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Abstract

Advances in deep learning, especially self-supervised representation learning, have
produced models that reach human parity on many benchmark datasets, which cover
a variety of natural language understanding tasks. However, benchmark datasets are
constructed from naturally occurring text, and are no exception to Zipf’s law, containing
a small proportion of highly frequent cases and a long tail of less frequent cases.
Benchmark-driven evaluation and model development favors NLU models that perform
well on the head, sidelining domains and phenomena that are underrepresented.

In this thesis, we adopt a two level conceptualization of the long tail: (i) macro-level
according to broad dimensions of linguistic variation such as language, genre, topic,
etc., and (ii) micro-level according to the presence or absence of specific linguistic phe-
nomena such as numeracy, deixis, etc. With this conceptualization in mind, we focus
on addressing three research questions about the applicability of domain adaptation to
the long tail: (i) how can we best adapt between macro-level dimensions?, (ii) how
can we best handle micro-level phenomena?, (iii) how do we evaluate performance on
the long tail?

For adaptation at the macro level (low-resource domains), we propose: (i)
likelihood-based instance weighting, an unsupervised adaptation technique that uses
language model likelihoods to estimate source-target similarity, and (ii) domain-aware
query sampling, an embedding similarity-based criterion to improve data efficiency
during active learning. For micro-level adaptation (low-resource phenomena), we
present an integrated architecture that incorporates knowledge/rules represented as
ILP constraints into neural model training using a structured SVM framework. Finally,
for long tail evaluation, we develop an evaluation paradigm called “stress tests”, which
allows us to identify micro long tail phenomena that models fail on by supplementing
benchmark evaluation with evaluation on non-identically distributed phenomenon-
focused test-only datasets.

Through a series of systematically designed case studies, we analyze and contrast
the performance of these proposed techniques with existing transfer learning methods
on information extraction and text classification tasks. Our goal is to identify promising
categories of methods for the long tail, while mapping out their limits. This thesis
takes preliminary steps towards aggregating a series of best practices that can facilitate
informed selection from an arsenal of strong transfer methods, given a new long tail
setting.



To my family



Acknowledgments

As a fledgling researcher embarking on the arduous journey of getting a PhD,
the idea of reaching this point often felt like a pipe dream. Like many others, my
journey was not entirely smooth sailing, but at some point, I discovered a way to
cope with moments of deep frustration: reading acknowledgement sections from other
people’s theses. Seeing others list their pillars of support would remind me of all
the people in my life who have given me their unwavering support, and strengthen
my resolve to see this endeavour through, so that I could make them proud and one
day, write a similar acknowledgements section dedicated to them. Now that I have
(finally!) finished writing this thesis and am trying to convey my gratitude to those
who made this possible, I find myself overwhelmed, and at a complete loss for words.
Nevertheless, here is my attempt at appreciating my advisors, mentors, colleagues,
family and friends, to whom I am deeply indebted for their encouragement.

First and foremost, I would like to thank my advisor, Carolyn Rosé, for her advice
and support at every single step during this journey. I am incredibly grateful that she
chose to take me on despite my inexperience and patiently guided me through the
process of developing my research agenda and interests. I have learned so much from
her over the years that I cannot fit everything into a small paragraph, but I hope to
keep incorporating these lessons into my future research. She has also been a constant
source of encouragement for me through fellowship applications, paper rejections and
internship and job searches, counteracting my usual pessimism. Her support, over the
last few years, has not solely been limited to research, and I am particularly grateful
for her empathy and understanding during times when I had to deal with personal
struggles.

I am very thankful to my committee members Jill Lehman, Emma Strubell, Matt
Gormley and Luke Zettlemoyer for their invaluable support and feedback on my thesis
research. I am especially indebted to Jill for going over this document, and many of
my papers, with a fine toothcomb and bringing up interesting insights and additional
analyses that could be pursued, while also identifying writing issues that slipped under
my radar. I am extremely happy that I had the opportunity to work with her during my
time at CMU because she has taught me so much about cognitive science, the history
of AI, and most importantly, about being a woman in computer science. I also want to
thank Emma for her suggestions during my thesis proposal, without which I do not
think I would have undertaken the meta-analysis project that ended up providing such
a cohesive framework for my thesis and being my favourite project out of my PhD.
I thoroughly enjoyed meeting with all of you and getting your perspectives as I was
working on this thesis, and I hope we can work together sometime in the future too.

Much of the work in this thesis would not have been possible without the support



of other faculty members at the Language Technologies Institute, my collaborators
(both internal and external) and members of the TELEDIA lab. I want to thank Graham
Neubig for his enthusiastic support and mentorship, which helped mold what started as
a class project into my first conference paper. This was an instrumental experience for
me and taught me a lot about research writing. I am very thankful to Eric Nyberg and
Alan Black for their guidance when we were participating in the BioASQ challenge
and Alexa challenge in 2017 as largely inexperienced students, and for their support
during the PhD application process, without which I may not have been here. I would
also like to thank Eduard Hovy for his invaluable feedback on many projects, and for
amplifying my interest in computational semantics.

I am extremely grateful to my research soulmate Abhilasha Ravichander, without
whom the stress tests and numeracy projects might not have seen the light of day. Our
long research and thesis framing conversations have been a great source of inspiration
for me throughout, and your feedback on early drafts of my projects (and sometimes
emails) has been crucial for me. I also want to thank Khyathi Chandu and Aditya
Chandrasekar, my co-conspirators during BioASQ and most of my masters - I do not
think I would have gotten through the never-ending stream of assignments and course
projects without your help and companionship.

I am heavily indebted to members of the TELEDIA group, both past and present,
for being a great source of early feedback on projects, papers, and presentations, and I
would like to particularly thank Hyeju Jang, Yohan Jo, Michael Yoder, Luke Breitfeller,
Xinru Yan, Chris Bogart, and Shivani Poddar for contributing to or helping out with
work included in this thesis. I want to give a special shout-out to Chas Murray for
painstakingly looking after our infrastructure needs, none of the experiments in this
work would have been possible otherwise! I also want to thank Stacey Young, Kate
Schaich, and Mary Jo Bensasi for tirelessly ensuring that we do not miss any important
administrative deadlines.

In addition to the TELEDIA lab, I want to extend my thanks to the members of
the Epidemiology and Biostatistics section at the National Institutes of Health Clinical
Center: Elizabeth Rasch, Julia Porcino, Denis Newman-Griffis, Chunxiao Zhou, Bart
Desmet, Ayah Zirikly, Guy Divita, Hao-Ren Yao, Maryanne Sacco, Pei-Shu Ho, Jona
Maldonado, Cricket Coale, Rafael Jimenez, Leslie Grubbs-King, Kaushik Gedela, Josh
Chang, and Alex Marr. All of you provided me immense support during the crucial
years of my PhD, and I could not have asked for more understanding and helpful
colleagues.

Many collaborators outside the LTI and the NIH have also been great sources of
feedback and inspiration over the years. I am very thankful to James Antaki and Lisa
Lohmueller who provided me my first real introduction to interdisciplinary research
during my early years at CMU. I am very grateful to Pararth Shah, Shane Moon, Bing

v



Liu, and Honglei Liu for their mentorship during my internship at Facebook, which
was my first experience with NLP research in industry and led me to re-calibrate my
aims. I am also very indebted to Tom Hope, Lucy Lu Wang, and Sergey Feldman for
their brilliant, attentive and empathetic mentorship during my internship at the Allen
Institute for Artificial Intelligence. The stimulating and encouraging environment you
created played a significant role in making returning to AI2 as a full-time researcher a
dream goal for me.

My research journey in NLP started during the summer of my junior year in
undergrad, and I want to thank Anton Leuski for taking me on as an intern and
introducing me to the world of open research problems in this field. I also want to
extend my gratitute to Partha Talukdar, my undergraduate thesis supervisor. The time
I spent working with him at the MALL lab only cemented my desire to pursue a
PhD. I also want to thank some of my teachers from high school, Rema mam, Amba
mam, Rekha mam, Rathi sir, Kamal sir, and Nishant sir, who always encouraged my
academic ambitions and taught me to push myself out of my comfort zone.

I am extremely grateful for all my friends who made this journey happier and much
more fun than it would have been otherwise. Thanks to my ex-officemates Chan Young
Park and Anjalie Field, I wish we would have had more time to have meandering
conversations before COVID happened. I am also thankful to Khyathi, Abhilasha,
Aditya, Shruti Palaskar, Danish Pruthi, Mansi Gupta, Siddharth Dalmia, and Shruti
Rijhwani for fun conversations, dinners and walks that provided much-needed breaks. I
am grateful to Anusha Bagalkotkar and Rucha Vaidya, I could not have asked for better
roommates during my first year living in the US. I am very thankful for the constant
love and support from Mohit Gupta, Rucha Panchabhai, Srabasti Nandi, Prajakta Joshi,
and Anshita Srivastava - you kept me sane and reminded me that I had a life outside of
work (and I’m looking forward to our annual reunions)!

Finally, I want to thank my family: Mahabaleshwar ajoba, Malini aaji, Sonali
kaku, Tushar kaka, Jaya kaku, Medha maushi, Vijay kaka, Varsha maushi, Anil kaka,
Anuradha, Ajinkya, Ananth, Mayuri didi, Shreyas jijaji, Vrushali didi, Sayali didi,
Shrikant jijaji, Shreyas dada, and Savya. I also want to thank Vidyadhar ajoba, Vinaya
aaji, Ajay mama, Vaishali mami, and Deepak kaka - I wish I could have celebrated this
achievement with you. Last, but not the least, I want to thank my mom, dad, and my
brother Atharva for putting up with my crankiness and frustration that progressively
worsened as I got closer to the finish line. Thank you mom and dad for cultivating a
love for science in me, for unconsciously nourishing that love by buying me lots of
books about scientists and inventors, and for supporting me through this journey even
though it may not have been what you envisioned me doing. Thanks mom for having
bigger dreams for me than I did for myself, and thanks dad for proofreading my thesis
despite finding it “dry” - now I can claim that more than one person did read my thesis!

vi



Contents

1 Introduction 1
1.1 Conceptualizing the Long Tail in Language Understanding . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Constructing a Systematic View of the Long Tail 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Meta-Analysis Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Sample Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Meta-Analysis Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Adaptation Method Categorization . . . . . . . . . . . . . . . . . . . . . 15

2.3 Which Long Tail Macro-Level Dimensions Do Transfer Learning Studies Target? 17
2.4 Which Properties Help Adaptation Methods Improve Performance On Long Tail

Dimensions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Which Methodological Gaps Have Greatest Negative Impact On Long Tail Perfor-

mance? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Combining Adaptation Methods . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Incorporating Extra-Linguistic Knowledge . . . . . . . . . . . . . . . . 29
2.5.3 Application to Data-Scarce Adaptation Settings . . . . . . . . . . . . . . 30

2.6 Case Study: Evaluating Adaptation Methods on Clinical Narratives . . . . . . . . 31
2.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.2 Adaptation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.1 Variation in Adaptation Method Performance by Span Properties . . . . . 37
2.7.2 Correlating Domain Distance and Performance . . . . . . . . . . . . . . 40
2.7.3 Data Reliance of Adaptation Methods . . . . . . . . . . . . . . . . . . . 45
2.7.4 Categories of Examples Tackled by Specific Adaptation Methods . . . . 48
2.7.5 Categories of Examples That Benefit from Adding Target Labeled Data . 50

vii



2.7.6 Categories of Examples Still Left Out: The Long Tail to the Long Tail . . 53
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Improving Macro-Level Adaptation: A Case Study on Event Extraction 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Event Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Unsupervised Domain Adaptation Techniques . . . . . . . . . . . . . . . 61
3.2.3 Active Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Creating Event Extraction Datasets for Additional Domains . . . . . . . . . . . . 64
3.3.1 Document Collection for Clinical Domains . . . . . . . . . . . . . . . . 64
3.3.2 Developing Event Annotation Guidelines . . . . . . . . . . . . . . . . . 66
3.3.3 Annotation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Case Study I: Evaluating LIW on Unsupervised Adaptation . . . . . . . . . . . . 69
3.4.1 Likelihood-based Instance Weighting . . . . . . . . . . . . . . . . . . . 70
3.4.2 Baseline Adaptation Methods . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.5 Summary of Observations . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Case Study II: Evaluating Domain-Aware Query Sampling for Active Learning . 79
3.5.1 Active Learning Baseline Sampling Strategies . . . . . . . . . . . . . . . 80
3.5.2 Incorporating Domain-Awareness Criteria . . . . . . . . . . . . . . . . . 82
3.5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.5 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5.6 Summary of Observations . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Improving Micro-Level Adaptation: A Case Study on Event Ordering 96
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Temporal Ordering Datasets . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.2 Temporal Ordering Systems . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.3 Overview of Relevant Temporal Frameworks . . . . . . . . . . . . . . . 102

4.3 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.1 Automatic Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.2 Manual Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.3 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Benchmarking State-of-the-Art Models . . . . . . . . . . . . . . . . . . . . . . 110

viii



4.4.1 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Analyzing State-of-the-Art Model Performance . . . . . . . . . . . . . . . . . . 114
4.5.1 Evaluating Global Consistency . . . . . . . . . . . . . . . . . . . . . . . 114
4.5.2 Error Analysis on TDD-Man . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Case Study: Adapting From Local to Long-Distance Event Ordering . . . . . . . 115
4.6.1 Baseline Task Model Architecture . . . . . . . . . . . . . . . . . . . . . 115
4.6.2 Joint BiLSTM+ILP Architecture: A Loss Augmentation Adaptation Method116
4.6.3 Overview of STAGE: A Tool for Automated Time Cue Extraction . . . . 117
4.6.4 Adding STAGE Constraints to BiLSTM+ILP . . . . . . . . . . . . . . . 122
4.6.5 Training with TDD-Auto: A Pseudo-Labeling Adaptation Method . . . . 123
4.6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Stress Tests: An Evaluation Paradigm for the Long Tail 127
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1.1 IID Evaluation Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.1.2 PAID Evaluation Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.1.3 Drawbacks of Identically Distributed Testing . . . . . . . . . . . . . . . 129

5.2 Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.1 Requirements for Stress Tests . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 Typical Stress Test Construction Pipeline . . . . . . . . . . . . . . . . . 131

5.3 Case Study I: Natural Language Inference . . . . . . . . . . . . . . . . . . . . . 132
5.3.1 Background: Natural Language Inference . . . . . . . . . . . . . . . . . 132
5.3.2 Phenomena Selection by Error Analysis . . . . . . . . . . . . . . . . . . 134
5.3.3 Constructing Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.4 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Case Study II: Numerical Reasoning in NLI . . . . . . . . . . . . . . . . . . . . 146
5.4.1 Background: Numerical Reasoning . . . . . . . . . . . . . . . . . . . . 146
5.4.2 Phenomena Selection from Task Knowledge . . . . . . . . . . . . . . . 148
5.4.3 Constructing Stress Tests for EQUATE . . . . . . . . . . . . . . . . . . 151
5.4.4 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5 Discussion and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5.1 Adversarial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5.2 Challenge Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.5.3 Counterfactual Evaluation/Contrast Sets . . . . . . . . . . . . . . . . . . 165

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

ix



6 Conclusion and Future Direction 166
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.1.1 Dataset Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.1.2 Modeling Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1.3 Methodological Contributions and Recommendations . . . . . . . . . . . 167

6.2 Limitations of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Broad Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.1 Looking Forward vs Looking Back . . . . . . . . . . . . . . . . . . . . 169
6.3.2 Promising New Categories of Transfer Methods . . . . . . . . . . . . . . 169
6.3.3 Standardizing Multi-Faceted Evaluation and Analysis . . . . . . . . . . . 170

6.4 Focusing on the Long Tail: Broader Impact . . . . . . . . . . . . . . . . . . . . 171

A Meta-Analysis Coded Papers 174

B Coding Manual for Events 178
B.1 Phase 1: Entity Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
B.2 Phase 2: Event Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.2.1 Verb Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.2.2 Noun Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.2.3 Predicative Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
B.2.4 Prepositional Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
B.2.5 Adjective Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
B.2.6 Causative Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
B.2.7 Excluded Event Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.2.8 Interesting Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C Dataset Examples 185
C.1 Existing Datasets Used in this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 185

C.1.1 CoNLL 2003 Named Entity Recognition Dataset . . . . . . . . . . . . . 185
C.1.2 i2b2 2006 Protected Health Information Identification Dataset . . . . . . 185
C.1.3 i2b2 2014 Protected Health Information Identification Dataset . . . . . . 186
C.1.4 i2b2 2010 Medical Concept Extraction Dataset . . . . . . . . . . . . . . 186
C.1.5 TimeBank Event Extraction Dataset . . . . . . . . . . . . . . . . . . . . 187
C.1.6 LitBank Literary Event Extraction Dataset . . . . . . . . . . . . . . . . . 187
C.1.7 i2b2 2012 Medical Event Extraction Dataset . . . . . . . . . . . . . . . 188
C.1.8 TimeBank-Dense Temporal Ordering Dataset . . . . . . . . . . . . . . . 188
C.1.9 MultiNLI Natural Language Inference Dataset . . . . . . . . . . . . . . 189

C.2 New Datasets Contributed by this Thesis . . . . . . . . . . . . . . . . . . . . . . 191
C.2.1 MTSamples Medical Event Extraction Dataset . . . . . . . . . . . . . . 191
C.2.2 TDDiscourse Temporal Ordering Dataset . . . . . . . . . . . . . . . . . 191

x



C.2.3 Stress Tests Natural Language Inference Test Set . . . . . . . . . . . . . 192
C.2.4 EQUATE Natural Language Inference Test Set . . . . . . . . . . . . . . 193

xi



List of Figures

1.1 Two different views of the long tail in natural language understanding. Note that
categorization at both levels is multi-dimensional, i.e., a piece of text may contain
multiple types of linguistic variation or linguistic phenomena. . . . . . . . . . . . 3

2.1 Distribution of meta-analysis sample papers across years. . . . . . . . . . . . . . 10
2.2 PRISMA diagram explaining our sample curation process. . . . . . . . . . . . . 12
2.3 Distribution of papers retrieved by our search strategy across search terms and years. 13
2.4 TSNE visualization of our meta-analysis sample alongside additional transfer

learning papers missed by our keyword search. . . . . . . . . . . . . . . . . . . 13
2.5 Categorization of adaptation methods proposed, extended or used in all studies. . 15
2.6 Distribution of papers according to tasks studied. The top three task categories are

text classification (TC), semantic sequence labeling (NER) and syntactic sequence
labeling (POS). Table 2.2 contains descriptions for the remaining task categories. 18

2.7 Distribution of multi-lingual studies according to languages included. . . . . . . 18
2.8 Distribution of papers according to adaptation settings studied. . . . . . . . . . . 19
2.9 Distribution of transfer learning studies according to various types of method

categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Fine method categories evaluated on various types of long tail domains. . . . . . 22
2.11 Taxonomy of various domain divergence measures developed or explored by prior

work in domain adaptation, according to Kashyap et al. (2020). . . . . . . . . . . 41
2.12 Performance of various adaptation methods given varying number of target domain

examples on coarse NER datasets. Recall that methods evaluated in a limited
labeled data setting include feature augmentation (FA), loss augmentation (LA)
and instance weighting (IW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.13 Performance of various adaptation methods given varying number of target do-
main examples on fine NER datasets. Recall that methods evaluated in a limited
labeled data setting include feature augmentation (FA), loss augmentation (LA)
and instance weighting (IW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xii



2.14 Performance of various adaptation methods given varying number of target do-
main examples on event extraction on the i2b22012 dataset. Recall that methods
evaluated in a limited labeled data setting include feature augmentation (FA), loss
augmentation (LA) and instance weighting (IW). . . . . . . . . . . . . . . . . . 48

3.1 Sample clinical note from mtsamples.com. . . . . . . . . . . . . . . . . . . . . . 65
3.2 Sample snippet from a physician-patient conversation transcript. . . . . . . . . . 65
3.3 Sample clinical note with entity and event annotation. . . . . . . . . . . . . . . . 69
3.4 Adversarial domain adaptation framework for event trigger identification. . . . . 72
3.5 Per-iteration performance of various active learning methods, and the random

sampling baseline, on event extraction from the LitBank dataset. . . . . . . . . . 87
3.6 Per-iteration performance of various active learning methods, and the random

sampling baseline, on event extraction from the i2b2 2012 dataset. . . . . . . . . 87
3.7 Per-iteration performance of various active learning methods, and the random

sampling baseline, on entity extraction from the i2b2 2006 dataset. . . . . . . . . 88
3.8 Per-iteration performance of various active learning methods, and the random

sampling baseline, on entity extraction from the i2b2 2010 dataset. . . . . . . . . 88
3.9 Per-iteration performance of various active learning methods, and the random

sampling baseline, on entity extraction from the i2b2 2014 dataset. . . . . . . . . 89
3.10 Variation in performance of random sampling baseline on various event extraction

datasets upon using different seeds for initialization. The line graph indicates
average performance at each active learning iteration, while the shaded region
indicates minimum and maximum performance observed across runs. . . . . . . 89

3.11 Variation in performance of random sampling baseline on various NER datasets
upon using different seeds for initialization. The line graph indicates average
performance at each active learning iteration, while the shaded region indicates
minimum and maximum performance observed across runs. . . . . . . . . . . . 90

4.1 Architecture of the dependency parse-BiLSTM model used as the temporal ordering
task model for our micro-level adaptation case study. . . . . . . . . . . . . . . . 116

4.2 Overview of the three stage architecture of the STAGE extraction tool. . . . . . . 118
4.3 Example of first-step STAGE output. . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4 Flowchart detailing constraint logic used in STAGE. . . . . . . . . . . . . . . . . 121
4.5 Integrated STAGE and BiLSTM+ILP model pipeline. . . . . . . . . . . . . . . . 123

5.1 Distribution of error categories on MultiNLI-Matched. . . . . . . . . . . . . . . 136
5.2 Distribution of error categories on MultiNLI-Mismatched. . . . . . . . . . . . . 136
5.3 Overview of the Q-REAS baseline. . . . . . . . . . . . . . . . . . . . . . . . . . 154

xiii



List of Tables

2.1 Distribution of papers across venues in the complete corpus and the transfer learning
subset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Categorization of tasks studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Examples of types of methods included in each category, and papers which studied

these methods. These lists are non-exhaustive, but the complete method coding for
all papers in our meta-analysis sample is provided in Table A.1 in appendix A. . . 16

2.4 Distribution of papers according to various types of long tail domains studied. . . 19
2.5 Model and performance details for studies testing on high-expertise and non-

narrative domains. Fine adaptation method categories used in these studies include
feature augmentation (FA), loss augmentation (LA), ensembling (EN), pretraining
(PT), parameter initialization (PI), and pseudo-labeling (PL). . . . . . . . . . . . 23

2.6 Evidence gap map showing indicating which method categories have not been
explored sufficiently for various task categories. Please refer to Tables 2.2 and 2.3
for task and model abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Evidence gap map showing indicating which method categories have not been
explored sufficiently for various long tail domain categories. Note that HE and NN
refer to high-expertise and non-narrative domains. Please refer to Table 2.3 for
model abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Category combinations explored by studies that combine multiple methods. LT
indicates whether long tail domains were evaluated on. Fine adaptation method
categories explored include feature augmentation (FA), feature generalization (FG),
loss augmentation (LA), parameter initialization (PI), ensembling (EN), pseudo-
labeling (PL), pretraining (PT), active learning (AL), IW (instance weighting), and
data selection (DS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Mappings from label sets for the i2b22006 and i2b22014 datasets to the CoNLL
2003 label set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiv



2.10 Results of all adaptation methods on NER in the coarse setting. Unsup and Limited
Sup indicate unsupervised and limited labeled target data settings respectively. Re-
call that the fine adaptation method categories we evaluate are feature augmentation
(FA), loss augmentation (LA), pseudo-labeling (PL), pretraining (PT), and instance
weighting (IW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Results of all adaptation methods on NER in the fine setting. Unsup and Limited
Sup indicate unsupervised and limited labeled target data settings respectively. Re-
call that the fine adaptation method categories we evaluate are feature augmentation
(FA), loss augmentation (LA), pseudo-labeling (PL), pretraining (PT), and instance
weighting (IW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Results of all adaptation methods on event extraction. Note that supervised adapta-
tion methods cannot be tested on MTSamples, which is a test-only dataset. Unsup
and Limited Sup indicate unsupervised and limited labeled target data settings
respectively. Recall that the fine adaptation method categories we evaluate are fea-
ture augmentation (FA), loss augmentation (LA), pseudo-labeling (PL), pretraining
(PT), and instance weighting (IW). . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.13 Performance of all adaptation methods trained for coarse NER on in-vocabulary
and out-of-vocabulary entity spans. Unsup and Limited Sup indicate unsupervised
and limited labeled target data settings respectively. Recall that the fine adaptation
method categories we evaluate are feature augmentation (FA), loss augmentation
(LA), pseudo-labeling (PL), pretraining (PT), and instance weighting (IW). . . . 38

2.14 Performance of all adaptation methods trained for event extraction on in-vocabulary
and out-of-vocabulary events. Unsup and Limited Sup indicate unsupervised and
limited labeled target data settings respectively. Recall that the fine adaptation
method categories we evaluate are feature augmentation (FA), loss augmentation
(LA), pseudo-labeling (PL), pretraining (PT), and instance weighting (IW). . . . 39

2.15 Proportion of various named entity types in i2b22006 and i2b22014 datasets. . . 40
2.16 Performance of adaptation methods trained for fine NER on each entity type. Note

that these scores are only computed for the i2b22006 and i2b22014 datasets, which
can be label-mapped to the CoNLL 2003 dataset. Unsup and Limited Sup indicate
unsupervised and limited labeled target data settings respectively. Recall that the
fine adaptation method categories we evaluate are feature augmentation (FA), loss
augmentation (LA), pseudo-labeling (PL), pretraining (PT), and instance weighting
(IW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xv



2.17 Distance between source-target domain pairs used in our experiment according to
various measures. Note that TVO, KLD, JSD and RD stand for term vocabulary
overlap, Kullback-Leibler divergence, Jensen-Shannon divergence and Renyi diver-
gence respectively. As indicated in the table, for i2b22006, i2b22010 and i2b22014,
distance is computed from CoNLL-2003, while for i2b22012 and MTSamples, dis-
tance is computed from TimeBank. Note that for TVO, lower values mean higher
source-target distance, while higher values correspond to higher source-target
distance for all other measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.18 Correlation between performance improvements/drops (recorded as percentage
change over baseline) and source-target domain distance for each adaptation method
in both unsupervised and supervised settings. In the unsupervised setting, zero-shot
scores (ZS) are used as baseline scores, while in the supervised setting, max(TG,
SC+TG, SC->TG) is taken as baseline score. . . . . . . . . . . . . . . . . . . . . 42

2.19 Error categories observed from an analysis of examples from NER datasets, which
are tagged correctly on adding target domain labeled data. Note that yellow
highlights indicate gold entities, while pink highlights indicate entities identified
by unsupervised adaptation methods that are not present in gold data. . . . . . . . 51

2.20 Proportion of errors from each category observed from an error analysis of 50
randomly sampled cases from each NER dataset, which are tagged correctly on
adding target domain labeled data. . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.21 Error categories observed from an analysis of examples from the i2b22012 event
extraction dataset, which are tagged correctly on adding target domain labeled data.
Note that yellow highlights indicate gold events, while pink highlights indicate
events identified by unsupervised adaptation methods that are not annotated in gold
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.22 Error categories observed from an analysis of examples from NER datasets, which
are tagged incorrectly by all supervised adaptation methods (and baselines). Note
that yellow highlights indicate gold entities, while pink highlights indicate entities
identified by unsupervised adaptation methods that are not present in gold data. . 53

2.23 Proportion of errors from each category observed from an error analysis of 50
randomly sampled cases from each NER dataset, which are tagged incorrectly by
all supervised adaptation methods and baselines. . . . . . . . . . . . . . . . . . . 53

2.24 Error categories observed from an analysis of examples from the i2b22012 event
extraction dataset, which are tagged incorrectly by all supervised adaptation meth-
ods (and baselines). Note that yellow highlights indicate gold entities, while pink
highlights indicate entities identified by unsupervised adaptation methods that are
not present in gold data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Domain-wise raw data statistics for chosen medical specialties. . . . . . . . . . . 66

xvi



3.2 Inter-annotator agreement on entity and event annotation tasks in both domains,
measured using chance-corrected Cohen’s Ÿ. . . . . . . . . . . . . . . . . . . . . 68

3.3 Dataset statistics. Note that the statistics for TimeBank (News) are computed over
the test set for fair comparison with our datasets, which are test-only. . . . . . . . 69

3.4 Model performance on unsupervised domain transfer experiments from news to
clinical notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Model performance on unsupervised domain transfer experiments from news to
doctor-patient conversations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Model performance on in-vocabulary (IV) and out-of-vocabulary (OOV) terms
from clinical notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Model performance on in-vocabulary (IV) and out-of-vocabulary (OOV) terms
from doctor-patient conversations. . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Final performance of all models on event extraction datasets. Note that for active
learning variants, we report the performance after 20 iterations of active learning.
The TG, SC->TG and SC+TG baselines are described in detail in Section 3.5.3,
while Rand refers to a baseline which randomly samples additional instances at
each iteration instead of choosing them via active learning. UNS and QBC refer
to uncertainty sampling and query-by-committee strategies respectively, which
DAQ-CC and DAQ-CS refer to the classifier confidence and cosine similarity
formulations of our domain-awareness criteria. . . . . . . . . . . . . . . . . . . 85

3.9 Final performance of all models on named entity recognition datasets, in the coarse
setting. Note that for active learning variants, we report the performance after 20
iterations of active learning. The TG, SC->TG and SC+TG baselines are described
in detail in Section 3.5.3, while Rand refers to a baseline which randomly samples
additional instances at each iteration instead of choosing them via active learning.
UNS and QBC refer to uncertainty sampling and query-by-committee strategies
respectively, which DAQ-CC and DAQ-CS refer to the classifier confidence and
cosine similarity formulations of our domain-awareness criteria. . . . . . . . . . 86

3.10 Recall scores per entity type for all active learning variants on named entity recog-
nition datasets. Note that these scores are recorded after 20 iterations of active
learning. Rand refers to the baseline which randomly samples additional instances
at each iteration instead of choosing them via active learning. UNS and QBC refer
to uncertainty sampling and query-by-committee strategies respectively, which
DAQ-CC and DAQ-CS refer to the classifier confidence and cosine similarity
formulations of our domain-awareness criteria. . . . . . . . . . . . . . . . . . . 91

3.11 Percentage of tokens labeled as entities/events across all datasets used in our
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xvii



3.12 Distance between source-target domain pairs used in our case study according to
various label-aware measures. As indicated in the table, for i2b22006, i2b22010
and i2b22014, distance is computed from CoNLL-2003, while for i2b22012 and
LitBank, distance is computed from TimeBank. Note that for TVO, lower values
mean higher source-target distance, while higher values correspond to higher
source-target distance for all other measures. . . . . . . . . . . . . . . . . . . . . 92

3.13 Correlation between performance improvements/drops on adding domain-
awareness (recorded as percentage change over UNS/QBC baseline scores) and
label-aware source-target domain distance for each distance formulation. Note that
performance changes are averaged over all 20 active learning iterations. . . . . . 93

4.1 Temporal relation set used in TDDiscourse. All relations are mutually exclusive. 103
4.2 Sample heuristics for three SS link date combinations. Assume S1 and S2 indicate

the points associated with events 1 and 2 which are to be linked. . . . . . . . . . 104
4.3 Sample document-level textual cues used during temporal annotation. . . . . . . 106
4.4 Sample coreferent and non-coreferent event pairs from TimeBank-Dense. . . . . 107
4.5 Labels assigned to event pairs based on event and TLINK metadata. . . . . . . . 108
4.6 Inter-annotator agreement (Cohen’s Kappa) on temporal ordering datasets. Kappa

scores for TDD-Man are reported on the test set containing 1500 links. . . . . . . 109
4.7 Relation agreement between annotators on the TDD-Man test set containing 1500

links. Here a, b, s, i, ii refer to the temporal relations “after”, “before”, “simultane-
ous”, “includes”, and “is included”. . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Dataset sizes for TimeBank-Dense and our dataset. Note that we only count
event-event TLINKs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Class distributions for our test sets and TimeBank-Dense. Note that the distribution
for TimeBank-Dense does not sum to 1, since it includes a vague class. . . . . . . 111

4.10 Distribution of distance between events for all TLINKs in our test sets (in terms of
#sentences). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.11 Distribution of various phenomena in the annotated test subset. These phenomena
were labeled manually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.12 Performance of SOTA models on TB-Dense, TDD-Auto and TDD-Man. MAJOR
represents a majority-class baseline. We report performance on non-vague event-
event links for TB-Dense to ensure fair comparison. . . . . . . . . . . . . . . . . 113

4.13 Proportion of TDD-Man cases falling into various error categories. Note that WK,
HN and ES refer to the “World Knowledge”, “Hypothetical/Negated”, and “Event
Structure” error categories described in Section 4.5.2. . . . . . . . . . . . . . . . 114

4.14 Impact of function words on semantic meaning of time expression. . . . . . . . . 119
4.15 Features constructed by STAGE that can be integrated with neural temporal order-

ing models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xviii



4.16 Comparison of STAGE with other state-of-the-art parsers on temporal expression
identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.17 Performance of a baseline temporal ordering model and all adaptation methods on
TDDiscourse, when adapting from local event pairs to long-distance event pairs.
ZS refers to a zero-shot BiLSTM baseline, which is trained on TimeBank-Dense
and tested on TDDiscourse with no adaptation, while BiLSTM-Sup refers to a fully
supervised model trained and tested on TDDiscourse. . . . . . . . . . . . . . . . 124

5.1 Sample sentence pair from antonymy stress test. . . . . . . . . . . . . . . . . . . 137
5.2 Sample sentence pairs from numerical reasoning stress test. . . . . . . . . . . . . 138
5.3 Sample sentence pairs from word overlap, negation and length mismatch distraction

tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4 Sample sentence pair from spelling error stress test. . . . . . . . . . . . . . . . . 140
5.5 Classification accuracy (%) of state-of-the-art models on our constructed stress

tests. Accuracies shown on both matched and mismatched categories for each
stress set developed from MultiNLI. For reference, random baseline accuracy is 33%.142

5.6 Percentage of C-E and C-N errors on antonymy test. . . . . . . . . . . . . . . . 142
5.7 % of FALSE NEUTRAL cases among total errors on MultiNLI development set,

word overlap test and length mismatch test. . . . . . . . . . . . . . . . . . . . . 144
5.8 Effect of training on distraction data on original DEV set, original distraction set

and new distraction set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.9 Model performance on different perturbation techniques for noise introduction. . 145
5.10 Examples of quantitative phenomena present in EQUATE. . . . . . . . . . . . . 149
5.11 An overview of test sets included in EQUATE. RedditNLI and ST-Quant are

framed as 3-class (entailment, neutral, contradiction) while RTE-Quant, NewsNLI
and AwpNLI are 2-class (entails=yes/no). RTE 2-4 formulate entailment as a 2-way
decision. We find that few news article headlines are contradictory, thus NewsNLI
is similarly framed as a 2-way decision. For algebra word problems, substituting
the wrong answer in the hypothesis necessarily creates a contradiction under the
event coreference assumption de Marneffe et al. (2008), thus it is framed as a 2-way
decision as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.12 Examples from evaluation sets in EQUATE. . . . . . . . . . . . . . . . . . . . . 153
5.13 Input, output and variable definitions for the Integer Linear Programming (ILP)

framework used for quantity composition. . . . . . . . . . . . . . . . . . . . . . 155
5.14 Mathematical validity constraint definitions for the ILP framework. Functions

op1() and op2() return the left and right operands for an operator respectively.
Variables defined in Table 5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xix



5.15 Linguistic consistency constraint definitions for the ILP framework. Functions
op1() and op2() return the left and right operands for an operator respectively.
Variables defined in Table 5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.16 Accuracies(%) of 9 NLI Models on five tests for quantitiative reasoning in en-
tailment. M and D represent models and datasets respectively. � captures im-
provement over majority-class baseline for a dataset. Column Nat.Avg. reports the
average accuracy(%) of each model across 3 evaluation sets constructed from natu-
ral sources (RTE-Quant, NewsNLI, RedditNLI), whereas Synth.Avg. reports the
average accuracy(%) on 2 synthetic evaluation sets (ST-Quant, AwpNLI). Column
Avg. represents the average accuracy(%) of each model across all 5 evaluation sets
in EQUATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.17 Performance of all baseline models used in the paper on the matched development
set of MultiNLI. These scores are very close to the numbers reported by the original
publications, affirming the correctness of our baseline setup. . . . . . . . . . . . 161

A.1 Adaptation method coding (both coarse and fine categories) for all papers included
in our meta-analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xx



C
H

A
P

T
E

R

1
Introduction

Enabling machines to achieve human-like competence at understanding the intricacies and am-
biguities of natural language has been a longstanding goal in artificial intelligence. Language
understanding is an important sub-goal that machines must accomplish to pass classic tests de-
signed to measure intelligent behavior, such as the Turing Test, proposed in 1950, and the Winograd
Schema Challenge (Levesque et al., 2012). Early attempts to build natural language understanding
systems relied heavily on keyword matching and heuristic rules. One of the earliest attempts
culminated in the development of STUDENT (Bobrow, 1964), a system that could solve algebra
word problems expressed using a restricted set of English. Subsequent years saw the development
of ELIZA (Weizenbaum, 1966), a rule-based chatbot that could carry out conversations on many
topics, and SHRDLU (Winograd, 1972), a system that could understand simple English sentences
in a restricted world of children’s blocks to guide movements. While these systems demonstrated
the feasibility and utility of endowing machines with the ability to understand natural language,
they were not broad-coverage and were largely restricted to specific closed worlds or domains.

Over the years, the increasing availability of data coupled with the restrictive nature of rule-
based systems drove a revival of empiricism in language understanding (Church, 2011). This wave
of empiricism relied heavily on a benchmark-driven approach to natural language understanding, a
protocol dating back to the construction of the Penn TreeBank (Marcus et al., 1993). As described
in this pioneering work, the key principle behind benchmark-driven NLU is the idea that rapid
progress can be made if we investigate and learn to model those phenomena that occur most
centrally (or frequently) in free text. Developing benchmarks allows for more principled and
controlled comparison of modeling advancements by providing a level playing field for testing new
approaches. Since then, a slew of benchmark datasets have been developed for several NLU tasks
such as question answering (Rajpurkar et al., 2016), natural language inference (Bowman et al.,

1



1.1. Conceptualizing the Long Tail in Language Understanding

2015; Williams et al., 2018), dialog state tracking (Budzianowski et al., 2018), etc. Recent work
has taken this a step further and developed leaderboards that allow models to be tested on a wide
range of NLU tasks and rank them based on their aggregate performance across tasks (McCann
et al., 2018; Wang et al., 2019c,b).

In tandem with work on benchmark development, research on distributional semantic models,
which use vector spaces to represent words, made tremendous strides, moving from count-based
DSMs (Landauer and Dumais, 1997; Schütze, 1998) to semi-supervised neural models pre-trained
on language processing tasks (Collobert and Weston, 2008). These advancements most recently
culminated in the development of large-scale neural language models pre-trained on massive
amounts of data (Peters et al., 2018; Devlin et al., 2019; Yang et al., 2019; Liu et al., 2019b), which
subsequently serve as a source of semantic vector representations. Unlike old-school symbolic
NLU systems, these models are touted to be highly broad-coverage, and excel on a wide range
of benchmarks and leaderboards with minimal modifications, even achieving human parity on
some (Wang et al., 2019c). Pre-trained language models have become a de-facto starting point for
building NLU models, due to their excellent performance.

However, an important caveat is that these models have primarily been tested on benchmarks and
leaderboards, which are only samples from all available text, and therefore not equally representative
of all domains or linguistic phenomena. Drawing an analogy to Zipf’s law, benchmarks and
leaderboards are dominated by a small proportion of high-frequency common cases, and leave
out a long tail of low-frequency cases in NLU. Consequently, models trained and evaluated
on benchmarks can achieve high performance by optimizing for high-frequency cases, without
developing mechanisms to handle long tail cases. This raises a natural question: how well do
benchmark-trained models perform on the long tail, and can we develop methods to adapt them to
the long tail better and evaluate them more comprehensively? Notably, adapting benchmark-trained
models to the long tail can be also viewed from the perspective of tackling distributional shift, a
problem with a rich history of study in the field of transfer learning.

1.1 Conceptualizing the Long Tail in Language Understanding

This thesis adopts a two level conceptualization of the long tail: (i) macro-level, and (ii) micro-level.
At the macro-level, the space of all available text is categorized according to broad dimensions of
linguistic variation such as language, genre, topic, register, etc., and texts belonging to dimensions
that are underrepresented in benchmarks and leaderboards constitute the macro long tail. For
example, most standard benchmarks do not contain text from high-expertise domains that require
specialized knowledge to understand them, such as biomedical text, clinical text, financial text,
etc. Therefore, such domains can be considered to be part of the long tail. Due to the constantly
evolving nature of language, there isn’t a strong consensus on what constitutes a comprehensive, or
exhaustive set of dimensions of linguistic variation (Plank, 2016), despite prior work on identifying
such dimensions via corpus linguistics (Biber, 1991). We do not tackle this question, but instead
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Figure 1.1: Two different views of the long tail in natural language understanding. Note that categorization
at both levels is multi-dimensional, i.e., a piece of text may contain multiple types of linguistic variation or
linguistic phenomena.

adopt a commonly used set of existing dimensions that suits the scope of our work, and our focus
on NLU from text (further discussed in Chapter 2). At the micro-level, the space of all available text
is categorized according to the presence of specific linguistic phenomena such as negation, deixis,
etc., which must be tackled to understand the meaning conveyed. Again, examples containing
phenomena that are infrequent in standard benchmark datasets make up the micro long tail. For
example, the MultiNLI dataset (Williams et al., 2018), which is a benchmark dataset for natural
language inference and sentence understanding, contains very few examples involving numerical
reasoning (Naik et al., 2018). Hence examples requiring numeracy can be considered to be part
of the micro long tail. As with macro-level dimensions, there is no static, centrally agreed-upon
exhaustive list of linguistic phenomena. Additionally, most datasets do not annotate their examples
for the presence (or absence) of linguistic phenomena, which adds an additional layer of difficulty
to micro-level categorization.

Figure 1.1 presents a pictorial representation of this two-level categorization of the long tail in
NLU. Since the proportions of various linguistic phenomena differ across macro dimensions such
as languages, genres, etc., the macro and micro level long tails are intricately inter-connected. For
example, while uncommon in general, negation is highly common in clinical records, with nearly
50% of mentioned conditions (or entities) being negated according to Chapman et al. (2001). This
interconnection is highly valuable, as it allows us to use the macro-level long tail as a lens to study
the micro-level long tail, a strategy we use in Chapters 2 and 3.

1.2 Research Questions

This thesis focuses on studying and addressing three key questions arising from the existence of the
long tail in NLU:

1. How can we best adapt benchmark-trained models across macro long tail dimensions?
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This is an important question to study since several real-world applications of NLU tech-
nologies involve macro long tail domains (e.g., clinical and financial applications), and
benchmark advancements don’t always transfer equally to such domains. To answer this,
we explore the applicability of existing transfer learning methods, while simultaneously
developing new transfer methods motivated by our settings of interest. Through case studies
on multiple macro long tail domains that differ along various linguistic dimensions, we try
to develop a better understanding of which categories of adaptation methods work best on
different kinds of variation.

2. How can we best equip benchmark-trained models to handle micro long tail phenom-
ena? This question is also crucial since, as discussed earlier, certain linguistic phenomena
may be underrepresented in benchmarks, but be much more prominent or central in other
tasks/domains. Additionally, even if a phenomenon is extremely infrequent, learning to
model it may be an interesting linguistic question. To tackle this question, we conduct a
case study exploring applicability of both existing and newly proposed transfer methods in a
setting in which macro dimensions are held constant. This ensures that varying proportions
of linguistic phenomena are primarily responsible for underlying differences.

3. How can we comprehensively evaluate model performance on the long tail? This is a
key problem because benchmark evaluation under-emphasizes infrequent examples. This
results in overly optimistic estimates of model performance, which are not reflected when the
same models are applied to macro/micro long tail phenomena. We propose a new evaluation
paradigm called stress testing that offers more comprehensive and realistic estimates of model
performance. Rather than replacing benchmark-based evaluation, we recommend stress
testing as a supplementary evaluation mechanism, to be adopted in addition to benchmark
evaluation. Through multiple case studies, we demonstrate the utility of this paradigm in
identifying micro long tail phenomena that benchmark-trained models are unable to handle.

1.3 Thesis Overview

Thesis Statement: Through an extensive series of case studies, we identify promising categories
of transfer learning methods for adaptation to the long tail, while mapping out their limits. Our
work takes preliminary steps towards aggregating a series of best practices, facilitating informed
selection from an arsenal of strong transfer methods, when presented with a new setting.

The rest of this thesis is organized as a series of case studies designed to build up this set of
best practices, while addressing our key research questions. Though we describe the motivations
behind specific experimental setups for each case study in detail in the corresponding chapter, our
study designs are broadly motivated by three principles:

• Ensuring inclusion of strong transfer methods from the most promising categories identified
(so far).
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1.3. Thesis Overview

• Moving beyond overall performance, and using extensive qualitative and quantitative analyses
to better understand model strengths and weaknesses.

• Exploring negative results comprehensively as a way to map out performance limits of
various methods.

We briefly summarize how our case studies tackle each research question below:
Addressing RQ1: Chapters 2 and 3 focus on understanding the performance of both existing and
newly proposed transfer learning methods in the context of adaptation to macro long tail domains.
Chapter 2 begins this journey by providing a birds-eye view of transfer learning research, including a
hierarchical taxonomy of adaptation method, via a qualitative meta-analysis of representative papers
in the field, and identifying research gaps that must be added for improved macro adaptation. We
then address one of these gaps (studying adaptation under data-scarce settings) through an extensive
case study on sequence labeling tasks such as entity and event extraction from clinical narratives.
Our results, supported by extensive quantitative analyses and qualitative error analyses, indicate
the promise of loss augmentation and pseudo-labeling methods, especially in an unsupervised
adaptation setting. Part of the work presented in this chapter (Naik et al., 2021a) is set to appear in
TACL 2022. Chapter 3 builds further on this work in two ways: (i) bringing two additional domains
under our purview, of which one is a non-narrative domain, and (ii) proposing new adaptation
methods to advance the development of certain under-researched method categories. We create
two new event extraction test sets for the domains of clinical narratives and clinical conversations
to facilitate domain expansion. The two new adaptation methods we propose include: (i) an
unsupervised instance weighting method that leverages language model likelihoods for source-
target similarity, and (ii) a domain-aware query sampling criterion for active learning methods that
leverages source-target distance to improve data-efficiency in a limited supervision setting. We
conduct two case studies to test these new methods, in addition to strong existing baselines on
our expanded set of domains. Our studies primarily focus on the task of event extraction, though
we conduct additional experiments with entity extraction in the active learning study for broader
understanding. These studies further support the superiority of loss augmentation methods for
narrative domains, indicate that pretraining methods might be stronger contenders for non-narrative
domains, and demonstrate negligible benefits of the active learning method category in the limited
supervision setting. Parts of this chapter were published as Naik and Rosé (2020) at ACL 2020,
and Naik et al. (2021b) at EACL 2021.
Addressing RQ2: Chapter 4 studies the performance of benchmark-trained models on the micro
long tail through the lens of a case study on temporal ordering of long-distance event pairs. Since we
want underlying differences to primarily stem from varying distributions of linguistic phenomena,
we design a setting in which all macro dimensions are held constant. We achieve this by developing
a new dataset for the task of ordering long-distance event pairs by augmenting an existing temporal
ordering dataset that is primarily focused on short-distance temporal ordering. Since both datasets
comprise of the same set of documents, we have a high degree of macro dimension consistency.
We explore the performance of loss augmentation methods from the model-centric category and
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pseudo-labeling methods from the data-centric category, since these two categories emerged as
strong contenders for macro-level adaptation. The loss augmentation method tested is a newly
proposed joint BiLSTM+ILP model architecture that allows incorporation of predefined task-
specific heuristics (e.g., transitivity) into the loss function during model training. Our case study
demonstrates that both methods provide performance boosts (with pseudo-labeling being stronger),
but combining both methods has largely negative results. Parts of this chapter were originally
published as Naik et al. (2019) at SIGDIAL 2019 and Breitfeller et al. (2021) on arxiv.
Addressing RQ3: To address the question of comprehensive evaluation on the long tail, Chapter 5
proposes an evaluation paradigm called stress tests. This paradigm is primarily motivated by the
observation that following traditional identically distributed evaluation paradigms results in test
sets that sideline the same set of micro long tail phenomena as training sets. Hence, we propose
the use of stress tests, which are defined as phenomenon-focused non-identically distributed test-
only datasets used to supplement traditional benchmark evaluation. In addition to more stringent
evaluation, we hope that focus on a single linguistic phenomenon (or a restricted subset of related
phenomena) can help uncover actionable insights about model ability to deal with micro long tail
phenomena. We carry out two case studies to demonstrate the utility of stress test-based evaluation.
Our first case study builds a stress test-based evaluation platform for natural language inference,
while the second case study builds a stress test-based evaluation platform for quantitative reasoning
in natural language inference. We demonstrate the effectiveness of these evaluation platforms in
isolating micro long tail phenomena that state-of-the-art models fail to perform well on, despite
demonstrating high performance on the NLI task. Parts of this chapter were originally published as
Naik et al. (2018) at COLING 2018, and Ravichander et al. (2019) at CoNLL 2019.1

Finally, Chapter 6 summarizes our conclusions from these case studies, the contributions and
limitations of this thesis, and highlights directions for future work.

1First-authorship for both papers is shared jointly with Abhilasha Ravichander
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2
Constructing a Systematic View of the
Long Tail

Natural language understanding (NLU) has made massive progress driven by large benchmarks,
paired with research on transfer learning to broaden its impact. But benchmarks are dominated by
a small set of frequent phenomena, leaving a long tail of infrequent phenomena underrepresented.
This chapter begins developing a systematic view of the long tail and reflects on the question: have
transfer learning methods sufficiently addressed performance of benchmark-trained models on the
long tail? Since benchmarks do not list included/excluded phenomena, we conceptualize the long
tail using macro-level dimensions such as underrepresented genres, topics, etc. We assess trends
in transfer learning research through a qualitative meta-analysis of 100 representative papers on
transfer learning for NLU. Our analysis asks three questions: (i) Which long tail dimensions do
transfer learning studies target? (ii) Which properties help adaptation methods improve performance
on the long tail? (iii) Which methodological gaps have greatest negative impact on long tail
performance? Our answers to these questions highlight major research avenues in transfer learning
for the long tail. Finally, we perform a case study comparing the performance of various adaptation
methods on clinical narratives to show how systematically conducted meta-experiments can provide
insights that enable us to make progress along these future avenues.

2.1 Introduction

“There is a growing consensus that significant, rapid progress can be made in both text understanding
and spoken language understanding by investigating those phenomena that occur most centrally in
naturally occurring unconstrained materials and by attempting to automatically extract information
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2.1. Introduction

about language from very large corpora.” (Marcus et al., 1993)
Since the construction of the Penn Treebank, using annotated IID (independent and identically

distributed) benchmark datasets to measure and drive progress in model development has been a
central tenet in natural language processing. Benchmark datasets have been developed for several
core NLP tasks such as part-of-speech tagging (Marcus et al., 1993), syntactic parsing (Taylor
et al., 2003), named entity recognition (Tjong Kim Sang and De Meulder, 2003), dependency
parsing (Buchholz and Marsi, 2006), etc. Early efforts in development of benchmark datasets
primarily relied on sourcing annotations from linguists. However, the advent of crowdsourcing
made it feasible to collect larger benchmark datasets while reducing expert annotation effort,
since annotations could now be obtained from laypeople. In recent years, crowdsourcing has
contributed to the creation of several large-scale “landmark” datasets for key tasks in natural
language understanding such as question answering (Rajpurkar et al., 2016), natural language
inference (Bowman et al., 2015), commonsense reasoning (Talmor et al., 2019), etc.

Benchmark datasets are an excellent method of precisely evaluating the incremental impact
of modeling advancements since they offer a controlled testbed with minimum variance. This
realization has birthed the trend of using “leaderboards” to track progress in natural language
understanding. Leaderboards are constructed by collecting several benchmark datasets focused on
diverse natural language understanding tasks (e.g., sentiment analysis, textual similarity, natural
language inference etc.). These datasets may optionally be recast to follow a consistent task
formalization. For example, all tasks may be recast in such a way that they require a model to
take a sentence pair as input and produce an output label (label spaces differ across tasks). These
leaderboards do away with most variance that may arise from different dataset choices and task
formalizations, and provide a birds-eye view of key modeling advancements that have produced
large gains across a multitude of NLU tasks. The first attempt to construct such a leaderboard
was made by McCann et al. (2018), who constructed the DecaNLP leaderboard by recasting 10
tasks into a question answering format. DecaNLP was followed by the construction of the GLUE
(Wang et al., 2019c) and SuperGLUE (Wang et al., 2019b) benchmark leaderboards, which are
now central to evaluation of NLU models.

Ideally, to provide maximum utility, leaderboards and shared benchmark corpora must be
diverse and comprehensive, which can be addressed at both levels of the long tail: (i) macro-level
dimensions such as language, genre, topic, etc., and (ii) micro-level dimensions such as specific
language phenomena. However, diversity and comprehensiveness is not straightforward to achieve.

According to Zipf’s law, many micro-level language phenomena naturally occur infrequently
and will be relegated to the long tail, except in cases of intentional over-sampling. Additionally,
annotation issues such as comprehensibility to laypeople,1 low annotator agreement, etc. also
contribute towards the relegation of some micro-level phenomena to the long tail. At the macro
level, various sampling issues such as the availability of raw texts, restrictions on data sharing, in

1Sometimes expert knowledge is required to comprehend and annotate a text (e.g., clinical notes, financial reports,
literature, etc.). Building a benchmark from such data requires access to domain experts which can be hard to obtain.
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addition to the advantages of restricting community focus to a specific set of benchmark corpora
and limitations in resources, lead to portions of the macro-level space being under-explored. This
can further cause certain micro-level phenomena to be under-represented. For example, since
most popular coreference benchmarks focus on English narratives, they do not contain many
instances of zero anaphora, a phenomenon quite common in other languages (e.g., Japanese,
Chinese). In such situations, model performance on benchmark corpora may not be truly reflective
of expected performance on micro-level long tail phenomena, raising questions about the ability of
state-of-the-art models to generalize to the long tail.

Most benchmarks do not explicitly catalogue the list of micro-level language phenomena that
are included or excluded in the sample, which makes it non-trivial to construct a list of long tail
micro-level language phenomena. Hence, we use the alternate macro-level conceptualization of
the long tail, i.e., undersampled portions of the macro-level space are treated as proxies for long
tail micro-level phenomena. These undersampled long tail macro-level dimensions highlight gaps
and present potential new challenging directions for the field. Therefore, periodically taking stock
of research to identify long tail macro-level dimensions can help in highlighting opportunities
for progress that have not yet been tackled. This idea has been gaining prominence recently; for
example, Joshi et al. (2020) survey languages studied by NLP papers, providing statistical support
for the existence of a macro-level long tail of low-resource languages.

In this chapter, our goal is to start constructing a systematic view of the long tail in transfer
learning for NLU by characterizing the macro-level long tail and efforts that have tried to address it
from transfer learning research. Large benchmarks have driven much of the recent methodological
progress on NLU (Bowman et al., 2015; Rajpurkar et al., 2016; McCann et al., 2018; Talmor et al.,
2019; Wang et al., 2019c,b), but the generalization abilities of benchmark-trained models to the
long tail have been unclear. In tandem, the NLP community has been successfully developing
transfer learning methods to improve generalization of models trained on NLU benchmarks (Ruder
et al., 2019). The goal of transfer learning research is to tackle the macro-level long tail in NLU,
leading to the question: how far has transfer learning addressed performance of benchmark models
on the NLU long tail, and where do we still fall behind? Probing further, we perform a qualitative
meta-analysis of a representative sample of 100 papers on transfer learning in NLU. We sample
these papers based on citation counts and publication venues (§2.2.1), and document 7 facets
for each paper such as tasks and domains studied, adaptation settings evaluated, etc. (§2.2.2).
Adaptation methods proposed (or applied) are documented using a hierarchical categorization
described in §2.2.3, which we develop by extending the hierarchy from Ramponi and Plank (2020).
With this information, our analysis focuses on three questions:

• Q1: What long tail macro-level dimensions do transfer learning studies target? Here
dimensions include tasks, domains, languages and adaptation settings covered in transfer
learning research.

