2004) to respond to user’s affective states during the interaction. 

Besides the use of verbal social behavior, work on developing virtual humans and 
embodied conversational agents has investigated the user of non-verbal behavior 
through gesture and gaze to convey social messages to participants in the interaction. 

Most of the earlier work on verbal social or non-task behavior focuses on only 
one type of behavior such as human, politeness, etc. The work presented in this thesis 
takes a holistic approach to the design social behaviors using descriptions of the six 
socio-emotional interaction categories of IPA as a model of social behaviors. Besides 
showing that these behaviors can help in achieving higher performance and 
perception outcomes, Chapter 7 also shows that this approach can be used to 
systematically create social capabilities for conversational agents for a variety of 
applications. 

4.5 Implementation of Social Behavior 

Table 4.4 shows an excerpt of an interaction that shows the agent’s use of some 
of these interaction strategies. The agent is playing the role of a tutor in this 
collaborative learning situation. Turn 142 concludes a TuTalk script about the 
relationship of stress and ease of use of a wrench. At turn 144, the agent compliments 
(Strategy 1d) one of the students for participating in the discussion. Also note that 
one of the students exhibits enthusiasm about their team’s designs in turns 143 and 
146. These types of turns are detected using dictionaries built using a corpus analysis 
of collaborative learning interactions. In response, the agent exhibits cheerfulness 
(Strategy 2b) in turn 145 and 147 to reciprocate the student’s enthusiasm. 

Figure 4.1 shows the components network of the WrenchTalk tutor agent. This 
agent, built using the Basilica architecture, is capable of employing the social 
interaction strategies alongside the task-related (tutoring) behavior. 

We use two specialized types of manager components (PlanExecutor and 
SocialController) in this network. The PlanExecutor is responsible for executing the 
tutor’s task-related interaction plan, which is comprised of 37 steps. The plan is 
executed largely sequentially; however the plan controller can choose to skip some 
steps in the interest of time. The SocialController implements the eleven social 
interaction strategies listed in Table 4.3. The strategies are triggered by rules 
(Appendix J) based on combinations of four features: the most recent plan step, 
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semantic annotations of the most recent student turns (by the AnnotationFilter), 
activity levels of each student (measured by the ActivityDetector) and the percentage 
of tutor turns generated by SocialController to regulate the amount of social behavior 
by the tutor. Once the controllers determine a step or a strategy that is to be generated 
they are conveyed to the corresponding observable behavior generation components 
(PromptingManager, TutoringManager, IntroductionsManager). 
 
 

139 Tutor One last thing on this topic, Does more (or less) stress in a wrench 
make it easier to use? 

140 S95 no change? 

141 Tutor You are correct about that.. Stress doesn't determine ease of use. 

142 Tutor It's the moment achieved by the wrench that determines the ease of 
use. 

143 S89 yay! 

144 Tutor It's good to have your contributions in the discussion Jackie :-) 

145 Tutor Go team :-) 

146 S89 Go team yay 

147 Tutor I am happy to be working with our team 

148 S89 Me too 

149 S95 whoa the bot knows my name 

150 Tutor Unfortunately maximum stress (12800) in our design1 is way above 
the maximum allowed stress (i.e. 8750) 

151 Tutor This wrench cannot be safely used! 

Table 4.4: Excerpt of a conversation between three students and WrenchTalk Tutor 

 

The flexibility that the Basilica architecture provides is demonstrated in this case 
by the use of the two primary controllers (PlanExecutor and SocialController), unlike 
typical dialog systems, which use only one primary controller (Dialog Manager). 
Coordination between the two controllers is achieved by connecting them. For 
instance, when the PlanExecutor is working, it blocks the SocialController and vice 
versa. Control is shared between the two by transferring control at the end of every 
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interaction step. We also notice the re-use of the tutoring components from the 
CycleTalk tutor agent discussed in Chapter 3 

 

 
Figure 4.1: Component Network of the WrenchTalk Tutor 

 

The ActivityDetector component provides a way to monitor the uneven student 
participation by students which is characteristic of multi-party interaction. When one 
or more students become critically inactive in the interaction, this component can 
choose to trigger Strategy 1e listed in Table 4.3 through the SocialController to 
encourage the inactive students to contribute to the discussion. 

An additional type of component we see in this network is the memory 
component (DiscourseMemory). It maintains a history of the discourse state messages 
and interaction steps. Memory components circumvent the usual event propagation 
mechanism by using a specialized faster commit / retrieve mode of access from other 
components. This is to reduce the computational overhead of using two events 
(request and response) otherwise required for accessing memory components. 
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An experiment, described in the next chapter, conducted to evaluate the 
WrenchTalk tutor also demonstrates the usefulness another feature of the Basilica 
architecture, i.e., Observer components. In order to compare our implementation of 
the social interaction strategies with human quality social interaction, we augmented 
the tutor with a human observer user interface that allowed a human tutor to insert 
social prompts at any time during the interaction with the students. The students 
would see that human modified prompt as another prompt from the tutor. This was 
implemented by assigning an observer to the AnnotationFilter and PlanExecutor 
components. 

4.6 Alternative Perspectives 

While the rest of this thesis focuses on the use of the social interaction strategies 
based on IPA categories, in this section, we consider alternative perspectives from 
recent work in the area of small group communication. Bales (1958) suggested the 
emergence of leaders in group interaction that serve the roles of task and social 
experts/leaders. Recent views on shared leadership (Pearce and Conger, 2003) 
discussed in contrast to traditional approaches to leadership (e.g. hierarchical) 
suggests the distribution of leadership among the participants of a groups wherein the 
participants of the groups influence each other to support the achievement of shared 
goals. 

The shared leadership paradigm is consistent with the emergent task and social 
roles differentiation suggested by Bales. IPA provides a mechanism to study the 
emergence of these expert roles during group interaction by tracking contributions of 
each participant across the categories corresponding to each role. Relationships 
between the previous and emerging leaders of each role have been studied in terms of 
their initiation and reception of contributions across the various interaction 
categories. 

Within the context of shared leadership, the concept of self-in-relation described 
in the Stone Center Relational Theory (Miller, 1976) allows us to consider a unified 
model of relationships between the participant’s goals towards themselves as well as 
towards the group. While IPA does not consider self as a recipient of a contribution, 
interaction categories may be mapped to objectives directed at self (e.g mitigating 
face threats) or at the group. 
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While we do not apply these concepts within the analysis of the experiments 
discussed in this thesis, they offer directions for further integration of research in the 
fields of small group communication and conversational agents. 
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Chapter 5  
 
Application: Collaborative Learning 
 
 

Availability of an implementation of the Social Interaction Strategies for 
Conversational Agents presents the opportunity to investigate a collection of 
interesting research questions. Foremost of these corresponds to evidence of impact 
of using these Social Interaction Strategies. Besides the efficacy of using these 
strategies, we want to investigate the appropriate use of these strategies in terms of 
amount and timing of these strategies. Finally, we are interested in investigating the 
generalizability of these social behaviors to other multi-party interactive situations. 

In this chapter, we will describe two experiments that were conducted to 
investigate the benefits and the optimal amount of the social interaction strategies 
listed in Table 4.3. Chapter 6 describes our work on investigating the appropriate use 
of these strategies in terms of timing considerations. The issue of generalizability is 
explored in Chapter 7 where we consider the use of socially capable conversational 
agents to support a group decision making application. 

5.1 Methodology & Metrics 

Before we discuss the experiments, this section provides a general description of 
the methodology we adopt in this line of work. 

5.1.1 Recruitment 

Subjects participating in our experiments are recruited either from public 
announcements or through voluntary consent of students participating in courses that 
employ our instructional agents. In the experiments described in this chapter, students 
enrolled in freshmen and sophomore mechanical engineering courses interact with 
our agents during one of the labs of each of these courses. All the enrolled students 
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participate in this lab and go through the same procedure including interacting with 
the agent. Subjects are compensated through gift cards or lab credit depending on the 
mode of recruitment. 

5.1.2 Design 

Our experimental designs generally involve conducting controlled experiments 
with a small number (3-6) of conditions in which one or two experimental variables 
are manipulated. Subjects are randomly divided into groups of 2-4 participants. 
Groups are evenly distributed between the experimental conditions i.e. each group 
participates in only one of the experimental conditions. 

5.1.3 Procedure 

1. Pre-manipulation tests and surveys (if any) are administered. 

2. Subjects are given instructions about the group activity along with a 
tutorial on the collaboration environment. Subjects are not made aware of 
the experimental manipulation. 

3. Subjects participate in the group activity. 

4. Post-manipulation tests and surveys are administered. While subjects 
work in groups during step 3 of this procedure, tests and surveys in step 1 
and step 3 are administered individually. 

5.1.4 Materials 

We will discuss specific materials used for each of the experiment as we present 
the experiments. The same perception survey (Appendix B) has been used in all of 
these experiments. The survey comprised of nine items to be rated on a seven point 
Likert-scale ranging from Strongly Disagree (1) to Strongly Agree (7). Six of the 
items were based on Burke’s (1967) survey rephrased to elicit ratings about the 
tutor’s behavior. The other three questions were designed to elicit ratings of task 
satisfaction, satisfaction with group discussion and perceived task legitimacy. 

5.2 Experiment 1: Benefits of Social Behaviors 

Foremost, we are interested in studying the productivity and perception effects of 
the use of social interaction strategies by conversational tutors in collaborative 



  

49 
 

learning settings. This section describes the conditions, procedures and results from a 
controlled experiment we conducted to validate our hypothesis that socially capable 
tutors will be able to perform better in collaborative learning scenarios. 

5.2.1 Experimental Design 

 
58 Tutor Lets talk about making the wrench easy to use. 

59 Tutor Are you ready? 

62 S19 o yeah 

64 Tutor Intuitively, if you wanted to make the wrench easier to 
use, would you make it longer or shorter? 

67 S5 longer 

70 Tutor That's right. A longer wrench is better. 

72 Tutor Why is a longer wrench easier to use though! Let's look 
at the concept of Moment. 

73 Tutor When you use a wrench to turn a bolt, do you want a 
higher or lower moment? 

74 S16 higher 

75 S13 higher 

77 Tutor That's right. A higher moment means the Wrench turns 
easier. 

79 Tutor We know that moment = force x length. So... 

Table 5.1: Excerpt of a tutor providing a lesson to a team of four students 

 

We designed a study with three conditions. In the experimental condition 
(Social), students interacted with a tutor that was equipped with the eleven social 
interaction strategies, unlike the control condition (Task) which is our lower baseline 
condition. In a third (gold standard) condition, a human tutor controlled the social 
interaction while the students interacted with a tutor similar to the Task condition. 
The human tutors used in the third condition were instructed to not give any task 
related information/instructions. They were asked to trigger appropriate social 
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prompts (from the same list the automated tutor uses) when they thought it was 
appropriate. Human tutors were allowed to make modifications to the prompts before 
triggering them. They were also allowed to type in new prompts. 

In all three conditions, students would receive the same task related information 
(instructions / lessons / feedback) through the automated tutor. As shown in the 
excerpt in Table 5.1, the tutor has instructional capabilities (like asking questions and 
giving feedback) that are found in state-of-the-art tutors that perform only task-
related behavior. These instructional capabilities are common to the tutors used in all 
three conditions in our experiment. The time allotted for the interaction is the same 
for each group. 
 
 
 

Strategy 1a: Do Introductions 

7 Tutor Hi, I am your tutor for today's lab. 

8 Tutor Lets introduce ourselves briefly. I am Avis. 

9 S083 Hey Avis! I'm _name1_ 

10 S073 Im _name2_ 

11 S089 i'm _name3_ 

12 Tutor Its nice to meet you all. :) 

13 Tutor Let's get started by reviewing the base design in your worksheet. 

 

Strategy 3b: Show Comprehension / Approval 

48 S083 R we using the same material? 

49 S073 I assume so 

50 S073 just changing the length 

51 S089 yeah we have multiple design steps 

52 S089 so probably for now 

53 Tutor cool :) 

54 S083 O ok 
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Strategy 1e: Encourage (inactive members) 

119 Tutor Is this a safe wrench? 

120 S073 and then is the same for design 2 

121 S073 so yes the wrench is safe 

122 Tutor _name1_ ... any thoughts you'd like to contribute? 

123 S083 its a safer wrench if its in steel 

 

Strategy 1d: Compliment / Praise 

143 S073 high 

144 Tutor Right, higher yield stress is better. 

145 S089 so steel or titanium 

146 S089 but have fun paying for that... 

147 Tutor All other things being equal, you want to choose a stronger 
material. 

148 Tutor It's good to have your contributions to the discussion :-) 

149 S073 yay 

 

Strategy 2c: Express Enthusiasm, Elation, Satisfaction 

150 S073 :) 

151 Tutor Let's improve design 1 by using Steel for our 2nd _truncated_ 

152 Tutor I am happy to be working with our team 

153 S083 thanks :-) 

154 Tutor You can start calculating the fields in the worksheet _truncated_ 

155 S089 woo... 

Table 5.2: Excerpts showing examples of the Social Interaction Strategies 
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The only manipulation in this design is the amount of social interaction 
performed by the tutors. It varies from minimal (Task) to computationalizable 
(Social) to ideal (Human). In automated tutor used in Social condition was the same 
as the one described in Section 4.5. The social behaviors of this tutor were triggered 
by a set of hand crafted rules (Appendix J). Table 5.2 shows some instantiations of 
the social interaction strategies triggered by these rules. 

According to our hypothesis, socially capable tutors used in the Social and the 
Human conditions will perform better than the Task condition. We conducted a 
between-subjects experiment during a college freshmen computer-aided engineering 
lab project. 98 mechanical engineering students enrolled in the lab participated in the 
experiment, which was held over six sessions spread evenly between two days. The 
two days of the experiment were separated by two weeks. 

Students were grouped into teams of three to four individuals. Each group 
communicated using ConcertChat (Mühlpfordt and Wessner, 2005) which is a shared 
workspace environment that allows participants to communicate with each other 
using text messages. Figure 3.1 shows a screenshot of the ConcertChat environment. 
No two members of the same group sat next to each other during the lab. The groups 
were evenly distributed between the three conditions (Task, Social and Human) in 
each session. 

Each session started with a follow along tutorial of computer-aided analysis 
where the students analyzed a wrench they had designed in a previous lab. A pre-test 
with 11 questions (7 multiple choice questions and 4 short essay questions) was 
administered after the analysis tutorial. The experimental manipulation happened 
during a Collaborative Design Competition after the pre-test. Students were asked to 
work as a team to design a better wrench taking three aspects into consideration: ease 
of use, material cost and safety (Appendix C). Students were instructed to make three 
new designs and calculate success measures for each of the three aspects under 
consideration. 

They were also told that a tutor will help them with the first and the second 
designs so that they are well prepared to do the final design. No additional details 
about the tutors were given. Besides receiving lab credit for participating in the 
design competition, students were told that every member of the team that performs 
best overall will receive a $10 gift card as prize. 

After the students spent 35 minutes on the design competition, a post-test was 
administered (Appendix A). Following the test, student filled out a perception survey. 
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5.2.2 Learning Outcomes 

The pre-test and post-test were graded by two different graders who were 
provided answer keys for the tests. The graders were not aware of the condition 
assigned to each student. 

Using an ANOVA, we were unable to find any significant differences (p = 0.680) 
between pre-test scores for the three conditions (Task, Social, Human). Another 
ANOVA using test-phase (Pre, Post) and condition as independent variables showed 
that there was a general positive effect of the learning task indicated by a significant 
improvement in test scores between the pre-test and the post-test F(1,190) = 16.67, p 
< 0.001, effect size = 0.51 standard deviations. There was no interaction between test-
phase and condition. Students in all conditions learned between the pre-test and the 
post-test. 

To evaluate the effect of the tutor’s social capability on the post-test achievement, 
we used an ANCOVA model with day of the experiment and the condition as 
independent variables. Pre-test score was used as a covariate. We found a significant 
main effect of the condition variable F(2, 93) = 10.56, p < 0.001. A pairwise Tukey 
test post-hoc analysis revealed that both the Human and Social conditions were 
significantly better than Task condition. This is consistent with our hypothesis. The 
Social and Human conditions were not significantly different on this measure. The 
relative effect sizes with respect to the Task condition was 0.93 standard deviations 
(σ) for the Human condition and 0.71σ for the Social condition. There was no main 
effect of day of experiment on this outcome. 

5.2.3 Perception Ratings 

Figure 5.1 shows the average rating by the students for the survey items about the 
tutor. Using condition and day of the experiment as independent variables in an 
ANOVA, we modeled the ratings for the items about tutor (Q1-Q6). There was a 
significant main effect of condition (p < 0.05) on the first five items i.e. liking, being 
friendly, providing good ideas, trying to release tension and being part of the team. 
We found no significant difference on the item about tutor agreeing with the students 
(Q6). Also, there was no main effect of day of experiment on these outcomes. 

Pairwise Tukey test post-hoc analysis showed the only tutors in the Human 
condition were significantly (p < 0.05) better than Task condition for the first five 
questions (Q1-Q5). The tutor in Social condition was rated significantly (p < 0.05) 
better only for Q2 (being friendly) and marginally better (p < 0.08) for Q5 (being part 
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of the team). The social tutors were not significantly better than our lower baseline 
(Task) on the other four items (Q1, Q3, Q4, Q6). 

Figure 5.1 also shows the average rating about the learning task. Once again, 
ANOVA using condition and day of experiment as independent variables showed that 
there were significant main effects of condition on Q8 (task satisfaction) F(2,92) = 
4.91, p < 0.01 and day of experiment F(1, 92) = 11.57, p = 0.001. Day2 (Mean=5.77, 
σ=1.56) was significant better than Day1 (Mean=4.66, σ=1.67). Also, Social 
condition was the worst of the three conditions on this measure, even though only the 
difference between Human and Social conditions was significant. An interaction 
analysis showed a marginal interaction effect of the two independent variables on this 
item F(2, 92) = 2.78, p < 0.08. There were no main effects on Q7 (satisfaction with 
group discussion) and Q9 (perceived task legitimacy). 

