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Abstract

This thesis studies a class of problems where rational agents can make
suboptimal decisions by ignoring a side effect that each individual action
brings to bear on the common good. It is generally believed that a mu-
tually desirable strategy can be enforced as a stable outcome for rational
agents if the imminent threat exists that any deviator from the strat-
egy will be punished. This thesis expands this understanding, arguing
that rationally bounded agents can learn to self-organize to stabilize on
mutually beneficial outcomes without the explicit notion of threat. As
an approach to demonstrate this capability, a double-layered multiagent
learning algorithm, known here as IMPRES (implicit reciprocal strategy
learning), has been developed.

In game theory, it is generally assumed that the players (agents) of a
game are of equal ability. This thesis takes a contrasting view. The foun-
dation of this work is inspired by the concept of “bounded rationality”,
where some agents may have more privileges than others either because
they are exposed to different parts of information in the environment,
or because they simply have higher computational power. Based on this
intuition, this thesis investigates how agents can boost their performance
by utilizing the notion of social learning - learning from one another in
an agent society.

Theoretical and empirical results show that the IMPRES agents learn
to behave rationally as if they are in a virtually optimal Nash equilibrium
of a repeated game. To my knowledge, IMPRES is the first algorithm
that achieves this property in games involving more than two players
under imperfect monitoring.
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Chapter 1

Introduction

“Anything that gives us new knowledge gives us an opportunity to be
more rational.” - Herbert A. Simon.

1.1 Overview

This thesis studies a class of problems in which a large number of self-interested
agents compete for common resources in an environment. In this context, perfectly
rational agents can make suboptimal decisions by ignoring a side effect, referred to
as an externality, that each individual action brings to bear on the common good.
More broadly, short-sighted agents that only care about immediate rewards can limit
themselves to suboptimal decisions by ignoring the forthcoming reward that they will
receive later in time. Given the propensity to ignore future good, the main theme
of this thesis is to explore multiagent learning algorithms with which agents learn to
make mutually beneficial decisions in a repeated game setting.

In game theory, it is generally assumed that the players (agents) of a game are
of equal ability. My research takes a constrasting view. The foundation of my work
is inspired by the concept of “bounded rationality”, where some agents may have
more privileges than others either because they are exposed to different parts of
information in the environment, or because they simply have higher computational
power. Based on this intuition, my research investigates how agents can boost their
learning performance by utilizing this asymmetry in abilities.

Specifically, this thesis proposes an algorithm for a large number of agents to
learn mutually beneficial correlated1 strategies, and characterizes the outcome of

1A technical definition of a correlated strategy is a probability distribution over a set of all
possible joint strategy profiles; an English dictionary definition is sufficient in this context: to bear
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the algorithm as behavior-equivalent to Nash equilibria of a repeated game. The
algorithm is thoroughly evaluated in the context of congestion games; the algorithm
is specifically focused on symmetric network congestion games where the complexity
of the algorithm is polynomial to the number of agents and to network size. For
the purpose of empirical analysis, a set of criteria for evaluating multiagent learning
algorithms is also proposed.

Theoretical and empirical results show that the IMPRES agents learn to behave
rationally as if they are in a mutually desirable Nash equilibrium of a repeated game.
To my knowledge, IMPRES is the first algorithm that achieves this property in games
involving more than two players under imperfect monitoring.

1.2 Problem domain

Congestion games refer to a class of games where the immediate payoff of a player
depends only on the number of players that have also chosen the same action with the
player [51]. A natural example of a congestion game is a traffic congestion problem
where each driver independently chooses a path among alternative routes to reach
her destination as quickly as possible, while actual travel time is determined by the
traffic load of the chosen path. Congestion games concisely represent an important
class of problems in transportation sciences, computer networks, and algorithmic
game theory [44].

In this thesis, a congestion game is formulated as a multiagent decision making
problem where a large number of agents select resources from a common set of
resources; the objective of an individual agent is to minimize the cost of using the
chosen resource. In particular, the main interest of this thesis is in a repeated game
setting where the set of agents repeatedly participate in the same decision-making
scenario; for instance, the agents travel from a certain origin to a certain destination
on a regular basis. Figure 1.1 illustrates an example where a set of agents are trying
to determine a path from a set of alternatives.

In congestion games, an agent can unintentionally cause a delay in the travel time
of other agents on the same path. Generally, an indirect impact on the benefits of
the others in an environment is called an externality [13]. In this sense, congestion
games involve negative externalities2.

reciprocal or mutual relations.
2Congestion externalities can be positive in certain problem domains such as peer-to-peer (P2P)

sharing model where the quality of service can be increased as more sharers participate with the
same server. In this thesis, we study negative externalities exclusively.
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A={   resource1,              resource2… resourcem } 

N={                                                          } …agent1 agent2 agentn

Figure 1.1: Multiagent modeling of a congestion game: each agent from set N
chooses an action (path) from set A, where an agent’s congestion cost
depends not only on the agent’s choice of action but also on the choices
of others.

A similar sort of problem, known as the tragedy of the commons, emerges when
rational agents fail to learn the best action based on their expected reward. This
can occur due to agents’ lack of awareness of the externalities to other agents [26].
As a result, completely rational agents can bring about substantially suboptimal
outcomes in some problems; these problems are of keen interest to this research.

In particular, this thesis is focused on symmetric network congestion games where
all agents travel from the same origin (source) to the same destination (sink). An in-
depth survey on congestion games including recent discoveries in complexity analysis
can be found in Chapter 2.

1.3 Background

In multiagent learning, two particularly important criteria for learning algorithms are
rationality and convergence [4]. The former stresses that a learning algorithm must
be adaptive to stationary opponents, while the latter sets the target of convergence to
a Nash equilibrium in self-play - a setting in which opponents use the same learning
algorithm as the learner. Consequently, the majority of existing multiagent learning
algorithms aim to converge in self-play, particularly to Nash equilibria of a single-shot
game [10, 37, 4, 11, 30].

A Nash equilibrium is the most celebrated solution concept in both game theory
and the multiagent learning literature, where every agent plays its best response
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strategy against other agents [43]. In a single-shot game setting where a game is
played only once, however, a Nash equilibrium can be arbitrarily inefficient in terms
of the quality of system-wide solution [44].

When a game is repeated indefinitely, it is generally believed that any correlated
strategy where every agent receives a better expected payoff than the minimax value
can be enforced as a Nash equilibrium by use of threat, where the minimax value
refers to the worst possible payoff that other agents can force against an agent; this
general belief is dubbed the folk theorem [23]. The proof of the folk theorem is
the existence of a meta-strategy known as the grim-trigger strategy that imposes an
imminent threat: if an agent deviates from a correlated strategy, the other agents
will, in perpetuity, use retaliatory strategies that will wipe out the deviator’s gain.

Although the folk theorem holds for multiple players, the majority of existing
learning algorithms aiming at Nash equilibria of a repeated game are limited to 2-
player games [58, 36, 54, 14], where direct reciprocity is feasible. In n-player games,
rational learning (also known as Bayesian learning) can lead the agents to behave
as if they are in a Nash equilibrium of a repeated game [32]; however, the algorithm
relies strongly on the assumptions that the agents have perfect knowledge of the
game, and that the agents a priori know a set of strategies that possess a grain of
truth for the true strategies of other agents; that is, for every possible game playing
history given the true strategies, there is a non-zero probability of the history given
the agents’ beliefs. Not only does this strong assumption limit rational learning, but
games also exist where rational learning fails to converge [24, 21]; an example will
be discussed in Section 1.5.2.

In terms of computational complexity, the problem of finding Nash equilibria in
congestion games is intractable both in single-shot games [16] and in repeated games
[3]. The complexity issues will be fully discussed in Chapter 2.

Given the difficulty of finding Nash equilibria, this thesis alternatively explores
multiagent learning algorithms that can find stable solutions for rationally bounded
agents, and studies how these alternative solutions relate to well-known solution
concepts such as Nash equilibria.

1.4 Algorithm preview

The main hypothesis of this thesis echoes the folk theorem: in order to achieve mu-
tually beneficial outcome in repeated games, a population needs a set of correlated
strategies around a social norm. While the folk theorem states that such equilibria
exist, this thesis seeks efficient learning algorithms for actually finding those stable
strategies that can realize mutually beneficial outcomes in the context of large re-
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Figure 1.2: A scenario of two driving agents at an intersection

peated games. As opposed to assuming that agents a priori know high-level strategies
such as grim-trigger, the focus of this research is how the agents learn such reciprocal
strategies, known here as implicit reciprocal strategy learning (IMPRES).

Generally, learning indirectly from the experiences of others (as opposed to one’s
own experiences) is referred to as social learning [57]. While the notion of social
learning constitutes an important part of human learning, the idea has been under-
explored in (artificial) agent learning. The IMPRES algorithm utilizes the notion of
social learning in the context of multiagent learning; such that the agents act more
rationally by adopting the strategies that are given by other agents.

The IMPRES algorithm consists of two learning layers such that: the agents
learn a correlated strategy in the inner-layer, while they progressively self-organize to
learn the social norm of reciprocity in the meta-layer. The algorithm requires that
the agents know the cost functions, and that each agent can observe its own action
selection and corresponding cost.

Consider two automobiles coming from orthogonal directions to an intersection
depicted in Figure 1.2. When each agent independently makes decisions, there is
a non-zero probability that there will be a collision. On the other hand, one can
imagine a centralized model where there exists a traffic light that both agents can
observe. If an agent observes a red light, it is best for the agent to stop given that
the other agent obeys its corresponding (green) light.

The intuition behind the IMPRES algorithm can be illustrated in that situa-
tion without a traffic light or a stop sign. Without prior agreement, one of the
drivers signals the other driver to cross first. The other driver then obeys the signal,
and thus both drivers achieve mutually beneficial outcomes by avoiding a collision.
Specifically, each driver in this example has three meta-strategies that it could adopt:

• α-agent (strategist) that computes an optimal correlated strategy to generate
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Environment

action
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(γγγγ-solitary)

A classical reinforcement learning model
reinforcement

Figure 1.3: Extension to reinforcement learning: the IMPRES algorithm adds a
high-level decision making to a classical reinforcement learning model
such that an agent also learns to choose whose strategy will be used to
select actual actions.

signals,

• β-agent (subscriber) that obeys the signals from the other driver, or

• γ-agent (solitary) that makes an independent decision.

In 2-player games such as this, an IMPRES α-strategist learns the system optimal
strategy for itself and a subscriber (since that is the best-response strategy against
an environment with no other players). In general, the IMPRES algorithm aims at
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middle-ground solutions between an independent solution and a centralized solution
when there are more than two agents.

Specifically, the learning in the meta-layer is an extension to the classical re-
inforcement learning model. Figure 1.3 shows an abstract view of the learning in
the two layers. The above figure represents a classical reinforcement learning model
where each agent takes an action, receives reinforcement from an environment, and
updates a policy to select better actions in subsequent rounds. Note that since
the focus of this thesis is on stateless repeated games, state transition is omitted
for simplicity. In this classical model, all agents can be viewed as γ-solitaries that
independently make decisions.

The IMPRES model adds a meta-learning layer to this classical view. At each
round of a game, an agent’s current meta-strategy determines whose inner-strategy
the agent should subscribe to, for instance whether to use its own strategy or to
subscribe to the strategy of some other agent in the environment. According to
the chosen inner-strategy, the agent selects an actual action, e.g. stop or enter the
intersection. After taking the prescribed action, the agent receives reinforcement
from its environment, and updates the strategies in both layers. The learning in
the meta-layer induces emergent self-organization that leads an agent population
towards more desirable outcomes. The IMPRES algorithm is described in detail in
Chapter 4.

1.5 Motivating examples

In this section, three specific problems are presented. The first two are well-known
examples of congestion games that illustrate the tragedy of the commons and the
limitations of existing algorithms. The last example highlights the original insight
behind this research.

1.5.1 Metro versus Driving

Let us examine a simple example of a symmetric network congestion game introduced
in [49] that clearly exhibits the inefficiency of non-cooperative equilibria known as
selfish equilibria. The following analysis is due to [53].

Suppose that there exist n self-interested agents that are deciding between two
actions: taking a metro (denoted by M) or driving (denoted by D). Figure 1.4
illustrates such an example. The natural objective of this problem is to minimize
the average travel time of all agents.
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Let xa denote the number of agents selecting action a, where a ∈ {M, D}, and
let ta(xa) be the travel time of taking action a. Note that travel time is a function
of xa, and the agents selecting the same action experience the same travel times.

tS(x) = n

tD(x) = ƒ (x)

n

T
ravel tim

e

n
Number of concurrent users

ƒ(x) = x

ƒ(x) = xp

Figure 1.4: Metro versus Driving

Let us assume that tM(xM) = n where n is a constant denoting the number
of agents. On the other hand, let the travel time of driving be a linear function,
tD(xD) = xD such that tD(n) = n. That is, taking a metro takes a constant travel
time that is always slower than driving except when traffic is fully congested.

In this context, driving is a dominant strategy of this game because driving is
always faster than taking a metro no matter what other agents do. Therefore, self-
interested agents converge to a dominant strategy equilibrium in which all agents
will always choose to drive even when the road is fully congested, resulting in the
average travel time of n. This is a Nash equilibrium since no one is motivated to
deviate from their current choice of actions given that the choices of other agents are
fixed. The average travel time of this solution is, however, suboptimal; to be precise,
it is the worst possible solution.

Suppose now that there exists a centrally administered system that selects a
small number of agents, ε, (ε < n), and forces them to take the metro. In this case,
the travel time of the selected agents is not any slower than that of their original
decisions, i.e., n. This enforcement, however, enables the remaining drivers to travel
faster, reducing the travel time of a driving agent to n− ε.

Hence the average travel time of all agents is a convex function, 1
n
×{nε+(n−ε)2}.

By taking a partial derivative with respect to ε, an optimal value can be found when
ε = n

2
. With this solution, the average travel time is reduced down to 3n

4
.

Alternatively, suppose the travel time function is non-linear (dotted line in Figure
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1.4), e.g., an exponential function, tD(xD) = xP , for some P . Then, in the limit, the
travel time of driving can be ignored, i.e., limP→∞(n−ε)P = limP→∞{nP (1− ε

n
)P} =

0. Thus, the average travel time of agents in this case is reduced to ε.
In summary, this example provides two interesting observations. First, selfish

equilibrium solutions can be arbitrarily inefficient. Second, in some problems, a small
subset of agents can significantly reduce inefficiency by taking altruistic actions, by
which they are not worse off than under selfish equilibria, but other agents benefit
from a strict decrease in cost.

In general, when a game possesses a dominant-strategy equilibrium, all stationary
learning algorithms including fictitious play and no-regret algorithms converge to the
dominant-strategy equilibrium that is generally suboptimal such as this. A set of
experiments demonstrates that IMPRES agents learn close-to-optimal solutions in
this example; and the detailed results can be found later in Section 5.5.1.

1.5.2 The El Farol bar problem
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Figure 1.5: Reward function of EFBP

The El Farol bar problem (also known as the Santa Fe bar problem) introduced
in [1] best illustrates the tragedy of the commons. The problem is defined as follows.

The El Farol bar presents nightly music entertainment in Santa Fe. A set of n
agents make decisions about whether to attend the bar or not on certain nights. The
only observations available to the agents are the past history of attendance at the
bar. The reward function is discrete: attending the bar is fun only if the bar is not
crowded; such that the number of attendees at the bar on the night does not exceed
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some threshold τ . On the other hand, an agent is better off staying home if the bar
is overcrowded. An example of the reward function for n = 100, τ = 60 is shown in
Figure 1.5.

In this context, it can be difficult for rational agents to find optimal behaviors.
For example, a rational agent decides to attend the bar if the agent predicts that
the attendance at the bar will be lower than τ . Given that the other agents are
also rational, everyone makes the same prediction based on the common information
(history of attendance). Subsequently, the agents face contradictory outcomes based
on rational decision making. That is, the agents attend the bar when the bar is full,
or stay home when the bar is empty.

A formal analysis of this example explains the failure of rational learning [24].
Consider the rational learning algorithm where the agents always select the best
response strategies based on their beliefs about the strategies of other agents [32]. In
a nutshell, rational learning can converge to a Nash equilibrium if the agents have a
“lucky” prior (although not necessarily accurate according to the truth). In general,
the outcomes of rational learning in the El Farol bar problem are not even close to
Nash equilibria as shown in Figure 1.6 (right).

Existing studies of the bar problem have generally focused on failure to converge,
seeking algorithms that converge to selfish equilibria. For instance, agents adopting
rationally bounded learning algorithms, such as an inductive reasoning algorithm [1]
or a no-regret algorithm [24], converge to a symmetric mixed strategy Nash equilib-
rium shown in Figure 1.6 (left).
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Figure 1.6: Selfish equilibria and tragedy of the commons in EFBP

As shown in Figure 1.6, however, the average payoff for the mixed-strategy Nash
equilibrium (left) is as suboptimal as the oscillating solution (right), since positive
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payoffs on fun nights and negative payoffs on overcrowded nights offset each other.

The IMPRES algorithm, on the other hand, learns close-to-optimal solutions in
this problem; corresponding experimental results are reported in Section 5.5.2.

1.5.3 CMRadar room-finding problem

The rudiments for this thesis hail from a multiagent scheduling system. Many recent
studies show that email overload results in performance degradation at workplace
[15]. The RADAR project started with an intention to develop a software system
that can assist users to cope with email overload as efficiently as human assistants
[22]. CMRadar [41], a scheduling component of RADAR, is a distributed calendar
scheduling system wherein an individual CMRadar agent assumes responsibility for
managing its user’s calendar and for negotiating with other CMRadar agents 1)
to schedule meetings and 2) to find rooms on its user’s behalf. For clarity, we
denote CMRadar performing the two tasks by a CMRadar meeting-scheduler and
a CMRadar room-finder, respectively. On one hand, a CMRadar meeting-scheduler
learns its user’s scheduling preferences using passive machine learning algorithms by
observing a series of meeting scheduling episodes [45]. On the other hand, a CMRadar
room-finder agent utilizes learning to negotiate more efficiently in acquiring rooms
that are already occupied by other users [20]. It is the latter that is most relevant
to this thesis.

In general, each room has a set of features, providing various facilities, e.g.,
maximum capacity, types of table settings, size, number of projectors in the room,
etc. Given a room request with a set of preferences for each room feature, quality
is maximized when a room that best satisfies the preferences is found. Rooms are
classified into two types: local and external. A CMRadar room-finder has complete
access to room schedules of a set of local rooms within an institute, while it has only
partial observation to the room schedule of external rooms, e.g., conference rooms
in outside hotels. A CMRadar room-finder employs a specific learning technique
according to the type of a room.

In a typical scenario, a room calendar is more than 90 percent filled in local
rooms. Since a room can be reserved for only one user at a time, existing meet-
ings are commonly rescheduled in favor of higher-priority events. When an existing
reservation is preempted to accommodate a new meeting, the action is referred to
as a bumping. In order to negotiate the possibility of bumping an existing meeting,
a room-finder agent must send a bumping request to the organizer of the existing
meeting (room owner). Each bumping request incurs some degree of penalty. The
objective of a CMRadar room-finder in this context is to minimize the number of un-
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successful bumping requests, thus expediting the room-finding process. A CMRadar
room-finder uses a Bayesian learning method to estimate the probability of a room
owner approving a bumping request. More details about the learning of bumping
probability can be found in Appendix A.

CMRadar’s learning about external rooms can be formulated as a multiagent
resource selection problem. Since CMRadar’s access is limited for external rooms,
bumping is not a possibility. Suppose that there exist a large number of hidden users
in an environment that compete for the same set of external rooms with a CMRadar
room-finder. Let us first assume that the other room users in an environment select
rooms according to their stationary preferences about the set of room features. In
this setting, a CMRadar room-finder can adaptively learn the collective preferences
of other room users by approximating the ordinal ranks of preferred rooms. More
specifically, a room-finder agent updates the conditional probability of a room being
available as the agent observes more information about the availability of external
rooms. For example, the agent may avoid vain attempts to acquire most commonly
preferred rooms that are more likely to be taken by other users, given evidence that
a less preferred room has already been taken.

Suppose now that the other users are learning concurrently in a manner similar
to CMRadar; in this case, an adaptive learning method may fail to learn the best
strategy, a result similar to that seen in earlier examples. Figure 1.7 depicts the
tragedy of the commons for CMRadar when there exist multiple agents competing
for the same set of rooms.

1.6 Thesis statement

When a large number of self-interested agents make independent decisions in a shared
environment, the resulting outcome may be suboptimal. It is generally believed that
a mutually desirable strategy can be enforced as a stable outcome for rational agents
if the imminent threat exists that any deviator from the strategy will be punished.
This thesis expands this understanding, arguing that rationally bounded agents can
learn to self-organize to stabilize on mutually beneficial outcomes without the explicit
notion of threat. Specifically, a structure of mutually dependent information sources
and information recipients can emerge when two specific conditions are satisfied.
First, an agent is willing to share its knowledge with other agents if it expects a
better payoff by sharing than by not doing so. Second, an agent willingly takes
prescribed actions from a certain information source if the agent expects a better
payoff by acting according to the decisions from the source than from any other
sources including itself. Under these two conditions, any correlated strategy that

12



class:0.6
seminar:0.2
conference:0.01
…

CMRadar

Figure 1.7: The tragedy of the commons in the CMRadar room-finding problem:
given that all agents have learned about room availability from com-
mon history, consider a case where a set of CMRadar-like agents are
concurrently trying to find a room. In contrast to CMRadar’s belief,
the rooms with a high probability of being available are more likely to
be occupied because these rooms appeal to other agents at the same
time.

ensures a better payoff than the agents’ subjective valuation of independent strategies
can be stabilized as a social norm.

1.7 Main contributions of the thesis

This thesis states that rationally bounded agents can learn to self-organize to stabilize
mutually beneficial outcomes without an explicit notion of threat. As an approach to
demonstrate this capability, a double-layered multiagent learning algorithm, known
here as IMPRES, has been developed. In brief, IMPRES agents act as if they are
perfectly rational, although in truth they choose the best actions only according to
their (possibly imperfect) subjective beliefs. The IMPRES algorithm is theoreti-
cally justified: the outcome of IMPRES in self-play is behavior-equivalent to a Nash
equilibrium of a repeated game.

Empirically, the algorithm is evaluated in the context of congestion games, where
the performance of the algorithm is measured with respect to both individual and
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social rationality criteria. In conjunction with empirical evaluation, a set of desired
properties of a multiagent social learning algorithm is proposed. The basic premise
of social learning is that by acquiring new knowledge from others, the agents must
be better off than by not doing so; formal definitions can be found in Chapter 5.
The main set of experiments are conducted on symmetric network congestion games
with linear, polynomial, exponential, and discrete cost functions.

The main results can be summarized as follows:

• The outcome of IMPRES in self-play is behavior-equivalent to a Nash equilib-
rium of a repeated game; that is, the outcome is individually rational in terms
of expected cost.

• With respect to social welfare, the performance of IMPRES is generally close
to optimal; IMPRES is the first multiagent learning algorithm that achieves
this property in games involving more than 2 players.

• The algorithm is scalable to large problems involving up to 1,000 agents and
networks containing 15 alternative paths.

• The algorithm is robust against moderate population changes (such as when a
small number of agents are replaced with new ones over time).

• In addition to symmetric congestion games, the algorithm has also been evalu-
ated for some well-known 2-player matrix games, namely the iterative prisoner’s
dilemma, the (asymmetric) coordination game, and the game of chicken. In all
three games, agents adopting IMPRES learned fair and optimal solutions; the
algorithm is comparable with state-of-the-art algorithms in terms of learning
rate.

To sum up, this thesis proves that using social learning, rationally bounded agents
can learn to behave rationally, achieving mutually desirable outcomes with respect
to long-term average rewards.

1.8 Roadmap

The rest of the chapters are organized as follows.
Chapter 2 gives a broad survey on congestion games - the main target problem

domain of this thesis, concentrating on the complexity analysis of finding both indi-
vidually rational solutions and socially optimal ones. After discussing the complexity
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results, a motivation of this research is given: to find an efficient multiagent learning
algorithm that can realize rational behaviors based on long-term expected rewards.

Chapter 3 through 5 constitute the core parts of this thesis. First, Chapter
3 describes the IMPRES algorithm in detail; the focus of this chapter is to explain
how the algorithm works mechanically. Next, the IMPRES algorithm is theoretically
justified in Chapter 4; the structure of the algorithm is meticulously analyzed within
the boundaries of established theories. Finally, Chapter 5 provides a comprehensive
set of empirical evidence to support the main point of this thesis: rationally bounded
agents can learn to enforce mutually beneficial outcomes through self-organization.

Chapter 6 summarizes the main contributions of this thesis and discusses future
work.
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Chapter 2

Congestion Games

“For that which is common to the greatest number has the least care
bestowed upon it. Every one thinks chiefly of his own, hardly at all
of the common interest; and only when he is himself concerned as an
individual.”, Aristotle, Politics, Book II(3), 350 B.C.

2.1 Introduction

Congestion games refer to a class of games where a player’s immediate payoff depends
only on the number of players that have also chosen the same action with the player
[51]. A natural example of a congestion game is a traffic congestion problem where
each driver independently chooses a path among alternative routes to reach her
destination as quickly as possible, while actual travel time is determined by the
traffic load of the chosen path. Congestion games constitute an important subject of
research in transportation sciences, computer networks, and algorithmic game theory
[44].

It is well known that every congestion game possesses at least one pure-strategy1

Nash equilibrium. Given that, this chapter opens with a discussion of Nash equilib-
rium solutions in the context of congestion games in both single-shot and repeated
play environments. The focal points of the discussion are: 1) how difficult, compu-
tationally, it is to find a Nash equilibrium, and 2) how efficient a Nash equilibrium
solution is with respect to the quality of solution. After that, the discussion closes
with a more fundamental topic of the goal of multiagent learning in repeated games.