• Q2: Which properties help adaptation methods improve performance on long tail dimen-
sions?
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2.2. Meta-Analysis Framework

Figure 2.1: Distribution of meta-analysis sample papers across years.

• Q3: Which methodological gaps have greatest negative impact on long tail performance?
The rest of the chapter presents thorough answers to these questions, laying out avenues for future
research on transfer learning that more effectively address the macro-level long tail in NLU. For
Q1, based on statistics, we observe that transfer learning research has a tendency to sideline certain
types of tasks, languages, domains, and adaptation settings. Thus though studies have attempted to
evaluate on the long tail, coverage is far from comprehensive. For Q2, from studies that evaluate
adaptation methods on long tail domains, we identify two useful properties, that have been sidelined
in recent research: (i) incorporating source-target domain distance, and (ii) incorporating a nuanced
view of domain variation instead of treating it as a dichotomy (source vs target). For Q3, we identify
three major gaps: (i) combining adaptation methods, (ii) incorporating extra-linguistic knowledge
(e.g., ontologies), and (iii) application to data-scarce adaptation settings such as unsupervised
adaptation, online adaptation, etc. These gaps present avenues for future research in transfer
learning for the long tail. We also present a case study to demonstrate that our meta-analysis
framework can be used to systematically design and conduct experiments that provide insights that
enable us to make progress along these avenues.

2.2 Meta-Analysis Framework

2.2.1 Sample Curation
For our meta-analysis, we gather a representative sample of work on transfer learning in NLU
from the December 2020 dump of the Semantic Scholar Open Research Corpus (S2ORC) (Lo
et al., 2020). First, we extract all papers published at nine prestigious *CL venues: ACL, EMNLP,
NAACL, EACL, COLING, CoNLL, SemEval, TACL, and CL. This results in 25,141 papers, which
are filtered to retain those containing the terms “domain adaptation” or “transfer learning” in the
title or abstract, producing a set of 382 abstracts after duplicate removal. Search scope is limited to
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Venue #Papers #TL Papers

Association for Computational Linguistics (ACL) 7200 149
Empirical Methods in Natural Language Processing (EMNLP) 4160 127
North American Chapter of the Association for Computational
Linguistics (NAACL)

2943 52

European Chapter of the Association for Computational Linguis-
tics (EACL)

1290 11

International Conference on Computational Linguistics (COL-
ING)

4965 39

Conference on Natural Language Learning (CoNLL) 778 10
International Workshop on Semantic Evaluation (SemEval) 1632 33
Transactions of the Association for Computational Linguistics
(TACL)

397 10

Computational Linguistics (CL) 1776 4

Table 2.1: Distribution of papers across venues in the complete corpus and the transfer learning subset.

title and abstract in order to prefer papers that focus on transfer learning rather than ones including
a brief discussion or experiment on transfer learning as part of an investigation of something else.
Table 2.1 shows the distribution of papers across venues in the complete corpus as well as the
transfer learning subset.

We manually screen this subset and remove abstracts that are not eligible for our NLU-focused
analysis (e.g., papers on generation-focused tasks like machine translation), leaving us with a set of
266 abstracts. From this, we construct a final meta-analysis sample of 100 abstracts via application
of two inclusion criteria. Per the first criterion, all abstracts with 100 or more citations are included
since they are likely to describe landmark advances. Then, remaining abstracts (to bring our
meta-analysis sample to 100) are randomly chosen, after discarding ones with no citations.2 The
random sampling criterion ensures that we do not neglect studies that study less mainstream topics
by focusing solely on highly-cited work. This produces a final representative sample of transfer
learning work for our meta-analysis. Figure 2.2 gives an overview of our sample curation process
via a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram
(Page et al., 2021), while Figure 2.1 shows the year-wise distribution of the sample. Following is
the complete list of all papers included in our final meta-analysis sample:
Papers with >= 100 citations: Blitzer et al. (2006), Daumé III (2007), Jiang and Zhai (2007),
Blitzer et al. (2007), Chan and Ng (2007), Finkel and Manning (2009), McClosky et al. (2010),
Chiticariu et al. (2010), Subramanya et al. (2010), Prettenhofer and Stein (2010), Li et al. (2012),
Plank and Moschitti (2013), Eisenstein (2013), Liu et al. (2015), Nguyen and Grishman (2015),
Zarrella and Marsh (2016), Søgaard and Goldberg (2016), Mou et al. (2016), Conneau et al. (2017),

223% of the papers from the final sample have 100 or more citations. The remaining randomly sampled papers have
a mean citation count of 28.4, according to citation data from Semantic Scholar.
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Abstracts retrieved from S2ORC (n=392)
(Venues: ACL, EMNLP, NAACL, EACL, COLING, 
TACL, CL, CoNLL, SemEval
Keywords: transfer learning, domain adaptation)

Number of abstracts included in final 
meta-analysis sample (n=100)

Identification of studies via databases and registers
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Number of abstracts assessed for eligibility after 
duplicate removal (n=382)

Duplicate abstracts removed (n=10)

Abstracts excluded for reasons (n=116):
Focus on generative tasks (n=85)
Dataset-only abstracts (n=9)
Multimodal focus (n=2)
No adaptation focus (n=20)

Number of abstracts found to be eligible (n=266)

Abstract inclusion criteria:
Include highly-cited abstracts (>=100 
citations)
Sample rest randomly until n=100
(Balance citation count and topic rarity)

Figure 2.2: PRISMA diagram explaining our sample curation process.

Yang et al. (2017), Cer et al. (2018), Howard and Ruder (2018), Liu et al. (2019a)
Remaining papers: Chan and Ng (2006), Tsuboi et al. (2008), Arnold et al. (2008), Agirre and
Lopez de Lacalle (2008), Jeong et al. (2009), Agirre and Lopez de Lacalle (2009), Tan and Cheng
(2009), Umansky-Pesin et al. (2010), Rai et al. (2010), Chang et al. (2010), Yu and Kübler (2011),
Szarvas et al. (2012), Dhillon et al. (2012), Mohit et al. (2012), Heilman and Madnani (2013),
Scheible and Schütze (2013), Plank et al. (2014), Monroe et al. (2014), Jochim and Schütze (2014),
Nguyen et al. (2014), Braud and Denis (2014), Passonneau et al. (2014), Yang and Eisenstein
(2015), Yin et al. (2015), Ji et al. (2015), Yang et al. (2015), Al Boni et al. (2015), Kim et al. (2016),
Abdelwahab and Elmaghraby (2016), Huang and Lin (2016), Sapkota et al. (2016), Gong et al.
(2016), Pilán et al. (2016), Duong et al. (2017), Tourille et al. (2017), Zhang et al. (2017), Kim
et al. (2017), Giménez-Pérez et al. (2017), Wu et al. (2017), Chen et al. (2018a), Hangya et al.
(2018), Rodriguez et al. (2018), Xing et al. (2018), Wang et al. (2018), Lin and Lu (2018), Gee
and Wang (2018), Alam et al. (2018), Romanov and Shivade (2018), Fares et al. (2018), Yang
et al. (2018), Jiao et al. (2018), Huang et al. (2018), Vlad et al. (2019), Kamath et al. (2019), Li
et al. (2019a), Chen and Qian (2019), Wiedemann et al. (2019), Beryozkin et al. (2019), Dereli
and Saraclar (2019), Aggarwal and Sadana (2019), Li et al. (2019b), Huang et al. (2019), Johnson
et al. (2019), Karunanayake et al. (2019), Wang et al. (2019a), Lison et al. (2020), Akdemir (2020),
Chalkidis et al. (2020), Naik and Rose (2020), Lee et al. (2020), Tamkin et al. (2020), Chen et al.
(2020b), Yan et al. (2020), Wright and Augenstein (2020), Vu et al. (2020), Schröder and Biemann
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Figure 2.3: Distribution of papers retrieved by our search strategy across search terms and years.

Figure 2.4: TSNE visualization of our meta-analysis sample alongside additional transfer learning papers
missed by our keyword search.

(2020), Keung et al. (2020)
Characterizing limitations of our curation process: Since our sample curation process primarily
relies on a keyword-based search, it might miss relevant work that does not use any of these
keywords. To characterize the limitations of our curation process, we employ two additional
strategies for relevant literature identification:
• Citation graph retrieval: Following Blodgett et al. (2020), we include all abstracts that cite or

are cited by abstracts included in our keyword-retrieved set of 382 abstracts. This retrieves 3727
additional abstracts, but many of these works are cited for their description or introduction of
new tasks, datasets, evaluation metrics, etc. Therefore, we discard all works that do not have the

13



2.2. Meta-Analysis Framework

Cat Tasks Included

TC Text classification tasks like sentiment analysis, hate speech detection, propa-
ganda detection, etc.

NER Semantic sequence labeling tasks like NER, event extraction, etc.
POS Syntactic sequence labeling tasks like POS tagging, chunking, etc.
NLI Natural language inference, NLU Tasks recast as NLI (e.g., GLUE)
SP Structured prediction tasks such as entity and event coreference
WSD Word sense disambiguation
TRN Text ranking tasks (e.g., search)
TRG Text regression tasks
RC Reading comprehension
MF Matrix factorization
LI Lexicon induction
SLU Spoken language understanding

Table 2.2: Categorization of tasks studied.

words “adaptation” or “transfer”, leaving 282 new abstracts.
• Nearest neighbor retrieval: We use SPECTER (Cohan et al., 2020) to compute embeddings for

all abstracts included in our keyword-retrieved set, as well as all abstracts in the ACL anthology.
Then we retrieve the nearest neighbor for every abstract in our keyword-retrieved set, which
results in the retrieval of 262 new abstracts.

Combining abstracts returned by both strategies, we are able to identify 510 additional works.
However, while going over them manually, we notice that despite our noise reduction efforts,
not all abstracts describe transfer learning work. We perform an additional manual screening
step to discard such work, which leaves us with a final set of 232 additional papers. To identify
whether the exclusion of these papers from the initial sample may have led to visible gaps or
blind spots in our meta-analysis, we perform a TSNE visualization of SPECTER embeddings for
both keyword-retrieved papers and this additional set of papers. Figure 2.4 presents the results of
this visualization and indicates that there aren’t visible distributional differences between the two
subsets. Hence, though our sample curation strategy is imperfect, it seems unlikely that our final
observations from the meta-analysis would be very different.

2.2.2 Meta-Analysis Facets
For every paper from our meta-analysis sample, we document the following key facets:

• Task(s): NLP task(s) studied in the work. Tasks are grouped into 12 categories based on task
formalization and linguistic level (e.g., lexical, syntactic, etc.), as shown in Table 2.2.

• Domain(s): Source and target domains and/or languages studied, along with datasets used.
• Task Model: Base model used for the task, to which domain adaptation algorithms are applied.
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• Adaptation Method(s): Domain adaptation method(s) proposed or used in the work. Adaptation
methods are grouped according to the categorization shown in Figure 2.5 (details in §2.2.3).

• Adaptation Baseline(s): Baseline adaptation method(s) to compare new methods against.
• Adaptation Settings: Source-target transfer settings explored in the work (e.g., unsupervised

adaptation, multi-source adaptation, etc.).
• Result Summary: Performance improvements (if any), performance differences across multiple

source-target pairs or methods, etc.

Figure 2.5: Categorization of adaptation methods proposed, extended or used in all studies.

2.2.3 Adaptation Method Categorization
For adaptation methods proposed or used in each study, we assign type labels according to the
categorization presented in Figure 2.5. This categorization is an extension of the one proposed by
Ramponi and Plank (2020). Since our meta-analysis is not limited to neural unsupervised domain
adaptation, we need to extend their categorization with additional classes. Broadly, methods are
divided into three coarse categories: (i) model-centric, (ii) data-centric, and (iii) hybrid approaches.
Model-centric approaches perform adaptation by modifying the structure of the model, which may
include editing the feature representation, loss function or parameters. Data-centric approaches
perform adaptation by modifying or leveraging labeled/unlabeled data from the source and target
domains to bridge the domain gap. Finally, hybrid approaches are ones that cannot be clearly
classified as model-centric or data-centric. Each coarse category is divided into fine subcategories.
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Category Example Methods Example Studies

Feature
Augmentation (FA)

Structural correspondence learning,
Frustratingly easy domain adaptation

(Blitzer et al., 2006; Daumé III,
2007)

Feature
Generalization
(FG)

Marginalized stacked denoising autoen-
coders, Deep belief networks

(Jochim and Schütze, 2014; Ji
et al., 2015; Yang et al., 2015)

Loss Augmentation
(LA)

Multi-task learning, Adversarial learn-
ing, Regularization-based methods

(Zhang et al., 2017; Liu et al.,
2019a; Chen et al., 2020b)

Parameter
Initialization (PI)

Prior estimation, Parameter matrix ini-
tialization

(Chan and Ng, 2006; Al Boni
et al., 2015)

Parameter Addition
(PA)

Adapter networks (Lin and Lu, 2018)

Parameter Freezing
(FR)

Embedding freezing, Layerwise freez-
ing

(Yin et al., 2015; Tourille et al.,
2017)

Ensemble (EN) Mixture of experts, Weighted averaging (McClosky et al., 2010; Nguyen
et al., 2014)

Instance Weighting
(IW)

Classifier based weighting (Jiang and Zhai, 2007; Jeong
et al., 2009)

Data Selection
(DS)

Confidence-based sample selection (Scheible and Schütze, 2013;
Braud and Denis, 2014)

Pseudo-Labeling
(PL)

Semi-supervised learning, Self-training (Umansky-Pesin et al., 2010; Li-
son et al., 2020)

Noising/Denoising
(NO)

Token dropout (Pilán et al., 2016)

Active Learning
(AL)

Sample selection via active learning (Rai et al., 2010; Wu et al., 2017)

Pretraining (PT) Language model pretraining, Super-
vised pretraining

(Conneau et al., 2017; Howard
and Ruder, 2018)

Instance Learning
(IL)

Nearest neighbor learning (Gong et al., 2016)

Table 2.3: Examples of types of methods included in each category, and papers which studied these methods.
These lists are non-exhaustive, but the complete method coding for all papers in our meta-analysis sample is
provided in Table A.1 in appendix A.

16



2.3. Which Long Tail Macro-Level Dimensions Do Transfer Learning Studies Target?

Model-centric approaches are divided into four categories, based on which portion of the
model they modify: (i) feature-centric, (ii) loss-centric, (iii) parameter-centric, and (iv) ensemble.
Feature-centric approaches are further divided into two fine subcategories: (i) feature augmentation,
and (ii) feature generalization. Feature augmentation includes techniques that learn an alignment
between source and target feature spaces using shared features called pivots (Blitzer et al., 2006).
Feature generalization includes methods that learn a joint representation space using autoencoders,
motivated by Glorot et al. (2011); Chen et al. (2012). Loss-centric approaches contain one fine
subcategory: loss augmentation. This includes techniques which augment task loss with adversarial
loss (Ganin and Lempitsky, 2015; Ganin et al., 2016), multi-task loss (Liu et al., 2019a) or
regularization terms. Parameter-centric approaches include three fine subcategories: (i) parameter
initialization, (ii) new parameter addition, and (iii) parameter freezing. Finally ensemble, used in
settings with multiple source domains, includes techniques that learn to combine predictions of
multiple models trained on source and target domains.

Data-centric approaches are divided into five fine subcategories. Pseudo-labeling approaches
train classifiers which are then used to produce “gold” labels for unlabeled target data. These
approaches include semi-supervised learning methods such as bootstrapping, co-training, self-
training, etc. (e.g., McClosky et al. (2006)). Active learning approaches use a human-in-the-loop
setting to annotate a select subset of target data that the model can learn most from (Settles, 2009).
Instance learning approaches include non-parametric techniques such as nearest neighbor learning
which leverage neighborhood structure in joint source-target feature spaces to make predictions
on target data. Noising/denoising approaches include data corruption or pre-processing which
increase surface similarity between source and target examples. Finally, pretraining approaches
train large-scale language models on unlabeled data to learn better source and target representations,
a strategy that has gained popularity in recent years (Peters et al., 2018; Devlin et al., 2019).

Hybrid approaches consist of two fine subcategories: (i) instance weighting, and (ii) data
selection. They cannot be classified as model-centric or data-centric because while they involve
manipulation of the data distribution, they can also be viewed as loss-centric approaches that modify
the training loss. Instance weighting includes approaches that assign weights to target examples
based on their similarity to source data. Conversely, data selection approaches filter target data
based on similarity to source data. Table 2.3 lists example adaptation methods for each fine category
and studies from our meta-analysis subset that use these methods.

2.3 Which Long Tail Macro-Level Dimensions Do Transfer Learning
Studies Target?

The first goal of our meta-analysis is to document long tail macro-level dimensions that transfer
learning studies have tested their methods on. We look at distributions of tasks, domains, languages
and adaptation settings studied in all papers in our sample. 10 studies are surveys, position papers or
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Figure 2.6: Distribution of papers according to tasks studied. The top three task categories are text
classification (TC), semantic sequence labeling (NER) and syntactic sequence labeling (POS). Table 2.2
contains descriptions for the remaining task categories.

Figure 2.7: Distribution of multi-lingual studies according to languages included.

meta-experiments, and so excluded from these statistics. Studies can cover multiple tasks, domains,
languages or settings so counts may be higher than 90.
Task distribution: Figure 2.6 gives a brief overview of the distribution of tasks studied across
papers. Text classification tasks clearly dominate, followed by semantic and syntactic tagging.
Text classification covers a variety of tasks, but sentiment analysis is the most well-studied, with
research driven by the multi-domain sentiment detection (MDSD) dataset (Blitzer et al., 2007).
Conversely, structured prediction is under-studied, despite covering a variety of tasks such as
coreference resolution, syntactic parsing, dependency parsing, semantic parsing, etc. This indicates
that tasks with complex formulations/objectives are under-explored. We speculate that there may
be two reasons for this: (i) difficulty of collecting annotated data in multiple domains/languages for
such tasks,3 and (ii) shift in output structures (e.g., different named entity types in source and target
domains) making adaptation harder.
Languages studied: Despite a focus on generalization, most studies in our sample rarely evaluate

3Note that despite these difficulties, efforts to collect data for structured prediction tasks are underway, such as the
massive Universal Dependencies project which has collected consistent grammar annotations for over 100 languages:
https://universaldependencies.org
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Figure 2.8: Distribution of papers according to adaptation settings studied.

Domain #Studies

Clinical 10
Biomedical 9
Science 3
Finance 3
Literature 3
Defense & Security 1

(a) Studies on high-expertise domains.

Domain #Studies

Twitter 12
Conversations 10
Forums 8
Emails 6

(b) Studies on non-narrative domains.

Table 2.4: Distribution of papers according to various types of long tail domains studied.

on other languages aside from English. As stated by Bender (2011), this is problematic because
the ability to apply a technique to other languages does not necessarily guarantee comparable
performance. Some studies do cover multi-lingual evaluation or focus on cross-linguality. Figure 2.7
shows the distribution of languages included in these studies, which is a limited subset. We note
that while more non-English languages might be explored if we included “cross-lingual adaptation”
work, our conclusion that non-English languages are sidelined is still valid. This is because we
are trying to highlight the need for more studies that validate a monolingual adaptation technique
across multiple languages. An example could be a study showing that an adaptation technique
works well when transferring from English news to English conversations as well as German news
to German conversations. This kind of work would not be covered under cross-lingual adaptation,
and it can be concluded that this setting is under-researched. For a more comprehensive discussion
of linguistic diversity in NLP research not limited to transfer learning alone, we refer interested
readers to Joshi et al. (2020).
Domains studied: Many popular transfer benchmarks and datasets (Blitzer et al., 2007; Wang
et al., 2019c,b) are homogeneous. They focus on expository English text, drawn from a few
plentiful sources such as news articles, reviews, blogs, essays and Wikipedia. This sidelines some
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key categories of domains4 that fall into the long tail: (i) non-narrative text (e.g., social media,
conversations etc.), and (ii) texts from high-expertise domains that use specialized vocabulary and
knowledge (e.g., clinical text). Statistics from our meta-analysis sample support this. Tables 2.4a
and 2.4b show the number of studies focusing on high-expertise domains and non-narrative domains
respectively, highlighting the lack of focus on these areas.
Adaptation settings studied: Most studies evaluate methods in a supervised adaptation setting,
i.e. some labeled data is available from both source and target domains. This assumption may not
always hold in practice. Often adaptation must be performed in harder unconventional settings such
as unsupervised adaptation (no labeled data from target domain), adaptation from multiple source
domains, online adaptation, etc. Figure 2.8 shows the distribution of unconventional adaptation
settings across papers, indicating that these settings are understudied in literature.
Open Issues: We can see that there is much ground to cover in testing adaptation methods on the
long tail. Two research directions may be key to achieving this: (i) development of and evaluation
on diverse benchmarks, and (ii) incentivizing publication of research on long tail domains at NLP
venues. Diverse benchmark development has gained momentum, with the creation of benchmarks
such as BLUE (Peng et al., 2019) and BLURB (Gu et al., 2020) for biomedical and clinical
NLP, XTREME (Hu et al., 2020) for cross-lingual NLP and GLUECoS (Khanuja et al., 2020)
for code-switched NLP. However, newly proposed adaptation methods are often not evaluated
on them, which is imperative to test their limitations and generalization abilities. On the other
hand, application-specific or domain-specific evaluations of adaptation methods are sidelined at
NLP venues and may be viewed as limited in terms of bringing broader insights. But applied
research can unearth significant opportunities for advances in transfer learning, and should be
viewed from a translational perspective (Newman-Griffis et al., 2021). For example, source-free
domain adaptation in which only a trained source model is available with no access to source data
(Liang et al., 2020), was conceptualized partly due to data sharing restrictions on Twitter or clinical
data. Though this issue is limited to certain domains, source-free adaptation may be of broader
interest since it has implications for reducing models’ reliance on large amounts of data. Therefore,
encouraging closer ties with applied transfer learning research can help us gain more insight into
limitations of existing techniques on the long tail.

2.4 Which Properties Help Adaptation Methods Improve Perfor-
mance On Long Tail Dimensions?

The second goal of our meta-analysis is to identify which categories of adaptation methods have
been tested extensively, and isolate ones that have exhibited good performance on various long tail
macro-level dimensions. Figures 2.9a and 2.9b provide an overview of categories of methods tested

4We acknowledge that “domain” is a heavily overloaded term in NLP encompassing genres, styles, registers, etc. But
we use this term to remain consistent with prior literature.
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(a) Distribution of transfer learning studies according
to coarse method categories. DC, MC and HY re-
fer to data-centric, model-centric, and hybrid coarse
categories respectively.

(b) Distribution of transfer learning studies according to
fine method categories. The top five fine categories are
feature augmentation (FA), loss augmentation (LA), pre-
training (PT), parameter initialization (PI), and pseudo-
labeling (PL). Table 2.3 describes the remaining categories
in more detail.

Figure 2.9: Distribution of transfer learning studies according to various types of method categories.

across all papers in our subset. We can see that studies overwhelmingly develop or use model-centric
methods. Within this coarse category, feature augmentation (FA) and loss augmentation (LA) are
the top two categories, followed by pretraining (PT), which is data-centric. Parameter initialization
(PI) and pseudo labeling (PL) round out the top five. Feature augmentation being the most explored
category is no surprise, given that a lot of pioneering early domain adaptation work in NLP (Blitzer
et al., 2006, 2007; Daumé III, 2007) developed methods to learn shared feature spaces between
source and target domains. Loss augmentation methods have gained prominence recently, with
multi-task learning providing large improvements (Liu et al., 2015, 2019a). Pretraining methods,
both unsupervised (Howard and Ruder, 2018) and supervised (Conneau et al., 2017), have also
gained popularity with large transformer-based language models like ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019) achieving huge gains across a variety of tasks.

To specifically identify techniques that work on two types of long tail domains, we look at
categories of methods evaluated on high-expertise domains or non-narrative domains (or both).
Figures 2.10a, 2.10b and 2.10c present the distributions of fine method categories tested on high-
expertise domains, non-narrative domains and both domain types respectively. While feature
augmentation techniques remain the most explored category for high-expertise domains, we see a
change in trend for non-narrative domains. Loss augmentation and pretraining are more commonly
explored categories. The difference in dominant model categories can be partly attributed to easy
availability of large-scale unlabeled data and weak signals (e.g., likes, shares etc.), particularly for
social media. Such user-generated content (called “fortuitous data” by Plank (2016)) is leveraged
well by pretraining or multi-task learning techniques, making them popular choices for non-narrative
domains. In contrast, high-expertise domains (e.g, literature, security and defense reports, finance,
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(a) Fine method categories evalu-
ated on high-expertise domains. The
top five fine categories are feature
augmentation (FA), pseudo-labeling
(PL), loss augmentation (LA), pre-
training (PT), and instance weight-
ing (IW). Table 2.3 describes the re-
maining categories in more detail.

(b) Fine method categories evalu-
ated on non-narrative domains. The
top four fine categories are loss aug-
mentation (LA), pretraining (PT),
parameter initialization (PI), and fea-
ture augmentation (FA). Table 2.3
describes the remaining categories
in more detail.

(c) Fine method categories evalu-
ated on both domain types. The top
four fine categories are loss augmen-
tation (LA), feature augmentation
(FA), pseudo-labeling (PL), abd pa-
rameter initialization (PI). Table 2.3
describes the remaining categories
in more detail.

Figure 2.10: Fine method categories evaluated on various types of long tail domains.

etc.) often lack fortuitous data, with methods developed for them focusing on learning shared
feature spaces.

10 studies in our meta-analysis sample evaluate on both domain types. Table 2.5 describes
methods explored in these studies and their performance. From these studies, we identify two
interesting properties that seem to improve adaptation performance but remain relatively under-
explored in the context of recent methods such as pretraining:
• Incorporating source-target distance: Several methods explicitly incorporate distance between

source and target domain (e.g., Xing et al. (2018); Wang et al. (2018)). Aside from allowing
flexible adaptation based on the specific domain pairs being considered, adding source-target
distance provides two benefits. It offers an additional avenue to analyze generalizability by
monitoring source-target distance during adaptation. It also allows performance to be estimated
in advance using source-target distance, which can be helpful when choosing an adaptation
technique for a new target domain. Kashyap et al. (2020) provide a comprehensive overview of
source-target distance metrics and discuss their utility in analysis and performance prediction.
Despite these benefits, very little work has tried to incorporate source-target distance into newer
adaptation methods such as pretraining

• Incorporating nuanced domain variation: Despite NLP treating domain variation as a di-
chotomy (source vs target), domains vary from each other along a multitude of dimensions
(e.g., topic, genre, medium or purpose of communication etc.) (Plank, 2016). Some methods
acknowledge this nuanced view and treat domain variation as multi-dimensional, either in a
discrete feature space (Arnold et al., 2008) or in a continuous embedding space (Yang and
Eisenstein, 2015). This allows knowledge sharing across dimensions common to both source
and target, improving transfer performance. This idea has also remained under-explored, though
recent work such as the development of domain expert mixture (DEMix) layers (Gururangan
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Study Method Performance

(Tsuboi et al., 2008) Conditional random field (CRF)
model trained on partially annotated
sequences of OOV tokens (LA)

Positive transfer from
conversations to medical
manuals

(Arnold et al., 2008) Manually constructed feature hierar-
chy across domains, allowing back off
to more general features (FA)

Positive transfer from
5 corpora (biomedical,
news, email) to email

(McClosky et al., 2010) Mixture of domain-specific models
chosen via source-target similarity fea-
tures (e.g., cosine similarity) (EN)

Positive transfer to
biomedical, litera-
ture and conversation
domains

(Yang and Eisenstein, 2015) Dense embeddings induced from tem-
plate features and manually defined
domain attribute embeddings (FA)

Positive transfer to 4/5
web domains and 10/11
literary periods

(Hangya et al., 2018) Monolingual joint training on
generic+domain text, then cross-
lingual projection (PT+FA), using
cycle consistency loss (Haeusser et al.,
2017) (LA)

Positive transfer to med-
ical and Twitter data us-
ing both methods

(Rodriguez et al., 2018) Training source domain classifier and
using its predictions as target classifier
inputs (FA), initializing target classi-
fier with source classifier weights (PI)

No clear winner across
medical data, security
and defense reports, con-
versations, Twitter

(Xing et al., 2018) Multi-task learning method with
source-target distance minimization as
additional loss term (LA)

Positive transfer on 4/6
intra-medical settings
(EHRs, forums) and
5/9 narrative to medical
settings

(Wang et al., 2018) Source-target distance minimized us-
ing two loss penalties (LA)

Positive transfer to medi-
cal and Twitter data

(Kamath et al., 2019) Adversarial domain adaptation with
additional domain-specific feature
space (LA)

Positive transfer to web
forums and financial text

(Lison et al., 2020) Weakly supervised data creation by
aggregating labels from rule-based or
trained labeling functions (PL)

Positive transfer to finan-
cial text and Twitter

Table 2.5: Model and performance details for studies testing on high-expertise and non-narrative domains.
Fine adaptation method categories used in these studies include feature augmentation (FA), loss augmentation
(LA), ensembling (EN), pretraining (PT), parameter initialization (PI), and pseudo-labeling (PL).

et al., 2021) has attempted to incorporate nuanced domain variation into pretraining.
Open Issues: Interestingly many studies from our sample do not analyze failures, i.e., source-target
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M
T TC POS NER NLI SP WSD TRN TRG RC MF LI SLU

FA 25 6 13 3 4 2 1 2 1 1 1
FG 2 1 1 1 1
LA 21 5 7 4 3 1 2 1
PI 7 1 4 2 2 1 1
PA 1
FR 1 1 1
EN 2 1 1 2
IW 9 3 1 1 1
DS 3 1 1 1
PT 13 2 9 3 1 1
PL 9 3 3 1 4 1
NO 2 1 1
AL 4 1
IL 2

Table 2.6: Evidence gap map showing indicating which method categories have not been explored sufficiently
for various task categories. Please refer to Tables 2.2 and 2.3 for task and model abbreviations.

pairs on which adaptation methods do not improve performance. For some studies in Table 2.5,
adaptation methods do not improve performance on all source-target pairs. But failures are not
investigated, presenting the question: do we know blind spots for current adaptation methods?
Answering this is essential to develop a complete picture of the generalization capabilities of
adaptation methods. Studies that present negative transfer results (e.g., Plank et al. (2014)) are rare,
but should be encouraged to develop a sound understanding of adaptation techniques. Analyses
should also study ties between datasets used and methods applied, highlighting dimensions of
variation between source-target domains and how adaptation methods bridge these variations
(Kashyap et al., 2020; Naik et al., 2021b). Such analyses can uncover important lessons about
generalizability of adaptation methods and the kinds of source-target settings they can be expected
to improve performance on.
Identifying under-explored and promising methods: Annotating long tail macro-level dimen-
sions and adaptation method categories studied by all works included in our representative sample
has the additional benefit of providing a framework to identify both the most under-explored, as
well as most promising methods, under various settings. Tables 2.6 and 2.7 provide evidence gap
maps presenting the number of works from our sample that study the utility of various method
categories on different tasks and domains respectively.5 The first thing we note is that both maps are
highly sparse, indicating that there is little to no evidence for several combinations, many of which
are worth exploring. In particular, given recent state-of-the-art advances, the following settings
seem ripe for exploration:
• Parameter addition and freezing: Though there are only four studies in our sample (providing

5We do not include languages since our meta-analysis does not solely focus on multilingual and cross-lingual work.
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M
D HE NN

FA 12 8
FG 1
LA 9 11
PI 1 4
PA 1
FR 1 1
EN 2 1
IW 2 2
DS 1
PT 5 6
PL 4 3
NO 1
AL
IL

Table 2.7: Evidence gap map showing indicating which method categories have not been explored sufficiently
for various long tail domain categories. Note that HE and NN refer to high-expertise and non-narrative
domains. Please refer to Table 2.3 for model abbreviations.

positive evidence) that study parameter addition and freezing methods, we believe that given
the advent of large-scale language models, these categories merit further exploration for popular
task categories (TC, POS, NER, NLI, SP). Both methods attempt to improve generalization by
reducing overfitting which is likely to be more prevalent with large language models, and are
additionally efficient methods that do not require a large number of extra parameters.

• Active Learning: Studies included in our sample provide positive evidence for the use of
active learning in an adaptation setting, but they have mainly evaluated on text classification
(primarily sentiment analysis). We hypothesize that active learning during adaptation might
also prove to be beneficial for task categories POS, NER, and SP, which require more complex,
linguistically-informed annotation.

• Data Selection: Despite being similar in nature to instance weighting methods for which several
studies provide positive evidence, data selection methods seem to have been under-explored. We
believe that these methods might be useful for POS, NER, and SP tasks for which large-scale
fortuitous data is not as easily available, and adaptation must also take into account shifts in
output structure.

Despite the scarcity of both maps, there are certain method-task and method-domain combinations
for which our meta-analysis sample includes a reasonable number of studies (>=10%). For these
combinations, we provide a quick performance summary below:
• Feature Augmentation: On text classification, 12/25 studies use FA methods as baselines. Of

the remaining 13 studies, 6 provide strong positive evidence, i.e., the FA method outperforms all
methods across all settings/domains tested. The remaining 7 provide mixed results, i.e., there
are certain domains on which this method category doesn’t work best. On semantic sequence
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labeling tasks like NER, 4/13 studies use FA methods as baselines, 5 show strong positive results
and 4 show mixed results. Finally, on high-expertise domains, 1 study uses FA methods as
baselines, 5 show strong positive results and 6 show mixed results. These observations indicate
that despite their popularity, feature augmentation methods are not as strong as other method
categories.

• Loss Augmentation: For text classification, 8/21 studies use LA methods as baselines. Of the
remaining 13 studies, 11 provide strong positive evidence, while only 2 provide mixed results.
On non-narrative domains, 9/11 studies provide strong positive evidence, while 2 provide mixed
results. Based on their performance, loss augmentation methods seem to be extremely promising,
especially for text classification and non-narrative domains.

• Pretraining: For text classification, 4/13 studies use pretraining as a baseline. Of the remaining
9 studies, 8 provide strong positive evidence and only one provides mixed results. Despite their
relatively recent emergence, pretraining methods also seem to be extremely promising based on
performance.

2.5 Which Methodological Gaps Have Greatest Negative Impact On
Long Tail Performance?

The final goal of our meta-analysis is to identify methodological gaps in developing adaptation
methods for long tail domains, which provide avenues for future research. Our observations high-
light three areas: (i) combining adaptation methods, (ii) incorporating extra-linguistic knowledge,
and (iii) application to data-scarce settings.

2.5.1 Combining Adaptation Methods
The potential of combining multiple adaptation methods has been not been systematically and
extensively studied. Combining methods may be useful in two scenarios. The first one is when
source and target domains differ along multiple dimensions (e.g., topic, language etc.) and different
methods are known to work well for each. The second one is when methods focus on resolving
issues in specific portions of the model such as feature space misalignment, task level differences
etc. Combining model-centric adaptation methods, as per our categorization presented in §2.2.3,
that tackle each issue separately may improve performance over individual approaches. Despite its
utility, method combination has only been systematically explored by one meta-study from 2010.
On the other hand, 23 studies apply a particular combination of methods to their tasks/domains, but
do not analyze when these combinations do/do not work. We summarize both sources of evidence
and highlight open questions.
Method combination meta-study: Chang et al. (2010) observe that most adaptation methods
either tackle shift in feature space (P (X)) or shift in how features are linked to labels (P (Y |X)).
They call the former category of methods “unlabeled adaptation methods” since labeled target
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domain data is not needed and feature space alignment can be done using unlabeled data alone.
Methods falling under the latter category require some labeled target data and are called “labeled
adaptation methods”. These categories do not map cleanly to specific categories in our hierarchy.
Through theoretical analysis, simulated experiments and experiments with real-world data on two
tasks (named entity recognition and preposition sense disambiguation), they make several interesting
observations. First, they observe that combining methods generally improves performance beyond
using a single method. Secondly, interaction between methods is complex, and simply combining
best-performing labeled and unlabeled adaptation methods does not provide best results. Finally,
when unlabeled adaptation algorithms are very strong and align source-target feature spaces well,
a simple labeled adaptation algorithm such as training a model jointly on source and target data
trumps more complex approaches.
Applying particular method combinations: Table 2.8 lists all studies that apply particular method
combinations to their tasks/domains and fine-grained category labels from our categorization for
the methods used in them. Combining methods from different coarse categories is the most popular
strategy, employed by 15 out of 23 studies. Of the remaining 8 studies, 5 combine methods from the
same coarse category, but different fine categories. These studies combine model-centric methods
that edit different parts of the model (e.g. a feature-centric and a loss-centric method). The last
3 studies combine methods from the same fine category. Only 7 studies evaluate their method
combination on at least one long tail domain.

Several studies observe performance improvements (Yu and Kübler, 2011; Mohit et al., 2012;
Scheible and Schütze, 2013; Kim et al., 2017; Yang et al., 2017; Alam et al., 2018), mirroring the
observation by Chang et al. (2010) that method combination helps. However, this observation is
not consistent across all studies. For example, Jochim and Schütze (2014) mention that combin-
ing marginalized stacked denoising autoencoders (mSDA) (Chen et al., 2012) and frustratingly
easy domain adaptation (FEDA) (Daumé III, 2007) performs worse than individual methods in
preliminary experiments on citation polarity classification, which are finally omitted from the paper.
Both methods are feature-centric, though mSDA is a generalization technique (FG) while FEDA is
an augmentation technique (FA). Additionally, mSDA is an unlabeled adaptation technique while
FEDA is a labeled adaptation technique. Owing to negative preliminary results, Jochim and Schütze
(2014) do not experiment further with combination, leaving open the question of whether a different
labeled adaptation technique or feature augmentation technique might have interfaced better with
mSDA (or vice versa with FEDA). As another example, Wright and Augenstein (2020) show that
combining adversarial domain adaptation (ADA) (Ganin and Lempitsky, 2015) with pretraining
does not improve performance over pretraining alone, but combining mixture of experts (MoE)
with pretraining shows improvements. Both ADA and MoE are model-centric methods, while
pretraining is a data-centric method. This indicates that methods from the same coarse category
may react differently in combination settings. Similarly, studies that achieve positive results do not
analyze which properties of the chosen adaptation methods allow them to combine successfully,
and whether this success extends to other adaptation methods with similar properties, or from the
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Study Method LT

Different Coarse Categories

(Jeong et al., 2009) IW+PL 4
(Hangya et al., 2018) PT+FA 4
(Cer et al., 2018) PT+LA 4
(Dereli and Saraclar, 2019) FA+PT 4
(Ji et al., 2015) FG+IW
(Huang et al., 2019) PI+PL
(Li et al., 2012) LA+PL+IW
(Chan and Ng, 2007) AL+PI+IW
(Nguyen et al., 2014) PL+EN
(Yu and Kübler, 2011) PL+IW
(Scheible and Schütze, 2013) FA+PL+DS
(Tan and Cheng, 2009) FA+IW
(Mohit et al., 2012) LA+PL
(Rai et al., 2010) AL+LA
(Wu et al., 2017) AL+LA

Same Coarse Categories

(Lin and Lu, 2018) PA+FA 4
(Zhang et al., 2017) FA+LA 4
(Yan et al., 2020) FA+LA
(Yang et al., 2017) LA+PL+FA
(Gong et al., 2016) LA+PI

Same Fine Categories

(Alam et al., 2018) LA+LA 4
(Lee et al., 2020) PL+PL
(Kim et al., 2017) LA+LA

Table 2.8: Category combinations explored by studies that combine multiple methods. LT indicates
whether long tail domains were evaluated on. Fine adaptation method categories explored include feature
augmentation (FA), feature generalization (FG), loss augmentation (LA), parameter initialization (PI),
ensembling (EN), pseudo-labeling (PL), pretraining (PT), active learning (AL), IW (instance weighting),
and data selection (DS).

same coarse/fine category.
Open questions: To fully harness the potential of adaptation method combination, we must
examine the following questions further:
• Is it possible to draw general conclusions about the potential of combining methods from various

coarse or fine categories?
• Which properties of adaptation methods are indicative of their ability to interface well with other

methods?
• Do task and/or domain of interest influence the abilities of methods to combine successfully?
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This may require more meta-studies on the method combination problem. Moreover, studies
applying combinations of methods to a specific task/domain should be encouraged to delve into a
deep analysis of the successes and failures they obtain.

2.5.2 Incorporating Extra-Linguistic Knowledge
Most adaptation methods leverage labeled or unlabeled text to learn generalizable representations or
models. However, knowledge from sources beyond text such as ontologies, human understanding
of domain/task variation, etc., can be a valuable asset to improving adaptation performance.
This is especially true for high-expertise domains with expert-curated ontologies (e.g., UMLS for
biomedical/clinical text (Bodenreider, 2004)). From our study sample, we observe some exploration
of the following knowledge sources:
Ontological knowledge: Romanov and Shivade (2018) employ UMLS for clinical natural language
inference via two techniques: (i) retrofitting word vectors as per UMLS (Faruqui et al., 2015), and
(ii) using UMLS concept distance-based attention. Retrofitting hurts performance, while concept
distance provides modest improvements.
Domain Variation: Arnold et al. (2008) and Yang and Eisenstein (2015) incorporate human
understanding of domain variation in discrete and continuous feature spaces respectively, with
some success. Table 2.5 provides method and performance details for these studies. Structural
correspondence learning (Blitzer et al., 2006) also relies on manually defined pivot features common
to both source and target domains, and demonstrates good performance improvements.
Task Variation: Zarrella and Marsh (2016) incorporate human understanding of knowledge
required for stance detection to define an auxiliary hashtag prediction task, which improves target
task performance.
Manual Adaptation: Chiticariu et al. (2010) manually customize rule-based NER models, match-
ing scores achieved by supervised models.

Another knowledge source that is not explored by studies in our sample, but has gained
popularity is providing task descriptions and some examples for sample-efficient transfer learning
(Schick and Schütze, 2021). Despite initial explorations, the potential of extra-linguistic knowledge
sources is largely under-explored.
Open questions: Given that availability of accurate knowledge sources differs widely across
tasks/domains, it may be impractical to compare their utility in improving performance across
domains. But studies experimenting with a specific source can still probe the following questions:
• Can reliance on labeled/unlabeled data be reduced while maintaining the same performance?
• Does incorporating the knowledge source improve interpretability of the adaptation method?
• Can we preemptively identify a subset of samples which may benefit from the knowledge?
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2.5.3 Application to Data-Scarce Adaptation Settings
§2.3 demonstrates that most studies apply their methods in a supervised setting in which some
labeled data is available from both source and target domains, in addition to unlabeled data. But
availability of labeled or unlabeled data is often limited, especially for long tail domains and
languages. For example, (Joshi et al., 2020) show that 2,191 languages have exceptionally limited
data, making it near impossible to apply supervised adaptation. Hence, methods should also
be developed for and applied to settings that reflect real-world criteria such as data availability.
Data-scarce adaptation settings might be harder to perform well on, but are extremely important
since they closely resemble contexts in which transfer learning is likely to be used. In particular,
more evaluation should be carried out in the following data-scarce settings:
Unsupervised Adaptation: No labeled target data is available, but unlabeled data from both source
and target domains is available. Sometimes, distantly supervised target data can be obtained using
auxiliary resources (e.g., gazetteers, knowledge bases, etc.) and weak user-generated signals (e.g.,
likes, shares, etc.).
Multi-source Adaptation: Instead of a single large-scale source dataset, smaller datasets from
several source domains are available (e.g., Yan et al. (2020)).
Online Adaptation: Especially pertinent for deployed models, in this setting, adaptation methods
must learn to adapt to new domains on-the-fly. Often information about the target domain beyond
the current sample may not be available.
Source-free Adaptation: A trained model must be adapted to a target domain without source
domain data, either labeled or unlabeled. This setting is especially useful for domains that have
strong data-sharing restrictions such as clinical data.

Some settings, especially unsupervised adaptation, have attracted attention in recent years.
Ramponi and Plank (2020) provide a comprehensive overview of neural methods for unsupervised
adaptation. In their survey on NLP for low-resource settings, Hedderich et al. (2020) cover transfer
learning techniques that reduce need for supervised target data. Wang et al. (2021) list human-in-the-
loop data augmentation and model updation techniques that can be used for data-scarce adaptation.
However, there is room to further study performance of adaptation methods in data-scarce settings.
Open questions: Broadly, two main questions in this area still remain unanswered:
• At different levels of data scarcity (e.g., no labeled target data, no unlabeled target data, etc.),

which adaptation methods perform best?
• Is it possible to identify correlations between source-target domain distance and data-reliance of

adaptation methods?
This indicates the need for comprehensive meta-experiments evaluating adaptation methods in
data-scarce settings.
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2.6 Case Study: Evaluating Adaptation Methods on Clinical Narra-
tives

Finally, we attempt to demonstrate how our meta-analysis framework and observations can be
leveraged to systematically design case studies that can begin to provide answers to the prevailing
open questions laid out in the previous section. As an example, we conduct a case study to evaluate
the effectiveness of popularly used adaptation methods on high-expertise domains in data-scarce
adaptation settings, a burgeoning area of interest (Ramponi and Plank, 2020). Specifically, our study
focuses on the question: which method categories perform best for semantic sequence labeling
tasks when transferring from news to clinical narratives, given various data-scarce adaptation
settings (e.g., no labeled clinical data)? We focus on two semantic sequence labeling tasks: entity
extraction and event extraction, and two data-scarce adaptation settings: no labeled target data
(unsupervised), and limited labeled target data. In the limited labeled target data setting, instead
of using the complete training set for the target domain, we randomly sample a subset of 1000
examples and use this as the training set (after holding out a 10% validation subset).

2.6.1 Datasets
We use the following entity extraction datasets:

• CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003): Reuters news stories annotated
with four types of entities: persons (PER), organizations (ORG), locations (LOC), and
miscellaneous names (MISC).

• i2b2 2006 (Uzuner et al., 2007): Medical discharge summaries from Partners Healthcare
annotated with PHI (private health information) entities of eight types: patients, doctors,
locations, hospitals, dates, IDs, phone numbers, and ages.

• i2b2 2010 (Uzuner et al., 2011): Discharge summaries from Partners Healthcare, Beth Israel
Deaconess Medical Center, and the University of Pittsburgh Medical Center annotated with
three entity types: medical problems, tests and treatments.

• i2b2 2014 (Stubbs and Uzuner, 2015): Longitudinal medical records from Partners Health-
care annotated with PHI (private health information) entities of eight broad types: name,
profession, location, age, date, contact, IDs, and other.

All entities are annotated in IOB format. For event extraction, we use the following datasets:

• TimeBank (Pustejovsky et al., 2003b): News articles from various sources annotated with
events, time expressions and temporal relations between events.

• i2b2 2012 (Sun et al., 2013): Discharge summaries from Partners Healthcare and Beth Israel
Deaconess Medical Center annotated with events, time expressions and temporal relations.
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i2b22006 i2b22014
Original New Original New

ID MISC ID MISC
Doctor PER Name PER
Patient PER Profession MISC
Location LOC Location LOC
Phone MISC Contact MISC
Hospital ORG PHI MISC
Date MISC Date MISC
Age MISC Age MISC

Table 2.9: Mappings from label sets for the i2b22006 and i2b22014 datasets to the CoNLL 2003 label set.

• MTSamples (Naik et al., 2021b): Medical records from the MTSamples website annotated
with events. This dataset is test-only.

CoNLL 2003 and TimeBank are the source datasets for all entity and event extraction experiments
respectively, while the remaining are target datasets. We focus on English narratives only. Among
the NER datasets, the label sets for i2b22006 and i2b22014 can be mapped to the label set for
CoNLL2003, however the label set for i2b22010 is quite distinct and cannot be mapped. Therefore,
we evaluate NER in two settings: coarse and fine. In the coarse setting, the model only detects
entities, but does not predict entity type, whereas in the fine setting, the model detects entities and
predicts types. The coarse setting evaluation covers all target NER datasets, while the fine setting
only covers datasets that can be label-mapped (i.e., i2b22006 and i2b22014). Table 2.9 presents the
mapping from the label sets for i2b22006 and i2b22014 to the CoNLL 2003 label set. Note that
Appendix C presents some examples of annotated instances from all these datasets.

2.6.2 Adaptation Methods
As the baseline model for NER and event extraction, we use a BERT-based sequence labeling
model that computes token-level representations using a BERT encoder, followed by a linear layer
that predicts entity/event labels per token. We compare the performance of adaptation methods
from the top 5 fine categories most frequently applied (i.e. most popular) to high-expertise domains
as per our analysis (Figure 2.10a), on top of this BERT baseline. Specific adaptation methods that
we test, from each fine category, are described in more detail below:

• FA: Since feature augmentation (FA) methods require some labeled target data to train
target-specific weights, no methods from this category are evaluated in the unsupervised
setting. In the setting with limited labeled target data, we evaluate the frustratingly easy
domain adaptation (FEDA) method from Daumé III (2007). This method works by creating
k+1 copies of the model’s feature space, comprising of one copy per domain and one
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domain-general copy. During training, for each example, only the features corresponding to
the example’s domain and the domain-general features are populated, while all remaining
features are set to 0. This structure helps the model learn which specific features are important
for different domains, as well as which features are important across all domains.

• PL: From the pseudo-labeling category, we test the self-training method in the unsupervised
setting. Self-training works by first training a sequence labeling model on the source dataset
of news narratives, then using the source-trained model to generate labels for unlabeled sen-
tences from the target domain (clinical narratives). A subset of high-confidence predictions
from this set of “pseudo-labeled” clinical data are then combined with the source dataset
to train a sequence labeling model. This process can be repeated iteratively until all the
unlabeled data is exhausted. Unfortunately, no pseudo-labeling methods can be tested in
the limited labeled target data setting because the key assumption underlying this class of
methods is that we have a large corpus of unlabeled target to leverage, which is no longer
true in this setting.

• LA: From the loss augmentation category, we test adversarial domain adaptation in the
unsupervised setting (Ganin and Lempitsky, 2015). This method tries to learn domain-
invariant representations by adding an adversary that tries to predict an example’s domain
and subtracting the loss from this adversary from the overall model loss. This setup is trained
in a two-stage process, with the adversary being trained for domain prediction in the first
step, and the sequence labeling model being trained to do well on sequence labeling while
suppressing domain-specific information in the second step. In the limited labeled target
data setting, we test multi-task training from the loss augmentation category. This method
leverages the availability of labeled data from other domains (like the source domain) by
training a model that consists of a shared representation learning module followed by separate
task-specific layers for each domain. In our experiments, this is operationalized as training a
shared BERT encoder with separate linear layers predicting entity/event labels for source
and target domains. Note that losses from both domains are added together, which makes
this a loss augmentation technique.

• PT: From the pretraining category, in the unsupervised setting, we test domain-adaptive
pretraining as described by Gururangan et al. (2020). This method tries to improve target
domain performance of BERT-based models by continual masked language modeling pre-
training on unlabeled text from the target domain. Similar to pseudo-labeling, no pretraining
methods can be tested in the limited labeled target data setting because of the key underlying
assumption that we have access to a large corpus of unlabeled target data, which is not true
in this setting.

• IW: From the instance weighting category, we test classifier-based instance weighting (e.g.,
Søgaard and Haulrich (2011)). In the unsupervised setting, this method trains a classifier
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on the task of predicting an example’s domain, then runs the trained classifier on all source
domain examples and uses the target domain probabilities as weights for each example. This
technique thus assigns higher weights to examples from the source domain that “look” more
like the target domain according to the domain classifier, hopefully improving performance
on the target datasets. In our setup, we perform interleaved training - we retrain the domain
classifier after each model training pass and update the weights assigned to source dataset
examples. In the limited labeled target data setting, this method first trains a target-specific
classifier using the available labeled data from the target domain. This classifier is then used
to relabel training data from the source domain, and then all source instances are ranked
according to confidence assigned by this classifier to incorrect predictions. The weights for
the bottom k examples (k is equal to the size of the target training dataset) from this ranking
are set to 1, while weights for remaining examples are set to 0, discarding them from the
training process.

In addition to these adaptation methods, we also evaluate the following baselines:

• ZS: BERT baseline model performance in a zero-shot setting, i.e., training on the source
dataset (ConLL2003/TimeBank) and testing on the target dataset without any adaptation.

• TG: BERT baseline model performance when trained on the limited labeled target data
available.

• SC+TG: BERT baseline model performance when trained jointly on a mixture of source
domain training data and limited labeled target data.

• SC->TG: BERT baseline model performance when trained on source domain data, followed
by training on limited labeled target data.

2.6.3 Results
Tables 2.10 and 2.11 show the results of all adaptation methods on both coarse and fine entity
extraction, while Table 2.12 shows the results of all adaptation methods on event extraction.
Performance on coarse NER: From Table 2.10, we can see that in the unsupervised setting, the
best-performing method categories are loss augmentation and pseudo-labeling across different
datasets. Pseudo-labeling seems to work better on target datasets whose labels can be mapped to
the source dataset, which can be considered closer transfer tasks. For i2b22010, which is the more
distant transfer task, loss augmentation works best. The effectiveness of pseudo-labeling methods
here is interesting because they can suffer from the pitfall of propagating errors made by the source-
trained model, which may also explain their poor performance on i2b22010. Indeed, early work on
applying these methods to parsing showed negative results, or very minor improvements (Charniak,
1997; Steedman et al., 2003), but these methods have shown more promise in recent years with
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i2b22006 i2b22010 i2b22014

Setting Model P R F1 P R F1 P R F1

ZS 18.68 21.82 20.13 35.23 10.13 15.74 21.16 32.77 25.71
LA 16.11 21.17 18.30 36.60 15.41 21.69 27.50 28.56 28.02

Unsup- PL 23.21 22.01 22.60 23.26 5.03 8.28 47.44 23.60 31.52
ervised PT 19.50 22.05 20.70 38.14 12.75 19.11 27.25 27.35 27.30

IW 20.98 19.53 20.23 34.31 12.12 17.91 21.00 29.22 24.43

TG 79.79 84.78 82.21 76.33 76.67 76.50 84.87 84.63 84.75
SC+TG 80.08 74.89 77.40 78.18 70.92 74.38 79.39 64.99 71.47

Limited SC->TG 86.82 90.39 88.57 71.01 74.42 72.67 89.12 79.25 83.88
Super- FA 74.89 84.44 79.38 81.12 69.36 74.78 81.25 71.31 75.96
vision LA 85.93 87.19 86.56 79.18 80.14 79.66 84.65 82.02 83.31

IW 78.63 85.74 82.03 76.34 80.47 78.35 86.61 83.21 84.88

Table 2.10: Results of all adaptation methods on NER in the coarse setting. Unsup and Limited Sup
indicate unsupervised and limited labeled target data settings respectively. Recall that the fine adaptation
method categories we evaluate are feature augmentation (FA), loss augmentation (LA), pseudo-labeling (PL),
pretraining (PT), and instance weighting (IW).

advances in embedding representations. In the limited labeled data setting, loss augmentation still
seems to remain the best-performing method on the i2b22010 dataset. However, the best performing
methods on i2b22006 and i2b22014 are the SC->TG baseline and instance weighting respectively.
The high performance of instance weighting on i2b22014 is interesting because this method uses
fewer examples from the source domain than other methods. Since the instance weighting method
chooses the top 1000 examples from the source domain that contain the fewest proportion of
high-confidence incorrect predictions according to a target-trained classifier, it carefully selects
data that is deemed to be closer to the target domain. Its high performance despite using a small
fraction of the source training data, indicates that in some cases, choosing the right subset of data is
more beneficial than using all available data for adaptation.
Performance on fine NER: From Table 2.11, we can see that in the unsupervised setting, loss
augmentation and pseudo-labeling method categories perform best (similar to coarse NER). Loss
augmentation does better on i2b22006, while pseudo-labeling continues to be the best-performing
method on i2b22014. In the limited labeled data setting, loss augmentation is still the best-
performing method on i2b22006, but the SC->TG baseline is the best-performing method on
i2b22014. The SC->TG baseline turns out to be particularly strong because it simultaneously
leverages the availability of data from additional domains, while achieving some level of forgetting
conflicting information from these domains by having training on the target domain be the last step
in its training procedure.
Performance on event extraction: From Table 2.12, we can see that loss augmentation works best
on both event extraction datasets in the unsupervised setting. Conversely, in the limited labeled data
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i2b22006 i2b22014

Setting Model P R F1 P R F1

ZS 12.59 14.09 13.30 23.94 28.25 25.92
LA 16.08 15.81 15.95 22.77 25.70 24.15

Unsup- PL 17.51 11.35 13.78 39.52 21.36 27.73
ervised PT 10.04 12.29 11.05 17.07 22.33 19.35

IW 14.40 14.05 14.22 21.82 25.62 23.57

TG 80.72 81.97 81.34 81.03 73.31 76.98
SC+TG 78.91 75.19 77.01 78.22 63.00 69.79

Limited SC->TG 87.01 87.35 87.18 87.66 84.30 85.95
Super- FA 83.98 82.01 82.98 84.21 41.41 55.52
vision LA 88.45 88.36 88.40 86.69 82.95 84.78

IW 79.29 83.25 81.22 84.30 79.48 81.82

Table 2.11: Results of all adaptation methods on NER in the fine setting. Unsup and Limited Sup indicate
unsupervised and limited labeled target data settings respectively. Recall that the fine adaptation method
categories we evaluate are feature augmentation (FA), loss augmentation (LA), pseudo-labeling (PL),
pretraining (PT), and instance weighting (IW).

setting, feature augmentation and instance weighting methods show comparable performance and
outperform all other adaptation methods and baselines. As mentioned earlier, the high performance
of instance weighting is interesting because it only uses a small subset of the source data (1000
examples) that is most similar to the target data, unlike other adaptation methods. This offers
additional evidence that selecting the right subset of data to learn from can sometimes be more
beneficial than using all available data (e.g., as done by the loss/feature augmentation methods).
Another interesting observation is that pretraining is not the best-performing method on any dataset
in the unsupervised setting. This may be a side effect of the continual pretraining process leading
to some level of forgetting, which can have negative impact in an unsupervised adaptation setting.
This further highlights the need to conduct such systematic studies to compare adaptation methods
under data-scarce settings because the ranking of methods can change based on the availability and
quality of domain-specific data. From these overall performance scores, it is clear that no single
category of methods is the clear winner across all tasks and adaptation settings. Moreover, solely
looking at overall performance leaves some interesting questions unanswered:

• Can specific properties of entity/event spans explain why certain adaptation methods do
better for certain datasets? We are primarily interested in lexical and semantic properties of
the entity and event spans.