 

 
Figure 5.1: Average ratings for the Tutor (Q1-Q6) and the Learning Task (Q7-Q9) 

 

Burke (1967) has shown that under conditions of high task legitimacy, 
differentiation between social and task role leaders (tutor) in the group does not 
happen. Assuming that effect of social behavior on task satisfaction is conditioned on 
role differentiation, we account for the variance due to perceived task legitimacy (Q9) 
by including it as a covariate in an ANCOVA to model task satisfaction (Q8) FQ9(1, 
91) = 26.37, p < 0.001. Using this model, we find that the only significant difference 
in task satisfaction among the three conditions is between the Human and Task 
conditions. The lower task satisfaction rating for the social condition is explained by 
the lower perceived task legitimacy in that condition. 
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5.3 Analysis of performed Social Behavior 

In order to compare our automatic implementation of the social behaviors to the 
human tutors, we counted the instances of actual display of social behaviors by those 
tutors. The turns were classified as one of seven behaviors listed in Table 5.3 based 
on the social prompt closest to the turn. Table 5.3 also shows the average turn counts 
for the seven types of social behavior for the two types of tutors. 

 
Behavior Strategy Social Human 

Doing Introductions 1a 2.67 3.80 

Being Friendly 1b-1e 5.61 8.10 

Doing Conclusions 1f 0.97 1.80 

Trying to Release Tension 2a-2c 5.81 1.77 

Agreeing 3a-3b 1.78 4.90 

Pushing   0.57 

Being Antagonist   1.23 

Table 5.3: Average number of social behavior turns displayed by tutor 

 

All the differences between the tutors shown in Table 5.3 are significant. We note 
that except the number of turns related to tension release strategies (2a, 2b, 2c), the 
human tutors performed significantly more social turns. Also, we note that the human 
tutors performed additional social behaviors that were not part of the social strategies 
implemented in our social tutors on some occasions. Both the Pushing and Being 
Antagonist behavior classify as negative socio-emotional interaction categories in 
Bales’ IPA scheme. 

Overall, we find that the human tutors performed significantly more social 
behavior than the automated tutors. This observation led us to investigate the effect of 
the amount of social behavior displayed by conversational agents. Experiment 2 and 
3 explore the relationship between amount of social behavior and outcomes metrics 
within the context of collaborative learning application. 
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5.4 Analysis of effect of Social Behavior 

We have observed that the use of social behavior in collaborative learning 
settings can help in improving learning outcomes (Kumar et. al., 2010a). This 
observation is not necessarily consistent with intuition. On the one hand, we could 
attribute this to the ability to manage the user’s (student) attention towards the agent 
(tutor) by displaying the social behavior. At the same time, we could argue against 
the use of social behavior by considering it as a potential distraction from the task. As 
described in Experiment 2, we found that it is important to keep the amount of social 
behavior at an optimal level in order to observe the learning benefits of the social 
behavior and to avoid its distraction costs. 

 
1 Tutor Are you paying attention to this? 

2 S006 of course 

3 S001 yes 

4 Tutor What would happen if the stress in our Wrench is too high? 

5 S006 fail 

6 S001 it'd fail 

7 S014 it would break. 

8 Tutor That's right. The wrench can break! 

9 Tutor A wrench that can break in normal use is not safe! 

10 S006 :( 

11 Tutor In general, to keep a wrench safe, we want to keep the stress in 
the wrench high or low? 

12 S006 lowwww 

13 S001 low 

14 Tutor Right, stress should be kept low. 

15 Tutor Which material property determines when the stress is too high? 

16 S001 yield strength? 

Table 5.4: Excerpt of a Conceptual Tutoring Episode 
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In this section, we present a corpus analysis to discover an underlying model of 
how the social behavior affects learning outcomes. We used a corpus of collaborative 
learning interactions between teams of three or more students and a tutor. The 
interactions involve the teams performing a learning activity which lasts 
approximately 40 minutes. During this time, the tutors provide directions, hints and 
conceptual tutoring. Each team undergoes up to four conceptual tutoring episodes. 

A conceptual tutoring episode is a system-initiated conversation during which the 
tutor leads the students through a directed line of reasoning to help them reflect upon 
a concept related to the learning activity. An excerpt of a tutoring episode discussing 
the relationship between stress and safety is shown in Table 5.4. No social behaviors 
are performed during such an episode. During the collaborative design activity, these 
episodes are the primary source of knowledge that the tests administered to the 
students measure. The tutor performance objective is to deliver the instructional 
content of the episodes as effectively and efficiently as possible. As discussed in 
section 5.4.2, we measure the performance of the tutor on these objectives using the 
test scores and the amount of time spent on the tutoring episodes. 

5.4.1 Coding Tutoring Episodes 

Each turn in all the tutoring episodes of the 32 interactions between a team of 
students and an automated tutor were annotated using a coding scheme described 
here. The tutor turns were categorized as either Respondable (TR) if the students 
were expected to respond to that tutor turn or Not Respondable (TU) otherwise. In 
Table 5.4, all the shaded turns are labeled as Respondable. 

 

 
Figure 5.2: Venn Diagram of Episode Turn Annotations 
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Student turns are categorized into one of three categories. The Good turns (SG) 
label identifies turns where the students are showing attention to a respondable tutor 
turn (e.g. Turn 2 & 3 in Table 5.4) or the students are giving a correct or an incorrect 
response to a direct question by the tutor (e.g. Turns 5, 6, 7, 12, 13 & 16). 
Counterproductive (Bad) student turns (SB) include students abusing the tutor or 
ignoring the tutor (e.g. talking to another student when the students are expected to 
respond to a tutor turn). Student turns that are not categorized as Good or Bad are 
labeled as Other (SO). Turn 10 is an example of SO because it is a response to a tutor 
turn (9) where no student response is expected. Figure 5.2 shows a Venn diagram of 
the different annotations. All five categories are mutually exclusive. 

5.4.2 Structural Equation Modeling 

In order to discover an underlying model of how the use of social behavior 
affects student learning, we used a structural equation modeling (SEM) technique 
(Scheines et. al., 1994). 

Data 

To measure learning outcomes, our data comprised of scores from pre-test and 
post-test administered to 88 students who were part of the 32 teams whose data was 
annotated for this analysis. We included the count of number of good and bad 
responses from the students as measures of interaction characteristics of each student 
in our dataset. Total number of social turns performed by the tutor in each interaction 
was included as a characteristic of social behavior displayed by the tutor. Finally, the 
total amount of time (in seconds) that the students spent on the tutoring episodes was 
included as a characteristic of the interaction efficiency during the tutoring episodes.  

Prior Knowledge 

The only prior knowledge input to the model stated that the pre-test occurs before 
the post-test. 

Discovered Models 

We used Tetrad IV to discover a structural equation model in the data comprising 
of 6 fields (PreTest, PostTest, GoodResponses, BadResponses, SocialTurns, 
EpisodeTime) for each of the 88 students. Figure 5.3 shows the structural equation 
model discovered by Tetrad using the dataset described above. p-Value of 0.38 for 
this model confirms the hypothesis used by Tetrad for its statistical analysis i.e. the 
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model was not discovered randomly. Note that unlike other statistical tests, SEM 
models built using Tetrad are evaluated as significant if the p-Value is greater than 
0.05. The numbers on the arrows are correlation coefficients and the numbers on the 
boxes indicate mean values for each variable. 

 

 
Figure 5.3: SEM discovered using all 6 variables in our dataset 

 

Besides the expected causal effect of PreTest score on PostTest score, we find 
that as the duration of the tutoring episodes (EpisodeTime) increases, the learning 
outcomes deteriorate. We notice that an increase in the number of Bad responses by 
the students increases EpisodeTime indicating that students who abuse or ignore the 
tutor are likely to not pay attention to the instructional content presented during the 
tutoring episodes, hence prolonging the tutoring episode as the tutor tries to get the 
students through the instructional content. While it may seem that reducing the 
episode duration should hurt test scores because it reduces the time spent on learning. 
However, this is not the case because of the way tutoring episodes are conducted in 
our implementation. Reducing the episode duration does not reduce the instructional 
content being delivered. It only indicates a higher efficiency of delivery as same 
amount of content is being delivered in a smaller amount of time. 

We observe that social behavior helps in counteracting the negative learning 
effect of Bad interaction behaviors of the students by reducing the EpisodeTime. 
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Tutors that perform social behavior are capable of managing the student’s attention 
and get the students through the tutoring episode faster. Also, we note that tutor’s use 
of social behavior does not directly reduce the amount of dysfunctional (bad) 
behavior of the students. 

 

 
Figure 5.4: SEM including the MeanResponseTime and UnrespondedTurns variables 

 

In order to verify this further, we experimented with two other configurations of 
the structural equation model. One of these configurations prohibited the relationship 
between SocialTurns and EpisodeTime and the other explicitly mentioned a 
relationship between SocialTurns and BadResponses. We found neither of the models 
discovered using these configurations to be statistically significant. While the 
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relationships between those variables may become statistically significant with the 
availability of more data, the explanation of the effect of social behavior leading from 
Figure 5.3 seems to be more. 

Also, we experimented with two additional variables (MeanResponseTime and 
UnrespondedTurns) which measured how quickly and how often the students 
responded to a direct question by the tutor. They act as additional measures of student 
attention and engagement. Figure 5.4 shows the structural equation model discovered 
using these variables (p=0.5264). We see that like EpisodeTime, MeanResponseTime 
is decreased by the use of social behavior and bad behavior by the students increases 
it. Also, as expected, increase in MeanResponseTime contributes to increasing 
EpisodeTime. 

Note that the coefficients on the arrows in Figure 5.3 cannot be used to compare 
the magnitude of effect of the different variables on each other because of the 
different means and range of variation of each of the variables. We normalized the six 
variables used in that SEM to have a mean of 0 and a standard deviation of 1. Figure 
5.5 shows the SEM using the normalized variables. The magnitude of the coefficient 
can be used to estimate the relative effect of two variables. For example, we see that a 
PreTest has a larger effect on PostTest than EpisodeTime. 

 

 
Figure 5.5: SEM with normalized variables 
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5.4.3 Interpretation 

The SEM analysis discussed in the previous section helps us better understand 
the relationship between the use of social behavior and student learning in a 
collaborative learning setting. If we consider the duration of the tutoring episodes as 
an indicator of the students’ attention to the tutor (higher duration lower attention). 
We see that social behavior helps in managing the students’ attention, which may be 
affected negatively by counterproductive/bad interaction behavior from the students.  

Besides suggesting that social behavior could be a useful strategy for directing 
student attention, it also suggests that social behavior may not serve this function 
where counterproductive student behavior is not present or where it does not occur 
enough to negatively impact task behavior. This is because a minimum amount of 
time needs to be spent on each tutoring episode to deliver the instructional of the 
concept being discussed. In the absence of counterproductive student behavior, 
episode duration may be close to that minimum. 

5.5 Experiment 2: Amount of Social Behavior 

From experiment 1, we notice that the human capability outperformed our 
implementation of the social-capable automated tutor on most measures. One of the 
possible reasons for the shortcomings of the automated tutors on the performance and 
perception metrics could be attributed to insufficient display of social behavior by 
those tutors. Table 5.5 shows an excerpt from an interaction between a team of 
students and a Human tutor. Names are changed to preserve anonymity. A 
comparable example of a similar interaction is shown in Table 5.6 where a team of 
students is interacting with an automated tutor. In both cases, one of the members of 
the team responds (turns 65 and 82 respectively) to the tutor checking about the 
student’s progress. The human tutor uses this event as an opportunity to encourage 
(Strategy 1e) the other group members to contribute (turn 66, 67) unlike the 
automated tutor. 

The experiment described in this section attempts to investigate the effect of 
amount of social behavior on performance and perception outcomes in a collaborative 
learning situation. The effect of the amount of social behavior displayed on outcomes 
is our first choice for an experiment as it is one of the easiest dimensions to 
manipulate given our existing implementation of a socially-capable tutor. Further, if 
this hypothesis was shown to be valid, it has the potential to cover the most ground 
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towards matching human social capabilities. Next, we describe how our automated 
tutors were modified to vary the amount of social behavior they displayed. 

 
63 Tutor Did you manage to calculate the moment already? 

65 S66 600? 

66 Tutor Talk to your teammates about the design. 
Discussions are helpful! 

67 Tutor Does anyone want to respond to Timmy? 

70 S73 yes it is. x2 

71 S73 everything is x2 

72 Tutor Thank you Bobby 

79 S73 you are welcome avis 

Table 5.5: Excerpt of an interaction between a team of students and a Human tutor 

 

80 Tutor Now let's calculate the maximum stress in the 
Wrench. 

81 Tutor Note: Stress increases proportionately with the 
Moment. 

82 S99 So just 8750x2? 

83 Tutor Since the moment doubled, the maximum stress in 
design 1 should be doubled too, i.e., 12800lb/in^2 

Table 5.6: Excerpt of an interaction between a team of students  
and an automated tutor 

5.5.1 Agent Implementation 

The component network (20 components and 40 connections) of the CycleTalk 
tutor agent is shown in Figure 5.6. We can see that this component network is very 
similar to the component network shown in Figure 4.1. However the GoalManager, 
GoalActor components are new and the ProgressDetector component has been 
removed. The first two are used for performing a behavior specific to learning 
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activity performed by students while interacting with this agent. The 
ProgressDetector is not used in this agent because none of the steps of this agent’s 
plan depend on the detection of phrases indicative of the students’ progress on the 
learning activity. The rest of this section describes the implementation details of this 
agent. 

 

 
Figure 5.6: Component Network of the CycleTalk Tutor used in Experiment 2 

 

The ConcertChatListener and ConcertChatActor components provide 
connectivity to the ConcertChat environment and isolate the components of the agent 
to allow easy integration with other environments if required. Text messages from the 
students are propagated through the component network after being annotated with 
semantic categories by the AnnotationFilter. 

The interactive behaviors of the agent that are directly observable by the students 
are implemented by 4 manager-actor dyads. For example, the IntroductionsManager-
IntroductionsActor dyad implements the introductions behavior that is performed 
when the Social Interaction Strategy 1a is triggered. The PlanExecutor and the 
SocialController trigger relevant task-related and social behavior respectively. 

The PlanExecutor executes the tutor’s task-related interaction plan comprised of 
14 steps (including 4 tutorial dialogs) some of which may be skipped in the interest of 
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time. One of the steps includes asking the students about their design goals which is 
performed by the GoalsManager-GoalsActor dyad. Based on a configuration 
parameter, the TutoringManager can favor one of the goals (or remain neutral) by 
choosing corresponding versions of the 4 tutorial dialogs when they are triggered. 

The SocialController implements eight of the social strategies listed in Table 4.3. 
We did not use the three tension release strategies (2a, 2b, 2c) because we observed 
that in Experiment 1, the human tutor used these strategies very rarely. The strategies 
are triggered by rules based on the most recent plan step (for strategy 1a, 1d, 1f), 
semantic categories of the most recent student turns (for strategies 1b, 1c, 3a, 3b) and 
inactivity events by the ActivityDetector (for strategy 1e). In additional to these rules, 
the amount of social behavior is regulated using a Social Ratio parameter that 
specifies the percentage of all tutor turns that can be generated by the 
SocialController. For example, Social Ratio of 20% (as used in Experiment 1) limits 
the tutor to perform at most 20 turns generated by the SocialController for every 100 
turns by the tutor. 

For Experiment 2, we use two versions of this tutor with different values of the 
social ratio parameter. The tutor that generates lower amounts of social behavior 
(Low) is configured at 15% social ratio. The other version (High) is configured at 
30% social ratio which is comparable to the percentage of social turns displayed by 
the human tutors in our earlier experiment. 

5.5.2 Experimental Design 

We conducted an experiment to evaluate the effect of amount of social behavior 
displayed by the automated tutors on performance and perception metrics. The 
experiment was part of a sophomore Thermodynamics lab project. 106 students 
enrolled in a sophomore Mechanical engineering course participated in the 
experiment. The students worked in teams of two to design a Rankine cycle. The 
experiment was conducted over 3 consecutive days of the same week. Two sessions 
were held each day. So, different students participated in the six different sessions.  
Within each session, students were randomly assigned to groups and conditions. 

The procedure for the lab was divided into eight phases. 

1. Students were led through a tutorial on using a thermodynamics cycle 
simulator called CyclePad (Forbus et. al., 1999). 

2. Students read through written material on the subject of Rankine Cycle 
and green engineering. 
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3. Students used the CyclePad software to analyze the response of the cycle 
in terms of its efficiency, net power, waste heat and steam quality with 
respect to various system properties like temperature and pressure. 
During this phase, students followed along with our lab coordinator. 

4. Following the tutorial, students filled out a motivation questionnaire (5 
items) and a pre-test (30 items). 

5. Students were given a tutorial on the ConcertChat collaboration software 
which they used in the next phase. 

6. Next, the students logged into private ConcertChat rooms of their 
respective teams and started interacting with their teammate and an 
automated tutor. The students were asked to design a new Rankine cycle 
by choosing a set of values for the system properties in order to find an 
optimal output on the response variables. They were told that teams with 
the best designs will receive gift cards worth $20 as an additional 
incentive besides class credit which all participants received. To guide 
their design and to enable systematic interaction with the tutors, the 
students were asked to follow a worksheet (shown in Appendix E) which 
was designed to guide the students through every system property while 
considering its effect on each of the responses. 

7. After the collaborative design phase, a post-test (29 items) was 
administered. They students also responded to the perception survey 
shown in Appendix B. 