In general, Nash equilibria have been the most celebrated solution concept both
in game theory and the multiagent learning literature. In fact, congestion games were

1A pure-strategy refers to a deterministic strategy; see Section 2.2.
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introduced as a class of games that possesses a pure-strategy Nash equilibrium [51].
This celebrated solution concept, however, carries two dark sides: computational
intractability and inefficiency of the solution.

The notion of individual rationality centered around Nash equilibria depends on
how agents value the future. For instance, a single-shot game can be described as
a setting where agents only appreciate their immediate payoffs (as if there is no
tomorrow). In a single-shot game setting, finding a Nash equilibrium in a general
normal-form game is computationally intractable (PPAD-complete [48]) even in the
case of 2-player games [8, 16]. More specifically, the problem of finding a single-shot
Nash equilibrium of a general congestion game belongs to the most difficult class of
local search problems, referred to as the complexity class PLS-complete [18].

A more serious disadvantage of a single-shot Nash equilibrium is its inefficiency.
Congestion games naturally yield negative externalities; for example, an agent can
unintentionally cause a delay in the travel time of other agents on the same path. Be-
cause externalities are not taken into account when agents attempt to minimize their
costs, individually rational solutions, known as selfish equilibria, can be suboptimal
in this domain.

One of the main contributions of algorithmic game theory is to discover interesting
classes of games where the inefficiency of selfish equilibria can be tightly bounded. In
nonatomic games where the impact of an individual agent is insignificant, promising
results are found that selfish equilibria are not as bad as had been speculated. On
the contrary, however, in atomic games where the impact of an individual agent is
non-negligible, the inefficiency of selfish equilibria can be arbitrarily high even in
symmetric network congestion games with linear cost functions [44]. More radically,
a system-optimal solution can only be achieved through an explicit coordination
among agents unless the cost function is logarithmic [40].

The next part of discussion is set on repeated games where agents take their future
payoffs into consideration. According to the folk theorem, when a game is played
repeatedly better-quality solutions can turn up as individually rational outcomes.
Specifically, for any payoff profile where every agent receives a better payoff than the
minimax value on average, there exists a Nash equilibrium strategy that can realize
the payoff profile; where the minimax value of an agent denotes the best payoff of
the agent when all other agents change their objectives to turn against the agent.
For example, any correlated strategy that satisfies the premise can be sustained if
all agents adopt the grim-trigger strategy such that a deviator from the correlated
strategy will be punished by merely receiving the minimax values ever after.

In contrast to the general belief that finding Nash equilibria of a repeated game
is easier (than finding single-shot Nash equilibria), computing the minimax values of
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a repeated congestion game turns out to be NP-complete [3]. The NP-completeness
still holds even in the case of network congestion games with linear cost functions.

In addition to the complexity of finding the minimax values (punishing strategy),
the folk theorem also assumes that there exists some correlated strategy (mutually
desirable strategy) that Pareto dominates the minimax values; this entails additional
complication. For instance, computing a system-optimal solution in general conges-
tion games is NP-hard, and a polynomial-time approximation scheme does not exist
except for limited classes of games [38]. Especially when the cost function is player-
specific, it is NP-hard to achieve socially optimal solutions even in the balls-in-bins
model (the simplest form of symmetric network congestion games) [7].

Given the disadvantages of Nash solutions, we can ask the following research
question:

What is a desirable target solution of multiagent learning in repeated
congestion games?

The rest of this chapter is organized as follows. First, formal definitions are given for
general solution concepts and congestion games. Next, discussions on the complexity
and the inefficiency of selfish equilibria follow. Finally, the main point of this chapter
- the fundamental question of what should be the goal of multiagent learning in
repeated congestion games – is discussed.

2.2 Preliminaries

Remark. The two terms “agents” and “players” are used exchangeably. Since we
treat the players of a game as (artificially intelligent) agents, a single player will
be referred by a pronoun “it”. After taking some action, agents receive reinforce-
ment from an environment, which is generally referred to as a reward (payoff). In
congestion games, agents select resources and receive the actual “cost” of using the
selected resources. Thus, the objective of agents in a congestion game is to minimize
the expected cost (as opposed to maximizing the expected reward).

Notations. Let N = {1, 2, ..., n} denote a set of n players (agents) of a game. Let
Ai denote a set of available actions for player i. A strategy of an agent denotes
a probability distribution over the set of actions; thus, a strategy by default refers
to a (stochastic) mixed-strategy. A pure-strategy is a special case when the whole
probability mass is on one particular action. Let Si denote a set of strategies of agent
i over Ai. A joint strategy profile s refers to a strategy vector such that s ∈ ∏

i∈N Si.
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The expected cost of agent i is denoted by ci(si, s−i) where agent i chooses actions
according to si and the other agents follow strategies s−i.

Definition 1 (correlated strategy). A correlated strategy refers to a probability dis-
tribution over a set of all possible joint strategy profiles.

Informally, the strategies of agents are in a Nash equilibrium if and only if every
agent plays its best response strategy against other agents [43]. The notion of best
response depends on the setting where the agents play a game; for instance, whether
the game is played only once or repeatedly2. Formal definitions follow, addressing
each game setting.

2.2.1 Nash equilibria of a single-shot game (NE1)

A Nash equilibrium of a single-shot game is a solution concept where no one benefits
in the immediate payoff by changing its strategy given the strategies of other agents
are fixed. Formally, joint strategy profile s is in a single-shot Nash equilibrium (NE1)
if and only if for every agent i ∈ N , a unilateral deviation from strategy profile s
does not reduce its cost; such that ci(si, s−i) ≤ ci(s

′
i, s−i) for every strategy s′i ∈ Si

of agent i.

Theorem 1. Every finite game possesses an equilibrium point in which players can-
not reduce their costs by a unilateral deviation [43].

2.2.2 Nash equilibria of a repeated game (NE∞)

Let G∞ be a repeated game in which game G is repeated indefinitely. The constituent
game G is also called a stage game. A payoff vector V = [v1, ..., vn] is an n-tuple
of real numbers where vi denotes the payoff (cost) of player i ∈ N . A vector of
the worst possible payoff values that the other agents can force against an agent is
referred to as the vector of minimax values (also known as the threat point).

A convex combination is a linear combination of values where the linear coeffi-
cients are non-negative and sum to 1. The set of points that can be formed by convex
combinations of a set of points X is called a convex hull of X. A payoff vector V is
feasible if and only if V is in the convex hull of payoff vectors that can be achieved
when the agents play pure strategies; that is, a feasible payoff vector can only be
realized when the agents play according to some correlated strategies.

A payoff vector is enforceable (or individually rational) if every agent i ∈ N is
better off than its minimax value.

2This thesis studies infinitely repeated games as opposed to finitely repeated games.
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Theorem 2 (The folk theorem). For any payoff vector V that is both feasible and
individually rational, there exists a Nash equilibrium strategy s such that the payoff
vector V represents the average payoffs of strategy profile s [23].

The folk theorem dictates that any outcome that Pareto dominates3 the minimax
payoff can be enforced by an equilibrium strategy.

A set ΨG∞ of Nash equilibria of a repeated game G∞ subsumes the set ΨG of
Nash equilibria of a constituting game G, such that ΨG∞ ⊇ ΨG.

2.3 Definitions

A congestion game, which was first introduced in [51], is an n-player game in which
players share a common set of resources. Thus, a set of available resource selection
strategies for each agent can be represented as a subset of the common resources. A
congestion cost function is defined in terms of the number of agents that have chosen
the same resource. For instance, a linear cost function indicates that the cost of using
a resource increases linearly with respect to the number of agents using the same
resource. It is well known that every game in this class possesses a pure-strategy
Nash equilibrium.

This section includes concepts in a broad context of congestion games; and Defi-
nition 3, 4, and 8 are most relevant to the rest of discussions.

Definition 2 (General congestion games). Congestion game Γ is defined as a quadru-
ple (N, E, Si∈N , F e∈E) where N is a set of agents; E is a set of resources; S =
S1 × ... × Sn is a set of joint strategies of N where agent i’s strategy Si is a subset
of resources such that Si ⊆ E; and F e∈E denotes a set of cost functions. Given
a strategy profile s ∈ S, let the number of agents using resource e be denoted by
σe(s) =

∑n
i=1

∑
e′∈si;e′=e 1, where si denotes the strategy of agent i prescribed by s.

Each fe(l) ∈ F corresponds to a cost function of resource e defined in terms of load
l ∈ [0, n]. Given a strategy profile s, the cost ci(s) of player i ∈ N is the sum of all
resource costs in its chosen subset of resources si, such that

∑
e∈si

fe(σe(s)).

Every agent makes decisions at the same time, and finds out the congestion cost
of each resource in the chosen set only after using the resource.

Definition 3 (Network congestion games). Network congestion games refer to a
special class of congestion games that can be represented more succinctly as a directed

3A payoff vector x Pareto dominates another payoff vector y, if in payoff vector x at least one
agent is better off and no one else is worse off than in payoff vector y.
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graph G = (V,E) in which a set E of edges represents a set of common resources. In
this model, each player i ∈ N is given a pair of vertices (s, t) for its origin (source)
and destination (sink), thus a set si of strategies available to player i is a set of
simple (acyclic) paths between vertices s and t.

Definition 4 (Symmetric congestion games). A congestion game is symmetric when
all agents have the same set of strategies (resources) in addition to the common cost
function.

Definition 5 (Player-specific cost congestion games). Cost function F can be cus-
tomized for each agent as F e∈E,i∈N : N×E× [0, 1, ..., n] → <, such that fe,i(l) defines
agent i’s cost of using edge e as a function of load l.

Milchtaich’s work [39] was the first to address player-specific cost functions in
congestion games, and to prove that a congestion game possesses at least one pure-
strategy Nash equilibrium even when the cost functions are player specific. Unless
otherwise specified, a common cost function is assumed in this thesis.

Definition 6 (Multi-commodity flow model). In networks research, as opposed to
having a distinct set of agents in the model, a multi-commodity flow model is more
commonly used. A commodity is defined in terms of a source and sink pair, and a
demand for such a pair. For instance, a single-commodity flow model is equivalent
to a symmetric congestion game. A general k-commodity flow model can also be
viewed as a congestion game that has k classes of agents where the members of each
class share a common source and sink pair, thus the size of each class determines the
demand for the corresponding commodity.

In general, a multi-commodity flow problem is a (centralized) optimization prob-
lem to find an assignment of flows to a set of paths to minimize the cost of transmit-
ting the flows over the edges in the path. A distributed agent-based model is ideal
for source-routing networks in which each end-user makes independent decisions in
choosing its own route [44, pg. 461–463].

Definition 7 (Atomic/nonatomic congestion games). When the impact of each indi-
vidual agent on congestion cost is nonnegligible, it is called an atomic game. On the
other hand, when individual action has little or no significance to the cost function, it
is called a nonatomic game. A multi-commodity model suits a nonatomic congestion
game more naturally since a flow can be continuous.

This thesis focuses on atomic congestion games.
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Definition 8 (Minimum-cost-flow algorithm). A minimum-cost-flow algorithm iter-
atively chooses a path for one agent at a time that has the lowest travel cost according
to the current load. An everyday example of this algorithm can be found at a cashers’
line where customers sequentially choose the shortest line among several cashers [12].

The algorithm needs to evaluate the cost of all alternative paths for each agent,
thus the complexity is polynomial to the number of agents and to the number of
alternative paths. This algorithm will be used to establish proofs in the later sections;
and it will also be used as a subroutine of the proposed algorithm.

2.4 Existence of pure-strategy Nash equilibria

This section gives a historical background of congestion games. For those readers
who are not interested in proofs, this section can be summarized in Theorem 3 that
every congestion game possesses at least one pure-strategy Nash equilibrium.

Rosenthal introduced congestion games as a class of games that admits at least
one pure-strategy Nash equilibrium [51]. Rosenthal’s method of proof is directly re-
lated to the potential approach later studied by Monderer and Shapley [42]. Specif-
ically, Rosenthal’s proof involves an exact potential function. This section describes
a proof that consists of two lemmas using the potential approach.

Consider any two pure-strategy profiles (xi, s−i) and (zi, s−i) that differ only in
the strategy of some agent i. Let “deviator” refer to the agent that has changed
the strategy. A potential is a value assignment to each strategy profile that gives
the same ordering of the two strategy profiles as when they are sorted with respect
to a deviator’s payoff. Specifically, for all agent i ∈ N , a potential Φ satisfies the
following.

ci(x, s−i) > ci(z, s−i) ⇐⇒ Φ(x, s−i) > Φ(z, s−i), ∀x, z ∈ Ai

Generally, a class of games that admits a (ordinal) potential is referred to as potential
games.

Definition 9 (Nash dynamics graph). A finite game can be represented as a directed
graph G = {S,D} where each vertex s ∈ S represents a joint strategy profile, and
each arc (u, v) ∈ D, where u, v ∈ S, represents a unilateral deviation such that
strategy vertices u and v differ only in exactly one player’s strategy. Each arc is
directed towards a more favorable strategy profile for the deviator. Such a graph is
called a Nash dynamics graph.
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Lemma 1. Every finite game that admits an ordinal potential possesses a pure-
strategy Nash equilibrium [42].

Proof. Let G denote a Nash dynamics graph of some game. If there exists a node
in a Nash dynamics graph G that has only inwards arcs (i.e., the node is a sink) the
strategy profile that is represented by the node is a pure-strategy Nash equilibrium
by its definition - no one benefits by a unilateral deviation. Suppose there exists a
valuation Φ to every node such that the same graph can be generated by using the
values in Φ in replace of a deviator’s payoff. For instance, the direction of an arc is
consistent with the original graph if it points to a node that has a lower value (cost)
of Φ. Such a valuation is called an ordinal potential since it preserves the ordering of
the nodes. Let GΦ denote this new graph. Straightforwardly, a sink node in the new
graph GΦ coincides with a pure-strategy Nash equilibrium of the original graph G.

The proof follows the fact that a sink node exists in the new graph. Since there is
a finite number of strategy profiles, a potential also has a finite set of values. Thus, a
node with the minimum potential value exists in a finite space. Any nodes that are
associated with the minimum potential value can only have inwards edges since the
node has the best value (lowest cost), thus are Nash equilibria of the game (although
they may not be the only ones). Therefore, there must be at least one pure-strategy
Nash equilibrium in every game that has a finite potential.

More generally, if the Nash dynamics graph satisfies the finite improvement prop-
erty (FIP) - the length of any path towards an improvement is finite, then a Nash
equilibrium exists. Every potential game possesses the finite improvement property
since a valuation guarantees that the graph is acyclic.

Let us show that a congestion game is a potential game by using the exact
potential function that was used by Rosenthal.

Lemma 2. Every congestion game is a potential game.

Proof. Given congestion game Γ = (N,E, Si∈N , F e∈E), Rosenthal defined the follow-
ing valuation function Φ(s) for each joint strategy s ∈ S.

Φ(s) =
∑
e∈s




σe(s)∑

l=1

fe(l)




Let us prove that function Φ is an exact potential. That is, for any two nodes
that are connected by a unilateral deviation arc in the Nash dynamics graph, the
difference in the function values using Φ matches exactly with the difference in the
payoffs of the deviator of the arc.
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The proof is straightforward by regrouping terms. Let d denote a deviator, and
let s and s′ denote strategy profile before and after the deviation, respectively. Let
∆ = ∆+ ∪ ∆− be a set of edges (resources) involved in deviation, such that ∆+

denotes a set of new edges that are added to the deviator’s path after the deviation,
and ∆− denotes a set of edges that have been removed from the path.

Let us write the potential value of the strategy after a deviation in terms of ∆.

Φ(s′) =
∑

e∈s;e/∈∆




σe(s)∑

l=1

fe(l)




+
∑

e∈∆+




σe(s)∑

l=1

fe(l) + fe{σe(s) + 1}



+
∑

e∈∆−




σe(s)∑

l=1

fe(l)− fe{σe(s)}



=


 ∑

e∈s;e/∈∆




σe(s)∑

l=1

fe(l)


 +

∑

e∈∆+




σe(s)∑

l=1

fe(l)


 +

∑

e∈∆−




σe(s)∑

l=1

fe(l)







+
∑

e∈∆+

fe{σe(s) + 1} −
∑

e∈∆−
fe{σe(s)}

= Φ(s) +
∑

e∈∆+

fe{σe(s) + 1} −
∑

e∈∆−
fe{σe(s)}

Then, the difference in potential values can be written as

Φ(s′)− Φ(s) =
∑

e∈∆+

fe{σe(s) + 1} −
∑

e∈∆−
fe{σe(s)},

which is precisely the difference in the costs of deviator d after the deviation.

Φ(s′)− Φ(s) = cd(s
′)− cd(s)

Therefore, function Φ is an exact potential of congestion game Γ. Since congestion
game Γ admits an exact potential, congestion game Γ is a potential game.

Theorem 3. Every congestion game possesses at least one pure-strategy Nash equi-
librium [51].
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The proof directly follows Lemma 1 and Lemma 2.

Remark. A potential is strictly based on the difference in the payoffs of each indi-
vidual player. Therefore, optimization of a potential function is irrelevant to social
welfare.

2.5 Complexity of solving congestion games

This section discusses how difficult it is to find a solution for a congestion game.
The first two sections of discussion involves individually-rational solutions in the
single-shot game and repeated game setting respectively, and the last section is on
socially-rational (centralized optimization) approaches. This section surveys existing
complexity results including proofs. For those readers who are not interested in
proofs, this section can be summarized as follows: generally in congestion games,
finding a Nash equilibrium is computationally intractable both in single-shot and
repeated play environments; and computing a socially optimal solution or a fair
solution is also intractable.

2.5.1 Finding Nash equilibria of a single-shot game

The complexity results in this section are from [18]. Let us first define the complexity
class PLS-complete [31].

Definition 10 (Complexity class PLS (Polynomial Local Search)). A problem in
PLS defines an optimization problem, the goal of which is to find a local optimum as
opposed to a global optimum. The problem instance is represented in a language L
of a binary string, and so are its solutions. Each solution is associated with a cost
and a set of neighboring solutions.

• Given an instance x and a set Sx of its solutions, the length of each solution s ∈
Sx is bounded by the length of input x according to some polynomial function
p, such that s ∈ {0, 1}p(|x|).

• A polynomial function λ1 exists, such that given an input x it can determine
whether x ∈ L, and if so, an initial solution s0 ∈ Sx is returned.

• A polynomial function λ2 exists, such that given x ∈ L and s ∈ {0, 1}p(|x|), it
can determine whether s ∈ Sx, and if so, the cost of solution s denoted by c(s)
is returned.
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• A polynomial function λ3 exists, such that given x ∈ L and s ∈ Sx it can
determine whether solution s is a local optimum in terms of cost c. If not, a
strictly better solution in the neighborhood s′ ∈ N(s), where N(s) denotes a set
of neighbors of s, is returned.

Lemma 3. A problem L is in PLS-complete if L is in PLS, and L is reducible from
some L′ ∈ PLS-Complete.

Theorem 4. It is PLS-complete to find a pure-strategy Nash equilibrium in conges-
tion games of the following classes [18]:

(i) Symmetric congestion games

(ii) Asymmetric network congestion games

(iii) General congestion games

The proofs for the asymmetric congestion games and general network congestion
games are somewhat involved, which I refer to the work in [18]. This thesis instead
focuses on symmetric cases.

Proof. The symmetric congestion game case is proved by constructing a symmetric
congestion game from an asymmetric game. Consider an asymmetric congestion
game Γ = (N, E, S, F ) where Si denotes a distinct set of strategies of each player
i ∈ N . For each set Si, a bogus edge e0,∞

i is created, such that its cost is zero
for a single user, or infinitely large for two or more users. Let S ′i denote a new
set of strategies such that S ′i = {s ∪ {e0,∞

i },∀s ∈ Si}. Consider now a symmetric
congestion game Γ′ = (N,E ∪i∈N {e0,∞

i },⋃i∈N S ′i, F ), such that every player shares
the union of all strategies. In any equilibrium of this symmetric game Γ′, it is
implicitly forced that exactly one from each original set of strategies can be taken
due to the infinite cost of bogus edges. Therefore, the solutions of symmetric game Γ′

after excluding the bogus edges coincide with those of the original asymmetric game
Γ. Since the problem of finding a Nash equilibrium of a symmetric congestion game
is reducible from that of an asymmetric congestion game, finding a pure-strategy
Nash equilibrium in symmetric congestion games is PLS-complete.

Theorem 5. A pure-strategy Nash equilibrium of a symmetric network congestion
game can be found in polynomial time [18].

Proof. Given a network congestion game G = (V, E) and n agents, consider a new
game G′ = (V, E ′) where each edge e ∈ E in the original game G is substituted by n
unit-capacity edges (e1, ..., en), such that the cost of each new edge ek is fe(k). Let

27



σs(e) denote the load on edge e. Given strategy profile s, a potential function Φ of
game G is the sum of edge cost of new game G′ as follows:

Φ(s) =
∑
e∈E

σs(e)∑
j=1

fe(j) =
∑

e′∈E′
fe′(1)

That is, minimizing the sum of edge-cost of game G′ minimizes the potential of the
original game G. Therefore, the minimum-cost flow of new game G′ is a pure-strategy
Nash equilibrium of the original game G.

2.5.2 Finding Nash equilibria of a repeated game

According to the folk theorem, there may exist infinitely many Nash equilibria in a
repeated game. Ironically, abundance does not mean that it is easy to find. The folk
theorem relies on the premise of a tangible threat; that is, an equilibrium strategy is
enforceable due to a high risk of retaliation. Thus, it is safe to say that the hardness
of finding an equilibrium depends on how hard it is to find a concrete threat such as
a vector of minimax values. Unfortunately, finding a vector of minimax values for
a repeated congestion game is an intractable problem. In what follows, complexity
analysis on general congestion games is discussed.

Minimax values

In 2-player zero-sum games, the minimax value can be efficiently computed using
linear programming. In any 2-player normal-form games, a pair of minimax values
for a row player and a column player can be computed efficiently by substituting the
game with two zero-sum games; such that in one game, a row player forgets its own
payoff matrix, and instead uses the complement of the column player’s payoffs, and
vice versa.

A similar approach can be applied to n-player games, which provides an informal
insight in understanding the complexity of computing the minimax values. For sim-
plicity, assume that every agent has the same number of actions, say k. An n-player
game can be substituted with a set of n 2-player zero-sum games. That is, for each
player i ∈ N = {1, ..., n}, construct a zero-sum game of player i against a team of
the other players N − {i}. Then, a set of actions for the team becomes a set of
all possible joint actions of n − 1 agents. In terms of the number of actions k in
the original game, therefore, the size of payoff matrix is k × kn−1 for each of the n
zero-sum games.
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Complexity of computing the minimax values

This section describes a formal complexity result for finding the minimax values.
The following analysis is due to [3], and I elaborated the proof by constructing an
example.

Theorem 6. Computing the threat point (a vector of minimax values) in a network
congestion game on a Directed Acyclic Graph (DAG) is NP-complete [3].

Proof. The proof follows a reduction from a SAT problem that belongs to the com-
plexity class NP-complete. Consider a SAT problem that have 2-variable clauses or
3-variable clauses only. Let V = {x1, ..., xn} denote a set of variables in an expression.
Each variable vi ∈ V appears three times: once positively and once negatively in any
2-variable clause, and once in a 3-variable clause either positively or negatively; for
example, (x1 ∨ x̄2) ∧ (x2 ∨ x̄3) ∧ (x3 ∨ x̄1) ∧ (x1 ∨ x2 ∨ x3).

From this SAT construction, a network congestion game can be constructed by
representing each variable xi ∈ V as a player i with source si and sink ti. Each clause
is represented as clause-edge (u, v), the cost c(u, v) of which is defined in terms of the
number of users of the edge denoted by σ(u, v), such that c(u, v) = 0 if σ(u, v) ≤ 1,
c(u, v) = 1 otherwise (σ(u, v) > 1). Those edges that are not clause-edges have the
cost of zero.

Let 2-edge and 3-edge denote clause-edges for 2-variable clause and 3-variable
clause, respectively. For every 2-edge (u, v) representing a clause (xi ∨ xj), node u
has two incoming edges from the sources of its variables, si and sj, and two outgoing
edges to the sinks of its variables, ti and tj. In addition, node v may have an
additional outgoing edge to a 3-edge that also has either variable xi or xj, such that
every 3-edge is connected from three 2-edges that also have one of its three variables
in them. Each 3-edge has three outgoing edges to the sinks of its three variables.

Now suppose an additional player z for whom n players are computing a minimax
value. The source and sink of additional player is linked to all clause edges (both
2-edges and 3-edges), such that the player has access to all alternative paths in the
graph; that is, two new edges (sz, u) and (v, tz) are added for each clause-edge (u, v).
Figure 2.1 shows a network congestion game reduced from the simple example of an
expression above. Every clause-edge is labeled with a clause accordingly, and a solid
line is used for a positive appearance of a variable, and a dotted line for a negative
one. For visibility, the node and edges of the additional player z are omitted from
the graph.

If the expression is satisfiable, exactly one variable should be positive in each 2-
edge, which implies that each 2-edge is already filled with one user. Thus, whichever
path player z chooses, its cost is 1 at best. In other words, the worst cost (the
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x1∨ ~x2

x2∨ ~x3

x3∨ ~x1 x1∨ x2 ∨ x3

Figure 2.1: Network congestion game reduced from (x1 ∨ x̄2) ∧ (x2 ∨ x̄3) ∧ (x3 ∨
x̄1) ∧ (x1 ∨ x2 ∨ x3)

minimax value) that the other n players can force against player z is 1. If the
expression is unsatisfiable, it means that at least one clause-edge is not used by any
other players. In the worst case, there can be only one open path and 3n− 1 paths
of cost 1. If a path is chosen at random, therefore, the worst possible cost of player
z is 3n−1

3n
.