• Is the degree of performance improvement (or degradation) achieved by various adaptation
methods correlated to some distance metric between the source and target datasets?

• How does the performance of methods in the limited labeled data setting change if the
number of target-specific examples is further decreased?
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i2b22012 MTSamples

Setting Model P R F1 P R F1

ZS 48.78 15.28 23.27 91.40 48.01 62.95
LA 51.74 18.97 27.76 88.12 58.49 70.31

Unsup- PL 44.11 11.44 18.17 91.75 39.33 55.06
ervised PT 41.46 10.36 16.57 90.15 46.32 61.19

IW 50.46 18.08 26.62 90.56 48.39 63.08

TG 86.27 89.54 87.88 – – –
SC+TG 86.47 89.55 87.98 – – –

Limited SC->TG 82.82 89.64 86.10 – – –
Super- FA 86.80 90.06 88.40 – – –
vision LA 88.31 87.67 87.99 – – –

IW 87.03 89.79 88.39 – – –

Table 2.12: Results of all adaptation methods on event extraction. Note that supervised adaptation methods
cannot be tested on MTSamples, which is a test-only dataset. Unsup and Limited Sup indicate unsupervised
and limited labeled target data settings respectively. Recall that the fine adaptation method categories we
evaluate are feature augmentation (FA), loss augmentation (LA), pseudo-labeling (PL), pretraining (PT), and
instance weighting (IW).

• Are there kinds of examples that specific adaptation methods perform well or poorly on?

• What kinds of examples does adding target domain data help adaptation methods to capture?
More specifically, what kinds of examples do methods get correct in the limited labeled data
setting but not in the unsupervised setting?

• What kinds of target domain examples are adaptation methods still unable to capture?

We perform additional analyses to answer these questions, as described in the following sections.

2.7 Analyses

2.7.1 Variation in Adaptation Method Performance by Span Proper-
ties

To study whether specific properties of entity/event spans affect the performance of various adapta-
tion methods, we perform the following analyses in addition to looking at overall performance:

1. Lexical Variation: We look at the performance of all adaptation methods on in-vocabulary
(IV) and out-of-vocabulary (OOV) spans/tokens separately. For spans, we count a span
as OOV if any of the tokens in the span is an OOV token. For unsupervised settings, the
vocabulary is constructed from the training and development sets for the source domain,
while for limited labeled data settings, the vocabulary is constructed using training and
development sets for both source and target domains.
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i2b22006 i2b22010 i2b22014

Setting Model IV F1 OOV F1 IV F1 OOV F1 IV F1 OOV F1

ZS 19.11 20.23 5.13 17.39 37.17 22.89
LA 10.32 19.12 5.59 24.00 38.47 25.19

Unsup- PL 23.08 22.55 3.23 9.10 38.69 29.01
ervised PT 12.87 21.36 2.32 21.59 36.85 24.87

IW 24.10 19.85 7.67 19.54 35.10 21.76

TG 85.54 81.55 78.42 74.92 79.78 87.32
SC+TG 63.22 79.88 77.68 71.70 59.75 76.96

Limited SC->TG 85.07 89.24 74.24 71.41 80.82 85.37
Super- FA 63.70 82.73 78.25 71.94 65.37 81.16
vision LA 90.86 85.71 83.32 76.78 79.81 85.17

IW 87.06 81.06 79.92 77.05 79.39 87.62

Table 2.13: Performance of all adaptation methods trained for coarse NER on in-vocabulary and out-of-
vocabulary entity spans. Unsup and Limited Sup indicate unsupervised and limited labeled target data
settings respectively. Recall that the fine adaptation method categories we evaluate are feature augmentation
(FA), loss augmentation (LA), pseudo-labeling (PL), pretraining (PT), and instance weighting (IW).

2. Semantic Variation: We look at the performance of all adaptation methods on different
entity types (e.g., PER, LOC, ORG, MISC, etc.) separately. This analysis is only performed
for the fine NER setting (i.e., i2b22006 and i2b22014 datasets), because we do not perform
type prediction for coarse NER or event extraction.

Results from Lexical Variation Analysis

Tables 2.13 and 2.14 show the performance of all adaptation methods trained for coarse NER and
event extraction on in-vocabulary (IV) and out-of-vocabulary (OOV) entities/events separately.
From Tables 2.10 and 2.13, we can see that the best-performing methods for coarse NER on each
dataset are also the best-performing methods on OOV entities, with the exception of i2b22010 in
the limited labeled data setting. On i2b22010, loss augmentation is not the best-performing method
on OOV entities, but its performance on IV entities is much higher than other methods, which
might make up for the slight gap in OOV performance. We make similar observations for event
extraction from Table 2.14, which shows that the best-performing method on each dataset also
achieves the best performance on OOV events.

Across all datasets, loss augmentation and pseudo-labeling seem to achieve the best perfor-
mance on OOV entities and events in the unsupervised setting. The high performance of loss
augmentation here is unsurprising since adversarial domain adaptation explicitly tries to learn
similar representations for source and target domains by suppressing their ability to be predic-
tive of domain. However, the high performance of pseudo-labeling approaches is surprising,
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i2b22012 MTSamples

Setting Model IV F1 OOV F1 IV F1 OOV F1

ZS 19.39 26.05 74.37 52.97
LA 21.81 32.00 79.06 62.80

Unsup- PL 15.87 19.84 70.14 41.11
ervised PT 15.37 17.44 72.91 50.95

IW 20.88 30.71 73.13 54.51

TG 87.39 89.53 – –
SC+TG 87.36 90.10 – –

Limited SC->TG 85.26 88.97 – –
Super- FA 87.74 90.64 – –
vision LA 87.26 90.42 – –

IW 87.98 89.79 – –

Table 2.14: Performance of all adaptation methods trained for event extraction on in-vocabulary and out-of-
vocabulary events. Unsup and Limited Sup indicate unsupervised and limited labeled target data settings
respectively. Recall that the fine adaptation method categories we evaluate are feature augmentation (FA),
loss augmentation (LA), pseudo-labeling (PL), pretraining (PT), and instance weighting (IW).

and can potentially be attributed to the power of contextualized embedding representations in
capturing source-target similarities. In the limited labeled data setting, instance weighting and
feature augmentation seem to achieve the best performance on OOV entities and events, aside from
the SC->TG baseline. Feature augmentation performing well here is also unsurprising since it
explicitly partitions the feature space to learn both target-specific and domain-general information,
which might offer it more flexible generalizability. The high performance of instance weighting
on the other hand is interesting, because it indicates that models may sometimes achieve better
generalization on the target domain when only looking at source domain examples that are most
similar to the target domain. Additionally, looking at the performance of the SC->TG baseline
on the datasets on which instance weighting performs well (i.e., i2b22010 and i2b22014), we can
see that the lower performance of this baseline compared to the baseline trained using only target
data (TG) is a strong indication that the source domain contains conflicting information, which the
instance weighting method is well-suited to handle.

Results from Semantic Variation Analysis

Table 2.16 shows the performance of all adaptation methods trained for fine NER on various entity
types for the i2b22006 and i2b22014 datasets. Additionally, we also report the proportions of each
entity type in both datasets in Table 2.15. Note that i2b22014 does not contain any instances of the
ORG entity type, based on the label mapping described in Table 2.9.

From Table 2.16, we can clearly see that the best-performing methods on each dataset according
to overall score are not necessarily the best at identifying all entity types present in that dataset.
In particular, they may not always achieve the highest performance on entity types that are less
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Dataset PER LOC ORG MISC

i2b22006 25.10 12.90 2.24 59.76
i2b22014 28.01 17.33 – 54.66

Table 2.15: Proportion of various named entity types in i2b22006 and i2b22014 datasets.

frequent and do not influence overall performance as much. For example, loss augmentation is
the overall best-performing method on i2b22006 in the unsupervised setting, but does not achieve
highest scores on all entity types. However, it does achieve the highest performance on LOC and
second highest performance on MISC (most frequent type), which boosts its performance enough
to make it the best-performing method overall. Similarly, SC->TG is the best-performing method
on i2b22014 in the limited labeled data setting, because it achieves second highest performance on
MISC (most frequent), coupled with highest performance on PER and LOC types.

We can also observe that there isn’t a clear winner for various entity types across all datasets
either. For example, for the PER entity type in the unsupervised setting, instance weighting is
the best-performing method on i2b22006, but loss augmentation is the best-performing method
on i2b22014. In the limited labeled setting, SC->TG is the best-performing method, though its
performance holds across both datasets. However, these differences may partly be an artifact of the
label mapping, which does not take context into account. For example, the “hospital” category in
i2b22006 is mapped to the ORG label from CoNLL 2003. However, hospital names can sometimes
also be used as locations when referred to in the context of patient admissions. Since there isn’t a
way to automatically identify such context-specific usages short of relabeling the data manually,
we do not account for context in the label mapping, which may be introducing some finer-grained
confounds during type prediction.

Lastly, one interesting observation that can be made from this analysis is that adding labeled
data from the target domain provides a much higher performance boost for certain entity types.
Though adding labeled target data generally improves performance across all types, we can clearly
see that the performance boost on the MISC type is massive (> 90 F1 points in both cases). The
performance boost on the ORG type is also higher (≥5x) than other types. These massive boosts
can partly be attributed to the fact that some categories that fall under these types (e.g., PHI, ID,
etc.) are specific to the target domain and do not appear in the source domain. Therefore, models
can learn to predict these types much better if provided access to some labeled examples. This
observation offers a potential solution when adapting models under data-scarce settings: focus
annotation efforts on entity types that differ widely between source and target domains.

2.7.2 Correlating Domain Distance and Performance
To analyze whether the degree of performance improvement (or degradation) achieved by various
adaptation methods is correlated to distance between source and target datasets, we first need
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i2b22006 i2b22014

Setting Model PER LOC ORG MISC PER LOC MISC

ZS 42.00 21.05 6.10 0.40 65.09 41.24 0.05
LA 39.98 22.71 9.26 0.73 69.19 32.55 0.08

Unsup- PL 43.12 14.58 12.09 0.79 65.27 41.21 0.04
ervised PT 16.79 12.18 16.39 0.17 54.47 29.69 0.05

IW 49.02 11.31 8.59 0.33 68.47 41.40 0.10

TG 72.03 0.00 44.85 95.13 69.27 45.05 89.11
SC+TG 81.96 20.67 56.63 85.25 79.27 47.71 72.66

Limited SC->TG 86.46 38.74 64.73 94.18 87.24 69.67 90.02
Super- FA 81.00 34.88 65.81 88.69 78.23 47.35 42.12
vision LA 86.13 0.00 71.75 95.04 85.09 64.58 90.83

IW 69.31 0.00 48.71 95.22 83.54 50.52 89.92

Table 2.16: Performance of adaptation methods trained for fine NER on each entity type. Note that these
scores are only computed for the i2b22006 and i2b22014 datasets, which can be label-mapped to the
CoNLL 2003 dataset. Unsup and Limited Sup indicate unsupervised and limited labeled target data settings
respectively. Recall that the fine adaptation method categories we evaluate are feature augmentation (FA),
loss augmentation (LA), pseudo-labeling (PL), pretraining (PT), and instance weighting (IW).

Figure 2.11: Taxonomy of various domain divergence measures developed or explored by prior work in
domain adaptation, according to Kashyap et al. (2020).

to establish measures to compute source-target distance. Prior work has explored an extensive
array of distance measures, motivated by the practical applicability of such measures in estimating
performance drops of models on new domains (Van Asch and Daelemans, 2010) or in choosing
among alternate models (Xia et al., 2020). Distance (or divergence) measures explored have
ranged from linguistically-oriented measures like register variation (Biber and Conrad, 2009), to
probabilistic and information-theoretic measures (Ben-David et al., 2010; Van Asch and Daelemans,
2010; Plank and van Noord, 2011) and higher-order moments of random variables (Gretton et al.,
2006; Zellinger et al., 2017). Despite heavy exploration, there isn’t a clear consensus on which
divergence measures (or family of measures) works best for specific NLP applications or model
architectures. Most recently, Kashyap et al. (2020) try to tackle this issue by surveying literature on
domain divergences, developing a taxonomy of measures and performing an empirical correlation
analysis to provide guidelines on choosing appropriate measures for various NLP tasks.

Figure 2.11 presents the taxonomy developed by Kashyap et al. (2020). This taxonomy divides
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CoNLL-2003 TimeBank

i2b22006 i2b22010 i2b22014 i2b22012 MTSamples

TVO 0.1739 0.2027 0.1629 0.1884 0.3129
KLD 2.3341 2.1348 1.9357 1.9758 2.2342
JSD 0.3896 0.3692 0.3412 0.3832 0.4403
RD 2.3125 2.1151 1.9176 1.9633 2.2239

Table 2.17: Distance between source-target domain pairs used in our experiment according to various
measures. Note that TVO, KLD, JSD and RD stand for term vocabulary overlap, Kullback-Leibler divergence,
Jensen-Shannon divergence and Renyi divergence respectively. As indicated in the table, for i2b22006,
i2b22010 and i2b22014, distance is computed from CoNLL-2003, while for i2b22012 and MTSamples,
distance is computed from TimeBank. Note that for TVO, lower values mean higher source-target distance,
while higher values correspond to higher source-target distance for all other measures.

Model TVO KLD JSD RD

LA 0.8246 0.5946 0.4580 0.5948
PL -0.3065 -0.0199 -0.2111 -0.0258
PT -0.0492 0.2929 -0.2635 0.2763
IW 0.8670 0.5029 0.3974 0.5031

FA 0.8198 -0.3204 0.3370 -0.3104
LA 0.8676 -0.2160 -0.0964 -0.2163
IW 0.4897 -0.7460 -0.5082 -0.7471

Table 2.18: Correlation between performance improvements/drops (recorded as percentage change over
baseline) and source-target domain distance for each adaptation method in both unsupervised and supervised
settings. In the unsupervised setting, zero-shot scores (ZS) are used as baseline scores, while in the supervised
setting, max(TG, SC+TG, SC->TG) is taken as baseline score.

divergence measures into three major families as described below:

1. Geometric: Geometric measures calculate the distance between vector representations for
source and target domains (or instances) in a metric space. While these measures are easy to
calculate, they are often ineffective in very high-dimensional spaces because all distances
appear the same.

2. Information-Theoretic: Information-theoretic measures calculate the distance between
probability distributions representing the source and target domains. These probability
distributions are typically distributions over word probabilities or n-gram probabilities.

3. Higher-Order: Higher-order measures consider matching higher-order moments of random
variables or divergence in a projected space. Such measures have properties that are amenable
to end-to-end learning based domain adaptation methods, which has led to them being
extensively adopted in recent research.
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Not all divergence measures fit neatly into this proposed taxonomy, leaving out some measures that
have been used in prior work but do not have ample support (e.g., Term Vocabulary Overlap (TVO)
(Dai et al., 2019)).

In addition to developing this taxonomy of divergence measures, Kashyap et al. (2020) also
perform an empirical study to assess the suitability of 12 divergence measures for predicting drops
in performance for three NLP tasks: POS tagging, NER and sentiment analysis. Their study only
assumes a covariate source-target shift, i.e. a shift in the marginal distributions over source and
target domain features, but no shifts in the label distributions. This assumption is made because
measuring label distribution shifts would require access to some target labeled data, which may
not always be the case. Moreover, this assumption fits well with our case study, because we
are also evaluating classes of adaptation methods in an unsupervised adaptation setting. From
their empirical study spanning 130 different domain adaptation scenarios, Kashyap et al. (2020)
osberve that there isn’t a single divergence metric that attains the best correlation scores across
all tasks. However, the family of information-theoretic measures tested (namely KL-divergence,
Renyi divergence and Jensen-Shannon divergence) and the TVO measure consistently provide good
correlations. Although higher-order measures are not as consistent for performance drop prediction,
since they are end-to-end differentiable, they are more useful for learning better representations
with lower source-target distance. Based on the observations from this study, we choose TVO and
information-theoretic measures for our correlation analysis between performance improvements (or
drops) achieved by various adaptation methods and source-target distance. Given a source domain
S and a target domain T , chosen distance measures are computed as follows:

1. Term Vocabulary Overlap (TVO): This measure provides an estimate of the fraction
of words from the target domain vocabulary that are also present in the source domain
vocabulary. It is computed as follows:

TV O(S, T ) = |VT fl VS |
|VT | (2.1)

Despite its simplicity and inability to capture nuanced divergences between domains, Kashyap
et al. (2020) found that TVO achieves strong, reliable correlations for performance drop
prediction.

2. Kullback-Leibler Divergence (KLD): This information-theoretic measure captures the
difference between the word probability distributions for the target and source domains. The
source domain distribution is treated as the reference probability distribution. It is computed
as follows:

DKL(T ||S) =
ÿ

x

T (x) log
A

T (x)
S(x)

B

(2.2)
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3. Jensen-Shannon Divergence (JSD): This measure is a symmetric extension of the KL-
Divergence measure. Moreover, the square root of this measure is a metric and it can be used
for non-continuous probabilities. JSD between word probability distributions of source and
target domains is computed as follows:

DJS(T ||S) = 1
2DKL(T ||M) + 1

2DKL(S||M) (2.3)

M = 1
2(S + T ) (2.4)

4. Renyi Divergence (RD): This measure is a generalization of the KL-Divergence measure,
and is also called –-power divergence. Similar to KLD and JSD, RD measures the distance
between word probability distributions of the target and source domains as follows:

D–(T ||S) = 1
– ≠ 1 log

A
ÿ

x

T (x)–

S(x)–≠1

B

(2.5)

For all information-theoretic measures (KLD, JSD and RD), we need to compute word probability
distributions for both source and target domains. As described by Kashyap et al. (2020), we
first filter out all stop words from source and target vocabularies and construct a joint vocabulary
consisting of the top 10,000 words according to frequency across both domains. Then word
probability distributions for source and target domains are computed by normalizing the occurrence
counts for all words in the joint vocabulary. For RD, – is set to 0.99. Table 2.17 shows the distance
scores between all source-target domain pairs considered in our case study according to these
measures. It should be noted that for the TVO measure, smaller values indicate larger distance
between the source and target domains, while for KLD, JSD and RD, larger values indicate larger
source-target distance. From Table 2.17, we can see that while KLD, JSD and RD follow similar
trends, TVO scores do not always follow the same pattern. For example, the TimeBank-MTSamples
has the highest TVO score (i.e., closest source-target pair), but the KLD, JSD and RD scores for
this pair are also high (i.e., distant source-target pair). This discrepancy stems from the fact that
TVO only captures proportion of overlapping vocabulary, but the information-theoretic measures
also capture usage frequency. Therefore, domain pairs which have a large shared vocabulary but
different usage frequencies can simultaneously have high TVO scores and high KLD/JSD/RD
scores.

To compute correlation between adaptation method performance and domain distance, we first
compute percentage change in performance (improvement or drop) achieved by the adaptation
method over a baseline. For all adaptation methods tested in the unsupervised setting, the zero-shot
score (ZS) is used as baseline performance, whereas for the limited target labeled data setting, the
maximum of TG, SC->TG and SC+TG scores is used as baseline performance. After computing
percentage changes for each adaptation method, we calculate the Pearson correlation between these
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values and the source-target distance according to each measure. Table 2.18 shows the results from
this correlation analysis.

From Table 2.18, we can see that TVO scores are strongly correlated with the performance of
loss augmentation and instance weighting methods in the unsupervised setting, as well as feature
and loss augmentation methods in the limited target labeled data setting. This is consistent with
the observation from Kashyap et al. (2020) that TVO is a strong predictor of performance drop
despite its simplicity. Since higher values of TVO indicate closer source-target pairs, strong positive
correlations indicate that these classes of methods provide larger performance boosts for domain
pairs with a larger shared vocabulary. This is justifiable for loss augmentation and unsupervised
instance weighting methods. As loss augmentation methods are designed to learn domain-general
representations, especially for words occurring in both source and target domains, a larger shared
vocabulary could push the model towards higher target domain performance, explaining strong
positive correlations between TVO and LA. Unsupervised instance weighting uses source instances
that look lexically similar to the target data to improve performance, which also allows for larger
improvements given a larger shared vocabulary.

Most of the other distance measures do not achieve correlation scores as strong as TVO.
However, KLD and RD do achieve strong correlation with instance weighting methods in the
supervised setting. These correlations are negative, indicating that instance weighting achieves
better performance gains on closer source-target pairs (lower KLD/RD). Interestingly, KLD and RD
achieve moderate positive correlations with loss augmentation and instance weighting methods in
the unsupervised setting. This indicates that despite varying usage across source and target domains,
the presence of a large chunk of shared vocabulary is a strong indicator for larger performance
boosts for these categories of methods.

Though this analysis provides some insight into the relationship between source-target distance
and adaptation method performance, it must be noted that these distance measures are not nuanced
and do not capture fine-grained characteristics such as entity type distributions and syntactic
constructs for words from the shared vocabulary. Moreover, though most work in NLP treats a
dataset as consisting of a single domain, it is often the case that multiple domains exist within
one dataset or several datasets are drawn from a single collection of texts. This has led to work
questioning the one-dataset-one-domain assumption (Plank and van Noord, 2011). But source-
target distance measures do not take this into account. Therefore, fine-grained example-level
analyses such as the lexical and semantic variation analyses from the previous section must be
carried out in conjunction with distance-based analyses to develop a robust understanding of the
strengths and weaknesses of adaptation methods.

2.7.3 Data Reliance of Adaptation Methods
To develop a better understanding of the data dependence of various method categories in the
supervised adaptation setting, we re-train all baselines and methods tested in our case study (i.e.
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(a) Performance on i2b22006 (b) Performance on i2b22010

(c) Performance on i2b22014

Figure 2.12: Performance of various adaptation methods given varying number of target domain examples
on coarse NER datasets. Recall that methods evaluated in a limited labeled data setting include feature
augmentation (FA), loss augmentation (LA) and instance weighting (IW).

TG, SC->TG, SC+TG, FA, LA, and IW) using an increasing number of labeled examples from
the target domain, and evaluate their performance at each stage. For this analysis, all methods are
re-trained on subsets ranging in size from 100 to 1000 target domain examples, in increments of
100. All subsets of target domain examples are randomly sampled.

Figures 2.12a, 2.12b and 2.12c show the performance trends for all adaptation methods given
target example subsets of varying sizes, on the task of coarse NER from the i2b22006, i2b22010
and i2b22014 datasets respectively. Similarly, Figures 2.13a and 2.13b show the performance
trends for all adaptation methods on fine NER from i2b22006 and i2b22014 respectively. Finally,
Figure 2.14 shows the performance trends for all methods on the task of event extraction from
i2b22012. Note that MTSamples is a test-only dataset, and is therefore excluded from this analysis
due to the lack of target domain training data. These graphs highlight several interesting points.
High starting performance: From the graphs, we can clearly see that the performance for all
methods starts off with fairly high F1 scores (≥2-3x the performance in an unsupervised setting),
despite having access to only 100 target domain examples at that stage. Performance on event
extraction from i2b22012 is particularly high. Such high starting performance can partly be
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(a) Performance on i2b22006 (b) Performance on i2b22014

Figure 2.13: Performance of various adaptation methods given varying number of target domain examples
on fine NER datasets. Recall that methods evaluated in a limited labeled data setting include feature
augmentation (FA), loss augmentation (LA) and instance weighting (IW).

attributed to the representational power of large pretrained language models like BERT, which are
able to derive utility from extremely small subsets of annotated examples. This observation also
raises an important question: given a constrained budget, how should resources be divided between
sourcing annotated data and applying data-scarce adaptation methods? Bai et al. (2021) explore this
question for NER and relation extraction (RE) from three procedural text datasets. They observe
that for small budgets, spending all funds on annotation leads to the best performance; once the
budget becomes large enough, a combination of data annotation and in-domain pretraining works
more optimally.
Higher performance of TG over SC+TG: Another interesting observation from the graphs is
that the TG baseline consistently achieves higher performance than the SC+TG baseline on all
datasets. This is interesting because the SC+TG baseline trains on source domain training data in
addition to the limited number of target domain examples. Having access to more training examples
could have improved the performance of this baseline over the TG baseline, but we do not see
this from our analysis. This is another indication, in addition to the high performance of instance
weighting methods, that adding more data is not always helpful for adaptation, especially if the
data introduces conflicting signals.
High low-data performance of LA and IW: Among the domain adaptation methods, loss aug-
mentation and instance weighting seem to provide better performance at lower data sizes over
feature augmentation, in most settings. The only exception is fine NER from i2b22006. This
indicates that in extremely data-scarce settings, these adaptation method categories might be the
strongest contenders for initial experimentation.

Finally, noting that target domain annotated data provides a huge performance boost, even if
the number of available examples is quite low, raises another interesting question: is it possible to
boost performance in data-scarce settings further by choosing informative subsets of target domain
examples to annotate? We explore this question in more detail in the next chapter.
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Figure 2.14: Performance of various adaptation methods given varying number of target domain examples
on event extraction on the i2b22012 dataset. Recall that methods evaluated in a limited labeled data setting
include feature augmentation (FA), loss augmentation (LA) and instance weighting (IW).

2.7.4 Categories of Examples Tackled by Specific Adaptation Meth-
ods

In addition to quantitative analyses studying the variation in performance of adaptation methods
based on lexical and semantic properties, we also perform qualitative analyses to better identify
characteristics of examples that help/hinder the performance of various adaptation methods. We
believe that pairing quantitative and qualitative analyses is likely to offer deeper insight into how
the performance of adaptation methods is influenced by peculiarities of the source/target data
distributions, by cataloguing both broad and specific trends. Our qualitative analyses try to answer
the final three questions raised by our case study.

The first question asks whether there are categories of examples that specific adaptation methods
perform particularly well/poorly on, which can correspond to strengths and weaknesses of individual
adaptation methods. To perform this analysis, for every adaptation method, we isolate examples
that it gets incorrect for each source-target domain pair, but all other methods get correct (weakness
subset), and vice versa (strength subset). Note that we analyze the coarse setting for the NER
task. For each method, we examine 20 examples from each subset per domain pair, resulting in an
analysis of 100 strength cases and 100 weakness cases in the unsupervised setting, and 80 strength
cases and 80 weakness cases in the supervised setting (MTSamples is excluded in the supervised
setting). Based on this analysis, we find some interesting differences across adaptation methods.
Observations in Unsupervised Setting:
Strengths/Weaknesses of LA: Loss augmentation methods seem to be able to deal well with
vocabulary shift, and manage to accurately identify entities/events comprising of highly technical
terms (e.g., “codeine”, “CXR”, “hypoglycemia”, “Apgars”, etc.). We dig deeper into this property
in a subsequent case study in the next chapter. They also seem to be largely agnostic to minor
orthographic differences (e.g., full capitalization of entities as in “ABDOMEN”), which other
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adaptation methods find difficult to tackle. On the flip side however, these methods have a tendency
to default to labeling medical terms as events/entities, especially in short sentences that do not
provide much context. For example, Tamoxifen is labeled as an entity in “TAMOXIFEN 20 MG
PO QD”. This is especially a problem for the PHI datasets (i2b22006 and i2b22014) since they
are not focused on identifying medical entities, and might partly explain why loss augmentation
methods lose out to pseudo labeling on coarse NER from these datasets. Another weakness on the
event extraction task seems to be the tendency to annotate some entities as events because the head
noun has a second (potentially more common in source domain) word sense that can be used as an
event verb (e.g., annotating “meeting” in the phrase “cervix meeting”).
Strengths/Weaknesses of PL: Strength cases for pseudo-labeling methods primarily consisted
of sequences with no entities/events, making it difficult to identify characteristics of entity spans
that this method performed well on. The only exception was the MTSamples dataset, and most
strength cases from this dataset were simple verbs indicating past/present occurrences (e.g., noted,
examined). Looking at weakness cases however revealed that these methods struggle with medical
vocab (e.g., “morphine”, “prolapse”, “extubated”, etc.), which is reflected in their poor performance
on i2b22010. This behavior is in strong contrast to the loss augmentation class of methods. It is
also interesting to note that despite struggling with medical vocabulary, this class of methods can
achieve high performance if the task is not centered around medical entities/events as in i2b22006
and i2b22014 (PHI identification).
Strengths/Weaknesses of PT: Similar to pseudo-labeling methods, strength cases primarily
consisted of sequences with no entities/events for i2b22006, i2b22014 and i2b22012. However,
on i2b22010 and MTSamples, we observed that some instances of highly technical phrases were
correctly identified as entities/events (e.g., “hypertension”, “capsulectomy”, “friability”, etc.),
indicating that this class of methods captures medical vocabulary better than pseudo-labeling.
However, these methods are not as agnostic to orthographic differences like capitalization, and also
share the tendency of loss augmentation methods to predict medical terms as entities in the absence
of much surrounding context. Interestingly, on event extraction from MTSamples, many stative
events are missed, and instructional verbs (e.g., “see” in “please see”) are mistakenly marked as
events.
Strengths/Weaknesses of IW: Again, strength cases primarily consisted of sequences with no
entities/events, with the exception of MTSamples. On MTSamples, instance weighting methods
were able to identify a few medical terms, but majority cases were primarily events representing
past/present occurrences and short-term stative events. Looking at weaknesses showed inability to
handle orthographic differences like capitalization was a definite issue with this class of methods,
however no other phenomena stood out clearly.

Observations in Supervised Setting:
In comparison to the unsupervised setting, analyzing strength and weakness cases for adaptation
methods in the supervised setting yielded fewer method-specific observations. Strength cases
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for most methods included some MD name, date and time entities, as well as highly complex
medical terminology, but as we demonstrate in the subsequent analysis, improved performance on
these phenomena can be attributed more to the availability of labeled target data. However one
aspect on which both loss augmentation (LA) and instance weighting (IW) methods seemed to do
slightly better than feature augmentation (FA) was their ability to handle longer spans and longer
entity/event lists (e.g., “an embolus in the right profunda / femoral artery”, patient denied “nausea”
, “vomitting” , “abdominal pain” , “dysuria” , “dizziness” ). Both IW and LA methods were also
able to accurately identify boundaries when tackling consecutive entities (e.g., place followed by
time). Lastly, on event extraction, LA methods suffered from the problem of ignoring adjective
descriptors (e.g., only labeling “hypotensive” instead of “mildly hypotensive”, or “a Doppler signal”
instead of “a strong Doppler signal”).

This analysis provides examples of some linguistic phenomena, in addition to vocabulary
handling, that specific methods are able to handle better than others. Many of these phenomena
(e.g., capitalization differences, long lists, etc.) are relatively rare and therefore might not influence
overall task performance or method ranking. However, identifying such connections between
phenomena and methods can still be helpful, especially when trying to adapt to a new domain
where these rare phenomena are more common (e.g., social media text).

2.7.5 Categories of Examples That Benefit from Adding Target La-
beled Data

Our second qualitative analysis focuses on identifying categories of examples on which we observe
improved performance after adding limited labeled data from the target domain. To isolate these
examples from each dataset, we collect the set of examples that all methods and baselines get
wrong in the unsupervised adaptation setting, but right in the supervised adaptation setting. We
hope that choosing this set of examples will minimize the possibility of including examples that
specific methods do not fare well on. From this set of examples for each dataset, we randomly
sample 50 examples for our final qualitative analysis. Note that since the MTSamples dataset does
not have in-domain training data, we cannot test supervised adaptation methods on it, and hence
it is excluded from this qualitative analysis. For the NER datasets, we perform this qualitative
analysis for the coarse setting.

Table 2.19 gives a brief overview of the error categories, along with example instances, that we
observe from our qualitative analysis of the three NER datasets (i2b22006, i2b22010 and i2b22014).
From the table, we can see that several error categories arise due to entity writing formats being
slightly different in medical narrative text (e.g., DAT, NUM, NAM, LOC). In particular, the DAT
category is interesting because temporal entities annotated in i2b22006 and i2b22014 usually only
include dates, days and months and do not annotate years as entities. This is because years are
not considered protected attributes under HIPAA, and therefore not scrubbed during PHI removal.
This is different from typical NER, in which years would also be included as part of temporal
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Category Description Examples

DAT Date entities (or boundaries) incorrect 01/12 /1992 12:00:00 AM
NUM Numerals (or boundaries) incorrect 081039790 EH
NAM Name entities (or boundaries) incorrect ANA V. A, M.D.
LOC Locations not annotated in gold data She was received in the Respiratory In-

tensive Care Unit immediately.
MVE Entities consisting of medical terms Lipase and amylase remained normal.
MPE Phrases that undergo meaning change

when used in medical contexts
There was no obstruction.

ABR Abbreviated entities hh / bmot
NTE Not entities per dataset guidelines (i.e.

entities from types not included in data)
She had a DVT in 11 /96 on Coumadin
preoperatively.

Table 2.19: Error categories observed from an analysis of examples from NER datasets, which are tagged
correctly on adding target domain labeled data. Note that yellow highlights indicate gold entities, while pink
highlights indicate entities identified by unsupervised adaptation methods that are not present in gold data.

entities. Such minor inconsistencies in annotation guidelines can lead to performance drops on an
entire category of entities, and qualitative analyses can help identify such scenarios. A potential
solution for such annotation inconsistencies could be to identify and annotate instances from that
specific category to update the model. Aside from format-dependent categories, several error
categories also arise from incomplete understanding of medical vocabulary (MVE, MPE, ABR),
particularly abbreviations and terms that undergo semantic drift (i.e., change meanings when used
in medical contexts). The last error category (NTE) includes spans that are identified as entities
by our models, but are not annotated in the gold data because the dataset does not include entities
from that category. For example, Table 2.19 shows an example from the i2b22006 dataset, in
which the entity “Coumadin” is identified. It is a medical entity (drug), however since this dataset
focuses only on entities that would count as PHI, “Coumadin” is not included. Learning such
task-specific distinctions is another scenario in which having some labeled data can help update the
model appropriately. Table 2.19 shows how many examples fall into each category for all three
NER datasets. As expected, format-related errors are much higher on i2b22006 and i2b22014,
both of which focus on PHI removal, while i2b22010, which focuses on medical entities, has a
higher proportion of errors arising from medical terminology issues. Lastly, we note that entity
boundary conditions are not satisfied in a small percentage of cases (for example, having an I-ENT
tag without a B-ENT tag before it). Such issues arise because our model architecture does not
enforce this boundary condition since it does not have sequential dependencies among predicted
tags, and can be resolved using a CRF layer.

Table 2.21 similarly gives a brief overview of the error categories, along with example instances
and number of examples in each category, observed from a qualitative analysis of the i2b22012
event extraction dataset. Unlike the NER datasets, none of the error categories here arise due
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Dataset DAT NUM NAM LOC NTE MVE MPE ABR

i2b22006 16 16 3 4 9 – – 4
i2b22010 – – 8 1 – 33 11 1
i2b22014 26 2 6 – 25 – – 1

Table 2.20: Proportion of errors from each category observed from an error analysis of 50 randomly sampled
cases from each NER dataset, which are tagged correctly on adding target domain labeled data.

Category Description Examples Num

AVE Associated verb (or adjective) anno-
tated by model in place of noun

Pt was continued on prophylactic
heparin.

21

MVE Verb events not present in gold data It was felt that, because of evidence 6
MNE Non-event nouns according to

source guidelines
This was placed on postoperative
day no. 9 without any difficulty.

2

ENT Entities according to source domain
guidelines

The patient was admitted to the In-
termediate Care Unit

7

MTE Events containing medical terms He was admitted for anticoagulation
and hemodynamic monitoring.

19

UNK Unknown cause for error DISCHARGE DATE : 6

Table 2.21: Error categories observed from an analysis of examples from the i2b22012 event extraction
dataset, which are tagged correctly on adding target domain labeled data. Note that yellow highlights indicate
gold events, while pink highlights indicate events identified by unsupervised adaptation methods that are not
annotated in gold data.

to different writing formats. Most of the error categories (AVE, MVE, MNE, ENT) occur due
to discrepancies between what is considered an event in the source and target data annotation
guidelines. For example, consider the sentence “patient was continued on heparin”. According to
the source dataset guidelines, “continued” would be considered the event since that is the word
referring to the action/accomplishment/state being discussed. However, the i2b22012 dataset, in
an attempt to make annotated events medically informative, marks the associated treatment noun
“heparin” as the event. There are several such categories of spans that would ordinarily be considered
entities but are marked as events according to the i2b22012 guidelines (e.g., “Intermediate Care
Unit” in row 4). Again, bridging this gap between guidelines is difficult to do in a completely
unsupervised fashion, since the model does not know how label distributions are shifting. Aside
from guideline-related categories, we again see examples that require better understanding of
clinical vocabulary (MTE) forming a large proportion of error cases. From this analysis, we can
see that adding target domain labeled data has great utility for spans with major variation in format,
terminology and labeling, providing a small set of annotated examples.
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Category Description Examples

BIE Boundary inconsistency, especially for
long and consecutive entities, and lists

ICECA NIGHT , M.D. 368 PBE-2ND
FLOOR OFM 070 PQK 960

TIM Temporal phrases missed by models New Years Eve
MVE Medical terms that aren’t entities ANGIOSARCOMA
ABR Abbreviated entities cut-off/combined 5/3 /99 jq
NTE Not entities per dataset guidelines (i.e.

entities from types not included in data)
She had a 1:1 sitter at all times.

ABE Ambiguous phrases as entities Cardiothoracic Surgery was on standby
UNK Unknown cause for error PT not at PROMPTCARE.

Table 2.22: Error categories observed from an analysis of examples from NER datasets, which are tagged
incorrectly by all supervised adaptation methods (and baselines). Note that yellow highlights indicate gold
entities, while pink highlights indicate entities identified by unsupervised adaptation methods that are not
present in gold data.

Dataset BIE TIM MVE ABR NTE ABE UNK

i2b22006 32 4 4 4 – – 8
i2b22010 30 – – 1 6 3 12
i2b22014 27 – – 2 – – 22

Table 2.23: Proportion of errors from each category observed from an error analysis of 50 randomly sampled
cases from each NER dataset, which are tagged incorrectly by all supervised adaptation methods and
baselines.

2.7.6 Categories of Examples Still Left Out: The Long Tail to the
Long Tail

Our final qualitative analysis aims to identify the long tail to the long tail, i.e. what categories of
examples do all methods still get wrong even after having access to some labeled data? The goal
of this analysis is to identify key phenomena that adaptation methods are still unable to capture,
at a more micro-level even if this analysis cannot span all examples. For this analysis, we collect
all examples that all supervised methods and baselines get wrong, and then randomly sample 50
examples for each dataset. As in the previous analysis, MTSamples is excluded due to lack of
in-domain training data for supervised adaptation.

Table 2.22 summarizes the error categories arising from our qualitative analysis of the three
NER datasets (i2b22006, i2b22010 and i2b22014), and provides examples for each. From the
table, we can see that some of these categories (NTE, ABR) were also observed in the previous
qualitative analysis, indicating that despite adding pertinent training data, these error categories
are not perfectly resolved. However, we also see several new categories that highlight phenomena
that are still out of reach for current adaptation methods. One of these categories is boundary
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Category Description Examples Num

BIE Boundary inconsistency for
long/consecutive events, and lists

DM - glipizide , ISS 35

MSE Events missed (cause unclear) She was also changed to intravenous
Solu-Medrol.

5

EXE Extra events found (cause unclear) WBCs high but normalized. 13
ABR Abbreviated events CMED service was consulted. 3

Table 2.24: Error categories observed from an analysis of examples from the i2b22012 event extraction
dataset, which are tagged incorrectly by all supervised adaptation methods (and baselines). Note that yellow
highlights indicate gold entities, while pink highlights indicate entities identified by unsupervised adaptation
methods that are not present in gold data.

inconsistency errors (BIE), which especially arises when sentences contain long entities (e.g.,
addresses), entities in consecutive positions or lists of entities (e.g., medications). This is an
interesting category of errors because it requires knowledge about general formats like addresses,
as well as more domain-specific formats like a listing of observations from a physical examination,
and is also highly contextual. This makes it a category that is likely to vary highly across domains
and instances. Another category of errors is medical terms that appear in isolation (e.g. row 3)
and in the absence of surrounding context, models default to labeling them as entities. However,
they are not annotated as entities in the gold data. A third category of errors is temporal phrases
that are missed by models because they make indirect references to dates (e.g., new years eve).
Finally, the last non-unknown category of errors consists of ambiguous phrases (ABE) for which
type disambiguation is difficult even in context, making it hard to decide whether the phrase is a
entity under the current dataset/task scope. For examples, in the sentence “Cardiothoracic Surgery
was on standby”, the phrase “cardiothoracic surgery” likely does not refer to the procedure, but
the department, and is therefore not an entity in i2b22010 (which focuses on medical entities).
Table 2.23 shows how many examples fall into each category for all NER datasets. From this table,
it is clear that boundary inconsistency is the most prevalent error type in this setting, followed by
examples for which the cause of error cannot be deduced.

Table 2.24 presents the error categories arising from our qualitative analysis of the i2b22012
event extraction datasets, along with example instances and number of examples falling into each
category. From the table, we can see that similar to NER, boundary inconsistency is a huge problem
for event extraction as well, with nearly 70% of the errors falling into this category. We see that
abbreviations continue to pose a problem even in this setting. For all remaining errors, though
they can broadly be divided into two categories based on whether the model is missing events or
annotating extra events, it is difficult to identify a pattern or phenomenon that causes the model to
fail.

From this analysis, it is clear that while adding some labeled target domain data helps bridge
the performance gap significantly, there still remain categories of examples that models fail on. It is
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interesting to note that some categories require highly instance-specific, contextualized reasoning,
which may raise the question: do models trained in a maximum likelihood estimation (MLE)
paradigm have the capacity to do well on such instances?

2.8 Conclusion

This chapter presented a two-level conceptualization of the long tail, and a qualitative meta-analysis
of 100 representative papers on domain adaptation and transfer learning in NLU, with the aim of
understanding the performance of adaptation methods on the long tail. Through this analysis, we
assessed current trends and highlighted methodological gaps that present major avenues for future
research in transfer learning for the long tail. We observe that current research has a tendency to
sideline certain types of tasks, languages, domains, and adaptation settings, indicating that long tail
coverage is far from comprehensive. We also identify two properties that help long tail performance,
but have not received much attention in recent adaptation research: (i) incorporating source-target
domain distance, and (ii) incorporating a nuanced view of domain variation. Additionally, we
identify three major gaps that must be addressed to improve long tail performance: (i) combining
adaptation methods, (ii) incorporating extra-linguistic knowledge and (iii) application to data-scarce
adaptation settings. Finally, we demonstrate the utility of the framework and observations resulting
from our meta-analysis in guiding the design of systematic meta-experiments to address prevailing
open questions by conducting a systematic evaluation of popular adaptation methods for a high-
expertise domain (clinical text) in a data-scarce setting. This case study revealed interesting insights
about the adaptation methods evaluated, highlighted key questions that need to be studied further,
and showed that significant progress can be made towards developing a better understanding of
adaptation for the long tail by conducting such experiments.
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3
Improving Macro-Level Adaptation: A
Case Study on Event Extraction

Chapter 2 presented a qualitative meta-analysis of representative work on transfer learning for
NLU, with an eye towards categorizing and understanding the performance of adaptation methods
on macro long tail domains, through a case study on two semantic sequence labeling tasks (NER
and event extraction) for clinical narratives. In this chapter, we delve deeper into the problem of
data-scarce adaptation between macro-level long tail dimensions for the task of event extraction, for
which building a high-performing generalizable system has remained an elusive goal. We propose
two new adaptation methods:

• Likelihood-based instance weighting (LIW) (Naik et al., 2021b)
• Active learning with domain-aware query sampling (DAQ)

LIW is an unsupervised adaptation method, while DAQ, being an active learning method, requires
small amounts of labeled data from the target domain. As in the previous chapter, we evaluate
the performance of both methods on clinical narrative datasets. In addition to clinical narratives,
we bring two additional domains under our purview: (i) doctor-patient conversation transcripts
(both high expertise and non-narrative) (Naik et al., 2021b), and (ii) literary texts (a high expertise
domain) (Sims et al., 2019). From our experiments, we see that LIW improves performance over a
zero-shot baseline, and while it is not the best-performing method on the domains tested, it performs
best on certain categories of examples (e.g., event types not present in source data). Similarly we
see that DAQ improves performance over active learning baselines. Though these gains are modest
for event extraction, additional experiments on NER demonstrate that DAQ can be quite powerful in
certain settings. Interestingly, most active learning variants do not outperform a random sampling
baseline indicating limited utility of incorporating active learning in an adaptation setting. These
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case studies expand the set of domains and settings studied so far, identify strengths and weaknesses
of our proposed techniques, and further our understanding of the performance of various classes of
adaptation methods on macro long tail domains.

3.1 Introduction

Events are an important phenomenon in the field of computational semantics. They offer an intuitive
mechanism for constructing structured representations of text, which can be used for downstream
tasks such as question answering and summarization. Events also embody a crucial function of
language: the ability to report happenings. Narratives from many diverse domains (e.g., news
articles, literary texts, clinical notes) use events as basic building blocks. These characteristics
make event extraction a key sub-task of interest for text understanding pipelines in multiple
domains, including high expertise domains such as clinical notes and scientific articles. Despite the
importance of this task, building high-performing and generalizable systems for event extraction
has remained an elusive goal.

One of the major hurdles is that the notion of what counts as an important event is usually
task-specific or domain-specific (sometimes both). For example, to build a system that can track a
patient’s disease progression from clinical notes, event extractors only need to focus on extracting
medical events relevant to that illness. This task/domain specificity has encouraged prior work to
focus on specific event types (Grishman and Sundheim, 1996; Doddington et al., 2004; Kim et al.,
2008) or domains (Pustejovsky et al., 2003b; Sims et al., 2019), leading to a heavy emphasis on
building datasets/tools for populous domains such as news articles. Owing to this narrow focus,
and the abundance of annotated datasets built from news data, supervised event extraction models
often fail to adapt to new domains or event types (Keith et al., 2017), especially domains that fall
into the macro long tail. Conversely, unsupervised event extractors that use syntactic rule-based
modules (Saurí et al., 2005; Chambers et al., 2014) have a tendency to over-generate by labeling
most verbs and nouns as events, diminishing their applicability to new domains. This current state
of affairs makes the event extraction task an interesting testbed to study macro-level adaptation
from a theoretical perspective. Additionally, developing methods for better macro-level adaptation
of event extractors has immediate and widespread practical utility.

In this chapter, we tackle the task of building event extractors that are more adaptable at the
macro-level in a data-scarce setting, i.e. there is no or very little annotated training data from the
domain of interest. To achieve this, we propose two new macro-level adaptation methods:

• Likelihood-based instance weighting (LIW) (Naik et al., 2021b)
• Active learning with domain-aware query sampling (DAQ)
The first method, likelihood-based instance weighting (LIW), is an unsupervised adaptation

technique, which uses no labeled target data, that uses language model likelihood scores to reweight
source domain instances based on their similarity to target domain instances. LIW falls under
the hybrid coarse category and the fine category of instance weighting in our adaptation method
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taxonomy. This reweighting results in better alignment between the marginal distributions of the
source and target domains that we are transferring between. From a machine learning perspective,
this method aims to tackle covariate shift, i.e. shift between marginal distributions of source
and target domains, which is a key contributor to overall distributional shift (Ben-David et al.,
2010). From a linguistic perspective, we hope that using language model scores to reweight source
instances pushes this method to leverage word contexts, in addition to relying on the vocabulary
shared between source and target domains, like most methods studied in the previous chapter.

The second method, active learning with domain-aware query sampling (DAQ), is an active
learning technique that incorporates distance from source domain instances into the sampling
criterion when choosing instances from the target domain to annotate. This method can optionally
be used in conjunction with unsupervised adaptation to incorporate limited amounts of labeled data
in a more sample-efficient manner. DAQ falls under the coarse category of data-centric methods
and the fine category of active learning according to our adaptation method taxonomy. The goal of
incorporating source domain distance as an additional term is to ensure that active learning avoids
selecting target instances that are similar enough to the source domain that we could expect a model
trained on the source data to do reasonably well on them already. We explore two formulations of
source domain distance: (i) cosine similarity of an instance with source domain instances in an
embedding space (DAQ-CS), and (ii) probability odds ratio of an instance belonging to the target
domain according to a classifier trained to separate source and target instances (DAQ-CC). From a
machine learning perspective, this attempts to further optimize the informativeness of the target
instances chosen for labeling at each iteration (Rai et al., 2010). From a linguistic perspective, we
again hope that using language models to develop embedding spaces (as in Aharoni and Goldberg
(2020)) and domain separation classifiers encourages reliance on word contexts, in addition to
shared vocabulary. Additionally, we use this as an opportunity to study sample-efficiency of active
learning methods in a limited labeled data setting, which was not explored much in the previous
chapter.

This chapter presents experiments evaluating the effectiveness of both LIW and DAQ, and
analyses comparing their performance with other strong adaptation methods on the task of event
extraction. Of various task formulations used widely, we adopt the formulation of event extraction
as the task of labeling triggers, i.e., words which instantiate an event. For example, in the sentence
“She was diagnosed with cancer,” diagnosed and cancer are triggers, referring to “diagnosis” and
“illness” events respectively. Throughout this chapter, we model event trigger labeling as token-level
classification. Since we are interested in bringing more macro long tail domains under our purview,
especially one from the non-narrative category, we create new event extraction test sets for two
medical domains: (i) clinical records, and (ii) doctor-patient conversation transcripts. To do so, we
develop comprehensive event annotation guidelines, based on TimeML (Pustejovsky et al., 2003a)
and Thyme-TimeML (Styler IV et al., 2014). Using these guidelines, we annotate 45 documents
from each domain to create new test sets.

To evaluate the effectiveness of LIW, we perform a case study according to the following
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experimental setup:
• Task: Event extraction (semantic sequence labeling)
• Source Domain: News articles (TimeBank) (Pustejovsky et al., 2003b)
• Target Domain(s): Clinical notes (MTSamples), Doctor-patient conversation transcripts

(Abridge) (Naik et al., 2021b)
• Task Model: BERT-BiLSTM event extractor (Sims et al., 2019)
• Adaptation Method: Likelihood-based instance weighting (LIW; hybrid method)
• Adaptation Baseline(s): Adversarial domain adaptation (ADA; model-centric method)

(Ganin and Lempitsky, 2015), Domain adaptive finetuning (DAFT; data-centric method)
(Han and Eisenstein, 2019)

• Adaptation Setting: Unsupervised
We also note that ADA is task-guided since it jointly performs alignment and task training. On the
other hand, DAFT and LIW are task-agnostic, performing alignment and task training sequentially.
In addition to overall performance, we also analyze the behavior of these methods under various
types of covariate shifts (e.g., lexical shift, event type shift) to gain insight into differences between
them. Our results show that DAFT and LIW (our method) improve over the BERT-BiLSTM baseline
on both domains, whereas ADA only improves on clinical notes. Across both domains, there is
no clear winner, with ADA and DAFT performing best on notes and conversations respectively.
Analyzing covariate shift at different levels (e.g., lexical shift, event type shift), we uncover
interesting patterns such as the ability of models to leverage sub-word morphology to generalize to
some technical terms in clinical notes, and LIW’s performance improvement on long-term state
events which are truly zero-shot since they never appear in the source data (e.g., chronic illnesses).
Interestingly, our best models achieve F1 scores of 70.0 and 72.9 on notes and conversations
respectively with no training data.

To evaluate the effectiveness of DAQ, we perform a case study according to the following
experimental setup:

• Task: Event extraction (semantic sequence labeling)
• Source Domain: News articles (TimeBank) (Pustejovsky et al., 2003b)
• Target Domain(s): Clinical notes (i2b22012) (Sun et al., 2013), Literary texts (LitBank)

(Sims et al., 2019)
• Task Model: BERT-MLP event extractor
• Adaptation Method: Active learning with domain-aware query sampling (DAQ; active

learning method)
• Adaptation Baseline(s): Uncertainty sampling with representativeness (UNS; active learn-

ing method) (Liao and Grishman, 2011), Query-by-committee (QBC; active learning method)
(Settles and Craven, 2008)

• Adaptation Setting: Limited supervision
Our experiments show that adding the domain-awareness criterion during sampling helps

improve the performance of active learning baselines, though these gains are quite modest (≥ 1
F1 point). To further map out the utility of this criterion by studying whether it provides larger
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improvements on other tasks, we conduct additional experiments on named entity recognition
from clinical narratives, using the same set of datasets as the previous chapter (i2b2 2006, i2b2
2010, and i2b2 2014). On these tasks, we see much larger gains from adding domain-awareness
(≥ 4 ≠ 18 F1 points). Of the two formulations that we experiment with, the similarity-based
formulation (DAQ-CS) tends to achieve better performance across most settings. We also perform a
correlation analysis with label-aware variants of source-target divergence measures and observe that
domain-awareness helps bridge larger label drifts (i.e., changes in word type-label associations).
However, ultimately none of the active learning variants are able to outperform a simple random
sampling strategy. This helps us establish a potential new failure case for active learning methods
in a domain adaptation setting.

Ultimately, these case studies expand the set of dimensions studied for macro-level adaptation
by including new domains, methods, and adaptation settings, and help us obtain additional evidence
(both positive and negative) for our observations from the previous chapter.

3.2 Background

3.2.1 Event Extraction
Most prior event extraction work has focused on news articles, resulting in the development of
several datasets (Onyshkevych et al., 1993; Grishman and Sundheim, 1996; Pustejovsky et al.,
2003b; Doddington et al., 2004; Lee et al., 2012; Cybulska and Vossen, 2014; Mitamura et al., 2016).
Recently, event extraction has also been explored in other domains such as biology (Wattarujeekrit
et al., 2004; Kim et al., 2008, 2009; Berant et al., 2014), Wikipedia articles (Araki and Mitamura,
2018), social media data (Ritter et al., 2012; Li et al., 2014; Jain et al., 2016) and literary novels
(Sims et al., 2019). Aside from data domain, event extraction paradigms (both datasets and tools)
differ along three major axes: (i) event extraction granularity, (ii) event representation, and (iii)
event categorization (ontology). We briefly describe these axes to contextualize our choice of event
paradigm.