8. Finally, the students implemented the designs they came up with during 
the design phase individually using CyclePad. They were allowed to 
make further modifications to the design based on the observed responses 
from the simulator. 

Our experimental manipulation was part of a larger experiment with multiple 
independent variables. The manipulation we are concerned with here is with regards 
to the amount of social behavior (social ratio) the tutors employed in phase (iv) were 
allowed to display. The student teams (dyads) were randomly assigned to one of three 
conditions i.e. None (0%), Low (15%) and High (30%). The corresponding values of 
social ratio for each of these conditions are shown in parenthesis. Conditions were 
evenly distributed among the teams across sessions. Each team spent the same 
amount of time on the collaborative design activity (35 minutes). 
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5.5.3 Learning Outcomes 

The pre-test had one additional question than the post-test which was added to 
make the pre-test and post-test slightly different. This question was not used for 
calculating pre-test scores. Also, one of the questions on the tests was not used in 
calculating the test scores as it was very open-ended. Among the remaining 28 
questions, 22 were objective (multiple choice questions) and 6 were subjective (brief 
explanation questions). The tests were graded by two graders without any information 
about the condition assigned to each student. 

Using an ANOVA with the condition as an independent variable, we were unable 
to find any significant difference between the conditions on the total pre-test scores. 
This was also the case for the scores on the subjective questions and the objective 
questions. There was a significant improvement in all test scores (total, subjective and 
objective) between the pre-test and the post-test in all conditions, which shows that in 
general, the collaborative design activity was beneficial to all students. With respect 
to the pre-test, the relative effect sizes were 0.79 standard deviations (σ) for the total 
score, 0.69σ for the objective scores and 0.73σ for the subjective scores. All scores 
for both the pre and the post tests are shown below in Table 5.7. 

 

Condition 
Pre-Test Post-Test 

Total Objective Subjective Total Objective Subjective 

None (0%) 
13.94 11.28 2.67 17.72 13.33 4.39 

(4.53) (2.91) (2.23) (4.09) (2.47) (2.04) 

Low (15%) 
14.00 11.38 2.62 18.59 14.77 3.82 

(6.15) (4.16) (2.54) (4.72) (3.43) (1.74) 

High (30%) 
14.08 12.03 2.06 17.72 13.75 3.97 

(4.46) (3.13) (1.88) (3.77) (3.07) (1.72) 

Table 5.7: Average Pre & Post test scores for each condition 
(Standard deviation in paranthesis) 

 

Using three different ANCOVA models for the three types of scores that used 
corresponding pre-test scores as a covariate and condition and session as independent 
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variables, we found no significant differences between the three conditions (None, 
Low and High) on the total as well as the subjective scores. However, there was a 
significant effect of the condition variable on the objective scores F(2, 97)=3.48, p < 
0.05. A pairwise Tukey test post-hoc analysis showed that the Low (15%) social ratio 
condition was marginally (p < 0.07) better than both None (effect size = 0.69σ) and 
High (effect size = 0.55σ) social ratio conditions. The difference between the None 
and the High conditions was not significant. 

We find a similar effect on one of the learning performance metrics as reported in 
our previous experiment by an automated tutor with a comparable social ratio (20%). 
The hypothesis that performance gap between human and automated social tutors can 
be bridged by performing more social behavior like the human tutors does not hold in 
the case of learning metrics. Further, we think that the lack of significant differences 
on the subjective questions is because the tests were very long and the students might 
have focused more on the objective questions to complete most of the test. This is 
reflected in the relatively high scores on the objective questions (mean = 13.93) 
compared to a maximum of 22. In the case of the subjective questions (mean = 4.07), 
the maximum possible score was 11. 

5.5.4 Survey Outcomes 

 

 
Figure 5.7: Average ratings for the Tutor and the Learning Task 

 

We used the survey shown in Appendix B to elicit ratings about the tutor and the 
task from the students. However, the survey item about tension release was not used 
because we did not use the tension release strategies in this experiment (as mentioned 
in Section 5.5.1). 
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Figure 5.7 shows the average rating for the three types of tutors used in our 
manipulation. None of the differences between the three types of tutors were 
statistically significant for these perception measures. Once again, we note that the 
hypothesis that suggests performing a higher amount of social behavior to create 
human-like tutors does not hold for these measures. 

5.5.5 Exposure Effect with Tutors 

An additional analysis we were able to perform with the data available from this 
study was the effect of multiple exposures to automated tutors. Since our studies with 
engineering students span multiple years and classes, we were able to determine that 
27 of our 106 participants had participated in a pilot study in a previous semester. The 
pilot study employed interaction with automated tutors (with no social capabilities) to 
teach the students about freshmen mechanical engineering concepts like relationships 
between forces, moments and stress. By including prior exposure as a binary (yes, no) 
pseudo-independent variable in the ANCOVA used to model learning outcomes on 
the objective questions (as described in Section 5.5.3), we found a significant 
interaction between the condition and the prior exposure variables ( F(2, 94) = 3.68, p 
< 0.05 ). Figure 5.8 shows the interaction plot for the two variables. 

 

 
Figure 5.8: Interaction between our Experimental manipulation  

and Prior Exposure to Tutors 

 

We note that tutors that display high amounts of social behavior lead to 
significantly poor performance for students who have had prior exposure to 
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automated tutors. Relative to the students who do not have prior exposure to such 
tutors, the effect size is 1σ. This analysis suggest that it becomes increasingly 
important to choose the right amount of social behavior when creating conversational 
agents for repeated use or for user who may have prior exposure to such agents. 

5.5.6 Estimating the Optimal Amount of Social Behavior 

Up until here, we find in general that high (30%) social ratio tutors are not 
significantly different than tutors with no social capabilities (None). Also, in the case 
of students with prior exposure to automated tutors, these (High) tutors were 
significantly worse. 

 

 
Figure 5.9: Scatter plot between Adjusted Post-Test scores  
and Social Ratio of the tutors in High and Low conditions 

 

So, why do the High tutors lead to poor learning? We found that there was a 
significant effect of condition on the number of tutorial dialog turns the tutor 
performed F(2, 98) = 5.01, p < 0.01. A pairwise Tukey test post-hoc analysis showed 
that in the High condition (Mean=76.56, s.d.=9.03) the tutor performed significantly 
fewer task-related turns compared to the None condition (Mean=82.42, s.d.=4.67). 
The dialog turns performed by the tutors in Low condition was not significantly 
different from either High or None conditions (Mean=80.59, s.d.=11.59). We believe 
that this was because the high amount of social behavior was distracting the students 
from the learning activity and causing delays in their progress. Fewer dialog turns led 
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to lower coverage of domain relevant material during the learning activity, which in 
turn led to poor performance on the tests. 

The above observations suggest the relationship between learning performance 
and the amount of social behavior displayed by the tutor is non-monotonic. Figure 5.9 
shows cubic polynomial regressions between the adjusted post-test scores and the 
percentage of social turns performed by the corresponding tutors for each student. 
Students with and without prior exposure to automated tutors are shown separately. 
We see that both in the case of students with or without prior exposure to automated 
tutors, a maxima in performance can be found around 16% performed social ratio. 

5.5.7 Summary of Experiment 2 

To summarize, we find that the tutors with low social ratio (15%) perform better 
than the high social ratio (30%) tutors and tutors with no social capabilities on 
learning outcomes. On perception metrics, these tutors are not significantly different 
from each other. Both these observations invalidate the hypothesis that matching the 
display of social behavior with human tutors in quantity will lead to human-like 
outcomes. Further, the learning effect between in the Low and the None conditions is 
consistent with the corresponding results from Experiment 1 (Task vs. Social). 

The poor performance of High social ratio tutors suggests that the right amount of 
social interaction benefits the learning activity by keeping the group’s instrumental 
and expressive needs fulfilled, excessive social interaction becomes a distraction and 
hinders the task-related interaction (dialogs about lessons in this case). This is 
consistent with the work of Bales (1953) with human small groups which finds that 
groups strive to achieve equilibrium between the instrumental (task-related) and 
expressive (Social-Emotional) interaction processes. 

A separate analysis (Hua et. al., 2010) on the interactions between students and 
tutor during this experiment found that the number of abusive/negative comment 
made by the students about the tutor during the interaction were significantly higher 
in the High condition. This is indicative of the distractive effect of social behavior in 
the High condition. We have reported empirical values for the optimal amount of 
social behavior suitable for automated tutors in collaborative learning situations. 

Having shown that automated tutors cannot match the performance of human 
tutors merely by matching the amount of social behavior displayed by the human 
tutors, we turn our investigation to other aspects of human social behavior display. 
Among the many options as next steps in improving the social capabilities of tutors, 
we think closer attention needs to be paid to circumstances under which human tutors 
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choose to employ various social strategies and how the display of these strategies is 
intertwined with task based interaction. For example, in the excerpt shown in Table 
5.5, the decision to elicit participation from other students may be relevant only if 
Timmy’s contribution to recent discussion outweighed contributions of the other 
students. Another aspect that can be potentially useful in modeling good social 
behavior by tutors is the study of student responses (or lack of responses) in the data 
we have collected from recent studies. In Table 5.5, turn 79 suggests that the tutor’s 
social behavior in turn 72 (Thanking Bobby) was appropriate. 
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Chapter 6  
 
Triggering Policy for Social Behavior 
 
 

The results of Experiment 1 demonstrate that the use of social interaction 
strategies help the agents participating in collaborative learning interactions achieve 
higher learning outcomes. The eleven social interaction strategies utilized by the tutor 
agents in that experiment were automatically triggered using a set of rules that are 
based on features of the discourse such as the lexical content of recent student turns, 
the most recent state of the agent’s discourse planner, activity levels of the individual 
students as well as the group as a whole, and the number of social turns displayed by 
the agent per 100 contributions (Kumar et. al., 2010b). 

These rules together form the agent’s triggering policy for the social interaction 
strategies. The effectiveness of this triggering policy was compared to a gold-
standard where human tutors were asked to choose, customize and trigger the 
prompts associated with each of the social interaction strategies (Kumar et. al., 
2010a). Results showed that the groups with the human tutor had larger learning 
gains with respect to a non-social baseline. However, we were unable to find a 
significant difference between test scores of the students who interacted either with 
the human tutor or the rule-based agent. On metrics computed from a perception 
questionnaire, the human tutors were consistently rated better than the rule-based 
agents. 

This observation suggests scope for further improvement and leads us to the 
motivation for the work presented in this chapter. We hypothesize that an agent 
equipped with a human-like triggering policy will be able to perform better on both 
performance outcomes like learning effectiveness as well as perception outcomes, 
which may be crucial for incorporating such agents in situations involving long term 
or recurring interactions with users in various day to day multi-party interactive 
situations. 
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In this chapter, we will first describe our approach and efforts towards building a 
human-like triggering policy as the first step towards verifying the hypothesis 
mentioned earlier. We employ a data-driven approach to learn a triggering policy 
from a corpus of tutoring interactions where human tutors triggered the social 
behaviors. Second, we will describe a classroom experiment conducted to verify the 
hypothesis mentioned in the previous paragraph. 

6.1 Modeling Human Social Behavior 

6.1.1 Data 

As described in Chapter 5, our work is situated in the area of collaborative 
discussion in synchronous chat where a facilitator is managing or regulating the 
interaction.  Specifically, in this case groups of three or more students work together 
on a collaborative design exercise under the supervision of a tutor. The data we use 
for this work consists of a collection of ten such transcripts.  The students were all 
freshmen enrolled in a Fundamentals of Mechanical Engineering course. The 
collaborative design exercise involved designing a better wrench by changing the 
dimensions and materials of a wrench specification initially provided to them. The 
students were asked to take into account concepts of force, moment, stress, safety and 
cost while working on their design.  

As mentioned, a tutor played a facilitating role in each team’s chatroom. The 
tutor performed two primary functions. First, it provided instructions and brought up 
relevant concepts as the students worked on the design exercise. This function was 
fully automated. Second, the tutor performed social behaviors (Kumar et. al., 2010) 
mentioned earlier. The display of these social behaviors was controlled by a human 
tutor who was asked to select prompts corresponding to various social behaviors, 
modify the prompts if need be, and insert the prompts into the chat interaction. In the 
chatroom, the students saw the messages corresponding to both functions as messages 
from the same person (i.e. the tutor). 

Annotation 

In order to generate labels that identify the function of each of the tutor turns in 
the data, we collected annotations for each of the tutor turns using Amazon 
Mechanical Turk. Appendix I shows a screenshot of the annotation interface. The 
details of this annotation task are described next. 
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The annotation task was presented as a task involving classification of tutor turns. 
Each tutor turn to be classified was displayed along with a history of up to seven 
previous turns from the interaction. The turn to be classified was highlighted in a 
different color. The annotators were asked to evaluate the highlighted tutor turn in 
terms of whether it fit any of the following five categories. 

 
 

Being Friendly (F) 

So
ci

al
 

Relieving tension (TR) 

Agreeing (A) 

Showing Social/Emotional problems (N) 

Helping the students learn (T)  

Table 6.1: Labeling Categories 

 

Description of the various ways behaviors corresponding to each of these 
categories could be realized was provided along with the list of categories. Categories 
{F, TR, A, N} correspond to social behaviors, and T category corresponds to the 
instructional behaviors of the tutor. The annotators were allowed to select as many of 
the five categories as appropriate including none. Each tutor turn was annotated by at 
least five different annotators. We collected a total of 6688 annotations for 1335 tutor 
turns. 

The multiple (n) annotations  for the same tutor turn (ti) were combined to get 
a single label for each tutor turn using equation (6.1). 1[x] is an indicator function that 
evaluates to 1 when . , the confidence of label l for turn ti is calculated as the 
fraction of annotators of ti that selected the category label l. We choose the category 
with the highest confidence to label the tutor turn with the condition that the label 
should be above a threshold of Θ. If the highest confidence category has a confidence 
of less than Θ, the label defaults to task (T) (i.e. non-social). 

 

  (6.1) 
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  (6.2) 

  (6.3) 

Using this method, we can compute both the label as well as a confidence 
measure of the label. We computed two types of labels for each tutor turn. The first 
type of label maps the tutor turn to one of five possible categories {F,TR,A,N,T}. We 
refer to this type of label as the 5-class label. The second type of label combines the 
social behavior categories into a single category(S) mapping each tutor turn to one of 
two possible categories {S, T}. We refer to the second type of label as 2-class label. 

In order to measure the quality of labels obtained by combining the multiple 
annotations collected via Mechanical Turk, we compared the labels to annotations 
provided by one expert. Table 6.2 shows the confusion matrix for the 5-class labels 
with respect to the expert annotations (Θ=0.65). 

 
 

M
ec

ha
ni

ca
l T

ur
k 

 
Expert Annotation  

F TR A N T  

F 114 18 17 6 38 

Social 

TR 2 0 0 1 1 

A 3 1 23 0 25 

N 1 0 0 1 1 

T 62 11 14 14 982  

Table 6.2: Confusion matrix for 5-class labels (Θ=0.65) 

 

Using Θ=0.65, Cohen’s kappa for the 5-class type of label is 0.53. For the 2-class 
labels, kappa is 0.62. For now, we will only focus on the problem of predicting when 
to trigger a social behavior and ignore the issue of which social behavior should be 
performed at the time of triggering. Hence, we will only use the 2-class labels. 



  

77 
 

The choice of Θ=0.65 is based on a compromise between the mean confidence of 
the labels and the number of positive examples available to the learning algorithm. As 
we increase Θ, the number of tutor turns that we will be labeled as Social will reduce 
because of the elimination criteria in equation (6.1). This will reduce the number of 
positive examples available to our learning algorithm. As shown in Figure 6.1, we 
choose the value of Θ to maximize the number of positive examples while ensuring 
that the mean confidence of all our labels is above 0.8. Higher mean label confidence 
helps us avoid the mislabeling of instructional tutor turns such as positive feedback as 
social turns, which some annotators may otherwise see as Agreeing or Friendly turns. 

 

 
Figure 6.1: Mean Label Confidence &  

No. of Social Turns for different values of Confidence Threshold Θ 

 

To summarize the dataset discussed in this section, we have 10 transcripts of 
interactions between a team of students and a tutor. The transcripts comprise of a 
total of 2939 turns of which 1335 are from the tutor. We have labels for each of the 
tutor turns that indicate if the tutor turn was social. Using Θ=0.65 gives us 252 tutor 
turns that are social (positive examples) and 1083 task-related turns (negative 
examples). 
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6.1.2 Learning Problem 

Given the data set discussed in the previous section, our objective is to learn a 
triggering policy that could predict when the human tutor would perform a social 
behavior. We consider this problem in an event-driven framework where the 
triggering policy has to provide a binary decision of whether to perform a social 
behavior at every occurrence of an event. The event-driven framework follows from 
the architecture (Kumar and Rosé, 2011) we use to build our agents. 

In our current approach, we consider every turn in the interaction as an event. So 
after every turn in the interaction, the triggering policy has to consider information 
from the discourse up until that event (represented by features X discussed in Section 
6.1.4) to make its decision. 

  (6.4) 

Formally, a triggering policy is a function Ψ that maps events (ei) to decisions 
(di). When executed over a sequence of events (e.g. a transcript), it produces a 
sequence of binary decisions  of the same length such 
that di=1 if the policy decides to trigger a social behavior. In the rest of this section, 
we will discuss metrics for comparing triggering policies and features used to 
represent each event. 

6.1.3 Metrics 

Evaluating a triggering policy is a sequence comparison problem where we 
compare a reference sequence R with a hypothesized sequence H. Other problems in 
the field of natural language processing have developed evaluation metrics for such 
sequence comparisons. Research on topic/discourse segmentation (Eisenstein and 
Barzilay, 2008) has used a collection of metrics to compare binary sequences where 1 
indicates the presence of a segment boundary. Other sequence comparison metrics 
such as word error rate use dynamic programming based alignment algorithm to align 
multi-class sequences and measure their dissimilarities (such as insertions, deletions, 
modifications). 