The NP-completeness still holds even in the case of network congestion games
with linear cost functions. Furthermore, it is still an open question whether there
exists a class of non-trivial games for which Nash equilibria of a repeated game can
be found in a reasonable time.

2.5.3 Computing social welfare and fairness

This section summarizes the work from [38] and [7]. If a central administrator can
control the agents’ decision making, a congestion game can be optimized with respect
to more global objectives than individual rationality, such as social welfare or fairness.
Social welfare is typically measured by the sum of expected payoffs of all agents. On
the other hand, fairness is generally measured by the payoff of the worst performing
agent in the population.

In terms of complexity, optimizing for social welfare in congestion games is gen-
erally NP-hard even in the case of symmetric network congestion games with non-
decreasing cost functions. In particular, if the cost function is player-specific, it is
NP-hard to compute optimal social welfare or fairness even in the simplest form of
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symmetric network congestion games, known as the “balls-in-bins” model [7]. A com-
prehensive analysis can be found in [38], from which excerpts on network congestion
games are copied in Table 2.1.

cost \ type symmetric asymmetric
nondecreasing NP-hard NP-hard; inapprox.
convex nondecreasing P NP-hard; inapprox.
nonincreasing P NP-hard; inapprox.
concave nonincreasing P NP-hard
nonmonotomic NP-hard;inapprox. NP-hard; inapprox.

Table 2.1: Complexity of finding system-optimal solutions of network congestion
games [38] (notion inapprox. indicates that no polynomial time approx-
imation scheme exists)

In the special case of symmetric network congestion game with convex non-
decreasing cost functions, there exists a polynomial-time algorithm to compute a
system-optimal solution.

Theorem 7. A system-optimal solution of a symmetric network congestion game
with a convex nondecreasing cost function can be found in polynomial time [38].

Proof. Let ce(x) denote a cost function of a resource when x agents are using resource
e. A cost function is nondecreasing if adding an additional agent on a resource does
not decease the cost of the resource; that is, ce(x + 1) ≥ ce(x). A cost function is
convex if the rate of cost increase in relation to the load is also nondecreasing; that
is, ce(x + 1)− ce(x) ≥ ce(x)− ce(x− 1).

Given a network congestion game G = (V, E) and n agents, consider a new game
G′ = (V, E ′) where each edge e ∈ E in the original game G is substituted by a set
of n unit-capacity4 edges (E ′

e = e1, ..., en), such that the cost of each new edge ek is
kce(k)− (k − 1)ce(k − 1).

Since the cost functions are nondecreasing, it can be said ce(k−1)−ce(k−2) ≥ 0.
Also by definition, convex functions satisfy {ce(k)−ce(k−1)}−{ce(k−1)−ce(k−2)} ≥
0. Therefore, if the cost functions are convex nondecreasing, the costs of the new
edges are in an increasing order as follows:

cek
(1) ≥ cek−1

(1)

{kce(k)− (k − 1)ce(k − 1)} ≥ (k − 1)ce(k − 1)− (k − 2)ce(k − 2)

k[{ce(k)− ce(k − 1)} − {ce(k − 1)− ce(k − 2)}] + 2{ce(k − 1)− ce(k − 2)} ≥ 0

4A unit-capacity edge can accommodate at most one agent.
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Since the costs of the new edges are in an increasing order, the new edges will be
occupied in that order under the minimum-cost-flow algorithm. Subsequently, the
sum of the new edge costs becomes the sum of costs of the agents that have chosen
the original edge e, such that when k edges have been chosen from the new set E ′

e:

ek∑

e′=e1

ce′(1) = ce(1) + (2ce(2)− ce(1)) + ... + (k(ce(k)− (k − 1)ce(k − 1)) = kce(k)

Therefore, a minimum-cost flow of new game G′ minimizes the total cost of all agents
in the original game G in the case of nondecreasing convex functions.

This theorem provides a kernel for a subroutine of the proposed approach in
Chapter 4.

2.6 Inefficiency of Nash equilibria

This section highlights the main point of this chapter. As seen in the example of
metro versus driving in Section 1.5.1, Nash equilibrium solutions can be substantially
suboptimal. While the inefficiency of single-shot Nash equilibria has been a core sub-
ject of algorithmic game theory, the issues remained underexplored on what it takes
to actually implement the folk theorem to reach Nash equilibria of a repeated game.
In the next subsections, the inefficiency of Nash solutions and existing remedies for
coping with the inefficiency are discussed in detail.

2.6.1 Price of Nash equilibria in single-shot games

The price of anarchy was introduced in [35] as a criterion for measuring the ineffi-
ciency of selfish equilibria. In this context, the objective function value of a solution
refers to social welfare (sum of all agents’ cost). Let ϕs denote the objective func-
tion value of a target problem under strategy profile s; S a set of selfish equilibrium
strategy profiles; and o the optimal strategy profile. The price of anarchy, denoted
here by $A, is defined as the worst ratio of the objective function value of a selfish
equilibrium to that of the optimum. Formally,

$A = max
s∈S

(
ϕs

ϕo

).

In nonatomic network congestion games with affine cost functions (in the form
of ax + b), the price of anarchy is bounded by 4

3
, meaning that a single-shot Nash
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equilibrium is virtually optimal. The price of anarchy can be, however, higher in
atomic games even in the case of affine cost functions. When the cost functions are
nonlinear, the price of anarchy of a congestion game can be arbitrarily high [53].

Existing approaches to reducing the price of anarchy seek solutions from two
different sources: one from the environment and the other from the users of the
environment. The former addresses making adjustments directly to the environment
to make it more efficient. Specific examples are to increase resource capacity or
redesign of the network routing structure [53]; or to design an efficient mechanism
[19, 6]. The interest of this thesis resides in the latter, assuming that the environment
is not under our control.

Generally in congestion games, optimal solutions cannot be achieved without an
external intervention or an explicit coordination among agents [40], such that some
subset of agents must conduct altruistic acts at times.

Learning of a periodic policy was introduced in [60] in which agents alternate a set
of unfair Nash equilibria. In their problem domains, it was assumed that agents have
access to the performance of other agents. Subsequently, agents act under “homo-
egualis” principle, thus fairness is embedded inside the agents’ objective function.
For instance, an agent is evaluated not only by its individual performance, but also
by the score of the poorest performing agent in the population.

Another common method is to install a centralized control to force a set of agents
to take certain actions that are dictated by the administration as opposed to their
choices of actions. Although a completely centralized approach is avoided due to
practical reasons, a mixed model of selfish agents and centrally managed agents is
commonly used in practice. Virtual Private Network (VPN) is such an example
in which intermediate nodes are centrally managed while private users still make
independent decisions [34].

The Stackelberg strategy is another partial centralization approach [52], wherein
a set of (market) leaders make moves first, inducing desirable responses from the fol-
lowers. This approach requires leaders to always sacrifice their own benefits because
followers will still choose selfish actions regardless of what moves leaders make. For
instance, a Stackelberg strategy performs poorly if a leader adopts a proportional
strategy such that it shares the burden only proportionally in the hope that the
followers will also share the remaining burden. Thus, a Stackelberg strategy always
exploits the centrally controlled set of agents since the followers are not obligated
nor motivated for altruistic acts.
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2.6.2 Price of Nash equilibria in repeated games

Hitherto, the quality of solution has been measured based strictly on congestion
costs. In that sense, the concept of Nash equilibria of a repeated game is established
on the premise of low-cost solutions. In this section, let us discuss what must be
traded in for the (congestion) cost reduction to realize Nash equilibria of a repeated
game.

Recall that the folk theorem is based on two policies: a mutually beneficial cor-
related strategy and a punishing strategy. Subsequently, implementing the folk the-
orem requires two prerequisite computations: a good-quality correlated strategy and
a vector of threat (minimax) values. As discussed earlier, these are computationally
elaborate tasks. For the moment, assume that these two steps have been undertaken.
Let us now probe further hidden costs.

In order to implement a correlated strategy, agents must have a common source
of information to observe. For instance, an external mediator may be needed for
providing signals to all agents, which entails a notion of centralization. When agents
are physically distributed, an agent may be able to receive a signal from a mediator
only through explicit communications. In such cases, agents must reason about
tradeoffs between congestion-cost benefits and communication-cost expenses.

In order to punish a deviator, agents first must be able to detect a deviator. It
is commonly assumed that every agent has a complete view of game to detect a
deviator and to simultaneously enact retaliation against the deviator. In the context
of congestion games, however, it is unrealistic to assume that an agent can observe
the other agents’ strategies even when they are not on the same path. Given that,
the punishing strategy can only be implemented in a centralized way similar to the
case of a correlated strategy.

In summary, a Nash equilibrium of a repeated game can be viewed as an agree-
ment among the constituents of a society for following a certain rule given that any
violator will be penalized by the society. The implementation of such rules generally
involve centralized methods, which may incur extra expenditure such as communi-
cation costs.

2.7 Summary

A Nash equilibrium is a beautiful solution concept that best reflects the notion of
individual rationality, and has been the limelight of the multiagent learning litera-
ture. In this chapter, we discussed various aspects of Nash equilibria in two different
game settings: single-shot and repeated play environments. The problem of finding
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Nash equilibria is computationally intractable in both settings. In terms of solution
quality, Nash solutions can be arbitrarily suboptimal especially in a single-shot game
setting. In a repeated game setting where better quality solutions can be sustained,
an actual implementation of Nash solutions may entail centralized methods involving
coordination costs.

In fact, the set of individually rational payoffs (as defined by the folk theorem) are
desirable in any repeated games. Nonetheless, actual strategy structures that support
those payoffs and how the strategies will put into operation are underexplored. In
particular, it has received little attention that realizing a correlated strategy among
a large number of agents may involve significant overhead.

Having said that, the focus of this thesis should not be confused with conver-
gence to Nash equilibria. Instead, the goal of multiagent learning in this thesis is to
efficiently find stable strategy structures that can bring about individually rational
payoffs. Under imperfect monitoring, agents can be rational only according to their
subjective information. Thus, the solutions found by subjectively rational agents
may or may not coincide with objectively5 rational solutions such as Nash equilib-
ria. This chapter mainly discussed objectively rational solution concepts, which will
provide a basis for later discussions in Chapter 4, where subjectively rational solu-
tions are analyzed within the boundaries of well-known objectively rational solution
concepts including Nash equilibria and correlated equilibria.

5The notion of Nash equilibria is generally accepted as an objectively rational solution concept.
I discuss a different view in Chapter 4.
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Chapter 3

Multiagent social learning

“There are too many ideas, things, and people. And, too many directions
to go. I was starting to believe that the reason it matters to care pas-
sionately about something, is that it whittles the world down to a more
manageable size.” –Susan Orlean, The orchid thief, 1998

3.1 Introduction

This chapter introduces the multiagent learning approach that constitutes the heart
of this thesis. Multiagent learning refers to an agent’s learning of optimal behaviors
with respect to the long-term expected reward, when the reward depends not only
on the agent’s strategy but also on the strategies of other (possibly also learning)
agents in an environment. In essence, this thesis proposes the idea of “learning from
others” [57]. Generally, learning indirectly from the experiences of others (as opposed
to one’s own experiences) is referred to as social learning. This thesis initiates an
effort to establish the notion of social learning in the context of multiagent learning,
and proposes a specific social learning algorithm, known here as IMPRES (implicit
reciprocal strategy learning), where agents learn to act more rationally by using the
strategies given by others. An earlier work was published in [46].

The multiagent social learning model is a break from earlier thinking in two gen-
eral assumptions about other agents. First, when an agent is learning in the presence
of other agents, those other agents in the environment are generally considered only
as additional sources of uncertainty that obscures the agent’s decision-making pro-
cess. Under this assumption, the agents may be limited to suboptimal decisions by
neglecting a possibility of finding mutually beneficial solutions. In contrast, my ap-
proach views other agents as potential “sources of information” that may be able to
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facilitate the learner’s decision making even in a competitive setting.
Second, the majority of work in game theory is based on the assumption that the

agents in an environment are of equal ability. My research takes a contrasting view.
The foundation of my work is inspired by the concept of “bounded rationality”,
where some agents may have more privileges than others either because they are
exposed to different parts of information in the environment, or because they simply
have higher computational power.

Based on these two intuitions, this thesis investigates how agents can improve
their performances by utilizing the presence of other agents in an environment. Note
that the notion of social learning is different from coalitional scenarios where self-
interested agents form a prior agreement based on a full evaluation of potential
benefit; this view point will be discussed further in Chapter 6.

From the game theoretic perspective, it is generally believed that rational agents
can abide by a mutually beneficial strategy if the imminent threat exists that any
deviator from the strategy will be punished. This thesis expands this understanding,
arguing that rationally bounded agents can learn to self-organize to stabilize mutually
beneficial outcomes without the explicit notion of threat.

EXIT 2

A B C EXIT 1

Figure 3.1: Example: necessary conditions for a correlated strategy

For example, consider a scenario where a large number of agents are trying to
evacuate a building in an emergency as depicted in Figure 3.1. In the figure, only
agent C has a complete view that includes both exit 1 and exit 2. The observations
of the rest of the agents are limited to the shaded area that includes only exit 1.
In terms of the amount of information, agent C is more advantageous than the
rest. Given the shared objective that every agent wants to evacuate the building
as quickly as possible, the strategies of agents A, B, and C can be coordinated as
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follows. Agent C signals agents A and B to move to the left, and both agents A and
B follow the direction from agent C to move towards exit 2. Subsequently, all three
agents evacuate quicker than would have been if they had to use exit 1.

Let us examine the rationale behind these decisions. This analysis gives an insight
to answer two fundamental questions of this research:

• Under what conditions, are more privileged agents motivated to share their
strategies?

• Under what conditions, are agents motivated to follow the strategies of other
agents?

Given the subjective view, an optimal strategy for every agent but agent C is to
move to the right towards exit 1. For agent C, moving towards exit 2 is a better
strategy. The rationale of agent C for sharing its strategy with agents A and B is
self-interest: in order for it to move to the left, the agents on its left also have to move
to the left. The rationale of agents A and B for following the prescribed actions is
also self-interest: given that agent C’s objective is to evacuate the building, if there
is an exit on the left that is closer to agent C, then the exit must be even closer to
agents A and B.

More generally, a structure of mutually dependent information sources and in-
formation recipients can emerge when two specific conditions are satisfied. First, an
agent is willing to share its knowledge with other agents if it expects a better payoff
by sharing than by not doing so. Second, an agent willingly takes prescribed actions
from a certain information source if the agent expects a better payoff by acting ac-
cording to the decisions from the source than from any other sources including itself.
Under these two conditions, any correlated strategy that ensures a better payoff than
the agents’ subjective valuation of independent strategies can be stabilized as a social
norm.

In the following sections, a brief literature review is given on the topic of multi-
agent learning; followed by detailed descriptions of the algorithmic procedures.

3.2 Related work

This section reviews existing multiagent learning algorithms under two categories.
The algorithms are classified according to the type of learned strategies.
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3.2.1 Stationary policy learners

Definition 11 (Stationary strategy). A strategy (policy) is stationary if it does not
depend on the past play.

For instance, a single-shot Nash equilibrium strategy is stationary since the strat-
egy depends only on the immediate payoff that does not change according to the
actual play. Note that a stationary policy does not mean that the policy is deter-
ministic, and can be stochastic.

Bowling and Veloso proposed the use of two criteria for evaluating multiagent
learning algorithms [4]:

(i) (The rationality property) An agent must learn to play the best-response strat-
egy against a stationary opponent; and

(ii) (The convergence property) The learning of an agent must converge.

The second criterion assures that a play of rational learners necessarily converges to
a Nash equilibrium (of a single-shot game). Thus, this set of criteria suggests that a
learned policy be stationary.

A gradient ascent learning algorithm using a variable learning rate converges to
a single-shot Nash equilibrium in 2-player 2-action games [4]. In this algorithm, the
learner dynamically adjusts its learning rate according to the “Win or Learn Fast”
(WoLF) principle - when winning, persist a winning strategy so that the opponent
would better adapt to it, and vice versa.

AWESOME is a more general algorithm that guarantees convergence to a single-
shot Nash equilibrium in n-player games in self-play [11]. This algorithm does not
learn a Nash equilibrium strategy. Instead, the algorithm is given a pre-computed
single-shot Nash equilibrium strategy. When the agent detects that the opponents are
using stationary strategies, the agent plays a best response strategy accordingly. On
the other hand, when the agent detects that the opponents are using pre-computed
equilibrium strategies, then the agent plays its corresponding part of the equilib-
rium strategy profile. Other algorithms aiming at convergence to a single-shot Nash
equilbrium include [10, 37, 30].

Regret-based learning algorithms take a distinct view in the learning process.
Assuming that a game play follows some stationary probability distribution, the goal
of this class of algorithms is to learn its respective part to realize the distribution.
This class of learning algorithms exhibit the following property:

Definition 12 (Hannan-consistency property [25]). A strategy of a player is called
Hannan-consistent if, in a long run, the average cost of the player is as low as it can
drop when played against the empirical distribution of the strategies of other players.
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Fictitious play is an iterative method to compute an equilibrium that always se-
lects the best response against the average play of the past [5]. Although the original
fictitious play is not Hannan-consistent, a smoothed fictitious play that probabilis-
tically chooses a better action, as opposed to the best action, is Hannan-consistent
[28].

A play of agents adopting a Hannan-consistent learning algorithm converges to a
set of correlated equilibria in the limit [27]. In accordance with the learning assump-
tion that a game play follows some stationary probability distribution, the solution
concept describing the outcome is also stationary. The stationary characteristic of
correlated equilibria will be further discussed in Section 4.3.1.

Let us revisit the two multiagent learning criteria. While the rationality property
is unmistakably clear, the convergence property is less clear, especially if the purpose
of learning is to optimize with respect to long-term rewards.

For instance, consider a 2-player game. Suppose the learner detects a sign of
stationary policy in the other agent’s play (e.g., by observing certain actions more
frequently than others). If the learner is adaptive, it should play its respective best
response more frequently; therefore, the game will eventually converge. This scenario
is queer that the learner is indifferent to winning or losing as long as its policy
converges to some stationary one. Suppose that the other player is in a winning
situation. If the learner is rational, its objective should be to overturn the momentum
of the game, instead of playing adaptively to lose fast. If the learner cannot win the
game, the second best option should be a draw instead of losing. Therefore, having
the convergence property makes the learning algorithms adaptive, but not necessarily
more rational.

3.2.2 Non-stationary policy learners

A set of criteria for multiagent learning more recently proposed by [50] stresses per-
formance guarantees against various types of opponents. In particular, the expected
payoff of a learner must be at least as good as the minimax value if played against
another rational player.

When all agents are rational, the folk theorem dictates that mutually beneficial
solutions can be sustained by use of threat. In order to enact a threat, agents must
be able to choose their strategies conditioned on the previous plays of other agents.
That is, agents must employ non-stationary strategies to realize Nash equilibria of a
repeated game.

Littman and Stone proposed a polynomial-time algorithm to learn an optimal
strategy for any repeated 2-player games [36]. The idea is like the folk theorem, but
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this algorithm focuses on how the strategies can be constructed as a pair of automata.
This algorithm assumes that agents have complete information, and is restricted to
2-player games.

Crandall proposed two properties for multiagent learning in repeated games: 1)
the average payoff of a learning agent must be at least as good as the minimax
value, and 2) an agent should learn to cooperate or compromise when beneficial
(C/C property) [14]. The M-Qubed (M3 for Max or MiniMax) learning algorithm
exhibits these two properties in several well-known 2-player normal-form games. In
M-Qubed, agents learn to play a mixed strategy in competitive games, or to play a
pure-strategy otherwise to intentionally expose its strategy so that the other agent
can also play the corresponding pair.

Sen et al. introduced another algorithm similar to M-Qubed where agents in-
tentionally expose their own strategies to the other agent using signals [54]. This
algorithm is also limited to 2-player games.

In both M-Qubed and the signaling algorithms, agents can be exploited by re-
vealing their strategies. Other work in repeated games includes [58], the focus of
which was exclusively on prisoner’s dilemma.

Given that existing non-stationary learning algorithms are limited to 2-player
games, this thesis proposes a non-stationary multiagent learning algorithm that is
scalable to n-player games for a large value of n (n ≥ 2).

3.3 Implicit reciprocal strategy learning (IMPRES):

the Algorithm

The IMPRES algorithm presented here is specifically focused on symmetric network
congestion games. Throughout the section, a strategy may also be referred to as a
path.

3.3.1 Overview of double-layered learning

The crux of the algorithm lies in its double-layered learning structure: the agents
learn a correlated strategy in the inner-layer, while they progressively self-organize to
learn the social norm of reciprocity in the meta-layer.

The intersection example from Chapter 1 is repeated. Consider two automobiles
coming from orthogonal directions to an intersection. When each agent indepen-
dently makes decisions, there is a non-zero probability that there will be a collision.
On the other hand, one can imagine a centralized model where there exists a traffic
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light that both agents can observe. If an agent observes a red light, it is best for the
agent to stop given that the other agent obeys its corresponding (green) light.

The intuition behind the IMPRES algorithm can be illustrated in the situation
without a traffic light or a stop sign. Without prior agreement, one of the drivers sig-
nals the other driver to cross first. The other driver then obeys the signal, and thus
both drivers achieve mutually beneficial outcomes by avoiding a collision. Specifi-
cally, each driver in this example has three meta-strategies that it could adopt:

• α-agent (strategist) that computes an optimal correlated strategy to generate
signals,

• β-agent (subscriber) that obeys the signals from the other driver, or

• γ-agent (solitary) that makes an independent decision.

α

sj
2

β(j)

action drive           metro           drive
drive             drive metro

…

meta-
strategy
inner-
strategy

γ

si
1

agent i agent j agent k
j

strategist
lookup
table

subscribeTo

prescribe

Figure 3.2: Metro vs. Driving: an example of 2-layered strategies for 3 agents. In
the meta-layer, each agent makes a high-level decision of whose strategy
to use in choosing the actual action.

Figure 3.2 illustrates an example of the 2-layered strategies for three agents i, j,
and k. Agent i is a γ-agent, meaning that the agent has its own inner-policy π1

i

that prescribes which action to take. Agent j is an α-agent, denoting that the agent
is a registered strategist that is learning inner-policy π2

j for 2 agents (itself and a
subscriber), and that it is acting as a signal generator. Lastly, agent k is a β-agent
that subscribes to the strategies of agent j, meaning that agent k selects a path that
strategist j prescribes for agent k. The required amount of communication in this
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model is minimal since a subscriber observes only its respective part of a strategy
signal.

The algorithm requires that the agents know the cost functions, and that each
agent can observe its own path selection and the corresponding cost. The algorithm
is also limited to a symmetric case where agents have the same set of strategies. It is
also assumed that there exists a strategist lookup table that lists current registered
strategists. Note that the lookup table does not provide any further information
about the strategists except their names.

3.3.2 Main procedure

Algorithm 1 shows the main procedure of the IMPRES algorithm. Initially, all
agents are γ-solitaries. The agents have an alternative meta-strategy α to become a
strategist, but meta-strategy β (subscriber) is not yet available to the agents (since
there are no strategists in the beginning).

In the IMPRES algorithm, an agent takes an optimal action according to some
knowledge; and it is the meta-strategy that specifies the source of knowledge. At
each round, an agent subscribes to a path prescription (knowledge) according to its
current meta-strategy m (line 2–7). When an agent is a solitary (γ) or a strategist
(α), a prescription comes from itself. When an agent is a subscriber (β(l)), the
agent sends a prescription-request to strategist l, and receives a path from agent l
(Algorithm 3 line 9). A subscription may fail if the requested strategist has changed
its meta-strategy; if a subscriber-agent fails to receive a prescribed strategy, the agent
turns into a solitary (and selects an action according to its own strategy).

Each agent keeps the number of current subscribers f . When the agent is the
sole subscriber, the value of f is 1. Each agent also keeps a strategy stack of size
f . The general purpose of subscribing and prescribing algorithms is to establish
communication between agents only; and the actual strategy stack is updated in the
inner-learning layer one time step earlier. When the stack is empty, as in the initial
time step t0, a best response strategy is computed on an on-demand basis.

After taking the recommended path, the agent observes the load of the chosen
path, and receives the congestion cost.

So far, only the mechanics at a high-level has been described. The learning
algorithms for how an agent selects an actual path (inner-learning) and a meta-
strategy (outer-learning) will be described in the next sections in detail.
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Init: a set of meta-strategies M = {α, γ}
Init: Q-value Q(m) = 0, policy π(m) = 1

|M | ,∀m ∈ M

Init: meta-strategy m = γ /* solitary */

Init: a set of available paths P in game G(V,E)
Init: estimated load le = 0,∀ edges e ∈ E
Init: inner-strategy stack S = []
Init: the number of subscribers f = 0
repeat1

path s ← subscribeTo(m)2

if s is nil then /* obsolete strategist */3

M ← M − {m}4

m ← γ /* back to solitary */5

s ← subscribeTo(m)6

end7

Take the recommended path s8

Receive congestion cost c9

S ← innerLearn(s, f)10

m ← outerLearn(c)11

forever12

Algorithm 1: The main procedures of IMPRES

send(request to meta-strategy m) /* m: self or a strategist */

listen1

receive(path) /* reply from m */2

return path3

for one round4

Algorithm 2: β subscribeTo

3.3.3 Inner-learning of a correlated strategy

Algorithm 4 shows the inner-learning algorithm that learns a correlated strategy.
Note that β-agents (subscribers) do nothing in the inner-layer (line 2). Otherwise,
at each round, the learner first updates the expected number of other agents in all
paths based on the observed loads on the edges from the path that it took in the last
round (line 4–7). After the loads are updated as a weighted sum of the old value and
the newly observed value, the loads are normalized so that the sum does not exceed
the number of agents n.