Event extraction granularity divides extraction paradigms into two types: (i) document-level
paradigms which assume that a piece of text refers to a single event (Grishman and Sundheim,
1996), and (ii) sentence-level paradigms which assume that a single sentence describes one or more
events. Event representation divides extraction paradigms into two types: (i) span-based paradigms
which represent events by marking text spans that refer to events, called triggers or nuggets
(Pustejovsky et al., 2003a; Mitamura et al., 2015; O’Gorman et al., 2016), and (ii) structured
paradigms which represent events by marking text spans and adding additional arguments (e.g.,
participants, location etc.) to create a structured template (Grishman and Sundheim, 1996). Event
categorization divides extraction paradigms into two types: (i) ontology-driven paradigms that are
limited to specific event types (Grishman and Sundheim, 1996; Doddington et al., 2004), and (ii)
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ontology-free paradigms that do not place type restrictions (Pustejovsky et al., 2003b; Araki and
Mitamura, 2018).

Throughout this chapter, we use a sentence-level, span-based, ontology-free event extraction
paradigm. Sentence-level extraction suits our domains of interest since literary texts, clinical notes
and clinical conversations often discuss multiple events per sentence. Span-based and ontology-free
extraction allows us to develop coding guidelines that are easily adaptable across domains, since
event arguments and types are usually domain-specific or task-specific. This adaptability sets our
work apart from other prior work on medical event extraction such as adverse drug event extraction
(Nikfarjam et al., 2015; Sarker and Gonzalez, 2015; Cocos et al., 2017; Henry et al., 2020) and
personal event extraction from online support groups (Wen et al., 2013; Naik et al., 2017), which
focus on specific event types. Our guidelines draw heavily from the Thyme-TimeML guidelines
(Styler IV et al., 2014) used by the Clinical TempEval challenges on event ordering in clinical notes
(Bethard et al., 2015, 2016, 2017),1 but also cover event extraction in a novel non-narrative domain:
doctor-patient conversations.

3.2.2 Unsupervised Domain Adaptation Techniques
As discussed in the previous chapter, unsupervised domain adaptation techniques aim to transfer
a model from a source domain to a target domain, using only unlabeled data from the target
domain. Typically, most methods achieve this by learning some form of alignment between the
marginal distributions of source and target domains. This section provides a concise summary
of popularly used unsupervised adaptation methods from each coarse category in our adaptation
method taxonomy to contextualize our choice of baselines; for a more comprehensive overview, we
refer interested readers to Ramponi and Plank (2020).
Model-centric techniques: Early work primarily focused on developing feature-centric approaches
such as structural correspondence learning (SCL) (Blitzer et al., 2006, 2007), which tried to perform
unsupervised adaptation by mapping source and target examples into a shared pivot feature space.
Here pivot features are selected to be features that behave the same way for discriminative learning
in both domains (e.g., sentiment terms such as amazing and great show similar behavior for
sentiment analysis across domains). Rapid advances in neural representation learning further
pushed the development of feature-centric approaches, including neural variants of SCL (Ziser
and Reichart, 2017) and autoencoder-based methods (Glorot et al., 2011; Chen et al., 2014). The
rise of neural models also led to a surge in the development of loss-centric approaches, largely
spearheaded by work on adversarial domain adaptation, which tries to learn domain-agnostic
representations useful for the task of interest (Ganin and Lempitsky, 2015; Ganin et al., 2016).
Both feature-centric and loss-centric approaches have shown promising performance on sequence
labeling (Gui et al., 2017; Xing et al., 2018; Naik and Rose, 2020), with the case study from the
previous chapter also establishing the dominance of loss-centric approaches for event extraction

1We provide a detailed comparison with this work in §3.3.2.
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from clinical narratives. On the other hand, unsupervised adaptation methods from parameter-
centric or ensemble categories have not been explored as much, especially for sequence labeling.
Wright and Augenstein (2020) demonstrated the utility of ensemble adaptation methods such
as mixture-of-experts for text classification tasks, but in a multi-source setting (i.e., multiple
source datasets are available). Parameter-centric methods such as initializing model weights using
the weights of a model trained on a different but related task have shown some success on text
classification (Gee and Wang, 2018; Vlad et al., 2019). Since we are considering a single-source
unsupervised setting and interested in the task of event extraction from various clinical texts, we
choose adversarial domain adaptation (ADA), a loss-centric method as a strong baseline from the
model-centric category.
Data-centric techniques: From the data-centric category, the fine model categories explored most
in an unsupervised setting are pretraining and pseudo-labeling. Pretraining techniques like domain
adaptive finetuning (DAFT), which learns a joint language model for both source and target domain
text, have shown great success for unsupervised sequence labeling (Han and Eisenstein, 2019;
Caselli et al., 2021). Additionally, pseudo-labeling methods like self-training have shown some
success (Naik and Rose, 2020), but our experiments from the previous chapter demonstrated that
these methods don’t deal well with event/entity spans containing highly technical vocabulary.
Other fine model categories such as noising/denoising and instance learning have not shown much
promise in an unsupervised setting. For example, Tourille et al. (2017) demonstrate that a noising
strategy that replaces some event tokens with “UNK” tokens does not improve performance on
event extraction. The last fine category, active learning, does not lend itself to an unsupervised
setting since it involves acquiring annotations for small subsets of target domain data. Under these
considerations, we choose domain adaptive finetuning (DAFT), a pretraining method as a strong
data-centric baseline.
Hybrid techniques: Hybrid techniques are the least-explored coarse category of methods in an
unsupervised adaptation setting since most methods expect a small proportion of labeled data from
the target domain (Jiang and Zhai, 2007). Some classifier-based instance weighting methods that
train a classifier to discriminate between source and target domain instances, and then compute
source instance weights using this classifier can be used in an unsupervised setting. However, they
have shown mixed to negative results across various tasks including sequence labeling (Søgaard
and Haulrich, 2011; Plank and Moschitti, 2013; Plank et al., 2014). We try to advance research
on this class of methods by proposing a new unsupervised instance weighting technique called
likelihood-based instance weighting (LIW), which leverages the power of language models for
instance weight computation.

3.2.3 Active Learning Techniques
Active learning is a fairly popular learning paradigm in the field of machine learning in which
the learning algorithm is allowed to “be curious”, i.e., allowed to choose data to learn from, in
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the hope that it will achieve better performance with less training (Settles, 2009). Active learning
techniques select unlabeled data instances and query an oracle (e.g., a human annotator) to obtain
labels for these instances. By strategically choosing informative instances to query, active learning
techniques attempt to minimize the cost of obtaining labeled data. Prior literature has explored
three different settings for choosing instances to learn from: (i) membership query synthesis, (ii)
stream-based sampling, and (iii) pool-based sampling. In membership query synthesis, the learner
can generate instances instead of just sampling from a data distribution. In stream-based learning,
unlabeled instances are obtained one at a time from a distribution or source and a learner must
decide to keep or discard them. Finally, in pool-based sampling, the learner has access to a large
pool of unlabeled instances and can choose a batch of most informative instances to learn from at
each iteration. Pool-based sampling is the most commonly explored setting since it is typical to
have large sets of unlabeled data available, and our work also uses this setting for the same reason.

Using active learning can be desirable when dealing with complex tasks in high-expertise
domains, for which sourcing annotations is extremely difficult, time-consuming, and expensive.
Their property of boosting data efficiency makes active learning methods an interesting avenue
to explore in a domain adaptation scenario, in which we can use them to identify (and label) the
most informative subset of data from a target domain of interest and adapt to the domain better. We
briefly summarize prior work on incorporating active learning during adaptation; for comprehensive
general overviews of active learning methods in machine learning and natural language processing,
we refer interested readers to Settles (2009); Olsson (2009); Schröder and Niekler (2020).

The seminal work by Rai et al. (2010) proposed two ways of incorporating active learning
during adaptation. First, instead of training a model on target domain data from scratch, they trained
it on source domain data, followed by further training on selected target domain data. This strategy
results in a better starter model for active learning. Second, they trained a domain discriminator
on the task of distinguishing source and target domain instances, and used this classifier to filter
out target instances that were extremely similar to the source domain since a source-trained model
should already be able to label them accurately. Their experiments showed promising results on the
task of sentiment analysis. Follow-up work on sentiment analysis explored other strategies such as
training separate models on source and target domain data and using them in a query-by-committee
strategy (Li et al., 2013), or adapting general-domain sentiment lexicons to a target domain to train
a strong starter model (Wu et al., 2017). Aside from sentiment analysis, active learning has been
incorporated into domain adaptation for word sense disambiguation by learning stronger priors
before sampling (Chan and Ng, 2007). Some work has also looked at a reverse setting, in which a
model is first trained on target domain data and then used to select source domain instances in an
active learning loop (Shi et al., 2008). Aside from NLP tasks, the idea of combining active learning
and domain adaptation, particularly leveraging domain discriminators, has also been explored in
computer vision (Su et al., 2020; Fu et al., 2021; Xie et al., 2021).

Similar to Rai et al. (2010), we train a better starter model on source domain data, and try to
incorporate domain-awareness while sampling instances. However, instead of using a domain
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discriminator to filter instances, we compute a probability odds ratio of an instance belonging to the
target domain and use it to weight instances. We also design a domain-awareness criterion based
on embedding space similarity, and compare the performance of both strategies.

3.3 Creating Event Extraction Datasets for Additional Domains

In this chapter, we extend our space of domains of interest by bringing two additional domains (aside
from clinical narratives) under our purview: (i) literary texts, and (ii) doctor-patient conversation
transcripts. As in the previous chapter, we continue to use news articles as our source domain. The
literary text domain is also a high-expertise narrative domain like the clinical narrative domains
explored in the previous chapter, while the doctor-patient conversation domain falls under both
high-expertise and non-narrative categories. For literary text, we use the event extraction dataset
developed by Sims et al. (2019). For the remaining domains (clinical notes and conversations), we
develop new event extraction datasets using the procedure detailed in this section. We first collect
raw documents for both domains, followed by sampling documents from specific clinical specialties
to control for topical variation. Then we carefully construct event annotation guidelines for our
data domains by adapting the existing TimeML scheme (Pustejovsky et al., 2003a). Finally we
conduct the annotation process using these guidelines and construct test datasets for both domains.

3.3.1 Document Collection for Clinical Domains

Clinical Notes

Clinical notes are records documenting physician observations from their interactions with patients.
They usually detail various aspects of a patient’s care such as present illness, symptoms, medical
history, treatments, and test results. They share a thematic structure, though particular specialties
(e.g., cardiology) and institutions often incorporate their own modifications. We collected a set of
4999 de-identified clinical notes from 40 specialties, by scraping mtsamples.2 Average length of
a clinical note in this dataset is 652 tokens. Figure 3.1 shows a sample clinical note from our dataset.

Doctor-Patient Conversations

This dataset contains human-transcribed, de-identified conversations recorded during physician-
patient visits. The conversations often follow a similar schema, with patients describing
their symptoms, doctors inquiring about ongoing treatments, and then suggesting potential
follow-up treatments/tests. We used a dataset of 63,540 conversation transcripts covering 53
specialties, sampled from Verilogue Inc.’s proprietary database of in-office medical conversations.
Verilogue is an ethnographic market research organization that contracts with physicians across

2https://www.mtsamples.com/
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Figure 3.1: Sample clinical note from mtsamples.com.

Figure 3.2: Sample snippet from a physician-patient conversation transcript.

a variety of specialties to record natural in-office conversations with their patients who agree
to participate in the research by providing verbal and written consent. Recordings are made
on a digital recording device or a smartphone application and are uploaded to a secure server
where they are scrubbed of all identifiable information, in accordance with the Health Insurance
Portability and Accountability Act of 1996 (HIPAA) privacy rule. De-identified recordings
are transcribed and stored in Verilogue’s database, which currently contains over 100,000
recordings dating from 2006 to 2017. Average conversation transcript length in this dataset is
2309 tokens. Figure 3.2 shows a snippet from a conversation transcript. Note that since this
dataset is not publicly shareable, this is a constructed snippet and not an actual sample from our data.

Linguistic Differences between Domains

Both clinical domains chosen for dataset construction exhibit different types of linguistic shifts
from the source domain (news). While both domains exhibit a shift in vocabulary, this shift is more
pronounced in clinical notes since they are written by doctors (experts) who use highly technical
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Specialty #Notes #Convos

Cardio 372 4876
Obgyn 160 1784
Onco 90 7177

Table 3.1: Domain-wise raw data statistics for chosen medical specialties.

terms. Conversely, shifts in syntax are more pronounced in conversations due to the prevalence of
repetition, back-channeling, interruptions etc. Semantic shifts are more pronounced in conversations
since they contain a higher proportion of hypothetical statements (e.g., when doctors ask questions,
make requests or “think out loud”) than both notes and news articles which tend to serve as
records of actual events. To better evaluate model performance on linguistic shifts, we control for
topical variation across domains by limiting our focus to 3 specialties: Cardiovascular/Pulmonary
(Cardio), Obstetrics/Gynaecology (Obgyn) and Hematology/Oncology (Onco). These specialties
are well-represented in both notes and conversations, and cover a variety of event types ranging
from intervals with fixed duration (e.g., pregnancy), to intervals with indeterminable endpoints (e.g.,
long-term cardiac failure). Table 3.1 gives an overview of the number of notes and conversations in
each chosen specialty.

3.3.2 Developing Event Annotation Guidelines
We develop a set of coding guidelines for the task of annotating event triggers in documents
collected from these two clinical domains. Our coding guidelines build upon TimeML (Pustejovsky
et al., 2003a), a rich specification language for annotation of events and temporal expressions in
text,3 and Thyme-TimeML (Styler IV et al., 2014), a variant of TimeML developed for clinical
notes. We start with these guidelines because they use a syntax-driven domain-agnostic definition
of events, allowing for an adaptable annotation scheme. In TimeML, the term event refers to
situations that happen or occur, or circumstances in which something obtains or holds true. This is
a broad definition, consistent with Bach’s definition of eventualities (Bach, 1986), and the idea of
fluents (McCarthy, 2002). Events can be expressed in text by means of tensed or untensed verbs,
nominalizations, adjectives, predicative clauses or prepositional phrases. TimeML describes rules
to annotate events in all these syntactic categories. Styler IV et al. (2014) adapted these rules for
clinical notes. They focused on the THYME corpus of 1254 de-identified notes from the Mayo
Clinic, representing two fields in oncology: brain cancer and colon cancer. As a first step, we
annotate one document from each of our domains following TimeML and Thyme-TimeML rules.
During this phase, we identify cases where it is reasonable to deviate from these guidelines.

3The complete TimeML coding manual is available here: https://catalog.ldc.upenn.edu/docs/
LDC2006T08/timeml_annguide_1.2.1.pdf
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Deviations from TimeML

Our guidelines differ from TimeML in their treatment of two categories:

• Activity patterns: Activity patterns are events that are neither pure generics4, nor single
events clearly positioned in time. For example, consider the sentence “I take my blood
pressure regularly.” The event take is not grounded in time. It is also not a pure generic event
as it is definitely associated with the speaker. Such events are not annotated in TimeML.
However, in our data, these activity patterns occur frequently in crucial contexts such as
taking medications, following lifestyle changes suggested by doctors, measuring vital signs,
etc.

• Long-term states: Because TimeML was geared towards the task of temporal ordering, it
strictly restricted annotation of stative events to the following types: (i) states associated
with a temporal expression, (ii) states undergoing a change within the document, (iii) states
introduced by other events, since those can offer temporal cues, and (iv) states associated
with the document creation time. However, many stative events in our data don’t fit within
these strict parameters, but are nevertheless important. The most crucial category is states
associated with long-term ongoing illnesses (e.g., “The patient has a long history of COPD”).

These event categories are not specific to clinical domains only. For example, long-term
state events might be salient when extracting personal events from biographies (e.g., “Bill Gates
is currently employed full-time at the Bill and Melinda Gates Foundation.”). Similarly activity
patterns might be salient when extracting events from scientific procedure manuals (“Repeat step
5 daily, over a period of 30 days.”). Considering the general utility of these event categories,
we add rules to extract these two categories of events. We also expand syntactic rules to cover
constructions unique to doctor-patient conversations such as repetition, especially for instructions,
and hypothetical event annotation in utterances when doctors are “thinking out loud”.

Deviations from Thyme-TimeML

Our guidelines differ from Thyme-TimeML in their treatment of two categories:

• Generic events: Thyme-TimeML annotates generic events present in sections documenting
doctors’ discussion of risks, plans and alternative strategies. They do so because adding
these events to a patient’s clinical timeline could be important from a legal perspective, as
they help to establish informed consent and knowledge of risk. We do not annotate pure
generics, because we do not perceive any domain-agnostic utility in annotating them. Note
that we annotate verbs of discussion and comprehension which are not generics, so we do
not completely ignore events associated with patient consent. For example, in the sentence

4Pure generics are events which discuss illnesses/treatments in general, and are not associated with a specific person
and time. For example, “there is a benefit to systemic adjuvant chemotherapy.”

67



3.3. Creating Event Extraction Datasets for Additional Domains

Domain Entity Ÿ Event Ÿ

Notes 0.9117 0.8652
Convos 0.8634 0.8327

Table 3.2: Inter-annotator agreement on entity and event annotation tasks in both domains, measured using
chance-corrected Cohen’s Ÿ.

“She repeated the potential side effects back to me,” repeated is annotated, but effects is not.
Thyme-TimeML would have annotated both.

• Entities as events: Thyme-TimeML treats some entities and non-events as events in clinical
language. Two categories see this shift in semantic interpretation: (i) Medications, and (ii)
Disorders. Both categories contribute significant information to a patient’s timeline, and so
they are treated as events. Since we are not specifically focused on timeline construction, we
do not treat these as events. To ensure that we do not discard potentially crucial information,
we incorporate an additional step in which we annotate entities such as medications, body
parts, abnormalities (e.g., rash), etc.

Example Annotations

Following are some example sentences from both clinical domains, annotated with events according
to our coding guidelines:

1. Clinical note snippets:

(a) Sample Name: Excision of Squamous Cell Carcinoma.

(b) Re-excision of squamous cell carcinoma site, right hand

(c) The tissue was passed off the field as a specimen

(d) Cardiovascular system review: Chest pain in retrosternal area

2. Conversational utterances:

(a) I have been taking Midol for 6 months.

(b) Your surgery was done last year, was it?

(c) Your leg is a little more swollen.

(d) Do you take your blood pressure daily?

These sentences contain events that fall into various syntactic categories (nouns, verbs, adjectives,
etc.). Sentences 1a and 1d contain examples of long-term state events (carcinoma and pain), while
sentences 2a and 2d contain examples of activity patterns (taking and take).
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Figure 3.3: Sample clinical note with entity and event annotation.

Statistic News Notes Convos

#Files 54 45 45
#Tokens 18,263 28,935 76,711
#Events 1986 4781 7064
Event Density 10.88% 16.52% 9.21%
Vocab Size 3978 4303 3505
Event Vocab 1015 1588 1472

Table 3.3: Dataset statistics. Note that the statistics for TimeBank (News) are computed over the test set for
fair comparison with our datasets, which are test-only.

3.3.3 Annotation Process
After creating our guidelines5, we validate them by having two expert annotators annotate one
document from each domain. We observe high inter-annotator agreement (measured by chance-
corrected Cohen’s Ÿ) on both entity and event annotation, in both clinical domains. Table 3.2
presents the agreement scores. To create our final datasets, we sample 45 documents from each
domain (15 from each specialty). Each document is annotated by one expert. Annotation is carried
out using the BRAT stand-off markup interface (Stenetorp et al., 2012). Figure 3.3 shows a sample
clinical note annotated with events and entities. Table 3.3 gives a brief overview of statistics for
our datasets, in comparison with the TimeBank dataset of news articles (Pustejovsky et al., 2003b).
Note that Appendix C presents additional examples of annotated instances from all these datasets.

3.4 Case Study I: Evaluating LIW on Unsupervised Adaptation

In this study, we focus on building adaptable event extraction models that work well for our
chosen clinical domains without using any in-domain annotated training data, since collecting
annotated data is often expensive and time-consuming, especially for high-expertise domains like
medicine. To achieve this, we exploit the availability of annotated training data in the news domain,
and explore the possibility of adapting models trained on news to these clinical domains in an

5Complete coding guidelines are available in appendix A
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unsupervised manner. As described in §3.3.1, both clinical domains exhibit shifts from the news
domain at various linguistic levels. This case study tries to specifically address shifts in surface
realization (i.e., shifts at lexical and syntactic levels), by tackling the problem of misalignment
between the marginal distributions of the source and target domains.

The marginal misalignment problem is analogous to the problem of covariate shift in transfer
learning. Covariate shift arises when the marginal distribution (or input distribution) P (X) changes
between train (source) and test (target) data. Therefore, directly applying a supervised model
trained on the source set, to the target data does not perform well due to the gap between source and
target marginal distributions (Shimodaira, 2000). To handle this issue by better aligning marginal
distributions of both domains, and advance work on unsupervised hybrid methods, we propose a
new instance weighting technique: likelihood-based instance weighting (LIW).

3.4.1 Likelihood-based Instance Weighting
Data selection and instance weighting strategies have frequently been used to perform supervised
domain adaptation by correcting for distributional shifts (Jiang and Zhai, 2007; Foster et al., 2010;
Axelrod et al., 2011; Wang et al., 2017). As a reminder, the underlying premise behind these
techniques is that some instances from target data and source data often share certain characteristics.
Training only on these similar instances (by pruning out other dissimilar instances), or biasing
training to focus more on these similar instances (by weighting) can produce models that perform
better on target data. Motivated by this, we design an instance weighting strategy that uses likelihood
scores computed by a language model to weight instances. The instance weight computation in
LIW works as follows.

Let St = w1w2...wn be a sentence from the source training set. Let O be a language model
trained on raw text from the target domain. We first compute the likelihood of sentence St under O

as Lt = PO(w1)�n
i=2PO(wi|w1...wi≠1), where PO indicates probability under model O. Then we

compute a weight for St as follows:

–St = Lt

q|N |
i=1 Li

ú |N | (3.1)

where |N | is the size of in-domain training set. This metric gives a higher weight to source sentences
that are more likely under the target domain language model, up-weighting instances that share
more characteristics, and are consequently better aligned with target domain sentences. The alpha
values are used to weight the loss function, thus biasing the training procedure to focus more on
these better-aligned sentences. Doing so improves alignment between the marginal distributions of
source and target domains. From a linguistic perspective, we also hope that using language model
scores to reweight instances helps this technique leverage word contexts in addition to relying on
vocabulary shared between source and target domains, like most methods studied in the previous
chapter.
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3.4.2 Baseline Adaptation Methods
In addition to evaluating the performance of our proposed method (LIW), we also contrast its per-
formance with strong unsupervised adaptation baselines from the remaining two coarse categories.
From the model-centric category of methods, we choose adversarial domain adaptation (ADA), a
loss augmentation method that achieved the best performance on extracting events from clinical
narratives in our case study from the previous chapter. From the data-centric category of methods,
we choose domain adaptive finetuning (DAFT), a pretraining method that showed promising results
on unsupervised sequence labeling tasks (Han and Eisenstein, 2019), in place of the continuous
pretraining strategy (Gururangan et al., 2020) that did not perform well in our previous case study.
Note that we do not choose a pseudo-labeling baseline because our event spans are likely to contain
medical vocabulary, and our analysis of strengths and weaknesses from the previous chapter showed
that pseudo-labeling methods did not deal well with such spans. Another interesting distinction to
note is that ADA is a task-guided technique since it performs task training and adaptation jointly,
while DAFT and LIW are task-agnostic techniques since they perform adaptation first, followed by
task training.

Adversarial Domain Adaptation

Adversarial domain adaptation was first proposed by Ganin and Lempitsky (2015), who showed its
efficacy on sentiment analysis, among other machine learning tasks. It is an unsupervised domain
adaptation technique, inspired by theory on domain adaptation which suggests that effective domain
transfer can be achieved when model predictions are based on features that cannot discriminate
between source and target domains. It operationalizes this theory in a representation learning
approach which promotes the emergence of features that are discriminative for the main task on the
source domain (event extraction in our case), but not discriminative with respect to shifts between
source and target domains. In addition to sentiment analysis, adversarial domain adaptation (ADA)
has been successfully applied to other NLP tasks such as duplicate question detection, part-of-
speech tagging and answer retrieval for question answering (Ganin et al., 2016; Li et al., 2017; Liu
et al., 2017; Gui et al., 2017; Chen et al., 2018b; Shah et al., 2018; Yu et al., 2018).

We describe how we adapt ADA for our task of event extraction (Naik and Rosé, 2020).
Figure 3.4 gives an overview of our ADA framework for event extraction. It consists of three
components: i) representation learner (R) ii) event classifier (E) and iii) domain predictor (D).
The representation learner generates token-level representations, while the event classifier and
domain predictor use these representations to identify events and predict the domain to which the
sequence belongs. The key idea is to train the representation learner to generate representations
which are predictive for event classification but not predictive for domain prediction, introducing
domain-invariance which makes it more robust to shifts between source and target domains. A
notable benefit of ADA is that the only data we need from the target domain is unlabeled data.
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Figure 3.4: Adversarial domain adaptation framework for event trigger identification.

To ensure domain-invariance in representation learning, ADA uses adversarial training which
works as follows. Assume that we have a labeled source domain dataset Ds with examples
{(xs

1, es
1), ..., (xs

n, es
n)}, where xs

i
is the token sequence and es

i
is the sequence of event tags. We

construct an auxiliary dataset Da with examples {(xa
1, da

1), ..., (xa
n, da

n)}, where xa
i

is the token
sequence and da

i
is the domain label, using token sequences from Ds and unlabeled target domain

sentences. The representation learner R maps a token sequence xi = (xi1, ..., xik) into token
representations hi = (hi1, ..., hik). The event classifier E maps representations hi = (hi1, ..., hik)
to event tags ei = (ei1, ..., eik). The domain predictor D creates a pooled representation pi =
Pool(hi1, ..., hik) and maps it to domain label da

i
. Given this setup, we apply an alternating

optimization procedure. In the first step, we train the domain predictor using Da, to optimize the
following loss:

arg min
D

L(D(ha

i ), da

i )

In the second step, we train the representation learner and event classifier using Ds to optimize the
following loss:

arg min
R,E

Ë ÿ

k

!L(E(hs

ik), es

ik)" ≠ ⁄L(D(hs

i ), ds

i )
È

L refers to the cross-entropy loss and ⁄ is a hyperparameter. In practice, the optimization in the
above equation is performed using a gradient reversal layer (GRL) (Ganin and Lempitsky, 2015).
A GRL works as follows. During the forward pass, it acts as the identity, but during the backward
pass it scales the gradients flowing through by ≠⁄. We apply a GRL g⁄ before mapping the pooled
representation to a domain label using D. This changes the optimization to:

arg min
R,E

Ë
L(D(g⁄(ps

i )), ds

i ) + q
k L(E(hs

ik
), es

ik
)
È

Particular implementation details such as the network architectures used for R, E and D are
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described in detail in §3.4.3.

Domain Adaptive Fine-tuning

Domain adaptive fine-tuning (DAFT) has recently been proposed as an effective pretraining tech-
nique for unsupervised adaptation of sequence labeling models that use contextualized embeddings
(Han and Eisenstein, 2019). This technique was proposed to tackle scenarios in which a sequence
labeling model is trained on a canonical source domain (e.g., news), and applied to a different
target domain. Additionally, the sequence labeling model uses contextualized embeddings, such
as BERT, that have been pretrained on a corpus distinct from both source and target domains.
DAFT addresses these shifts by leveraging the power of masked language modeling on source
and target domain texts to improve alignment between marginal distributions of source and target
domains. This technique has been shown to be extremely effective for unsupervised transfer, even
to challenging domains such as Early Modern English and social media (Han and Eisenstein, 2019).
The DAFT procedure works as follows:

1. Create a large dataset containing equal proportions of sentences from source and target
domains. Fine-tune contextualized embeddings using a masked language modeling objective.

2. Using fine-tuned embeddings, train an event extraction model on labeled source data.

In addition to this setup, we experiment with a variant of this procedure, which uses a syntactic
objective function in place of masked language modeling. This variant fine-tunes embeddings on
the task of predicting part-of-speech tags in step 1. The motivation behind this variant is two-fold.
First, we observe that event annotation is heavily syntax-driven, allowing delexicalized models
(i.e., models using POS tags instead of words) to achieve high performance (§3.4.3). This indicates
that infusing additional syntactic awareness into embeddings might help performance on the task.
Second, syntax can offer an additional basis for alignment, since sentences that look very different
lexically, might follow similar syntactic structures. Intuitively, this variant is similar to syntactic
relexicalization which has shown success in cross-lingual dependency parsing (Duong et al., 2015).

Complete model architecture details for all techniques are described in §3.4.3.

3.4.3 Experiments
The goal of our evaluation is two-fold: (i) evaluate the efficacy of our proposed technique (LIW)
for unsupervised adaptation of event extraction, and (ii) analyze which adaptation techniques work
best for each clinical domain of interest and try to identify aspects of the domains (or datasets)
that make these techniques work. For our baseline task model, we choose a strong BERT-BiLSTM
model with no transfer. We then evaluate the performance of all adaptation techniques by applying
them to this baseline model. All techniques are evaluated in a zero-shot setting, wherein models are
trained on TimeBank (Pustejovsky et al., 2003a) and tested on one of our clinical datasets (clinical
notes or doctor-patient conversations).
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Model Details

We evaluate the performance of the following models on our datasets:

• VERB: A simple unsupervised baseline labeling all verbs as events.

• DELEX: A fully-delexicalized baseline using POS tag embeddings as features, followed by
an MLP (multi-layer perceptron).

• BERT: A single-layer BiLSTM over contextual embeddings extracted using BERT (Devlin
et al., 2019), followed by an MLP, similar to the best-performing model on LitBank (Sims
et al., 2019).

• CBERT: Similar to BERT, but embeddings are extracted from Clinical-BERT (Alsentzer
et al., 2019).

• BERT-ADA: BERT baseline trained using adversarial domain adaptation. The domain
predictor adversary is an MLP classifier which uses max pooling to compute the pooled
representation.

• BERT-LIW: BERT baseline trained on data weighted by LM likelihood. We train autore-
gressive language models using 3 million tokens for each target domain.

• BERT-DAFT: BERT baseline with domain adaptive fine-tuning. We use the same target
domain text used to train LMs for BERT-LIW. For news, we extract 3 million tokens from
the CNN/ DailyMail dataset (Hermann et al., 2015).

• BERT-DAFT-SYN: BERT baseline with syntactic fine-tuning on the same source+target
text as BERT-DAFT, POS tagged using Stanford CoreNLP (Manning et al., 2014).

Overall Performance

Tables 3.4 and 3.5 show the performance of all models when transferring from news (in-domain)
to clinical notes and doctor-patient conversations (out-of-domain) respectively. From the tables,
we see that the DELEX baseline is surprisingly strong out-of-domain, reaching nearly 60.4 F1 on
conversations. BERT with no transfer performs well out-of-domain, improving by 8.25 F1 points
on average over DELEX. C-BERT also performs well out-of-domain, but does worse than the
vanilla BERT baseline. We hypothesize that this could be attributed to the fact that fine-tuning only
on clinical notes does not improve alignment between source and target domains, providing no basis
for models trained on news to adapt better. This echoes our observations from the previous case
study, where we saw that continuous pretraining was not a very effective adaptation technique in an
unsupervised setting. BERT-ADA, the loss-centric baseline, shows mixed results, improving over
BERT by 2.4 F1 on notes, but dropping by 1.1 F1 on conversations. BERT-LIW, our method, and
BERT-DAFT, the pretraining baseline, improve upon BERT in both settings. BERT-DAFT shows
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Model In-Domain Out-of-Domain

P R F1 P R F1

VERB 58.8 66.5 62.5 49.4 41.4 45.0
DELEX 75.0 66.3 70.4 74.4 42.2 53.8
BERT 80.6 86.0 83.2 85.7 55.9 67.6
CBERT 79.2 83.3 81.2 85.8 52.9 65.4

BERT-ADA 81.2 86.3 83.7 83.2 60.4 70.0
BERT-LIW 81.9 86.6 84.1 86.7 56.0 68.1
BERT-DAFT 79.1 85.9 82.3 83.9 58.6 69.0
BERT-DAFT-SYN 76.9 80.7 78.7 70.7 56.8 63.0

Table 3.4: Model performance on unsupervised domain transfer experiments from news to clinical notes.

Model In-Domain Out-of-Domain

P R F1 P R F1

VERB 58.8 66.5 62.5 44.6 68.1 53.9
DELEX 75.0 66.3 70.4 56.9 64.5 60.4
BERT 80.6 86.0 83.2 75.0 63.6 68.9
CBERT 79.2 83.3 81.2 66.5 65.1 65.8

BERT-ADA 81.1 85.9 83.4 74.5 62.2 67.8
BERT-LIW 80.0 87.0 83.4 72.8 67.3 70.0
BERT-DAFT 78.5 84.8 81.5 72.7 73.1 72.9
BERT-DAFT-SYN 80.0 78.7 79.3 67.6 60.7 63.9

Table 3.5: Model performance on unsupervised domain transfer experiments from news to doctor-patient
conversations.

minor performance drops in-domain, possibly due to some degree of catastrophic forgetting. BERT-
DAFT-SYN shows performance drops, both in-domain and out-of-domain, in both settings. Unlike
syntactic relexicalization work which used non-contextualized embeddings, we use contextualized
embeddings, which already possess a larger degree of syntactic information, probably reducing the
need for syntax-driven training. Another source of errors is automatic part-of-speech tagging, since
off-the-shelf taggers trained on news will be less accurate on our data. Across domains, the skew
between precision and recall is higher on notes, which might stem from the specialized vocabulary
used in them dragging down recall. Overall, most adaptation methods seem to help improve event
extraction performance on both clinical domains, with our best models achieving F1 scores of 70.0
and 72.9 on notes and conversations respectively with no training data.
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3.4.4 Analysis and Discussion
Tables 3.4 and 3.5 provide some indication of the ability of different adaptation techniques to
handle shifts between source and target domains. However, this overall evaluation does not account
for shifts at different linguistic levels. As we state earlier, domain shifts can occur at multiple layers
in language (e.g., lexical level, syntactic level, etc.), leading to different dimensions of variation
between domains (e.g., topical variation, genre variation, etc.). To probe this, we perform a deeper
analysis of model performance, focusing on two questions:

1. How well do models handle lexical shifts between domains?

2. How much does performance differ between examples that do/do not exhibit semantic shifts?

To answer the first question, we hone in on model performance under lexical shift by evaluating
performance on out-of-vocabulary (OOV) cases. For the second question, we use event type as a
proxy to distinguish between target domain events that demonstrate semantic shifts from source
domain events, and target domain events that do not. This proxy is motivated by our observation
that the new event types we add (activity patterns and long-term states) are unique to the target
domains and often require an understanding of the event beyond its textual manifestation. For
example, consider the sentence “Taking Midol for period pain is recommended”. Based purely on
textual content, taking would be considered a pure generic and not an event. However, if we include
the additional context that this is a statement offered as direct advice by a doctor to a patient, or
written under medications in a patient’s clinical note, taken becomes an activity pattern because it
is now associated with an implicit participant (the patient). So we annotate a random sample of 500
events from each of our test datasets with event types and evaluate performance separately on event
types present in source vs those absent in source.

Performance on OOV Cases

To answer the question of lexical shift, we separate model performance on in-vocabulary (IV) and
out-of-vocabulary (OOV) tokens. Note that the proportion of events that are OOV is higher in
clinical notes (52%) than conversations (20.6%). Tables 3.6 and 3.7 present model performance on
these token categories. We observe that all models fare reasonably well on OOV tokens, however
there is still a large gap between F1 scores on IV and OOV tokens. Performance trends on OOV
tokens are similar to trends on the full dataset, with LIW and DAFT showing improvement on
both domains and ADA showing improvement primarily on clinical notes. Surprisingly, despite
the use of specialized language, OOV performance on clinical notes is higher than conversations
for all models except BERT-DAFT. The lower performance of BERT-DAFT on notes is consistent
with our observation from the previous case study, where we saw that for clinical narratives, loss
augmentation methods like ADA did better at handling technical vocabulary than pretraining
methods like DAFT. Taking a closer look at the OOV event instances from clinical notes that
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Model IV F1 OOV F1

BERT 73.5 61.2
BERT-ADA 75.2 65.0
BERT-LIW 73.6 62.6
BERT-DAFT 75.7 62.0
BERT-DAFT-SYN 67.7 58.4

Table 3.6: Model performance on in-vocabulary (IV) and out-of-vocabulary (OOV) terms from clinical notes.

Model IV F1 OOV F1

BERT 71.3 57.9
BERT-ADA 70.2 57.6
BERT-LIW 72.0 61.4
BERT-DAFT 74.9 63.6
BERT-DAFT-SYN 65.5 55.5

Table 3.7: Model performance on in-vocabulary (IV) and out-of-vocabulary (OOV) terms from doctor-patient
conversations.

models identify correctly, we see that a large proportion (54.8%) contain one of three morphological
patterns: (i) past tense verbs ending in “-ed”, (ii) gerunds ending in “-ing”, or (iii) nouns ending
in “-tion” or “-sion”. These patterns are also common among events in the news domain. For
example, past tense verbs often refer to events that have already occurred and gerunds and nouns
ending in “-tion” refer to processes. We hypothesize that BERT-based models might be exploiting
these morphological regularities to correctly label unseen medical terms (e.g., irrigated, excision,
dissected, wheezing, etc.). These patterns are more prevalent in notes (35.6%) than conversations
(23.5%), explaining the surprising performance difference.

Performance on Various Event Types

We perform an additional type analysis with more fine-grained event types. For this analysis, we
use the same typology as TimeML, with two additional labels for the event types we introduce.
Following is the full set of event type labels:

1. Occurrence: Occurrence refers to all events describing something that happens or occurs in
the world. This is the broadest class of events. For example, "I took Midol yesterday."

2. Aspectual: Aspectual events refer to events which focus on various aspects of a different
event’s history, such as initiation, termination, continuation etc. For example, "I started
taking this medicine last Friday." Here started is an aspectual event describing the initiation
of the event taking.
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3. Reporting: Reporting events describe the action of an entity (person/group/organization)
declaring something, narrating an event, providing information about an event etc. For
example, "So you said you have been experiencing symptoms since yesterday?"

4. Perception: Perception events refer to events involving the physical perception of a different
event. For example, "I watched my weight gain throughout the pregnancy."

5. State: States describe circumstances in which something obtains or holds true. For example,
"My blood pressure is higher today". Note that annotation of state events in TimeML is
subject to certain rules as outlined in §3.3.2.

6. Intensional Action (I-Action): Intensional actions introduce an explicit event argument
describing an action or situation, from which we can infer something given its relation with
the intensional action. For example, "We will investigate your symptoms further via this
test." Here investigate is an intensional action associated with the symptoms event.

7. Intensional State (I-State): Intensional states contain stative events that refer to alternative
or possible worlds. For example, "You might observe higher blood pressure for a few days
when you start taking this medicine."

8. Activity Pattern: Activity patterns, as explained in §3.3.2 refer to events that are not clearly
grounded to a single occurrence in time, but are still considered events since the presence
of a participant stops them from being purely generic. For example, "You should take your
blood pressure regularly."

9. Long Term State: Long-term states expand the annotation of states beyond TimeML
restrictions, allowing the inclusion of long-term chronic conditions. For example, "You have
a history of COPD."

We focus on fine-grained analysis of OOV tokens in particular, to study whether event types
influence model performance on lexically shifted samples. We randomly sample ≥500 OOV tokens
from each domain and label them for fine-grained event type. We run an ANOVA model with each
token per model as an instance (total 5080 instances), noting Event Type, Target (notes/convos),
Model (BERT/ADA/LIW/DAFT/DAFT-SYN) and Correctness (1 vs 0). Correctness is the depen-
dent variable, while all others are independent variables. We include all pairwise interaction terms
and the three way interaction between Event Type, Target and Model. We see a positive main effect
of Event Type on Correctness (F(6, 5010) = 332.5, p < .0001) indicating that some event types
are more difficult. There are two significant two-way interactions, one between Target and Event
type (F(6, 5010) = 7.72, p < .0001), indicating that difficulty of event types differs across various
target domains, and between Model and Event type (F(24, 5010) = 2.12, p < .0001), indicating
that which model is better depends on event type. Three way interaction between Model, Event
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type, and Target is also significant ( F(24, 5010) = 2.92, p < .0001), indicating that performance
differences between models per event type differs across various target domains.

Because the three-way interaction is significant, we interpret differences in performance per
event type separately for each target domain using a student-t post-hoc analysis to determine which
pairwise contrasts are statistically significant within this ANOVA model. This reveals that in clinical
notes, our proposed method LIW outperforms all models on I-State events (i.e., hypothetical, future
or negated states) and LongTermState events, a category never seen in the training data. These
improvements might stem from the training algorithm used by LIW. LIW up-weights instances
in news that resemble clinical data, which contains a high proportion of these event categories.
Therefore, despite being infrequent in news, they get up-weighted, helping LIW identify them
better.

3.4.5 Summary of Observations
• Unsupervised adaptation techniques help in building adaptable event extractors, especially

for resource-scarce domains in the macro long tail. Our best-performing models attained F1
scores of 70.0 and 72.9 on clinical notes and conversations respectively, using no labeled
target data. These models define a good low-bias starting point and can be further improved
using few-shot learning.

• In accordance with our observations from the previous chapter, loss augmentation methods
achieve the best performance on event extraction from clinical narratives. However, on
clinical conversations, where syntactic and semantic shifts are more prominent than lexical,
the pretraining method outperforms all other methods.

• Our proposed method LIW improves performance over a zero-shot baseline, but is not the
best-performing adaptation method on both domains. However, this is still a step forward
since our instance weighting method is capable of achieving positive transfer results, and
even outperforms all other methods on LongTermState events, a category never seen in the
training data.

3.5 Case Study II: Evaluating Domain-Aware Query Sampling for
Active Learning

In this case study, our goal is to improve the performance of event extractors in a limited labeled
data setting that allows models to use small amounts of labeled data from the target domain of
interest. However, unlike the limited labeled data setting used in the case study in Chapter 2,
we do not sample target instances at random. Instead, we explore the possibility of improving
sample efficiency (i.e. achieving better performance using fewer target instances) by using active
learning techniques to select target instances to obtain labels for. Active learning methods usually
sample instances from the target domain that current models are most “uncertain” about, under
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the assumption that training on such confusing instances is a sample-efficient strategy for model
improvement.

In addition to exploring strong existing active learning baselines, we also propose a domain-
aware query sampling strategy (DAQ), which incorporates distance from source domain instances
into the sampling criterion while choosing target instances. The key idea behind this is that in a
domain adaptation setting, sample efficiency of active learning can be further improved by ensuring
that the process of sampling target instances avoids selecting ones that are highly similar to the
source domain, since we can expect a model trained on the source domain to do reasonably well
on them already. For DAQ, we experiment with two formulations of source-target similarity: (i)
cosine similarity of a target instance to all source instances in a joint embedding space, and (ii)
probability odds ratio of an instance belonging to the target domain according to a domain classifier.
We run simulation experiments to evaluate the effect of incorporating these criteria during target
instance selection, and whether this improves sample efficiency on two high-expertise domains
that fall into the macro long tail: (i) clinical notes, and (ii) literary texts. Additionally, we also run
simulation experiments on the task of named entity recognition from clinical narratives to develop
a better understanding of the conditions under which various active learning methods improve
sample efficiency.

3.5.1 Active Learning Baseline Sampling Strategies

Uncertainty Sampling with Representativeness (UNS)

Uncertainty sampling is one of the simplest and most frequently used sampling strategies for active
learning (Lewis and Gale, 1994). This strategy works by selecting those instances that the current
model is most uncertain about labeling. To quantify a model’s uncertainty, prior work has developed
various measures depending upon the nature of the task (e.g., classification, sequence labeling,
regression, etc.). Some popularly used measures include least confidence sampling (Culotta and
McCallum, 2005), margin sampling (Scheffer et al., 2001), and entropy (Shannon, 1948). For a
comprehensive comparison of sampling strategies on several sequence labeling tasks, we refer
interested readers to Settles and Craven (2008). Since we are treating event extraction as a token-
level classification task, we choose token entropy as the measure to quantify uncertainty.6 Given
a target domain instance, consisting of a sequence of tokens XT = x1, ..., xN , and a label space
m = 1, ..., M , token entropy is defined as follows:

TE(XT ) = ≠ 1
N

Nÿ

n=1

Mÿ

m=1
P (yn = m) log P (yn = m) (3.2)

6Preliminary experiments showed that the token entropy measure was on par with, and often performed better than
least confidence sampling and total token entropy.
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Note that y1, ..., yN are the label predictions for each token in the sequence. The label probabilities
P (yn = m) are typically obtained from the final softmax layer of the task model. A known caveat
of uncertainty sampling methods is their tendency to choose outlier instances since they do not
account for the underlying natural density of the data distribution (Settles, 2009). To handle this
issue, we incorporate a representativeness criterion alongside token entropy. We use the criterion
defined by Liao and Grishman (2011) which showed promising results on the event extraction task.
Given a specific instance XT from a set of target domain instances TD, its representativeness is
measured as follows:

Repr(XT ) = 1
|TD| ≠ 1

ÿ

XkœT D≠XT

sim(BERT (XT ), BERT (Xk)) (3.3)

The BERT (.) function in the above equation generates an embedding representation for an
instance by running it through a pretrained language model and extracting the representation for
the [CLS] token. sim(.) is a function used to compute pairwise similarities between embedding
representations of target domain instances; in all our experiments we use the cosine function. The
uncertainty and representativeness scores for each target instance XT are then combined as follows
(as per Liao and Grishman (2011)):

UNS(XT ) = ⁄TE(XT ) + (1 ≠ ⁄)Repr(XT ) (3.4)

We use the same setting for ⁄ as prior work.

Query-By-Committee (QBC)

Another simple and frequently used sampling strategy for active learning is the query-by-committee
strategy (Seung et al., 1992). This strategy works by maintaining a committee of several task models
C = {M1, ..., MC}, all of which are trained on the set of target instances chosen for labeling so far.
The models in the committee typically represent competing hypotheses and the instances that they
disagree the most on are considered most informative and sampled for annotation during the next
iteration. Prior work has proposed several methods for choosing models for the committee such
as random sampling from a posterior distribution (for generative models) (Dagan and Engelson,
1995; McCallum and Nigam, 1998), employing ensemble learning methods like bagging and
boosting (Abe and Mamitsuka, 1998), encouraging diversity within ensembling (Melville and
Mooney, 2004), and using cross-view training (Chaudhary et al., 2021). However, there isn’t a
clear consensus on which method results in the best choice of models for the committee, or what
committee size is most appropriate.

In our work, we choose a committee of three models, each using a language model pretrained
differently on unlabeled data from source and target domains, for representation computation.
The first language model is an off-the-shelf pretrained model, the second language model is an
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off-the-shelf model that is pretrained further on the target domain (similar to Chapter 2), and the
third language model is an off-the-shelf model that is pretrained further on a mixture of data from
source and target domains (similar to DAFT). Due to varying pretraining strategies, these models
have differing “views” of target domain instances, and can represent competing hypotheses. We
refer to these models as Mbase, Mtarget, and Mmix throughout this chapter.

In addition to committee-building methods, prior work has also focused on developing strategies
to measure level of disagreement between the models. Commonly used disagreement measures
include average Kullback-Leibler divergence between the predictions of a single model and the
“consensus” probability across all models (McCallum and Nigam, 1998), and vote entropy (Dagan
and Engelson, 1995). Settles and Craven (2008) observe that vote entropy-based methods (especially
sequence-level variants) tend to perform better than KL-divergence for several sequence labeling
tasks. Therefore, we use a probabilistic vote entropy to measure disagreement. Given a target
domain instance consisting of a sequence of tokens XT = x1, ..., xN , a label space m = 1, ..., M

and a committee of 3 models C = {Mbase, Mtarget, Mmix}, probabilistic vote entropy is computed
as follows:

QBC(XT ) = ≠ 1
N

Nÿ

n=1

Mÿ

m=1

P(yn = m)
|C| log P (yn = m)

|C| (3.5)

Again, y1, ..., yN are the label predictions per token. Additionally, P (yn = m) = PMbase(yn =
m) + PMtarget(yn = m) + PMmix(yn = m), which is the sum of the label probabilities produced
by all models from the committee.

3.5.2 Incorporating Domain-Awareness Criteria
As described earlier, in addition to strong active learning baselines, we propose a domain-aware
sampling strategy (DAQ), which incorporates distance from source domain instances while choosing
target instances to label, in order to improve sample efficiency in a domain adaptation setting. We
compute distance from source domain instances using two different formulations.

Classifier Confidence Formulation (DAQ-CC)

The first formulation we experiment with leverages confidence scores from a classifier model
trained on the task of identifying whether instances belong to the source or target domains. The
idea of using a domain discriminator to improve sampling when active learning is used in a domain
adaptation setting has been explored in prior work. This idea was first tested by Rai et al. (2010),
who used the domain discriminator to filter out target domain instances that are highly similar
to the source domain. Their approach achieved promising improvements on sentiment analysis.
Follow-up work experimented with alternate formulations such as using probability scores from a
domain discriminator to re-weight target domain instances, but primarily evaluated their efficacy
on computer vision tasks (Su et al., 2020; Fu et al., 2021). Motivated by this work, we adopt a
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formulation that uses the probability odds ratio of an instance belonging to the target domain as
measured by the domain discriminator, to compute weights for target domain instances. Given
a target instance XT and a domain discriminator D, the probability odds ratio is computed as
follows:

OR(XT ) = PD(y = t|XT )
1 ≠ PD(y = t|XT ) (3.6)

Note that PD(y = t|XT ) indicates the probabilities of instance XT belonging to the target domain
t according to the domain discriminator. This formulation results in higher weights for instances
that are more likely to belong to the target domain as per the discriminator, which we hope improves
sample efficiency by pushing active learning methods to avoid selection of instances too similar to
the source domain. This weighting criterion is incorporated into baseline active learning sampling
strategies (UNS and QBC) as follows:

DAQ ≠ CC(XT ) = OR(XT ) ú BaseCriterion(XT ) (3.7)

where BaseCriterion(XT ) can be chosen to be UNS(XT ) or QBC(XT ).

Cosine Similarity Formulation (DAQ-CS)

The second distance formulation we experiment with leverages similarity between source and target
domain instances in an embedding space. The motivation behind this formulation comes from
prior work on using unsupervised clustering in embedding spaces to identify domains. Aharoni
and Goldberg (2020) demonstrate that using pretrained language models to compute embedding
representations of instances from different domains, followed by unsupervised clustering, success-
fully groups instances according to their domains. This indicates that similarity in a language
model embedding space might serve as a strong alternative to the classifier confidence-based
formulation for the task of re-weighting target domain instances. Therefore, we embed all source
and target instances using a pretrained language model and then compute the average similarity of
a specific target instance to all source instances. Given a target instance XT , a set of source domain
distances SD, and an language model embedding function BERT (.), the average similarity score
is computed as follows:

AS(XT ) = 1
|SD|

ÿ

XkœSD

sim(BERT (XT ), BERT (Xk)) (3.8)

The sim(.) function in the above equation is set to use cosine similarity in all our experiments.
This equation produces higher scores for target domain instances that are more similar to source
domain data, hence this weighting criterion is incorporated into baseline active learning sample
strategies as follows:

DAQ ≠ SC(XT ) = BaseCriterion(XT )
AS(XT ) (3.9)
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where BaseCriterion(XT ) can be chosen to be UNS(XT ) or QBC(XT ).

3.5.3 Experimental Setup

Datasets

For our simulation experiments on the event extraction task, we use the following datasets:7

• Clinical Notes: For the clinical notes domain, we use the i2b2 2012 dataset consisting of
discharge summaries annotated with events (Sun et al., 2013). Unfortunately, we cannot use
our MTSamples dataset since it does not have any associated training data.

• Literary Texts: For the literary text domain, we use the LitBank dataset (Sims et al., 2019),
consisting of literary texts from Project Gutenberg annotated with events.

For our simulation experiments on named entity recognition from clinical narratives, we use the
same set of datasets as the case study from the previous chapter: i2b2 2006 (Uzuner et al., 2007),
i2b2 2010 (Uzuner et al., 2011), and i2b2 2014 (Stubbs and Uzuner, 2015). As described earlier,
all datasets consist of discharge summaries. The i2b2 2006 and i2b2 2014 datasets focus on the
de-identification task, and are annotated with PHI (private health information) entities such as
patient names, doctor names, hospitals, etc. The i2b2 2010 dataset is annotated with medical
entities of three types: problems, tests, and treatments. Note that for all NER datasets, models are
evaluated in a coarse setting, in which the model is only expected to detect entities, without any
entity type prediction. Appendix C presents some examples of annotated instances from all these
datasets.

Baseline Task Model

For our baseline task model, we choose a strong BERT-based sequence labeling model. This
model computes token-level representations using a BERT encoder followed by a linear layer
that predicts labels for every token. For all active learning experiments, this model is first trained
on the source dataset, and label probabilities from this source-trained model are then used for
various active learning strategies. For every iteration of active learning, the source-trained model
is further finetuned on all target instances chosen until that point. This is slightly analogous to
the SC->TG baseline in the case study from Chapter 2, in that we are continuously performing
target-specific finetuning of a source-trained model. Note that it is possible to use other supervised
adaptation techniques such as multi-task training, frustratingly easy domain adaptation, etc., instead
of finetuning on target data. However, our results from the previous chapter demonstrated that
SC->TG often achieves comparable performance to supervised adaptation methods, so we use this
technique to avoid introducing an additional dimension of method combination.

7We omit the domain of clinical conversations from these experiments since we no longer have access to the
proprietary dataset from Abridge.
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Method LitBank i2b22012

P R F1 P R F1

TG 74.70 60.56 66.89 87.97 88.31 88.14
SC->TG 68.60 68.37 68.48 83.63 92.15 87.68
SC+TG 64.45 60.37 62.34 84.31 91.76 87.88

Rand 77.09 61.35 68.32 87.20 89.52 88.34

UNS 69.94 71.63 70.77 88.28 87.53 87.90
+DAQ-CC 72.12 69.67 70.88 85.30 89.23 87.22
+DAQ-CS 74.05 68.88 71.37 89.28 88.03 88.65

QBC 68.33 75.77 71.86 88.32 86.46 87.38
+DAQ-CC 69.00 73.40 71.13 86.73 87.63 87.18
+DAQ-CS 68.78 75.30 71.89 88.03 88.74 88.38

Table 3.8: Final performance of all models on event extraction datasets. Note that for active learning variants,
we report the performance after 20 iterations of active learning. The TG, SC->TG and SC+TG baselines
are described in detail in Section 3.5.3, while Rand refers to a baseline which randomly samples additional
instances at each iteration instead of choosing them via active learning. UNS and QBC refer to uncertainty
sampling and query-by-committee strategies respectively, which DAQ-CC and DAQ-CS refer to the classifier
confidence and cosine similarity formulations of our domain-awareness criteria.

In addition to various active learning variants, we also report the performance of the same set
of limited data baseline methods that we evaluate in the previous chapter: TG (training on target
domain data only), SC->TG (training source data, followed by target data), and SC+TG (joint
training on both source and target data). Note that all these baselines are trained passively, i.e., we
randomly sample a set of target domain instances for training.