Since the triggering policies we discuss here generate binary sequences of 
decisions, we will use the metrics used by earlier work in the area of topic 
segmentation. Here we will review various topic segmentation metrics that provide 
partial credit for near-miss segment boundaries by comparing several corresponding 
sub-sequences (windows) in the reference and hypothesis sequences. 



  

79 
 

Pk (Beeferman et. al., 1999) is the most commonly used metric in this evaluation 
setting. It is defined as the fraction of corresponding sub-sequences of length k where 
R and H do not share the presence or absence of a segment boundary. For example, if 
two binary sequences of length ten each are being compared using a sub-sequence 
window of length five, then Pk compares six difference sub-sequences. 
Corresponding sub-sequences are considered to be identical if both or neither have a 
segment boundary irrespective of the position of the boundary within each of sub-
sequences. So, if three of the six sub-sequences are identical, Pk is equal to 0.5. This 
metric gives partial credit for near-miss cases within distance k, by allowing a 
fraction of the sub-sequences to be identical. 

Another metric, WindowDiff WD (Pevzner and Hearst, 2002) measures the 
fraction of sub-sequences in R and H that do not share the same number of 
boundaries. Lower values of Pk and WD indicate better match between R and H. 

Recently, Niekrasz and Moore (2010) identified biases inherent in the Pk and 
WD metrics by conducting formal and empirical analysis of these metrics. They 
suggested three new metrics: kKappa (k-κ), kPrecision (k-prec) and kRecall (k-rec). 
They suggest that kKappa is an unbiased metric of evaluation in the coarse-grained 
binary sequence comparison case. 

Furthermore, the paper suggests some diagnostic metrics that can be used to 
identify clumping and edge-bias in sequences. Clumping is a property of a sequence 
that has several positive decisions (triggers or segment boundaries) placed closed to 
one another. Edge-bias is another property of a sequence that places several positive 
decisions at the edge of a discourse. Pk and WD favor sequences that have clumping 
and/or edge-bias. For our application, a triggering policy that displays clumping or 
edge-bias is undesirable. Clumping leads to excessive social behavior being triggered 
and edge-bias prevents social behavior from being triggered when required. Since the 
k-κ metric does not favor triggering policies that display these problems, we will use 
the k-κ as our primary metric for evaluating triggering policies. 

In this chapter, we will report results in terms of three of the new metrics (k-κ, k-
prec, k-rec). All of these metrics will be computed using k=5 which is approximately 
half the mean number of turns between two social turns by the tutor in our dataset. 
We will also report Pk and a metric (ΔB) that indicates the absolute difference in the 
amount of social behaviors triggered in R and H. It is important to trigger the right 
amount of social behavior during group interaction to achieve balance between task 
and social processes (Kumar and Rosé, 2010c). So, lower values of ΔB are desirable. 
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6.1.4 Features 

Each event in the interaction is represented by a set of features that capture the 
information present in the discourse up until the event. In our current work, we are 
using five types of features. 

Lexical features capture the content in the most recent student and tutor turns. We 
use a window of the most recent three student turns as well three tutor turns. Binary 
unigram and bigram features computed over the student and tutor turn windows were 
used as lexical features. No stemming or stop word removal was applied. 

We used 57 sentiment features that were applied to the lexical content of the 
student turn window. These features were computed using General Inquirer (Stone, 
1966) dictionaries with vocabulary size larger than 100 words. Semantic features 
indicate the presence of special phrases in the student window. These phrases were 
used by the rules which were used for automatic social behavior triggering (Kumar 
and Rosé, 2010b). We used 13 semantic features that indicate student contributions 
containing idea contributions, positivity, teasing, etc. Both the sentiment and the 
semantic features map the discourse of the students to a low dimensional space and 
attempt to capture social-emotional signals from the discourse. 

State features represent the state of the discourse plan. These features help in 
capturing the task-specific characteristics of when social behavior should be 
performed. The 37 steps in the tutor’s interaction plan are represented as binary 
features (Bohus et. al., 2006) indicating which step of the interaction is being 
executed. We included the information about the dialog state before and after the 
event using this feature representation. Additionally, we used a binary feature that 
indicates if the dialog state changed at the event. 

Finally we included some special purpose features that capture the activity levels 
of the participants in the interaction. These features measure the number of chat 
contributions in the last 5 minutes from the tutor, the most active student and the least 
active student, as well as the range of the activity levels. 

With these features representing the events, we now have a dataset of 10 
transcripts each comprising of multiple events. For the rest of the section, we use the 
following notation for dataset.  is the ith event of transcript t.  are the features 
for that event. is the reference decision label and is the confidence of social 
behavior at . 

 



  

81 
 

  (6.5) 

Here,  (6.6) 

  (6.7) 

  (6.8) 

 

Given this dataset, we can formulate the learning problem in two ways. First is a 
binary classification problem i.e. learning Ψ as in equation (6.4). Second is a 
regression problem where we learn a function Ψ that maps events to a confidence of 
triggering social behavior. 

  (6.9) 

   

6.1.5 Generating Social Behaviors 

The focus of Section 6.1 is to learn a triggering policy that determines when an 
agent should perform a social behavior. However, in practical use, besides triggering 
the social behavior, we need to determine which one of the eleven social interaction 
strategies should be performed. Ideally, the triggering policy should decide this too. 
However, as we can see in Table 6.2, our dataset has very few examples for learning 
a policy at the level of granularity of individual strategies. For example, we only have 
four positive instances where the Tension Release strategies are being used. 

Our implementation of the agent that uses the learnt trigger model provides a 
continuous stream of scores for each of the eleven strategies. The scores are 
computed using hand-crafted functions that use the same features used in our rule-
based triggering policy (Kumar et. al., 2010b). When a social behavior is triggered, a 
roulette wheel selection is used to determine the strategy to be performed. Score of 
each strategy is used to determine its share of the circumference of the wheel. If the 
score of all the strategies is zero, a generic social prompt is performed. 
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6.1.6 Baseline Experiments 

In this section, we will establish four baseline results before we present our 
proposed large margin learning algorithm in Section 6.1.7. These four baselines 
evaluate four different triggering policies using the metrics discussed in Section 6.1.3. 

The first baseline uses a random (Rndm) triggering policy. This policy makes the 
triggering decision in two steps. The first step randomly generates a confidence for 
triggering social behavior. The second step converts the random confidence to a 
decision by applying a threshold (Θ=0.65). 

The second triggering policy (Rules) uses the same set of rules (Appendix J) 
which were used by the tutor agent in our rule-based implementation of the social 
interaction strategies described in Section 4.5. 

Two other triggering policies are learnt from our dataset. The first of the learnt 
triggering policies (Logit) learns a classification function of the form shown in 
equation (6.4). We used a binary logistic regression algorithm to learn this policy. 

The second learnt policy (Linear) makes the triggering decision in two steps 
similar to the (Rndm) policy. However, the first step uses a linear combination of the 
features to predict the confidence of the social trigger. This needs a function of the 
form shown in equation (6.9). We used a boosted (AdditiveRegression) linear 
regression algorithm (Hall et. al., 2009) to learn the weight parameters of a linear 
function that combines the features to obtain the predicted confidence. 

 
 Rndm Rules Logit Linear 

k-κ 0.01 -0.09 0.05 0.00 

k-prec 0.36 0.33 0.45 0.12 

k-rec 0.86 0.35 0.24 0.01 

Pk 0.60 0.52 0.42 0.39 

ΔB 70.70 3.10 5.80 26.30 

Table 6.3: Summary of Baseline Results 

 

We employ a leave-one-transcript-out cross-validation approach that trains a 
policy on 9 transcripts and tests the policy on the 10th held-out transcript. Results 
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reported in Table 6.3 are averaged over 10 test sets corresponding to each fold. For 
all the learnt policies, we use correlation-based feature selection and keep only the 
top 500 features computed separately over the training set for each fold. 

Table 6.3 shows the results for these four baselines. The best results are 
highlighted in bold. All the best results are significantly better (p < 0.05) than the rest. 
On the conventional metrics Pk, the learnt policies (Logit and Linear) perform 
significantly better than Rules and Random. The learnt policies are significantly 
better than the Rules in terms of the unbiased metric k-κ. But they are not a 
significant improvement over Random. Linear performs significantly worse than the 
rest on the precision metric (k-prec). Rules score high on recall by generating too 
many triggers. Both Rules and the learnt policy Logit get closest to generating the 
right number of triggers. However the triggers generated by Rules are quite 
misplaced w.r.t the reference R as indicated by k-κ and Pk. Overall, we find that the 
learnt policy, Logit, performs best on 4 out of 5 metrics. 

6.1.7 Proposed Algorithm 

Now we will present the motivation and the implementation details of our 
proposed learning algorithm. This algorithm learns a triggering policy similar to the 
Linear baselines. The first step uses the features of the event to predict the 
confidence using a regression. The learning algorithm learns the features weights 
from the data as described in the rest of this section. The second step uses a 
thresholding filter like the baselines. In Section 6.1.8, we will also present a third 
filtering step, which we use to regulate the number of generated triggers. 

Large Margin Learner 

We have based our proposed learning algorithm on the online large-margin 
learning algorithms of Crammer and Singer (2003). We chose to use these algorithms 
because of the flexibility they provide to optimize the learnt regression weights over 
an entire discourse using one of the metrics presented in Section 6.1.3. In contrast to 
these algorithms, conventional regression learning algorithms optimize a loss 
function over individual data instances. In the case of our problem, near missed 
triggers are acceptable if that leads to an improvement in the metrics that evaluate the 
entire sequences of decisions in our discourse. 

  (6.10) 
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1. w0 = 0, v = 0, c = 0 

2. for each iteration: k: 1 … K 

3.  for each training transcript: t: 1 … m 

4.  for each event in t: i: 1 … nt 

5.            w = Change wc using  

6.   wc+1 = Update wc using w and V 

7.   v += wc+1 

8.   c++ 

9. wfinal = v / c 

 

 

Figure 6.2: Pseudo-code of our Large-Margin Learner 

Since the function learnt by the large-margin learner performs the first step of our 
triggering policy, it takes the form of equation (6.9). Equation (6.10) shows the form 
of Ψ we will use in this work. We will use two different functions for Φ. First, Φ(x)=x 
corresponds to linear regression (ΨLinear). Second, we can use the logistic function for 
Φ which corresponds to a logistic regression (ΨLogit). In both cases, the large margin 
learning algorithm learns a set of weights (w) based on the training and validation 
data. The pseudo-code of the algorithm is shown in Figure 6.2. Training data T 
comprises of m transcripts. Each transcript t contains nt events. Validation data V 
includes only one transcript which has nv events. 

This is similar to the pseudo-code for a generic online learning algorithm 
(McDonald et. al., 2005). The algorithm performs multiple iterations over each event 
in the training data and updates the weights being learnt. The two main operations of 
this algorithm are the Change and the Update operations in steps 5 and 6 
respectively. 
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At each iteration, the Change operation discovers new weights w using the ith 
training instance  from tth training transcript as a potential improvement over the 
current weights wc. The new weights are discovered by solving the quadratic program 
shown in equations (6.11) - (6.15). 

and are the weighted centroids of the positive  and the 
negative  examples respectively in the training set t. We use tyi as the 
weight for positive examples and 1- tyi as the weight for the negative examples. δ 
calculates the differences in the feature values of a training instance and its matching 
centroid. Similarly, δ calculates the differences in the feature values of a training 
instance and the other centroid.  is the difference between the predicted and the 
actual values of confidence for a training instance. α and β are parameters of the 
learning algorithm. They can be used to tighten or loosen the constraints. 

  

  (6.11) 

s. t.  (6.12) 

  (6.13) 

  (6.14) 

  (6.15) 

  (6.16) 

  (6.17) 

  (6.18) 
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We used an off the shelf solver2 to solve this optimization problem. This solver 
was used because of its compliance with standard quadratic programming formalism 
and ease of integration with the rest of our learning algorithm implementation. 

The four constraints shown in equations (6.12) – (6.15) guide the discovery of 
new weights in step 5 of the algorithm. Constraint (6.12) tries to bring the confidence 
of a training instance within a αM1 margin of its matching centroid’s confidence. 
Constraint (6.13) tries to keep the margin between the confidence and of a training 
instance and the other centroid at least as large as (1 - αM1). Together, these two 
constraints push the weights so as to separate the positive examples from the negative 
examples by a margin of 1 in the confidence space. 

Constraint (6.14) tries to bring the predicted confidence of a training instance 
within a margin of βM2 of its true confidence (tyi). Finally, constraint (6.15) keeps the 
predicted confidence of a training instance above zero (negative confidences are 
meaningless). 

The Update operation in step 6 of the algorithm incorporates the newly 
discovered weights from step 5 into the current weights based on their performance 
on the validation set in terms of a desirable metric (M3) as well as the confidence of 
the training instance. Currently, we use the following update rule: 

 

  (6.19) 

where  (6.20) 

 

In Section 6.1.9, we will report results using this algorithm for both ΨLinear and 
ΨLogit. In all the experiments reported in this chapter, we use K = 2 (number of 
iterations), α = 0.15, β = 0.30, γ = 1,  

 

   

                                                      
 
2 ojAlgo: http://ojalgo.org/ 
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and M3 = . In the experiments ΨLogit is used, constraint (6.15) is not applied. 

6.1.8 Social Ratio Filtering 

As mentioned earlier, we used an additional filtering step in our experimental 
triggering policy in order to keep the amount of social behavior at appropriate levels. 
We measure the level of social behavior using social ratio which is the fraction of 
turns that correspond to social behavior.  

Empirical studies from small group communication suggest that functional 
human groups have a social ratio of around 0.20 (Bales, 1950) over the entire course 
of the interaction. However, the actual social ratio changes based on what the group 
members are talking about. For example, it is reasonable to have a higher social ratio 
at the start of an interaction to help with the formative processes of the group. 

 

 
Figure 6.3: Estimated function for SRTutor 
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Also, the triggering policy can only control the contribution of the tutor’s social 
turn to the social ratio. In order to capture the temporal variation of the tutor’s 
contribution to social ratio, we built a non-linear regression model using our entire 
dataset. At any given turn, the tutor’s contribution to social ratio (SRTutor) was 
computed as the fraction of social tutor turns in the tutor’s last 20 turns. 

We modeled the change in SRTutor as a combination of four Gaussians. Figure 6.3 
shows a plot of the estimated function which we will use to regulate the number of 
triggers generated by our experimental triggering policies. 

Instead of the using social ratio as we feature in our triggering policy learning 
algorithm, the use of a separate filter component for regulating the amount of social 
behavior was motivated by multiple practical and theoretical reasons. First of all, 
based on prior research in human small group communication as well as the results of 
Experiment 2, we are aware of the importance of performing the right amount of 
social behavior. The social ratio filter explicitly incorporates this knowledge into our 
model of social behavior triggering. 

Second, the use of social ratio as a feature demands online updates to that feature 
during training which although not prohibitive, needs additional computation. 
Furthermore, the effect of the social ratio feature on the triggering decision depends 
on the weight assigned to that feature by the learning algorithm. While the most 
discriminative features are likely to be assigned sizeable weights, the fate of 
incorporation of this important knowledge in the learnt triggering model is dependent 
on the ability of the learning algorithm to discover evidence for this from our rather 
limited dataset. Preliminary experiments using social ratio as a feature without online 
updates did not lead to any improvements. Due to these reasons, we decided to use an 
explicitly filter to regulate the amount of social behavior. 

6.1.9 Results 

Table 6.4 shows results for four triggering policies with the best results from our 
non random baselines. As in the case of Table 6.3, best results are highlighted. The 
best results are significantly better than the rest. 

Both the filtered large-margin learnt policies outperform everything else on the 
unbiased metric k-κ. In terms of precision, the large margin models are not 
significantly better than the best baseline (Logit). All of these models are 
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significantly better than the Rules and Random baselines. The policy 
performs best on recall. However it is not significantly better than Rules. 

On the conventional metric Pk, all of the learnt models are significantly better 
than Rules and Random baselines. Finally,  model performs as close as the 
rules in terms of generating the right number of social behaviors. Overall, we find 
that   is the best triggering policy in terms of all the five metrics we have 
used. 

 
 Baseline     

k-κ 0.05 0.08 0.10 0.08 0.13 

k-prec 0.45 0.48 0.50 0.48 0.49 

k-rec 0.35 0.30 0.29 0.33 0.42 

Pk 0.39 0.41 0.39 0.41 0.41 

ΔB 3.10 12.57 13.13 14.38 6.56 

Table 6.4: Evaluation results of our proposed Triggering Policies 

 

Figure 6.4 and Figure 6.5 show an example of the use of the learnt triggering 
policy, the social ratio filter and the rule based scoring of each strategy (as discussed 
in section 6.1.5) to generate social behavior. In Figure 6.4 we see that the triggering 
confidence is below the allowed threshold as the interaction approaches the end of a 
tutoring episode. Also, we notice that five out of the eleven strategies are applicable 
at this time. 

At the end of the tutoring episode, as we see in Figure 6.5, the learnt triggering 
policy generates a trigger with a confidence that is above the threshold and the social 
ratio filter approves of this trigger. The rules select strategy 1b (compliment/praise) 
and it is realized as shown in the highlighted line in the chat in Figure 6.5. 