Next, the learner computes the best-response joint strategy for the number of
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reset: the number of subscribers f = 0
listen1

receive(request from subscriber)2

if not a strategist (α) nor self-subscription then3

return nil /* obsolete */4

end5

if inner-strategy stack S is empty then6

s ← bestResponse(1)7

else8

s ← pop(inner-strategy stack S)9

end10

f ← f + 111

send(s to subscriber)12

for one round13

Algorithm 3: α Prescribe (reply to subscribeTo)

input: Path s, the number of subscribers f
switch meta-strategy m do1

case subscriber β: return /* do nothing */2

case solitary γ or strategist α:3

foreach edge e in path s do4

Observe load(e) /* the number of agents on edge e */5

le ← (1− ηi)le + ηiload(e)6

end7

inner-strategy stack S ← BestResponse(f)8

end9

end10

Algorithm 4: InnerLearn

subscribers f from the previous round (Algorithm 5). In the case of solitary γ-
agents, the number of subscribers f is 1, thus the algorithm simply selects a path
for the agent alone.

The idea behind the best-response algorithm is due to the following algorithm for
computing a system optimal solution [38] that has been discussed earlier in Chapter 2.
For easier reading, the algorithm is repeated briefly. Let ce(x) denote a cost function
of resource e when x agents are using resource e. Given a network congestion game
G = (V, E) and n agents, consider a new game G′ = (V, E ′) where each edge e ∈ E
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input: the number of subscribers f
reset: inner-strategy Stack S = []
reset: ae = 0,∀e ∈ E
for v = 1 to f do1

if random() < p then /* explore with probability p */2

s ← randomPick(P )3

else /* exploit with probability 1− p */4

s ← arg mink∈P

∑
j∈k{Equation 3.1}5

end6

push(s to S)7

foreach edge e in path s do8

ae ← ae + 19

end10

end11

Shuffle S12

Algorithm 5: Select BestResponse

in the original game G is substituted by n unit-capacity edges (e1, ..., en), such that
the cost of each new edge ek is kce(k)− (k − 1)ce(k − 1).

Since the costs of the new edges in G′ are in an increasing order, the new edges
will be occupied in that order under the minimum-cost-flow algorithm. Subsequently,
when k new edges are chosen, the sum of the new edge costs becomes the sum of
costs of the agents that have chosen the original edge e; such that

∑ek

e′=e1
ce′(1) =

ce(1) + (2ce(2) − ce(1)) + ... + (k(ce(k) − (k − 1)ce(k − 1)) = kce(k). Therefore,
a minimum-cost-flow of new game G′ minimizes the total cost of all agents in the
original game G in the case of nondecreasing convex functions.

In IMPRES, this idea is modified to find the best-response strategies for one or
more subscribers. Recall that the minimum-cost-flow algorithm sequentially selects
a path at a time. Let lj be the estimated load of edge j, and let aj be the number
of subscribers that the strategist has already decided to send to edge j. Let cj(x)
and c′j(x) denote the flow cost of edge j in the original graph G and that in the new
graph G′, respectively. The algorithm computes the cost of an edge in the new graph
G′ when one more agent is added to the existing load, as a criterion to determine
the minimum-cost-flow path using the following equation (line 5):

c′j(lj + aj + 1) = (aj + 1)cj(lj + aj + 1)− ajcj(lj + aj) (3.1)

Ties are broken randomly. With a decaying probability, the agent also explores
randomly selected paths instead of myopic best responses (line 3).
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Once a best-response joint strategy is computed, the learner shuffles the strategy
stack (line 12), so that all subscribers (including itself) fairly experience the average
cost of the strategy profile.

3.3.4 Outer-learning of a meta-strategy

C:
Correlated
strategy

I:
Independent

strategy

Cost(I) < Cost(C)

Cost(C) > Cost(I)

Cost(C) < Cost(I)

exploit

explore

Cost(C) < Cost(I)

_

_

_

_

Figure 3.3: An example of an IMPRES strategy

It is important to note that the learning in the meta-layer is a significant extension
to classical reinforcement learning. In traditional reinforcement learning, a set of
actions available to a learner does not change dynamically although the reward from
an environment may not be stationary. For example, in a k-armed bandit problem,
the reward from each arm may change over time, but the learner will always have
the same set of k arms. On the contrary, one of the main challenges of IMPRES is
rooted in the fact that the set of meta-strategies changes dynamically, as different
strategists emerge and submerge over time.

Figure 3.3 illustrates a simple example of the learning in the meta-layer. In
this example, two meta-strategies are available to the learner: a correlated strategy
(denoted by C) and an independent strategy (denoted by I). A solid line represents
the optimal choice based on the expected costs, referred to as exploitation, and a
dotted line represents a randomized choice that may be suboptimal according to
the learner’s current belief but perhaps a better choice in a long run, referred to
as exploration. This reinforcement learning structure constitutes a non-stationary
strategy, which will be analyzed in the next chapter.
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Algorithm 6 describes the outer-learning procedure. At each round, the learner
updates the Q-value of its current meta-strategy m (line 1). Next, if the number
of meta-strategies is smaller than parameter κ, then a new strategist is randomly
selected from the lookup table as a new meta-strategy; and the initial value of the
new strategist is set to ι (line 2–6). The two constants κ and ι will be further
discussed later in Section 5.4.2.

Finally, the agent updates the meta-policy using the Boltzmann update rule (line
7); the rule assigns more probability mass to the meta-strategies that have performed
better than other alternatives. As temperature T in the equation (line 7) drops, the
rule becomes more sensitive to the value differences; therefore, when the temperature
is very low the algorithm mostly exploits the current best choice rather than exploring
alternatives.

Global: LookupTable L, maximum cost MaxCost
input : current cost c
Q(m) ← (1− ηm)Q(m) + ηm(MaxCost - c)1

if |M | < κ then /* max size κ */2

l ← randomPick(L)3

Q(l) = ι4

M ← M ∪ β(l)5

end6

π(m′) =
exp

Q(m′)
T∑

m′′∈M exp(
Q(m′′)

T
)
, ∀m′ ∈ M

7

T ← δT /* 0 < δ < 1 */8

/* meta-strategy for the next round */

if probability 1
max(f,1)ω then9

m ← selectMetaStrategy(π)10

if m = α then /* new strategist */11

L ← L ∪ {id}12

end13

end14

Algorithm 6: OuterLearn

After updating the policy, a new meta-strategy is selected for the next round (line
9–14). Although a strategist does not directly receive additional feedback from its
subscribers, the number of subscribers is a reasonable indicator for the performance
of a strategist. Based on this intuition, a boosting parameter ω is added such that
the probability of staying as a strategist is proportionally increased with respect to
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the number of its subscribers f . This parameter affects only when the agent is a
strategist since the number of subscribers f is at most 1 otherwise.

The time complexity of the algorithm is polynomial in the number of agents and
in the number of alternative paths, and the space complexity is linear in the number
of resources (edges).

3.4 Summary

In this chapter, the general idea of “learning from others” is introduced into the
multiagent learning context. Specifically, I proposed IMPRES (implicit reciprocal
strategy learning) - a double-layered learning framework where agents learn to act
more rationally by correlating their strategies. I have concentrated on technical
details in this chapter; and a more general discussion of the theoretical model on
which the IMPRES algorithm is based on will follow in the next chapter.
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Chapter 4

Theoretical Analysis

“The tyranny of a prince in an oligarchy is not so dangerous to the public
welfare as the apathy of a citizen in a democracy.” – Charles de Secondat,
Baron de Montesquieu, The Spirit of the Laws, 1748.

4.1 Introduction

This chapter describes a theoretical model that frames implicit reciprocal strategy

learning (IMPRES). The model is closely related to the notion of Nash equilibria of
a repeated game. Clearly, a set of cost vectors defined by the folk theorem includes
a set of cost vectors that is mutually desirable for all players of a game. There can
be, however, infinitely many strategies that satisfy the folk theorem including a set
of single-shot Nash equilibria. Due to abundance, the predictive power of Nash equi-
libria is significantly reduced in repeated games. The main contribution in studying
repeated games, both in general [47] and in this thesis, is to discover meaningful
social norms (strategies) that can support mutually beneficial outcomes. In this con-
text, one can view multiagent learning as a “search” for a better choice in the vast
space of enforceable strategies; and one of the main goals of this research is to be able
to predict more likely outcomes with which reasonably rational agents will settle.

This chapter is organized as follows: first, the conceptual model behind the IM-
PRES algorithm is described. Next, my interpretations for well-known solution con-
cepts are given. Finally, the outcome of IMPRESS is generally characterized as
behavior-equivalent to approximate Nash equilibria, and an additional set of criteria
to further specify interesting properties of the solutions is discussed.
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4.2 The models of social norms

The main hypothesis of this thesis echoes the folk theorem: in order to achieve mu-
tually beneficial outcomes in repeated games, a population needs a set of correlated
strategies around a social norm. While the folk theorem states that such equilibria
exist, this thesis seeks efficient learning algorithms for actually finding such stable
strategies in the context of games that involve a large number of agents.

4.2.1 The folk theorem

In this section, an example of prisoner’s dilemma is used to illustrate the folk theorem
that is relevant to the discussion of the IMPRES model.

Prisoner’s dilemma

A prisoner’s dilemma is a 2-player matrix game where two prisoners under a criminal
charge are making decisions between two alternative actions: to cooperate with the
other prisoner by keeping silent (denoted by C), or to defect by confessing the crime
(denoted by D). If one prisoner cooperates when the other prisoner defects, the
cooperative prisoner faces the severest punishment while the defective one is set free.
An example of a complete penalty matrix is shown in Table 4.1. In this example,
when both prisoners defect the strategies are in a Nash equilibrium where each
prisoner faces 6 years in prison. The minimax value is also 6 years in prison for both
players.

row,column Cooperate Defect
Cooperate 1,1 10,0

Defect 0,10 6,6

Table 4.1: Prisoner’s dilemma: a penalty for each corresponding strategy profile
is defined in terms of the years in prison. For instance, when both
prisoners cooperate, each serves 1 year in prison.

Grim-trigger

A grim-trigger strategy can be formulated for this game of prisoner’s dilemma as
follows: given an enforceable correlated strategy, obey the correlated strategy as long
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row,column Cooperate Defect
Cooperate 0 0.5

Defect 0.5 0

row,column Cooperate Defect
Cooperate 1 0

Defect 0 0
A suboptimal strategy The optimal strategy

Table 4.2: Enforceable correlated strategies of prisoner’s dilemma: a number in
each cell represents the probability of choosing the corresponding strat-
egy profile. The left table represents a correlated strategy of alternating
(C, D) and (D, C) with an equal probability, and the right table repre-
sents a strategy where both prisoners cooperate with probability 1.

as the other prisoner also obeys the strategy, otherwise defect forever. This strategy
can be succinctly represented in a state transition diagram as shown in Figure 4.1.

Enforceable
strategy

Minimax
strategy

The other playerobeys The other playerdeviates Whatever The other player does

Figure 4.1: A grim-trigger strategy

Recall that any correlated strategy that is better in average payoff than the min-
imax values is enforceable. Table 4.2 shows two examples of enforceable correlated
strategies of the prisoner’s dilemma game. Consider a correlated strategy of alter-
nating (C, D) and (D,C) (left). It is easy to see that this correlated strategy is
suboptimal since the optimal correlated strategy is for both prisoners to always co-
operate (right). The alternating strategy is, nonetheless, enforceable since its average
penalty of 5 years in prison is better when compared to the minimax penalty of 6
years.

Consider a suboptimal grim-trigger strategy using the alternating correlated strat-
egy. If both prisoners adopt this suboptimal grim-trigger strategy, the play is in a
Nash equilibrium of a repeated game; this equilibrium solution provides two inter-
esting observations.

First, it is assumed that both agents are aware of a punishment that will follow a
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deviation. Suppose not. Since a single deviation results in the minimax (punishment)
state, the most likely outcome is a single-shot Nash equilibrium where both prisoners
defect. Since all single-shot Nash equilibria are also Nash equilibria of a repeated
game, theoretically the statement still holds, but the outcome is less desirable.

Second, at least one agent is rationally bounded; for instance, it only knows about
a limited set of available strategies. Specifically in this example, the only enforceable
strategy available to the agents is the alternating strategy. Suppose not. Let x and y
denote the two agents. Consider an optimal grim-trigger strategy where the prisoners
cooperate as long as the other prisoner continues to cooperate, and defect forever
once the other prisoner defects. Let s and s′ denote the optimal and the suboptimal
grim-trigger strategies, respectively. When agent x uses suboptimal strategy s′, agent
y’s best response is to use a counter-threat to enforce optimal-strategy s. Given the
counter-threat, if agent x is objectively rational, it must change its strategy to s
since the expected payoff of s is strictly better than that of s′. Therefore, if both
agents are using strategy s′, at least one agent is rationally bounded. When both
agents adopt the optimal grim-trigger strategy, the pair of strategies represents an
objectively rational choice given a complete set of available correlated strategies.
Remark. The folk theorem states that any enforceable strategy profile s can be
stabilized under two assumptions: 1) all agents are aware of the enforceable strategy
profile s and the penalty of a deviation from it, and 2) at least one agent believes
that there is no better strategy profile than strategy profile s.

4.2.2 The IMPRES model

The IMPRES approach starts from the assumption that an enforceable strategy
and an absolute criterion such as the minimax values are not readily available. As
opposed to assuming that agents a priori know meta-strategies such as grim-trigger,
the focus of this research is on how the agents can learn such reciprocal strategies.

The IMPRES model represents a strategy as a double-layered structure that
resembles a trigger strategy. To enable a direct comparison, the examples used earlier
when describing the grim-trigger and the IMPRES models are combined in Figure
4.2. Both models reflect non-stationary strategies that depend on previous plays.
Specifically, they both impose some sort of threat to enforce a mutually beneficial
strategy profile. The IMPRES model is distinguishable from the grim-trigger model
in several important respects:

• (Incomplete monitoring) The grim-trigger strategy requires complete monitor-
ing; that is, the minimax strategy is triggered when an agent observes a deviator
from the enforceable strategy. On the other hand, the IMPRES strategy does
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Enforceable
strategy

Minimax
strategy

The other playerobeys The other playerdeviates Whatever The other player does
A grim-trigger strategy

Correlated
strategy

Independent
strategy

exploitexploreCost(C) < Cost(I)_

Cost(C) > Cost(I)_

Cost(C) < Cost(I)_

Cost(I) < Cost(C)_

An IMPRES strategy

Figure 4.2: Grim-trigger versus IMPRES

not require complete monitoring because a transition between meta-strategies
is purely based on the agent’s expectations (expected costs).

• (Stochastic transition) While the strategic transition (between the enforceable
strategy and the minimax strategy) is deterministic in the grim-trigger model,
IMPRES uses a stochastic transition; that is, IMPRES allows the agents to
explore with a small probability.

• (Less coordination overhead) Whereas implementing the minimax strategy may
require a complete coordination among all agents, the punishment strategy of
IMPRES is simply a break from a correlated strategy.

• (Learned correlated strategy) The grim-trigger model can only be implemented
when both the enforceable and the minimax strategies are available; as dis-
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cussed in Chapter 2, both the problem of finding an optimal strategy and the
problem of finding the minimax values are generally intractable. In contrast,
IMPRES is a learning algorithm for efficiently finding those strategies that can
be stabilized.

Perhaps the most important difference is where a mutually beneficial strategy
and a punishing strategy come from. The learning in this context can be viewed as a
search for a self-enforceable strategy, as opposed to a minimax-enforceable strategy,
in the space of correlated strategies. Figure 4.3 compares the folk theorem and the
IMPRES models in the search space of correlated strategies. While the folk theorem
defines an enforceable strategy based on an absolute criterion of the minimax strategy
(denoted by M in the figure), the IMPRES model uses the agent’s independent
strategy (denoted by I) as its relative criterion for determining enforceable strategies.

C1

I
O*

C3 M

C2

The strategy profile realizing the
minimax payoff is denoted by M . A
set of Ci denotes a set of correlated
strategies. The figures are sim-
plified, but there can be infinitely
many correlated strategies in the
space. O∗ denotes optimal strate-
gies.

The folk theorem

C1

I
O*

C3 M

C2

The strategy profile when the
agent’s strategy is independent
from the strategies of other agents
is denoted by I. Note that these
figures represent a view of a single
agent, thus the strategies of other
agents may still be correlated in
profile I as in the minimax strategy
profile M .

The IMPRES model

Figure 4.3: The search space of correlated strategies

Remark. The IMPRES model generalizes the folk theorem such that any correlated
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strategy can be stabilized if, for every agent, using this strategy produces a better
outcome than using the agent’s independent strategy. When the expected payoff of an
agent’s independent strategy is at least as good as its minimax value for every agent,
the set of payoff vectors that are enforceable in the IMPRES model corresponds to
the set supported by the folk theorem.

4.3 Analysis of solution concepts

This section analyzes the outcome of IMPRES within the boundaries of well-known
solution concepts: specifically the notions of correlated equilibria and of Nash equi-
libria.

4.3.1 Correlated equilibria

In particular, the outcome of IMPRES may appear as a correlated equilibrium since
the learned strategy is correlated. The purpose of this section is to draw a clear line
that the notion of correlated equilibria does not reflect the non-stationary nature of
the IMPRES algorithm.

A correlated strategy is a probability distribution over the space S = S1× ...×Sn

of strategy profiles. Suppose that a strategy profile is drawn from set S according to
some correlated strategy f , and each agent is given its respective part of strategy fi.
If, for every agent i in N , the expected cost of following the received strategy fi is
lower than not doing so, given other agents obey their respective strategies f−i, the
correlated strategy f is in a correlated equilibrium [2].

An intuitive example of a correlated equilibrium is a traffic light. Let us revisit
the example of two drivers at an intersection from Section 1.4. The agents (drivers)
have two action choices: stop or enter an intersection. Given that both agents know
how a traffic light works - when one side is a green light the other side is a red
light – the strategies of the two agents can be in a correlated equilibrium around a
traffic light. For instance, suppose that an agent observes a red light. Given that
the other agent obeys its corresponding green light (thus enters the intersection),
obeying the red light (thus stopping) is the optimal strategy. A similar reasoning
can be applied to the other agent that observes a green light. Since none of the
agents are motivated to deviate from the current strategy profile, the strategies are
in a correlated equilibrium.

Definition 13. A correlated strategy f is in a correlated equilibrium if and only if
E[ci(fi, f−i)] ≤ E[ci(gi, f−i)], for all gi ∈ Si, i ∈ N where E denotes the expected
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value1 and ci(s) denotes the cost of agent i under strategy profile s.

i) (Comparison with Nash equilibria of a single-shot game NE1) Since a correlated
strategy profile is a probability distribution over all possible joint strategies, NE1

strategy profiles are special cases of correlated equilibria where the strategies of
individual agents are independent. Therefore, a set of correlated equilibria (CE)
subsumes a set of single-shot Nash equilibria (NE1); such that CE ⊇ NE1.

ii) (Comparison with Nash equilibria of a repeated game NE∞) In principle, the
concept of correlated equilibria assumes that the agents are stationary, thus
not reactive. Specifically, every agent i compares the expected cost of following
strategy fi recommended by the signal to that of taking alternative strategy gi,
assuming that the other agents will perseveringly follow their respective strate-
gies f−i recommended by the signal in subsequent rounds even after agent i’
deviation causes an increase in their costs. Therefore, a set of Nash equilibria
of a repeated game generally do not coincide with a set of correlated equilibria.

To see the properties of correlated equilibria more clearly, consider an unusual
prisoner’s dilemma2 example used in Aumann’s seminal article that introduced the
notion of correlated equilibria [2] (copied3 in Table 4.3). The table (right) shows
an optimum-correlated strategy distribution that is not a correlated equilibrium; for
instance, when a prisoner is recommended to cooperate by the signal, the expected
penalty of defecting is lower, given the other prisoner still obeys its respective signal.

row,column C D
C 4,4 6,0
D 0,6 5,5

row,column C D
C 0 0.5
D 0.5 0

The penalty matrix (years in prison) The optimum-correlated strategy

Table 4.3: An unusual prisoner’s dilemma (C: cooperate, D: defect) [2]

The folk theorem suggests that this distribution can, in fact, represent an equi-
librium strategy of a repeated game, since this strategy is both feasible - as are any

1For simplicity, ci(s) elsewhere denotes the expected cost without being prefixed with E.
2We call this game “unusual prisoner’s dilemma” since its penalty matrix does not comply with

a general definition of the prisoner’s dilemma game where the penalty of mutual cooperation is
generally lower than the average of the lightest and the harshest penalties.

3In Aumann’s original article, the objective of the prisoners is to maximize the expected payoff.
For consistency, the payoff matrix has been modified such that the objective is to minimize the
expected penalty, but the preference order of the strategy profiles is preserved.
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correlated strategies – and enforceable as the expected penalty vector (3, 3) 4 Pareto
dominates the minimax values (5, 5).

If both agents choose their strategies to minimize the expected penalty, a threat
naturally exists in this example, which also illustrates an intuition for the IMPRES
algorithm that a mutually beneficial outcome can be stabilized without an explicit
notion of threat. If the row player deviates from following the signal then the column
player will also be motivated to disobey the signal, since the expected penalty of
following the recommendation is no longer the best choice for the column player.
Thus, the expected penalties of both agents after a deviation become higher than
would have been if the agents continued following the correlated strategy.

More generally, a set of correlated equilibria does not include all equilibrium
points of a repeated game that are suggested by the folk theorem. Particularly, as
just seen in the prisoner’s dilemma example, it excludes those correlated strategies
that can only be sustained by non-stationary strategies such that the agents have
contingent strategies when other agents suddenly change their strategies.
Remark. A correlated equilibrium is a stationary solution concept. Whereas a set
of correlated equilibria includes a set of single-shot Nash equilibria, there exists a
set of Nash equilibria of a repeated game that does not belong to a set of correlated
equilibria.
Remark. Although IMPRES learns correlated strategies, the learned strategies are
non-stationary in nature; therefore, the outcome of IMPRES cannot generally be
characterized as a set of correlated equilibria.

4.3.2 Nash equilibria

In conjunction with the notion of subjective equilibria that will be described in the
next section, the notion of Nash equilibria embodies the targeted solution concept
of IMPRES.

It is generally stated that the notion of Nash equilibria is objectively rational.
I take a different view, and argue that the notion of Nash equilibria is rationally
bounded, particularly in repeated games. I briefly described this view in an earlier
section when discussing the folk theorem. The next example shows the irrational
decision-making process using a Nash dynamics graph. Note that a Nash dynamics
graph does not represent an actual play of a game. It is used here to examine the
conditions behind the definition of a unilateral deviation.

The high-low game shown in Table 4.4 is a two-player matrix game where both

4For each prisoner, the expected penalty when playing according to the optimum-correlated
strategy is 3 years in prison, such that 0.5× 0 + 0.5× 6 = 3.
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agents are better off when they play the same action. In this example, there are two
Nash-equilibrium profiles: (L,L) and (H,H). The strategy profile (L,L) is a Pareto
optimal solution that is more desirable for both players.

row (x),column (y) Low (L) High (H)
Low (L) 1,1 10,10
High (H) 10,10 2,2

Table 4.4: The high-low game (cost matrix)Row deviatorColumn deviator
‘H’ is best-response for column playergiven (‘H’ is best-response for row player
given column player’s strategy is fixed to ‘L’).

L, L L, H

H, L H, H

Row Column

Figure 4.4: Nash dynamics graph of the high-low game that possesses two Nash
equilibria (L,L) and (H,H).

I will show that at least one player is rationally bounded in the suboptimal Nash-
equilibrium profile (H,H). Consider the deviation arc from profile (H,L) to (H,H) in
the Nash dynamics graph in Figure 4.4. Let x and y denote the row player and the
column player, respectively. For player y, strategy H is the best response given a
condition that player x’s strategy is fixed to H; that is, player x in profile (H,L) will
not change its strategy to the best-response strategy L. This condition, in turn, may
mean that player x is rationally bounded, for instance, due to one or more of the
following reasons:

• (incomplete set) player x’s set of strategies is incomplete and does not include
the best-response strategy L.

• (imperfect precision) player x is indifferent between the expected costs of the
two strategies (10 ≤ 1 + ε for some ε > 9).

• (subjective belief) player x’s belief is inaccurate such that given its belief (e.g.,
the strategy of player y is fixed to H instead) H is the best response.
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Otherwise, agent y’s belief that agent x is not willing to change its strategy even
when a better alternative is given must be incorrect. The reasoning process from
profile (L,H) to (H,H) is analogous. To sum up, the two inwards arcs of profile (H,H)
exist only when either or both agents are rationally bounded.

Remark. If the strategy profile of a set of agents converges to a suboptimal Nash
equilibrium of a repeated game, one or more agents in the set are rationally bounded.

Definitions of rationality

Let us formally define the rationality of agents. The terms and their definitions are
compiled from [33, 56]. The notion of objective rationality follows a stricter definition
from [56].

Definition 14. An agent is objectively rational if it chooses the best option from a
complete set of available choices, based on the objective truth.

Definition 15. An agent is unconsciously (objectively) rational if its behavior is
objectively rational, but it is unaware of the fact. When the behavior of a ratio-
nally bounded agent is equivalent to the behavior of an objectively rational agent, the
rationally bounded agent is unconsciously rational.

Definition 16. An agent is rationally bounded if one or more of the following con-
ditions are satisfied:

• (incomplete set) the agent chooses the best option from an incomplete set of
choices available to them. Let ι denote the level of incompleteness.

• (imperfect precision) the agent’s criterion for determining the best option is
approximate; such that agent i’s best strategy si satisfies c(si, s−i) ≤ c(s′i, s−i)+
ε, for all s′i ∈ Si for arbitrarily small ε.

• (subjective belief) the agent’s belief about the strategies of other agents is inexact
with respect to the objective truth. Let η denote the difference between the
subjective belief and the objective truth.