Hyperparameter Details

We use the cased version of BERT-base for all our experiments. For all passively trained limited
data baselines, we follow the same setting as the previous chapter and randomly sample 1000 target
domain instances. For all active learning variants, we sample batches of 50 target instances at
every iteration, and continue learning for 20 iterations. At each AL iteration, the model is further
finetuned on the current set of labeled target data for 2 epochs, with a learning rate of 2e-5. Before
starting the active learning process, the model is trained on source domain data for 20 epochs, with
a learning rate of 2e-5 and early stopping.
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Method i2b22006 i2b22010 i2b22014

P R F1 P R F1 P R F1

TG 79.79 84.78 82.21 76.33 76.67 76.50 84.87 84.63 84.75
SC->TG 86.82 90.39 88.57 71.01 74.42 72.67 89.12 79.25 83.88
SC+TG 80.08 74.89 77.40 78.18 70.92 74.38 79.39 64.99 71.47

Rand 94.06 93.00 93.52 79.56 77.79 78.67 89.18 86.37 87.75

UNS 89.49 77.60 83.12 60.96 65.82 63.30 85.72 93.16 89.29
+DAQ-CC 65.54 82.18 72.92 70.02 79.96 74.66 92.26 91.21 91.73
+DAQ-CS 91.81 87.81 89.77 81.37 80.84 81.11 91.20 91.90 91.55

QBC 75.19 83.38 79.08 64.16 73.80 68.64 72.94 93.23 81.84
+DAQ-CC 69.35 70.33 69.84 77.27 75.32 76.28 91.29 91.28 91.29
+DAQ-CS 89.63 91.67 90.64 77.46 82.10 79.71 88.65 93.87 91.19

Table 3.9: Final performance of all models on named entity recognition datasets, in the coarse setting. Note
that for active learning variants, we report the performance after 20 iterations of active learning. The TG,
SC->TG and SC+TG baselines are described in detail in Section 3.5.3, while Rand refers to a baseline which
randomly samples additional instances at each iteration instead of choosing them via active learning. UNS
and QBC refer to uncertainty sampling and query-by-committee strategies respectively, which DAQ-CC
and DAQ-CS refer to the classifier confidence and cosine similarity formulations of our domain-awareness
criteria.

3.5.4 Results

Final Performance

Tables 3.8 and 3.9 show the performance of all passive baselines and active learning variants on
event extraction and NER datasets respectively. Note that for active learning variants, we report the
final performance after 20 iterations of active learning have been completed. From these tables, we
make the following major observations:

• Adding the domain-awareness criterion, specifically the cosine similarity formulation (DAQ-
CS), helps to further improve performance of active learning baselines. On the event
extraction datasets, these gains are modest (≥1 F1 point). However, the gains are much more
pronounced on the NER datasets (≥4-18 F1 points).

• The random sampling baseline achieves strong performance, and even outperforms all active
learning variants on the i2b2 2006 NER dataset, which indicates the utility of choosing a
strong starter model trained on source domain data. It is also interesting to note that random
sampling beats the TG baseline, demonstrating its data efficiency (since both use the same
number of instances).
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(a) Performance of all uncertainty sampling variants. (b) Performance of all query-by-committee variants.

Figure 3.5: Per-iteration performance of various active learning methods, and the random sampling baseline,
on event extraction from the LitBank dataset.

(a) Performance of all uncertainty sampling variants. (b) Performance of all query-by-committee variants.

Figure 3.6: Per-iteration performance of various active learning methods, and the random sampling baseline,
on event extraction from the i2b2 2012 dataset.

In addition to analyzing performance at the end of 20 active learning iterations, we also look at
model performance at every iteration to gain a better understanding of its evolution.

Simulation Graphs

Figures 3.5a and 3.5b show the per-iteration performance of all uncertainty sampling variants
and query-by-committee variants on the LitBank dataset. Similarly, Figures 3.6a and 3.6b show
per-iteration performance on i2b2 2012, Figures 3.7a and 3.7b show per-iteration performance on
i2b2 2006, Figures 3.8a and 3.8b show per-iteration performance on i2b2 2010, and Figures 3.9a
and 3.9b show per-iteration performance on i2b2 2014. Note that we also include the random
sampling baseline performance in all graphs.

From these graphs, we continue to see that our similarity-based formulation of domain aware-
ness helps on most datasets, and starts improving the performance of active learning baselines early
on (with the exception of i2b2 2014 and Litbank where results are mixed). These gains appear to
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(a) Performance of all uncertainty sampling variants. (b) Performance of all query-by-committee variants.

Figure 3.7: Per-iteration performance of various active learning methods, and the random sampling baseline,
on entity extraction from the i2b2 2006 dataset.

(a) Performance of all uncertainty sampling variants. (b) Performance of all query-by-committee variants.

Figure 3.8: Per-iteration performance of various active learning methods, and the random sampling baseline,
on entity extraction from the i2b2 2010 dataset.

be particularly pronounced on the i2b2 2006 and i2b2 2010 datasets. Therefore, DAQ-CS seems to
be a strong contender when dealing with extremely low annotation budgets (e.g., <200 instances).
In subsequent analyses, we perform a deeper investigation into how different properties of datasets
such as label sparsity and source-target distance influence the utility of the domain-awareness
criteria. Lastly, as with final iteration performance, we note that random sampling is an extremely
powerful baseline, achieving similar performance as the best-performing active learning variant on
every dataset. This seems to suggest that our source-trained BERT-based starter model is already
data-efficient and does not benefit much from smarter target instance sampling.
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(a) Performance of all uncertainty sampling variants. (b) Performance of all query-by-committee variants.

Figure 3.9: Per-iteration performance of various active learning methods, and the random sampling baseline,
on entity extraction from the i2b2 2014 dataset.

(a) Performance on LitBank. (b) Performance on i2b22012.

Figure 3.10: Variation in performance of random sampling baseline on various event extraction datasets upon
using different seeds for initialization. The line graph indicates average performance at each active learning
iteration, while the shaded region indicates minimum and maximum performance observed across runs.

3.5.5 Analysis and Discussion

Variation in Random Sampling Baseline Performance

The strong performance of our random sampling baseline raises a natural question: is the perfor-
mance of this baseline consistent across varying seed values? This is especially pertinent for our
setting because prior work has shown that finetuning pretrained language models, particularly on
small datasets, is highly brittle and can lead to substantially different results on varying the random
seed value (Dodge et al., 2020). To study variation in random sampling baseline performance,
we re-run this baseline with five different seed values on all datasets. Figures 3.10a and 3.10b
show the average, minimum and maximum performance from these runs on both event extraction
datasets. Similarly, Figures 3.11a, 3.11b, and 3.11c show the average, minimum and maximum
performance from these runs on all NER datasets. From these graphs, we can see that during early
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(a) Performance on i2b22006. (b) Performance on i2b22010. (c) Performance on i2b22014.

Figure 3.11: Variation in performance of random sampling baseline on various NER datasets upon using
different seeds for initialization. The line graph indicates average performance at each active learning
iteration, while the shaded region indicates minimum and maximum performance observed across runs.

iterations, performance variation is often massive. For example, the difference between minimum
and maximum performance on i2b22010, i2b22014, and LitBank is >=20 F1 points during early
iterations. However this variation stabilizes over time, indicating that final performance scores for
the random sampling baseline are quite consistent across seed values.

Variation in Performance across Entity Types

Similar to the previous chapter, in addition to looking at overall performance, we look at the
performance of all NER models on various entity types. However, as noted earlier, all models in
these experiments are only trained in a coarse setting, i.e. they only identify entity spans and are
not trained to predict entity types. Given this constraint, we approximate performance on an entity
type (e.g., location) by computing recall as follows:

Rlocation = #Number of location entities from the gold standard identified correctly by the model
#Total number of location entities in the gold standard

(3.10)
Note that correct identification here only refers to the model identifying span boundaries for the
entity correctly.

Table 3.10 presents the recall scores per entity type for all active learning variants and baselines,
as computed by this metric. From this table and Table 3.9, we can immediately see that on i2b22006
and i2b22014, the model that achieves highest recall on the MISC category, which is the most
populous one, also achieves best overall recall scores. However, these models are not necessarily
the best-performing ones on all other entity types. In particular, we note that domain-aware
model variants often achieve strong performance on entity categories that differ significantly from
the source dataset (CoNLL-2003), but are not as populous in the target dataset. For example,
in i2b22006, as discussed in the previous chapter, location entities often comprise of complete
addresses (not common in CoNLL-2003) and only comprise ≥12% of the data. This may partly
be due to the selectivity of the domain-aware sampling strategies, which tend to emphasize that
samples should simultaneously be distant from the source domain and difficult for the current
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Method i2b22006 i2b22010 i2b22014

PER LOC ORG MISC PROB TEST TREAT PER LOC MISC

Rand 87.61 60.50 88.31 96.87 76.07 77.89 78.99 74.92 55.10 59.98

UNS 66.77 50.42 64.65 85.46 69.70 57.40 68.04 79.71 74.19 62.33
+DAQ-CC 78.25 52.94 43.20 92.79 80.43 75.56 82.62 75.48 73.47 61.48
+DAQ-CS 87.68 75.63 52.66 95.31 79.40 81.72 80.85 79.29 74.35 60.63

QBC 89.28 60.50 88.31 80.16 75.19 69.26 75.41 79.47 76.01 62.36
+DAQ-CC 40.68 60.50 48.23 87.43 80.66 61.85 80.44 74.68 74.90 61.43
+DAQ-CS 87.68 80.67 78.85 95.92 82.18 79.87 83.09 78.56 73.75 64.20

Table 3.10: Recall scores per entity type for all active learning variants on named entity recognition datasets.
Note that these scores are recorded after 20 iterations of active learning. Rand refers to the baseline which
randomly samples additional instances at each iteration instead of choosing them via active learning. UNS
and QBC refer to uncertainty sampling and query-by-committee strategies respectively, which DAQ-CC
and DAQ-CS refer to the classifier confidence and cosine similarity formulations of our domain-awareness
criteria.

model. We also see that domain-aware variants are the best-performing models on all entity
types in i2b22010, which contains entity types that are never found in the source dataset. These
observations indicate that domain-awareness seems to provide some utility, and we explore this
further in subsequent analyses.

Effect of Label Sparsity on the Utility of Domain-Awareness

Based on final performance and per-iteration performance graphs, we can see that the domain-
awareness criterion is typically helpful, except for i2b2 2014 and Litbank. To better identify
properties of various datasets that make the domain-awareness criterion more/less useful, we
first look at label sparsity across all datasets. Table 3.11 shows the percentage of tokens that are
labeled as entities or events for all datasets used in our experiments. From this table, we can
see that i2b2 2014 and LitBank are the most label-sparse datasets. Strategies such as uncertainty
sampling and query-by-committee are known to work better under sparsity, since under high-
sparsity conditions, these strategies tend to be most uncertain about fewer spans, which typically
correspond to events/entities. Hence, these strategies are already strong baselines, and may not
benefit much from the addition of domain-awareness. Interestingly, the i2b2 2006 dataset is also
quite sparse, but still benefits from domain-awareness, indicating that label sparsity is only a partial
determinant of model performance.

Effect of Source-Target Distance on the Utility of Domain-Awareness

In addition to label sparsity, we investigate whether distance between source and target datasets
influences how well the domain-awareness criterion works. For this analysis, we use the same
general family of divergence measures (information-theoretic measures and term vocabulary
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Dataset Task Label Proportion

TimeBank EE 11.31
LitBank EE 3.73
i2b2 2012 EE 35.47

CoNLL 2003 NER 16.84
i2b2 2006 NER 5.34
i2b2 2010 NER 23.89
i2b2 2014 NER 4.11

Table 3.11: Percentage of tokens labeled as entities/events across all datasets used in our experiments.

CoNLL-2003 TimeBank

i2b22006 i2b22010 i2b22014 i2b22012 LitBank

TVO 0.1583 0.1335 0.1485 0.1536 0.1794
KLD 1.3145 1.1664 1.0658 1.0997 0.8505
JSD 0.2468 0.2309 0.2134 0.2437 0.1975
RD 1.2998 1.1539 1.0547 1.0917 0.8441

Table 3.12: Distance between source-target domain pairs used in our case study according to various label-
aware measures. As indicated in the table, for i2b22006, i2b22010 and i2b22014, distance is computed from
CoNLL-2003, while for i2b22012 and LitBank, distance is computed from TimeBank. Note that for TVO,
lower values mean higher source-target distance, while higher values correspond to higher source-target
distance for all other measures.

overlap) as the case study from the previous chapter. However, we make a key tweak to all these
measures: incorporating label information. The vanilla variants of these measures treat word types
as random variables, computing distance as word type overlap or divergence between word type
probability distributions, while ignoring changes in word type-label association across domains. To
account for these changes as well, we treat word type-label pairs as random variables, resulting
in label-aware variants of the same set of measures. The distance between various source-target
domain pairs used in our experiments under these label-aware measures is shown in Table 3.12.
Note that unlike vanilla variants, label-aware measures cannot be used to predict performance in
advance since we do not typically have access to labels for the target domain. However, they can
be used for retrospective analyses to better understand the behavior of various adaptation methods.

To compute correlation between domain-awareness and domain distance, we first compute
percentage change in performance (improvement or drop) achieved by adding domain-awareness
to an active learning baseline (UNS or QBC) across all datasets. We compute performance changes
separately for both formulations explored in our experiments. After computing percentage changes
for each formulation, we calculate the Pearson correlation between these values and the source-
target distance according to each measure. Table 3.13 shows the results from this correlation
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Formulation TVO KLD JSD RD

DAQ-CC -0.7131 0.2991 0.1787 0.2964
DAQ-CS -0.6993 0.1575 0.0704 0.1551

Table 3.13: Correlation between performance improvements/drops on adding domain-awareness (recorded
as percentage change over UNS/QBC baseline scores) and label-aware source-target domain distance for
each distance formulation. Note that performance changes are averaged over all 20 active learning iterations.

analysis. From this table, we can see that most information-theoretic measures do not show
strong correlation with performance changes, but term vocabulary overlap (TVO) shows strong
negative correlation with domain-awareness. This indicates that domain-awareness is likely to
provide higher benefits on source-target domain pairs with low overlap (i.e., domain pairs with
fewer overlapping word type-label pairs). In addition to improving our understanding of dataset
properties that influence the utility of domain-awareness, this provides some evidence that our
domain-awareness formulation helps bridge larger label drifts through its focus on choosing target
instances that are distant from the source domain.

The Limits of Active Learning

Despite establishing the utility of our domain-awareness criterion, we observe that none of the active
learning methods are able to outperform a random sampling baseline, both on final performance
as well as per-iteration performance. This appears to be in contrast to much prior work that
has established the utility of active learning for low-resource settings (Ambati, 2011; Chaudhary
et al., 2019, 2021), including sequence labeling tasks for high-expertise domains like clinical text
(Chen et al., 2015; Shelmanov et al., 2019; Lybarger et al., 2021; Liu et al., 2022). However,
there have been some instances in which active learning methods have shown inconsistent or no
performance improvements. Lowell et al. (2019) conducted a study evaluating the utility of active
learning methods on four text classification benchmarks, and three model families: SVMs, LSTMs
and CNNs. Their experiments reveal two key observations. First, while active learning shows
improvements on certain domains/tasks, overall benefits are inconsistent and no specific strategy
is a clear winner, which is problematic in a real world setting in which practitioners may need to
commit to one ahead of time. This observation has been echoed by other studies such as Settles
and Craven (2008), who evaluated several strategies for sequence labeling. Second, when new
models (also called successor models) are trained on data collected via active learning, they do
not consistently outperform variants trained on data sampled in IID fashion. Moreover, despite
better performance in simulation experiments, which is the most commonly used evaluation setting,
the benefits of active learning often do not translate to cost savings during actual user studies
(Settles et al., 2008; Chen et al., 2017c). A key difference to note is that these studies have focused
on the typical active learning setting in which a model is being created for a new task/domain
from scratch. However, our experiments evaluated the utility of active learning in an adaptation
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setting, in which we have already warm-started our model by training on related data from other
domains. Our observation that active learning methods do not offer much additional benefit over
pretrained language models in this setting helps in revealing additional limitations of active learning
techniques not explored by prior work.

3.5.6 Summary of Observations
• Adding a domain-awareness criterion typically helps boost the performance of strong active

learning baselines in an adaptation setting. Of the two formulations we experiment with, our
new embedding similarity-based formulation seems to achieve stronger performance across
both event extraction and named entity recognition.

• Designing label-aware variants of source-target divergence measures and computing correla-
tion with performance change on incorporating domain-awareness shows that this criterion
is capable of bridging large drifts in word type-label overlap. In accordance with our
observations from chapter 2, TVO again seems to be the most predictive metric.

• Active learning variants in general are unable to outperform a simple random sampling
baseline in an adaptation setting. This indicates that use of pretrained language models
and starting the active learning process with a source-trained model are already highly
data-efficient tactics, and also helps identify a potential new failure setting for active learning.

3.6 Conclusion

In this chapter, we attempted to further develop our understanding of macro-level adaptation by
expanding the set of macro dimensions studied so far. More specifically, in addition to clinical
narratives, we brought two new domains under our purview: (i) literary texts, and (ii) transcripts of
doctor-patient conversations. We also proposed two new adaptation methods:

• Likelihood-based instance weighting (LIW) (Naik et al., 2021b)
• Active learning with domain-aware query sampling (DAQ)

LIW is an unsupervised adaptation method from the hybrid instance weighting category that uses
target domain language model likelihood to compute weights for source domain instances. DAQ is
a data-centric active learning method, that adds an additional domain-awareness criterion during
the query sampling process. We experimented with two different formulations of domain distance,
based on classifier confidence (DAQ-CC) and embedding similarity (DAQ-CS). To understand the
strengths and weaknesses of these newly proposed methods, as well as to further our understanding
of existing adaptation methods, we conducted systematic case studies on event extraction datasets.
For DAQ, we also conducted additional experiments on NER to better understand the effect of
the domain-awareness criterion. Our experiments demonstrated promising results with both these
adaptation methods. LIW improved performance over a zero-shot baseline on both the domains that

94



3.6. Conclusion

it was tested on, but did not outperform other unsupervised adaptation methods. DAQ improved
performance over existing active learning baselines on most datasets, but no active learning
variants were able to outperform a random sampling strategy. Based on extensive experimentation
and supplementary quantitative and qualitative analyses, these case studies further extended our
understanding of macro-level adaptation methods with the following observations:

• In an unsupervised adaptation setting, different method categories performed best depending
on the linguistic nature of source-target domain shift. For event extraction, loss-centric
methods seemed to be the best-performing category for high-expertise narrative domains
(consistent with Chapter 2), while pretraining methods seemed to be the best-performing
category for high-expertise non-narrative domains.

• Active learning methods did not improve performance or data-efficiency over a random
sampling baseline in an adaptation setting, which could be a potential new failure case for
this category of methods.

• The TVO measure of source-target domain divergence continued to be strongly correlated
with performance improvements/drops achieved by adaptation methods.
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4
Improving Micro-Level Adaptation: A
Case Study on Discourse-Level Event
Ordering

In this chapter, we switch our focus to adaptation between micro-level long tail dimensions, i.e.
adapting models to handle different linguistic phenomena under the same macro-dimensional
scenario (same task, domain, language and adaptation setting). We delve into the problem of
data-scarce micro-level adaptation for the task of temporal ordering of events, targeting event pairs
that are far apart in text. Despite event ordering being an extensively studied problem, prior work
has mostly focused on local pairs, i.e. ordering events present in the same or adjacent sentences,
and sidelined distant event pairs, which might require models to learn to handle a different set of
linguistic phenomena such as maintaining transitivity and chain reasoning. To address this gap, and
simultaneously study micro-level adaptation, we make the following contributions:

• TDDiscourse, a new event ordering benchmark with a discourse-level focus (Naik et al.,
2019)

• A joint BiLSTM+ILP model architecture that incorporates heuristics (e.g., transitivity) via
loss augmentation for better adaptation (Breitfeller et al., 2021)

In order to ensure macro dimension consistency, our new discourse-level event ordering
benchmark TDDiscourse is constructed by augmenting the existing TimeBank-Dense dataset
(Cassidy et al., 2014), a corpus of English news articles, with more long-distance event pair
annotations. Since sourcing expert annotation for all possible long-distance event pairs is expensive,
we develop a heuristic algorithm for automatic inference of temporal relations for some pairs
(TDD-Auto subset), and then obtain expert annotation for a subset of non-inferable pairs (TDD-
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Man subset). Benchmarking multiple existing state-of-the-art models on TDDiscourse reveals its
challenging nature. We then study the problem of unsupervised micro-level adaptation by training
models on local event pairs (i.e. TimeBank-Dense) and evaluating them on distant event pairs
(i.e. TDDiscourse). We evaluate adaptation methods from two categories: (i) a pseudo-labeling
data-centric method that adds heuristically labeled data from TDD-Auto during model training, and
(ii) a loss augmentation model-centric method that incorporates heuristics such as transitivity into
the loss function via an integer linear programming (ILP) constraint framework. Our results show
that both methods improve performance over a zero-shot baseline, but combining methods does
not always lead to consistent performance boosts. Our observations from this case study highlight
interesting future research avenues that can be explored to develop better techniques for micro-level
adaptation.

4.1 Introduction

Temporal ordering of events is a crucial problem in automated text analysis. Systems capable of
performing this task can find widespread applicability in downstream tasks such as time-aware
summarization, temporal information extraction or event timeline construction. Prior work has
focused extensively on creating annotated benchmark corpora for the task of temporal ordering,
some notable efforts being the development of the TimeML annotation schema (Pustejovsky
et al., 2003a), TimeBank (Pustejovsky et al., 2003b) and TimeBank-Dense (Cassidy et al., 2014).
However, most benchmarks have focused mainly on local ordering, i.e., ordering events present
in the same or adjacent sentences, which is fairly restrictive. As pointed out by Reimers et al.
(2016), this allows systems which simply rely on explicit local syntactic cues to achieve moderate
performance. On the other hand, global ordering, i.e. ordering events which are more than one
sentence apart requires models to employ implicit reasoning such as maintaining discourse-level
(global) consistency, understanding probable causal/prerequisite relationships and performing chain
reasoning at the document-level. State-of-the-art temporal ordering models are rarely exposed
to examples that require such reasoning due to lack of global (or long-distance) annotations in
benchmark datasets. In other words, despite their utility and challenging nature, long-distance
event pair examples have been relegated to the long tail of temporal ordering research. Therefore,
in this chapter, we specifically focus on the task of ordering long-distance event pairs, while also
using it as a testbed to study adaptation between micro-level long tail dimensions.

To encourage research on long-distance examples requiring implicit reasoning, we first construct
TDDiscourse, a new benchmark dataset focused on discourse-level temporal ordering. In addition
to a discourse-level focus, another requirement for this benchmark is to ensure its utility as a
testbed for micro-level adaptation. To achieve this, we need to maintain consistency across the
macro dimensions of task, domain, language and adaptation setting. We achieve this during the
creation of TDDiscourse by augmenting TimeBank-Dense (Cassidy et al., 2014), an existing corpus
of English news articles, with more long-distance event pair annotations. TimeBank-Dense and
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TDDiscourse are thus consistent along all macro dimensions, but can contain different proportions
of specific linguistic phenomena since the former focuses on local event pairs, while the latter
focuses on long-distance pairs. Our work on constructing TDDiscourse makes the first attempt
to explicitly annotate relations between event pairs that are more than one sentence apart, a more
difficult annotation task than previous datasets. In addition to facing similar challenges as prior
work (eg: hypothetical/negated events (Cassidy et al., 2014)), we tackle new global discourse-level
issues such as incorporating event coreference and causality/prerequisite links arising from world
knowledge during the annotation procedure. To handle these, we design a careful coding scheme
that achieves high inter-annotator agreement (Cohen’s Kappa of 0.69 on the test set). However,
getting expert manual annotation for all possible long-distance event pairs is expensive. Moreover,
it is possible to leverage annotations from existing datasets to automatically infer temporal relations
for certain event pairs. To make optimal use of expert annotation, we develop a heuristic algorithm
for automatic inference of temporal relations using EventTime (Reimers et al., 2016) and apply
this to all documents. We validate our algorithm by obtaining human annotations for a subset of
100 examples and observing agreement with the generated label in 99% cases. We then randomly
subsample the unannotated event pairs and source expert annotations for those. At 6150 pairs,
our manually annotated subset (TDD-Man) is of the same size as TimeBank-Dense. Adding the
automatically inferred subset (TDD-Auto) makes our dataset 7x larger (§4.3.3). Finally, we perform
a principled comparison between event pairs from the manual and automatic subsets by annotating
3 test documents (107 manual and 110 automatic event pairs) with linguistic phenomena required
to reason correctly about the pair. These annotations suggest that our manual subset in particular
exhibits a high proportion of global discourse-level linguistic phenomena such as reasoning about
chains of events.

In addition to developing TDDiscourse, we establish the challenging nature of this dataset by
benchmarking the performance of several state-of-the-art temporal ordering models that achieve
high performance on TimeBank-Dense. This includes a model that tries to improve performance
on long-distance examples by enforcing discourse-level consistency via explicit transitivity rules
framed as integer linear programming (ILP) constraints in a structured perceptron (SP). Most other
SOTA models are non-transitive, making separate local ordering decisions for each event pair,
which may result in global inconsistency. For example, for events A, B and C, if A occurs before B
and B occurs before C, transitivity implies that A occurs before C. But models classifying each
pair independently may assign a different relation to A-C. Incorporating transitivity rules as ILP
constraints attempts to correct for this by biasing models to prefer predictions that are consistent
at the discourse-level. The SP+ILP model was initially proposed by Ning et al. (2017), but we
design a stricter ILP formulation in order to improve tractability on our data, which contains 7x
more TLINKs. We also benchmark three other state-of-the-art models on TimeBank-Dense on
our data, after introducing minor modifications for discourse-level temporal ordering, reporting
scores on TDD-Auto and TDD-Man separately. We observe that models perform worse on average
on TDDiscourse as compared to TimeBank-Dense, with none beating a majority class baseline

98



4.1. Introduction

on TDD-Man. Notably, incorporating transitivity rules helps improve both overall performance
as well as prediction consistency. A manual analysis of model errors on TDD-Man reveals key
shortcomings of these SOTA temporal ordering techniques. These experiments indicate that our
dataset1 serves as a challenging new resource for the temporal ordering community, and insights
from our analysis highlight key areas for future research in building more global discourse-aware
models.

We then use TDDiscourse as a testbed to conduct a case study on unsupervised micro-level
adaptation by training a model on TimeBank-Dense, which consists of local event pairs, and
evaluating its performance on long-distance event pairs from TDDiscourse. The task model used
for this case study is a dependency parse-based BiLSTM, one of the SOTA models on TimeBank-
Dense. To improve micro-level adaptation, we develop a joint neural model (BiLSTM+ILP),
which infuses pre-defined heuristics into the BiLSTM model via integer linear programming
(ILP) constraints in a structured support vector machine (SSVM) framework. Since ILP constraint
infusion is carried out by modifying the model’s loss function, this proposed adaptation method falls
under the model-centric coarse category and the loss augmentation fine category in our adaptation
method taxonomy. Motivated by its observed utility from the previous benchmarking experiment,
one of the key heuristics that we incorporate using ILP is transitivity. Additionally, we also evaluate
the effect of adding constraints generated from explicit textual semantic cues by a rule-based
temporal parser called STAGE (Semantic Temporal Alignment Grammatical Extraction), during
the adaptation process. Aside from the BiLSTM+ILP model, we also evaluate the performance
of a data-centric method from the pseudo-labeling fine category that adds heuristically labeled
training data from TDD-Auto while training the task model. Note that since TDD-Auto is entirely
automatically generated using a temporal inference algorithm, using TDD-Auto as additional
training data during adaptation can be viewed as a form of distant supervision, which puts this
method under the pseudo-labeling category. The complete experimental setup for this case study is
summarized below:

• Task: Temporal ordering, or temporal relation classification (text classification)
• Source Dataset: Local event pairs (TimeBank-Dense) (Cassidy et al., 2014)
• Target Dataset(s): Long-distance event pairs (TDDiscourse) (Naik et al., 2019)
• Task Model: Dependency parse-based BiLSTM classifier (Cheng and Miyao, 2017)
• Adaptation Method: Incorporating heuristics (e.g., transitivity) via ILP constraints (model-

centric method) (Breitfeller et al., 2021)
• Adaptation Baseline(s): Incorporating heuristically generated data from TDD-Auto (data-

centric method)
• Adaptation Setting: Unsupervised

From this case study, we observe that both adaptation methods improve the performance of the
baseline BiLSTM task model. Among the two methods compared, the pseudo-labeling method
(i.e., incorporating TDD-Auto training data) provides larger performance gains. This can partly

1Dataset is available at: https://github.com/aakanksha19/TDDiscourse
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be attributed to the fact that while ILP constraints are designed to handle specific categories of
linguistic phenomena, adding TDD-Auto data provides the model access to instances exemplifying
the entire range of linguistic phenomena present in long-distance pairs. We also experiment with
combining both methods, and observe slightly higher gains than using one method on TDD-Man,
but no improvements on TDD-Auto.

Interestingly, the pseudo-labeling method, trained on TimeBank-Dense+TDD-Auto data, per-
forms worse on the TDD-Auto test set than a model trained only on TDD-Auto data, indicating
the presence of conflicting instances in the TimeBank-Dense dataset. However, designing an
unsupervised instance weighting/data selection technique to identify such instances is not straight-
forward in the micro-level adaptation setting. Unlike techniques such as likelihood-based instance
weighting (LIW) and classifier-based instance weighting that were used in previous chapters, we
cannot rely on largely lexical similarity to learn source-target similarity when macro dimensions are
consistent. This presents an interesting question for future research on developing better methods
for micro-level adaptation to tackle.

4.2 Background

4.2.1 Temporal Ordering Datasets
The development of TimeML (Pustejovsky et al., 2003a) and TimeBank (Pustejovsky et al., 2003b)
marked the first attempt towards creating a corpus for temporal ordering of events. TimeML uses
temporal links (TLINKs) (Setzer, 2002), to represent ordering. A TLINK expresses the temporal
relation between two events. For example, an event e1 can occur before another event e2. TimeBank
is annotated using TLINKs, but the number of possible TLINKs in a document is large (quadratic
in number of events). So annotation is restricted to a subset of TLINKs, leading to sparsity. To
combat this, several works attempted to create denser corpora (Bramsen et al., 2006; Kolomiyets
et al., 2012; Do et al., 2012; Cassidy et al., 2014), but still focused largely on local TLINKs.

Reimers et al. (2016) addressed high annotation cost by proposing a new scheme in which events
were associated with explicit time expressions. Annotation effort now scaled linearly with number
of events, making it feasible to annotate all of them. Using this scheme, they created EventTime,
which had some discourse-level temporal annotation. However this dataset had one major drawback:
events which could not be associated with a time expression were ignored. We observed that it may
not always be possible to determine specific times for an event, but ordering it with respect to other
events is often possible based on world knowledge. For example, consider the snippet: “Police
discover body of kidnapped man. Police found the man’s dismembered body wrapped in garbage
bags”. In this text, dismembered cannot be associated with a time. But the temporal relation
between dismembered and kidnapped is clear because the kidnapping should have happened before
dismembering. Based on this, we address the drawback in EventTime, by using TLINK-based
annotation, which is expensive but allows more expressive power. Following TimeML, we augment
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TimeBank-Dense (Cassidy et al., 2014) with global discourse-level TLINKs. To optimize manual
effort, we automatically generate all TLINKs that can be inferred from EventTime. Then, we
manually annotate a large subset of missing TLINKs involving events not associated with specific
dates.

Most recently, Ning et al. (2018b) proposed a new scheme, which labels TLINKs based only
on event start time. This improved inter-annotator agreement allowing for crowdsourcing of long-
distance annotations at lower cost. However, they focused only on verb events, whereas our work is
broader in scope and poses no such restrictions.

4.2.2 Temporal Ordering Systems
TimeBank and the TempEval tasks (Verhagen et al., 2007, 2010; UzZaman et al., 2013) spurred the
development of many temporal ordering systems (UzZaman and Allen, 2010; Llorens et al., 2010;
Strötgen and Gertz, 2010; Chang and Manning, 2012; Chambers, 2013; Bethard, 2013a). More
recently, TimeBank-Dense and EventTime prompted development of newer models (Chambers
et al., 2014; Mirza and Tonelli, 2016; Cheng and Miyao, 2017; Reimers et al., 2018). Most systems
built for TimeBank/ TimeBank-Dense focus on TLINKs between events in the same or adjacent
sentences, relying on local features rather than document-level structure, with some exceptions.
Chambers and Jurafsky (2008); Denis and Muller (2011); Ning et al. (2017) introduce document-
level consistency via integer linear programming constraints. Bramsen et al. (2006); Do et al. (2012)
also incorporate document-level structure, but focus on different corpora. Reimers et al. (2018)
develop a model for EventTime, which uses a decision tree of CNNs to associate each event from a
document with a time. Several works have explored techniques to incorporate document-level cues
such as event coreference (Do et al., 2012; Llorens et al., 2015) and causality (Do et al., 2012; Ning
et al., 2018a) in temporal ordering systems. However, due to a lack of standard datasets focusing
on global discourse-level links, most work has been evaluated on datasets of their own creation
or standard datasets with mainly local TLINKs. This further stresses the need for a standardized
benchmarking effort on discourse-level links, which we address by evaluating adaptations of several
state-of-the-art systems on TDDiscourse (§4.4).

In addition to benchmarking SOTA systems, we develop a new joint BiLSTM+ILP model
architecture, which extends the dependency parse-based BiLSTM model of Cheng and Miyao (2017)
by introducing transitivity and semantic information extracted by a rule-based temporal parser
called STAGE as ILP constraints. Prior work on incorporating information via ILP constraints
typically added these constraints during postprocessing (Chambers and Jurafsky, 2008; Denis
and Muller, 2011) or incorporated them during training for simpler classifiers like perceptrons
(Ning et al., 2017). Conversely, in our formulation, ILP constraints are incorporated in a neural
architecture during model training via a structured support vector machine (SSVM) framework.
Our model formulation is close to the joint event-temporal model developed by Han et al. (2019),
but we do not model event extraction. Instead, we introduce rich semantic information extracted by
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STAGE.

4.2.3 Overview of Relevant Temporal Frameworks
To facilitate a better understanding of the STAGE temporal parser described later in the chapter,
we briefly discuss some papers relevant to the temporal framework used by STAGE. Note that this
is not an exhaustive review of the body of work on developing formal semantic frameworks to
represent time, which is vast. Some foundational work that informed the development of STAGE
is the framework by Allen and Hayes (Allen, 1984; Allen and Hayes, 1985; Allen, 1991). Allen
and Hayes (1985) present an axiomatic model of time that expresses time spans as intervals or
moments, distinguished by whether these time spans can be broken into smaller constituents or
not. Most subsequent work on temporal semantics, including STAGE, maintains this influential
distinction. The STAGE framework builds most directly on the OWL-S ontology (Pan and Hobbs,
2004), though it shares similarities with others such as Verhagen et al. (2005). Like Pan and Hobbs
(2004), it identifies as possible time expressions instants and intervals, which represent moments
along a timeline and spans of time, respectively. It also adds ranges, which cover spans of time like
intervals, but reference the outer bounds of when the event takes place.

With advances in statistical learning, the field has been slowly shifting its focus away from
formal models of semantics, though there have been periodic resurgences and some continuing
work in adjacent fields. Some early contemporary formalizations of time can be found in the
TimeML annotation scheme (Pustejovsky et al., 2003a) and subsequently developed corpora such
as TimeBank (Pustejovsky et al., 2003b). Shared tasks using TimeBank data such as the TempEval
1-3 tasks (Verhagen et al., 2007, 2010; UzZaman et al., 2013) also motivated much recent work
on temporal frameworks and taggers, such as HeidelTime (Strötgen and Gertz, 2010) SUTime
(Chang and Manning, 2012), and TARSQI, which builds on Verhagen et al. (2005). As with most
NLP tasks, a lot of this work focuses on news narratives, with the exception of the Temporal Event
Ontology designed by Li et al. (2020) that specifically aimed to resolve complex temporal reasoning
in clinical texts.

4.3 Dataset Creation

To address the lack of research on ordering long-distance event pairs, we develop TDDiscourse, the
first dataset which focuses explicitly on annotating temporal relations (TLINKs) between event pairs
that are more than one sentence apart. Additionally to maintain macro-level consistency, we create
TDDiscourse by augmenting a subset of documents from an existing benchmark (TimeBank-Dense)
with global TLINKs. Using the same set of 36 documents as TimeBank-Dense (Cassidy et al.,
2014) and EventTime (Reimers et al., 2016) also facilitates comparison with previous work. Lastly,
we utilize the same set of temporal relations as TimeBank-Dense, with the exception of the “vague”
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Symbol Relation

a e1 occurs after e2
b e1 occurs before e2
s e1 and e2 are simultaneous
i e1 includes e2
ii e1 is included in e2

Table 4.1: Temporal relation set used in TDDiscourse. All relations are mutually exclusive.

label, since we do not require annotators to label all event pairs. Table 4.1 gives a brief summary of
these relations. To add discourse-level links, we use two approaches:

• Automatic inference: We use a heuristic algorithm to automatically label global TLINKs
using EventTime (§4.3.1) annotations, to generate a large number of links at low cost.

• Manual annotation: We manually label a subset of global TLINKs using document cues,
world knowledge and causality (§4.3.2). To optimize human effort, we ensure that these
TLINKs are not automatically inferable in the previous step.

4.3.1 Automatic Inference
This approach uses automatic inference to derive new TLINKs at low cost from EventTime (Reimers
et al., 2016), which assigns specific times to events. EventTime divides events into two types:
SingleDay and MultiDay. SingleDay events are assigned dates, while MultiDay events are assigned
intervals. Possible event pairs can be divided into three categories: SS (both events are SingleDay),
SM (one event is SingleDay while the other is MultiDay) and MM (both events are MultiDay). Not
all assigned dates and intervals are exact. EventTime relies heavily on under-specified temporal
expressions (such as “after1998-06-08”), making automatic inference non-trivial.

We follow separate algorithms to infer TLINKs for each pair type (SS, SM and MM). For SS
pairs, both events are associated with dates, which may be expressed in one of four ways: MM-DD-
YYYY, afterMM-DD-YYYY, beforeMM-DD-YYYY, afterMM-DD-YYYYbeforeMM-DD-YYYY,
where MM-DD-YYYY stands for a specific date value. This results in 16 date combinations for SS
links. We develop heuristics for each combination, which generate a temporal relation based on
date values. Sample heuristics for 3 combinations are provided in Table 4.2. We develop similar
rules for the remaining 13 cases, as well as for SM and MM links.

103



4.3. Dataset Creation

S1 Date Type S2 Date Type Procedure

MM-DD-YYYY afterMM-DD-YYYY

• Get the relation (rel) between the
date values from S1 and S2

• If rel is simultaneous or before, the
SS link value is before

• Else skip this link

MM-DD-YYYY beforeMM-DD-
YYYY • Get the relation (rel) between the

date values from S1 and S2

• If rel is simultaneous or after, the SS
link value is after

• Else skip this link

MM-DD-YYYY afterMM-DD-YYYY
beforeMM-DD-
YYYY

• From S2, the date associated with
after is named date1 and the date as-
sociated with before is named date2

• Get the relation (rel1) between date
value from S1 and date1 from S2

• If rel1 is simultaneous or before, the
SS link value is before

• Get the relation (rel2) between date
value from S1 and date2 from S2

• If rel2 is simultaneous or after, the
SS link value is after

• Else skip this link

Table 4.2: Sample heuristics for three SS link date combinations. Assume S1 and S2 indicate the points
associated with events 1 and 2 which are to be linked.
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Our heuristics were developed with a focus on precision to avoid adding incorrect links. Often,
a relation cannot be generated. For example, consider two events associated with the same date
“after02-01-1999”. We know that both events occur after 02-01-1999, but we cannot infer their
order with respect to each other. In such cases, we do not label the pair. For SM pairs, one event
is associated with a time interval having begin and end dates. Here we use the SS pair inference
algorithm to generate relations between the SingleDay event date and the MultiDay event begin and
end dates. These relations are compared to infer the label for the pair. For MM pairs, both events
have begin and end dates. We infer relations between begin and end points using SS link inference
and use these to infer the pair label. After inference, we perform temporal closure, according to
Chambers et al. (2014). To evaluate validity of generated TLINKs, we randomly sample a subset
of 100 TLINKs and ask three annotators to determine the correctness of the labels. Annotators
were volunteers with no vested interest in the corpus. All annotators unanimously agree with the
assigned label in 99% cases. We call this subset TDD-Auto.

4.3.2 Manual Annotation
In this phase, we ask expert annotators, with a background in computational linguistics, to label
discourse-level TLINKs that cannot be inferred automatically. Getting expert annotation for all
missing TLINKs is expensive. Hence, we randomly subsample a set of TLINKs not annotated by
TimeBank-Dense or automatic inference. This subset is as large as TimeBank-Dense, thus doubling
the data size while making the overall task harder (see §4.4). Note that TLINKs annotated in this
phase may involve events for which a specific time of occurrence cannot be determined, which
were ignored in EventTime. We refer to this subset as TDD-Man.

Since TLINKs are not restricted to the same or adjacent sentences, our annotation task becomes
harder, requiring cues from the entire document. Many TLINKs also require the use of causal
links and world knowledge to label the relation. Based on our observations, we carefully develop
a detailed coding scheme. To ensure high inter-annotator agreement, we refine our scheme over
multiple rounds of annotation and discussion of disagreements.

Coding Scheme

Our scheme reduces the task of labeling a TLINK to a set of concrete decision steps:
1. Using textual cues
2. Using world knowledge
3. Using narrative ordering

A TLINK may be assigned a label at any step. If it cannot be assigned a label, it moves on to the
next step. Information from previous steps is retained, making it possible to combine multiple
sources of evidence. For example, textual cues may not suffice, but they can be used in conjunction
with world knowledge to label a pair. We choose to organize our coding scheme as mentioned above,
to make the process of gathering evidence about an event pair systematic, and ensure that experts
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Snippet

Atlanta nineteen ninety-six. A bomb blast shocks the Olympic games.
One person is killed.
January nineteen ninety-seven. Atlanta again. This time a bomb at an
abortion clinic. More people are hurt.

Event pair: blast, hurt

Relation: before

Textual cues: Event blast occurred in 1996. Event hurt occurred be-
cause of second bomb blast in 1997.

Table 4.3: Sample document-level textual cues used during temporal annotation.

do not miss important cues. The final step is guaranteed to assign a label. We choose not to allow
annotators to leave event pairs unlabeled or label them “vague”, to keep them from overusing this
option. Owing to this decision, we need to develop mechanisms for handling TLINLKs containing
events which have not actually occurred (eg: negated, hypothetical or conditional events). Drawing
from prior work, we interpret these events using a possible worlds analysis, in which the event
is treated as if it has occurred. We refer interested readers to Chambers et al. (2014) for a more
detailed discussion.

Using textual cues

In this step, we use document-level textual cues to label a TLINK. These cues used are generally
similar to those used in previous datasets (Cassidy et al., 2014). Table 4.3 gives an example of the
types of cues used.

A key textual cue we use in this step is event coreference. Traditionally, event coreference
has not been used for temporal annotation because the occurrence of coreferent events in adja-
cent sentences is rare. However, this cue is crucial for global discourse-level annotation. Since
TimeBank-Dense does not contain event coreference information, we develop an additional proce-
dure to annotate the documents for event coreference. Our procedure is based on the ERE (Entities,
Relations, and Events) scheme (Song et al., 2015), which cannot be directly used for TimeBank due
to differing notions of what constitutes an event and different metadata. In our procedure, events
are considered coreferent iff they share the following:

• Entities involved in the event
• Temporal attributes
• Location attributes
• Realis (whether event is real or hypothetical)

Events which are synonymous in context are also considered coreferent (for instance, in “...held
an interview Monday. The segment covered...”, interview and segment are synonymous). These
attributes (barring temporal) are not provided in TimeBank and must be inferred. Often, an event
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Snippet

Their talks have been bedeviled by a number of disputes.
Event pair: disputes, bedeviled

Coreferent: Yes

Reasoning: The event disputes is itself the entity enacting the event
bedeviled. The events take place over the same time period and location,
and are both real events. Thus, we can conclude the events are coreferent.

Snippet

Lower rates have helped invigorate housing by making loans more
affordable.
Event pair: helped, making

Coreferent: No

Reasoning: Though the events share an agent (“lower rates”) and realis
states, they act on different patient entities and thus are not coreferent.

Table 4.4: Sample coreferent and non-coreferent event pairs from TimeBank-Dense.

may only have partial information about these attributes - here we use human judgment. Our
definition of coreference is closer to the strict notion of “event identity” in Light ERE than the
relaxed definition in Rich ERE. Table 4.4 provides some examples of coreferent and non-coreferent
event pairs from TimeBank-Dense as per our coding procedure.

To test our procedure, we select all “simultaneous” TLINKs from TimeBank-Dense to ensure
that our sample contains a sizeable proportion of possibly coreferent event pairs. The corpus
contains 179 “simultaneous” links, of which 93 are event pair TLINKs. Our first annotation pass
achieves high agreement between two annotators, with a Kappa of 0.70. We refine our guidelines
through an adjudication step, reaching perfect agreement on this sample. Post-adjudication guide-
lines are used to annotate event coreference for all documents. Resulting annotations are used as
textual cues in our temporal annotation scheme. Based on textual cues, an appropriate label from
Table 4.1 is assigned to a TLINK. Coreferent TLINKs are labeled “simultaneous”. Unlabeled links
move on to the next decision step.

Using world knowledge

This step uses real world knowledge to determine causal/prerequisite links which are used to label
a TLINK. We consider both events in the TLINK and determine whether they possess one or both
of the following:

• Causal Link: Two events have a causal link if the occurrence of one event results in the
other event coming about. For example, in the sentence “The paper got wet when I spilled
water on it”, the event pair (spilled, wet) have a causal link.
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Rule Label

TLINK=(A, B), A=P Before
TLINK=(A, B), A=I Includes
TLINK=(B, A), A=P After
TLINK=(B, A), A=I Is Included

Table 4.5: Labels assigned to event pairs based on event and TLINK metadata.

• Prerequisite Link: Two events have a prerequisite link if one event must occur before the
other can happen. For example, in the sentence “We cooked dinner and ate it”, the event pair
(cooked, ate) have a prerequisite link. Note that we use the knowledge that a meal must be
cooked before it can be eaten, though it is not explicitly mentioned.

We examine the event pair in the context of the entire document to detect causal/prerequisite
links, also allowing weak or transitive links. For instance, in the text “Diplomacy is making
headway in resolving the UN’s standoff with Iraq. One major sticking point has been Iraq’s
proposal...”, proposal causes standoff, which is a prerequisite for resolving. Hence, the pair
(proposal, resolving) is considered causal/prerequisite. Our assignment of causal/prerequisite
links is unordered. For example, reverse event pairs (wet, spilled), (ate, cooked), and (resolving,
proposal) are also considered causal/prerequisite. Link order is taken into consideration while
assigning a temporal relation.

If two events contain a causal/prerequisite link, we identify the event in the pair that causes or is
a prerequisite for the other. We call this event “A” and the other “B”. For example, (spilled, wet) is
expressed as (A, B), while (wet, spilled) is expressed as (B, A). To label the TLINK, we determine
whether A is a point (P) or interval (I) event using existing date annotations from EventTime
(Reimers et al., 2016). This helps us catch cases where A is a long-lasting interval and the time
span for B is completely included in A. For instance, in “the war forced civilians to evacuate”, (war,
evacuate) has a causal/prerequisite link with war being event A. Though war caused evacuation, it
is reasonable to expect that the war started before and ended after evacuation. If A is not present
in EventTime (i.e it cannot be assigned a specific time), we use our judgment to determine event
length. We then assign a label as per Table 4.5. Unlabeled links are passed to the next step.

Using narrative ordering

This step uses a heuristic based on the intuition that events in news narratives are often presented in
chronological order. To label a TLINK, we determine which event appeared first in the document.
This event is called “A”, and the other is “B”. We then detect whether A is a point (P) or interval
(I) from EventTime, falling back to our own judgment if it is not present. Finally, a label is
assigned following Table 4.5. This step is guaranteed to assign a label since every pair will have a
narrative-based order.
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Dataset Kappa

TimeBank 0.71
TimeBank-Dense 0.56-0.64
TDD-Man 0.69

Table 4.6: Inter-annotator agreement (Cohen’s Kappa) on temporal ordering datasets. Kappa scores for
TDD-Man are reported on the test set containing 1500 links.

a b s i ii

a 137 22 0 12 22
b 30 311 1 72 23
s 0 0 42 5 4
i 9 36 3 462 35
ii 12 32 0 21 209

Table 4.7: Relation agreement between annotators on the TDD-Man test set containing 1500 links. Here a, b,
s, i, ii refer to the temporal relations “after”, “before”, “simultaneous”, “includes”, and “is included”.

Inter-annotator agreement

Our annotation scheme was developed over multiple rounds of coding and discussion between
two experts. In each round, experts separately annotated a set of 10-15 TLINKs, sampled from
documents in the development set. Cohen’s Kappa was computed and disagreements were discussed.
TLINKs were changed in every round to ensure exposure to diverse event pair types. Inter-annotator
agreement in preliminary rounds ranged from 0.48-0.69. The final coding scheme resulted in an
agreement of 0.69 on the test set. Table 4.6 shows that our agreement is comparable to prior
work. Table 4.7 presents a class-wise distribution of agreements between pairs of annotators.
Disagreements mainly include cases where one annotator chose after/before while the second chose
includes/is included (64%). This indicates that determining precise end-points for an interval event
is difficult, as corroborated by Ning et al. (2018b).

4.3.3 Dataset Statistics
Our data construction pipeline produces the first dataset focused on temporal links between global
discourse-level event pairs (TDDiscourse), consisting of two subsets TDD-Man and TDD-Auto.
Table 4.8 presents train, dev and test set sizes for both subsets, Timebank-Dense as well as an
augmented version of TimeBank-Dense with additional links inferred via temporal closure. Our
complete dataset is 7x larger than both, indicating that our construction adds valuable new TLINKs.
TDD-Man itself is as large as TimeBank-Dense and can be used in isolation, however incorporating
TDD-Auto provides a large amount of silver training data making the task more amenable to deep
neural net approaches. Note that Appendix C presents some examples of annotated instances from
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Dataset Train Dev Test

TB-Dense 4032 629 1427
TB-Dense + Closure 4399 722 1575
TDD-Man 4000 650 1500
TDD-Auto 32609 1435 4258

Table 4.8: Dataset sizes for TimeBank-Dense and our dataset. Note that we only count event-event TLINKs.

both TimeBank-Dense and TDDiscourse.
Table 4.9 presents class distributions for TDD-Man and TDD-Auto test sets. Though there is a

clear majority class, both sets are more balanced than TimeBank-Dense, in which 40% event pairs
are labeled “vague”. To evaluate the presence of long-distance TLINKs, we present the distribution
of distance between event pairs from annotated TLINKs in Table 4.10 which shows that nearly 53%
TLINKs in our dataset comprise of event pairs which are more than 5 sentences apart. Further, to
gain deeper insight into global discourse-level phenomena exhibited by our dataset, we augment 3
documents from the test set (107 manual and 110 automated event pairs) with additional annotations
about phenomena required to label them correctly. We consider the following phenomena:

• SingleSent (SS): Textual cues from sentences containing the events suffice to predict the
relation (irrespective of distance).

• Chain Reasoning (CR): Correct relation prediction requires reasoning about other events
from the document.

• Tense Indicator (TI): For verb events, tense information indicates the correct relation.
• Future Events (FE): One or both events from the pair will occur in the future.
• Hypothetical/ Negated (HN): One or both events are hypothetical or negated.
• Event Coreference (EC): Event coreference resolution is needed to predict relation.
• Causal/ Prereq (CP): Causal/ prerequisite links must be identified to predict relation.
• World Knowledge (WK): Real world knowledge is needed to identify the relation.

Table 4.11 shows the distribution of these phenomena in TDD-Man and TDD-Auto. TDD-Man
shows a higher percentage of difficult phenomena (CR, CP). On the other hand, TDD-Auto shows
high prevalence of SS, indicating that local information may be sufficient to label many long-
distance links in this subset correctly. This principled comparison of both subsets leads us to
hypothesize that models which perform well on TimeBank-Dense, should achieve similar scores on
TDD-Auto but perform much worse on TDD-Man.

4.4 Benchmarking State-of-the-Art Models

4.4.1 Model Details
To statistically evaluate and establish the difficulty of TDDiscourse, we benchmark and study
the performance of four models, which have achieved SOTA performance on TimeBank-Dense.
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Dataset a b s i ii

TB-Dense 0.18 0.22 0.02 0.05 0.06
TDD-Man 0.13 0.27 0.03 0.38 0.19
TDD-Auto 0.28 0.32 0.16 0.11 0.13

Table 4.9: Class distributions for our test sets and TimeBank-Dense. Note that the distribution for TimeBank-
Dense does not sum to 1, since it includes a vague class.

Dataset <5 <10 <15 <20 >20

TDD-Man 0.40 0.40 0.15 0.04 0.01
TDD-Auto 0.50 0.32 0.12 0.05 0.01

Table 4.10: Distribution of distance between events for all TLINKs in our test sets (in terms of #sentences).

Three of these models (CAEVO, BiLSTM, SP) are non-transitive and make separate local
decisions for each TLINK, which may result in global inconsistency. For example, for events
A, B and C, if A occurs before B and B occurs before C, transitivity implies that A occurs
before C. Models classifying each pair independently may assign a different relation to A-C.
The fourth model (SP+ILP) attempts to correct for this by incorporating transitivity rules as
integer linear programming (ILP) constraints into the perceptron model (SP). The SP+ILP
model was initially proposed by Ning et al. (2017), but we use a different ILP formulation
to impose stricter transitivity constraints in order to improve tractability on our data, which
contains 7x more TLINKs. In addition, we make minor modifications to the non-transitive
SOTA temporal ordering models so that they are better equipped to handle discourse-level
TLINKs. Following is a brief description of all four models, along with our additional modifications:

• CAEVO (Chambers et al., 2014): This system consists of a series of specialized learners

Phenomenon TDDMan TDDAuto

SS 25.23% 90.91%
CR 58.88% 9.09%
TI 12.10% 46.36%
FE 36.45% 29.09%
HN 14.02% 19.09%
EC 16.82% 4.55%
CP 64.49% 29.09%
WK 16.82% 0.91%

Table 4.11: Distribution of various phenomena in the annotated test subset. These phenomena were labeled
manually.
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(sieves) which include heuristic rules and trained models for temporal relation prediction.
For each document, sieves run in decreasing order of precision. Decisions made by earlier
sieves constrain following ones. This framework integrates transitive reasoning, but decisions
made by earlier sieves cannot be overturned, causing error cascades. To extend CAEVO, we
increase window sizes and remove the AllVague sieve, since our data does not include the
vague class. We also remove the WordNet sieve and add MLEventEventDiffSent. For more
details on these sieves, we refer interested readers to Chambers et al. (2014).

• BiLSTM (Cheng and Miyao, 2017): Inspired by Xu et al. (2015), this model uses a BiLSTM
classifier. For each event pair, dependency paths from both events to the sentence root are
fed to a BiLSTM. For events in adjacent sentences, both event sentences are assumed to be
connected to a "common root". We follow the same framework to build a BiLSTM.

• SP (Ning et al., 2017): A baseline structured perceptron model which uses handcrafted
features such as event text, part-of-speech, other metadata such as modality and tense, etc. to
compute representations for each event from the event pair, followed by a perceptron model
to predict the temporal relationship.