Given that we now have a triggering policy that mimics human triggering of 
social behavior to greater extent than our existing triggering policies, the next section 
describes a user study conducted to verify the hypothesis stated at the beginning of 
this chapter. 
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Figure 6.4: Example of Social Behavior being generated by the Learnt Model (1) 
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Figure 6.5: Example of Social Behavior being generated by the Learnt Model (2) 
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6.2 Experiment 3: Evaluating a Human-like Triggering 
Policy 

Here we will present an experiment we conducted to evaluate the effectiveness of 
various ways to trigger social behavior discussed in the previous section. This 
experiment is a step towards verifying the hypothesis that a human-like triggering 
policy could outperform a rule-based triggering policy that was used in our earlier 
experiments (Kumar et. al., 2010a). 

We use the same interactive situation for the experiment presented here as in our 
earlier work. Freshmen mechanical engineering students enrolled at an American 
university participate in a computer-aided engineering lab that is divided into three 
parts, i.e., Computer-Aided Design (CAD), Computer-Aided Analysis (CAA) and 
Computer-Aided Manufacturing (CAM). Students practice the use of various 
engineering software packages for all three parts as they design, analyze and 
manufacture an Aluminum wrench. Our experiment is conducted during the second 
part (CAA) of the lab. 

6.2.1 Procedure & Materials 

The procedures and materials described in this section are similar to those 
employed in Experiment 1 (Section 5.1). The Computer-Aided Analysis lab 
comprises of two activities. The first activity involves analyzing a wrench design 
given to the students by specifying certain loading conditions and simulating the 
stresses and deformations in the wrench. Students are led by a teaching assistant 
during this activity. They spend approximately 25 minutes performing this activity. 
At the end of the analysis activity, the students see a simulation of the stress 
distribution in the body of the wrench. 

After the analysis activity, a pre-test is administered. Each student spends 10 
minutes working on the pre-test individually. The pre-test comprises of 11 questions, 
8 of which are multiple-choice questions and the other 3 are short essay type 
questions. 

The second activity of the CAA lab is a collaborative design activity. During this 
activity, students work in teams of three. Student in the same team are seated in 
separate parts of the lab and can only communicate using a text-based chatroom 
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application (Mühlpfordt and Wessner, 2005). The chatroom application also provides 
a shared workspace in the form of a whiteboard. 

After the pre-test, students are given written instructions describing the 
collaborative design activity. The instructions ask the students to design a better 
wrench in terms of ease of use, cost of materials and safety compared to the wrench 
they analyzed earlier. The students are expected to come up with three new designs in 
40 minutes by varying parameters like dimensions and materials of the wrench. The 
instructions also include various formulae and data that the students might need to 
use for their designs. Besides course credit, the instructions mention an additional 
giftcard for the team that comes up with the best design ($10 for each member of the 
winning team). 

Students are asked to log in to their respective team’s chatroom. They spend the 
next 40 minutes working on the collaborative design activity. Besides the three 
students, the chatroom for each team includes an automated tutor. The tutor guides 
the students through the first two designs suggesting potential choices for dimension 
and materials for each design. As the design activity progresses, the tutor initiates 
four conceptual tutoring episodes to help the students reflect upon underlying 
mechanical engineering concepts like stress, force, moment, safety, etc., that are 
relevant to the design activity. 

Our experimental manipulation happens during this 40 minute segment. The tutor 
in each team’s chatroom is configured to perform social behavior using different 
triggering policies as specified by the condition assigned to the team. The conditions 
are discussed in the next section. Irrespective of the condition, each team receives the 
4 conceptual tutoring episodes. Every student performs all the steps of this procedure 
like all other students. 

At the end of the collaborative design activity, a post-test and a survey are 
administered. Students are asked to spend 15 minutes to first complete the test and 
then the survey. The post-test is the same test used for pre-test. The survey comprises 
of 15 items shown in Appendix B. The students are asked to rate each item on a 7-
point Likert scale ranging from Strongly Disagree (1) to Strongly Agree (7). The 15 
items on the survey include 11 items eliciting their perception of the tutor. 9 of the 11 
items state positive aspects of the tutor (e.g. …tutor was friendly…). The other 2 
items stated negative aspects about the tutor (e.g. …tutor’s responses got in the 
way…). Besides the items about the tutor, 2 items elicited the student’s rating about 
the collaborative design activity. The last 2 items were about the student’s 
satisfaction with their performance on the design task. 
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In total, both the activities that are part of the CAA lab take approximately 1 hour 
40 minutes. 

6.2.2 Experimental Design 

The teams participating in the experiment described here were divided into six 
conditions. These conditions determined the triggering policy and the amount of 
social behavior performed by the automated tutors. Tutors in the None condition did 
not perform any social behavior. Tutors in the Rules condition used the same hand 
crafted rule-based triggering policy (Appendix J) employed in our earlier experiment 
(Section 5.2). Following the results from another experiment (Kumar & Rosé, 
2010c), the automated tutors in the Rules condition performed a moderate amount of 
social behavior (atmost 20% of all tutor turns). On average, the Rules policy triggered 
25 social turns per interaction. This corresponds to the same amount of social 
behavior as the two Low conditions described ahead. 

The RandomLow and RandomHigh conditions used a random triggering policy 
with a social ratio filter to regulate the amount of social behavior. In both the random 
conditions, the tutor would trigger social behavior using a random number generator 
to generate the confidence of triggering a social behavior after every turn (by a 
student or a tutor). In the RandomLow condition, a trigger was generated if the 
confidence was above 0.91. In the RandomHigh condition, a trigger was generated if 
the confidence was above 0.85. The triggers were filtered using the social ratio filter 
before generating social behavior. On average, the RandomLow condition had 23 
behaviors triggered per interaction. About 37 behaviors were triggered in the 
RandomHigh condition. 

The LearntLow and LearntHigh conditions used the best triggering policy 
learnt from a corpus of human triggering of social behavior as discussed in Section 
6.1.9. The same social ratio filter used in the random conditions was used in these 
two conditions also. As in the case with RandomLow and RandomHigh, different 
values of a confidence parameter were used for the LearntLow and LearntHigh 
conditions to control the number of social behaviors triggered. On average, the 
LearntLow condition had 22 triggers and the LearntHigh condition had 28 triggers. 

6.2.3 Results 

126 students enrolled in an introductory mechanical engineering course at an 
Carnegie Mellon University participated in the experiment described in this section. 
The course was selected based on the suitability of the collaborative wrench design 
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activity as a curricular exercise for this course. On each day, four sessions of the 
Computer-Aided Analysis lab were conducted, and students attended only one 
assigned session. Session assignment was made based on an alphabetic split. The 126 
students were divided into 42 teams. 20 teams participated on the first day of the 
experiment. They were evenly split into four conditions (None, Rules, RandomHigh 
& LearntHigh). The remaining 22 teams participated on the second day. Out of these, 
5 teams each were assigned to the None and RandomLow condition. 6 teams each 
were assigned to the Rules and LearntLow conditions. 

The rest of this section presents detailed results and analysis of this experiment. 
To summarize, we found that out of the six evaluated policies only the LearntLow 
policy that uses a triggering model learnt from human triggering data and generates a 
moderate amount of social behavior is consistently better than the other policies in 
terms of both performance as well as perception outcomes. Also, the LearntLow 
policy is found to be most efficient at delivering the instructional content as indicated 
by the smallest EpisodeDuration in Table 6.7. 

Learning Outcomes 

The learning outcomes analysis presented here shows the advantage of using a 
triggering policy learnt from a corpus of human triggering behavior along with a 
filtering technique that regulates the amount of social behavior as shown in Table 6.5. 

First of all, we found no significant difference between the six conditions on the 
pre-test scores. As in the case of previous experiments using this learning activity, we 
saw that the learning activity was pedagogically beneficial to the students irrespective 
of the condition. There was a significant improvement in test scores between pre-test 
and post-test { p < 0.0001, F(1,250) = 26.01, effect-size = 0.58σ }. 

The primary objective of the experiment described here was to verify the 
hypothesis that a human-like triggering policy could outperform a rule-based 
triggering policy. We used an ANCOVA analysis to compare the conditions that 
employed either a rule-based (Rules) or learnt triggering policy (LearntLow and 
LearntHigh). Using the post-test score as an dependent variable, the pre-test score as 
a covariate and the condition as the independent variable, we found a significant 
effect of condition { p = 0.01, F(2,62) = 4.98 } on the scores from the short-essay 
type questions on the tests. 

A post-hoc analysis showed that the LearntLow condition was significantly better 
than the LearntHigh condition and  the LearntLow condition was marginally better 
than the Rules condition { p ≈ 0.08, effect-size = 0.84σ }. We observe that a 
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triggering policy learnt from human triggering behavior can achieve a marginal 
improvement on learning outcomes compared to our existing rule-based triggering 
policy. This is consistent with our hypothesis. 

 

 
Mean St.Dev. 

LearntLow 5.12 0.54 

RandomLow 5.06 0.67 

None 4.75 1.13 

RandomHigh 4.59 1.09 

Rules 4.38 0.89 

LearntHigh 3.98 1.74 

Table 6.5: Mean and Standard Deviation of Adjusted Post Test Scores  
for Short Essay Type Questions 

 

To further investigate the effects of other types of triggering policies, we repeated 
the ANCOVA described above with the data from all the six conditions of our 
experiment. We found no significant effect of the condition assigned to each team on 
the total test scores. However, there was a significant effect on the test scores of 
short-essay type questions using the pre-test score as a covariate and the condition as 
a factor { p < 0.05, F(5, 119) = 2.88 }. The adjusted post test scores for the short 
essay type questions and their standard deviations are shown in Table 6.5. Post-hoc 
analysis showed that the LearntLow condition was significantly better than 
LearntHigh condition { effect-size = 0.65σ }. Also, RandomLow condition was 
marginally better than LearntHigh condition { p < 0.07, effect-size = 0.62σ }. 

This result further supports the observation from our earlier experiment (Kumar 
& Rosé, 2010c) which demonstrated that importance of performing the right amount 
of social behavior. Both RandomLow and LearntLow conditions employ the non-
linear social ratio filter. 

Perception Ratings 

We averaged the student’s rating for the 11 items about the tutor into a single 
tutor rating measure used here. Rating on the two negative statements about the tutor 
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were inverted (7→1, 6→2, and so on) for this calculation.  We found a significant 
effect of condition on the tutor ratings { p < 0.01, F(5,120) = 3.83 }. Table 6.6 shows 
the mean and standard deviations of tutor ratings for each condition. Post-hoc 
analysis showed that only the Rules condition was significantly better than the 
RandomLow condition. Also, we found that Rules was marginally better than 
LearntHigh condition { p < 0.08 } and both Learnt-Low and None conditions was 
marginally better than RandomLow condition { p < 0.08 }. 

 

 
Mean St.Dev. 

Rules 4.74 1.45 

LearntLow 4.56 1.58 

None 4.42 1.49 

RandomHigh 3.74 1.63 

LearntHigh 3.55 1.26 

RandomLow 3.18 0.91 

Table 6.6: Mean and Standard Deviation of Tutor Ratings 

 

While we did not see a significant improvement in perception due the use of a 
learnt triggering policy when compared to a rule-based triggering policy, we find an 
advantage over using a random triggering policy (RandomLow) which was as good 
as a learnt policy on the learning outcomes. The results from the tutor’s perception 
ratings further support the importance of timing and regulating the amount of social 
behavior. 

We did not find any significant effect of condition on the ratings about the design 
activity or student’s task satisfaction. 

6.2.4 Analysis of Tutoring Episodes 

In comparison to Experiments 1 and 2, we find that the differences between the 
conditions in this experiment are milder in comparison. In order to further understand 
the results from the experiment 3, we applied the structural equation model discussed 
earlier (Figure 5.3) to the data collected from experiment 3. 
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Figure 6.6 shows the parameters of the structural equation model for our current 
experiment (p=0.4492). Only four variables were used because the annotations of 
good and bad student behavior are not available. 

 

 
Figure 6.6: SEM applied to data from this experiment 

 

 

 
Mean St.Dev. MeanExperiment 1 

RandomHigh 540.80 49.50  

LearntHigh 534.80 61.00  

None 523.88 41.54 619.31 (Task) 

Rules 519.80 102.70 543.12 (Social) 

RandomLow 519.20 74.40  

LearntLow 484.00 69.80  

   
483.89 (Human) 

Table 6.7: Mean and Standard Deviation of Duration of Tutoring Episodes 

 

We see that most of the model parameters (p-Value, means & correlations) are 
similar to parameters for the model shown in Figure 5.3. However there are two 
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differences. First, we note that the mean of EpisodeDuration is smaller compared to 
that in Figure 5.3 which indicates that lesser counterproductive behavior was 
displayed by the students in this experiment. Eventhough the same learning activity 
was used in these two experiments; they were conducted at different times of the 
year. Experiment 1 was conducted in the first semester of freshmen year whereas 
experiment 3 was conducted in the second semester. 

Nonetheless, the lower episode duration indicated that the conceptual tutoring 
episodes are operating closer to the minimum episode duration which leaves a smaller 
room for improvement by the use of social interaction strategies. As discussed in 
Section 5.4, we expect the social behavior to have a smaller effect on reducing 
episode duration in this case. 

This is confirmed by the second difference between Figure 5.3 and Figure 6.6. 
The correlation between SocialTurns and EpisodeDuration is much smaller in 
magnitude compared to Figure 5.3 (-3.9). Figure 6.7 shows a structural equation 
model (p=0.6488) that combines that data from experiment 1 and experiment 3. The 
relationship between SocialTurns and EpisodeTurns in this figure is similar to Figure 
5.3. 
 

 

 
Figure 6.7: SEM from Meta-Analysis of Experiment 1 and Experiment 3 

 

The milder differences between conditions in this experiment can be further 
explained using the Table 6.7 which shows the mean and standard deviations of the 
duration of tutoring episodes for each condition from experiment 3. The table also 
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shows the mean episode duration from the corresponding conditions (Task  None, 
Social  Rules, Human) available in experiment 1. Note that the human condition 
was not used in experiment 3. 

We see that in experiment 1, the attention of the group of students without any 
effect of social behaviors (Task) by the tutors was much worse than in the case of 
experiment 3 (None) as indicated by the higher episode duration for the Task 
condition. Using social behavior, our experimental tutors in the Social condition were 
able to reduce the mean episode duration by 76.19 seconds during experiment 1. 
However, the episode duration in the None condition in experiment 3 was already 
less than the episode duration for the social condition in experiment1, the rules were 
unable to reduce it further by much, which explains the lack of a significant learning 
effect between the None and the Rules conditions like experiment 1. 

Table 6.7 also shows two additional interesting statistics. First, we see that both 
the RandomHigh and LearntHigh condition conditions which performed more than an 
optimal amount of social behavior added to further distracting the students. It is 
because of the higher episode duration for these conditions compared to the None 
condition. Second, we see that our learnt triggering policy with the right amount of 
social behavior used in the LearntLow condition was able to reduce the episode 
duration to almost the same values as the Human condition from experiment 1. This 
indicates that the LearntLow triggering policy was as good as the human tutors at 
maintaining student attention during the interaction. 

6.2.5 Discussion 

Prior work in the field of human-human interaction and human-machine 
interaction in the form of dialog systems has emphasized the importance of timing the 
display of behavior to achieve natural and/or productive interactions. In general, 
timing of interactive behaviors (verbal as well as non-verbal) has been studied in the 
context of joint activities being performed by the participants. Behaviors are timed to 
achieve and maintain coordination between the participants (Clark, 2005). 
Specifically, among other topics, timing of low-level (signal) interaction like turn-
taking has been the subject of several investigations (Raux & Eskenazi, 2008; 
Takeuchi et. al., 2004). 

On the other hand, the use of social behavior by conversational agents to support 
students has been proposed (Veletsianos et. al., 2009; Gulz et. al., 2010). Work in the 
area of affective computing and its application to tutorial dialog has focused on 
identification of student’s emotional states and using those to improve choice of 
behavior performed by tutors (D’Mello et. al., 2005). Our prior work (Kumar et. al., 



  

101 
 

2010; Kumar et. al., 2007) has shown that social behavior motivated from empirical 
research in small group communication (Bales, 1950) can help in effectively 
supporting students in collaborative learning settings. Use of social interaction in 
other applications of conversational agents besides education has been investigated 
(Bickmore et. al., 2009; Dybala et. al., 2009; Dohsaka et. al., 2009). 

The experiments presented here bridges these two tracks of research specifically 
proposing a solution to the challenge of timing social behavior in the context of a 
supporting collaborative learning. Compared to the work on timing signal-level joint 
activities like turn-taking, this work focuses on the timing of joint activities at the 
conversation level. The success of our algorithm at learning a model of timing 
conversational behaviors in the context of an interactive task could potentially offer a 
general approach for realizing such behaviors in other conversational agents. 

6.2.6 Scope for Improvement: Error Analysis 

In this section, we will discuss some of the common errors made by our 
triggering policy which can help in improving the approach to learn a triggering 
policy. 

First of all, a quantitative analysis of the number of times social behavior was 
triggering when none of the social interaction strategies were applicable, i.e., number 
of times a generic social prompt is generated showed a significant negative 
correlation with the tutor’s perception rating { coefficient = -0.20, p < 0.05 }. A 
closer integration between the triggering policy and the strategies selection 
mechanism would help in avoiding the generation of these behaviors. One way of 
addressing this problem may be to incorporate the scores of each of these strategies, 
computed at each turn during the interaction, as features in the learning algorithm. 