In other words, an agent is objectively rational if and only if the agent can
accurately valuate every choice from a complete set of options, and always chooses
the best option from the set.
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Nash equilibria and bounded rationality

I have made a remark earlier that if the strategies of a set of agents converges to
a suboptimal Nash equilibrium at least one agent is rationally bounded. Let us
rephrase the remark more formally using the terms from the section above. The dis-
cussion henceforth will be specifically focused on repeated games under the following
assumption.

Assumption 8 (incomplete set). Agents have a complete set of independent strate-
gies; however, agents may not have a complete set of correlated strategies. In other
words, agents can explore all possible independent strategies to choose the best inde-
pendent strategy, but can choose the best correlated strategy only among those avail-
able. In this sense, an agent’s optimal strategy (best-response) refers to the best
option from a set of options that are available to the agent.

Note that a correlated strategy is available to an agent when there exists a com-
mon signal that prescribes the agent its respective action. Unless otherwise specified,
the above assumption holds throughout the section.

Let N ι denote a set of agents that are rationally bounded due to incomplete set
(but possess perfect precision and accurate belief). Let Ŝ = Ŝ1 × ... × Ŝn denote a
set of strategy profiles available to agents in N ι.

Proposition 9. For all agent i ∈ N ι, agent i plays an optimal strategy if other
agents’ strategies are stationary.

Proposition 10. For all agent i ∈ N ι, the expected cost of agent i in the worst case
is its minimax value.

In the minimax strategy profile, a deviator’s strategy is independent from the
strategies of the rest, although the strategies of a team of punishers may be correlated.
Therefore, if the deviator has a complete set of independent strategies (Assumption
8), and can correctly choose the best-response given the strategies of other agents
are fixed to the minimax profile (Proposition 9), the highest penalty of a deviator is
at most its minimax cost.

Proposition 11. If strategy profile π ∈ Ŝ is stabilized by the agents in N ι, then
strategy profile π is in a Nash equilibrium of a repeated game (NE∞).

In strategy profile π, every agent is playing its best response (by Proposition
9), and no one changes its strategy (stabilized). Therefore, profile π is in a Nash
equilibrium.
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Corollary 12. Let N ι,ε denote a set of agents that are rationally bounded due to
incomplete set and imperfect precision for some ε (but possessing accurate belief). If
strategy profile π is stabilized by the agents in N ι,ε, then strategy profile π is in an
approximate Nash equilibrium of a repeated game (ε-NE∞).

Theorem 13. Let N denote a set of agents that are objectively rational; that is, the
set Ŝi of strategies that is actually available to agent i coincides with the complete
set Si for all agent i in N . If some strategy profile π is stabilized by the agents in N ,
then strategy profile π is in a Pareto-optimal Nash equilibrium of a repeated game.

Proof sketch. By Proposition 11, profile π is a Nash equilibrium of a repeated game.
Suppose that there exists strategy profile π′ that Pareto dominates profile π. The
profile π′ can be enforced by use of threat, if all agents are rational. If the agents set-
tle with profile π instead of a better option π′, at least one agent is acting irrationally
according to πi, forcing the other agents to play their respective best response strate-
gies π−i. This contradicts the assumption that all agents are objectively rational.

Corollary 14. In a repeated game, if some strategy profile π is in a Nash equilibrium,
either strategy profile π is Pareto optimal, or at least one agent is rationally bounded.

4.3.3 Subjective equilibria

The notion of subjective equilibria introduced in [33] generalizes the notion of Nash
equilibria. Whereas the notion of a rational choice under a Nash equilibrium is
conditioned on the true strategies of other agents, a subjectively rational agent selects
the best option based on its subjective (thus maybe incorrect) belief. If for all
agents the realized actions of other agents matches the agent’s belief, the belief is
enforced and so is the corresponding best-response strategy; thus a strategy profile
can eventually converge to an equilibrium point.

Let N ι,η be a set of agents that are rationally bounded due to incomplete set and
subjective belief (but possess perfect precision). Let H denote a set of all possible
play histories of N , and let µg be a probability distribution over H that is induced
by strategy profile g = [g1, ..., gn]. For some agent i ∈ N ι,η, let gi = [gi

1, ..., g
i
n] denote

agent i’s belief vector about the strategies of agents in N ι,η. Formally,

Definition 17 (Subjective equilibria (η-SE)). A strategy profile g = [g1, ..., gn] is in
a subjective equilibrium if and only if for all agent i ∈ N :

(i) agent i knows its strategy, such that gi
i = gi;
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(ii) agent i plays best response based on its belief, such that c(gi, g
i
−i) ≤ c(x, gi

−i) for

all x ∈ Ŝi; and

(iii) the realized play is consistent with agent i’s belief, such that µg = µgi.

Under two specific assumptions: 1) complete information about the payoff matrix,
and 2) perfect monitoring of players’ actions, the notion of subjective equilibria is
equivalent to that of Nash equilibria as follows:

Proposition 15. If the agents’ subjective beliefs perfectly match the objective truth
(i.e., η = 0), a set of subjective equilibria coincides with a set of Nash equilibria [33].

More generally, a subjective equilibrium is “behavior-equivalent” to a Nash equi-
librium. A formal result from [32, 33] follows.

Definition 18 (ε-closeness). Let µ and µ̄ denote two probability measures defined
in the same space. We say that µ is ε-close to µ̄ for some ε > 0, if there exists a
measurable set Q of events that satisfies:

(i) µ(Q) and µ̄(Q) are greater than 1− ε; and

(ii) for every measurable set A ⊆ Q, (1− ε)µ̄(A) ≤ µ(A) ≤ (1 + ε)µ̄(A).

Definition 19 (ε-like). Let ε ≥ 0. Given two strategy profiles f and g, we say that
f plays ε-like g if µf is ε-close to µg; also referred to here as “behavior-equivalent”.

Theorem 16. For every ε > 0, there exists η > 0 such that if g is a subjective
equilibrium (η-SE) then there exists f̄ such that: 1) g plays ε-like f̄ , and 2) f̄ is an
approximate Nash equilibrium (ε-NE) [33].

That is, in a subjective equilibrium (η-SE), the agents act as if they were in an
approximate Nash equilibrium (ε-NE).

4.4 Characterizing the outcome of IMPRES

The above notions can be related to characterize the behavior of IMPRES. Briefly,
in n-player symmetric games, the outcome of IMPRES in self-play is behavior-
equivalent to an approximate Nash equilibrium of a repeated game. A formal proof
is given in Section 4.4.2.

The discussion from this section is tightly coupled with the empirical analysis
in the next chapter. In contrast to the notion of single-shot Nash equilibria where
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the number of matching solutions is relatively small, the notion of Nash equilibria
of a repeated game comprises infinitely many solutions including a set of suboptimal
single-shot Nash equilibria. In that regard, I propose the use of a new set of criteria
to further classify the solutions in the space of Nash equilibria of a repeated game;
these criteria will also be used to demonstrate that the agents adopting IMPRES
exhibit highly rational group behaviors.

4.4.1 Subclassifying Nash equilibria of a repeated game

In order to give formal proofs, a set of new concepts and their definitions are intro-
duced. These concepts will be used both for analyzing the behavior of IMPRES, and
for dissecting the large space of Nash equilibria of a repeated game.

k-correlated strategy

The notion of a correlated strategy generally assumes that every agent shares com-
mon prior knowledge, which implies a centralized signal. To be precise, the concept
is more general and includes the profiles where only the strategies of some subset
of agents are correlated. The concept of k-correlated strategy subclasses the notion
of a correlated strategy. The definitions for the k-correlated strategy and a set of
auxiliary concepts follow.

Definition 20 (configuration / demographic). A configuration (demographic) is a
generic term to describe a composition of meta-strategies for a set of agents.

Definition 21. k-correlated strategy profile denotes a configuration where the agents
are partitioned into k subgroups such that the strategies are correlated only within the
same subgroup.

Definition 22 (singleton). Given a k-correlated strategy profile, a singleton denotes
a subgroup that consists of a single agent.

Let n denote the number of agents. When a configuration is composed of n
singleton-subgroups, the profile represents an independent strategy profile, referred
henceforth as an anarchy. On the other hand, if the strategies of all agents are
correlated according to a single signal, then the configuration contains one subgroup,
referred henceforth as a monarchy (autocracy).
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Price of anarchy

Figure 4.5 characterizes the subspaces defined by various solution concepts including
correlated equilibria (CE), Nash equilibria of a single-shot game (NE1), Nash equi-
libria of a repeated game (NE∞), and optimal solutions (Opt). Note that there can
be special classes of games where these spaces further overlap with one another.

CE
NE∞∞∞∞

OptNE1

High price of anarchy

CE NE∞∞∞∞

Opt

NE1

Low price of anarchy

Figure 4.5: Various solution concepts in the space of correlated strategies

Another criterion that is relevant to our discussion is the price of anarchy that
measures a distance between optimal solutions and selfish equilibrium solutions
strictly from the system-wide quality perspective [35]. The left figure represents
the problems with high price of anarchy where the solutions defined by stationary
solution concepts are farther away from the optimal solutions. On the other hand,
the right figure represents the problems with low price of anarchy where stationary
solution concepts generally reflect system-wide optimality.

Price of monarchy

With respect to system-wide cost minimization, a monarchy configuration is per-
haps the best option; however, implementing a centralized configuration is not only
difficult, but it also incurs high communication overhead since all agents need to
communicate with a centralized administrator. Analogous to the price of anarchy, a
new metric is introduced to measure the coordination cost, referred to here as the
price of monarchy. Whereas the price of anarchy measures potential quality loss due
to selfish decisions, the price of monarchy estimates the practical cost of installing
cooperative strategies in multiagent systems.

Both price analyses will be further discussed in Chapter 5 when evaluating the
IMPRES algorithm empirically.

66



4.4.2 Proof of behavior-equivalency to Nash equilibria

The analysis henceforth is strictly focused on symmetric games under the following
assumptions. The names of properties are coined by [4, 55].

Assumption 17. In the decision making of a given agent, uncertainty exists only
in the strategies of other agents; that is, their environment is stationary when the
strategies of other agents have converged to stationary ones.

Assumption 18. The inner-learning algorithm satisfies the following two properties:

(i) (the rationality property) The algorithm learns an optimal strategy in a station-
ary environment.

(ii) (the ε-safety property) When agent i is solitary, the inner-learning algorithm
guarantees that the agent’s expected cost does not exceed its minimax value vm

i ;
such that ci ≤ vm

i + ε for arbitrarily small ε.

Note that the safety property does not mean that an agent can efficiently learn its
minimax value, but rather means that an agent can learn to choose a best response
strategy even in the worst possible scenario.

This assumption may sound strange to some readers since it states that agents
in an anarchy configuration (thus without the meta-learning layer) can already ac-
complish an average cost vector that satisfies the folk theorem. But, as discussed
in Chapter 2, independent solutions are generally suboptimal; and an anarchy con-
figuration represents at best a set of single-shot Nash equilibria (See Figure 4.5).
The purpose of having the meta-learning layer is to improve the quality from that of
selfish equilibria by exploring non-stationary strategies.

In this chapter, I first show that the outcome of IMPRES generally belongs to
a class that satisfies the folk theorem where every agent in the worst case receives
its minimax value. I then evaluate the algorithm more thoroughly according to the
quality metric in the next chapter.

Lemma 4. Suppose that the inner-learning exhibits the 0-safety property. Then,
in n-player symmetric games, the expected cost of an agent adopting IMPRES in
self-play is at most its minimax value.

Proof. The proof is by exhaustion. At any point of time, the agents are under one of
the three following configurations: an anarchy (k = n), a monarchy (k = 1), and a
middle-ground (1 < k < n) configurations. Let vm = [vm

1 , ..., vm
n ] denote the minimax

cost vector.
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The analyses on an anarchy and a monarchy configurations directly follow the
basic assumptions. By Assumption 18, an anarchy-cost vector Pareto dominates the
minimax vector vm. In a monarchy configuration, since there are no other agents in
the environment, the environment is stationary (Assumption 17). By the rationality
property from Assumption 18, α-strategist learns a fair and optimal strategy for all
agents; thus, the monarchy-cost vector Pareto-dominates the minimax cost vector.

Now considering the case of middle-ground configurations for 1 < k < n, the
expected cost is at most the minimax value for all agents. Consider a non-singleton
case first, followed by a singleton case. Without the loss of generality, consider a set
of agents that belong to some (non-singleton) subgroup Gk. The expected cost is the
same for all members of subgroup Gk since the strategist’s inner-learning algorithm
is fair (Algorithm 4). Let vγ = [vγ

1 , ..., vγ
n] denote the agents’ solitary-cost vector.

Similarly, let vα and vβ denote the agents’ strategist-cost vector and subscriber-cost
vector, respectively. According to the reasoning in the meta-layer, for all β-agents in
subgroup Gk, the expected cost must be better than their solitary-cost values; such
that for all i ∈ Gk, vβ

i ≤ vγ
i . By the safety property from Assumption 18, for all

i ∈ N , vγ
i ≤ vm

i . By joining the safety property with the reasoning in the meta-layer,
the expected cost of β-agents are at most their minimax values; such that for all
β-agent i ∈ Gk,m(i) = β, vβ

i ≤ vm
i , where m(i) denotes the current meta-strategy

of agent i. The same logic applies to an α-agent. Therefore, all agents in subgroup
Gk are better off than their minimax values. In the case of a singleton, the safety
property suffices to complete the proof.

Theorem 19. Suppose that the inner-learning exhibits the 0-safety property. Then,
the outcome of IMPRES algorithm in self-play in n-player symmetric games is behavior-
equivalent to a Nash equilibrium of a repeated game (NE∞), for any n ≥ 2.

Proof. Combined with the folk theorem, Lemma 4 suffices the proof. Let s denote
the correlated strategy that represents the group behavior of the agents. Since the
average cost vector associated with strategy s Pareto dominates the minimax cost
vector, there exists a Nash equilibrium (trigger) strategy that can support correlated
strategy s. Therefore, the agents act as if their strategies are in a Nash equilibrium
of a repeated game.

Corollary 20. Suppose the inner-learning algorithm exhibits the ε-safety property
for some ε > 0. Then, the outcome of IMPRES algorithm in self-play in n-player
symmetric games is behavior-equivalent to an approximate Nash equilibrium of a
repeated game (ε-NE∞), for any n ≥ 2.
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Anarchy:
3 singletons

Middle ground:
2 subgroups

Monarchy:
1 subgroup

1, 1, … 0.67, 0.67,…1, 1, … 0.67, 1,…1, 0.67,…1, 1, … 1, 0.67, 0.67,… 0.67, 1, 0.67,…0.67, 0.67, 1,…
Figure 4.6: Metro vs. Driving: various demographics for 3 agents

Example

The proof is elaborated using an example that illustrates a 3-player case. Let us
formulate the metro versus driving example from Section 1.5.1 for three agents: i, j
and k. Let the cost of taking metro always be 1; and let the cost function of driving
be d

n
, where d is the number of driving agents and n is the total number of agents

(n = 3 in this example).

Figure 4.6 illustrates three configurations of this example. The minimax cost
in this example is 1.0 for every agent; this is also the value of a Nash equilibrium
for all agents (left). The system-optimal solution is achieved in a monarchy con-
figuration (right) where exactly two agents drive (while one agent takes a metro)
at each round. The average cost for all agents in the monarchy configuration is
approximately 0.67+0.67+1

3
= 0.78.

The most interesting case is the middle-ground configuration where two agents
form a correlated strategy while the third agent remains as a singleton. Without the
loss of generality, let i be a singleton; and let j and k belong to a subgroup. The
double-layered strategy structure for this example was shown earlier in Figure 3.2.
In this configuration, agent i’s optimal strategy is to always drive. In the correlated
strategy, the two agents j and k take turns to drive. Since there will always be two
drivers, the driving cost becomes 0.67. Thus, the average cost of agents j and k is
0.67+1

2
= 0.84. On the other hand, agent i’s average cost is 0.67 since it is always

driving.

Given the strategies of others are fixed, agent i’s best response is to stay in
a singleton (since moving on to the monarchy only increases its cost). Given the
strategy of i is fixed, agents j and k are better off in staying correlated; that is, if
either one breaks from a correlated strategy to become a singleton, the configuration
turns into an anarchy (the minimax configuration). One may argue that a truly
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optimal reaction would be to use the anarchy configuration as a threat to move to
a monarchy configuration. Nonetheless, using the same reasoning as seen earlier
in suboptimal Nash equilibrium examples, this middle-ground configuration is an
enforceable Nash equilibrium of a repeated game; more importantly, the quality of
the middle-ground solution is significantly better than a single-shot Nash equilibrium
in terms of agents’ average cost.

4.5 Summary

In this chapter, I described the conceptual model behind the IMPRES algorithm
that supports implicit reciprocal strategies, and discussed how the IMPRES model
relates to game-theoretic solution concepts.

In general, the interpretations of solution concepts may lead to a philosophical
debate. My goal was to bridge the notion of rationality from the theories of decision
making and the notion of rational outcome from game theory, in particular when a
solution concept describes an output of some learning process over repeated interac-
tions. I argued that if the learning of a set of agents converges to a suboptimal Nash
equilibrium, at least one agent is rationally bounded. I stress that this remark is not
meant to scrutinize the notion of Nash equilibria. On the contrary, I am strongly
inclined to believe that the reason why the notion of Nash equilibria highly appeals
is perhaps because it also represents “reasonable” rationality in addition to an ideal
one.

To sum up, I formally proved that in symmetric games the agents adopting IM-
PRES in self-play make reasonably rational decisions as if they are in an approximate
Nash equilibrium of a repeated game. Since the boundary of Nash equilibria of a
repeated game is large, I proposed the use of a new set of criteria to dissect the space;
this analysis will be more meaningful when combined with an empirical study that
will be discussed in the next chapter.
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Chapter 5

Experiments

“The remedy is to reinforce each of these moods from the other. Con-
versation will not corrupt us if we come to the assembly in our own garb
and speech and with the energy of health to select what is ours and reject
what is not.” – Ralph Waldo Emerson, Society and solitude

5.1 Introduction

The premise of social learning is that with the knowledge learned from others, agents
should always perform at least as good as acting individually. In the last chapter, I
presented theoretical results that IMPRES in self-play learns a mutually beneficial
solution within the range that is supported by the folk theorem. This chapter pro-
vides the empirical counterpart of that argument. The empirical study was carried
out on various sets of problems; each problem set is composed of some well-known ex-
amples and a comprehensive set of complex problems randomly generated according
to the specification of each category.

The evaluation results are organized in three parts. First, a set of desired proper-
ties of social learning is defined that will be used to evaluate the experimental results.
Next, the main set of experiments performed on symmetric network congestion games
are presented; this problem set is further divided into a set of controlled experiments
to discuss interesting cases in relation to the tradeoffs of evaluation criteria. Finally,
preliminary results on well-known 2-player matrix games are presented to demon-
strate potential usefulness of social learning beyond symmetric network congestion
games.
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5.2 Evaluation criteria

Before defining the desired properties of social learning, this section discusses a set of
more general criteria for evaluating a system-wide performance. Some of the criteria
have been briefly mentioned in the last chapter; and formal definitions are given here.

5.2.1 Price of anarchy

The price of anarchy introduced in [35] is a relative criterion for measuring the
inefficiency of a selfish equilibrium (of a problem). In this context, the efficiency
of solution is measured by the objective function value of a target problem. For
instance, the objective used in the experiments here is to minimize the sum of all
agents’ costs, also known as social welfare.

Let Q denote a set of selfish equilibria; and let ϕs denote the objective function
value of some solution s. The price of anarchy, denoted here by $A, is defined as the
worst ratio of the objective function value of a selfish equilibrium q ∈ Q to that of
an optimum o∗ as follows:

$A = max
q∈Q

(
ϕq

ϕo∗
).

As discussed earlier, the price of anarchy can be arbitrarily high. On the other
hand, there exists a class of games where the price of anarchy is bounded low.

Definition 23 (thin middle-ground). When the price of anarchy (of problem) is low,
selfish equilibria are virtually optimal; that is, the quality gap between selfish solutions
and optimal ones is narrow. Specifically in this thesis, the problems with the price of
anarchy lower than 4

3
are referred to as “thin middle-ground” problems.

I generalize the definition such that the price of anarchy (of a learning algorithm)
measures how well a given algorithm can cope with the inefficiency. Given learning
algorithm l, let ϕl denote the objective function value of a solution when all agents
use algorithm l. The price of anarchy of a learning algorithm, denoted here by $A

l ,
is defined as:

$A
l =

ϕl

ϕo∗
. (5.1)

Depending on how the objective function is determined, the price of anarchy can
be used for different purposes. For instance in repeated symmetric games, one can
define the objective function ϕ as the average cost of the worst-performing agent;
such that the price of anarchy can be used to verify whether a certain solution is
enforceable as a Nash equilibrium.
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As discussed in the last chapter, the price of anarchy will be used to further
evaluate the solutions concentrating on their quality. In the experiments, the price
of anarchy of a pure-strategy Nash equilibrium $A

PNE is used as a baseline; it is
straightforward to see that this sets a higher standard than the general price of
anarchy that counts the worst case ratio.

5.2.2 Price of monarchy

The original definition of the price of anarchy suggested that the quality loss of a
selfish solution is a direct exchange for a coordination cost [9]. In fact, in the price
of anarchy literature, the price of anarchy is commonly referred to as a coordination
cost (or coordination ratio) as well. In order to disambiguate the difference between
the quality loss and the actual coordination cost, I define a new criterion referred
to here as the price of monarchy. Whereas the price of anarchy measures potential
quality loss due to selfish decisions, the price of monarchy estimates the practical
cost of installing a certain coordination scheme on a multiagent system. For instance
in this thesis, the coordination cost will be defined in terms of communication cost.

When the agents act independently, no coordination cost incurs; that is, the
coordination cost is optimal when the agents do not communicate at all. On the other
hand, the upper bound cost is open ended. In general, the coordination cost depends
on how a coordination mechanism is implemented; for instance, supporting a complex
negotiation mechanism can be very expensive. In the problems where coordination
is in their nature, the agents may be willing to trade in a high communication cost
for other merits such as privacy; for instance, while a lengthy negotiation process
typifies meeting-scheduling problems, distributed solutions may still be preferred
due to privacy reasons. In this experiment, however, the upper bound of the price of
monarchy is set to that of a centrally administered system, and thus the algorithms
are disregarded when their communication costs exceed this upper bound.

Let ςl and ςA denote the coordination cost function of learning algorithm l, and
the optimal coordination cost at an anarchy configuration, respectively. The price
of monarchy, denoted here by $M

l , is:

$M
l =

ςl
ςA

. (5.2)

In the experiments, the coordination cost function ς is defined as an exponential
function of communication bandwidth δ; such that ς = eδ. This function avoids a
division by zero, and possesses a characteristic that the value grows only gradually
(almost linearly) when the value of δ is less than 1 (the bandwidth of a centrally
administered system), but rises quickly as the value of δ exceeds 1.
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5.3 Experimental hypotheses

This section describes preliminary conditions of the experiments and a set of desired
properties of social learning.

5.3.1 Learning algorithms

For the purpose of experiments, two subordinate variations on the IMPRES algo-
rithm are formulated.

IMPRES (I)

First of all, IMPRES is the algorithm that is being evaluated in the experiments.

Without meta-learning (-m)

Without the meta-learning layer, IMPRES operates only on the inner-learning algo-
rithm. Since an anarchy is the only possible configuration in this case, the learned
strategies are independent. The inner-learning algorithm described in Chapter 3
learns a best-response strategy, but it does not guarantee convergence. This vari-
ation serves two main purposes: 1) to evaluate the inner-learning algorithm alone
(when all agents act individually); and 2) to observe the impacts after adding the
meta-learning layer.

With meta-learning and with a pre-computed Nash solution (+m+n)

As stressed earlier, IMPRES does not require an absolute threshold such as the
minimax values. In this variation, a pure-strategy Nash equilibrium is pre-computed;
and the average cost of the pre-computed Nash equilibrium profile is given to all
agents in the beginning. Also, the agents have an option of following a centralized
signal that fairly distributes the Nash equilibrium strategies. Fairness is an important
feature here because a pure-strategy Nash equilibrium can generally be unfair. Note
that fairness is guaranteed only in the case of symmetric games; and an asymmetric
case is discussed in Section 5.6.4. The purpose of having this variation is to verify
whether IMPRES (using only a subjective criterion) performs comparably with an
algorithm that has an absolute criterion.
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5.3.2 Properties of social learning

A set of experiments was carried out to verify whether IMPRES in self-play achieves
the following set of desired properties in a finite time.

Given a set of agents N = {1, ..., n}, let Na denote a self-play configuration where
all agents in N adopt some learning algorithm a; such that N I denotes IMPRES in
self-play. Let vm = [vm

1 ...vm
n ] denote the minimax cost vector. There exists a finite

time T such that at any point of time t > T , the agents adopting IMPRES (N I)
achieve the following:

I. (minimax-safety) For all agent i ∈ N I , its average cost does not exceed its
approximate minimax cost; such that ci ≤ vm

i + ε for some arbitrarily small ε.

II. (collusion-safety) The sum of average costs of N I is at least as low as that of
N−m; such that

∑
i∈NI ci ≤

∑
i∈N−m ci + ε for some arbitrarily small ε.

III. (comparability) The sum of average costs of N I is comparable to that of N+m+n;
such that

∑
i∈NI ci −

∑
i∈N+m+n ci ≤ ε for some arbitrarily small ε.

First of all, if a learning algorithm satisfies the minimax-safety property, its out-
come is behavior-equivalent to an approximate Nash equilibrium. Since the games of
interest are symmetric the minimax value is common for all agents; hence, an eval-
uation on the worst-performing agent will suffice in the results. Next, the collusion-
safety property ensures the basic premise of social learning that the agents’ perfor-
mance should be improved when extra knowledge is available from other agents; this
can be verified by comparing the results with the −m setting (without social learn-
ing). Finally, the comparability property further verifies that rationally bounded
agents can learn a mutually beneficial outcome without an explicit threat. The last
two properties are defined in terms of social welfare, thus will be discussed in terms
of the price of anarchy in the results.