• SP+ILP (Ning et al., 2017): This model incorporates transitivity constraints via ILP into the
perceptron (SP), explicitly enforcing global consistency. This model was originally trained
on TimeBank-Dense which contains fewer TLINKs per document, making joint learning
tractable with their loose transitivity constraints. But loose transitivity is an issue for our data
with 7x more TLINKs, since the number of constraints increases tremendously. To improve
tractability, we define a stricter transitivity constraint. Let E, R and P be sets of events,
temporal relations and event pairs respectively(P = {(ei, ej) œ E ◊ E|ei, ej œ E, i ”= j}).
We define an array of binary indicator variables y, where y<r,i,j> indicates whether the
relation r holds between events ei and ej . Our objective function is defined as:

arg min
y

ÿ

<ei,ej>œP

ÿ

rœR

≠y<r,i,j> log p<r,i,j> (4.1)

subject to the following constraints:
y<r,i,j> œ {0, 1}, ’(ei, ej) œ P, ’r œ R (4.2)

ÿ

rœR

y<r,i,j> = 1, ’(ei, ej) œ P (4.3)

y<r1,i,j> + y<r2,j,k> ≠ y<r3,i,k> Æ 1,

’(ei, ej), (ej , ek), (ei, ek) œ P, ’(r1, r2, r3) œ TC
(4.4)

where p<r,i,j> is the probability that event pair (ei, ej) has label r. (4.2) ensures that
indicator variables are binary, (4.3) forces event pairs to be assigned a unique label and (4.4)
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System TB-Dense TDD-Auto TDD-Man

P R F1 P R F1 P R F1

MAJOR 40.5 40.5 40.5 34.2 32.3 33.2 37.8 36.3 37.1
CAEVO 49.9 46.6 48.2 61.1 32.6 42.5 32.3 10.7 16.1
BiLSTM 63.9 38.9 48.4 55.7 48.3 51.8 24.9 23.8 24.3
SP 37.7 37.8 37.7 43.2 43.2 43.2 22.7 22.7 22.7
SP+ILP 58.4 58.4 58.4 46.4 45.9 46.1 23.9 23.8 23.8

Table 4.12: Performance of SOTA models on TB-Dense, TDD-Auto and TDD-Man. MAJOR represents a
majority-class baseline. We report performance on non-vague event-event links for TB-Dense to ensure fair
comparison.

imposes transitivity. TC denotes the set of transitive relation triples.2 Relation probabilities
(p<r,i,j>) come from the structured perceptron. Evaluating both this model and the structured
perceptron (SP) lets us study the effect of introducing global consistency via ILP.

4.4.2 Results
We evaluate the performance of 4 models (CAEVO, BiLSTM, SP and SP+ILP) on TDD-Auto
and TDD-Man. SP is a perceptron-based classifier, while SP+ILP introduces transitivity via ILP
into the perceptron, which allows us to evaluate the impact of introducing transitivity constraints.
For tractability, we limit all models to predicting temporal relations for event pairs which are 15
or fewer sentences apart. This discards only 5% of our data (Table 4.10). Table 4.12 presents
the results. We also include model performance on the TimeBank-Dense dataset (TB-Dense) to
demonstrate that our additional modifications do not affect performance on local TLINKs.

All models perform better than a majority class baseline on TDD-Auto. The BiLSTM and SP
perform particularly well, achieving a higher F1 than TB-Dense, while CAEVO and SP+ILP show
slight degradation in comparison to TB-Dense. This corroborates our hypothesis that many long-
distance TLINKs in TDD-Auto can be handled with local sentence-level information. However,
all models show a significant drop on TDD-Man, with none outperforming a majority class
baseline, indicating that this dataset contains a higher proportion of complex discourse-level
temporal ordering phenomena. Finally, we observe that SP+ILP outperforms SP across all datasets,
indicating that transitivity constraints improve overall performance. We perform further analyses of
global consistency and model errors, which offer valuable insights into phenomena which are not
handled by current models, posing interesting challenges for future work and further highlighting
the challenging nature of our new benchmark dataset.

2(“before”, “before”, “before”) form a transitive relation triple as A before B and B before C implies A before C
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Error Category %Cases

WK 40
HN 31
ES 22

Table 4.13: Proportion of TDD-Man cases falling into various error categories. Note that WK, HN and ES
refer to the “World Knowledge”, “Hypothetical/Negated”, and “Event Structure” error categories described
in Section 4.5.2.

4.5 Analyzing State-of-the-Art Model Performance

4.5.1 Evaluating Global Consistency
As mentioned earlier, most SOTA models make separate local decisions for each pair which may
not be globally consistent. Adding global consistency via ILP improves the overall performance
of a local classifier, as evinced by F1 gains observed on adding ILP to SP. We further validate
this observation by specifically evaluating predictions for global consistency through a transitivity
analysis of SP+ILP and BiLSTM, which is the best-performing model, on TDD-Auto. For this
analysis, we go through all possible event triples (e1, e2, e3). For each model, if (e1, e2), (e2, e3)
and (e1, e3) are all assigned temporal labels, we check whether label assignments are consistent.
For example, e1 after e2, e2 after e3 and e1 after e3 is a consistent assignment. We observe
that though the BiLSTM has higher F1, it maintains transitivity in 41.9% cases, while SP+ILP
enforces transitivity in 53.6% cases, which is a 12% increase. This indicates that incorporating
such constraints into models introduces an inductive bias which makes predictions consistent with
human expectations.

4.5.2 Error Analysis on TDD-Man
The dismal performance of all models on TDD-Man indicates that this subset contains several
temporal phenomena that SOTA models, tailored to do well on head cases, fail on. To identify these
phenomena, we manually look at 100 event pairs from TDD-Man for which all models predicted
the incorrect label. For each case, we label it for the presence of one or more of the following major
causes of error:

• World Knowledge (WK): This includes cases which require models to have knowledge
about typical event duration/ordering (e.g., war is a long-term event), as well as lexical
entailment (e.g., military actions could refer to the same event as air strikes).

• Event Structure (ES): This includes cases which require models to handle complex event
structure such as event coreference, sub-events, and aspectual prediction, which is a gram-
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matical device that focuses on different facets of event history (e.g., using “begin” to indicate
initiation of an event).

• Hypothetical/Negated events (HN): This includes cases which require models to handle
hypothetical events, which may or may not occur, and negated events, which have definitely
not occurred. These cases are not exclusive to TDD-Man, but are also present in both
TB-Dense and TDD-Auto.

Table 4.13 shows the proportion of cases that fall into each of these error categories. Note
that these categories are not exclusive, and one event pair may fall into multiple categories. World
knowledge is the largest source of errors, indicating that incorporating commonsense knowledge
about typical event duration and ordering into these models is a key direction for future research.
Indeed, some efforts to automatically construct resources containing temporal commonsense
knowledge have already been made (Zhou et al., 2020).

4.6 Case Study: Adapting From Local to Long-Distance Event Or-
dering

After developing and validating TDDiscourse, we use this dataset as a testbed to study micro-
level adaptation. As described earlier, we do this by training a model on local event pairs from
the TimeBank-Dense dataset, and evaluating its performance on long-distance event pairs from
TDDiscourse. Since TimeBank-Dense and TDDiscourse both use the same set of 36 documents,
all macro-level dimensions are consistent across the two datasets. Any differences between the
two would primarily arise from variation in linguistic phenomena present in the datasets due to
a difference in task focus (local vs long-distance pairs). Given this unsupervised micro-level
adaptation setting, we evaluate the performance of a baseline task model (with no adaptation),
a data-centric adaptation method from the pseudo-labeling fine category and a model-centric
adaptation method from the loss augmentation fine category. Following subsections describe the
task model and adaptation methods in more detail.

4.6.1 Baseline Task Model Architecture
Figure 4.1 gives a brief overview of the architecture of the model chosen as our baseline task model
(BiLSTM), which is a re-implementation of the dependency parse-based BiLSTM model developed
by Cheng and Miyao (2017). As described earlier, this model, which is one of the state-of-the-art
models on TimeBank-Dense, works by using a BiLSTM to construct representations of dependency
paths from source and target events to the sentence root (or “common root”, if source and target
events are in different sentences). These representations are then fed to an MLP to predict the
temporal relation. From our benchmarking experiment on TDDiscourse, we observed that BiLSTM
was the best-performing model on TDD-Auto, and the best-performing model on TDD-Man out
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LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

source representation target representation

Hidden Layer

TLINK Prediction

[sell] agreed said [adjustments] audit subject

Figure 4.1: Architecture of the dependency parse-BiLSTM model used as the temporal ordering task model
for our micro-level adaptation case study.

of all SOTA models. Note that no SOTA model could beat majority class baseline on TDD-Man.
Motivated by its high performance on TDDiscourse, we chose the BiLSTM model as our baseline
task model.

4.6.2 Joint BiLSTM+ILP Architecture: A Loss Augmentation Adap-
tation Method

To improve unsupervised micro-level adaptation, we propose a joint BiLSTM+ILP model archi-
tecture that can incorporate pre-defined heuristics (e.g., transitivity) into a neural model during
its training process. We achieve this by formulating integer linear programming (ILP) constraints
to represent chosen heuristics, which are then incorporated into neural model training using a
structured support vector machine (SSVM) framework. Since this method works by editing the
loss function, it falls into the loss augmentation fine category of model-centric adaptation methods.

To understand the SSVM framework better, consider that we want to incorporate the property
of transitivity into the BiLSTM model using ILP constraints. We use the same ILP formulation
of transitivity as described in §4.4.1. For all event pairs in a document, we first use the BiLSTM
to compute relation probabilities. Using these scores, we solve the ILP optimization and obtain a
set of predictions y. Given gold predictions yÕ and BiLSTM probablities p, the SSVM framework
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computes a structured hinge loss using the following formulation:

L(y, yÕ) = max(0, �(y, yÕ) + �(y, p) ≠ �(yÕ, p)) (4.5)

Here �(y, yÕ) is a distance measure between the gold and predicted labels. We use Hamming
distance in our formulation. �(y, p) and �(yÕ, p) are scoring functions used to compute scores for
the gold and predicted labels. We use the same function as the ILP objective (without the negative
sign) for score computation. The main intuition behind the hinge loss formulation is that if the
gold labels yÕ are not scored higher than the predicted ones y (with a margin of �(y, yÕ)), there
will be a non-zero loss. The objective is to minimize this margin loss. This framework allows the
gradient updates during BiLSTM training to be influenced by the ILP optimization process, thereby
infusing some knowledge of transitivity into the model, instead of just using ILP as a post-hoc step
to maintain transitivity. Other heuristics aside from transitivity are also incorporated in a similar
manner. The ILP objective/constraint formulation are edited to reflect these heuristics, but the
underlying SSVM framework remains unchanged.

For this case study, we conduct experiments incorporating two types of heuristics: (i) transitivity,
and (ii) semantic information extracted from explicit time cues. Transitivity is a key property of
temporality, and has proved to be extremely helpful in improving the accuracy and consistency of
temporal ordering models, as also demonstrated by our benchmarking experiment on TDDiscourse.
On the other hand, incorporating explicit time cue information into temporal ordering models,
particularly neural architectures, is an under-explored yet promising avenue to improve model
performance and generalization. To obtain maximum utility from time cue information, we should
be able to extract time cues and generate valid ILP constraints from them, with reasonably high
precision. We use the STAGE (Semantic Temporal Alignment Grammatical Extraction) tool to
achieve this. While not the main focus of our work, a basic understanding of STAGE is required to
understand how it generates ILP constraints that can be introduced into our BiLSTM+ILP model,
which is provided in the following overview.

4.6.3 Overview of STAGE: A Tool for Automated Time Cue Extrac-
tion

STAGE consists of two main parts: (i) a novel semantic framework to represent explicit time cues,
and (ii) a tool to automatically extract these cues from raw text.

STAGE Semantic Framework

Several temporal logic frameworks and tools have been developed that automatically extract
temporal information with good reliability and accomplish some level of semantic normalization.
However, older ontologies, which are constructed by hand, guided in a top-down fashion by
theoretical insights into language, provide limited coverage and do not scale well to current datasets.
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Figure 4.2: Overview of the three stage architecture of the STAGE extraction tool.

Conversely, recent approaches perform well on current datasets while sacrificing some rich semantic
information that would be valuable in more rigorous temporal reasoning. The STAGE semantic
framework is designed to balance both, maintaining a semantically rich, complex representation of
time that is yet standardized enough that it can be extracted automatically from explicit textual time
cues in large corpora.

In STAGE, an explicit textual time cue or “time expression” refers to a contiguous string of text
that communicates a concept about time. Depending upon its contextualization, a time expression
can be assigned to one (or more) of the three basic categories: instant, interval or range, as shown
by the examples below:

• “The celebration took place on January 1st, 2001”: instant occurring on 01/01/01.
• “People were waiting from January to June”: interval starting in January and ending in June.
• “The party will happen sometime in December”: range covering the month of December.
• “We should meet for an hour sometime next week”: both an interval lasting one hour and a

range covering the next week.
Beyond assignment of expressions to the categories enumerated above, and formalization of the
status of temporal expressions not explicitly connected to an event in a discourse, STAGE also
addresses the issue of comparison between temporal expressions. The goal is to design the STAGE
temporal expression ontology in such a way that models can standardize time expressions into a
common format, facilitating easy comparisons between time expressions. This approach makes the
following specific modifications to the Pan and Hobbs (2004) framework:

1. Lengths of time are represented using a standard unit (hours) in order to facilitate comparison
between semantic objects that may have been expressed in different units.
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Text Semantic type

"four hours" A length of time.
"in four
hours"

An instant with a clear posi-
tion on a timeline.

"for four
hours"

An interval with clear dura-
tion and vague position.

"within four
hours"

A range with clear duration
and position that an event oc-
curs for some vague duration
and position within.

Table 4.14: Impact of function words on semantic meaning of time expression.

2. Relative expressions (e.g., “three days ago”) are converted to dates based on document date,
when known.

3. Intervals/ranges are represented as one (or a combination) of the following properties: starting
point, ending point, and length. This better mimics the ways in which humans describe time
spans.

4. Instead of resolving relationships between time expressions in a rule-based manner as in
previous temporal formalisms, each temporal expression is represented separately but the
representation includes some associated properties that provide clues for uncovering the
relationship between temporal expressions downstream. In this way, individual temporal
expressions extracted by STAGE are somewhat more elaborate than in other recent work (see
Table 4.16) in ways that support better performance on event ordering.

STAGE Extraction Tool

Building on the framework described in the previous section, STAGE also includes a semantic
extraction tool focusing on the identification and arrangement of time expressions along a single
standardized timeline. The tool utilizes lexical time cues alongside function words, which were
frequently omitted from consideration in published annotation schemes for time expressions (e.g.,
TempEval-3 Platinum (UzZaman et al., 2013)). But function words have significant impact on the
underlying semantic meaning of a time cue. Table 4.14 shows how distinct function words can
change the properties and even type of the semantic representation. STAGE uses a newly-designed
context-free semantic grammar to parse time expressions into representations according to the
stable correspondence between function words and temporal concepts, such that the results have
utility for tasks like event ordering that require comparison between temporal expressions.

STAGE does its extraction and representation work in three steps, separated into three distinct
modules shown in Figure 4.2. The first module produces all potential parses for a time cue.
This module takes a text string as input, identifies the words which belong to STAGE’s temporal
vocabulary, and applies the STAGE temporal grammar rules. It uses a binary CKY chart parser
to efficiently generate all possible parses for each input string, and outputs the full chart. As an
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Figure 4.3: Example of first-step STAGE output.

Feature Value

Is True if the expression represents a sin-
gle

instant? instant
Is start
inter-
val?

True if the startpoint of the time ex-
pression is the start of the event, False
if a lower bound on the start.

Is end True if the endpoint of the time expres-
sion

interval? is the end of the event, False if an up-
per bound on the end.

Is
length
inter-
val?

True if the length given for the expres-
sion is the exact length of the event,
False if an upper bound on the length.

Table 4.15: Features constructed by STAGE that can be integrated with neural temporal ordering models.

example, Figure 4.3 shows all parse trees produced for the time cue “three days ago”. The trees
that do not span the full time cue often resolve to complete (though less semantically specific) time
expressions. The second module produces a logical representation of a text string’s underlying
semantic information using a set of heuristically-determined semantic rules. It takes as input a set
of parse trees. STAGE typically chooses from the first module’s output, the parse tree spanning
the largest subsection of the input, which also resolves to one of the three “complete” expression
types (instant, interval, or range). The nodes of the parse tree instruct the module how to apply the
semantic transformations, and the output is a formal semantic representation of the original text
string. In the example above, the module behaves as follows:

• START: “three days ago” ≠æ NUM(val=3) UNIT(val=day) ago
• RULE: NUM + UNIT = LENGTH ≠æ NUM(3) + UNIT(day) = LENGTH(num=3,unit=day)
• RULE: LENGTH + ago = INSTANT ≠æ LENGTH(num=3,unit=day) + ago = IN-

STANT(anchor="present", dist from anchor=LENGTH(number=3, unit=day))
STAGE rules allow for complete time expressions to be transformed into other types with infinite
recursion. If the string is changed to “before three days ago” we would see:

• RULE: before + INSTANT = INTERVAL ≠æ before + INSTANT(anchor= ...unit=day) =
INTERVAL(start=Unknown, end=Instant(anchor=...unit=day), length=Unknown)
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Figure 4.4: Flowchart detailing constraint logic used in STAGE.

Model TBDense TE3

HeidelTime N/A 87.7
SCFG N/A 81.6
SUTime N/A 91.3
STAGE (=/+) 91.2 86.7
STAGE (+) 66.8 63.2

Table 4.16: Comparison of STAGE with other state-of-the-art parsers on temporal expression identification.

The final module takes this high-level logical representation and converts it to a machine-readable
form for downstream tasks. STAGE is capable of converting information into two different machine-
readable formats: (i) a set of input features, and (ii) constraints dictating the order of certain event
pairs. For our case study, we primarily use the constraint representation, so we only discuss this
format in further detail here.3 To generate constraints, STAGE examines the start and end points
for each event in the pair and heuristically identifies pairs for which the relation is certain based on
these features alone. The constraint generated pushes the model to prioritize the predicted relation
over others for this pair. See example of resulting constraint logic output shown in Figure 4.4.

For the example input string “three days ago”, if our dataset included three events, where “three
days ago” is linked to event A, and event B takes place “two days ago” while C is “one week ago”,
STAGE would produce constraints “A before B” and “A after C”.

Evaluating STAGE

In addition to its ability to extract valid ILP constraints from explicit time cues, another reason for
using the STAGE system in our case study is its high precision performance on identifying explicit

3Interested readers can refer to Breitfeller et al. (2021) for more details on the feature representation.
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temporal expressions from documents. To evaluate this, we test STAGE on TempEval-3 Platinum
(UzZaman et al., 2013), a benchmark dataset for temporal expression identification and compare its
performance to SOTA time expression extractors such as HeidelTime (Strötgen and Gertz, 2010),
SUTime (Chang and Manning, 2012) and the synchronous context-free grammar from Bethard
(2013b). Table 4.16 shows the performance of all these systems. Model performance is measured
using a relaxed string matching metric, where a time expression is considered to match the gold
expression if it includes the full string along with additional words that do not change the meaning
of the time expression (ex. if the gold annotation was “Monday” and the model output was “the
Monday”, this would be considered a match). We use this relaxed match metric for comparison
because STAGE is intended to capture the specific way a time cue positions an event relative to each
time point. This often results in extraction of longer spans of text including function words, which
are typically ignored in gold annotations. In addition to “relaxed match” performance (“STAGE
(=/+)”), we also highlight the proportion of cases in which the STAGE output produces a longer
time expression than gold annotation (“STAGE (+)”). This indicates that for a large number of
cases, STAGE is able to extract richer temporal information as compared to other SOTA parsers.
Following are some examples from a qualitative analysis that highlight this richness in expressions
extracted by STAGE vs gold annotations:

• Gold annotation “December” vs STAGE output “in December”: builds a possible range in
December the event must take place within

• Gold annotation “the fourth quarter” vs STAGE output “for the fourth quarter” expresses an
event lasting the entire quarter

• Gold annotation “the day” vs STAGE output “later in the day”, which identifies and links
event to a sub-section of the full day

In addition to benchmarking on TempEval-3 Platinum, we also evaluate the performance of
STAGE on TimeBank-Dense. The performance scores indicate that STAGE can identify temporal
information with very high precision on this dataset, motivating its utility for our case study.

4.6.4 Adding STAGE Constraints to BiLSTM+ILP
Figure 4.5 gives a brief overview of the integrated model pipeline after incorporating STAGE time
cue extraction and constraint generation into the BiLSTM+ILP model. To incorporate STAGE-
generated constraints into the ILP formulation, we first add dummy events representing the time
expressions that have been extracted by STAGE to the ILP. Let this set of dummy events be
Ed. The ILP now contains new variables for each pair of events (ei, ej) where ei, ej or both are
dummy events from Ed, and the non-dummy event is from the set E. For each date in Ed, STAGE
generates temporal relations between the date and all other events/dates (Ê = E fi Ed), following
its constraint logic (Figure 4.4). Empty outputs (i.e., cases where it cannot deduce a relation) from
STAGE are ignored. These relations are introduced as ILP constraints in two ways: (i) adding hard
constraints, and (ii) adding soft constraints. Adding hard constraints is done by incorporating the
following new constraints into the ILP:
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Figure 4.5: Integrated STAGE and BiLSTM+ILP model pipeline.

if TP (ei, ej) = r, y<r,i,j> = 1 (4.6)

’ei œ Ed, ’ej œ Ê, ’r œ R. Note that TP (ei, ej) = r indicates that the temporal parser predicts
that ei and ej have the relation r. Adding soft constraints is done by editing the ILP objective to
add the following term:

Objnew = Objold + –
ÿ

eiœEd

ÿ

ejœÊ

y<T P (ei,ej),i,j>

+
A

1 ≠ –

|R| ≠ 1

B
ÿ

eiœEd

ÿ

ejœÊ

ÿ

rœR̂

y<r,i,j>

(4.7)

Here R̂ = R ≠ TP (ei, ej), which is the set of all relations except for the one predicted by STAGE
for pair (ei, ej). – is a constant which indicates how much weight we give to the STAGE’s
prediction. We set it to 0.9 in our experiments because STAGE is a high-precision system as
observed during its evaluation on temporal expression extraction (§4.6.3).

4.6.5 Training with TDD-Auto: A Pseudo-Labeling Adaptation
Method

In addition to the joint BiLSTM+ILP model, which is a model-centric method, we evaluate the
performance of a data-centric adaptation method, to contrast the performance of the two most
popular coarse categories of adaptation methods. Since the entire TDD-Auto subset of TDDiscourse
is constructed automatically using our temporal inference algorithm, this subset can be considered
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Model TDD-Auto TDD-Man

P R F1 P R F1

ZS 15.2 14.4 14.8 4.5 4.3 4.4

BiLSTM+ILP 18.5 17.5 18.0 7.7 7.4 7.6
BiLSTM+ILP+HARD 17.8 16.9 17.3 7.7 7.4 7.6
BiLSTM+ILP+SOFT 19.2 18.2 18.7 7.4 7.1 7.3
BiLSTM+PL 43.6 41.2 42.3 15.8 15.2 15.5

BiLSTM+ILP+PL 43.1 40.7 41.9 18.1 17.4 17.8
BiLSTM+ILP+HARD+PL 42.8 40.5 41.6 15.9 15.3 15.6
BiLSTM+ILP+SOFT+PL 41.5 39.3 40.4 15.5 14.9 15.2

BiLSTM-Sup 48.6 45.9 47.2 28.9 27.7 28.3

Table 4.17: Performance of a baseline temporal ordering model and all adaptation methods on TDDiscourse,
when adapting from local event pairs to long-distance event pairs. ZS refers to a zero-shot BiLSTM baseline,
which is trained on TimeBank-Dense and tested on TDDiscourse with no adaptation, while BiLSTM-Sup
refers to a fully supervised model trained and tested on TDDiscourse.

to have been generated in a distantly supervised manner. Therefore, we conduct experiments in
which we incorporate TDD-Auto data during model training, which is equivalent to using distant
supervision, a strategy that falls into the pseudo-labeling fine category (PL) of our adaptation
method taxonomy.

4.6.6 Results
Table 4.17 shows the performance of the chosen baseline temporal ordering model (BiLSTM) and
all adaptation methods on both subsets of TDDiscourse, when adapting from local event pairs
(TimeBank-Dense) to long-distance event pairs. ZS indicates the performance of the baseline BiL-
STM in a zero-shot setting, in which it is trained on TimeBank-Dense and applied to TDDiscourse
with no adaptation modifications. Conversely, BiLSTM-Sup presents the performance of a fully
supervised model trained on TDDiscourse, and represents the performance ceiling for the BiLSTM
architecture on TDDiscourse. Note that we evaluate three instantiations of the joint BiLSTM+ILP
architecture: (i) adding transitivity constraints (BiLSTM+ILP), (ii) adding transitivity and STAGE
information as hard constraints (BiLSTM+ILP+HARD), and (iii) adding transitivity and STAGE
information as soft constraints (BiLSTM+ILP+SOFT). Moreover, in addition to evaluating adap-
tation methods in isolation, we also evaluate the performance of combining the pseudo-labeling
method (BiLSTM+PL) with all instantiations of the joint BiLSTM+ILP architecture (rows 6-9).
Comparing adaptation methods: From Table 4.17, we can see that both adaptation methods
provide performance boosts over a zero-shot baseline. These boosts are particularly pronounced on
the TDD-Man subset, on which adaptation method performance is nearly 2-4x the performance
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of the zero-shot baseline. Of the adaptation methods tested, pseudo-labeling provides the largest
performance increases across both TDD-Auto and TDD-Man (≥3-4x). This performance difference
can partly be attributed to the fact that the existing BiLSTM+ILP framework is designed to handle
only specific categories of linguistic phenomena that may occur in long-distance pairs. Referring
back to the categories uncovered during phenomenon annotation for TDDiscourse (Table 4.11),
enforcing consistency using the current ILP formulation is designed to specifically tackle chain
reasoning (CR). Chain reasoning is a highly frequent phenomenon in TDD-Man, and fairly frequent
in TDD-Auto, which leads to performance improvements on both subsets using the BiLSTM+ILP
model. However, pseudo-labeling provides the model access to the entire TDD-Auto training set,
which contains the entire range of linguistic phenomena present in long-distance pairs. Therefore,
we see much larger performance gains on both subsets using this adaptation method.
Combining adaptation methods: In addition to comparing both adaptation methods, we run
experiments combining the pseudo-labeling method with all BiLSTM+ILP instantiations. From
Table 4.17, we observe that combining both methods leads to performance improvement on
TDD-Man, but minor performance drops on TDD-Auto. This is an interesting result because
by adding TDD-Auto training data, the pseudo-labeling method is essentially providing access
to “in-distribution” data when the test subset is TDD-Auto, and we see performance degradation
from additionally introducing a model-centric method in this scenario. However, when testing
on TDD-Man for which TDD-Auto training data is still out of distribution, we see benefits from
bringing in a model-centric method. This leaves open a question for further exploration: does
adding a model-centric method (to a data-centric method) provide any benefits, if the proportion of
available in-distribution data is reduced?
Utility of STAGE constraints: Evaluating three different instantiations of BiLSTM+ILP also
helps us identify which heuristic information provides most utility when adapting models trained on
local event pairs to long-distance pairs. From Table 4.17, we can see that transitivity alone provides
most of the performance benefit, with additional STAGE-generated constraints having little to no
effect. A potential explanation for this observation could be that event pairs for which STAGE
generates accurate constraints (i.e., finds valuable explicit time cues) are ones that model already
performs well on, leaving little scope for performance boosts from adding STAGE constraints. We
leave a deeper investigation of this observation up to future work.
Reaching supervised model performance: Finally, Table 4.17 also indicates that despite im-
proved performance, all methods lag behind a fully-supervised BiLSTM. This is an interesting
observation for the TDD-Auto subset because the pseudo-labeling method provides access to
the TDD-Auto training dataset and therefore should have the capacity to reach fully-supervised
performance. The performance lag clearly indicates the existence of conflicting instances in the
TimeBank-Dense and TDD-Auto training sets. In prior chapters, instance weighting methods
from the hybrid category have been able to identify and filter out such instances. However, all
unsupervised instance weighting methods (classifier-based weighting, likelihood-based weighting,
etc.) relied largely on lexical similarities between source and target datasets to identify conflicting
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instances. This strategy is unlikely to work in the micro-level adaptation scenario, when all macro
dimensions are consistent across source and target datasets. This presents an interesting question
for future research: how can we learn source-target similarity in an unsupervised manner in a
micro-level adaptation scenario, i.e., without resorting to using instances from the target dataset to
learn the similarity function?

4.7 Conclusion

In this chapter, we studied micro-level adaptation, i.e. adapting models to handle different linguistic
phenomena under the same macro-dimensional scenario. We focused on the task of predicting
temporal relations between event pairs in a narrative, targeting long-distance event pairs that have
been relegated to the long tail in temporal ordering research and require reasoning about several
implicit phenomena such as chain reasoning and maintaining transitivity. As a testbed, we created
TDDiscourse, the first dataset focused on discourse-level temporal ordering. To maintain macro
dimension consistency, we created TDDiscourse by augmenting the same set of 36 documents
used in an existing benchmark (TimeBank-Dense) with long-distance annotations. Our annotation
scheme for TDDiscourse handled several issues (e.g., using event coreference) that have not
been explicitly addressed in prior work. We also established the challenging nature of this new
dataset by benchmarking the performance of 4 state-of-the-art models. All models, on average,
performed worse on TDDiscourse than local ordering datasets such as TimeBank-Dense, validating
the difficulty of this dataset. Then, we studied the problem of unsupervised micro-level adaptation
by training models on local event pairs (TimeBank-Dense) and evaluating their performance on
long-distance pairs (TDDiscourse). In addition to a zero-shot baseline, we evaluate adaptation
methods from two categories: (i) a pseudo-labeling data-centric method that adds heuristically
labeled data from TDD-Auto during training, and (ii) a loss-augmentation model-centric method
that incorporates pre-defined heuristics into model loss via ILP constraints. Our results show that
both methods improve the performance over a zero-shot BiLSTM baseline, with pseudo-labeling
providing higher boosts. Combining both methods demonstrates slightly higher gains than using
one method on TDD-Man, but no improvements on TDD-Auto, which can be partly attributed to
the restricted phenomenon coverage of our ILP constraints. Lastly, we observe that pseudo-labeling
(i.e. training on TimeBank-Dense+TDD-Auto) performs worse on the TDD-Auto test set than
training only on TDD-Auto, which indicates that developing non-lexical instance weighting/data
selection techniques for micro-level adaptation could be an interesting direction for future research.
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5
Stress Tests: An Evaluation Paradigm
for the Long Tail

Despite the field’s heavy reliance on benchmarks and leaderboards, our case studies from the
previous chapters, as well as the recent body of work on alternate evaluation paradigms (Jia and
Liang, 2017; Kaushik et al., 2019; Ribeiro et al., 2020; Gardner et al., 2020) provide evidence that
benchmark performance alone is insufficient to provide an accurate picture of model ability to
handle various linguistic phenomena. This problem is further exacerbated for the long tail (both
macro and micro), since long tail examples are undersampled in traditional benchmarks leading to
them being ignored in standard evaluation.

In this chapter, we present stress testing, an evaluation paradigm for the long tail, that can
supplement traditional benchmark-based evaluation. Stress testing primarily targets the micro-level
long tail since better macro-level long tail evaluation essentially boils down to making sure that
benchmarks and leaderboards include a wider range of languages, domains, etc. We define stress
tests as supplementary evaluation datasets that test the performance of NLU models on specific
sets of micro long tail phenomena required for task reasoning. Constructing such stress tests first
requires identification of micro long tail phenomena, for which we propose two strategies: (i)
selection via error analysis of state-of-the-art models (Naik et al., 2018), and (ii) selection from
human knowledge of the target task (Ravichander et al., 2019). For the task of natural language
inference (NLI), we demonstrate via two case studies how these strategies can be used to identify
key micro long tail phenomena. We then construct appropriate stress tests, and evaluate state-of-
the-art models on these constructed tests, surfacing model weaknesses that benchmark evaluation
alone did not highlight. These case studies suggest that supplementing benchmark-based evaluation
with alternate paradigms such as stress testing provides a more stringent and insightful evaluation,
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especially for the long tail.

5.1 Introduction

Progress in natural language understanding has long been evaluated with the help of standard
benchmark datasets, which provide a uniform testbed to compare new modeling developments. In
recent years, with the advent of crowdsourcing (Sabou et al., 2014), large-scale standard benchmarks
have been created for several core NLU tasks such as question answering (Rajpurkar et al., 2016,
2018), commonsense reasoning (Talmor et al., 2019), natural language inference (Bowman et al.,
2015; Williams et al., 2018) and dialog state tracking (Budzianowski et al., 2018). In general, NLU
datasets measure model performance on an identically distributed evaluation set, leading to two
dominant evaluation paradigms in supervised learning for NLU: (i) Independent and Identically
Distributed (IID) IID evaluation paradigm, and (ii) Pretraining-Agnostic and Identically Distributed
(PAID) evaluation paradigm.

5.1.1 IID Evaluation Paradigm
Independent and Identically Distributed (IID) evaluation is the most common paradigm in NLU
evaluation, as well as supervised natural language processing and machine learning. A central
assumption in this paradigm is that the training set used to help a model learn how to perform a
task and the test set used to evaluate model performance on the task are identically distributed. In
practice, this is implemented by collecting a single dataset and randomly splitting it into training,
validation and held-out test portions, which ensures that the test split is sourced from the same
distribution as the training split.

5.1.2 PAID Evaluation Paradigm
Pretraining-Agnostic and Identically Distributed (PAID) evaluation is a relatively recent paradigm,
which is steadily gaining prominence in NLU. As described by Linzen (2020), the PAID evaluation
paradigm has surfaced with advancements in learning contextualized word embeddings using deep
transformer-based language models (Peters et al., 2018; Devlin et al., 2019). The PAID paradigm
consists of three stages:

1. Pretraining a contextualized embedding model using language modeling objectives such as
word prediction or next sentence prediction on an arbitrary corpus.

2. Finetuning the model on a task of interest using a training dataset representing the task.

3. Evaluating the model on an identically distributed test dataset, drawn from the same distribu-
tion as the training set.
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In practice, this is implemented by collecting a single finetuning dataset and randomly splitting it
into training, validation and held-out test portions, ensuring that train and test splits are identically
distributed. The pretraining corpus however may or may not be sourced from the same distribution
as the finetuning dataset.

5.1.3 Drawbacks of Identically Distributed Testing
While reasonable from a machine learning perspective, relying on identically distributed testing
on standard benchmarks has some major drawbacks. Benchmark dataset collection procedures,
especially those heavily reliant on crowdsourcing, lead to systematic gaps in collected data due
to sampling biases and annotator biases, as discussed in Chapter 2. For example, Geva et al.
(2019) show that relying on a small pool of crowdworkers to generate a large number of examples
negatively affects data diversity. Annotators consistently use a fixed set of language patterns that
correlate with the labels, resulting in datasets that are more representative of these patterns than the
actual task. Moreover, if datasets are constructed via random sampling, phenomena that naturally
occur less frequently will be underrepresented. In the presence of such biases, identically distributed
testing leads to the following issues:

• High model performance on the test set does not necessarily signal high performance on an
NLP task, because datasets offer limited coverage of the full range of possible macro-level
dimensions such as languages, domains, and settings.

• High model performance on the test set does not signal model ability to handle all micro-level
linguistic phenomena present in the dataset. Datasets may contain higher proportions of
certain frequent phenomena, as well as spurious correlations (like the ones introduced by
annotator bias). Models can learn to do well on frequent phenomena while sidelining micro
long tail phenomena, or leverage high-frequency correlations to do well on the test set,
without really understanding the requisite phenomena.

Both issues lead to a critical problem with existing benchmark evaluation - it overestimates model
ability to handle a task or to handle complex linguistic phenomena. The evaluation problem is
further exacerbated for examples that fall into the long tail (both macro and micro), since they are
already undersampled in traditional benchmarks, which leads to them being ignored or masked
in standard evaluation. To tackle this, we propose that evaluation on standard benchmark datasets
should be supplemented with evaluation on additional non-identically distributed evaluation sets,
which are systematically constructed to focus on long tail examples. We call these supplementary
non-ID evaluation sets as stress tests. Each stress test focuses on evaluating model performance on
a small subset of micro long tail linguistic phenomena, since macro-level stress testing essentially
boils down to broadening benchmarks and leaderboards to include a wider range of languages,
domains, etc. This approach allows for fine-grained linguistic phenomenon-driven testing of models

129



5.2. Stress Tests

and helps us identify “failure cases”, i.e., micro long tail phenomena that contemporary models are
unable to handle.

Stress tests are designed using a two stage pipeline: (i) phenomenon selection, and (ii) test
construction. The first stage requires identification of micro long tail phenomena to evaluate model
performance on, for which we propose two strategies: (i) selection via error analysis of state-of-the-
art models, and (ii) selection from human knowledge of the target task. The second stage requires
constructing test sets, comprising of naturally occurring or synthetically generated examples, which
focus on these selected phenomena. We perform two case studies to show the effectiveness of
using supplementary stress test-based evaluation to get a more realistic, detailed overview of
model capabilities. The first case study (Naik et al., 2018) focuses on building a stress test-based
evaluation for natural language inference, a benchmark task in natural language understanding
and sentence representation learning. In this study, we perform phenomenon selection using the
error analysis strategy. Our results from this study show that state-of-the-art sentence encoder
models which achieve high scores on standard benchmarks are unable to handle several key but
low-frequency linguistic phenomena such as antonymy and numerical reasoning. In our second
case study (Ravichander et al., 2019), we build a stress test-based evaluation for quantitative
reasoning, using an NLI-style format. In this study, phenomenon selection is done based on human
knowledge of skills required to perform quantitative reasoning. This evaluation allows us to study
how well state-of-the-art NLI models, and a shallow symbolic reasoning baseline, are able to handle
specific quantitative reasoning phenomena such as basic arithmetic and quantifiers, which are again
uncommon in NLI benchmarks. Our results from this study show that while NLI models and
symbolic reasoners fare reasonably well at lexical and numerical aspects of quantitative phenomena
respectively, no models possess the ability to successfully combine both skills. Ultimately both
case studies demonstrate that stress tests help us to critically evaluate performance of current
state-of-the-art models on micro long tail phenomena, reveal clear modeling gaps and unveil areas
for further exploration to push the reasoning abilities of NLU models.

5.2 Stress Tests

As defined by Naik et al. (2018), stress tests are supplementary evaluation datasets which test the
performance of NLU models on specific sets of micro long tail linguistic phenomena required for
task reasoning. Our primary methodological inspiration stems from the work of Jia and Liang
(2017), the BIBINLP (Build It Break It, The Language Edition) shared task (Ettinger et al., 2017),
and other concurrent work on adversarial evaluation. The main aim of adversarial evaluation
is to construct examples that can attack state-of-the-art models, i.e., reveal biases and spurious
correlations that models rely on, but are not actually helpful for the task. Exact techniques used to
construct adversarial evaluation sets differ based on the task of interest and the models being tested.

Our proposed evaluation methodology, while sharing some similar aims, primarily differs from
adversarial evaluation in that we stratify test examples into separate sets based on subsets of micro
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long tail linguistic phenomena being tested, which infuses systematicity into our evaluation process.
These stratified phenomenon-focused test sets are called stress tests, and aim to test systems
beyond normal operational capacity on linguistic phenomena in order to identify weaknesses and to
confirm that intended specifications are being met. Conceptually, stress tests can also be considered
analogous to unit tests in software engineering, since they serve a similar purpose - evaluating
whether an NLP model meets specifications in terms of performance on a linguistic phenomenon
of interest (Hartman and Owens, 1967; Tretmans, 1999; Beizer, 2003; Pressman, 2005; Nelson,
2009). Like work on adversarial evaluation, this methodology also has the added benefit of being
able to isolate high-frequency biases and spurious correlations being leveraged by current NLU
models, as we demonstrate through our case studies.

5.2.1 Requirements for Stress Tests
Based on our definition, stress tests should meet the following requirements:

• Preferably, stress tests should be test-only datasets, and not contain training data that can be
used to finetune the model. This requirement preserves the non-identically distributed nature
of the evaluation sets, and is also echoed by Linzen (2020).

• Each stress test should focus on a single semantic phenomenon, or a restricted subset of
related phenomena from the micro-level long tail. This requirement ensures that it is possible
to isolate performance on specific micro long tail phenomena of interest.

• Stress test construction procedures should be developed in such a way that the need for crowd-
sourced annotation and model-reliant filtering is minimized. This reduces the possibility of
annotator biases and model idiosyncrasies seeping into constructed tests.

Note that we intend stress test-based evaluation to supplement, rather than replace, traditional
benchmark-based evaluation.

5.2.2 Typical Stress Test Construction Pipeline
Typically, stress test construction follows a two stage pipeline:

1. Phenomenon Selection: In this stage, we first choose a set of micro long tail linguistic
phenomena to evaluate model performance on. This choice depends on the task of interest
and the model capabilities that we are interested in exercising. We propose two strategies for
systematic phenomenon selection in this chapter: (i) phenomenon selection by error analysis,
as performed in case study I (Naik et al., 2018), and (ii) phenomenon selection from task
knowledge, as performed in case study II (Ravichander et al., 2019).
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2. Test Construction: Post the selection stage, we construct stress tests for each selected
phenomenon. Construction procedures for every stress test differ based on the phenomenon
being tested and the structure of the task. However, our construction strategies can be broadly
categorized into two types: (i) automatic construction using heuristic rules and external
knowledge sources, and (ii) expert (or expert-validated) dataset annotation.

The following sections discuss how we follow this two-stage pipeline to create stress tests for
natural language inference and numerical reasoning in NLI that meet our requirements, and our
observations from evaluating state-of-the-art models on these tests.

5.3 Case Study I: Natural Language Inference

5.3.1 Background: Natural Language Inference
Natural language inference (NLI), also known as recognizing textual entailment (RTE), is the
task of determining a directional relationship between two text fragments. The two fragments,
usually sentences, are called premise and hypothesis, and the relationship between them captures
whether the hypothesis is true, given the premise. The dominant paradigm is to formulate NLI as a
3-way classification task between three labels: (i) entailment (hypothesis is true given premise), (ii)
contradiction (hypothesis is false given premise), and (iii) neutral (hypothesis truth value cannot be
determined). Recent work has proposed a shift from such categorical labels to subjective probability
assessments (Chen et al., 2019), but most benchmark datasets use the 3-way classification paradigm.

NLI has long been considered a benchmark task for natural language understanding research
(Cooper et al., 1996; Dagan et al., 2006; Giampiccolo et al., 2007; Dagan et al., 2013; Bowman
et al., 2015; Nangia et al., 2017a) since models must learn to reason about several difficult linguistic
phenomena, such as scope, coreference, quantification, lexical ambiguity, modality and belief, to
perform well at this task (Bowman et al., 2015; Williams et al., 2018). It also serves as an excellent
test bed for research on sentence representation learning, since task performance depends heavily
on premise and hypothesis representations. Due to its importance, prior work has heavily focused
on building datasets for this task (Dagan et al., 2006, 2009, 2013; Marelli et al., 2014a; Bowman
et al., 2015; Williams et al., 2018; Conneau et al., 2018; Khot et al., 2018; Romanov and Shivade,
2018). Recently, crowdsourcing has been leveraged to create large-scale benchmark datasets for
this task such as the Stanford NLI (SNLI; Bowman et al. (2015)), and Multi-genre NLI (MultiNLI;
Williams et al. (2018)) datasets.

Crowdsourced creation of benchmark NLI datasets follows a general procedure. First, a large
number of premise sentences are sampled from a corpus of available texts. In the second step,
crowdworkers are given a premise sentence and asked to generate novel hypothesis sentences
representing the three categories of entailment relations. In an additional validation step, the created
premise-hypothesis pairs are shown to multiple annotators (separate from the original hypothesis
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author), who provide additional entailment labels for these sentences. Each sentence pair thus gets
five labels - one from the hypothesis author, and four labels from additional annotators. Majority
voting between these labels is used to decide on the final gold label for each pair, and models are
evaluated via classification accuracy on these gold labels. There are some exceptions to this general
procedure (eg: SCITAIL; Khot et al. (2018)), which sample hypothesis sentences "from the wild",
instead of having them specifically authored by crowdworkers for the entailment task.

Each step in this construction procedure has the potential to introduce biases in the resulting
dataset. The premise sampling step can introduce biases towards domains and languages which are
high-resource and easy to access. The hypothesis authoring step can introduce biases towards a
select set of linguistic phenomena and superficial ways of expressing them, since crowdworkers
are interested in maximizing the number of hypotheses they write and can potentially come up
with their own quick heuristics to write entailed, contradictory and neutral sentences. Finally, the
validation step can introduce biases towards unambiguous phenomena, since those phenomena
are most likely to have agreement between at least three labels. Another interesting source of
bias is cases with discrepancies between gold labels and author labels. Since there are four labels
from additional annotators, there may be cases where the majority label is not the same as the
label provided by the original author. For example, in SNLI and MultiNLI, 6.8% and 5.6% cases
respectively show this discrepancy. This has the potential to bias datasets towards surface-level
readings of the sentence pair instead of the original author intent.

Despite these potential biases, benchmark NLI datasets have been incorporated into general-
purpose language understanding benchmarks like GLUE and SuperGLUE (Wang et al., 2019c,b)
and are widely used to evaluate sentence representation learning methods. State-of-the-art deep
learning-based sentence encoder models (Nie and Bansal, 2017; Chen et al., 2017b; Conneau et al.,
2017; Balazs et al., 2017) have achieved consistently high accuracies on SNLI and MultiNLI, which
may lead us to believe that these models excel at performing the NLI task across various genres of
text. However, in the presence of potential sampling biases, we need to question what conclusions
we can draw regarding model ability to solve the task, based on its performance on a dataset. This
is particularly crucial when train and test sets are identically distributed, because machine learning
models are known to exploit idiosyncrasies of the data construction process, allowing NLI models
to achieve high accuracy without learning the underlying reasoning involved in the task (Levesque,
2014; Rimell et al., 2009; Papernot et al., 2017). Therefore, we construct and use a stress test-based
evaluation to answer this question: does good model performance on NLI benchmark datasets
reflect competence at various types of reasoning required to do well on the task?

To construct stress tests, we first select a set of phenomena to test by examining the errors
of the best-performing sentence encoder model on MultiNLI (Nie and Bansal, 2017) to identify
phenomena that it finds challenging (§5.3.2). We then automatically construct stress tests for each
phenomenon (§5.3.3), making it possible to perform evaluation on a phenomenon-by-phenomenon
basis. On benchmarking the performance of four state-of-the-art models on MultiNLI on our
constructed stress tests, we observe that models exhibit huge performance drops across stress tests,
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especially for phenomena such as antonymy and numerical reasoning (§5.3.4). Our results demon-
strate that using stress tests as a supplementary evaluation, in addition to traditional evaluation, can
help us identify model weaknesses and strengths on various phenomena in a more fine-grained
manner. 1

5.3.2 Phenomena Selection by Error Analysis
To select a set of micro long tail phenomena to “stress test” NLI models on, we rely on a manual
analysis of errors made by the shortcut-stacked sentence encoder model from Nie and Bansal
(2017), which was the top-performing model on MultiNLI at the RepEval shared task (Nangia
et al., 2017b). The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced
collection of 433,000 sentence pairs annotated for textual entailment. This corpus contains sentence
pairs from texts drawn from 10 different genres of spoken and written English, and supports a
distinctive cross-genre generalization evaluation. Of these 10 genres, only 5 are present in the
training set, whereas the development and test sets contain all 10 genres. Models thus can be
evaluated on both the matched test examples, which are derived from the same sources as those
in the training set, and on the mismatched examples, which do not closely resemble any seen at
training time.

For our error analysis, we sample 100 misclassified examples from both matched and mis-
matched sets, analyze their potential sources of errors, and develop a typology of common reasons
for error. In the end, the reasons for errors can broadly be divided into the following categories:

1. Word Overlap: Large lexical overlap between premise and hypothesis sentences causes the
model to wrongly predict entailment, even if the sentences are unrelated. On the other hand,
very little word overlap causes a prediction of neutral instead of entailment. For example:

• Premise: And, could it not result in a decline in Postal Service volumes across–the–
board?

• Hypothesis: There may not be a decline in Postal Service volumes across–the–board.

• Prediction Error: Entailment, instead of neutral

2. Negation: The presence of strong negation words (“no”, “not”), especially in the hypothesis,
causes the model to predict contradiction for neutral or entailed statements. For example:

• Premise: Enthusiasm for Disney’s Broadway production of The Lion King dwindles.

• Hypothesis: The broadway production of The Lion King is no longer enthusiastically
attended.

• Prediction Error: Contradiction, instead of entailment
1Stress tests and other resources available at https://abhilasharavichander.github.io/NLI_

StressTest/
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3. Antonymy: Premise-hypothesis pairs containing antonyms (instead of explicit negation) are
not detected as contradiction by the model. For example:

• Premise:‘Have her show it," said Thorn.

• Hypothesis: Thorn told her to hide it.

• Prediction Error: Entailment, instead of contradiction

4. Numerical Reasoning: For some premise-hypothesis pairs, the model is unable to perform
reasoning involving numbers or quantifiers for correct relation prediction. For example:

• Premise: Deborah Pryce said Ohio Legal Services in Columbus will receive a $200,000
federal grant toward an online legal self-help center.

• Hypothesis: A $900,000 federal grant will be received by Missouri Legal Services,
said Deborah Pryce.

• Prediction Error: Entailment, instead of contradiction

5. Length Mismatch: The premise is much longer than the hypothesis and this extra informa-
tion acts as a distraction for the model. For example:

• Premise: So you know well a lot of the stuff you hear coming from South Africa now
and from West Africa that’s considered world music because it’s not particularly using
certain types of folk styles.

• Hypothesis: They rely too heavily on the types of folk styles.

• Prediction Error: Neutral, instead of contradiction

6. Grammaticality: The premise or the hypothesis is ill-formed due to spelling errors or
incorrect subject-verb agreement. These minor issues act as distractors for models. For
example:

• Premise: So if there are something interesting or something worried, please give me a
call at any time.

• Hypothesis: The person is open to take a call anytime.

• Prediction Error: Entailment, instead of neutral

7. Real-World Knowledge: These examples are hard to classify without some factual, real-
world knowledge. For example:

• Premise: It was still night.

• Hypothesis: The sun hadn’t risen yet, for the moon was shining daringly in the sky.

• Prediction Error: Neutral, instead of entailment
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Figure 5.1: Distribution of error categories
on MultiNLI-Matched.

Figure 5.2: Distribution of error categories
on MultiNLI-Mismatched.

8. Ambiguity: For some instances, the gold label is ambiguous to humans, while the model
prediction seems reasonable. These are the most difficult cases. For example:

• Premise: Outside the cathedral you will find a statue of John Knox with Bible in hand.

• Hypothesis: John Knox was someone who read the Bible.

• Prediction Error: Neutral, instead of entailment

9. Unknown: No obvious source of error is discernible in these samples. For example:

• Premise: We’re going to try something different this morning, said Jon.

• Hypothesis: Jon decided to try a new approach.

• Prediction Error: Contradiction, instead of entailment

Figures 5.1 and 5.2 show the distribution of these error categories in both matched and mis-
matched sets. Some error categories such as real world knowledge, negation scope, and antonymy,
are well-known “hard” linguistic phenomena across several tasks in natural language understanding,
and have garnered significant interest in formal semantics literature (Kroch, 1974; Muehleisen,
1997; Murphy, 2003; Moscati, 2006; Brandtler, 2006). These phenomena have long been suspected
to be challenging for entailment models (Jijkoun and De Rijke, 2006; LoBue and Yates, 2011;
Roy, 2017). Other error categories such as word overlap and length mismatch are “artifacts” of
recent crowdsourcing strategies used for dataset construction, and have been identified as major
distractors for NLI models by other concurrent work (Gururangan et al., 2018; Poliak et al., 2018;
McCoy et al., 2019).

5.3.3 Constructing Stress Tests
Based on our typology of error categories, we develop methodologies to construct stress tests
for phenomena exhibited by categories 1-6. Notably, we focus only on spelling errors within
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Premise: I love the Cinderella story.
Hypothesis: I hate the Cinderella story.
Label: Contradiction

Table 5.1: Sample sentence pair from antonymy stress test.

grammaticality. We omit the real world knowledge category as it is not trivial to create a large
dataset without human input, the ambiguity category because it is unreasonable to expect models
to handle such cases, and the unknown category because it does not correspond to a particular
phenomenon. We organize stress tests for categories 1-6 into three major classes, based on the type
of reasoning required for the model to do well on the test. The first class (competence tests) require
models to possess the ability to reason about complex semantic phenomena such as quantities and
antonymy, which are often low-frequency in standard NLI benchmarks, which pushes them into the
micro long tail. The second class (distraction tests), requires models to possess the ability to ignore
high-frequency artifacts such as lexical similarity or presence of negation words, introduced by the
dataset construction process. This class covers the word overlap, negation and length mismatch error
categories. The final class (noise tests) requires models to be robust to minor perturbations or noise
and consists of our spelling error test. For stress test construction, we use three techniques: heuristic
rules with external knowledge sources (for competence tests), a propositional logic framework
(for distraction tests) and randomized perturbation (for noise tests). The following subsections
describe our stress test construction in detail, along with some examples, and Appendix C presents
additional examples from all categories.

Competence Test Construction

Antonymy: To construct a test set for antonymy, we consider every sentence from premise-
hypothesis pairs in the MultiNLI development set independently. We perform word-sense disam-
biguation for each adjective and noun in the sentence using the Lesk algorithm (Lesk, 1986). We
then randomly sample an antonym for the word from WordNet (Miller, 1995). The original sentence
and the sentence with the word substituted by its antonym become a new premise-hypothesis pair
in our test set, with the label contradiction. Table 5.1 shows an example pair from this construction
process. This process results in the construction of 1561 and 1734 premise-hypothesis pairs for
matched and mismatched sets respectively.

Substituting a word with its antonym may not always result in a contradiction. For example,
this may happen in case of sentences with modalities, belief, conjunction or even conversational
text such as “They can change the tone of people’s voice yes.”, “They can change the tone of
people’s voice no.”. Coreference issues, word substitution in metaphors or failure of word sense
disambiguation might also lead to non-contradictory pairs. Hence, we perform a validation study
in which three annotators were provided 100 random samples from the stress test set to evaluate
for correctness. At least two annotators agreed on 86% of the labels being contradiction. We also

137



5.3. Case Study I: Natural Language Inference

Premise: Tim has 350 pounds of cement in 100, 50, and 25 pound bags.
Hypothesis: Tim has less than 750 pounds of cement in 100, 50, and 25 pound bags.
Label: Entailment

Premise: Tim has 350 pounds of cement in 100, 50, and 25 pound bags.
Hypothesis: Tim has 750 pounds of cement in 100, 50, and 25 pound bags.
Label: Contradiction

Premise: Tim has 750 pounds of cement in 100, 50, and 25 pound bags.
Hypothesis: Tim has 350 pounds of cement in 100, 50, and 25 pound bags.
Label: Neutral

Table 5.2: Sample sentence pairs from numerical reasoning stress test.

evaluated grammaticality of our constructions, with at least two annotators agreeing on 87% cases
being grammatical.
Numerical Reasoning: Creating a stress test for numerical reasoning from MultiNLI is non-trivial
as most sentences from the MultiNLI development set do not contain quantities (providing further
proof of the long tail nature of quantitative reasoning). Hence, we use a different data source to
sample premise sentences: AQuA-RAT, a dataset specifically focused on algebraic word problems
along with rationales for their solutions (Ling et al., 2017). Word problems from AQuA-RAT are
quite complicated, involving concepts such as probability, geometry and theoretical proofs, which a
general-purpose NLI models cannot reasonably be expected to solve. Hence, we perform some
preprocessing to filter out such samples and generate a reasonable set of premise sentences.

For preprocessing, we first discard problems which do not have numerical answers or have long
rationales (>3 sentences) as such problems are inherently complex. We then split all problems into
individual sentences and discard sentences without numbers, resulting in a set of 40,000 sentences.
From this set, we discard sentences which do not contain at least one named entity (we consider
“PERSON”, “LOCATION” and “ORGANIZATION”), since such sentences mostly deal with
abstract concepts.2 This results in a set of 2500 premise sentences. For each premise, we generate
entailed, contradictory and neutral hypotheses using heuristic rules:

1. Entailment: Randomly choose and change one numerical quantity from the premise, prefix-
ing it with the phrase “less than” or “more than” based on whether the new number is higher
or lower.

2. Contradiction: Perform one of two actions with equal probability: randomly choose a
numerical quantity from the premise and change it, or randomly choose a numerical quantity
from the premise and prefix it with “less than/ more than” without changing it.

3. Neutral: Flip the corresponding entailed premise-hypothesis pair.
2For example, “Find the smallest number of five digits exactly divisible by 22, 33, 66 and 44”.
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Premise: Possibly no other country has had such a turbulent history.
Hypothesis: The country’s history has been turbulent and true is true.
Label: Entailment

Premise: Possibly no other country has had such a turbulent history.
Hypothesis: The country’s history has been turbulent and false is not true.
Label: Entailment

Premise: Possibly no other country has had such a turbulent history and true is true and true is true
and true is true and true is true and true is true.
Hypothesis: The country’s history has been turbulent.
Label: Entailment

Table 5.3: Sample sentence pairs from word overlap, negation and length mismatch distraction tests.