Second, we notice few instances of social behavior being triggered too late 
making it irrelevant in the discourse context. An example of this is shown in the 
excerpt in the Table 6.8. Strategy 2a (Expression of feeling better) is becomes 
applicable at the end of second tutor turn when a significant calculation in the 
learning activity is completed. However, the triggering for this strategy is delayed by 
72.3 second (515.9 - 443.6). While in some cases this may not be a problem if the 
group is still on the same topic. However, as we see in Table 6.9, the prompt is out of 
place after 25.3 seconds (296.9 - 271.6) when the discussion moves on to the next 
topic. 
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t=438.3  Tutor So the moment achieved by the new 12" wrench is 600lb.in.  

t=439.6  S026 wait 50% isnt 12  

t=443.6  Tutor That's double of what we had with the original design.  

t=446.2  S026 half of 6 is three  

t=451.0  S020 no 50% of 6 is 3  

t=459.2  S026 exactly  

t=465.6  S026 so it is 100  

t=468.3 S020 yes  

t=480.5  S026 cool, so what is our moment?  

t=484.5  S034 double  

t=496.3  S020 600 

t=503.0 S020 moment = force times distance  

t=508.5  S020 force = 50, distance = 12  

t=515.9  Tutor That's pretty good :-)  

Table 6.8: Excerpt showing a social behavior being triggered too late (1) 

 

t=251.3 Tutor So, using a longer wrench, you can get a higher moment for 
the same effort. That makes the wrench easy to use, right? 

t=260.7 S078 yes 

t=266.1 S071 yes 

t=271.6 Tutor Let's apply this concept to the design challenge. 

t=288.4 Tutor To make the wrench easy to use, let's increase the length by 
100%, i.e., to 12" 

t=296.9 Tutor It's good to have your contributions to the discussion :-) 

Table 6.9: Excerpt showing a social behavior being triggered too late (2) 
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Finally, we observe that using the social ratio filter brings the amount of the 
social behavior generated by our policy closer to the amount of social behavior 
displayed by the human tutors. However, the social ratio filter also ensure that 
generated behavior is less than (or equal) to amount of human social behavior. From 
Table 6.4 we note that on average our filtered policy generates 6.56 fewer social 
turns. While we do not want to perform excessive social behavior, it might be 
beneficial to maintain the same level of social behavior as human tutors. 

Our current implementation of the social ratio filter does not facilitate this 
matching in the amount of social behavior. One way of addressing this would be to 
dynamically shift the confidence threshold (shown in Figure 6.4) based on the gap 
between the current social ratio and the social ratio allowed by the filter. This would 
allow more triggers to be generated, when the policy is performing less than the 
expected number of social behaviors and vice versa. 

6.2.7 Summary 

In this chapter, we presented an experiment that compared the effectiveness of 
several social behavior triggering policies. Specifically, we compared a triggering 
policy learnt from a corpus of human triggering behavior to a rule-based policy which 
has previously been shown to be successful at triggering effective social behavior in a 
collaborative learning activity. 

The presented experiment provides further evidence in support of the intuition 
that timing of social behavior and regulating the amount of social behavior are critical 
to improving performance and perception outcomes. A triggering policy based on 
human-like timing in combination with a filter that attempts to keep amount of social 
behavior at the same level as human tutors was shown to be marginally better than 
the rule-based policy on learning outcomes. Also, on perception measures, we found 
that the human-like policy is marginally better than a random triggering policy which 
uses the same filter to control the amount of social behavior.  Only the learned model 
provides a win both on learning and on perception measures. 

In order to better understand the effect of use of social behavior by automated 
tutors on student’s learning outcomes, we presented a structured model which 
suggests that social behavior helps in achieving higher learning outcomes by allowing 
the tutor to better manage the student’s attention (measured indirectly using episode 
duration). Following this model, we saw that a human-like triggering policy is able to 
achieve higher student attention as indicated by the smaller duration of tutoring 
episodes. Furthermore, the episode duration is comparable to that achieved by human 
tutors during the same learning activity in experiment 1. 
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Chapter 7  
 
Application: Group Decision Making 
 
 

The three experiments described in Chapter 5 and Chapter 6 study the benefits 
and appropriate use of social behavior by Conversational Agents for Collaborative 
Learning application. While we find strong results in favor of the use of social 
behavior for this application, we are also interested in investigating the 
generalizability of these benefits to other multi-party interactive situations. 

In this chapter, we will describe our work on developing a socially capable agent 
that supports a group decision making activity. We will present an experiment 
conducted to verify the generalizability of the effects that socially capable agents can 
have on task success and perception. 

7.1 Non-Combatant Evacuation Operation 

7.1.1 Red Cross Rescue Scenario 

In this section, we will describe an interactive situation involving a group of 
participants working on a decision making task. We use this situation to investigate 
the effects of socially capable agents. The Non-Combatant Evacuation Operation 
(NEO) task is a common military operation conducted to rescue, extract and evacuate 
non-combatant personnel under various circumstances including natural disasters, 
threat of hostile enemy, political uncertainty, etc. We have chosen to use an 
instantiation of a NEO. The Red Cross Rescue scenario (Warner et. al., 2003) was 
developed for the Office of Naval Research Collaboration and Knowledge 
Interoperability program in order to facilitate research on team collaboration and 
problem solving. 
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In this scenario, a team of participants work together to plan a course of action 
(COA) to rescue three Red Cross workers trapped on a pacific island in a war 
between the guerilla forces and the local military. The participants are assigned expert 
roles such as Weapons expert, Environmental expert and Intelligence expert. They are 
provided with extensive information regarding the scenario, the island, the guerilla 
forces, the local military, the condition of the Red Cross workers, their mission 
objective and knowledge related to their assigned expert role. The participants are 
asked to come up with a realistic COA that meets all the mission’s objectives.  

7.1.2 Procedure 

A lab experiment that involves a team of participants working on the Red Cross 
rescue scenario is comprised of the following steps. 

1. Participants complete a consent form and questionnaire that collects 
demographic information such as age, gender, occupation and military 
experience. 

2. Participants are given instructions about the group decision making task. 
They are asked to communicate only through an Instant Messaging 
application. The instructions walk them through the Red Cross rescue 
scenario and give them information such as amount of time available to 
them and deliverables that are part of the COA. 

3. The participants spend 12 minutes reading through the information about 
the island, guerilla and local military, their expert knowledge, etc. 

4. Participants are given instructions to log into their instant messaging chat 
room. 

5. The participants spend 50 minutes communicating with each other and an 
automated agent playing the role of an administrator to plan the COA for 
the scenario given to them. By the end of the 50 minutes, the participants 
come up with a plan comprising of six elements. 

• List of US personnel involved in the rescue 

• Any transportation they will need to get to, from and around the 
island 

• Any weapons they will need 
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• Critical timings for the mission 

• A detailed plan describing the COA 

• Any additional comments 

6. After the group activity is completed, the participants individually 
complete a survey that elicits their perception about each other, the 
administrator agent and the task (Appendix G). 

7. Finally, the participants complete a knowledge test that assesses their 
understanding of the mission objectives (Appendix H). 

This procedure takes 90 minutes. During the entire time, participants are located 
in separate cubicles of the same room. They are not able to see each other. They are 
paid $15 for their time. They are also told that a performance reward is available to 
teams that come up with a high scoring plan. 

7.1.3  Metrics 

We use two direct metrics in this application scenario. The first one is a task 
success/performance metric that measures the quality of the COA generated by the 
team through their 50 minute interaction. The quality is measured using an evaluation 
rubric (Appendix F) that penalizes a COA for various types of mistakes and computes 
a quality score by subtracting the penalties from a maximum score of 100. The rubric 
includes five levels of penalties for mistakes that have different degrees of impact on 
the success of a mission. For example, an incorrect calculation with minimal impact 
carries a penalty of only 2 points. On the other hand, a calculation error with severe 
impact on mission success carries a penalty of 5 points. 

The second metric is based on the perception survey shown in Appendix G. The 
metrics comprise of 18 items in total. 10 of these items elicit perception ratings of 
each teammate and of the agent. The other 8 items elicit ratings about the quality of 
discussion, task satisfaction, team cooperation, etc. 

Note that a single performance metric is computed for the entire team. This is 
different from the metrics used in the Collaborative Learning application where the 
learning outcome was computed for each participant individually. On the other hand, 
the perception ratings are computed individually for each participant. This is similar 
to the case with the Collaborative Learning application. 
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7.2 Agent for supporting Group-Decision making 

7.2.1 Agent Capabilities 

 
neoagent  Hmmm ...  

neoagent  According to your plan, are the rescuers likely to engage the 
enemy?  

neo1  no  

neo3  no  

neoagent  Alright.  

neo3  we will be as covert as possible  

neoagent  BTW: Is this consistent with your mission objectives?  

neo1  Yes  

neo3  i think so, we dont want to destroy villages with missiles  

neoagent  Hmmm... might help to think about how you can improve on this 
aspect.  

Table 7.1: Excerpt of an interaction between Agent and Participants 

 

We have developed a conversational agent that interacts with the team of 
participants during the 50 minutes they have for planning their COA for the Red cross 
rescue scenario. To situate the agent’s presence in the team, the agent is assigned the 
role of an administrator. As the administrator, the agent’s task is to provide necessary 
information and instructions to the team such as 

1. Real time updates about the situation on the island while the team 
members move forward with their interaction. These updates are based 
on the dynamic information condition that was part of the design of the 
original Non-Combatant Evacuation Operation scenario (Warner et. al., 
2003). 

2. Reminders about the amount of time left to complete the COA 
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3. Reminders about taking the time to fill out the elements of the plan if the 
participants have not made significant progress on it. 

In addition to delivering these necessary instructions to the participants, the agent 
tracks the decision making of the team to detect common mistakes such as not 
accounting for the medical needs of the Red Cross workers, using unavailable 
resources such as a translator, not being able to avoid detection by the enemy forces, 
etc. When such a mistake is detected by the agent, it brings up its concerns to the 
team by asking them a series of very general questions related to the concern. 

The questions are framed in a very general form to allow generalizability of this 
capability of the agent to support planning of Non-Combatant Evacuation operation 
in general, without being specific to the Red cross rescue scenario. An excerpt of an 
interaction where the agent brings up a concern about engaging the enemy is shown 
in Table 7.1. 

 
1.   Showing Solidarity: Raises other's status, gives help, reward 
1a. Do Introductions: Introduce and ask names of all participants 
1b. Give Reassurance: When participant is discontent, asking for help 
1c. Compliment / Praise: To acknowledge participant contributions 
1d. Support Agreement: When teammates show approval towards each other 
1e. Conclude Socially 
 
2.   Showing Tension Release: Jokes, laughs, shows satisfaction 
2a. Be cheerful 
2b. Highlight Disagreement: To encourage the team to address concerns that a 
participants might have 
 
3.   Agreeing: Shows passive acceptance, understands, concurs, complies 
3a. Show attention / encouragement: To ideas from participants 
3b. Show comprehension / approval: To opinions and orientations 

Table 7.2: Social Interaction Strategies used by Agent  
to support Group Decision Making 
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Besides these task-related behaviors the agent is also programmed with social 
capabilities similar to the social interaction strategies used for the tutor agents in 
Collaborative Learning applications. Table 7.2 lists the nine social interaction 
strategies used by the agent developed for this application. In addition to sharing 
many of the strategies listed in Table 4.3, we have implemented two additional 
strategies that are relevant to the group decision making application. Both of these 
strategies are triggered by presence of agreements or disagreements among the 
participants. Supporting agreement (Strategy 1d) and encouraging the participants to 
address the concerns that led to any potential disagreements (Strategy 2b) can help in 
regulating the social-emotional processes during the decision making interaction. 

 
neo1  Okay, maybe we should break this problem down  

neo1  let's tackle the first item  

neoagent  Let's try that  

neo3  re speed, checking. break down -- agreed.  

    

neo1  We have night vision, they don't  

neo1  Here, let me edit the plan real quick  

neo3  sure  

neoagent  Good to see that we are moving forward.  

neo3  done editing for a bit?  

    

neo3  I'm thinking we should cut our losses and come from the north. We 
might have casualties, but civilians won't get hurt  

neo3  What do you think neo1  

neoagent  It might help your plan to address any concerns your teammates have.  

neo1  Ok  

neo1  send everyone we have from different angles?  

Table 7.3: Examples of Instantiation of Social Interaction Strategies  
during the NEO Group Decision Making Activity 
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Examples of the instantiation of some of these strategies during actual 
interactions with the participants performing the NEO activity in lab experiments are 
shown in Table 7.3. The first example shows the agent using strategy 3a to show 
encouragement towards a decisive act by one of the participants. In the second 
example, the agent demonstrates strategy 1d in response to the show of 
agreement/approval among the participants regarding using the tactical advantage of 
having night vision. Strategy 2b is exhibited in the last example in Table 7.3 where 
the agent highlights the concerns of one of the team members regarding civilian 
casualties. 
 

7.2.2 Implementation 

An agent with all the capabilities described in the previous section has been 
implemented using the Basilica architecture. Figure 7.1 shows the component 
network of this agent. 

We can observe the similarities between the component network of this agent and 
that of other agents described in Chapter 3 and Chapter 4. The three user observable 
behaviors of the agent (doing introductions, prompting and short dialogs) are 
implemented as three filter-actor pairs. Input from the users is processed through a 
dictionary based annotator (MessageAnnotator). 

Unlike the WrenchTalker agent that had two controller components that shared 
control, the NEO agent has three controller components. The PlanExecutor and the 
SocialController are similar to the corresponding components in the WrenchTalker 
agent. They control the execution of the interaction plan and the social behavior of 
the agent respectively. The triggering policy employed by the SocialController to 
trigger the social interaction strategies listed in Table 7.2 is based on a set of hand-
crafted rules similar to those used by the WrenchTalker agent described in Chapter 4. 
The learnt triggering policy described in Chapter 6 would not generalize to be used in 
this scenario because it used features specific to the collaborative learning activities. 

However, the NEO agent has a third controller component. The DecisionTracker 
component tracks the discussion of the users to maintain scores for the common 
mistakes that the team might be make during the decision making task. The 
DecisionTracker uses changes in these scores to generate events that launch dialogs 
that might help the users reevaluate and correct potential mistakes in their COA. An 
example of such a dialog is shown in Table 7.1. The list of common mistakes and the 
vocabularies used to track them were gradually developed during the development 
phase of our user studies described in the next section. 
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Figure 7.1: Component Network of the NEO Agent 

Also, we can note that unlike the WrenchTalker agent where the two primary 
controllers (PlanExecutor and SocialController) shared control by alternately 
checking the need for control with each other, in the case of the NEO agent, control is 
managed through a dedicated ControlManager component. All the primary 
controllers (DecisionTracker, PlanExecutor and SocialController) request control 
from the ControlManager when they need to perform a behavior and relinquish the 
control as soon as their behavior is done. The ControlManager serves the requests for 
control as a queue. Furthermore, the ControlManager implements certain sanity 
checks into the control sharing mechanism by retracting control from components 
that might not relinquish it within a reasonable amount of time from being granted 
control. This serves as a mechanism for recovering from potential failures in one of 
the components and isolates the functionality of the rest of the component network 
from being affected by this failure. In general, this provides a scalable control sharing 
mechanism as the number of primary controllers in an agent grows. 

We note that the environment listener and actor components have been replaced 
by XMPPListener and XMPPActor similar to the 9-1-1 Interpreter agent. We have 
developed a special purpose communication environment for the NEO group decision 
making activity that uses a server implementing the XMPP protocol as its 
communication backend. A screenshot of this communication environment is shown 
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in Figure 7.2. On the left hand side, the environment provides a typical chat 
environment that allows the participants to communicate with each other and the 
agent using text messages. On the right hand side, the environment provides a shared 
workspace that allows the participants to collaboratively construct the course of 
action for the rescue. They can also refer to the list of available military assets and the 
island map within the other tabs on the right hand side of the environment. 

 

 
Figure 7.2: Communication Environment for NEO Group Decision Making Activity 

 

7.3 Experiment 4: Supporting Group Decision Making 

While earlier work with the NEO Red Cross rescue scenario has focused on 
studying communication and collaboration in teams comprising of only human 
participants (Letsky et. al., 2008), here we are interested in studying the benefits of 
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using a socially capable conversational agent in addition to the human participants. In 
this section, we will describe an experiment similar to Experiment 1 discussed in 
Chapter 5. 

7.3.1 Experimental Design 

This controlled lab experiment compares the performance of human teams that 
are supported by a socially capable agent described in the previous section to that of 
teams supported by an agent that does not perform any of the social behavior listed in 
Table 7.2. We conducted a between subject experiment where each team of 
participants was randomly assigned to one of two conditions. The experiment 
followed the procedure described in Section 7.1.2. The experimental manipulation 
took place during step 5 of this procedure where the team of the participants 
interacted with each other as well as an automated agent for 50 minutes to decide on a 
course of action for the rescue operation. 

The teams in the Social condition interacted with a socially capable agent 
whereas the teams in the Task condition interacted with an agent that performed only 
the task related functions. 

7.3.2 Participants 

The experiment was conducted in a closed lab with four cubicles that prevent the 
participants from seeing each other. Participants were recruited from the CMU 
Experiment Scheduling website. The website allows participants from the Pittsburgh 
community to enroll in experiments. An age restriction of 18 years – 36 years was 
applied and three participants were requested for each experimental session. If all 
three participants reported on time, they were randomly assigned to the three expert 
roles (Weapons, Environmental, Intelligence). If only two participants reported on 
time, the Environmental and Intelligence expert roles were combined and assigned to 
one of the participants and the other participant was assigned the Weapons expert 
role. The experiment session was canceled when only one or none of the participants 
reported on time. 

The experiment sessions were conducted during 5 weeks spread over a duration 
of about four months. During this time, 37 sessions were conducted. 17 of these 
sessions had three participants and the remaining 20 had only two participants. Of 
these 37 sessions, only the last 20 sessions will be used in the analysis discussed in 
the next section. The two conditions that are part of our experimental design are 
evenly distributed between these 20 sessions. Two of the other 17 sessions were 
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discarded because of connectivity problems that reduced the interaction time during 
step 5 of our procedure significantly. The other 15 were session held during the initial 
weeks of the experiment were discarded as development session which were used to 
test and fine tune the agent while it was being implemented. The agent development 
was frozen during the last 20 sessions and the same version of agents was used 
consistently through all of these sessions. 