5.3.3 How to read results

For the sake of clear comprehension of results, a brief instruction is given on how to
read the plots and the tables in the results section. As a reminder, the payoff of an
agent is defined in terms of congestion cost; therefore, the lower, the better.

Legend

Generally, the results compare the performances of the three variations of the IM-
PRES algorithm and two absolute baselines as listed in the table below. Note that
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absolute baselines are used here since IMPRES is the first algorithm that learns
non-stationary strategies for more than two players.

Label Description
IMPRES the general IMPRES algorithm
-m IMPRES without meta-learning, inner-learning algorithm only

(an anarchy configuration)
+m+n IMPRES with meta-learning where a centralized signal is avail-

able to all agents that prescribes a pre-computed PNE strategy
profile (when an absolute criterion exists)

NE1 A pure-strategy Nash equilibrium of a single-shot game (PNE)
that is pre-computed by using the centralized algorithm de-
scribed in Section 2.5.1. In some cases, mixed-NE1 is also dis-
cussed.

Optimum
(O∗)

An optimal solution that is pre-computed using the centralized
algorithm described in Section 2.5.3 (a monarchy configuration)

The minimax-safety result tables

The experimental results verifying the minimax-safety property for a given experi-
ment is presented in a table as shown in the example below. For each problem, the
minimax value is pre-computed according to Theorem 21. The property is satisfied if
the cost of the worst performing agent (denoted by worst in the table) is lower than
the minimax value; the value of ε in such cases is 0. The value of ε measures the max-
imum offset from the minimax value when the property is satisfied approximately;
such that the outcome of IMPRES is behavior-equivalent to an ε-Nash equilibrium
of a repeated game.

ID minimax worst ε
exp-0 1.000 0.571 0.000

Table 5.1: Example: the minimax-safety property

Figures on the price of anarchy

The price of anarchy figure is introduced to concisely visualize the performance of
learning algorithms in terms of the quality of solution.

An example of the price of anarchy figure is shown in Figure 5.1 (left). Let
PNE denote a pure-strategy Nash equilibrium of a single-shot game that is pre-
computed by using the centralized algorithm described in Section 2.5.1. The x-axis
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Figure 5.1: Sample figures on price analysis

exhibits the price of anarchy of a PNE, and the y-axis represents the prices of anarchy
of the considered algorithms and the baselines. Therefore, the x-axis represents
the optimum-baseline (y = 1), whereas the diagonal line (y = x) represents the
PNE-baseline. For each problem g, the averaged social welfare from the last 100
rounds when using each algorithm a represents the objective function value ϕa(g) of
algorithm a. The resulting prices are plotted on x = $A

PNE(g).

Hence, a price of anarchy figure visualizes two things: 1) whether the IMPRES
algorithm satisfies the collusion-safety and the comparability properties; and 2) how
close the quality of solution is to the optima. In brief, the closer to the x-axis, the
better the quality of solution is.

Figures on price curve

The price curve of social learning is introduced to eloquently capture tradeoffs be-
tween the quality loss and the communication cost. An example of a price curve is
shown in Figure 5.1 (right). The x-axis represents the price of monarchy (commu-
nication cost), while the y-axis represents the price of anarchy (quality loss). Since
the objective on both axes is to minimize the costs, the intersection1 holds the holy
grail of an ideal solution.

1Since the price starts from 1, the intersection in the figures is not the origin (0, 0).
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The price of anarchy (monarchy) tables

For each set of experiments, a complete result on the price of anarchy (monarchy) is
also presented in a table in the appendix section. The columns include the problem
ID, the number of alternative paths, followed by a set of prices for the algorithms
and the PNE baseline. Since the price of anarchy is relative to the optimum, the
optimal price is 1. The price of monarchy is specified inside a parenthesis only when
the meta-learning was used. For easier reading, the price of monarchy is expressed
in percentage with respect to the cost of a centralized solution. Note that the last
column represents the performance of the general IMPRES algorithm.

Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

linear-0 9 1.30 1.30 1.10 (0.22) 1.09 (0.27)

Table 5.2: An example of a complete result

For instance, an example is shown in Table 5.2 indicates that problem linear-0
contains 9 alternative paths, and the price of anarchy in the case of PNE is 1.30;
that is, the average cost of agents in the PNE solution can be 30% higher than in
the optimal solution. The performance of the IMPRES algorithm without meta-
learning (-m) is comparable with PNE in this problem. The IMPRES algorithm
when a PNE is given in the outset achieves lower price of anarchy (1.10) by using
22% of communication cost of what would have been used in a centralized approach.
Finally, the general IMPRES algorithm achieves lower price of anarchy (1.09) at 27%
of communication cost when compared to a centrally administered system.

5.4 Experimental settings

The results presented in the rest of the chapter are averaged over 5 – 30 trials. During
each trial, the current costs are logged for all agents at a discrete interval (e.g., at
every 10th iteration). The price of anarchy values on social welfare are in general
based on the results over 50,000 iterations in each trial; the number of iterations vary
for different problems.

The parameter values that are used in the experiments are empirically chosen;
and the rationale for the selected values is discussed in the following subsections.
The default parameter values are shown in the table below.
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Parameter Value Description
T0 10.0 initial temperature at time 0 for the Boltz-

mann update rule
δ 0.95 temperature drop rate (Ti+1 = δTi) where

i denotes time step
Tl 0.01 the lowest temperature
ηm max(0.01, 1

10+trials
) learning step size; the weight of a new value

in value update functions, where trials de-
notes the number of visits to the chosen
meta-strategy

ι 0 an initial value of a new meta-strategy
κ 10 the maximum number of meta-strategies
ω 2 inertia parameter for the current meta-

strategy (algorithm chooses a new meta-
strategy with probability 1

max(f,1)ω where f

is the number of subscribers)

Table 5.3: Learning parameters

5.4.1 Exploration versus exploitation in meta-learning

In the meta-layer, a policy is represented as a probability distribution over a set of
available choices (where each choice of action corresponds to an actual strategy of
how to select a path). After trying out a choice of action m, the algorithm updates
the value of the choice as follows:

Q(m) ← (1− ηm)Q(m) + ηmcost(m). (5.3)

Subsequently, the algorithm adjusts the policy (probability distribution) according
to the Boltzmann equation below, such that a better-performing choice is selected
more frequently.

π(m′) =
exp Q(m′)

T∑
m′′∈M exp(Q(m′′)

T
)
,∀m′ ∈ M (5.4)

Given that, the learning performance depends on the values of step-size ηm and
temperature T from the equations above.

First, the learning step size ηm in Equation 5.3 denotes the weight of a new value
(cost) in the update equation above; and the value of ηm is determined for each
choice m by taking the number of trials (denoting how many times a certain choice
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has been tried) into account as follows:

η = max(z,
1

x + trials
y

).

While parameters x and y control how quickly the weight of the new value is dimin-
ished as the number of trials grows, parameter z limits the minimum weight. If the
value of parameter z is 0, then the value of ηm will approach 0 in the limit. On the
other hand, if a positive value of z is used, the value of step-size eventually becomes
constant z; this makes the algorithm more adaptive to dynamically changing values.
At the same time, if the true value of a choice becomes stationary, the algorithm
using a constant step-size can still learn the correct value [59].

Second, the Boltzmann equation (Equation 5.4) becomes more sensitive as tem-
perature T drops; that is, when the temperature is very low, the algorithm greedily
exploits the current best choice as opposed to exploring for alternatives. In general,
this type of exploration scheme is referred to as decaying exploration and the algo-
rithm becomes less adaptive to dynamically changing environment. Let Tt denote
the temperature at time t; δ some discount factor such that 0 < δ < 1; and Tl

the lowest positive temperature. The IMPRES algorithm gradually cools down the
temperature as follows:

Tt = max(Tl, δtT0) (5.5)

Although the value of Tl cannot be 0 (since temperature T is used as a denominator
in Equation 5.4), a reasonably small value makes the algorithm greedy. Figure 5.2
displays the algorithm’s sensitivity to temperature T for decision making between
two alternatives. For example, consider two choices the costs of which differ by 0.01.
When the temperature is high (T = 10), the algorithm chooses the two options with
an equal probability; but when the temperature is low, the better option is exploited,
e.g. with probability .99 when T = 0.02. The default value of the lowest temperature
Tl = 0.01 has been chosen to allow persistent exploration; similarly with the step-size,
the rationale is to keep the algorithm more adaptive to dynamic settings.

Figures 5.3 – 5.6 show how the performance changes depending on the values of
parameters z and Tl, using the metro versus driving example (Section 1.5.1) with
linear and polynomial cost functions. This example will be further discussed in the
later section; thus the discussion in this section will focus on how the algorithm
performs under various parameter settings. For example, the algorithm with the
first setting (z = 0, Tl = 0.002) employs decaying exploration, and the last setting
(z = 0.01, Tl = 0.01) is for the default persistent exploration.

In all four settings, a resource usage pattern (e.g., the number of drivers) emerges
early in the learning phase (within 2,000 iterations); but it takes a longer time to
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Figure 5.2: Sensitivity to temperature: given 2 alternatives x-axis represents the
value difference between the two choices, while y-axis represents the
probability of choosing a better option.

observe convergence2 in the demographic pattern. In order to illustrate this issue,
learning curves of the first 2,000 iterations and of the long-term performances are
displayed for each setting.

Generally, if there exist some number of agents already coordinating their actions
through social learning, being a solitary is generally a more advantageous option (by
taking advantage of the agents exercising social learning); due to this reason, the
number of solitaries gradually grows in early iterations. If the number of solitaries
becomes high, however, utilizing social learning may appear as a better option. Over
a long period of time, the demographic pattern is eventually stabilized.

Fairness : The fairness of an algorithm is commonly measured by the cost of the
worst-performing agent. In addition, a standard deviation of the costs incurred by
individual agents can be used to measure general fairness of the algorithm. Table
5.4 compares the algorithm’s fairness in the metro versus driving example under the
four parameter settings. The results from this example show that persistent explo-
ration generally results in fairer solutions. In a later section, the fairness measure
will be revisited in 2-player games, where the algorithm under decaying exploration
converges to an unfair single-shot Nash equilibrium more frequently.

To sum up, persistent exploration parameters were selected for fairness and adap-
tivity.

2In this section, an algorithm is said to be converged when the averaged value is no longer
increased nor decreased over some arbitrarily small variance.
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Linear cost function: since the number of drivers converges after 2,000 iterations, so
does social welfare. The demographic pattern is stabilized after 200,000 iterations.
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Polynomial cost function: the number of solitaries grows in the early learning phase,
but converges after 50,000 iterations.

Figure 5.3: Metro vs. Driving (Setting 1. z = 0, Tl = 0.002): this setting employs
decaying exploration.
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Linear cost function: the overall performance is better than Setting 1 although the
patterns may be more spiky.
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Polynomial cost function: the demographic pattern converges after 200,000 iterations;
but the number of solitaries are smaller than Setting 1.

Figure 5.4: Metro vs. Driving (Setting 2. z = 0, Tl = 0.01): this setting allows
persistent exploration, but the algorithm becomes less adaptive after
some time since the weight of new value becomes ignorably light.
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Linear cost function: the number of solitaries is gradually increased until the proba-
bility of exploration approaches zero.
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Polynomial cost function: the average cost is immediately decreased at early learning
phase, although demographic pattern converges at around 200,000 iterations.

Figure 5.5: Metro vs. Driving (Setting 3. z = 0.01, Tl = 0.002): since the algorithm
becomes greedy in this setting, more number of solitaries (free riders)
are expected than other settings.
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Linear cost function: the number of drivers converges after 5,000 iterations.
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Polynomial cost function: similarly with other settings, the average cost drops early,
although the demographic pattern converges after 200,000 iterations.

Figure 5.6: Metro vs. Driving (Setting 4. z = 0.01, Tl = 0.01): this is the default
setting for the main experiments that employs persistent exploration.
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Linear cost function
Setting 1 2 3 4

z, Tl 0,0.02 0,0.01 0.01,0.002 0.01,0.01
mean 0.795 0.775 0.8 0.787
max (worst) 0.813 0.778 0.831 0.793
standard deviation 0.03 0.002 0.035 0.002

Polynomial cost function
Setting 1 2 3 4

z, Tl 0,0.02 0,0.01 0.01,0.002 0.01,0.01
mean 0.172 0.15 0.119 0.132
max (worst) 0.290 0.202 0.182 0.203
standard deviation 0.064 0.03 0.049 0.042

Table 5.4: Fairness of the IMPRES algorithm in Metro versus Driving under four
parameter settings. The values represent the mean, the max and the
standard deviation of the costs incurred by individual agents.

5.4.2 Social learning parameters

As mentioned in Chapter 3, IMPRES introduces a new set of boosting parameters
that may have significant impacts on the learning process. The focus of this section
is to empirically analyze each parameter’s impact on the learning performance of
IMPRES.

Initial value of a new meta-strategy (ι) : Recall that the IMPRES algorithm
maintains a set of strategists (α-agents) as alternative sources of a strategy; such that
each meta-strategy corresponds to an agent (either itself or another agent). A meta-
strategy can become unavailable if the corresponding agent is no longer a strategist;
at the same time, an agent may add a new strategist from the lookup table. When
an agent adds a new meta-strategy, how the agent initially values the newly added
meta-strategy plays a significant role in meta-level exploration. For instance, if the
initial valuation (expected cost) of a new strategist is set too high, then the new
strategy will seldom be explored. On the contrary, if the agent is optimistic about
the new strategist (thus expects a low cost), the new strategy will be frequently tried
out and thus be fully vetted.

The empirical results shown in Figure 5.7 reflects this speculation that optimistic
agents in the long-run achieves better performance in terms of average cost. At the
same time, the communication cost is slightly increased as the agents explore more
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on the other agents’ strategies.

Maximum number of meta-strategies (κ) : Continuing on the discussion on
the meta-strategies from above, each agent has a set of meta-strategies that dynam-
ically change over time. Parameter κ sets the maximum number of meta-strategies
that an agent can keep concurrently. For instance, κ = 7 means that each agent has
choices from being: a solitary, a strategist, or a subscriber to the strategy of one of 5
or fewer other agents. One may consider parameter κ as a search span in the space
of correlated strategies as discussed earlier in Figure 4.3.

A set of values of {5, 7, 10, 15} were tested for parameter κ, and κ = 10 was the
best-performing value from the set; the results are shown in Figure 5.8. The price
of anarchy is mitigated as the size of meta-strategies grows, but the mitigation is
statistically insignificant after the size reaches 10. On the other hand, the price of
monarchy increases when the size of meta-strategies is larger than 10.

Subscribers’ weight (ω) : Although a strategist provides correlated strategies to
its subscribers, the strategist does not receive explicit rewards from the subscribers.
The parameter ω is introduced to enable a strategist to take implicit rewards from
its subscribers by increasing the probability of staying as a strategist with respect to
the number of subscribers. Let ft be the number of subscribers at time t, and let pt

be the probability of choosing a meta-strategy at time t; such that an agent keeps
its current meta-strategy with probability of (1− p).

pt =
1

fω
t

(5.6)

Recall that this parameter affects only when the agent is a strategist, since the
number of subscribers ft is at most 1 otherwise.

When ω = 0, the meta-level decision making is deterministic; that is, an agent
selects a meta-strategy at every round. As shown in Figure 5.9, the coordination cost
is more sensitive to the values of parameter ω. Specifically, when ω = 2 the price
curve indicates that IMPRES learns virtually optimal solutions by forming small-size
subgroups.

5.5 Symmetric network congestion games

The main set of experiments are performed on symmetric network congestion games
with convex cost functions. As described in Chapter 2, polynomial-time algorithms
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Figure 5.7: On varying ι (value of a new leader): The ι value of 0 fully encourages
the agents to explore a new leader. When compared to a case where
the current best value of al meta-strategies was used, using constant 0
outperformed significantly.
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Figure 5.8: On varying κ (maximum number of meta-strategies): The price of
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is lower when κ ≤ 10. Thus, the performance is optimized when κ = 10
in this experiment.
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Figure 5.9: On varying ω (voters’ weight): The performance of social learning is
empirically optimized when ω = 2 both in terms of the price of anarchy
and the price of monarchy.

exist for computing both a single-shot Nash equilibrium and a system optimal solu-
tion in this class of games, which is convenient for a performance evaluation. Recall
that finding a system optimal solution of a symmetric network congestion game with
general nondecreasing cost functions is strictly NP-hard [38]. In addition to con-
vex cost functions, some examples of discrete cost functions are also included in the
problem set, the optimal solutions of which were pre-computed.

First, I show that the worst punishment for an agent in repeated symmetric
congestion game is realized at a single-shot Nash equilibrium. The rest of the section
reports on experimental results as follows. The first two sets are grouped according
to the type of cost functions: 1) convex cost functions and 2) discrete cost functions.
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The last sets of experiments comprise controlled studies designed to analyze the
performance of the algorithm on various conditions.

Minimax values of symmetric network congestion games

This section describes how the minimax values are computed in the experiments on
symmetric congestion games. Recall that the congestion cost depends only on the
number of agents that have chosen the same resource; this requires a full coordination
among all agents (excluding a deviator) to realize the minimax value for a deviator.

Theorem 21. In symmetric network congestion games, the minimax value of an
agent is the worst payoff from a pure-strategy single-shot Nash equilibrium profile.

Proof. Consider a strategy profile where the agent in jeopardy of punishment, re-
ferred henceforth as a deviator, chooses the best option when other agents congest
all available paths as best as they can. Given a set A of paths, let a denote the best
path for the deviator against the minimax strategy of the others. Let −a denote
other paths −a ∈ A − {a}. Since a is the best option for the deviator given the
punishing strategies of others, the cost of adding one more agent to the existing load
la of path a must be lower than that of the rest; such that fa(la + 1) ≤ f−a(l−a + 1)
for all −a ∈ A. At the same time, the cost of path a after the deviator is added must
be higher than the cost of other paths; such that fa(la + 1) ≥ f−a(l−a). Suppose
not. Then, for each path −a that violates the inequality, there exists at least one
extra agent that could have been moved to path a to increase the minimax value
for the deviator; this contradicts that the current punishment is the worst possible
cost for the deviator. Now, suppose the other agents reason with their original ob-
jectives (i.e., to minimize their own costs). Given the strategies of other agents are
fixed, each agent stays with its current choice a′ since it is the best option; such
that fa′(la′) ≤ fa(la + 1) ≤ f−a(l−a + 1) for all −a ∈ A − {a}. Therefore, it is a
pure-strategy Nash equilibrium where the deviator receives the worst possible payoff
in the profile.

Since a pure-strategy Nash equilibrium can be computed in polynomial-time in
symmetric network congestion games, the minimax value can also be found in poly-
nomial time.

5.5.1 Games with convex cost functions

In this problem set, the type of cost function is homogeneous for all edges in the
same problem. Specifically, three types of convex cost functions are examined: linear,
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polynomial, and exponential functions. The cost functions elsewhere are a mixture
of these three types. As a reminder, the cost function is defined in terms of the
number of agents on the same path. For instance, a linear cost function indicates
that the cost of a path increases linearly as more agents decide to use the path.

u v

1

x

1

T
rave

l tim
e

1x: percentage of drivers

metro = 1

driving = x

Figure 5.10: Metro vs. Driving: linear cost function ($A = 1.33)

Simple example: Metro versus Driving

Let us revisit the metro versus driving example from Section 1.5.1 to illustrate sym-
metric network congestion games. Recall that the cost (travel time) of taking a metro
is a constant, say 1; and the cost of driving is a function of the percentage of driving
agents x.

This game possesses a dominant-strategy Nash equilibrium where all agents drive.
In general, if a game possesses a dominant-strategy equilibrium all stationary learning
algorithms including fictitious play and no-regret algorithms necessarily converge to
the dominant strategy equilibrium.

Let d(x) denote the driving cost function for load x. Figure 5.11 shows the results
for the metro versus driving example with two different driving cost functions: 1)
d(x) = x; and 2) d(x) = x47. The first column shows the travel cost averaged over the
set of agents, and the second and third columns show how the agent demographics
changed in the meta-learning layer for the +m+n and the IMPRES algorithms,
respectively.

It is undoubtable that the minimax-safety property is satisfied, since the minimax
value is the worst possible value in this example; also the collusion-safety property is
safely achieved since the -m algorithm converged to the dominant strategy equilib-
rium3. For the comparability property, a statistical significance test failed to reject

3For exactly one agent, driving is not a dominant strategy; thus there exists one more pure-
strategy equilibrium where exactly one agent takes a metro. Due to this reason, the average cost
of -m appear better when compared to the worst possible equilibrium solution.
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When driving cost is a linear function: d(x) = x
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When driving cost is a polynomial function: d(x) = x47
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Figure 5.11: Metro vs. Driving with convex cost functions: Each row corresponds a
linear and a polynomial cost functions. The system optimal solutions
are 0.75 and 0.098 for each case, respectively. In both cases, the
average cost of a dominant-strategy Nash equilibrium is 1.

the hypothesis that the IMPRES algorithm and the +m+n variation are comparable
in the linear cost function case. Since the confidence interval includes 0, the evidence
supports that the two algorithms perform comparably. In the polynomial function
case, the hypothesis was rejected, but the confidence interval for the cost difference
falls below 0.047 with 95% confidence level. I conclude that the comparability prop-
erty is achieved for ε < 0.05 in this example. Throughout the experiments, a similar
trend is observed.

An interesting difference is observed in the agent demographics in the two results.
As discussed earlier in Section 1.5.1, in the case of nonlinear cost functions, just a
few agents can make a huge improvement not only to their own benefits but also to
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social welfare. When a more concrete threat existed (+m+n), a largely correlated
strategy was enforced. On the other hand, without an explicit threat IMPRES
learned correlated subgroups that are smaller in size, leaving nearly 40% of the
population as singletons; yet in terms of social welfare, the two algorithms were
indifferent.

This set of results concurs with my claim from the last chapter that: while the
optimal solutions may be difficult to stabilize without an explicit threat, close-to-
optimal middle-ground solutions can be enforced as a stable outcome if the agents
can learn to incorporate other agents’ strategies only when doing so improves their
performances.

Complex network congestion games with convex cost functions

This section presents a set of results on complex games with linear, polynomial, and
exponential cost functions. All network congestion games in this set is composed of
5 - 10 vertices and 10 - 20 edges; and the number of agents is 100.

First, the minimax-safety property was verified by comparing the cost of the
worst-performing agent to the minimax value; this result can be found in Table 5.5.
The system-wide performance results are compactly represented in Figure 5.12; and
the complete set of results for each type of cost function can be found in Table B.1
– B.3 in Appendix.

In summary, the IMPRES algorithm achieved the following on symmetric network
congestion games with linear, polynomial, and exponential cost functions:

• In problems with high price of anarchy ($A ≥ 4
3
),

– the minimax-safety property is satisfied for ε = 0; and

– the collusion-safety property is satisfied for ε = 0

• In thin middle-ground problems with low price of anarchy ($A < 4
3

),

– the minimax-safety property is satisfied for ε = 0.03; and

– the collusion-safety property is satisfied for ε = 0.

• The comparability property was generally satisfied. Statistically, IMPRES sig-
nificantly outperformed the +m+n variation in this set, but I conclude that the
performance is comparable since the confidence interval is near to 0 (-0.0271
-0.0017).
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Games with linear cost functions
ID minimax worst ε
linear-0 0.992 0.903 0.000
linear-1 0.997 0.844 0.000
linear-2 0.991 0.847 0.000
linear-3 0.982 0.846 0.000
linear-4 0.992 0.871 0.000
linear-5 0.787 0.792 0.005
linear-6 0.937 0.873 0.000
linear-7 1.000 1.055 0.055
linear-8 2.628 2.626 0.000
linear-9 0.891 0.924 0.033

Games with polynomial cost functions Games with exponential cost functions
ID minimax worst ε
poly-0 0.760 0.413 0.000
poly-1 1.051 0.605 0.000
poly-2 0.969 0.475 0.000
poly-3 0.886 0.483 0.000
poly-4 1.128 0.600 0.000
poly-5 2.005 1.749 0.000
poly-6 0.758 0.448 0.000
poly-7 0.923 0.548 0.000
poly-8 0.791 0.533 0.000
poly-9 1.331 0.840 0.000
poly-10 0.463 0.484 0.021
poly-11 0.602 0.604 0.002
poly-12 0.382 0.357 0.000
poly-13 1.216 1.189 0.000
poly-14 0.595 0.623 0.028

ID minimax worst ε
exp-0 1.000 0.571 0.000
exp-1 1.000 0.575 0.000
exp-2 1.000 0.567 0.000
exp-3 1.000 0.577 0.000
exp-4 1.000 0.579 0.000
exp-5 0.149 0.173 0.024
exp-6 0.341 0.367 0.026
exp-7 0.275 0.275 0.000
exp-8 0.219 0.223 0.004
exp-9 1.119 1.123 0.004
exp-10 1.256 0.532 0.000
exp-11 1.107 0.574 0.000
exp-12 1.081 0.523 0.000
exp-13 1.012 0.433 0.000
exp-14 1.163 0.657 0.000

Table 5.5: The minimax-safety property on the games with convex cost functions
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Linear cost functions: ax + b
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Figure 5.12: Games with convex cost functions
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• Most importantly, the quality of solution found by IMPRES is close to optimal.
Specifically, when the price of anarchy of a problem is greater than 2, the
average cost was reduced by more than 40%.

• The use of communication among agents adopting IMPRES is effective; the
average communication cost of IMPRES is approximately 30% of that in a
centralized approach.

5.5.2 Games with discrete cost functions

The problems with discrete cost functions are the most challenging class in general.
Since polynomial-time algorithms do not exist for computing the baseline solutions
in this class, the experiments is conducted on two known examples.