Using these rules, we generate a set of 7,596 premise-hypothesis pairs testing models on their
ability to perform numerical reasoning. Table 5.2 shows some sample pairs from this set. We further
validate this set by instructing three human annotators to evaluate 100 randomly sampled examples
for difficulty, grammaticality and label correctness (since the labels are automatically generated).
At least two annotators agreed with our generated label for 91% of the samples. Additionally, at
least two annotators agreed on 92% of the examples being grammatical, and 98% being trivial
numerical reasoning for humans.

Distraction Test Construction

This class includes stress tests for word overlap, negation and length mismatch, which test
model ability to avoid getting distracted by shallow but high-frequency artifacts such as lexical
similarity or strong negation words. Models usually learn to exploit such cues to achieve high
performance since they have strong but spurious correlations with gold labels, but this reliance on
shallow reasoning can end up with high dataset performance at the expense of developing a true
understanding of the task, as we demonstrate. We use a framework inspired by propositional logic
to construct these stress tests.

Propositional Logic Framework: Assume a premise p and a hypothesis h. For entailment,
(p ∆ h) =∆ (p·True ∆ h) since (p·True = p). Similarly if p and h are contradictory/neutral,
then they remain so even after adding a tautology in conjunction to the premise. In other words, if
the premise or hypothesis is in conjunction with a statement that is independently true in all worlds,
the entailment relationship is preserved. The next step is to construct such tautological statements
which are true in all worlds and then append them to premise or hypothesis sentences to construct
distraction tests. We use simple tautologies, which do not contain words that share any topical
significance with the premise or hypothesis. Specific details for our sets are as follows:
Word Overlap: For this set, we append the tautology “and true is true” to the end of the hypothesis
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Premise: As he emerged, Boris remarked, glancing up at teh clock: “You are early”.
Hypothesis: Boris had just arrived at the rendezvous when he appeared.
Label: Neutral

Table 5.4: Sample sentence pair from spelling error stress test.

sentence for every example in the MultiNLI development set.
Negation: For this set, we append the tautology “and false is not true”, which contains a strong
negation word (“not”), to the end of the hypothesis sentence for every example in the MultiNLI
development set.
Length Mismatch: For this adversarial set, we append the tautology “and true is true” five times
to the end of the premise sentence for every example in the MultiNLI development set. We modify
the premise sentence in this case as we hypothesize that errors in this category mainly arise due to
the premise sentence being unwieldy. Table 5.3 shows some examples from these test sets.

A natural concern is that sentence pairs obtained from such constructions are unnatural (Grice,
1975), and could make the NLI task more distracting for humans as well. To study this, we
run a human evaluation where three annotators are shown premise-hypothesis pairs from these
sets and instructed to label the relation. On word overlap, we find that the provided label has
91% agreement with the gold label. For length mismatch, the provided label has 85% agreement
with gold. This is similar to the agreement reported in Williams et al. (2018), leading us to
believe the constructed examples are not too unnatural or difficult. The constructions also remain
grammatical; after annotating 100 samples from our adversarially generated set, only two were
deemed ungrammatical, and both were because of reasons unrelated to our perturbations.

Noise Test Construction

This class consists of a stress test which evaluates model robustness to spelling errors. Spelling
errors occur often in MultiNLI data, due to the involvement of Turkers and noisy source text
(Ghaeini et al., 2018), which is problematic as many NLI systems rely heavily on word embeddings.
Inspired by Belinkov and Bisk (2018), we construct a stress test for spelling errors by performing
two types of perturbations on a word sampled randomly from the hypothesis: (i) random swap of
adjacent characters within the word (for example, “I saw Tipper with him at teh movie.”), and (ii)
random substitution of a single alphabetical character with the character next to it on the English
keyboard (for example, “Agencies have been further restricted and given less choice in selecting
contractimg methods”. Entailment labels for the perturbed sentence pairs remain unchanged.
Table 5.4 shows a sample sentence pair from this set.
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5.3.4 Experiments and Analysis
We evaluate the following sentence-encoder models, which achieve strong performance on
MultiNLI, on our stress tests:

• Nie and Bansal (2017) (NB): This model uses a sentence encoder consisting of stacked
BiLSTM-RNNs with shortcut connections and fine-tuning of embeddings. It achieves the
top non-ensemble result in the RepEval-2017 shared task (Nangia et al., 2017b).

• Chen et al. (2017b) (CH): This model also uses a sentence encoder consisting of stacked
BiLSTM-RNNs with shortcut connections. Additionally, it makes use of character-
composition word embeddings learned via CNNs, intra-sentence gated attention and ensem-
bling to achieve the best overall result in the RepEval-2017 shared task.

• Balazs et al. (2017) (RiverCorners - RC): This model uses a single-layer BiLSTM with
mean pooling and intra-sentence attention.

• Conneau et al. (2017) (InferSent - IS): This model uses a single-layer BiLSTM-RNN with
max-pooling. It is shown to learn robust universal sentence representations which transfer
well across several inference tasks.

Additionally, we also set up two simple baseline models:

• BiLSTM: The simple BiLSTM baseline model described by Nangia et al. (2017b).

• CBOW: A bag-of-words sentence representation from word embeddings.

Table 5.5 shows the classification accuracy of all six models on our stress tests and the original
MultiNLI development set. We see that performance of all models drops across all stress tests,
indicating that while models may be doing well on the MultiNLI dataset, there are visible gaps
in their ability to tackle crucial phenomena required for the NLI task, especially micro long tail
phenomena. On competence stress tests, no model is a clear winner, with RC and CH performing
best on antonymy and numerical reasoning respectively. On distraction tests, CH is the best-
performing model, suggesting that their gated-attention mechanism can handle shallow lexical
distractions to some extent. Interestingly, our BiLSTM baseline is the second-best model on two
out of three distraction tests. On the noise test, CH, RC and both baselines [BiLSTM;CBOW] do
not show much performance degradation, most likely due to the benefit of subword modeling via
character-CNNs and the use of mean pooling. We perform further analyses of model performance
on each class of tests to obtain more insight into the the kinds of errors they make, and what
linguistic phenomena are still hard for most models.
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Original Competence Test Distraction Test Noise Test
MultiNLI Word Length Spelling

System Dev Antonymy Numerical Overlap Negation Mismatch Error
Mat Mis Mat Mis Reasoning Mat Mis Mat Mis Mat Mis Mat Mis

NB 74.2 74.8 15.1 19.3 21.2 47.2 47.1 39.5 40.0 48.2 47.3 51.1 49.8
CH 73.7 72.8 11.6 9.3 30.3 58.3 58.4 52.4 52.2 63.7 65.0 68.3 69.1
RC 71.3 71.6 36.4 32.8 30.2 53.7 54.4 49.5 50.4 48.6 49.6 66.6 67.0
IS 70.3 70.6 14.4 10.2 28.8 50.0 50.2 46.8 46.6 58.7 59.4 58.3 59.4

BiLSTM 70.2 70.8 13.2 9.8 31.3 57.0 58.5 51.4 51.9 49.7 51.2 65.0 65.1
CBOW 63.5 64.2 6.3 3.6 30.3 53.6 55.6 43.7 44.2 48.0 49.3 60.3 60.6

Table 5.5: Classification accuracy (%) of state-of-the-art models on our constructed stress tests. Accuracies
shown on both matched and mismatched categories for each stress set developed from MultiNLI. For
reference, random baseline accuracy is 33%.

What insights can we obtain from model performance on competence tests?

Model Performance on Antonymy: Table 5.5 shows that all models perform poorly on antonymy.
RC achieves the best performance, with 36.4% and 32.8% on matched and mismatched sets
respectively which is slightly higher than random performance. However, none of the other models
beat a random baseline. Digging deeper into model errors, we observe that high amount of word
overlap in this test causes models to overpredict entailment, accounting for, on average, 86.4%
and 87.6% of total errors on matched and mismatched sets respectively. We present the exact
proportion of false entailment and false neutral errors in Table 5.6. Keep in mind there is only one
gold class in this category: contradiction. As expected, all four models make a high amount of false
entailment errors because they notice high amounts of lexical similarity between the premise and
the hypothesis.

System C-E Errors C-N Errors

Mat Mis Mat Mis

NB 79.83 82.40 20.17 17.60
CH 99.78 99.75 0.22 0.25
RC 66.67 68.50 33.33 31.50
IS 99.40 99.81 0.60 0.19

Table 5.6: Percentage of C-E and C-N errors on antonymy test.

We further study which antonym pairs are easy and difficult for models by examining the
errors of the best and worst performing models on this test [RC;CH]. On 982 samples where both
models fail, we find 617 unique antonym pairs, and on 171 samples where both models succeed,
we find 84 unique antonym pairs. 89.8% of the “easy” and 57.2% of the “hard” antonym pairs
appear in a contradiction relation within the training data, suggesting that models succeed on easy
antonym-pairs seen in the training data but struggle to generalize. In addition to frequency, we
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study error variation by antonym type. We randomly sample 100 examples where both models
fail and 100 samples where both succeed, and manually annotate whether the antonym present
was gradable, relational or complementary. Among successful examples, 99% are complementary
antonyms with only one relational antonym. Amongst the failure cases, 20% are relational antonym
pairs, 73% are complementary and 7% are gradable, suggesting that models find relational and
gradable antonyms hard, but get complementary antonyms both right and wrong. Finally, we
examine differences between models by analyzing examples classified correctly by the best model
which are not handled by the worst. We find that antonym pairs recognized by the weaker model
occur, on average, nearly twice as often in the training data as antonym pairs recognized by the
stronger model, suggesting that RC is able to learn antonymy from fewer examples (though these
examples must be present in training data).

Model Performance on Numerical Reasoning: Table 5.5 shows that all models exhibit a sig-
nificant performance drop on numerical reasoning, with none achieving an accuracy better than
random (33%). We analyze the predictions of the best and worst performing models on this test
[BiLSTM;NB]. The biggest source of common errors for both models (1703 out of 4337 errors) is
incorrectly classifying neutral pairs as entailment, which arises because our construction technique
flips entailed premise-hypothesis pairs to create neutral pairs, leading to high word overlap for
neutral pairs. Our constructions also lead to high word overlap for contradiction pairs, leading to a
large number of C-E errors for both models (1695 out of 4337 errors). Thus, 78.3% of all errors are
caused due to the models falsely predicting entailment. Most of the remaining errors are caused by
entailment examples containing the phrases “more than” or “less than” being incorrectly classified
as contradiction. We speculate that this behavior could arise as these phrases are often used by
crowdworkers to create contradictory examples in the original MultiNLI data, fooling models into
marking examples with this phrase as “contradiction” without reasoning about involved quantities.
Our observations suggest that models do not perform quantitative reasoning, but simply rely on
word overlap and other shallow lexical cues for prediction. We explore this in more detail in our
second case study on numerical reasoning in NLI, which includes tests that evaluate model ability
to perform and reason about simple mathematical operations such as addition and subtraction.

What insights can we obtain from model performance on distraction tests?

The design of our distraction tests allows us to evaluate model robustness to: (i) decreasing lexical
similarity between premise-hypothesis pairs, and (ii) presence of strong negation words in sentence
pairs.

Effect of Decreasing Lexical Similarity: Due to our construction methodology (i.e., appending
tautologies), accuracy on the word overlap and length mismatch tests demonstrates the effect of
decreasing lexical similarity on model performance. Table 5.5 shows accuracy drops for all models
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System MultiNLI Word Length
Dev Overlap Mismatch

Mat Mis Mat Mis Mat Mis

NB 33.2 33.1 43.2 38.3 46.0 46.9
CH 32.9 31.7 84.7 85.3 65.8 65.8
RC 37.1 39.1 74.3 83.3 74.2 79.5
IS 34.7 31.4 86.3 87.0 43.5 44.2
BiLSTM 38.5 37.9 83.2 81.9 75.9 79.1
CBOW 33.9 30.2 74.5 72.3 54.7 59.9

Table 5.7: % of FALSE NEUTRAL cases among total errors on MultiNLI development set, word overlap test
and length mismatch test.

on both tests. This drop is lower for CH, suggesting that their gated attention mechanism might
help in focusing on relevant parts of the sentence. The significant decrease in accuracy on these
tests indicates that NLI models use lexical similarity as a strong signal for entailment prediction,
failing which models default to predicting neutral. To provide further justification, we compare the
proportion of false neutral errors for all models on word overlap and length mismatch stress sets
vs. the original MultiNLI development set. As shown in Table 5.7, we find that it increases for all
models on both sets.
Effect of Introducing Strong Negation Words: Table 5.5 shows results on the negation test,
and we see that all state-of-the-art models perform poorly, with accuracies decreasing by 23.4%
and 23.38%, on average, on matched and mismatched sets respectively. However, comparing the
number of E-C (entailment predicted as contradiction) and N-C (neutral predicted as contradiction)
errors for these models on the negation test vs. the original MultiNLI development set, we do
not find an increase in these error types on negation. Instead, we observe an increase in false
neutral errors for all models. We hypothesize that this could occur due to the introduction of extra
words (“false”, “is” and “true”) apart from “not”, indicating that decreasing lexical similarity has a
stronger effect on models than introducing negation.
Training with Distraction: Finally, we perform an additional experiment to study whether models
can learn to ignore shallow lexical distractions if they are trained on distracting examples, which
could be a simple strategy to improve robustness. To do so, we generate an equivalent sample
containing the negation distraction (“false is not true”) for every sample in the training data, and
retrain NB and BiLSTM on the union of these examples and original training data. We evaluate
the performance of the retrained models on three tests: the original MultiNLI development set, the
negation stress test and a new distraction test created using a different negation tautology “green is
not red” (DIFF TAUT). We observe that NB shows performance degradation across all tests, but
training BiLSTM on distraction data helps it become robust to the tautology it was trained on.
However, it collapses when evaluated on a different tautology. This shows that when trained on
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System BiLSTM NB

Mat Mis Mat Mis

MultiNLI Dev 70.2 70.4 66.6 66.6
NEGATION 68.9 70.4 49.3 48.7
DIFF TAUT 49.0 49.3 49.9 49.7

Table 5.8: Effect of training on distraction data on original DEV set, original distraction set and new
distraction set.

distractions, models simply learn to ignore specific distracting phrases, instead of learning to ignore
distracting patterns. However, ignoring such distraction patterns is something humans do naturally.
Models should not have to train on specific distraction phrases to succeed on this evaluation.

What insights can we obtain from model performance on noise tests?

Our noise test results in Table 5.5 show that NB and IS exhibit a huge decrease in accuracy, since
both models rely on word embeddings. Other models show little performance degradation on
this test. CH performs subword modeling via character-level CNNs, which provides robustness
towards perturbation attacks. RC and BiLSTM perform well despite relying on word embeddings
since both use mean pooling, which might reduce the effect of single-word edits on the final
representation. CBOW is also very robust to this test, which can arise from the fact that it sums
word embeddings to create the final sentence embedding, diluting the effect of changing a single
word on final model performance.

We further analyze the performance of all four sentence encoder models under various perturba-
tion settings for noise introduction. In addition to exploring two types of perturbations (ADJSWAP
and KBSWAP as described earlier), we perform perturbations on only function words (conjunc-
tions, pronouns and articles), and on only content words (nouns and adjectives) in the hypothesis
to study the effects. We do not address perturbations in verbs and adverbs in the content word vs.
function word analysis. The results from these experiments are presented in Table 5.9.

System ADJSWAP KB SWAP CN SWAP FN SWAP
Mat Mis Mat Mis Mat Mis Mat Mis

NB 43.0 42.9 47.7 47.9 51.1 49.8 49.7 49.6
CH 68.24 68.1 68.5 68.3 68.3 69.1 69.9 70.3
RC 66.6 66.4 67.0 66.8 66.6 67.0 68.4 68.4
IS 57.8 58.6 57.7 58.7 58.3 59.4 57.5 57.6

Table 5.9: Model performance on different perturbation techniques for noise introduction.

We observe that there is no significant difference between perturbing a function word or a
content word, which is surprising. One hypothesis is that content words can often be named entities
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for which the models already do not find word embeddings. We also do not find a considerable
difference in performance between the different kinds of perturbations but this is expected behaviour
as most models use word embeddings, and irrespective of the type of perturbation, these will just
be categorized as unknown words.
Final observations from case study I: Our analyses of performance of state-of-the-art sentence
encoder models on a benchmark NLI dataset (MultiNLI) and our proposed stress tests leave us with
the following key observations:

• Performance on a benchmark dataset does not always provide a complete picture of model
ability to handle all requisite phenomena need for the actual task being tested. This is
particularly true when the benchmark dataset construction process is prone to sampling and
annotator biases.

• Our proposed evaluation methodology of using stress tests helps us isolate important micro
long tail phenomena that models do not capture, as well as identify high-frequency spurious
artifacts that act as distractors for models. They also allow us to perform comparative analyses
of model architectures and obtain actionable insights into which long tail phenomena are still
hard for most state-of-the-art models.

• Standard benchmark evaluation in conjunction with a non-identically distributed evaluation
methodology such as stress tests provides a more stringent and insightful evaluation process
that is harder for machine learning models to fool.

5.4 Case Study II: Numerical Reasoning in NLI

5.4.1 Background: Numerical Reasoning
Numerical reasoning, or quantitative reasoning, is a higher-order reasoning skill that an intelligent
natural language understanding system can reasonably be expected to handle. Humans reason with
numbers in many day-to-day tasks ranging from handling currency to reading news articles to under-
standing sports results, elections and stock markets. Numbers are used to communicate information
accurately, and so learning to reason with them is an essential competence in understanding natural
language (Levinson, 2001; Frank et al., 2008; Dehaene, 2011). In the field of NLU, numerical
reasoning has typically been studied via the task of solving arithmetic word problems (Hosseini
et al., 2014; Mitra and Baral, 2016; Zhou et al., 2015; Upadhyay et al., 2016; Huang et al., 2017;
Kushman et al., 2014; Koncel-Kedziorski et al., 2015; Roy and Roth, 2015; Roy, 2017; Ling et al.,
2017). An important limitation of this task is that word problems primarily focus on testing model
ability to perform arithmetic reasoning, while the requirement for linguistic reasoning and factual
world knowledge is limited as the text is concise, straightforward, and self-contained (Hosseini
et al., 2014; Kushman et al., 2014). However, NLU systems capable of performing numerical
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reasoning must be able to handle the full complexity of language and tackle the intricate interplay
between everyday language and numbers beyond arithmetic reasoning, which includes phenomena
such as approximation, ordinality, scalar implicature, etc. Motivated by these requirements, we
study the numerical reasoning skill through the lens of the natural language inference task.

As described previously, natural language inference (NLI), or recognizing textual entailment
(RTE) (Cooper et al., 1996; Condoravdi et al., 2003; Bos and Markert, 2005; Dagan et al., 2006),
is a benchmark task in natural language understanding, wherein a model determines if a natural
language hypothesis can be justifiably inferred from a given premise. This is most commonly posed
as a three-way classification decision where the hypothesis can be inferred to be true (entailment),
false (contradiction) or cannot be determined (neutral). Making such inferences often involves
reasoning about quantities. Consider the following example:
Premise: With 99.6% of precincts counted , Dewhurst held 48% of the vote to 30% for Cruz.
Hypothesis: Lt. Gov. David Dewhurst fails to get 50% of primary vote.
To conclude that the hypothesis is true given the premise, a model must reason that since 99.6%
precincts are counted, even if all remaining precincts were to vote for Dewhurst, he would fail to
get 50% of the primary vote. Such examples requiring inferences involving quantities frequently
crop up in existing NLI datasets. de Marneffe et al. (2008) find that in a corpus of real-life
contradiction pairs collected from Wikipedia and Google News, 29% contradictions arise from
numeric discrepancies, which requires reasoning about quantities to detect them accurately. In
the RTE-3 (Recognizing Textual Entailment) development set, numeric contradictions make up
8.8% of contradictory pairs. Naik et al. (2018) find that model inability to do numerical reasoning
causes 4% of errors made by state-of-the-art models. Moreover, prior work arguing for a systematic
knowledge-oriented approach to solving NLI by evaluating specific semantic analysis tasks, has
identified quantitative reasoning as one of the focus areas (Sammons et al., 2010; Clark, 2018).

There is no scarcity of large-scale benchmark NLI datasets, which do not focus on a specific
skill (Bowman et al., 2015; Williams et al., 2018; Khot et al., 2018; Conneau et al., 2018; Romanov
and Shivade, 2018), especially since NLI has attracted community-wide interest as a stringent test
for natural language understanding (Cooper et al., 1996; Fyodorov; Glickman et al., 2005; Haghighi
et al., 2005; Harabagiu and Hickl, 2006; Romano et al., 2006; Dagan et al., 2006; Zanzotto et al.,
2006; Giampiccolo et al., 2007; Malakasiotis and Androutsopoulos, 2007; MacCartney, 2009;
de Marneffe et al., 2009; Dagan et al., 2010; Angeli and Manning, 2014; Marelli et al., 2014b). But
standard identically distributed evaluation on benchmark NLI datasets does not provide an accurate
picture of model ability to handle a particular skill such as quantitative reasoning. In particular, the
hypothesis authoring step used to obtain entailed, neutral and contradictory hypothesis sentences
from crowdworkers encourages biases towards shallow expressions of linguistic phenomena. For
example, Gururangan et al. (2018) show that when provided premise sentences containing numbers,
a common strategy followed by crowdworkers is to replace exact numbers with approximates.
More complex quantitative phenomena such as scalar implicature and arithmetic reasoning are
rarely instantiated. Recognizing this flaw in standard benchmark dataset evaluation has led to
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the development of supplementary challenge test sets for specific linguistic phenomena such as
lexical inference with hypernymy, co-hyponymy, antonymy (Glockner et al., 2018; Naik et al.,
2018). Despite this, there has been limited work on building evaluation sets specifically focused on
numerical reasoning in NLI. Bentivogli et al. (2010) create several specialized phenomenon-specific
NLI datasets, but feature only 6 examples with quantitative reasoning. Roy (2017) propose a dataset
and model for a related sub-task called quantity entailment, which aims to determine if a single
given quantity can be inferred from a sentence, instead of trying to infer the relationship between
two sentences. Naik et al. (2018) build a stress test for numerical reasoning, but this test only covers
quantifiers, leaving out many other quantitative phenomena.

To address this gap, we construct a stress test-based evaluation platform called EQUATE
(Evaluating Quantity Understanding Aptitude in Textual Entailment) (§5.4.2), which consists of
five evaluation sets, each featuring different facets of quantitative reasoning in textual entailment
(Table 5.12), including verbal reasoning with quantities, basic arithmetic computation, dealing
with approximations and range comparisons. Given this evaluation platform, we study the ability
of existing state-of-the-art NLI models to perform quantitative reasoning by benchmarking 9
published models on EQUATE. Our results show that most SOTA models are incapable of handling
quantitative reasoning phenomena, instead relying on lexical cues for prediction. Additionally, we
build a shallow semantic reasoning baseline for quantitative reasoning in NLI called Q-REAS, and
evaluate its performance on EQUATE. Q-REAS is effective on synthetic test sets which require
more quantity-based inference, but shows limited success on natural test sets which require deeper
interaction between quantity-based and linguistic reasoning. The EQUATE evaluation framework
highlights micro long tail quantitative reasoning phenomena that are still challenging, helping us
identify areas to tackle to develop this skill better in NLU models.

5.4.2 Phenomena Selection from Task Knowledge
Unlike the previous case study, we do not rely on error analyses to select phenomena to focus our
stress test construction on. Instead we turn to human knowledge of abilities required to perform
quantitative reasoning. Our definition of “quantitative reasoning” draws from cognitive testing
and education (Stafford, 1972; Ekstrom et al., 1976), which considers it a “verbal problem-solving
ability”. While inextricably linked to mathematics, it is an inclusive skill involving everyday
language rather than a specialized lexicon. To excel at quantitative reasoning, one must possess
a wide range of abilities such as interpreting quantities expressed in language, performing basic
calculations, judging their accuracy, and justifying quantitative claims using verbal and numeric
reasoning. These requirements show an interesting reciprocity: NLI naturally lends itself as a
test bed for quantitative reasoning, which conversely, is important for NLI (Sammons et al., 2010;
Clark, 2018).

Based on our knowledge of the spectrum of abilities required to perform quantitative reasoning,
we select two key micro long tail phenomena (quantifiers and arithmetic reasoning), and construct
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Phenomenon Example

Arithmetic P: Sharper faces charges in Arizona and California
H: Sharper has been charged in two states

Ranges P: Between 20 and 30 people were trapped in the casino
H: Upto 30 people thought trapped in casino

Quantifiers P: Poll: Obama over 50% in Florida
H: New poll shows Obama ahead in Florida

Ordinals P: Second-placed Nancy celebrated their 40th anniversary with a win
H: Nancy stay second with a win

Approximation P: Rwanda has dispatched 1917 soldiers
H: Rwanda has dispatched some 1900 soldiers

Ratios P: Londoners had the highest incidence of E. Coli bacteria (25%)
H: 1 in 4 Londoners have E. Coli bacteria

Comparison P: Treacherous currents took four lives on the Alabama Gulf coast
H: Rip currents kill four in Alabama

Conversion
P: If the abuser has access to a gun, it increases chances of death by
500%
H: Victim five times more likely to die if abuser is armed

Numeration P: Eight suspects were arrested
H: 8 suspects have been arrested

Implicit Quan-
tities

P: The boat capsized two more times
H: His sailboat capsized three times

Table 5.10: Examples of quantitative phenomena present in EQUATE.

synthetic stress tests for these. Additionally, we create three natural stress tests from real-world data,
which focus solely on quantitative reasoning. Importantly, for natural test set creation, we sample
both premise and hypothesis sentences from the wild, instead of having hypothesis sentences
authored by crowdworkers. This reduces bias towards shallow expressions of complex micro
long tail quantitative phenomena, while allowing us to construct test sets exhibiting how these
phenomena are actually realized and used in everyday language.

In sum, EQUATE consists of five NLI test sets for quantitative reasoning. Three of these
tests are natural tests, featuring language from real-world sources such as news articles and
social media (RTE-Quant, NewsNLI, RedditNLI). We sample sentences containing quantities
with numerical values, and consider an entailment pair to feature quantitative reasoning if it
is at least one component of the overall reasoning required to determine the entailment label
(but not necessarily the only reasoning component). Quantitative reasoning includes quantity
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Source Test Set Size Classes Data
Source

Annotation
Source

Quantitative Phenom-
ena

RTE-Quant 166 2 RTE2-
RTE4

Experts Arithmetic, Ranges,
Quantifiers

Natural NewsNLI 968 2 CNN Crowdworkers Ordinals, Quantifiers,
Arithmetic, Approx-
imation, Magnitude,
Ratios

RedditNLI 250 3 Reddit Experts Range, Arithmetic, Ap-
proximation, Verbal

ST-Quant 7500 3 AQuA-RAT Automatic Quantifiers

Synthetic AwpNLI 722 2 Arithmetic
Word Prob-
lems

Automatic Arithmetic

Table 5.11: An overview of test sets included in EQUATE. RedditNLI and ST-Quant are framed as 3-class
(entailment, neutral, contradiction) while RTE-Quant, NewsNLI and AwpNLI are 2-class (entails=yes/no).
RTE 2-4 formulate entailment as a 2-way decision. We find that few news article headlines are contradictory,
thus NewsNLI is similarly framed as a 2-way decision. For algebra word problems, substituting the
wrong answer in the hypothesis necessarily creates a contradiction under the event coreference assumption
de Marneffe et al. (2008), thus it is framed as a 2-way decision as well.

matching, quantity comparison, quantity conversion, arithmetic, qualitative processes, ordinality
and quantifiers, quantity noun and adverb resolution (such as the quantities represented in dozen,
twice, teenagers), as well as verbal reasoning with the quantity’s textual context. For example,
consider the sentence pair ÈObama cuts tax rate to 28%, Obama wants to cut tax rate to 28% as
part of overhaulÍ. In addition to comparing the quantity (28% tax rate), we need to compare the
contexts in which it has been used (cutting the rate vs wanting to cut the rate), to come up with
the correct label. Table 5.10 presents some examples which demonstrate interesting quantitative
phenomena that must be understood to label the pair correctly. It is important to note that we filter
out sentence pairs which require only temporal reasoning, since specialized knowledge beyond
knowledge of numbers, is needed to reason about time. These three test sets contain pairs which
conflate some lexical and quantitative reasoning phenomena. In order to study some long tail
quantitative reasoning phenomena in isolation, EQUATE further features two controlled synthetic
tests (AwpNLI, ST-Quant), evaluating model ability to reason with quantifiers and perform simple
arithmetic. Table 5.11 gives a brief overview of all five test sets, and provides some additional
statistics and metadata about each set, while Appendix C presents some additional examples of
annotated instances from EQUATE. As with our previous case study, we intend to jointly evaluate
model performance on standard NLI datasets and the EQUATE benchmark, to evaluate model
competence at quantitative reasoning in natural language understanding.
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5.4.3 Constructing Stress Tests for EQUATE

RTE-Quant

This test set is constructed from the RTE sub-corpus for quantity entailment (Roy, 2017), originally
drawn from the RTE2-RTE4 datasets (Dagan et al., 2006). The original sub-corpus conflates
temporal and quantitative reasoning. We discarded pairs requiring temporal reasoning, obtaining a
set of 166 entailment pairs.

NewsNLI

This test set is created from the CNN corpus of news articles with abstractive summaries (Hermann
et al., 2015). We identify summary points with quantities, filtering out temporal expressions.
For each summary point, the two most similar sentences from the article (according to Jaccard
similarity) are chosen, flipping pairs where the premise begins with a first-person pronoun (e.g.,
È“He had nine pears”, “Bob had nine pears”Í becomes È“Bob had nine pears”, “He had nine
pears”Í). The top 50% of similar pairs are retained to avoid lexical overlap bias. We crowdsource
annotations for a subset of this data from Amazon Mechanical Turk. Crowdworkers are shown
two sentences and asked to determine whether the second sentence is definitely true, definitely
false, or not inferable given the first. All crowdworkers are required to have an approval rate of
95% on at least 100 tasks and pass a qualification test. We collect 5 annotations per pair, and
consider pairs with lowest token overlap between premise and hypothesis and least difference in
premise-hypothesis lengths when stratified by entailment label. Top 1000 samples meeting these
criteria form our final set. To validate crowdsourced labels, experts are asked to annotate 100 pairs.
Crowdsourced gold labels match expert gold labels in 85% cases, while individual crowdworker
labels match expert gold labels in 75.8%. Disagreements are manually resolved by experts and
examples not featuring quantitiative reasoning are filtered, leaving a set of 968 samples.

RedditNLI

This test set is sourced from the popular social forum \reddit3. Since reasoning about quantities
is important in domains like finance or economics, we scrape all headlines from the posts on
\r\economics, considering titles that contain quantities and do not have meta-forum information.
Titles appearing within three days of each other are clustered by Jaccard similarity, and the top 300
pairs are extracted. After filtering out nonsensical titles, such as concatenated stock prices, we are
left with 250 sentence pairs. Similar to RTE, two expert annotators label these pairs, achieving a
Cohen’s kappa of 0.82. Disagreements are discussed to resolve final labels.

3According to the Reddit User Agreement, users grant Reddit the right to make their content available to other
organizations or individuals.
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ST-Quant

We include the numerical reasoning stress test from the previous case study (Naik et al., 2018) as one
of our synthetic controlled test sets. This stress test consists of 7500 entailment pairs constructed
from sentences in algebra word problems datasets (Ling et al., 2017). Focusing on quantifiers, it
requires models to compare entities from hypothesis to the premise while incorporating quantifiers,
but does not require them to perform the computation from the original algebra word problem (eg:
È“NHAI employs 100 men to build a highway of 2 km in 50 days working 8 hours a day”,“NHAI
employs less than 700 men to build a highway of 2 km in 50 days working 8 hours a day”Í).

AwpNLI

To evaluate arithmetic ability of NLI models, we repurpose data from arithmetic word problems
(Roy and Roth, 2015). They have the following characteristic structure. First, they establish a
world and optionally update its state. Then, a question is posed about the world. This structure
forms the basis of our pair creation procedure. World building and update statements form the
premise. A hypothesis template is generated by identifying modal/auxiliary verbs in the question,
and subsequent verbs, which we call secondary verbs. We identify the agent and conjugate the
secondary verb in present tense followed by the identified unit to form the final template (for
example, the algebra word problem ‘Gary had 73.0 dollars. He spent 55.0 dollars on a pet snake.
How many dollars did Gary have left?’ would generate the hypothesis template ‘Agent(Gary)
Verb(Has) Answer(18.0) Unit(dollars) left’). For every template, the correct guess is used to create
an entailed hypothesis. Contradictory hypotheses are created by randomly sampling a wrong guess
(x œ Z+ if correct guess is an integer, and x œ R+ if it is a real number) from a uniform distribution
over an interval of 10 around the correct guess (or 5 for numbers less than 5), to identify plausible
wrong guesses. We check for grammaticality, finding only 2% ungrammatical hypotheses, which
are manually corrected leaving a set of 722 pairs.

5.4.4 Experiments and Analysis

Neural NLI Models

We evaluate the performance of the following 9 neural NLI models, and 2 additional non-neural
baseline models:

1. Majority Class (MAJ): Simple baseline that always predicts the majority class in test set.

2. Hypothesis-Only (HYP): FastText classifier (Joulin et al., 2017) trained to predict entail-
ment labels from hypothesis sentences only (Gururangan et al., 2018).

3. ALIGN: A bag-of-words alignment model inspired by MacCartney (2009), which bases
the entailment prediction on lexical overlap between premise and hypothesis, utilizing
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RTE-QUANT

P: After the deal closes, Teva will generate sales of about $ 7 billion a year, the company said.
H: Teva earns $ 7 billion a year.

AWP-NLI

P: Each of farmer Cunningham’s 6048 lambs is either black or white and there are 193 white
ones.

H: 5855 of Farmer Cunningham’s lambs are black.

NEWSNLI

P: Emmanuel Miller, 16, and Zachary Watson, 17, are charged as adults, police said.
H: Two teen suspects charged as adults.

REDDITNLI

P: Oxfam says richest one percent to own more than rest by 2016.
H: Richest 1% To Own More Than Half Worlds Wealth By 2016 Oxfam.

Table 5.12: Examples from evaluation sets in EQUATE.

Levenshtein edit distance and weighting term importance by part-of-speech tags. The
accuracy of our re-implementation of this model on RTE-3 test is 61.12%, comparable to the
reported average model performance of 62.4% on the RTE challenge.

4. CBOW: A simple bag-of-embeddings sentence representation model (Williams et al., 2018),
using GloVe word embeddings (Pennington et al., 2014).

5. BiLSTM: The simple BiLSTM model described by Williams et al. (2018), which forms
sentence representations by averaging the states of a BiLSTM over the words in the sentence.

6. Chen (CH): A stacked BiLSTM-RNN model with shortcut connections and character-CNN
embeddings Chen et al. (2017b).

7. InferSent: A single-layer BiLSTM-RNN model with max-pooling (Conneau et al., 2017),
which is trained to learn robust universal sentence representations that transfer well across
several inference tasks.

8. SSEN: A stacked BiLSTM-RNN model with shortcut connections (Nie and Bansal, 2017),
which was the best-performing model on the RepEval shared task on MultiNLI (Nangia et al.,
2017b).

9. ESIM: Sequential inference model proposed by Chen et al. (2017a) which uses BiLSTMs
with an attention mechanism.

153



5.4. Case Study II: Numerical Reasoning in NLI

Figure 5.3: Overview of the Q-REAS baseline.

10. OpenAI GPT: Transformer-based language model (Vaswani et al., 2017), with finetuning
on NLI (Radford et al., 2018).

11. BERT: Transformer-based language model (Vaswani et al., 2017), with cloze-style and
next-sentence prediction objectives, and finetuning on NLI Devlin et al. (2019).

In addition to these models, we also evaluate the performance of Q-REAS, our shallow symbolic
reasoning baseline described in the next section.

Q-REAS: A Shallow Symbolic Reasoning Baseline

Figure 5.3 gives an overview of the structure of our Q-REAS baseline for quantitative reasoning.
This model manipulates quantity representations symbolically to make entailment decisions, and is
intended to serve as a strong heuristic baseline for numerical reasoning on the EQUATE benchmark.
This model has four main stages:

1. Quantity mentions are extracted and parsed into semantic representations called NUMSETS

(Quantity Segmenter, Quantity Parser).

2. Compatible pairs of NUMSETS from premise and hypothesis sentences are formed (Quantity
Pruner).

3. Compatible NUMSET pairs are composed to form justifications (Quantity Composition).

4. Justifications are analyzed to make the final entailment decisions (Global Reasoner).
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INPUT
Pc Set of “compatible” single-valued premise quantities
Pr Set of “compatible” range-valued premise quantities
H Hypothesis quantity
O Operator set {+, ≠, ú, /, =, fl, fi, \, ™}
L Length of equation to be generated
SL Symbol list (Pc fi Pr fi H fi O)
TL Type list (set of types from Pc, Pr, H)
N Length of symbol list
K Index of first range quantity in symbol list
M Index of first operator in symbol list
OUTPUT
ei Index of symbol assigned to ith position in postfix equation
VARIABLES
xi Main ILP variable for position i
ci Indicator variable: is ei a single value?
ri Indicator variable: is ei a range?
oi Indicator variable: is ei an operator?
di Stack depth of ei

ti Type index for ei

Table 5.13: Input, output and variable definitions for the Integer Linear Programming (ILP) framework used
for quantity composition.

Quantity Segmenter

We follow Barwise and Cooper (1981) in defining quantities as having a number, unit, and an
optional approximator. Quantity mentions are identified as least ancestor noun phrases from the
constituency parse of the sentence containing cardinal numbers.

Quantity Parser

The quantity parser constructs a grounded representation for each quantity mention in the premise
or hypothesis, henceforth known as a NUMSET (note that a NUMSET may be a composition of
other NUMSETS). A NUMSET is a tuple (val, unit, ent, adj, loc, verb, freq, flux)4 where:

1. val œ [R,R]: quantity value represented as a range

2. unit œ S: unit noun associated with the quantity

3. ent œ S„: entity noun associated with the unit (e.g., ‘donations worth 100$’)
4As in Koncel-Kedziorski et al. (2015), S denotes all possible spans in the sentence, „ represents the empty span, and

S„=S fi „
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4. adj œ S„: adjective associated with unit if any, extracted as governing verb linked to entity
by an amod relation

5. loc ™ S„: location of the unit (e.g.,’in the bag’), extracted as the prepositional phrase attached
to the quantity and containing noun phrase

6. verb œ S„: action verb associated with the quantity, extracted as governing verb linked to
entity by dobj or nsubj relation

7. freq ™ S„: if quantity recurs, extracted using keywords per and every (e.g, ’per hour’)

8. flux œ {increase to, increase from, decrease to, decrease from}„: if quantity is in a state of
flux, extracted using a gazetteer: increasing, rising, rose, decreasing, falling, fell, drop

To extract values for a quantity, we extract cardinal numbers, recording contiguity. We normalize
the number by remove “,”s, converting written numbers to floats and deciding the numerical values
(for example hundred fifty eight thousand is 158000, two fifty eight is 258, 3.74m is 3740000 etc.).
If cardinal numbers are non-adjacent, we look for an explicitly mentioned range such as ‘to’ and
‘between’. We also handle simple ratios such as quarter, half etc, and extract bounds (e.g., fewer
than 10 apples is parsed to [≠Œ, 10] apples.)

To extract units, we examine tokens adjacent to cardinal numbers in the quantity mention and
identify known units. If no known units are found, we assign the token in a numerical modifier
relationship with the cardinal number, else we assign the nearest noun to the cardinal number as
the unit. A quantity is determined to be approximate if the word in an adverbial modifier relation
with the cardinal number appears in a gazetteer5. If approximate, range is extended to (+/-)2% of
the current value.

Quantity Pruner

The pruner constructs “compatible” premise-hypothesis NUMSET pairs. Consider the pair “In-
surgents killed 7 U.S. soldiers, set off a car bomb that killed four Iraqi policemen” and “7 US
soldiers were killed, and at least 10 Iraqis died”. Our parser extracts NUMSETS corresponding
to “four Iraqi policemen” and “7 US soldiers” from premise and hypothesis respectively. But
these NUMSETSshould not be compared as they involve different units. The pruner discards such
incompatible pairs. Heuristics to identify unit-compatible NUMSETpairs include three cases: (i)
direct string match, (ii) synonymy/hypernymy relations from WordNet, and (iii) one unit is a
nationality/job and the other unit is synonymous with person, a heuristic also used by Roy (2017).
Lists of jobs and nationalities are scraped from Wikipedia.

5roughly, approximately, about, nearly, roundabout, around, circa, almost, approaching, pushing, more or less, in the
neighborhood of, in the region of, on the order of,something like, give or take (a few), near to, close to, in the ballpark of
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Definitional Constraints

Range restriction xi < K or xi = M ≠ 1 for i œ [0, L ≠ 1] if ci = 1
xi Ø K and xi < M for i œ [0, L ≠ 1] if ri = 1
xi Ø M for i œ [0, L ≠ 1] if oi = 1

Uniqueness ci + ri + oi = 1 for i œ [0, L ≠ 1]
Stack definition d0 = 0 (Stack depth initialization)

di = di≠1 ≠ 2oi + 1 for i œ [0, L ≠ 1] (Stack depth update)

Syntactic Constraints

First two operands c0 + r0 = 1 and c1 + r1 = 1
Last operator xL≠1 Ø N ≠ 1 (Last operator should be one of {=, ™})
Last operand xL≠2 = M ≠ 1 (Last operand should be hypothesis quantity)
Other operators xi Æ N ≠ 2 for i œ [0, L ≠ 3] if oi = 1
Other operands xi < K for i œ [0, L ≠ 3] if ci = 1

xi < M for i œ [0, L ≠ 3] if ri = 1
Empty stack dL≠1 = 0 (Non-empty stack indicates invalid postfix expression)
Premise usage xi ”= xj for i, j œ [0, L ≠ 1] if oi ”= 1, oj ”= 1

Operand Access

Right operand op2(xi) = xi≠1 for i œ [0, L ≠ 1] such that oi = 1
Left operand op1(xi) = xl for i, l œ [0, L ≠ 1] where oi = 1 and l is the largest index such

that l Æ (i ≠ 2) and dl = di

Table 5.14: Mathematical validity constraint definitions for the ILP framework. Functions op1() and op2()
return the left and right operands for an operator respectively. Variables defined in Table 5.13.

Quantity Composition

The composition module detects whether a hypothesis NUMSET is justified by composing “compat-
ible” premise NUMSETS. For example, consider the pair “I had 3 apples but gave one to my brother”
and “I have two apples”. Here, the premise NUMSETS P1 (“3 apples”) and P2 (“one apple”) must
be composed to deduce that the hypothesis NUMSET H1 (“2 apples”) is justified. Our framework
accomplishes this by generating postfix arithmetic equations from premise NUMSETS, that justify
the hypothesis NUMSET. Note that arithmetic equations differ from algebraic equations in that they
do not contain unknown variables. Direct comparisons between NUMSETS are incorporated by
adding “=” as an operator. In this example, the expression < P1, P2, ≠, H1, => will be generated.

The set of possible equations is exponential in number of NUMSETS, making exhaustive
generation intractable. But a large number of equations are invalid as they violate constraints such
as unit consistency. Thus, our framework uses integer linear programming (ILP) to constrain the
equation space. It is inspired by prior work on algebra word problems (Koncel-Kedziorski et al.,
2015), with the following key differences:

1. Arithmetic equations: We focus on arithmetic equations instead of algebraic ones.

2. Range arithmetic: Quantitative reasoning involves ranges, which are handled by represent-
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Type Consistency Constraints

Type assignment ti = TL[k] for i œ [0, L ≠ 1] if ci + ri = 1 and type(SLi) = k
Two type match ti = ta = tb for i œ [0, L ≠ 1] such that oi = 1, xi œ {+, ≠, ú, /, =, fl, fi, \, ™

}, a = op1(xi), b = op2(xi)
One type match ti œ {ta, tb}, ta ”= tb for i œ [0, L ≠ 1] such that oi = 1, xi = ú, a =

op1(xi), b = op2(xi)
ti = ta ”= tb for i œ [0, L ≠ 1] such that oi = 1, xi = /, a = op1(xi), b =
op2(xi)

Operator Consistency Constraints

Arithmetic operators ca = cb = 1 for i œ [0, L ≠ 1] such that oi = 1, xi œ {+, ≠, ú, /, =}, a =
op1(xi), b = op2(xi)

Range operators ra = rb = 1 for i œ [0, L ≠ 1] such that oi = 1, xi œ {fl, fi, \}, a =
op1(xi), b = op2(xi)
rb = 1 for i œ [0, L ≠ 1] such that oi = 1, xi =™, b = op2(xi)

Table 5.15: Linguistic consistency constraint definitions for the ILP framework. Functions op1() and op2()
return the left and right operands for an operator respectively. Variables defined in Table 5.13.

ing them as endpoint-inclusive intervals and adding the four operators (fi, fl, \, ™).

3. Hypothesis quantity-driven: We optimize an ILP model for each hypothesis NUMSET

because a sentence pair is marked “entailment” iff every hypothesis quantity is justified.

Table 5.13 describes the variables used in our ILP problem formulation. We impose the
following types of ILP constraints:

1. Definitional Constraints: Ensure that ILP variables take on valid values by constraining
initialization, range, and update.

2. Syntactic Constraints: Assure syntactic validity of generated postfix expressions by limiting
operator-operand ordering.

3. Operand Access: Simulate stack-based evaluation correctly by choosing correct operator-
operand assignments.

4. Type Consistency: Ensure that all operations are type-compatible.

5. Operator Consistency: Force range operators to have range operands and mathematical
operators to have single-valued operands.
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Algorithm 1 PredictEntailmentLabel(P, H, C, E)
Input: Premise quantities P , Hypothesis quantities H , Compatible pairs C, Equations E

Output: Entailment label l œ { e, c, n }
1: if C = ÿ then return n

2: end if
3: J Ω ÿ
4: L Ω []
5: for qh œ H do
6: Jh Ω {qp | qp œ P, (qp, qh) œ C}
7: J Ω J fi {(qh, Jh)}
8: L Ω L + [false]
9: end for

10: for (qh, Jh) œ J do
11: if Jh = ÿ then return n

12: end if
13: for qp œ Jh do
14: s Ω MaxSimilarityClass(qp, qh)
15: if s = e then
16: if ValueMatch(qp, qh) then
17: L[qh] = true

18: end if
19: if !ValueMatch(qp, qh) then
20: L[qh] = false

21: end if
22: end if
23: if s = c then
24: if ValueMatch(qp, qh) then
25: L[qh] = c

26: end if
27: end if
28: end for
29: end for
30: for qh œ H do
31: Eq Ω {ei œ E | hyp(ei) = qh}
32: if Eq ”= ÿ then
33: L[qh] = true

34: end if
35: end for
36: if c œ L then return c

37: end if
38: if count(L, true) = len(L) then return e

39: return n

40: end if
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M
D RTE-Q � NewsNLI � RedditNLI � ST-Q � AWPNLI � Nat.

Avg. �
Synth.
Avg. �

All
Avg. �

MAJ 57.8 0.0 50.7 0.0 58.4 0.0 33.3 0.0 50.0 0.0 +0.0 +0.0 +0.0
HYP 49.4 -8.4 52.5 +1.8 40.8 -17.6 31.2 -2.1 50.1 +0.1 -8.1 -1.0 -5.2
ALIGN 62.1 +4.3 56.0 +5.3 34.8 -23.6 22.6 -10.7 47.2 -2.8 -4.7 -6.8 -5.5
CBOW 47.0 -10.8 61.8 +11.1 42.4 -16.0 30.2 -3.1 50.7 +0.7 -5.2 -1.2 -3.6
BiLSTM 51.2 -6.6 63.3 +12.6 50.8 -7.6 31.2 -2.1 50.7 +0.7 -0.5 -0.7 -0.6
CH 54.2 -3.6 64.0 +13.3 55.2 -3.2 30.3 -3.0 50.7 +0.7 +2.2 -1.2 +0.9
InferSent 66.3 +8.5 65.3 +14.6 29.6 -28.8 28.8 -4.5 50.7 +0.7 -1.9 -1.9 -1.9
SSEN 58.4 +0.6 65.1 +14.4 49.2 -9.2 28.4 -4.9 50.7 +0.7 +1.9 -2.1 +0.3
ESIM 54.8 -3.0 62.0 +11.3 45.6 -12.8 21.8 -11.5 50.1 +0.1 -1.5 -5.7 -3.2
GPT 68.1 +10.3 72.2 +21.5 52.4 -6.0 36.4 +3.1 50.0 +0.0 +8.6 +1.6 +5.8
BERT 57.2 -0.6 72.8 +22.1 49.6 -8.8 36.9 +3.6 42.2 -7.8 +4.2 -2.1 +1.7

Q-REAS 56.6 -1.2 61.1 +10.4 50.8 -7.6 63.3 +30 71.5 +21.5 +0.5 +25.8 +10.6

Table 5.16: Accuracies(%) of 9 NLI Models on five tests for quantitiative reasoning in entailment. M
and D represent models and datasets respectively. � captures improvement over majority-class baseline
for a dataset. Column Nat.Avg. reports the average accuracy(%) of each model across 3 evaluation sets
constructed from natural sources (RTE-Quant, NewsNLI, RedditNLI), whereas Synth.Avg. reports the
average accuracy(%) on 2 synthetic evaluation sets (ST-Quant, AwpNLI). Column Avg. represents the
average accuracy(%) of each model across all 5 evaluation sets in EQUATE.

Definitional, syntactic, and operand access constraints ensure mathematical validity while
type and operator consistency constraints add linguistic consistency. Constraint formulations are
provided in Tables 5.14 and 5.15. We limit tree depth to 3 and retrieve a maximum of 50 solutions
per hypothesis NUMSET, then solve to determine whether the equation is mathematically correct.
We discard equations that use invalid operations (division by 0) or add unnecessary complexity
(multiplication/ division by 1). The remaining equations are considered plausible justifications.

Global Reasoner

The global reasoner predicts the final entailment label as shown in Algorithm 1. MaxSimilarity-
Class() takes two quantities and returns a probability distribution over entailment labels based on
unit match. Similarly, ValueMatch() detects whether two quantities match in value (this function
can also handle ranges), on the assumption that every NUMSET in the hypothesis has to be justified
to predict the label to be entailment. Note that this is a necessary but not sufficient condition for
entailment. Consider the example, È‘Sam believed Joan had 5 apples’, ‘Joan had 5 apples’Í. The
hypothesis quantities of 5 apples is justified but is not a sufficient condition for entailment.

Model Performance on EQUATE

Table 5.16 presents the results of all models on EQUATE. Table 5.17 presents classification
accuracies of all neural models used on the matched development set of MultiNLI. All models,
except Q-REAS (which requires no supervision) are trained on MultiNLI (Williams et al., 2018).
The only data sources used by Q-REAS are WordNet and lists from Wikipedia. From these tables,
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Model MultiNLI Dev

Hyp Only 53.18%
ALIGN 45.0%
CBOW 63.5%
BiLSTM 70.2%
Chen 73.7%
NB 74.2%
InferSent 70.3%
ESIM 76.2%
OpenAI GPT 81.35%
BERT 83.8%

Table 5.17: Performance of all baseline models used in the paper on the matched development set of
MultiNLI. These scores are very close to the numbers reported by the original publications, affirming the
correctness of our baseline setup.

we observe that neural models, particularly OpenAI GPT excel at verbal aspects of quantitative
reasoning (RTE-Quant, NewsNLI), whereas our symbolic baseline Q-REAS excels at numerical
aspects (ST-Quant, AwpNLI).

Analyzing Neural Model Performance on NewsNLI

To tease apart contributory effects of numerical and verbal reasoning in natural data, we explore
model performance on NewsNLI. We extract all entailed pairs where a quantity appears in both
premise and hypothesis, and perturb the quantity in the hypothesis generating contradictory pairs.
For example, the pair È‘In addition to 79 fatalities, some 170 passengers were injured.’Í ‘The crash
took the lives of 79 people and injured some 170’, ‘entailment’ is changed to È‘In addition to 79
fatalities, some 170 passengers were injured.’, ‘The crash took the lives of 80 people and injured
some 170’, ‘contradiction’Í, assuming scalar implicature and event coreference. Our perturbed test
set contains 218 pairs. On this set, GPT, the best-performing neural model on EQUATE, achieves
an accuracy of 51.18%, as compared to 72.04% on the unperturbed set, suggesting the model relies
on verbal cues rather than numerical reasoning. In comparison, Q-REAS achieves an accuracy of
98.1% on the perturbed set, compared to 75.36% on the unperturbed set, highlighting reliance
on quantities rather than verbal information. Closer examination reveals that GPT switches to
predicting the ‘neutral’ category for perturbed samples instead of entailment, accounting for 42.7%
of its errors, possibly symptomatic of lexical bias issues (Naik et al., 2018; McCoy et al., 2019).
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Identifying Hard Quantitative Phenomena

A key advantage of stress test-based evaluation frameworks like EQUATE is the possibility of
identifying and isolating micro long tail phenomena that models are unable to solve, which can offer
clear directions for future work. For quantitative reasoning, we identify such hard phenomena which
cannot be addressed by simple quantity comparison, by sampling 100 errors made by Q-REAS on
each test in EQUATE. Our analysis of causes for error suggest the following avenues for future
research on quantitative reasoning:

1. Multi-step numerical-verbal reasoning: Models do not perform well on examples requir-
ing interleaved verbal and quantitative reasoning, especially multi-step deduction. Consider
the pair È“Two people were injured in the attack”, “Two people perpetrated the attack”Í.
Quantities “two people” and “two people” are unit-compatible, but must not be compared.
Another example is the NewsNLI entailment pair in Table 5.12. This pair requires us to
identify that 16 and 17 refer to Emmanuel and Zachary’s ages (quantitative), deduce that this
implies they are teenagers (verbal) and finally count them (quantitative) to get the hypothesis
quantity “two teens”. Numbers and language are intricately interleaved and developing a
reasoner capable of handling such complex interplay is challenging.

2. Lexical inference: Lack of real world knowledge causes errors in identifying quantities and
valid comparisons. Errors include mapping abbreviations to correct units (“m” to “meters”),
detecting part-whole coreference (“seats” can be used to refer to “buses”), and resolving
hypernymy/hyponymy (“young men” to “boys”).

3. Inferring underspecified quantities: Quantity attributes can be implicitly specified, requir-
ing inference to generate a complete representation. Consider “A mortar attack killed four
people and injured 80”. A system must infer that the quantity “80” refers to people. On
RTE-Quant, 20% of such cases stem from zero anaphora, a hard problem in coreference
resolution.

4. Arithmetic comparison limitations: These examples require composition between incom-
patible quantities. For example, consider È“There were 3 birds and 6 nests”, “There were
3 more nests than birds”Í. To correctly label this pair “3 birds” and “6 nests” must be
composed.

Final observations from case study 2:

Our analyses of performance of state-of-the-art neural NLI models on MultiNLI and EQUATE,
our proposed evaluation benchmark for quantitative reasoning in NLI leave us with the following
observations:

• Evaluating model ability to tackle a specific skill using non-identically distributed test-
only datasets, is a more effective way of estimating true model performance on that skill
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(quantitative reasoning in this study). This evaluation strategy is immune to high-frequency
spurious label correlations that may be present in training/test sets in IID or PAID evaluation
paradigms.

• Skill-focused testing allows us to isolate key micro long tail phenomena that are required
for reasoning, but are not handled well by current models. Isolating these phenomena is
extremely useful in determining new avenues for further research.

5.5 Discussion and Related Work

There have been many critiques of contemporary evaluation paradigms, especially the identically
distributed evaluation paradigm. For example, Smith (2012) discuss dangers of community-wide
“overfitting” to benchmark datasets and emphasize the need to correlate model errors to well-defined
linguistic phenomena to understand specific model strengths and weaknesses. Over the years,
several alternatives to the identically distributed evaluation paradigm have been proposed, which
can broadly be categorized into the following major categories.