Of the 20 sessions used in our final analysis, 10 of the teams had 2 participants 
and the other 10 team had 3 participants. Teams of both sizes were evenly distributed 
between the two conditions. We found no significant differences between the 
distribution of age, gender, number of students and the number of people with 
military history (including ROTC) between the two conditions. 

7.3.3 Results 

As discussed in Section 7.1.3, we will analyze the results of this experiment in 
terms of two metrics. 

Task Success / Performance Metrics 

As a performance metric, we use the score that each team’s course of action 
received based on the scoring rubric shown in Appendix F. The score is computed by 
subtracting the penalties assigned to the team’s COA as per the rubric from a 
maximum score of 100. We can further subdivide the penalties into two categories. 
Coarse grained penalties (Error Type A or B) correspond to mistakes such as  

• Ignoring to fill out a necessary element of the COA (e.g. timing, weapons, 
etc.)  

• Choosing an unrealistic solution such as deploying tanks etc. 

In contrast, the Fine grained penalties (Error Type C, D or E) correspond to 
minor mistakes such as a  

• Calculation errors 

• Spending more than 30 minutes on evacuating the Red Cross workers 

• Damaging the village 

Figure 7.3 shows a plot of the total score and each type of penalty for the teams 
in both the conditions. An ANOVA using each of these performance metrics as the 
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dependent variable and condition as the independent variable showed that the Social 
condition is significantly better than the Task condition on the Total Score (higher 
score) as well as the fine-grained penalties (lower penalty). The difference between 
the two conditions for the coarse-grained penalties is not significant. 

• Total Score: F(1,19)=9.21, p < 0.01 

• Coarse-grained Penalty: F(1,19)=0.65, p=0.431 

• Fine-grained Penalty: F(1,19)=14.82, p<0.001 

This observation suggest that the participants make significantly fewer Type C, D 
and E errors when the NEO agent performs social behavior. Most of the dialogs that 
the agent brings up during the interaction correspond to mistakes that lead to such 
penalties. We believe the reason for this effect is that the participants in the NEO 
group decision making activity paid more attention to the agent’s dialogs about these 
fine-grained mistakes and were able to rectify them within the time they had to come 
with their final COA. This reasoning follows from our analysis of the effect of social 
behavior on student attention towards tutorial dialogs in collaborative learning 
activities. 

 

 
Figure 7.3: Plot of Total Score and Coarse & Fine grained Penalties 

 

We found no significant effect of the size of the team on these metrics. In order to 
study the effect of the participant’s understanding of the mission objectives on their 
performance as measured by the knowledge test (Appendix H), we performed an 
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ANCOVA using their individual test scores as a covariate to model their team’s total 
score and penalties. Condition was used as the independent variable. We found no 
significant effect of their knowledge test scores on their team performance. 

Perception Metrics 

The perception metrics used in this experiment are based on a survey (Appendix 
G) administered to the participants after the group decision making activity. The first 
10 items on the survey elicited ratings from each participant about the agent and their 
teammates on a 7-point Likert scale. We use the average score on these items as a 
participant’s rating for the agent and his/her teammates. Ratings on questions 8 and 9 
of the survey were inverted (7  1, 6  2, …) to match the polarity of all the 
questions. Figure 7.4 shows the mean agent and teammate rating for the participants 
in both of the conditions. 

 
Figure 7.4: Mean Rating by the participants for the Agent and their Teammates 

 

An ANOVA using the ratings as the dependent variable and the condition as the 
independent variable showed significant effect of condition on both agent as well as 
the teammate rating. The participants rated both their agent as well as their teammates 
significantly higher when the agents performed the social behaviors. 

• Agent Rating: F(1,49)=4.62, p < 0.05 

• Teammate Rating: F(1,49)=4.46, p < 0.05 
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Further, we performed an ANCOVA on the agent rating using teammate rating as 
a covariate and condition as an independent variable to check if the higher rating for 
the agent was because the participants were rating the agent relative to their 
teammates whom they rated higher in Social condition. We found no significant 
effect of teammate rating on agent rating. 

While the higher rating for the agent could be explained by the use of social 
capabilities of the agent, we further investigated the reason for the higher ratings for 
the teammates using demographics and other available ratings as additional factors in 
the model. First of all, we found a significant gender effect on teammate rating. Male 
participants were significantly ( F(1,49)=4.9, p < 0.05 ) more likely to rate their 
teammates higher (Average=6.11) compared to female participants (Average=5.55). 
We found no significant effect of the gender distribution of the teammates on the 
participant’s ratings of their teammates. Second, we observed a significant positive 
correlation (r=0.566, p < 0.001) between the teammate rating and the cooperation 
rating given by the participant (Q15 on Appendix G). This suggests that teammates 
were rated higher when the participants perceived a higher degree of cooperation 
during the group decision making activity. 

 

 
Figure 7.5: Average Ratings about Team, Task and Discussion 

 

Figure 7.5 shows a plot of the average rating for the other items (Q11-Q18) on 
the survey shown in Appendix G. We observe significant effects in favor of the 
Social condition for the items 14 – 18 (Quality of discussion, Cooperation, Best 
Effort, Task Satisfaction, Team Performance). 
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Overall, we observe strong effects in favor of the Social condition for both the 
performance as well as the perception metrics. The use of socially capable agents can 
help in improving the quality of a team’s decisions and enrich their experience during 
group decision making activities. 
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Chapter 8  
 
Conclusion 
 
 

Interfaces such as Conversational Agents can offer effective support to users in a 
variety of interactive situations. The work presented in this thesis is motivated by a 
vision of agents that can participate and engage users in multi-party interactive 
situations while enhancing their productivity and enriching their experience. 

Through this thesis, we have explored two problems that must be addressed to 
achieve this vision. The first of these problems involves the technical issues 
surrounding the implementation of agents that can participate in such situations. 
These problems arise from the assumptions (Chapter 2) implicit within the 
approaches and tools previously available for the development of Conversational 
Agents. 

The second problem focuses on the communication skills that agents 
participating in multi-party situations must display. Specifically, we find the need for 
creating socially capable agents. In this work, we follow a model of human social 
behavior developed by research in small group communication to identify and 
implement the social capabilities that are relevant to the interactive situations 
investigated here. 

This thesis contributes approaches, knowledge and software artifacts that address 
both of these problems. Experiments described in this thesis discuss the effectiveness 
and appropriate use of some of these contributions in the context of two multi-party 
application domains: Collaborative Learning and Group Decision Making. 

In this chapter, we will list the specific contributions of this thesis in the context 
of these two problems. This will be followed by a discussion of the shortcomings and 
future directions leading from the conclusions derived from our experiments. 
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8.1 Thesis Contributions 

8.1.1 Building Agents for Multi-Party Interactive Situations 

Chapter 2 and Chapter 3 of this thesis describe our work on identifying and 
alleviating the problems involved in building agents for MPIS. We describe an 
approach for modeling conversation as an orchestration of triggering of behaviors. 
Development of agents based on this approach is supported by the Basilica 
architecture which is the primary technical contribution of this thesis. Basilica is an 
event-driven architecture that represents CAs as a network of behavioral components. 

Following a programmatic approach (vs. an authoring approach), the behaviors of 
each of these components are specified using a high-level programming language 
(like Java). This approach provides us with a rich representational capability to build 
agents because the behaviors of these agents are not restricted to simple combinations 
of a limited set of conversational operations. This is different from many existing 
formalisms for representing agent behaviors which use very high level languages that 
provide only a small set of operators to specify agent behavior. 

The use of an event-driven architecture and decomposition of the agent into a 
network of behavioral components provides the flexibility to model complex 
interaction dynamics that are often observed during multi-party interactive situations 
(e.g. Multi-Party turn taking in a collaborative learning situation). The loose-coupling 
of behavioral components that follows from the decomposition facilitates re-usability 
of these components across agents as demonstrated by the progression of agents 
discussed in Chapter 3. 

As an extension of the benefits of this representational capability and 
decomposability, the architecture facilitates the development of hybrid agents that 
combine many existing techniques for modeling the individual conversational 
behaviors encapsulated within each of the behavioral components. Hence, in a way, 
the Basilica architecture functions as a meta-architecture. 

Besides building the Basilica architecture, we have developed a collection of 
agents using this architecture for a variety of interactive tasks and a variety of agent 
roles to demonstrate the breadth of capabilities of the Basilica architecture. These 
agent implementations provide reusable components that can be used for developing 
other agents. Also, the designs of the component networks of these agents provide 
guidelines and examples for designing agents that can be implemented using the 
Basilica architecture. 
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8.1.2 Socially Capable Conversational Agents 

This thesis experimentally explored the design space of socially capable agents. 
The relevant social capabilities of these agents are determined within the context of 
their application using the social-emotional interaction categories identified by 
research in Small Group Communication. Chapter 4 and Chapter 7 discuss the use of 
this approach to design and implement agents that support users in two applications 
scenarios, i.e., collaborative learning and group decision making. 

The thesis describes a series of experiments conducted using these socially 
capable agents. The results and analysis of these experiments contribute the following 
insights into the use of socially capable conversational agents. 

Agents with social capabilities can achieve significantly better task success and 
perception ratings compared to agents that perform the same task related behaviors 
but no social behaviors. Specifically, experiments 1 and 4 show this in the context of 
the two different applications listed above. While both the applications use similar 
metrics of agent perception, the metrics used for task success are very different. 
However, a similar effect of the use of social behavior is observed. Together, these 
results recommend the use agents with social capabilities to support users in multi-
party interactive situations. 

Structural equation modeling discussed in Section 5.4 contributes an insight into 
the mechanism through which the use of social behaviors by agents achieve the 
outcomes described above. We find that social behavior helps in regulating the 
attention of the user towards the information being delivered by the agent. 
Specifically, we notice that social behavior helps in counteracting the negative effects 
of dysfunction in groups on the attention of the users. The resulting higher attention 
of the user towards the agent has a direct positive effect on task success. While on the 
one hand this recommends the use of socially capable agents in applications 
frequently used by communicatively dysfunctional groups, we also note that the 
benefits of the use of these social capabilities may diminish or disappear in the case 
of interaction involving high functioning groups. 

Experiment 2 and 3 investigate the issue of appropriate use of the social 
capabilities of the agent used in experiment 1. Experiment 2 compares three agents 
that perform different amount of social behavior to determine an appropriate amount 
of social behavior. Experiment 3 on the other hand compares six agents that use three 
different policies for timing social behavior. 
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First of all, both of these experiments emphasize the important of performing the 
right amount of social behavior. A simpler recommendation based on experiment 2 
suggests using a moderate (15-20%) amount of social behavior on average over the 
course of a 35 minute interaction with a group of users. The fine grained social ratio 
filtering approach discussed in Section 6.1.8 suggests the use of model that capture 
that temporal dynamics of the appropriate amount of social behavior over the course 
of the 35 minutes interaction with the users. The model learnt using the filtering 
approach suggests that it may be appropriate to perform as much as 50% of social 
behavior in the formative/conclusive phases of group interaction and agrees with the 
15% recommendation of the simpler model during the performance phase of the 
interaction. 

Second, based on experiment 3, we find support for the use of a triggering policy 
learnt from data that captures a series of human-made decisions to perform social 
behavior in a collaborative learning application. Compared to random and rule-based 
triggering policies, the learnt policy used in combination with the social ratio filter 
mentioned above was found to be the only policy that performs highly on both the 
task success as well as the perception metrics. Besides recommending the choice of 
an appropriate triggering policy, this thesis also contributes an approach for modeling 
the timing of human social behavior. Specifically, this approach uses a large margin 
learning technique to learn a model that decides when a social behavior should be 
performed. The technique provides us the flexibility to design optimization 
constraints that direct the algorithm towards discovering a model that optimizes a 
metric (such a Pk or kKappa) of our choice. 

Together, these experiments contributes knowledge that helps us in taking a step 
towards achieving the vision of creating effective and useable agents that can use 
social capabilities to improve the support they offer to users in multi-party interactive 
situations. In addition to this knowledge, the experiments described here and other 
experiments conducted using the various agents built using the Basilica architecture 
contribute data collected from over 1000 human subjects who make up over 300 
small groups. 

Above all, through this work, we have attempted to bridge the fields of Small 
group communication and Conversational Agents. As further discussed in the next 
section, both of these fields stand to gain from this bridge. While group 
communication offers insights into the design of appropriate communication skills for 
CAs, these agents offer a controlled technique for simulating and modeling the 
effects of specific behaviors on the outcomes of group interaction. 
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8.2 Directions 

Before we discuss the next steps and promising future directions resulting from 
this thesis, four shortcomings of the analysis and techniques used in this work are 
listed below. 

First, in our analysis of the effect of the use of social behaviors on learning, we 
only consider the social behavior performed by the agents. While this is the primary 
interest of this thesis, conventionally an analysis of Balesian equilibrium between 
instrumental and expressive processes in group interaction takes into account the 
expressive contributions of all the participants in the group. In our analysis, we have 
assumed invariance in the amount of social behavior performed by the users between 
the teams used in our analysis. As a next step towards improving our understanding 
of the mechanism through which social behaviors affect outcomes of our interest, 
further analysis should incorporate variables that measure the social behaviors 
performed by the users. 

Second, the techniques used to learn a policy for triggering social behavior only 
helps the agents decide if they should perform a social behavior. As discussed in 
section 6.1.5, this decision is followed by a rule-based determination of which social 
behavior should be performed. Although rarely, this leads to the situations such as the 
triggering policy recommending that the agent should perform a social behavior 
while the rules do not find any of the social interaction strategies applicable at that 
time. In our current implementation, this is addressed by performing a default social 
behavior. This hybrid approach that combines learnt and rule based models to create a 
triggering policy is a suitable solution in our case considering the relatively small 
amount of data available to train the triggering policy. However, this directs our 
attention to a general problem of learning multi-class policies that have to choose 
between more than two options. As we suggest an approach that model agents as a 
collection of behavior one or more which may be triggered by learnt policies, it may 
be useful to investigate algorithms that can learn to choose between more than two 
actions associated with a behavior. 

Related to the above mentioned shortcoming is the issue of coordination among 
various behaviors that may be triggered almost simultaneously. Our current 
implementations of CAs address this issue in different ways. For example, the 
WrenchTalker tutor agent described in section 4.5 achieves coordination between the 
task and social behaviors of the agent by using a control token that is alternately 
shared between the components that perform these behaviors. The component that 
does not need control, immediately relinquishes it to the other component. In contrast 
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to this implementation, the NEO agent described in section 7.2 uses a 
ControlManager component to achieve coordination between the three behaviors of 
that agent. While currently the control manager uses a simple queue based approach 
to coordinate between the three behaviors, we find this to be a better approach as we 
move towards agents with large number of behaviors. Depending on the application 
and the design of the agent’s component network, a more sophisticated coordination 
policy such as a priority queue can be implemented as an extension to this approach. 
In general, coordination among behaviors is a one of the challenges that must be 
investigated further to create highly complex CAs. 

The fourth shortcoming relates to the two options offered by this thesis to help us 
choose the appropriate amount of social behavior that agents should perform. Both of 
these choices (fixed percentage, social ratio filter) use an interaction invariant model. 
However, it may be useful to change the amount of social behavior performed by the 
agents based on the characteristics of the group and its interaction. The structural 
equation model shown in Figure 5.3 offers two potential approaches to adaptively 
determine the right amount of social behavior for collaborative learning applications. 
First, a simple approach can use the magnitude of increase in the episode duration 
from an efficient minimum for each tutoring episode. Higher episode duration can be 
used as an indication of the need for higher amount of social behavior. A more 
complex approach could model the dysfunction in the groups by automatically 
monitoring the bad behavior of the students and use that to determine the right 
amount of social behavior appropriate for each group. 

Besides the four shortcoming and the corresponding next steps discussed above, 
we have considered two promising research directions that could use the techniques 
and knowledge developed in this thesis. 

First of all, we found that social behavior acts as a regulatory mechanism in 
group interaction. Specifically, it regulates user attention towards the agent measured 
as the reduction in the time it takes for the tutor to deliver its instructional content 
during tutoring episodes. Discovery and study of other regulatory mechanism which 
are crucial to functioning of small groups could help us create better agents for MPIS. 

Second, the conversational agents are only one of many types of interfaces that 
support group interaction. Other interfaces such as chatrooms, multi-player video 
games, discussion forums, online social networks, etc. could potentially benefit from 
having relevant social capabilities alongside their existing task related functionality. 
In general, the display of multiple behaviors so as to maintain equilibrium between 
different objectives of the interactive situation is a problem that re-occurs in many of 
these modern interfaces. A common example of this is the display of advertisements 
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on websites where designs and developers must choose the right amount of 
advertising for the content being presented to maintain equilibrium between the 
attention and the financial economies of the website. 

8.2.1 Outlook 

In contrast to the useful yet rather simplistic applications which were being 
investigated in the context of conversational agents and dialog systems until recently, 
we now see this technology being applied to richer and more complex interactive 
applications such as the two applications discussed in this thesis. Future work on CAs 
will focus on developing systems that can interact with many users using multiple 
modalities for input and output. The duration of an interactive session may extend 
from minutes to hours and days. The agents may need to interact with other interfaces 
including other agents. The range of application may vary from experience driven 
casual use to performance driven serious use. Many of these aspects are currently 
being investigated by researchers within the context of several application scenarios. 

As we move towards realizing these agents, research on this technology must 
investigate not only novel approaches for representing and generating interactive 
capabilities, but also allow several approaches to work together to create highly 
interactive agents. While our use of Basilica as a meta-architecture enables this 
within the scope of the work discussed in this work, earlier in this section, we have 
discussed two shortcomings of behavior generation and coordination that must be 
investigated in the near future as we move towards these complex applications. Along 
these lines, few other directions are worth further investigation. 