The El Farol bar problem

The El Farol bar problem described in Section 1.5.2 is a well-known congestion game
with a discrete cost function. Any combination of exactly τ agents attending the
bar while the rest stay home is a pure-strategy Nash equilibrium of this problem.
For instance, if an agent knows that other τ agents will definitely attend the bar, its
best response is staying home, and vice versa. Although such a pure-strategy NE
is optimal, it is an unlikely outcome not only because it is unfair, but also because
there are so many of them4 such that it is difficult for the agents to agree on one
of them. On the other hand, a mixed-strategy NE where approximately τ agents
attend the bar is a more natural outcome, but it is suboptimal.

The results are displayed in Figure 5.13. The -m variation slowly approaches the
mixed-strategy equilibrium after some period of oscillation. When a fair NE signal
is available (+m+n), the agents formed a centralized correlated strategy around
the NE signal. In this example, therefore, the +m+n configuration can be viewed
as a centrally administered system. On the other hand, the IMPRES agents self-
organized into a 10-correlated strategy on average (including 6 singletons on average);
and approximately 59 agents (below threshold τ = 60) alternately attended the bar
each night.

In this example, IMPRES exhibits all three desired properties of social learning.
In particular, IMPRES learns a solution the quality of which is comparable to a cen-

4Given n agents and threshold τ , the number of pure-strategy Nash equilibria of the bar problem
is the number of combinations of n elements, taken τ at a time. For instance, for n = 100, τ = 60,(

100
60

)
= 1.3746e + 028.
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Figure 5.13: The El Farol bar problem: The two columns compare the perfor-
mances of IMPRES with the +m+n variation. The -m variation (ap-
peared in both columns) approaches a mixed-strategy NE1; and with
meta-learning, the average costs of IMPRES and the +m+n varia-
tion approach the optimal value. While the +m+n variation forms a
monarchy around the pre-computed NE strategy, IMPRES forms on
average 10 subgroups (10-correlated strategy), among which 6 sub-
groups were singletons.
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trally administered system, yet its coordination is far more effective (approximately
20% of a centrally administered system) since the number of agents in each correlated
strategy was small.

A game with a high price of collusion

In contrast to the price of anarchy that measures the inefficiency of selfish equilibria,
the price of collusion is a criterion for measuring the amount of damage that a
collusion can cause to social welfare [29]. Suppose that agents are partitioned into a
set of coalitional subgroups such that the agents in a group share a common objective
of minimizing the “group average cost” as opposed to minimizing each individual
cost. A set of subgroups is in a coalitional equilibrium if, for all subgroups, changing
one agent’s strategy does not decrease the average cost of the group. Let C denote
a set of coalitional equilibria. Analogously to the price of anarchy, the price of
collusion $C is defined as the worst ratio of the objective function value of a coalition
equilibrium to that of a system optimum as follows:

$C = max
c∈C

(
ϕc

ϕo∗
).

In symmetric nonatomic congestion games, the price of collusion is always 1,
meaning that cooperation always contributes positively to social welfare. Unfortu-
nately, this result does not hold in the atomic congestion games. Table 5.6 shows an
example borrowed5 from [29].

l1(x) =





0 x ≤ k − 1
0.2 x = k
1 x ≥ k + 1

l2(x) =





0 x ≤ k
0.1 x = k + 1
1 x ≥ k + 2

Table 5.6: Discrete cost network congestion game (Hayrapetyan’s example)

This problem is similar to the bar problem from the previous section except that
it is far more difficult to realize the optimal solution since the load has to be divided
into exactly k − 1 and k + 1, and all the other solutions are extremely undesirable
including any approximate ones.

Suppose that there are 2k agents. A pure-strategy Nash equilibrium (k−1, k+1)
exists that sends k − 1 agents to path 1 and k + 1 agents to path 2. This Nash
equilibrium is also the system optimal solution, and the average cost is 1

2k
(0× (k −

5I re-scaled the costs to [0, 1] range.
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Figure 5.14: Hayrapetyan’s example: The -m variation failed to converge within
30,000 iterations. With meta-learning, both IMPRES and +m+n
achieved optimal outcomes by forming a monarchy configuration.
Whereas agents adopting +m+n formed a monarchy around the pre-
computed NE signal, IMPRES agents do so through self-organization.
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1) + 0.1 × (k + 1)) = 0.1(k+1)
2k

. Similarly with the bar problem, there are

(
2k

k − 1

)

different optimal but unfair equilibria in this case.

If each pair of agents forms a coalition, then a strategy profile that splits each pair
into two paths is a coalition equilibrium (k, k), and the average cost is 1

2k
(0.2k+0k) =

0.1. Thus, the price of collusion is 2k
k+1

; this is the worst possible case in symmetric
atomic network congestion games with convex cost functions.

This example is used to demonstrate that agents adopting social learning algo-
rithms learn a correlated strategy only when the correlated strategy is an improve-
ment from a selfish solution. By Theorem 21, the minimax value of this example is
0.1. Note that the coalition equilibrium described above is not a feasible outcome of
the IMPRES algorithm, since the cost when participating in a coalitional subgroup
is higher than the minimax value (0.1) for the k agents whose cost is 0.2.

Figure 5.14 compares the performance of IMPRES with the +m+n variation.
Similarly with the bar problem, the resulting strategy of +m+n represents a cen-
tralized correlated strategy that randomly divide the agents into k − 1 and k + 1
each time. In this example, the outcome of IMPRES also stabilized in a monarchy
configuration. Given the nature of the discrete cost function that does not allow any
approximate solution, a monarchy is a rational choice for the population.

To sum up, in the two known problems with discrete cost functions where a large
set of “optimal but unfair” pure-strategy Nash equilibria exists, IMPRES satisfies
all three properties of social learning; and achieves close-to-optimal solutions.

5.5.3 On varying number of players

This set of experiments evaluates the scalability of IMPRES with respect to the
number of agents. For the same set of network congestion games, the performance of
the algorithm was measured for: 100, 500, and 1000 agents. Note that an increased
population also slightly increases the price of anarchy in some problems; for instance
in problem pop-0, the price of anarchy is increased from 3.03 to 3.27 when population
was increased from 100 to 500.

Figure 5.15 presents the results averaged over 7 trials; the values from each trial
are based on the average cost of all agents from the last 3000 iterations6. The
complete result can be found in Table B.8 in Appendix. According to the desired
properties, IMPRES is scalable with respect to the number of agents. The perfor-
mance slightly degrades as the number of agents increases. In the experiments, all

6During the experiments, the costs were logged at every 100th iteration, thus the values are
averaged over 30 data points to be precise.
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three sets are conducted for 10,000 iterations. A more probing will be necessary to
determine whether the performance on larger population set can be further improved
by adjusting other parameters such as running a longer experiment.
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Figure 5.15: Scalability with respect to population size

5.5.4 On varying problem size

This set of experiments evaluates the scalability of IMPRES in games of various
sizes. The size of a network congestion game is determined based on the number of
alternative paths (denoted by |S|) in the game. Specifically, the problem set consists
of games with 3, 6, 10, and 15 paths.

The results on the minimax-safety property can be found in Table 5.7; and the
results on social welfare are plotted in Figure 5.16 – 5.17, and the complete set of
results for each size problems can also be found in Table B.4 – B.7 in Appendix.
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In the price curves (figures on the second rows), the problems are subdivided
according to three levels of price of anarchy, in order to clearly display the trade-
off between the quality loss and the communication cost. Interestingly, the results
showed the thin middle-ground problems generally incurred higher communication
costs than those with the high price of anarchy. This observation can be interpreted
that a larger subgroup is formed when it is difficult to make an improvement.

In summary, this set of results showed that IMPRES is scalable with respect to
problem size.

5.5.5 On dynamically changing population

This set of experiments examines the robustness of the IMPRES algorithm when
the constituents of an agent population gradually change over time. The motivation
for this set of experiments is to model how a social norm is maintained when the
individual members of a society are gradually replaced with a new generation over
time. Note that the properties of social learning are defined for a static population
that does not change over time.

In this experiment, a randomly selected agent was replaced with a new agent every
dth iteration for d = {1, 5, 10}. A set of 40 randomly generated games were used;
this set satisfies the three properties of social learning under a static population
assumption. The minimax-safety property still holds under moderate population
changes. The ε values are listed in Table 5.8. The results in Figure 5.18 show that
the performance was stable with gradual population changes in this set of problems.

While I find this result promising, a more in-depth evaluation will be necessary
to make a more general remark for the case of dynamically changing populations.
Furthermore, the learning of newcomers leads to my future work on other types of
social learning algorithms; for instance, a newcomer may be able to effortlessly learn
to act rationally by observing what the current members of a society has already
learned.

5.6 Two-player matrix games

Although this thesis mainly focuses on symmetric congestion games, the notion of so-
cial learning can be applied to more general problems beyond this class. This section
demonstrates that IMPRES in self-play converges to an optimal Nash equilibrium of
repeated games in some of the well-known 2-player games. In order to be consistent
with congestion games, the payoffs of all the games presented in this section should
also be interpreted as cost (penalty) instead of rewards.
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The thin middle-ground problems with low price of anarchy ($A < 1.3)
ID minimax worst ε
h1p3-0 0.495 0.497 0.002
h1p3-1 0.970 0.870 0.000
h1p3-2 0.436 0.400 0.000
h1p6-0 0.303 0.324 0.021
h1p6-1 0.748 0.595 0.000
h1p6-2 0.624 0.662 0.038
h1p10-0 0.394 0.406 0.012
h1p10-1 0.840 0.817 0.000
h1p10-2 0.768 0.757 0.000
h1p15-0 0.859 0.914 0.055
h1p15-1 0.907 0.861 0.000
h1p15-2 0.862 0.823 0.000

Modest price of anarchy (1.3 ≤ $A < 2) High price of anarchy ($A > 2)
ID minimax worst ε
h2p3-0 0.287 0.232 0.000
h2p3-1 0.180 0.157 0.000
h2p3-2 0.392 0.267 0.000
h2p6-0 0.426 0.270 0.000
h2p6-1 0.210 0.163 0.000
h2p6-2 0.199 0.148 0.000
h2p10-0 0.289 0.235 0.000
h2p10-1 0.190 0.152 0.000
h2p10-2 0.222 0.137 0.000
h2p15-0 0.978 0.533 0.000
h2p15-1 1.000 0.679 0.000
h2p15-2 0.353 0.206 0.000

ID minimax worst ε
h3p3-0 0.981 0.457 0.000
h3p3-1 0.792 0.403 0.000
h3p3-2 0.854 0.441 0.000
h3p6-0 0.467 0.267 0.000
h3p6-1 0.525 0.296 0.000
h3p6-2 0.580 0.318 0.000
h3p10-0 1.002 0.582 0.000
h3p10-1 0.762 0.388 0.000
h3p10-2 0.811 0.435 0.000
h3p15-0 0.931 0.499 0.000
h3p15-1 0.934 0.501 0.000
h3p15-2 0.725 0.372 0.000

Table 5.7: The minimax-safety property on the problem with various size
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Figure 5.16: Small problems
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ID ε10 ε5 ε1

mix40-0 0.000 0.026 0.126
mix40-1 0.016 0.012 0.012
mix40-2 0.117 0.123 0.128
mix40-3 0.063 0.058 0.059
mix40-4 0.000 0.000 0.005
mix40-5 0.092 0.095 0.092
mix40-6 0.040 0.043 0.053
mix40-7 0.000 0.004 0.033
mix40-8 0.000 0.000 0.049
mix40-9 0.000 0.000 0.000
mix40-10 0.000 0.000 0.000
mix40-11 0.000 0.000 0.000
mix40-12 0.000 0.000 0.000
mix40-13 0.000 0.000 0.000
mix40-14 0.000 0.000 0.059
mix40-15 0.000 0.000 0.000
mix40-16 0.000 0.000 0.066
mix40-17 0.000 0.000 0.000
mix40-18 0.117 0.131 0.317
mix40-19 0.000 0.000 0.000

ID ε10 ε5 ε1

mix40-20 0.000 0.000 0.000
mix40-21 0.000 0.000 0.000
mix40-22 0.000 0.000 0.000
mix40-23 0.000 0.000 0.000
mix40-24 0.000 0.000 0.000
mix40-25 0.000 0.000 0.000
mix40-26 0.000 0.000 0.000
mix40-27 0.000 0.000 0.000
mix40-28 0.000 0.000 0.000
mix40-29 0.000 0.000 0.000
mix40-30 0.000 0.000 0.000
mix40-31 0.000 0.000 0.000
mix40-32 0.000 0.000 0.000
mix40-33 0.000 0.000 0.000
mix40-34 0.000 0.000 0.000
mix40-35 0.000 0.000 0.000
mix40-36 0.000 0.000 0.000
mix40-37 0.000 0.000 0.000
mix40-38 0.000 0.000 0.000
mix40-39 0.000 0.000 0.000

Table 5.8: The minimax-safety property when a randomly selected agent is re-
placed every (10, 5, 1)th round

5.6.1 Inner-learning algorithm for 2-player matrix games

The best-response algorithm in Section 3.3.3 is focused on network congestion games.
In this section, an algorithm for computing best response strategy is given for 2-
player matrix games. In 2-player games, only two configurations are feasible: an
anarchy where each agent makes independent decisions, or a monarchy where one is
a strategist while the other is a subscriber.

Let R and C denote a set of actions available to the row and to the column
players, respectively. An agent’s strategy is represented as a probability distribution
over all pairs of joint actions (r, c) where r ∈ R, c ∈ C. Initially, the algorithm evenly
distributes probability mass among all joint strategies.

In an anarchy configuration, each agent selects a strategy pair according to the
probability distribution of its current strategy, plays its part from the pair, receives
a payoff, and updates the probability using Boltzmann exploration according to
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Figure 5.18: Dynamically changing population (1 new agent in every ith round):
IMPRES generally achieves the properties of social learning under
moderately dynamic population. The problems in which IMPRES
scored positive εi values are marked in boldface (εi denotes the positive
offset from the minimax value for i ∈ {1, 5, 10}.

Equation 5.4.

When the two agents are in a monarchy configuration, a strategist computes
a joint strategy that is a best response to an environment. Since there are no
other agents, the strategist computes an optimal solution for both agents. The
best-response algorithm for this case is exhaustive, and requires that the learner
knows the payoff matrix of both players. The algorithm finds a strategy as follows:
1) find a set of socially-optimal strategy pairs in terms of the sum of both agents’
costs; 2) evenly distribute probability mass among the optimal pairs in the set; and
3) the remaining pairs of joint strategies (that are not socially optimal) are assigned
zero probability. The resulting strategy is thus not only socially optimal, but also
fair to both agents.

Here the roles of the two learning layers are carefully separated. By choosing
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socially-optimal best-responses as opposed to individual best-responses, the expected
cost of the strategist can increase. The purpose of the inner-learning algorithm is
to discover alternative strategies (without fully speculating potential outcomes); and
the vetting process for the newly found strategy is conducted in the meta-layer where
the agent makes a higher level decision. Therefore, if the socially-optimal solution
is in fact unfair to the extent that either agent performs worse than in an anarchy
configuration, the correlated strategy cannot be sustained.

The following subsections discuss empirical results. The figures from this section
display the results of a sample run of a repeated game in order to verify the fair-
ness of the algorithms, a point that has been less emphasized in previous sections.
Additionally, a more general analysis over 30 trials is also discussed.

5.6.2 Iterative prisoner’s dilemma (IPD)

Let us revisit the prisoner’s dilemma game; this time, the penalty matrix is re-scaled
to the [0, 1] range (shown in table below). This game possesses a dominant strategy
equilibrium where both agents defect; that is, regardless of the other prisoner’s choice,
defecting is always a better option. In the +m+n algorithm, the agents are given
this dominant-strategy equilibrium strategy profile (D, D) and its average cost of
0.7.

row,column Cooperate Defect
Cooperate 0.4, 0.4 1.0, 0.0

Defect 0.0, 1.0 0.7, 0.7

row,column Cooperate Defect
Cooperate 1.0 0.0

Defect 0.0 0.0
Cost matrix Optimal correlated strategy

Table 5.9: Prisoner’s dilemma

The results are shown in Figure 5.19 where the left figures show how the row
player progresses over time, and the figures on the right exhibit the counterparts
for the column player. In brief, the -m algorithm converges to a dominant-strategy
equilibrium in this example after several hundreds rounds; and the resulting average
cost is 0.7. On the other hand, when both agents adopt the IMPRES algorithm, the
agents learned to coordinate their actions to play optimally; and the +m+n varia-
tion also performed optimally. The figures on the second row (for each algorithm)
displays how the values of meta-strategies changed over time. For instance, after
approximately 500 rounds, the meta-strategy of the row player adopting IMPRES
converges to α, while the column player similarly converges to β. Thus, the resulting
configuration was a monarchy.
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5.6.3 Game of chicken

The game of chicken is a symmetric coordination game where an optimal outcome
is achieved when each agent takes an alternative move; for instance, when one agent
chooses to go, the best response of the other agent is to stop. Thus, both (go, stop)
and (stop, go) are pure-strategy Nash equilibria. At the same time, both profiles
are Pareto optimal, meaning that one cannot be better off without making the other
worse off. In addition, this game has a mixed-strategy equilibrium where each player
chooses to go with probability 2

9
. With respect to social welfare, the mixed-strategy

is the worst Nash equilibrium in this case due to a positive probability (0.05) of
collision. On the other hand, the pure-strategy NE are unfair since the payoff is
better for the agent that chooses to go.

row,column Stop Go
Stop 0.2, 0.2 0.3, 0.0
Go 0.0, 0.3 1.0, 1.0

row,column Stop Go
Stop 0.0 0.5
Go 0.5 0.0

Cost matrix Optimal correlated strategy

Table 5.10: A game of chicken

The performances of learning algorithms are compared for the game of chicken
in Figure 5.20. The following results are consistent with all 30 trials. When agents
are all independent (-m), their strategies always converged to one of the two unfair
Pareto-optimal pure-strategy NE. The +m-n variation formed a monarchy around
the fair-NE strategy that was given, while IMPRES agents self-organized into a
monarchy, achieving optimal solutions. This result demonstrates that IMPRES
agents are more inclined to a fair outcome when Pareto-optimal pure-strategy Nash
equilibria are unfair.

5.6.4 Coordination game

The coordination game is asymmetric matrix game that reflects agents’ preferences
over the set of actions; for instance, given two actions of watching a movie or a
baseball game, an agent may prefer watching a movie to a baseball game. Similarly
with the game of chicken, the coordination game has three Nash equilibria: two
pure-strategy equilibria and a mixed strategy equilibrium.

One of the pure-strategy Nash equilibrium strategy profiles is given to the +m+n
variation; thus, the NE option is not as fair as in the symmetric games case. Nev-
ertheless, the outcome of +m+n converges to the given NE strategy. Suppose that
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row,column Movie Baseball
Movie 0.0, 0.5 1.0, 1.0

Baseball 1.0, 1.0 0.5, 0.0

row,column Stop Go
Stop 0.0 0.5
Go 0.5 0.0

Cost matrix Optimal correlated strategy

Table 5.11: Coordination game

the given strategy profile is (movie, movie). Because there is only one strategy pro-
file for the NE signal, whenever an agent chooses to follow the NE signal, movie is
the realized action; hence movie is played more frequently during the early learning
period than baseball (because other meta-strategies are more likely to explore both
actions stochastically in the beginning). Given that, the agent that prefers movie will
put more probability mass to following the NE signal (becoming more stationary).
Subsequently, the other player gives in to play its part of the Nash strategy.

This result from the +m+n variation illustrates that it can be more difficult
to establish a mutually beneficial solution when a concrete but unfair norm exists,
because the existing norm privileges some subset of agents with a headstart so that
the norm can be stabilized more quickly.

In contrast, IMPRES agents established a fair and optimal outcome through a
successful self-organization. The results were consistent in 30 trials.

5.6.5 Discussion

Learning rate : In the three well-known 2-player 2-action matrix games (sym-
metric and asymmetric), agents adopting IMPRES learned to play optimally within
500 rounds. As noted earlier, there exist other algorithms that learn mutually ben-
eficial outcomes in 2-player games. In terms of learning rate, IMPRES is efficient
when compared to other approaches: Table 5.12 compares approximate number of
iterations until convergence for various algorithms.

Algorithm Number of iterations
IMPRES 500
Sen et al. [54] 500
Stimpson et al. [58] 5,000
Crandall and Goodrich [14] 40,000

Table 5.12: Learning rate: approximate number of iterations until convergence in
2-player games
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Fairness : Recall that both the chicken and the coordination games possess unfair
but optimal NE1. Although decision making under the IMPRES algorithm is strictly
self-interested, empirical results exhibit that IMPRES agents are inclined to fair
solutions especially when persistent exploration is used.

The learning parameters used for the presented results are consistent with the
main experiments (Table 5.3), thus employ persistent exploration. With decaying ex-
ploration, the algorithm more frequently results in a single-shot Nash equilibrium of
game; Table 5.13 compares the performances of algorithm when different parameter
settings are used.

Exploration, Game IPD Chicken Coord
Setting 1 (z = 0, Tl = 0.002) 0 13 2
Setting 2 (z = 0, Tl = 0.01) 40 5 7
Setting 3 (z = 0.01, Tl = 0.002) 0 6 7
Setting 4 (z = 0.01, Tl = 0.01) 0 2 0

Table 5.13: The number of times the game resulted in a single-shot Nash equilib-
rium out of 100 trials.

5.7 Summary

Theoretically, IMPRES agents learn to behave as if they are in a Nash equilibrium
of a repeated game. The notion of Nash equilibria of a repeated game, however,
comprises a wide spectrum of solutions with respect to the quality of solution. In
this chapter, a comprehensive set of empirical results was presented that the IMPRES
agents learn close-to-optimal solutions; and their coordination cost is generally far
less than in a centrally administered system.

Generally, IMPRES achieves the following properties of social learning:

I. in self-play, every agent adopting IMPRES keeps its average cost below its
approximate minimax value, which verifies behavioral equivalency to an ap-
proximate Nash equilibrium;

II. with respect to social welfare standard, the use of social learning (in the meta-
layer) always improves the performance; and

III. IMPRES agents successfully learn mutually beneficial strategies without an
explicit threat and the performance is comparable with the version of algorithm
that has an absolute criterion.
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Figure 5.19: Iterative prisoner’s dilemma
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Figure 5.20: Game of chicken
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Furthermore, the empirical results showed that the IMPRES algorithm scales well
with respect to problem size and population size; and exhibits robustness against
modest population changes. A set of newly introduced learning parameters and
their impacts on learning performance were also examined. Finally, the experiments
on 2-player games stressed that IMPRES agents are also inclined to fair solutions.
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Chapter 6

Conclusions

“The effectiveness of the docility mechanism would be impaired if in-
dividuals could discriminate perfectly proper behaviors that were ‘for
their own good’ from those that were altruistic. But people can discrim-
inate only very imperfectly between beneficial and altruistic behaviors.
Moreover, much of the value of docility to the individual is lost if great
effort is expended evaluating each bit of social influence before accepting
it. Acceptance without full evaluation is an integral part of the docility
mechanism, and of the mechanisms of guilt and shame.” – Herbert A.
Simon, 1997

6.1 Motivations

Studies of multiagent learning can generally be categorized as either descriptive or
prescriptive theories [55]. The former applies to case where multiagent learning is
used to model certain social or natural phenomena, or to predict likely outcomes
of such phenomena; in this sense, it is important that the learning converges to
solution concepts. The latter focuses on how a self-interested agent should act in
a dynamic environment filled with other agents; thus, a performance objective such
as minimizing expected cost becomes a more important criterion for evaluating a
learning algorithm when the environment is dynamic.

The initial motivation for this research was prescriptive: to design a learning
algorithm to perform well against various types of other agents. From a prescriptive
framework, the case where the strategies of other agents are stationary is less intrigu-
ing, since the learning task differs little from a single-agent setting where classical
reinforcement learning algorithms can learn optimal solutions. When other agents in
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an environment are simultaneously learning and thus changing strategies, however,
many interesting scenarios can take place. For instance, if other agents are adaptive
such that the learner can lead them to a strategy profile that is more advantageous
to the learner, then the learner should exploit this option.

On the other hand, if the other agent attempts to lead the game, the learner
should avoid being exploited, by moving the game’s momentum so that the outcome
is at least a draw. In order for this to happen, the learner may at times be required to
change its objective at least temporarily; for instance, the learner may threaten other
agents by maximizing their costs, instead of playing a best response with respect
to its original objective of minimizing learner cost. This type of objective-shifting
decision making can be represented as a non-stationary strategy that provides a set
of contingent actions, making possible the learner’s swift response. The learning of
sophisticated non-stationary strategies constitutes one of the main contributions of
this thesis.

The basic premise of an artificial agent’s learning - whether in single-agent or
in multi-agent setting - is that the agent is self-interested. Considering theories in
natural and social sciences, this premise also applies to a biological agent’s learning.
As Dawkins [17] states, “anything that has evolved by natural selection should be
selfish.” Herbert Simon elaborates on this idea, arguing that altruistic (human)
society is realized due to “enlightened selfishness” referred to as “docility” [56]. The
notion of docility does not mean that an agent is simply adaptive and gives in;
rather, its direct meaning is teachability such that a docile agent readily assumes
social influence without full evaluation if on average in the long term the agent is
better off by doing so.

Returning to the idea of the artificial agent’s learning, the notion of multiagent
social learning is based on a similar premise: agents in an environment may be
neither stationary nor simply adaptive, but exhibit a docile nature; as such, some
agents may be willing to try the strategies given by other agents if in the long run
their performances improve by doing so.