5.5.1 Adversarial Evaluation
Adversarial evaluation schemes primarily focus on evaluating robustness of models on various
NLP tasks using adversarial examples. Adversarial examples are created by applying minimal
label-preserving perturbations to existing datasets. These examples attack NLP models, with
perturbations acting as distractions, and reveal spurious correlations and biases that models rely
on, but are not relevant for the task. Unlike computer vision in which such perturbed examples
can be created by introducing minimal amounts of noise (Szegedy et al., 2014; Goodfellow et al.,
2015), adversarial perturbation for discrete sequences is a harder problem. Despite this difficulty,
recent years have seen the emergence of more work on adversarial example construction for text
data (Goodfellow et al., 2015; Papernot et al., 2016; Samanta and Mehta, 2017; Sakaguchi et al.,
2017; Liang et al., 2018; Ebrahimi et al., 2018; Gao et al., 2018; Iyyer et al., 2018; Ribeiro et al.,
2018; Wallace et al., 2019a).

Jia and Liang (2017) were among the earliest to explore the use of adversarial examples for
evaluation in natural language understanding, focusing on the task of machine reading comprehen-
sion. For this task, they showed that concatenating a distractor sentence (also called a concatenative
adversary) to the context paragraph was enough to distract state-of-the-art models which were no
longer able to extract the correct answer span from the passage. This sparked extensive work on
developing adversarial evaluation schemes for specific NLP tasks (e.g., Belinkov and Bisk (2018)
for machine translation), as well as on developing universal adversarial evaluation schemes that
apply across a range of NLP tasks (Wallace et al., 2019a). In particular, the BIBINLP (Build It
Break It, The Language Edition) shared task Ettinger et al. (2017) played a huge role in spurring the
development of automated/manually created adversarial examples for a host of tasks and models.
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Our proposed stress test evaluation paradigm adds a focus on specific sets of linguistic phenomena
in addition to testing robustness of NLU models.

In addition to developing adversarial evaluation sets, several recent works have proposed
adversarial collection strategies to improve the dataset annotation process. These strategies can
be broadly divided into two categories: (i) techniques that filter out examples which are easily
answered by SOTA models (Dua et al., 2019; Dasigi et al., 2019), and (ii) techniques that use
humans or SOTA models in the loop, to generate adversarial inputs (Zellers et al., 2018, 2019;
Nie et al., 2019; Wallace et al., 2019b). Though such datasets still perform identically distributed
evaluation, incorporating adversarial filtering or example construction partly reduces biases during
the collection process. These approaches however closely tie the dataset construction process to
the capabilities of the models used for filtering/construction, and may end up biasing the dataset
towards the quirks of those models (Zellers et al., 2019). We avoid such procedures during stress
test construction.

5.5.2 Challenge Sets
Unlike adversarial evaluation paradigms, challenge sets focus on evaluating the performance of
NLP models on specific linguistic phenomena. Such challenge sets have also gained prominence in
NLP, and their phenomenon focus makes them better-suited for long tail evaluation. Concurrent
to our work on developing stress tests for natural language inference, Glockner et al. (2018)
and McCoy et al. (2019) also develop challenge sets for NLI focused on various phenomena
such as hypernymy, co-hyponymy, lexical overlap, etc. Challenge sets have also been developed
for coreference resolution (Levesque, 2014), question answering (Clark et al., 2018), machine
translation (Isabelle et al., 2017; Burlot and Yvon, 2017; Bawden et al., 2018), and a host of other
tasks. Interestingly, many challenge sets follow a minimal edit construction strategy, analogous to
adversarial example construction. Minimal-edit challenge sets have been constructed for machine
translation (Sennrich, 2017), language modeling (Marvin and Linzen, 2018; Warstadt et al., 2020)
and social bias detection (Rudinger et al., 2018; Zhao et al., 2018; Lu et al., 2018), among other
tasks. Despite using similar strategies, challenge sets maintain a phenomenon focus.

Our proposed stress test evaluation paradigm fits into this category. Stress tests can be thought
of as non-identically distributed test-only challenge sets. Most similar to our proposed paradigm
is the recent work by Ribeiro et al. (2020) on behavioral testing of NLP models. Their work
introduces CHECKLIST, a task-agnostic framework to test NLP models on a variety of general
linguistic capabilities using various test types. Both works share the same underlying principles:
borrowing the concept of unit testing/behavioral testing from software engineering and instantiating
it as an NLP evaluation framework. However, their framework is task-agnostic and covers a broad
range of basic linguistic capabilities: Vocabulary+POS (important words or word types for the
task), Taxonomy (synonyms, antonyms, etc), Robustness (to typos, irrelevant changes, etc), NER
(appropriately understanding named entities), Fairness, Temporal (understanding order of events),
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Negation, Coreference, Semantic Role Labeling (understanding roles such as agent, object, etc),
and Logic (ability to handle symmetry, consistency, and conjunctions). In addition, they provide
three test types: MFT (Minimum Functionality Test), INV (Invariance Test), and DIR (Directional
Expectation Test). Their work shows similar results: using behavioral testing, they are able to
isolate “bugs”, i.e., cases where NLP models break down due to their over-reliance on spurious
correlations, which are not visible through identically distributed evaluation.

5.5.3 Counterfactual Evaluation/Contrast Sets
In addition to adversarial evaluation and challenge sets, an interesting recent direction is work
on generating minimal-edit examples to close gaps in existing test sets, caused by sampling or
annotator biases. Towards this end, Kaushik et al. (2019) and Gardner et al. (2020) propose to
minimally perturb test instances in such a way that the label changes, creating what they call
counterfactual evaluation sets and contrast sets respectively. Kaushik et al. (2019) obtain these
minimally edited pairs using crowdsourcing, while Gardner et al. (2020) rely on experts to construct
these examples. An important thing to note is that this work also does not focus on specific
phenomena, making it conceptually similar to adversarial evaluation (with the exception that
minimal edits are label-changing instead of label-preserving).

5.6 Conclusion

In this chapter, we proposed an evaluation paradigm to better examine the performance of models
on micro long tail phenomena: stress tests. We defined stress tests as non-identically distributed
test-only datasets focused on measuring model ability on a single linguistic phenomenon, or a
small set of related phenomena. Our aim in creating these stress tests was to get a better picture
of true model performance on micro long tail phenomena of interest, as well as identify strengths
and weaknesses of models to obtain actionable insights about micro long tail phenomena that are
not handled by models. Using stress tests, we performed two case studies on natural language
inference and quantitative reasoning in NLI. Both case studies demonstrated that existing identically
distributed evaluation gives over-optimistic estimates of model ability to truly understand language.
Our stress tests were more effective in unveiling key weaknesses in current NLI models such
as inability to handle lexical relations, and multiple meaning systems (language and numbers).
We hope that stress-based evaluation is used to supplement existing evaluation paradigms, to
obtain more accurate model performance, especially on micro long tail phenomena and isolate
more phenomena of interest that contemporary models fail on, to identify more avenues for future
research.
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6
Conclusion and Future Directions

6.1 Summary of Contributions

To improve model performance and evaluation on the long tail in language understanding, this
thesis explored the applicability of both existing and newly proposed transfer learning methods, in
addition to presenting a new evaluation paradigm. We first discussed a two-level (macro and micro)
conceptualization of the long tail, and highlighted three research questions:

• How can we best adapt benchmark-trained models across macro long tail dimensions?
• How can we best equip benchmark-trained models to handle micro long tail phenomena?
• How can we comprehensively evaluate model performance on the long tail?

Through a series of case studies, we tried to address these research questions, while building up a
set of best practices that could potentially apply to newer long tail settings. We briefly summarize
the contributions of this thesis, and enumerate the set of best practices observed from our studies.

6.1.1 Dataset Contributions
This thesis contributes several new, interesting datasets focused on the long tail, which may be
useful for future work in this area:1

• MTSamples: A test-only dataset consisting of clinical narratives from three different spe-
cialties, annotated with entity and event spans (Chapter 3).

• TDDiscourse: A dataset augmenting an existing temporal ordering benchmark with addi-
tional temporal relation annotations for long-distance event pairs (Chapter 4).

1Note that we do not list the dataset of clinical conversations, since the conversations are sourced from a proprietary
dataset owned by Abridge, Inc., and we do not have permission to distribute it.
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• NLI Stress Tests: A stress-based evaluation platform for the task of natural language
inference (NLI), consisting of test sets focused on six phenomena of interest grouped into
three broad categories (Chapter 5).

• EQUATE: An NLI-based evaluation platform for quantitative reasoning consisting of five
test sets, both synthetic and natural, covering a broad range of quantitative phenomena
(Chapter 5).

6.1.2 Modeling Contributions
This thesis also contributes several new transfer learning methods, which can be applied to long tail
settings beyond the ones explored in this work:

• Likelihood-based Instance Weighting (LIW): An unsupervised adaptation method from
the instance weighting hybrid category, which uses language model likelihoods to estimate
source-target similarity and compute source instance weights (Chapter 3). Though our work
primarily establishes its utility for clinical domains (both narratives and conversations), the
method itself is general enough to be applicable to any long tail domain.

• Domain-Aware Query Sampling (DAQ): A domain-awareness criterion based on embed-
ding similarity that improves data efficiency of active learning data-centric methods in an
adaptation setting (Chapter 3). We validate its utility for both clinical and literary narratives,
but this method is again general enough to be applicable to any long tail domain.

• Neural-ILP Fusion for Temporal Ordering: A loss augmentation method from the model-
centric category, which uses a structured support vector machine (SSVM) formulation to
incorporate predefined heuristics as integer linear programming (ILP) constraints during
neural model training. The SSVM framework is general enough to be applicable to other
neural architectures beyond the one explored in our case study (BiLSTMs).

6.1.3 Methodological Contributions and Recommendations
Finally, this thesis makes the following methodological contributions and recommendations:

• Updated taxonomy of adaptation methods: We provide updated version of the adaptation
method taxonomy from Ramponi and Plank (2020), by extending it to cover pre-neural and
supervised adaptation methods.

• Stress testing paradigm: We propose a new evaluation paradigm for the long tail called
stress testing, which calls for supplementary evaluation of models on non-identically dis-
tributed phenomenon-focused test-only datasets. We also show the utility of this paradigm
in identifying micro long tail phenomena that existing state-of-the-art models are unable to
handle.

• Best practice recommendations: Through a series of case studies, we also aggregate a set
of best practices (focused on information extraction tasks) that may be useful for better-
informed selection of transfer methods, when applied to a new long tail setting:
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6.2. Limitations of this Thesis

1. In unsupervised settings, promising method categories for high-expertise narrative
domains include loss augmentation, pseudo labeling and likelihood-based instance
weighting. Loss augmentation methods work best when spans to be extracted contain
highly technical vocabulary, otherwise pseudo-labeling methods are stronger. LIW
works best for extraction of span types that are new within the target domain.

2. In unsupervised settings, pretraining appears to be the most promising method category
for high-expertise non-narrative domains. Note that since the domain we experiment
with is doctor-patient conversations (i.e., expert-novice setting), this observation could
vary slightly in when dealing with non-narrative domains with higher technical content
(e.g., Ubuntu IRC chats).

3. In a limited supervision setting, pretrained language models are extremely data-efficient
and do not benefit much from active learning methods.

4. The term vocabulary overlap (TVO) metric, despite limited nuance, can strongly predict
potential performance improvements/drops for most method categories.

5. When comparing performance of multiple transfer methods, going beyond overall
scores can reveal particular strengths and weaknesses. We find the following analyses
especially helpful: (i) Correlating performance changes with source-target distance,
(ii) Analyzing performance on various kinds of linguistic shifts (e.g., lexical, semantic,
etc.), and (iii) Qualitative analyses of method-specific success and error cases.

6.2 Limitations of this Thesis

Despite our best efforts to perform a broad-coverage set of case studies, there are some aspects that
remain missing or under-explored, and must be addressed by future work:
Under-Explored Macro Dimensions: Throughout our work, we have studied a varied set of
domains and adaptation settings. However, all our experiments have been limited to the same
language (English), and the same set of tasks (text classification and sequence labeling). Given
the massive space of possible choices under all four macro dimensions, we made these fixed
choices to carve out a smaller subspace that we could feasibly explore within the scope of this
thesis. This necessarily comes at a cost, it is unclear how well our observations and best practice
recommendations would hold for non-English languages and other tasks. Case studies similar in
nature to the ones presented in this thesis would need to be carried out with other languages and
tasks to establish the utility of our recommendations, and we leave this as an open question to
future work.
Missing Macro Dimensions: A second limitation of our work arises from our choice of specific
dimensions to focus on at the macro-level. Again, we had to select a subset of possible dimensions
to carve out a feasible experiment space, but this selection leaves out some potential dimensions,
which are slightly out of scope given our focus on text understanding. One major macro dimension
dropped from our work is modality, primarily due to our focus on text corpora. However, this
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leads to two keys issues. Not considering other modalities may cause sidelining/missing out on
languages that are never represented in the space of all available text such as sign languages (Yin
et al., 2021), and non-digitized languages. Best practice recommendations identified by our work
will not be directly applicable to this space. Additionally, a text-only focus precludes the need to
develop methods to bridge and transfer information across multiple modalities like images, audio,
video, etc., and our best practices might again not be applicable to those scenarios. In addition to
modality, another macro dimension largely missing from our work is temporality. While domain
distinctions might also capture some aspects of temporality,2 none of our case studies focus on
analyzing this dimension systematically. However, given the ubiquity of large pretrained language
models and the difficulty and costs associated with re-training them, efficient and quick temporal
adaptation is emerging as a crucial research question (Lazaridou et al., 2021). We leave exploration
of both these missing dimensions to future work.

6.3 Broad Directions for Future Work

6.3.1 Looking Forward vs Looking Back
A major future direction to extend the work presented in this thesis will be assessing the predictive
value of the retrospective conclusions derived from the case studies. Throughout our process
of building up a set of best practices, our case studies have been looking back, i.e., they have
been retrospective in nature. Though our experimental setups were motivated by pertinent results
from prior studies, we did not explicitly look forward. In other words, we have not quantitatively
measured the utility of our set of best practice recommendations in helping practitioners choose
better models for new long tail dimensions. We leave such assessment to future case studies,
which can accomplish this by evaluating on domains not tested in this work and incorporating
hypothesis testing. Possible hypotheses may focus on measuring savings (in terms of GPU usage,
data collection budget, model development time, etc.) arising from adopting our recommended
transfer methods as a starting point, vs exploring a large space of methods. Another set of possible
hypotheses focuses on recommended source-target distance measures predictively to choose transfer
methods that would work best and measuring savings in comparison to exploring a larger method
space.

6.3.2 Promising New Categories of Transfer Methods
A second crucial future direction is continually expanding the adaptation method taxonomy with
promising new categories of transfer methods and evaluating their utility on the long tail. With
rapidly increasing interest in the field of transfer learning, there are already several new categories

2For example, one of the domains we explore is literary text, which contains documents from books published before
1923.
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that are strong contenders for inclusion in our taxonomy:

Retrieval-augmented methods: With advances in neural information retrieval, retrieval-
augmented methods have started seeing a resurgence in the field of natural language processing.
This modeling paradigm has been explored in the context of both improving pretrained language
models (Guu et al., 2020), as well as improving downstream model performance (Lewis et al., 2020;
Naik et al., 2021c). In the context of transfer learning, the retrieval-augmented paradigm could be
exploited in two ways. The first way, which is primarily applicable in multi-source, continual, or in-
cremental settings, consists of maintaining a knowledge store containing distributional information
about domains seen so far. When encountering a new domain, information pertaining to relevant
domains can be retrieved from the knowledge store and used to improve performance on the new
domain. Prior work has accomplished this by designing an additional external “memory bank” to
store distributional information about domains via an attention mechanism (Asghar et al., 2019),
but there is scope to experiment with other representation mechanisms. The second way, which
is applicable to any setting, consists of maintaining an external structured or unstructured source
of facts (or knowledge), and retrieving pertinent information for a new domain or example. A toy
example of such a setting could be the use of domain or language-specific gazetteers when adapting
named entity recognition models. This could be an extremely useful setup for domains such as
clinical/biomedical text, in which expert-curated knowledge sources like UMLS (Bodenreider,
2004) exist. In the context of our adaptation taxonomy, this method would again fit under the hybrid
category since it involves changes to model architecture, as well as on-the-fly input representation
(i.e. data) manipulation.
Prompting-based methods: With the resounding success of GPT-3 (Brown et al., 2020), especially
in few-shot settings, interest in developing prompting-based methods for various NLP tasks has
soared. Liu et al. (2021) provide a comprehensive survey of prompting methods and their use
in NLP. These methods have opened up several new avenues for the field of transfer learning to
explore. For example, prompting-based methods have been used as better pseudo-labelers (Schick
and Schütze, 2021; Chintagunta et al., 2021), which is a strategy to leverage prompting to improve
existing adaptation methods. A different avenue has tried to use prompting directly for adaptation
by prompting models with a few exemplars from a new domain (Ben-David et al., 2021). Within
our taxonomy, prompting-based adaptation methods would fit under the data-centric category since
they primarily work by providing access to a subset of domain exemplars. Finally, recent work has
been exploring the use of prompting for interesting meta tasks such as producing natural language
descriptions of the distributional shift between domains (Zhong et al., 2022).

6.3.3 Standardizing Multi-Faceted Evaluation and Analysis
Finally, another interesting future direction is to make strides towards developing a standardized yet
flexible protocol for follow-up quantitative and qualitative analyses, in addition to overall scores, to
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support improved understanding of method performance. From our case studies, we recommend
certain categories of analyses that we find useful, but there are still various choices that practitioners
may end up making arbitrary selections for. For example, considering the category of quantitative
performance analysis on different types of linguistic shifts, we quickly come up against several
choices. The first choice lies in determining what set of categories of linguistic shifts would be
comprehensive and sufficient. The second choice lies in determining how to operationalize every
shift category chosen (e.g., evaluating on OOV tokens for lexical shift). The third choice lies in
determining what degree of performance difference can be considered strongly indicative of a
broader trend. An additional parameter at this step is determining sample sizes for the analysis.
Therefore, developing a standardized protocol for analyses will primarily consist of two stages:
(i) identifying and experimentally validating default settings for the set of possible choices and
analyses, and (ii) developing a tool that allows practitioners to quickly set up default analyses,
while also offering the flexibility to make different choices (for more seasoned practitioners). Prior
work has attempted to build such standardized frameworks, though they were primarily focused on
qualitative analyses only, with an eye towards scalability and reproducibility (Wu et al., 2019).

In addition to developing a standardized analysis protocol and framework, improving their
utility by encouraging community adoption will also be a challenging and interesting problem to
tackle. Following are some potential solutions that can be explored to promote adoption:

• Including optional questions about analyses conducted in the responsible NLP checklist,
which is now a crucial part of a submission to the ACL Rolling Review. While this will not
make analysis mandatory, it may make authors engage more critically with this topic.

• Organizing shared tasks focused on generating interesting insights from follow-up analyses
of existing datasets and methods.

• Potentially making analysis sections mandatory in resource-focused venues (e.g., LREC,
SemEval task description papers, resource and datasets tracks in NLP and ML conferences).

Implementing these solutions will be a complex undertaking and will need careful consideration
and feedback from relevant stakeholders, but may help in making deeper performance analysis
more mainstream.

6.4 Focusing on the Long Tail: Broader Impact

In closing, we would like to highlight that focusing on adapting to the long tail is valuable not just
from an NLP perspective, but often also from the perspective of real-world impact and utility. At the
macro-level, many crucial domains (e.g., clinical text) have been relegated to the long tail of NLP
research, despite the fact that having strong adaptation techniques for these domains could enable
rapid development of technologies with the potential to make strong social impact. Continuing our
focus on language understanding, we describe two example high-impact scenarios: (i) assisting
disability determination, and (ii) enabling rapid understanding of an increasing body of medical
literature (e.g., literature on COVID-19).
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In the United States, disability determination is the process by which the Social Security Admin-
istration (SSA) determines whether individuals are eligible to receive federal disability benefits, by
virtue of being unable to pursue any gainful employment due to their medical condition(s). Individ-
uals applying for these benefits must submit a case, which is then reviewed by case examiners (also
called adjudicators), physicians and psychologists. During the review process, individuals may be
asked to provide documentation describing what their medical condition is and how it limits their
activities, when the condition began, and what tests and treatments have been pursued. Submitted
documentation typically includes clinical records and accounts from the individual’s doctors and
hospitals. Once an initial acceptance or rejection decision is provided for a case, an individual
may appeal it if desired. A single case can require an adjudicator to manually review hundreds
of evidence pages to determine eligibility for benefits based on financial, medical, and functional
criteria. Additionally, the program receives between 2 and 3 million new applications every year,
and coupled with an aging workforce where larger numbers of adjudicators are expected to retire,
continuing the solely manual review process looks to be increasingly infeasible (Desmet et al.,
2020). NLP technologies are in a unique position to assist in improving throughput by automating
certain sections of the process (e.g., terminology extraction, NER, document ranking, etc.) and
making it easier for adjudicators to search for and locate relevant information quickly. However, the
language used in clinical records submitted for adjudication is very different from sources used to
train typical NER and ranking models (e.g., newswire, web text, etc.), and gathering annotation is
extremely difficult due to data sharing restrictions and the need for domain experts. In this scenario,
adaptation techniques can be used effectively to reduce in-domain annotation requirements and
encourage model reuse over training new ones from scratch, and the resulting models, if accurate,
can have massive social impact in a high-stakes setting.

The second scenario that we highlight is helping medical practitioners keep up with the massive
and ever-increasing body of medical literature. As noted by Fiorini et al. (2017), medical literature
is expanding at a rapid pace, with the PubMed Central repository of articles alone growing by more
than 1000 articles per day. Keeping up with this large volume of literature is extremely difficult
for medical practitioners with their already busy schedules. On the other hand, staying up-to-date
with the latest advances in testing and treatment can help practitioners improve patient care and
outcomes. This can be very crucial when dealing with novel diseases (or disease combinations),
or emerging pandemic situations like the ongoing coronavirus (COVID-19) pandemic, in which
very little is known beforehand and new treatments are constantly being developed and tested.
Indeed since the start of the pandemic in December 2019, ≥245,000 articles on COVID-19 have
been added to PubMed (Chen et al., 2021) and several datasets have been publicly released to
encourage the development of techniques to mine valuable insights and evidence from this literature
(Wang et al., 2020; Chen et al., 2020a, 2021). In such settings, there is massive scope for building
NLP technologies to provide crucial assistance to practitioners such as identifying novel emerging
concepts and their definitions/applications, identifying claims and supporting evidence from clinical
trials, and identifying new relationships established between concepts by various studies (Hope
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et al., 2021). Similar to the disability determination scenario, language in medical articles is
different from sources used to build typical concept extraction, claim and evidence extraction, and
relation extraction models, and gathering in-domain annotation is difficult since understanding
this language requires a high level of domain expertise. Again, adaptation techniques can be used
to build effective models for these tasks in data-scarce scenarios, and these models may provide
crucial assistance to medical practitioners, having strong social impact.

Though we have only presented these two settings in detail, there are several such scenarios
involving long-tail domains, in which developing effective NLP tools via adaptation can lead to
much better real-world utility and higher social impact of NLP techniques. The existence of this
potential for broader impact lends further motivation to the study of adaptation for the long tail in
language understanding.

173



A
P

P
E

N
D

IX

A
Meta-Analysis Coded Papers

Table A.1 provides an exhaustive list of model categories, both coarse and fine, tested in each study
included in our meta-analysis. Some papers are surveys, position pieces, or meta-experiments in
which case no method labels are assigned. Some papers use multiple methods, in which case we
list all method labels, while some papers combine methods from different categories (indicated
using ‘+’).

Study Coarse Method Fine Method
Blitzer et al. (2007) MC FA
Howard and Ruder (2018) DC PT
Daumé III (2007) MC FA
Blitzer et al. (2006) MC FA
Conneau et al. (2017) DC PT
Jiang and Zhai (2007) HY IW
Liu et al. (2019a) MC LA
Søgaard and Goldberg (2016) MC LA
Cer et al. (2018) DC+MC PT+LA
Liu et al. (2015) MC LA
Eisenstein (2013) – –
Prettenhofer and Stein (2010) MC FA
Nguyen and Grishman (2015) MC FA
Mou et al. (2016) – –
Finkel and Manning (2009) MC FA
Li et al. (2012) DC+MC+HY LA+PL+IW
McClosky et al. (2010) MC EN
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Zarrella and Marsh (2016) DC PT
Chiticariu et al. (2010) MC HE
Chan and Ng (2007) DC+MC+HY AL+IW+PI
Yang et al. (2017) DC+MC LA+PL+FP
Subramanya et al. (2010) DC PL
Plank and Moschitti (2013) MC FA
Rai et al. (2010) DC+MC AL+LA
Kim et al. (2017) MC LA
Romanov and Shivade (2018) DC, MC PT, FA
Jeong et al. (2009) DC+HY IW+PL
Tsuboi et al. (2008) MC LA
Huang et al. (2018) MC FA
Chan and Ng (2006) MC PI
Zhang et al. (2017) MC FA+LA
Szarvas et al. (2012) MC FA
Chen and Qian (2019) MC LA
Monroe et al. (2014) MC FA
Mohit et al. (2012) DC+MC LA+PL
Kim et al. (2016) MC FA
Alam et al. (2018) MC LA
Wang et al. (2019a) – –
Heilman and Madnani (2013) MC FA
Arnold et al. (2008) MC FA
Lin and Lu (2018) MC PA+FA
Yang and Eisenstein (2015) MC FA
Agirre and Lopez de Lacalle (2009) MC FA
Wang et al. (2018) MC LA
Braud and Denis (2014) MC, HY DS, PI, EN, FP
Agirre and Lopez de Lacalle (2008) MC FA
Duong et al. (2017) DC, MC PT, LA, PL
Pilán et al. (2016) DC, MC, HY FP, IW, DS, NO
Yu and Kübler (2011) DC+HY PL+IW
Tamkin et al. (2020) – –
Vu et al. (2020) – –
Ji et al. (2015) MC+HY AE+IW
Chen et al. (2020b) MC LA
Umansky-Pesin et al. (2010) DC PL
Lison et al. (2020) DC PL
Scheible and Schütze (2013) DC+MC+HY FP+PL+DS
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Tan and Cheng (2009) MC+HY FP+IW
Gong et al. (2016) MC LA+PI
Sapkota et al. (2016) MC FA
Abdelwahab and Elmaghraby (2016) DC PT
Yin et al. (2015) MC FR
Wu et al. (2017) DC+MC AL+LA
Giménez-Pérez et al. (2017) MC FA
Nguyen et al. (2014) DC+MC PL+EN
Johnson et al. (2019) MC PI, FP
Tourille et al. (2017) DC, MC, HY FR, NO, DS
Plank et al. (2014) HY IW
Chen et al. (2018a) MC LA
Hangya et al. (2018) DC+MC, MC PT+FP, LA
Passonneau et al. (2014) – –
Chang et al. (2010) – –
Al Boni et al. (2015) MC PI
Huang et al. (2019) DC+MC PI+PL
Rodriguez et al. (2018) MC FP, PI
Wright and Augenstein (2020) – –
Li et al. (2019b) DC, MC, HY LA, FP, DS, PT
Gee and Wang (2018) MC PI
Vlad et al. (2019) MC PI
Yang et al. (2015) MC AE
Xing et al. (2018) MC LA
Yan et al. (2020) MC FA+LA
Lee et al. (2020) DC PL
Fares et al. (2018) MC LA, PI
Jochim and Schütze (2014) MC, HY AE, FP, IW, EN
Naik and Rose (2020) MC LA
Schröder and Biemann (2020) – –
Jiao et al. (2018) DC PT
Yang et al. (2018) MC PI
Li et al. (2019a) MC FA
Chalkidis et al. (2020) DC PT
Beryozkin et al. (2019) DC PL
Karunanayake et al. (2019) MC FA
Dhillon et al. (2012) DC PL
Dereli and Saraclar (2019) DC+MC FA+PT
Keung et al. (2020) – –
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Aggarwal and Sadana (2019) DC PT
Huang and Lin (2016) MC PI
Wiedemann et al. (2019) DC, MC PT, LA
Kamath et al. (2019) MC LA
Akdemir (2020) DC, MC PT, LA

Table A.1: Adaptation method coding (both coarse and fine categories) for all papers included in our
meta-analysis.
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B
Coding Manual for Events

Task: Annotate entities and event triggers in clinical notes and doctor-patient conversations.

Format: Given a .txt file containing the tokenized clinical note or conversation transcript, label all
text spans corresponding to entities and event triggers using the entity and event labels respectively,
in the BRAT interface. Please do not edit the file otherwise, even if there are strange phrases
resulting from the tokenization (eg: don ‘t). For now, we are not annotating any additional metadata
such as event type, time or attributes.

Procedure: The annotation procedure is divided into two phases:

• Phase 1: Annotate all entity mentions in the conversation. This phase has been added in
order to ensure that important information regarding event participants is not lost since the
event annotation procedure only focuses on triggers.

• Phase 2: Annotate all event triggers in the text.

B.1 Phase 1: Entity Annotation

Our definition of entities encompasses two categories of terms:

• Named entities (usually, but not limited to, medications)

• Physical objects (usually, but not limited to, body parts and medications)

Note that we will be annotating all entities, irrespective of whether they participate in an event or not.
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How to annotate entities:
Entities are always expressed as noun phrases. Following are some examples of entities (bolded
text):

1. You went through all the treatment medications

2. I will write you a script for this test.

3. Please take that chair.

4. You should go to Kroger for Midol.

5. Put the medicine on your hands.

6. You should not take more than five or six pills daily.

While annotating entities, please keep the following points in mind:

• While annotating noun phrases, we will leave out determiners and pronouns, but include
adjectives and quantifiers. Note that when we encounter phrases with mixed combinations of
both (e.g., “all that good stuff”), we will give higher preference to discarding determiners
and pronouns over keeping quantifiers (i.e., we will annotate “good stuff”).

• If an entity is mentioned multiple times in the same utterance (e.g., due to disfluencies), we
will annotate all occurrences. Example: Put the cream, uh yes, the cream on your hands
daily.

• All annotated entities should be continuous phrases

• We will not annotate locations as entities. However, whenever phrases appear as location
names but are being used to refer to groups of people working at that location, we will
annotate the phrase. For example: “Pathology will be sending the results soon”

B.2 Phase 2: Event Annotation

Our basic definition of events draws from TimeBank and LitBank. Events are considered a
cover term for situations that happen or occur. In other words, activities (dynamically unfolding
processes), accomplishments (almost instantaneous occurrences) and achievements (occurrences
which have some duration, but also a predetermined endpoint) are considered as events. Events
may be punctual or last for a period of time. Predicates describing states or circumstances in which
something obtains or holds true are also annotated as events. Common event types in our dataset
include (but are not limited to) conditions, symptoms, tests, treatments, patient visits and changes
in any of these events.
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How to annotate events:
Events may be expressed as tensed or untensed verbs, nominalizations, adjectives, predicative
clauses or prepositional phrases. Additionally, events might also occur as phrases (continuous or
discontinuous). In our scheme, we will only label a single word in case of phrasal events (with
some exceptions), based on certain guidelines. The following sections detail these guidelines and
provide examples for annotating events from each of these syntactic categories.
Note: In each example, we have only marked events which exhibit the specific rule being described.
Any additional events have been left unmarked.

B.2.1 Verb Events
Verb events are annotated as per the following rules:

1. Verb events can be tensed or untensed.

(a) I took Midol for 6 months.

(b) I want you to take Midol for the next few days.

2. For verb phrases we will only annotate the head of the phrase.

(a) I have been taking Midol for 6 months.

3. For phrasal verbs, we will not mark the particles.

(a) Maybe we can go off the Midol.

4. If the phrase contains an aspectual verb and a main verb, both will be annotated as separate
events since they provide separate pieces of information.

(a) I started taking Midol.

5. If the phrase contains aspectual and main verbs with the aspectual verb having auxiliary
verbs, the auxiliary will be ignored.

(a) You can start taking Midol.

6. When dealing with chains of verbs, all verbs which correspond to occurrences must be
annotated except for modals.

(a) You can come to see me if it gets worse.

(b) I went to see my brother and it made my pain worse.

(c) You have to see me next week.

7. We will not annotate any verb forms of “to be”, even when it is used as a main verb since it
has no semantic content.
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(a) You must be uncomfortable (ignore “be” here)

8. Phrasal Verbs: This category is the only exception to our rule of annotating single word
events. We will annotate phrasal verbs as spans of text instead of choosing a word to tag.

(a) You should recover enough to be able to get back to work by next week.

B.2.2 Noun Events
Noun events are annotated as per the following rules:

1. Ignore determiners while annotating noun events.

(a) You had the surgery last week?

(b) How was the scan?

2. For noun phrase events, we only annotate the head of the phrase.

(a) Your last scan came out healthy.

(b) I see you had a heart surgery in 2002.

3. For noun phrase events with a light predicate, both elements are tagged as events since they
provide different aspects of event information.

(a) Did you get the pap smear I recommended?

4. For cases where both nouns and verbs refer to the same event, we will mark both separately,
keeping in mind that they refer to the same event.

(a) Your surgery was done last year, was it?

5. Compound nouns: Unlike phrasal verbs, we will not annotate non-hyphenated compound
nouns as spans of text. The reason for this is that deciding whether a non-hyphenated noun
phrase is a compound noun is not as trivial as detecting phrasal verbs and often uses inherent
domain knowledge of whether this phrase is more commonly used as a compound rather
than independently using the nouns it is composed of.

(a) Let me check your blood pressure.

B.2.3 Predicative Clauses
For predicative clauses, only the predicative element is tagged. If the predicative element has a
head, we tag the head. If not, we tag the entire element.

1. Midol will be good for this.

2. You seem to be on Midol.
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B.2.4 Prepositional Phrases
For prepositional phrases, we use a similar strategy as predicative clauses. However, in some cases
nouns inside the prepositional phrase can also be eventive, referring to a parent/ sub event of the
event expressed by the prepositional phrase. In these scenarios, we also annotate the noun as an
event (refer to example 2).

1. Did you continue to experience cramps when on Midol?

2. Did you continue to experience cramps when on your periods?

B.2.5 Adjective Events
State events (or changes in states) are often expressed as predicative adjectives or as adjectives in
light predicate constructions.

1. The arrhythmia is worse.

2. My cold is better now.

3. This treatment has been good.

4. Your leg got a little more swollen.

B.2.6 Causative Predicates
Causative predicates have their own set of rules to decide which of the multiple sub-events involved
in these scenarios should be annotated. Causative predicatives usually fall into one of the following
cases:

1. EXPR <causal_verb> EXPR (explicit expressions like “this medicine caused my blood
pressure to go up”)

2. EXPR <discourse_marker> EXPR (implicit expressions like “I took Midol and felt better”)

In both cases, if the expressions are events, they are tagged (entities are ignored). If the causal
expression is explicit, the causal predicate is also marked as an event. Examples:

1. This medicine caused my blood pressure to go up

2. I took Midol and felt better
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B.2.7 Excluded Event Types
In our event annotation, we exclude the following event types:

1. Generic events should not be tagged. For example:

(a) This medicine works well for cramps. (Both “works” and “cramps” will not be tagged
here)

2. Subordinating verbs whose complements are generic events should not be tagged. For
example:

(a) I talked about the use of Midol for cramps (Here “talked” would not be annotated as an
event)

B.2.8 Interesting Cases
These cases are interesting event expression patterns in medical conversational data which do not
seem to be clearly dealt with under TimeBank guidelines. Some of these cases have been identified
during repeated rounds of annotation.

1. Events asked about in questions: These events can be divided into two types:

(a) Events which actually occurred, which should be marked since they have occurred. For
example: What have you applied for?

(b) Events which have not occurred. These events should also be marked because they have
been queried about under the expectation that there was a chance of them occurring.
As such, they should be considered as hypothetical events and marked. For example:
Are you following the instructions given to you?

2. Events occurring in commands, suggestions or requests: Commands, suggestions or
requests are very infrequent in narratives, but a lot more frequent in doctor-patient conver-
sations. It is valuable to mark events in suggestions and requests because a lot of them are
treatment-related and likely to be important for downstream tasks, especially SOAP note
generation. These events are usually hypothetical in nature. For example:

(a) Well you’ve got to start some other medicine.

(b) I can send you to see a pediatrician.

This category of events also includes events mentioned when doctors are “thinking out loud”
and debating different treatment plans with the patient (a very common occurrence in many
of the conversations). For example:

(a) I can write you a prescription, and we can check your pressure everyday.
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B.2. Phase 2: Event Annotation

(b) You can continue with this medication for now, but we will stop if it leads to side
effects.

3. Directive events: In many conversations, doctors often issue directives to patients to guide
the conversation. Though these directives are actions (which are included in our definition of
events), they do not seem particularly relevant. So, we will not annotate directive events. For
example:

(a) Take a seat.

(b) Let’s talk about your pain.

In both these examples, “take” and “talk” will not be annotated as events.

4. Stative events: Timebank guidelines are very restrictive with respect to stative events, only
allowing for annotations in state changes. But as mentioned earlier, we will annotate all
stative events, irrespective of whether there are any changes in state during the course of the
conversation. Annotating stative events seems necessary since they seem to be especially
important for chronic condition cases (eg: diabetes, hypertension). For example:

(a) You have been suffering from cardiomyopathy for a while now.

5. Activity patterns: TimeBank does not tag events which represent clear patterns of activity
(eg:She takes Midol regularly). But we will be tagging those since they are important markers
for key patient activities such as taking medication, checking symptoms etc. For example:

(a) Do you take your blood pressure daily?

6. Entity-Event precedence: If the term you are looking at is a phrase that could reasonably
be annotated as either an entity or an event and the actual label to be assigned depends on
deducing more information from the entire context, we will always assign the “event” label.
A good example here is the phrase “shots”. It can occur as an entity (eg: You can stop
taking the B12 shots) or as an event (eg: Have you been keeping up with your scheduled
B12 shots?). Sometimes it is possible to make out whether these phrases have been used as
entities or events, but they are often used in generic contexts where it is not feasible to make
this distinction (eg: side effects). Therefore, we will always label these as events.
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Dataset Examples

C.1 Existing Datasets Used in this Thesis

C.1.1 CoNLL 2003 Named Entity Recognition Dataset
Entity types present in this dataset: persons, organizations, locations, and miscellaneous. Following
are some example annotated sentences from this dataset:
• EU rejects German call to boycott British lamb

• Only France and Britain backed Fischler’s proposal

• Germany imported 47,600 sheep from Britain last year, nearly half of total imports

• Rare Hendrix song draft sells for almost $ 17,000

• German July car registrations up 14.2 pct yr / yr

• Volkswagen AG won 77,719 registrations, slightly more than a quarter of the total

• – Dimitris Kontogiannis, Athens Newsroom +301 3311812-4

• Bayer sets $ 100 million six-year bond

• Port conditions update - Syria - Lloyds Shipping

• Polish diplomat denies nurses stranded in Libya

C.1.2 i2b2 2006 Protected Health Information Identification Dataset
Entity types present in this dataset (after mapping): persons, organizations, locations, and miscella-
neous. Following are some example annotated sentences from this dataset:
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C.1. Existing Datasets Used in this Thesis

• Mr. Blind is a 79-year-old white white male with a history of diabetes mellitus, inferior my-
ocardial infarction, who underwent open repair of his increased diverticulum November 13th at
Sephsandpot Center

• Lives in Merca
• His chest was clear, and therefore on 11/03/02 the patient was discharged with a followup plan
• He was transfused one unit of platelets prior to discharge with followup at the DFCI on 11/06

with a transfusion unit and on 11/09 with Dr. Charla B Titchekote for additional bone marrow
biopsy .

• TICE D. FOUTCHJESC , M.D. UU2 FK795/004653
• On 03/24/98 , an echocardiogram revealed a pericardial effusion
• The patient lives in Jer by herself
• She has sustained a right inter-trochanteric hip fracture both treated at Hoseocon Medical Center

and transferred to the Heaonboburg Linpack Grant Medical Center for further care by Dr. Stable
• XRT, Friday, 10am 05/22/02 scheduled, Dr. Xellcaugh, call next week, No Known Allergies
• If you need additional information please call 605-304-8547

C.1.3 i2b2 2014 Protected Health Information Identification Dataset
Entity types present in this dataset (after mapping): persons, locations, and miscellaneous. Follow-
ing are some example annotated sentences from this dataset:
• I think Dr. Gipson is basically doing very well.
• He was recently in Italy last week with very difficult events concerning his father’s ill health
• A/P: 75yr man s/p sig colostomy for diversion, s/p IR drainage of postop collection, now with

FTT, acute renal failure with FENA>1% and possible UTI, non-gap metabolic acidodis
• Please contact BCH Surgical Service with any questions
• Earl N. Morrow, M.D.
• 1666 Keats Street GLENN, OLIVIA
• eScription document:2-5091452 EMSSten Tel
• DV: 05/25/79
• Union City, CT 33636
• Your patient Lauren Ferrara came into the office today for a follow-up visit

C.1.4 i2b2 2010 Medical Concept Extraction Dataset
Entity types present in this dataset: problems, tests, and treatments.1 Following are some example
annotated sentences from this dataset:

1Note that for all experiments using this dataset we only identify entities without performing additional type
identification.
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• The patient had undergone treatment with interferon and Ribavirin

• The patient was admitted with concern for hepatorenal syndrome

• Over the following 5 days, the patient’s creatinine improved marginally to 2.7

• 4. Vancomycin 1 gm IV bid

• 3. Nephrolithiasis

• The patient was thrombocytopenic with a platelet count of 49 on the 23

• The patient was continued on vancomycin therapy for his previously diagnosed Methicillin
resistant, coagulase negative Staph bacteremia

• 2015-10-27 Open reduction and internal fixation of right tib/fib fractures

• Attention deficit disorder (diagnosed @ 14 years of age)

• GLUCOSE - 101 LACTATE - 2.9 * NA+ - 142 K+ - 3.6 CL- - 102 TCO2 - 26

C.1.5 TimeBank Event Extraction Dataset
Following are some example annotated sentences from this dataset (note that tokens highlighted in
yellow are events):
• The thrift holding company said it expects to obtain regulatory approval and complete the

transaction by year-end

• The remaining $ 40 million can be used over three years for oil and gas acquisitions, the company
said

• The company put up “virtually all” of its oil and gas properties as collateral, he said

• The Bureau of Labor Statistics said the economy added 350,000 jobs last month, far above the
235,000 forecast by economists

• The demand for workers also led employers to raise wages last month

• But economists said the wage increase was not enough to raise any concerns about higher inflation

• The surge in jobs reflects a remarkable confluence of positive and self-reinforcing economic
forces

• Spontaneous applause echoed through the chamber and public galleries as the crucial vote passed
by a wide margin

• Treasurer Peter Costello, Environment Minister Robert Hill and Attorney General Daryl Williams
all voted to support the republic Friday

• Monarchists hope to defeat the republic at the referendum

C.1.6 LitBank Literary Event Extraction Dataset
Following are some example annotated sentences from this dataset (note that tokens highlighted in
yellow are events):
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• Certain it is that, some fifteen or twenty years after the settlement of the town, the wooden jail
was already marked with weather-stains and other indications of age, which gave a yet darker
aspect to its beetle-browed and gloomy front

• “Of course, we’ll take over your furniture, mother,” Winnie had remarked

• His work was in a way political, he told Winnie once

• She would have, he warned her, to be very nice to his political friends

• The mean aspect of the shop surprised her

• The change from the Belgravian square to the narrow street in Soho affected her legs adversely

• An awful panic spread through the whole building

• But his father’s friend, of course, dismissed him summarily as likely to ruin his business

• It stifles me

• I can detect the scent through all the foul smells lounging in the air

C.1.7 i2b2 2012 Medical Event Extraction Dataset
Following are some example annotated sentences from this dataset (note that tokens highlighted in
yellow are events):
• Later that am, she stood from her wheelchair, had a prodrome of LH and then reports LOC and

fall

• She reports that her BP was read at 60/48 after her fall

• She also denies any recent cough, chest pain, chest palpitations, heart racing

• Mr. Williams is an 85 yo gentleman who has a known cardiac history and has had a h/o worsening
chest pain and shortness of breath

• He underwent cardiac catheterization which showed an 80% LAD lesion, chronically occluded
RCA, anneurysmal mid LCX w/50% lesion

• He was started on heparin and coumadin for anticoagulation on POD#5

• She was found to have widely metastatic ovarian carcinoma

• The patient was transferred to the Fairm of Ijordcompmac Hospital

• She had previous history of claudication

• There was an occlusion in the proximal calf, of the peroneal and anterior tibial arteries

C.1.8 TimeBank-Dense Temporal Ordering Dataset
Classes present in this dataset: after, before, includes, is included, simultaneous, and vague. Follow-
ing are some annotated examples from this dataset (note that the annotated temporal relationship
holds between the events highlighted in yellow):
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C.1. Existing Datasets Used in this Thesis

• Har-Shefi said she heard Amir talk about killing Rabin but did not tell the police because she did
not believe he was serious
Label: (talk, serious) -> vague

• Har-Shefi acknowledged she told police interrogators that Rabin was a traitor and that she prayed
for him to have a heart attack and die
Label: (die, attack) -> vague

• Amir, 27, is serving a life sentence for the November 1995 assassination of Rabin at a Tel Aviv
peace rally
Label: (rally, assassination) -> includes

• Amir, 27, is serving a life sentence for the November 1995 assassination of Rabin at a Tel Aviv
peace rally
Label: (assassination, serving) -> before

• The major harm from Asia is likely to come from the plunge in the value of many Asian currencies
relative to the dollar, a situation that is expected to lead to a surge of inexpensive imports into the
United States, hurting American competitors
Label: (surge, hurting) -> vague

• WASHINGTON _ The economy createdjobs at a surprisingly robust pace in January, the govern-
ment reported on Friday, evidence that America’s economic stamina has withstood any disruptions
caused so far by the financial tumult in Asia
Label: (reported, withstood) -> after

• The gain left wages 3.8 percent higher than a year earlier, extending a trend that has given back
to workers some of the earning power they lost to inflation in the last decade
Label: (left, trend) -> is included

• I think it’s excellent for the company. But investors are approaching the changes with caution
shares of AT and T down nearly four at sixty-one and a half.
Label: (changes, excellent) -> simultaneous

• The changes are part of a one point six billion dollar cost cutting initiative to revitalize its position
in the telecommunications business.
Label: (revitalize, cutting) -> vague

• The changes are part of a one point six billion dollar cost cutting initiative to revitalize its position
in the telecommunications business.
Label: (initiative, cutting) -> vague

C.1.9 MultiNLI Natural Language Inference Dataset
Classes present in this dataset: entailment, contradiction, and neutral. Following are some annotated
examples from this dataset:
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• Premise: The Old One always comforted Ca’daan, except today.
Hypothesis: Ca’daan knew the Old One very well.
Label: Neutral

• Premise: Your gift is appreciated by each and every student who will benefit from your generos-
ity.
Hypothesis: Hundreds of students will benefit from your generosity.
Label: Neutral

• Premise: yes now you know if if everybody like in August when everybody’s on vacation or
something we can dress a little more casual or
Hypothesis: August is a black out month for vacations in the company.
Label: Contradiction

• Premise: At the other end of Pennsylvania Avenue, people began to line up for a White House
tour.
Hypothesis: People formed a line at the end of Pennsylvania Avenue.
Label: Entailment

• Premise: Met my first girlfriend that way.
Hypothesis: I didn’t meet my first girlfriend until later.
Label: Contradiction

• Premise: 8 million in relief in the form of emergency housing.
Hypothesis: The 8 million dollars for emergency housing was still not enough to solve the
problem.
Label: Neutral

• Premise: Now, as children tend their gardens, they have a new appreciation of their relationship
to the land, their cultural heritage, and their community.
Hypothesis: All of the children love working in their gardens.
Label: Neutral

• Premise: At 8:34, the Boston Center controller received a third transmission from American 11
Hypothesis: The Boston Center controller got a third transmission from American 11.
Label: Entailment

• Premise: I am a lacto-vegetarian.
Hypothesis: I enjoy eating cheese too much to abstain from dairy.
Label: Neutral

• Premise: someone else noticed it and i said well i guess that’s true and it was somewhat
melodious in other words it wasn’t just you know it was really funny
Hypothesis: No one noticed and it wasn’t funny at all.
Label: Contradiction
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C.2 New Datasets Contributed by this Thesis

C.2.1 MTSamples Medical Event Extraction Dataset
Following are some example annotated sentences from this dataset (note that tokens highlighted in
yellow are events):
• Closure complex, open wound

• Bilateral explantation and removal of ruptured silicone gel implants

• She had no prior history of skin cancer

• She has noted progressive hardening and distortion of the implant

• The patient desires a repeat section

• ESTIMATED BLOOD LOSS: 800 mL

• Complications: None

• The fascia was incised in the midline and extended laterally using Mayo scissors

• The pulmonary arterial pressures were noted to be 31/14/21 mmHg

• Following this, the catheter was exchanged over the guidewire for 6-French JR4 diagnostic
catheter

C.2.2 TDDiscourse Temporal Ordering Dataset
Classes present in this dataset: after, before, includes, is included, and simultaneous. Following are
some annotated examples from this dataset (note that event tokens involved in various temporal
relations are highlighted in yellow):
• JERUSALEM (AP) _ Taking the stand in her own defense, a friend of Yitzhak Rabin’s assassin

said Friday that she regretted calling the prime minister a traitor and praying for his death.
Margalit Har-Shefi, 22, has pleaded innocent to charges that she failed to report Yigal Amir’s
plan to kill Rabin. She took the stand for more than four hours Friday in a Tel Aviv magistrate’s
court. Amir, 27, is serving a life sentence for the November 1995 assassination of Rabin at a Tel
Aviv peace rally. Newspaper reports have said Amir was infatuated with Har-Shefi and may have
been trying to impress her by killing the prime minister.
Label: (taking, took) -> simultaneous
Label: (taking, serving) -> is included
Label: (taking, assassination) -> after
Label: (taking, rally) -> after
Label: (taking, said) -> after

• CANBERRA, Australia (AP) _ Qantas will almost double its flights between Australia and India
by August in the search for new markets untouched by the crippling Asian financial crisis. This
move comes barely a month after Qantas suspended a number of services between Australia,
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Indonesia, Thailand and Malaysia in the wake of the Asian economic crisis. The airline has
also cut all flights to South Korea. Qantas plans daily flights between Sydney and Bombay, up
from the current four flights a week, to boost business and tourism ties with India, the airline
announced Friday. In a joint statement with Tourism Minister Andrew Thomson, it said two
new flights would leave Bombay on Monday and Tuesday nights from March 30, with the third
departing each Thursday from August 6. This will add nearly 700 seats a week on the route.
Thomson, in India to talk to tourism leaders, said the flights would provide extra support to the
growing tourism market.
Label: (double, plans) -> is included
Label: (double, boost) -> before
Label: (double, leave) -> is included
Label: (double, talk) -> after
Label: (double, provide) -> is included

C.2.3 Stress Tests Natural Language Inference Test Set
Classes present in this dataset: entailment, contradiction, and neutral. Following are some annotated
examples from this dataset:
• Premise: As a result, EPA could not ensure that it was directing its efforts toward the environ-

mental problems that were of greatest concern to citizens or posed the greatest risk to the health
of the population or the environment itself.
Hypothesis: As a result, EPA could not ensure that it was directing its efforts toward the envi-
ronmental problems that were of greatest concern to noncitizen or posed the greatest risk to the
health of the population or the environment itself.
Label: Contradiction

• Premise: Because several passengers on United 93 described three hijackers on the plane, not
four, some have wondered whether one of the hijackers had been able to use the cockpit jump
seat from the outset of the flight.
Hypothesis: Because several passengers on United 93 described three hijackers on the plane,
not four, some have wondered whether one of the hijackers had been able to use the cockpit jump
seat from the end of the flight.
Label: Contradiction

• Premise: Renu can do a piece of work in 8 days, but with the help of her friend Suma, she can
do it in 4 days.
Hypothesis: Renu can do a piece of work in more than 4 days, but with the help of her friend
Suma, she can do it in 4 days.
Label: Entailment

• Premise: Renu can do a piece of work in more than 4 days, but with the help of her friend Suma,
she can do it in 4 days.
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Hypothesis: Renu can do a piece of work in 8 days, but with the help of her friend Suma, she
can do it in 4 days.
Label: Neutral

• Premise: Renu can do a piece of work in 8 days, but with the help of her friend Suma, she can
do it in 4 days.
Hypothesis: Renu can do a piece of work in 2 days, but with the help of her friend Suma, she
can do it in 4 days.
Label: Contradiction

• Premise: because like Tech is known to be a good engineering school and A and M maybe is
known more for computers
Hypothesis: Tech is known as a good place for engineering, but I think that it is overrated and
false is not true.
Label: Neutral

• Premise: The levadas were largely built by slave laborers from Africa, whose primary employ-
ment was on sugar plantations and true is true and true is true and true is true and true is true and
true is true.
Hypothesis: The levadas were built by 10,000 slaves.
Label: Neutral

• Premise: Possibly no other country has had such a turbulent history.
Hypothesis: The country’s history has been turbulent and true is true.
Label: Entailment

• Premise: As a result, EPA could not ensure that it was directing its efforts toward the environ-
mental problems that were of greatest concern to citizens or posed the greatest risk to the health
of the population or the environment itself.
Hypothesis: EPA couldn’t ensure it was directing its efofrts toward the environmental problem.
Label: Entailment

• Premise: But if you do, kill them.
Hypothesis: If the situation is that, you should kikl them.
Label: Entailment

C.2.4 EQUATE Natural Language Inference Test Set
Classes present in this dataset: entailment, contradiction, and neutral. Following are some annotated
examples from this dataset:
• Premise: Sam had 9.0 dimes in his bank and his dad gave him 7.0 dimes.

Hypothesis: Sam has 16.0 dimes now.
Label: Entailment
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• Premise: Sam had 9.0 dimes in his bank and his dad gave him 7.0 dimes.
Hypothesis: Sam has 17.0 dimes now.
Label: Contradiction

• Premise: Lepore said he was moved to photograph the slumbering sentries after witnessing the
same guard napping on three occasions.
Hypothesis: Joey Lepore says he took photos of one guard sleeping at post three times.
Label: Entailment

• Premise: It will mark the first time four women have been in space at one time.
Hypothesis: Four women are aboard same spacecraft for first time.
Label: Neutral

• Premise: In 1956 Accardo won the Geneva Competition and in 1958 became the first prize
winner of the Paganini Competition in Genoa. He has recorded Paganini’s famous 24 Caprices
(re-recorded in 1999) for solo violin and was the first to record all six of the Paganini Violin
Concertos.
Hypothesis: Accardo composed 24 Caprices.
Label: Neutral

• Premise: During Reinsdorf’s 24 seasons as chairman of the White Sox, the team has captured
American League division championships three times, including an AL Central title in 2000.
Hypothesis: The White Sox have won 24 championships.
Label: Entailment

• Premise: stocks nifty future call today: Sensex Weak and Nifty flat, Today best stock trading
call on 3 Sept, Free nifty future stock tips, BHEL , Tata motor gain
Hypothesis: Sensex and Nifty up, 2 sept Nifty stock market trading tips and top nifty gainers
and losers on Monday, Indian stock market tips today stocks nifty future call today
Label: Contradiction

• Premise: SENSEX Nifty up, Today stocks nifty future trading tips and call on Thursday 22 Aug,
Nifty top gainers and losers stocks ≥ stocks nifty future call today
Hypothesis: Sensex down 74.58 points, Nifty future tips, Tomorrow nifty future trading call on
Wednesday 21 Aug, Nifty gainers and losers ≥ stocks nifty future call today
Label: Contradiction

• Premise: Tim has 350 pounds of cement in 100, 50, and 25 pound bags.
Hypothesis: Tim has less than 750 pounds of cement in 100, 50, and 25 pound bags.
Label: Contradiction

• Premise: Mr Yadav spends 60% of his monthly salary on consumable items and 50% of the
remaining on clothes and transport.
Hypothesis: Mr Yadav spends 10% of his monthly salary on consumable items and 50% of the
remaining on clothes and transport.
Label: Contradiction
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