We must investigate approaches to generate novel behavior to keep the user 
engaged over long term interaction. The use of data-driven and crowd sourcing 
techniques can help us acquire agent behavior from the observation of human 
behavior. In addition to approaches for modeling agents the focus on adhering to a 
plan or reacting to local discourse events, we must develop approaches that allow 
agents to be opportunistic. Such agents will be able to effectively utilize opportunities 
to achieve secondary goals such as delivering recommendations to the user, eliciting 
user feedback, shaping user perspective towards the task or the agent, etc. The use of 
non-anthropomorphic interactive behaviors (e.g. beeps) can help in improving the 
communication efficiency in certain application. The lack of a model of the effects of 
such behaviors impedes their use and is worth future exploration. 

Within the context of multi-party interactive situations, the issue of group 
formation is crucial. While in our applications ad-hoc groups were used, group 
functioning and productivity can be further improved by selectively grouping users 



  

128 
 

that are likely to complement yet cooperate with each other. Initial or prior interaction 
of the users with agents can be used to systematically or opportunistically elicit user 
characteristics that can help in determining optimal grouping of users. 
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Appendix A 
 
Test administered during Wrench Lab 
 
 

Q1. Stress is         1 point 
 

a) Force   b) Force x Area 
c) Force / Area  d) Area / Force 

 
Q2. Does stress determine how easy it is to use a Wrench to turn a bolt?  1 point 
 

a) Yes 
b) No 

 
Q3. Explain your answer to Q2 in the space below   2 points 
 
 
 
 
Q4. In general, while designing a Wrench, we want to   1 point 
 

a) Increase Stress  
b) Decrease Stress 
c) Not change Stress  

 
Q5. Explain your answer to Q4 in the space below   2 points 
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For questions 6 - 8, What happens to the following on increasing the length of 
the handle? 
 
Q6. Stress   a) Increases    1 point 

b) Decreases 
c) Doesn’t Change 

 
Q7. Ease of Use  a) Improves    1 point 

b) Degrades 
c) Doesn’t Change 

 
 
Q8. Cost   a) Increases    1 point 

b) Decreases 
c) Doesn’t Change 

 
Q9. Explain your answer to Q7 in the space below   2 points 
 
 
 
Q10. If the Yield Stress of the following material is as below  1 point 
 
 Plastic   = 4000 lb/in2 
 Aluminum  = 35000 lb/in2 
 Steel   = 50000 lb/in2 
 Titanium  = 80000 lb/in2 
 
From a safety point of view, which is the best material of choice for building the 
Wrench? 
  a) Plastic   b) Aluminum 
  c) Steel    d) Titanium 
 
Q11. The maximum stress in the Aluminum Wrench you designed is about 5000 
lb/in2. If you double the length of the handle, which all of the following materials 
can you use safely to manufacture the wrench. Use a Safety Factor of 4. 
          2 points 
  a) Plastic   b) Aluminum 
  c) Steel    d) Titanium 
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Appendix B 
 
Test administered during 
Thermodynamics Lab 
 

For each of the following changes to cycle parameters, how is the efficiency changed. 
Pick only one option.        (1 point each) 
 
Q1. Decreasing Maximum Temperature at which heat is added to the Cycle  
  (a) increases  (b) decreases  (c) remains the same 
 
Q2. Decreasing Minimum Temperature at which heat is rejected from the Cycle  
  (a) increases  (b) decreases  (c) remains the same 
 
Q3. Why is excessive moisture or liquid water in steam undesirable in steam 
turbines?         (1 point) 
 
 
 
Q4. What limits the minimum pressure at which a condenser of a Rankine cycle can 
be operated at?       (2 points) 
 
 
 
Q5. If you were cared both about the power output and the environmental impact of a 
Rankine cycle, how would you achieve the best compromise between these two 
goals?         (1 point) 
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Consider a simple ideal Rankine cycle with fixed turbine inlet temperature (Tmax) 
and condenser pressure (Pmin). For each of the following (Q6 – Q11), what is the 
effect of increasing the boiler pressure (Pmax) on:   (1 point each) 
 
Q6. Pump work input 
  (a) increases  (b) decreases  (c) remains the same 
 
Q7. Turbine work output 
  (a) increases  (b) decreases  (c) remains the same 
 
Q8. Heat supplied 
  (a) increases  (b) decreases  (c) remains the same 
 
 
Q9. Heat rejected 
  (a) increases  (b) decreases  (c) remains the same 
 
Q10. Cycle efficiency 
  (a) increases  (b) decreases  (c) remains the same 
 
Q11. Liquid moisture content at turbine exit 
  (a) increases  (b) decreases  (c) remains the same 
 
 
Q12. Explain your answer to Question 10    (2 points) 
 
 
 
Consider a simple ideal Rankine cycle with fixed boiler and condenser pressures 
(Pmax and Pmin). For each of the following (Q13 – Q18) what is the effect of 
superheating the steam to a higher temperature on:   (1 point each) 
 
Q13. Pump work input 
  (a) increases  (b) decreases  (c) remains the same 
 
Q14. Turbine work output 
  (a) increases  (b) decreases  (c) remains the same 
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Q15. Heat supplied 
  (a) increases  (b) decreases  (c) remains the same 
 
Q16. Heat rejected 
  (a) increases  (b) decreases  (c) remains the same 
 
Q17. Cycle efficiency 
  (a) increases  (b) decreases  (c) remains the same 
 
Q18. Liquid moisture content at turbine exit 
  (a) increases  (b) decreases  (c) remains the same 
 
Q19. Explain your answer to Question 16    (2 points) 
 
 
 
Consider a simple ideal Rankine cycle with fixed turbine inlet conditions (Pmax and 
Tmax). For each of the following (Q20 – Q25) what is the effect of lowering the 
condenser pressure (Pmin) on:     (1 point each) 
 
Q20. Pump work input 
  (a) increases  (b) decreases  (c) remains the same 
 
Q21. Turbine work output 
  (a) increases  (b) decreases  (c) remains the same 
 
Q22. Heat supplied 
  (a) increases  (b) decreases  (c) remains the same 
 
Q23. Heat rejected 
  (a) increases  (b) decreases  (c) remains the same 
 
Q24. Cycle efficiency 
  (a) increases  (b) decreases  (c) remains the same 
 
Q25. Liquid moisture content at turbine exit 
  (a) increases  (b) decreases  (c) remains the same 
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Q26. Explain your answer to Question 21    (2 points) 
 
 
 
Q27. Which of the following energy sources is the best choice for improving Cycle 
efficiency?        (1 point) 
  (a) Coal (b) Solar (c) Natural Gas (d) Nuclear 
 
Q28. In the T-S diagram for a Rankine Cycle shown below, indicate the net amount 
of work done by the Rankine Cycle.     (1 point) 
 

 
Q29. Modify the T-S diagram for a Rankine Cycle shown below to indicate how the 
cycle changes when you increase the Maximum Pressure of the Cycle    (2 points) 
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Appendix C 
 
Collaborative Learning Perception 
Survey 
 

Using the following scale, Indicate to what extent you agree with each of the 
following items. 
 

1 2 3 4 5 6 7 
Strongly 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neutral Somewhat 
Agree 

Mostly 
Agree 

Strongly 
Agree 

 

Q1 I liked the tutor very much. 1 2 3 4 5 6 7 

Q2 The tutor was very cordial and friendly during the 
discussion 1 2 3 4 5 6 7 

Q3 The tutor was providing very good ideas for the 
discussion 1 2 3 4 5 6 7 

Q4 The tutor kept the discussion at a very comfortable level 
socially 1 2 3 4 5 6 7 

Q5 The tutor was part of my team 1 2 3 4 5 6 7 

Q6 The tutor received the ideas and suggestions I 
contributed to the discussion positively 1 2 3 4 5 6 7 

Q7 I am happy with the discussion we had during the 
design challenge 1 2 3 4 5 6 7 

Q8 My group was successful at meeting the goals of the 
design challenge 1 2 3 4 5 6 7 

Q9 The design challenge was exciting and I did my best to 
come up with good designs 1 2 3 4 5 6 7 
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Appendix D 
 
Design Sheet for Collaborative Wrench 
Design Activity 
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Appendix E 
 
Design sheet for Collaborative Power 
Plant Design Activity 
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Appendix F 
 
Scoring Rubric for Non-Combatant 
Evacuation Planning 
 

Planning Card Error Error 
Type 

Points 
Lost 

Personnel Omitting Personnel Card A 20 

    

Transportation Omitting Transportation Card A 20 

 
 

Using aircraft that requires in flight refueling without calculating 
refueling needs 

 
C 

 
5 

 Calculation error rendering the solution impossible C 5 

 Using aircraft that requires in flight refueling (with correct 
calculations) E 2 

 Performing calculations incorrectly with minimal impact E 2 

 Using one aircraft that needs refueling, but others that don’t. E 2 

    

Weapons Omitting Weapons Card A 20 

 Using unavailable weapons D 3 

 Failing to address weapons used by selected military D 3 

    

Times Omitting Times Card A 20 

 Failing to include required critical times (onset of operation, 
contact with workers, evacuation, return) 

 
C 

 
5 

 Calculation error rendering the solution impossible C 5 

 Failing to account for tides or coral reef (if using sea approach) D 3 
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Planning Card Error Error 
Type 

Points 
Lost 

 Rescuing workers during daylight hours D 3 

 Performing calculations incorrectly with minimal impact E 2 

 More than 0.5 hours spent in church E 2 

    

Plan Omitting Plan Card A 20 

 Unrealistic solution (tanks, etc.) B 10 

 

Neglecting to include all requirements of the plan as listed in the 
Mission Statement  

• Getting to the church 
• Evacuating the workers  
• Returning to the base or ship 

 
 
 
 

C 

 
 
 
 

5 for 
each 

 Failing to address medical treatment 
a. Insulin, b. Broken leg C 2.5 each 

 Harming the enemy unnecessarily C 5 

 Damaging the village unnecessarily C 5 

 Failing to arrange for translator if need established D 3 

 Failing to address detection D 3 

 Failing to avoid detection if addressed C 2 

 Failing to avoid land mines E 2 

    

Miscellaneous Other Type A error (e.g.  omitting planning card) A 20 

 Other Type B error (e.g.  serious violation of mission statement, 
unrealistic solution) 

 
B 

 
10 

 Other Type C error (e.g.  moderate violation of mission statement, 
calculation error with serious impact) 

 
C 

 
5 

 Other Type D error (e.g.  minor violation of mission statement)  
D 

 
3 

 Other Type E error (e.g.  calculation error with minimal impact)  
E 

 
2 
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Appendix G 
 
Group Decision Making Perception 
Survey 
 

1 2 3 4 5 6 7 
Strongly 
Disagree 

Mostly 
Disagree 

Somewhat 
Disagree 

Neutral Somewhat 
Agree 

Mostly 
Agree 

Strongly 
Agree 

 
 

Using the above scale,  
Indicate to what extent you agree with each of the following statements for each 
participant in your team. Ignore the field about yourself. 

 
 

Q1 This participant provided good ideas for 
our task. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q2 This participant received my contributions 
positively. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q3 This participant was friendly during the 
discussion. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q4 This participant responded to my 
contributions. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 
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Q5 This participant helped in lowering the 
tension in our team. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q6 This participant was paying attention to our 
conversation. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q7 Overall, I liked this participant very much. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q8 I often ignored what this participant was 
saying. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q9 This participant's contributions got in the 
way of our planning. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 

Q10 This participant was an important part of 
my team. 

Admin 1 2 3 4 5 6 7 
Weapons 1 2 3 4 5 6 7 

Environmental 1 2 3 4 5 6 7 
Intelligence 1 2 3 4 5 6 7 

 
Using the same scale as above,  
Indicate to what extent you agree with each of the following statements. 

 
Q11 The mission was exciting 1 2 3 4 5 6 7 

Q12 I wanted to win the extra reward 1 2 3 4 5 6 7 

Q13 My group members felt that the discussion was important 1 2 3 4 5 6 7 

Q14 I am happy with the discussion we had during this task 1 2 3 4 5 6 7 
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Q15 We worked together during the mission 1 2 3 4 5 6 7 

Q16 We tried our best to come with the rescue plan 1 2 3 4 5 6 7 

Q17 My team was successful at meeting all the objectives of our 
mission 1 2 3 4 5 6 7 

Q18 The plan we came up with will qualify for the extra reward 1 2 3 4 5 6 7 
 
 
 
 
  



  

146 
 

  



  

147 
 

Appendix H 
 
Knowledge Test: 
Non-Combatant Evacuation 
 
Consider the following evacuation plan that one of the teams came up with: 
 
Personnel: 
Flight Crew for two helicopters 
4 for seahawk, 2 for hornets 
2 riflemen with rifles and grenades 
1 riflemen with just rifle 
1 radioman 
 
Weapons: 
Whatever is on the helicopters 
 
Transportation: 
1 US Navy SeaHawk 
1 F-18 Hornet 
1 C-130 with extra fuel 
 
Comments: 
Hornets for fire support 
 
Timing: 

1. Seahawk leaves USS Enterprise: 3am 

2. Hornet leaves USS Enterprise: 4:45am 

3. C-130 leaves base in time to refuel 
seahawk 

4. Seahawk Arrive at Church: 5am 

5. Hornet arrives at church 5mins after 
seahawk 

6. Leave Island: 5:30am 

7. Return to USS Enterprise: 9am 

 
Details: 
• Hover over church and airlift evacuees 
• Two navy seals will reach down to church 

and secure area, stabilize medical 
situation and evacuate 

• Fly over the north and enter the island 
from north 

• Seahawk to be refuel on route back to 
USS Enterprise by C-130 

 
Answer the following questions about the above plan: 
 
Q1.  Do the rescuers have all the personnel they need to execute this plan? YES NO 
 
Q2.  Do the rescuers have sufficient weapons to execute this plan?  YES NO 
 
Q3.  Do the rescuers have sufficient transportation to execute this plan? YES NO 
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Q4.  Does the plan address all the medical care that must be provided YES NO 
 to the evacuees? 
 
Q5.  According to this plan, are the rescuers likely to be detected or YES NO 
 engage the enemy? 
 
Q6.  Does the plan involve potentially complicated operations like   YES NO 
 refueling, use of tanks, navigating through land mines, involving locals, etc. 
 
Q7.  On a scale of 1 (worst) to 10 (best), how would rate the above plan? _________ 
  
 
 
Consider the following evacuation plan that one of the teams came up with: 
 
Personnel: 
7-man squad of Navy seals 
6-man squad of Army special forces 
 
Weapons: 
As included on aircraft + /w team 
 
Transportation: 
3 Toyota Trucks 
1 C-130 
1 Zodiac 
1 Blackhawk 
5 F-18s 
 
Timing: 
• Onset: 2am 
• Contact: 4:10am 
• Evacuation: 4:20am 

• Return to Base or Ship: 5:20am 
 
Details: 
• 2am: Contact local by radio for 3 toyota 

trucks to be waiting 50 miles south of 
church on the shore 

• Fly C-130 in with 5 seals, 6 army, 6 miles 
from shore 

• Meet trucks on shore + at the same time 
send in 3 F-18s on the east shore for 
diversion 

• Drive to church in trucks 
• 2 medics go into church w/water + insulin 
• 4:20 black hawks will pick team up while 

F-18s defends us. 
• Send the F-18s back 

 
 
Answer the following questions about the above plan: 
 
Q1.  Do the rescuers have all the personnel they need to execute this plan? YES NO 
 
Q2.  Do the rescuers have sufficient weapons to execute this plan?  YES NO 
 
Q3.  Do the rescuers have sufficient transportation to execute this plan? YES NO 
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Q4.  Does the plan address all the medical care that must be provided YES NO 
 to the evacuees? 
 
Q5.  According to this plan, are the rescuers likely to be detected or YES NO 
 engage the enemy? 
 
Q6.  Does the plan involve potentially complicated operations like refueling, YES NO 
 use of tanks, navigating through land mines, involving locals, etc. 
 
Q7.  On a scale of 1 (worst) to 10 (best), how would rate the above plan? _________ 
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Appendix I 
 
Design of the Annotation Interface 
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Appendix J 
 
Rules for Triggering Social Behaviors 
 

Only Triggered if Current Social Ratio < Threshold (0.2 in Experiment 1) 

Event Received 

  

Social Behavior Triggered 

DORMANT_GROUP 
When group is inactive 

1e: Encourage 
Prompt targeted towards entire group 

DORMANT_STUDENT 
When individual is inactive 

1e: Encourage 
Prompt targeted inactive individual 

 
 

Plan Step Completed 

  

Social Behavior Triggered 

DO_GREETINGS 1a: Do introductions 

DO_CONCLUSION 1f: Conclude socially 

{ Calculation Steps } 2a: Expression of feeling better 
Prompt is selected based on step completed 

{ Design Review Steps } 2c: Express enthusiasm, elation, satisfaction 
Prompt is selected based on step completed 
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Plan Step Completed 

  

Social Behavior Triggered 

{ Tutoring Episode Steps } 1d: Compliment / Praise 
Praised students selected based on contributions  

 
 

Only Triggered if Current Social Ratio < Threshold (0.2 in Experiment 1) 

Student Message 
Annotation 

  

Social Behavior Triggered 

TEASING && 
!TUTOR_REFERENCE 1b: Be protective & nurturing 

DISCONTENT || 
HELP_NEEDED 1c: Give reassurance 

SMILES || POSITIVITY 2b: Be cheerful 

IDEA_CONTRIBUTION 3a: Show attention 

GIVING_OPINION || 
GIVING_ORIENTATION 3b: Show compression / approval 
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