In particular, when individually rational outcomes known as selfish equilibria are
suboptimal due to negative externalities that each agent unintentionally introduces
to the common welfare, mutually beneficial outcomes can only be achieved through
explicit coordination. Hence, some agents must take altruistic acts. In this context,
this thesis contributes to a descriptive theory by discovering an interesting structure
of a social norm that can enforce mutually beneficial outcomes among self-interested
constituents of a society.
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6.2 Summary of thesis

This thesis investigates the notion of social learning in a multiagent learning con-
text, and proposes a specific example of social learning algorithm known here as
IMPRES (IMPlicit REciprocal Strategy learning). This idea is a break from earlier
thinking in several ways. First, when many intelligent agents exist in an environ-
ment where individual agents have only myopic views, some agents naturally become
more advantageous than others by incidentally being exposed to privileged experi-
ences. Nonetheless, the majority of work in game theory is based on the general
assumption that all agents are equally rational. The IMPRES algorithm in contrast
fully exploits the asymmetry in agents’ rationalities.

In multiagent learning literature, especially in prescriptive theories, other agents
are addressed as “the opponents” or sources of uncertainty. My approach sheds new
light on the existence of other agents, and advances the possibility that other agents
may be additional sources of new knowledge that can improve learner performance.
In certain problems, this may of course be a dangerous idea that may cause learner
performance to subsequently degrade. The premise of social learning is that agents
are sufficiently rational such that they can revert back to another decision if on
average their performances do not improve. On the other hand, when mutually
beneficial solutions are actually feasible, IMPRES agents should be able to establish
such solutions as stable outcomes.

It is in fact generally believed that mutually beneficial outcomes can be stabilized
if a tangible threat can be made clear to all constituents such that any deviator
from the mutually beneficial strategy profile will be - without exception – severely
punished. Generally, a thread of ideas similar to this is dubbed the folk theorem. I
took a different view, stating that rationally bounded agents can stabilize a mutually
beneficial outcome without an explicit notion of threat.

In fact, Kalai and Lehrer [32, 33] have made a similar suggestion, that a set
of rational agents under perfect monitoring can learn to behave like they are in a
Nash equilibrium; they characterized the solution concept as subjective equilibria.
As discussed earlier, however, their rational learning algorithm requires a strong
assumption that from the beginning the agents must have a pretty good idea about
the strategies of other agents. Another striking difference is that their algorithm
explicitly disregards the possibility of correlated strategies; in contrast, IMPRES
specifically searches for a correlated strategy. That is, there exists a set of strictly
correlated strategies that IMPRES can learn, but that cannot be supported by the
independent strategy profiles learned by rational learning. Furthermore, under the
imperfect monitoring assumption (used in this thesis) rational learning can fail to
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learn rational behaviors in some problems [61] including the El Farol bar problem
discussed in Section 1.5.2.

The IMPRES algorithm expands the general idea that rational agents must be
able to learn solutions beyond selfish equilibria that are rational only from a short-
sighted view. Generally, such improved solutions (rather than selfish equilibria) can
be characterized as Nash equilibria of a repeated game. Chapters 4 and 5 established
the main claim of this thesis both theoretically and empirically, that IMPRES agents
learn to find mutually beneficial solutions that are behavior-equivalent to Nash equi-
libria of a repeated game; and furthermore, the quality of solution, both with respect
to social welfare and fairness standards, generally approach the optimal solutions.

With regard to the structure of learned strategies, perhaps the most relevant
work is Littman and Stone’s model, where the strategies are modeled as a pair of
automata in 2-player games [36]. As noted, work to this aim has to date been
generally restricted to 2-player games. On the contrary, IMPRES is designed to
scale well with respect to the number of agents; and the scalability is also supported
by a set of empirical results in Sections 5.5.4 – 5.5.3. The structure of the IMPRES
meta-strategy resembles that of classical reinforcement learning; yet the IMPRES
model is a significant extension to existing models. The major difference is that a
set of available actions change dynamically in the IMPRES model.

Let us reconsider the IMPRES model as an extension to classical reinforcement
learning using a familiar example. Consider the multi-arm bandit problem where the
learner is trying to maximize the expected payoff. Suppose that the learner owns
one arm (so that it is always available to the learner but the reward from the arm is
determined by the environment) and some large set of arms that comes and goes. If
the learner pulls certain arms more frequently, then the probability of the arm being
available increases. If the learner continues to search the entire space, it may be able
to find the optimal solution. Suppose that the learner finds an arm that performs
significantly better than the arm that is always available. Given that the search
space is infinitely large, and that the learner is uncertain about the probability of
finding a better arm, pulling the arm more frequently to ensure that it remains is a
reasonable strategy for the learner.

In such a case, the learner’s choice of selecting the best option among what
is available may not be objectively rational under the strict notion of rationality
discussed in Section 4.3.2; that is, an agent is objectively rational only when it is
choosing the best among a complete set of available options. Suppose now that there
are other agents in the environment of the multi-arm bandit problem, such that the
changing set of arms has been introduced to the environment by some other agents.
Let an arm’s probability of remaining be some monotonically increasing function of
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the average number of agents that pull the arm. When the other agents reason in a
manner similar to the learner’s and choose better arms than the one available to each
individual agent, a set of good arms that are desirable by the majority of constituents
can be sustained so long as a sufficient number of agents continue to pull those arms.
The IMPRES algorithm model is designed to solve this sort of problem where the
learner’s current strategy (together with those of other agents) influences the set of
actions that will be available in the future.

Lastly, this thesis contributes to bridging the gap between theories of decision
making from social sciences to artificial intelligence. The notion of social learning is
prevalent in human learning; and it plays a major role in reinforcing social norms.
This thesis initiates an effort to establish the general idea of “learning from others”
in the multiagent learning context. Specifically, this thesis investigates IMPRES -
an example of social learning algorithm – in depth, and proves that the use of social
learning enables artificial agents to accomplish desirable solutions. In return, this
mathematical model of social learning can be used to model interesting (human)
social behaviors. This leads me to future work.

6.3 Limitations

The IMPRES algorithm aims at middle-ground solutions; that is, the outcome of
IMPRES may be more desirable than selfish solutions in terms of average payoffs
(costs), and its coordination overhead may be smaller than that of a centrally admin-
istered approach. As discussed in Chapter 4, however, the target solution space does
not exclude selfish solutions (an anarchy configuration) nor centrally administered
solutions (a monarchy configuration). Although the empirical study demonstrated
promising results, IMPRES can result in either an anarchy or a monarchy configu-
rations in the worst case.

The algorithm is also limited to symmetric games (or games where every agent
knows the cost functions of other agents as in the coordination game in Section
5.6.4). In addition, computing optimal joint strategy in general can be a computa-
tionally challenging task. In symmetric network congestion games, the algorithm for
computing joint strategy is polynomial with respect to the number of agents that par-
ticipate in the joint strategy. In problem domains where joint-strategy computation
is expensive, computational complexity may also be incorporated into coordination
overhead.
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6.4 Future work

Short-term goals concentrate on further analysis of implicit reciprocal strategy learn-
ing. My long-term goal is to advance the idea of “learning from others” in a broader
context.

6.4.1 Free riders phenomenon

Although the optimal solution may only be achieved when every agent follows a
centralized signal, e.g., the traffic light model, it is generally the case that a close
to optimal solution can be achieved when some subset of agents take altruistic acts.
That being said, there can be free riders that receive the same benefits as those
altruistic ones in spite of not engaging in their fair share of altruistic acts. An
interesting observation from empirical studies on the IMPRES model is that the
number of free riders varies for different problems. Understanding the free rider
phenomenon is important to explaining real-life examples.

6.4.2 Tradeoffs of various criteria

Decision making at a meta-strategy level requires that the agents will reason about
multiple criteria. For example, an agent may trade off a quality gain for a lower
communication cost. On the other hand, when an agent is performing multiple tasks,
the agent may distribute its computational cycles according to its task priority; in
this case, the agent may elect to follow the strategies of other agents for low priority
tasks because it may consume less computational power than learning the strategy for
itself. The IMPRES model currently supports a tradeoff between a quality gain and
a communication cost, and the use of a new criterion for learning costs is proposed.

Weighted-mixture of multiple criteria

The priorities of various criteria depend on problem domains, and one can consider
a weighted-evaluation function that combines multiple criteria into a single measure.
For instance, the total price $total of a solution can be defined to combine quality loss
(ϕ) and coordination overhead (ς) as follows:

$total =
λςl + (1− λ)ϕl

λςA + (1− λ)ϕo∗
,

where λ is a weight parameter representing the relative priority of quality objective
(e.g. average cost) over coordination overhead.
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Learning budget

Given that subscriber-agents do not have to learn how to choose actual actions,
a good portion of IMPRES agents save their computational cycles by substituting
complex learning problems with simpler ones; therefore, the overall learning utility
of the multiagent system is enhanced. From this observation, one can consider a new
evaluation criterion for those agents that are performing multiple tasks simultane-
ously.

Suppose an agent is assigned to perform two independent tasks: A and B, thus
the computing resources of the agent are shared by task A and task B. Suppose the
agent decides to use learning to improve its performance on task A. Since learning
also requires time and computing resources the performance of the other task B may
degrade by some ∆. The agent has to trade off the performance gain from task A
and the relative loss from task B in order to determine how much learning it can
afford on task A.

In this context, the cost of a learning algorithm can be defined as a function of
quality loss on the other tasks. Let tasks(i, t) denote a set of tasks assigned to agent
i at time t. Let f be a flag vector of a length |tasks(i, t)| such that each element of
fj holds a flag +L(−L) if the learning mode of a corresponding task j is on (or off)
such that a task utilizes learning only when the flag is +L. Let jps(j, f) denote the
job processing speed of task j. Let us define the quality loss of task j′ due to the
learning employed by task j, denoted by ∆j′,j, as the difference in the job processing
speed of task j′ with the learning mode of task j off and on as follows:

∆j′,j = jps(j′,




...
j : −L

...


)− jps(j′,




...
j : +L

...


)

The cost of a learning algorithm l employed by task j at time t, denoted by cost(l, j, t),
is formally defined as:

cost(l, j, t) =
∑

j′∈tasks(i,t),j′ 6=j

∆j′,j

Given a learning algorithm, let learning budget denote a criterion for setting the
maximum budget on computing resources that the algorithm can use. In general, the
asymptotic bounds of a learning algorithm are defined from an algorithm’s perspec-
tive; that is, an agent is expected to have a certain degree of computing resources
to run complex algorithms. On the other hand, learning budget is defined from an
agent’s perspective of how much computational resource it can afford for each task.
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The learning of high-level decision makings, such as learning budget, can be
another generalization of this thesis; this will be of interest in the design of complex
intelligent agents.

6.4.3 General social learning models

The IMPRES model provides an example of social learning where agents learn to act
more rationally by using the strategies given by others. Other social learning models
worth exploring include: simply copying the actions of others and learning from the
mistakes of others.

6.4.4 Multidisciplinary research

Lastly, I also anticipate opportunities for multidisciplinary research in relevant fields
including social science, cognitive science, public policy, transportation science, and
complex adaptive systems.

For example, consider an intelligent traffic system where each automobile is
equipped with an intelligent agent assisting a human driver. Each agent can col-
lect realtime traffic information about a certain area that it has driven by, that
might be useful to other agents that are heading towards the area. Suppose that
some agent provides its traffic knowledge to another agent. In this scenario, the in-
formation recipient will be benefited, e.g. by avoiding congested areas. On the other
hand, the information provider does not gain anything; rather proving information
to others may hurt its performance by sparing the communication bandwidth that
could have been used for receiving useful traffic information for itself. In a selfish
solution, therefore, there will be no information providers. In this context, the no-
tion of social learning can be used so that the agents learn to share information to
accomplish mutually beneficial outcomes.

6.5 Contributions

The main contributions of this thesis can be summarized as follows:

I. Initiated an effort for applying the notion of social learning to multiagent learn-
ing.

II. Developed implicit reciprocal strategy learning (IMPRES) – the first algorithm
that learns the non-stationary structure of reciprocal strategies for more than
2 players.
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III. Proved formally that the outcome of IMPRES is behavior-equivalent to a Nash
equilibrium of a repeated game.

IV. Evaluated the IMPRES algorithm empirically through a set of controlled exper-
iments in symmetric network congestion games with nondecreasing cost func-
tions, and a set of experiments on 2-player matrix games.

(i) Presented empirical evidence to support the theoretical result that IM-
PRES agents learn to act as if they are in a Nash equilibrium of a repeated
game.

(ii) Demonstrated empirically that the outcome of IMPRES in self-play is
close to optimal in terms of system-wide solution quality (e.g., average
performance of all agents).

(iii) Evaluated that the algorithm scales well with respect to the number of
agents and to network size.

(iv) Evaluated the algorithm’s robustness relative to gradual changes in agent
population.

(v) Analyzed the impacts of newly introduced social learning parameters.

(vi) The results on 2-player games stressed that IMPRES agents are inclined
to fair outcomes.

V. Proposed the use of a set of general criteria for evaluating the system-wide
performance of multiagent learning algorithms in self-play; and introduced two
types of plots that can succinctly present the performance tradeoffs:

(i) The price of anarchy plot allows a visual comparison of the system-wide
quality of solutions found by various algorithms. Depending on how the
objective function value is defined, this plot can be used to visualize social
welfare or fairness of a learning algorithm.

(ii) The social learning price curve visualizes the tradeoffs between the quality
loss (due to selfish decision making) and the communication cost (due to
coordination effort).

VI. Proposed a set of desired properties of social learning. Whereas the first two
properties are required, the last property is preferable.

(i) the minimax-safety property: every agent must be better off than its
minimax value.
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(ii) the collusion-safety property: the social welfare must be improved from
independent strategy profiles.

(iii) the comparability property: the algorithm with an implicit criterion should
be comparable with one using an absolute standard.

6.6 Conclusion

When individual constituents of a general population possess a high-level goal of
minimizing their long-term average costs, rationally bounded agents that are willing
to take chances on the exploration of potentially better solutions can learn to take
reasonably rational actions in repeated games. The notion of reasonable rationality
refers to the fact that the agents make (at least apparently) altruistic acts, due
to their enlightened selfishness that the acts will pay off later in time, as long as
such subjective beliefs are realized in their long-term average payoffs. In the natural
sciences, this property is known as docility and appears as an advantage in species
survival.

In this thesis, I present a computational model of reasonably rational learning;
and propose the IMPRES algorithm – the first algorithm that learns a reciprocal
strategy profile in self-play that is behavior-equivalent to a Nash equilibrium of a
repeated game. Further, I demonstrate both theoretically and empirically that the
IMPRES algorithm accomplishes the basic premise of social learning that every agent
achieves its minimax value; and the social welfare of IMPRES agents is generally close
to optimal.
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Appendix A

CMRadar’s learning of bumping
probability

This section describes how CMRadar room-finder updates local room owners’ bump-
ing probability. Let n denote the number of bumping requests sent to a room owner,
and let y denote the number of times when the room owner accepts the request.
Based on an assumption that a room owner makes decision following a Bernoulli
distribution, i.e., the owner accepts with a probability θ, and rejects with the prob-
ability 1 − θ, CMRadar uses a Bayesian learning method to estimate the expected
value of bumping probability θ as follows.

The likelihood of seeing y acceptance over n trials given a room owner’s bumping
probability θ is

p(y|θ, n) =

(
n
y

)
θy(1− θ)n−y. (A.1)

By applying Bayes rule, the probability of bumping being θ given y acceptance over
n trials is

p(θ|y, n) =
p(y|θ, n)p(θ|n)

p(y|n)
(A.2)

where p(θ|n) denotes a prior. By taking a uniform prior,

=
p(y|θ, n)

p(y|n)

Bayes proved that the normalization factor, i.e., the denominator in Equation (A.2),
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is a function of n.

p(y|n) =

∫ 1

0

p(y|θ, n)p(θ|n) dθ =
1

n + 1
(A.3)

By substituting the normalization factor and the likelihood in Equation (A.2) with
Equation (A.3) and (A.1), respectively, the probability of bumping can be rewritten
as

p(θ|y, n) = (n + 1)

(
n
y

)
θy(1− θ)n−y.

Then, the expected value of θ given y and n is

E(θ|y, n) =

∫ 1

0

θp(θ|y, n) dθ

= (n + 1)

∫ 1

0

θ

(
n
y

)
θy(1− θ)n−y

= (n + 1)
y + 1

n + 1

∫ 1

0

(
n + 1
y + 1

)
θy+1(1− θ)(n+1)−(y+1).

Again, by using Equation (A.3), the underlined part can be simplified as

∫ 1

0

(
n + 1
y + 1

)
θy+1(1− θ)(n+1)−(y+1)

=

∫ 1

0

p(y + 1|θ, n + 1)p(θ|n + 1) dθ

= p(y + 1|n + 1)

=
1

(n + 1) + 1
.

Therefore, the expected value of probability of bumping given y acceptance over n
trials is

E(θ|y, n) =
y + 1

n + 2
.
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Appendix B

Complete results

Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

linear-0 9 1.30 1.30 1.10 (0.22) 1.09 (0.27)
linear-1 2 1.32 1.32 1.07 (0.33) 1.07 (0.32)
linear-2 2 1.31 1.30 1.06 (0.33) 1.06 (0.32)
linear-3 2 1.31 1.30 1.07 (0.31) 1.07 (0.34)
linear-4 2 1.31 1.30 1.07 (0.31) 1.06 (0.32)
linear-5 4 1.08 1.09 1.03 (0.54) 1.03 (0.56)
linear-6 2 1.12 1.13 1.02 (0.39) 1.02 (0.50)
linear-7 8 1.00 1.01 1.01 (0.50) 1.01 (0.57)
linear-8 4 1.01 1.13 1.00 (0.53) 1.00 (0.54)
linear-9 13 1.01 1.65 1.03 (0.60) 1.03 (0.59)

Table B.1: Results on symmetric network congestion games with linear cost func-
tions
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Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

poly-0 5 2.82 2.88 1.22 (0.10) 1.31 (0.10)
poly-1 5 3.10 2.86 1.49 (0.08) 1.48 (0.08)
poly-2 5 3.24 2.92 1.26 (0.09) 1.30 (0.10)
poly-3 3 2.88 2.72 1.18 (0.13) 1.29 (0.14)
poly-4 3 3.02 2.81 1.26 (0.10) 1.31 (0.13)
poly-5 6 1.62 1.74 1.35 (0.37) 1.36 (0.36)
poly-6 3 2.25 2.20 1.08 (0.18) 1.18 (0.14)
poly-7 4 2.23 2.31 1.12 (0.13) 1.21 (0.11)
poly-8 3 2.00 2.05 1.11 (0.18) 1.21 (0.15)
poly-9 4 2.30 2.09 1.34 (0.07) 1.28 (0.08)
poly-10 4 1.02 1.09 1.02 (0.20) 1.03 (0.18)
poly-11 5 1.06 1.13 1.02 (0.26) 1.02 (0.37)
poly-12 7 1.20 1.20 1.04 (0.41) 1.05 (0.47)
poly-13 3 1.06 1.24 1.02 (0.52) 1.02 (0.55)
poly-14 4 1.02 1.84 1.03 (0.24) 1.03 (0.19)

Table B.2: Results on symmetric network congestion games with polynomial cost
functions
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Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

exp-0 2 2.07 2.03 1.09 (0.18) 1.10 (0.19)
exp-1 4 2.06 2.00 1.09 (0.18) 1.10 (0.19)
exp-2 2 2.01 2.06 1.10 (0.18) 1.10 (0.20)
exp-3 2 1.96 2.00 1.09 (0.18) 1.10 (0.20)
exp-4 2 1.96 2.00 1.10 (0.19) 1.10 (0.19)
exp-5† 2 1.01 9.22 1.17 (0.54) 1.16 (0.51)
exp-6† 6 1.02 4.23 1.10 (0.59) 1.10 (0.54)
exp-7† 7 1.08 4.68 1.09 (0.53) 1.08 (0.55)
exp-8† 2 1.10 4.89 1.11 (0.50) 1.10 (0.48)
exp-9† 3 1.01 1.73 1.01 (0.52) 1.01 (0.49)
exp-10 6 3.16 2.66 1.12 (0.06) 1.13 (0.06)
exp-11 6 3.56 3.00 1.65 (0.04) 1.60 (0.03)
exp-12 5 3.62 3.01 1.34 (0.05) 1.37 (0.04)
exp-13 4 3.98 3.59 1.26 (0.06) 1.33 (0.07)
exp-14 7 3.13 2.86 1.55 (0.04) 1.54 (0.03)

Table B.3: Results on symmetric network congestion games with exponential cost
functions
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Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

h1p3-0 2 1.06 2.12 1.03 (0.48) 1.03 (0.52)
h1p3-1 2 1.16 1.16 1.02 (0.42) 1.03 (0.38)
h1p3-2 3 1.20 1.20 1.04 (0.34) 1.03 (0.52)
h1p3-3 4 1.25 1.25 1.04 (0.39) 1.05 (0.44)
h1p3-4 2 1.18 1.17 1.06 (0.33) 1.06 (0.41)
h1p3-5 2 1.04 1.58 1.02 (0.59) 1.01 (0.63)
h1p3-6 4 1.11 1.10 1.02 (0.51) 1.02 (0.51)
h1p3-7 2 1.25 1.68 1.04 (0.28) 1.05 (0.34)
h1p3-8 4 1.25 1.27 1.04 (0.30) 1.10 (0.50)
h1p3-9 4 1.04 1.04 1.02 (0.63) 1.03 (0.63)
h2p3-0 4 1.51 1.55 1.10 (0.33) 1.11 (0.30)
h2p3-1 2 1.53 1.51 1.17 (0.40) 1.13 (0.32)
h2p3-2 3 1.88 5.33 1.08 (0.20) 1.17 (0.22)
h2p3-3 4 1.91 6.79 1.37 (0.16) 1.24 (0.20)
h2p3-4 2 1.72 1.80 1.07 (0.25) 1.20 (0.23)
h2p3-5 5 2.15 7.83 1.09 (0.18) 1.30 (0.20)
h2p3-6 4 1.51 1.48 1.10 (0.28) 1.15 (0.33)
h2p3-7 2 1.74 3.06 1.09 (0.30) 1.15 (0.28)
h2p3-8 2 1.90 1.98 1.14 (0.19) 1.22 (0.17)
h2p3-9 5 1.91 1.82 1.09 (0.15) 1.18 (0.22)
h3p3-0 3 3.05 3.16 1.32 (0.11) 1.34 (0.10)
h3p3-1 2 2.87 2.83 1.21 (0.14) 1.34 (0.14)
h3p3-2 3 2.87 2.73 1.24 (0.13) 1.35 (0.12)
h3p3-3 2 2.53 2.47 1.26 (0.14) 1.31 (0.12)
h3p3-4 2 2.92 2.88 1.33 (0.11) 1.30 (0.13)
h3p3-5 3 2.52 2.57 1.12 (0.21) 1.24 (0.17)
h3p3-6 5 3.00 3.07 1.20 (0.13) 1.32 (0.12)
h3p3-7 2 2.48 2.55 1.32 (0.12) 1.32 (0.12)
h3p3-8 3 2.51 2.59 1.30 (0.12) 1.32 (0.14)
h3p3-9 2 3.09 2.93 1.18 (0.15) 1.31 (0.13)

Table B.4: Complete results on problems with |S| ' 3
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Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

h1p6-0 6 1.09 4.92 1.08 (0.29) 1.06 (0.41)
h1p6-1 6 1.38 2.91 1.00 (0.98) 1.02 (0.96)
h1p6-2 6 1.01 1.38 1.02 (0.71) 1.02 (0.60)
h1p6-3 4 1.15 1.40 1.08 (0.21) 1.08 (0.24)
h1p6-4 7 1.10 1.16 1.02 (0.47) 1.03 (0.48)
h1p6-5 4 1.19 2.79 1.13 (0.41) 1.13 (0.39)
h1p6-6 5 1.08 1.18 1.03 (0.46) 1.03 (0.42)
h1p6-7 5 1.00 1.00 1.00 (0.66) 1.00 (0.70)
h1p6-8 5 1.16 1.45 1.06 (0.56) 1.08 (0.56)
h1p6-9 5 1.06 2.66 1.04 (0.59) 1.07 (0.55)
h2p6-0 4 2.11 2.16 1.07 (0.26) 1.22 (0.20)
h2p6-1 4 1.76 1.72 1.07 (0.33) 1.14 (0.40)
h2p6-2 4 1.82 1.87 1.19 (0.33) 1.25 (0.31)
h2p6-3 4 1.54 1.53 1.16 (0.44) 1.22 (0.43)
h2p6-4 4 1.77 1.80 1.13 (0.24) 1.18 (0.20)
h2p6-5 4 1.54 1.65 1.08 (0.32) 1.15 (0.40)
h2p6-6 4 1.87 1.93 1.12 (0.35) 1.19 (0.42)
h2p6-7 4 1.82 1.75 1.14 (0.26) 1.23 (0.26)
h2p6-8 6 1.65 1.70 1.14 (0.28) 1.18 (0.37)
h2p6-9 4 2.39 2.46 1.08 (0.23) 1.27 (0.16)
h3p6-0 4 2.51 2.59 1.14 (0.17) 1.34 (0.14)
h3p6-1 4 2.63 2.49 1.17 (0.21) 1.28 (0.19)
h3p6-2 4 2.67 2.53 1.23 (0.13) 1.32 (0.16)
h3p6-3 5 2.60 2.48 1.18 (0.18) 1.29 (0.15)
h3p6-4 4 2.63 2.75 1.17 (0.18) 1.29 (0.19)
h3p6-5 4 2.57 2.44 1.18 (0.15) 1.28 (0.15)
h3p6-6 5 3.12 2.94 1.31 (0.12) 1.43 (0.10)
h3p6-7 8 3.04 6.38 1.37 (0.10) 1.45 (0.13)
h3p6-8 4 3.51 3.27 1.38 (0.10) 1.38 (0.10)
h3p6-9 4 3.05 3.15 1.27 (0.12) 1.38 (0.10)

Table B.5: Complete results on problems with |S| ' 6
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Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

h1p10-0 10 1.05 2.08 1.13 (0.56) 1.07 (0.59)
h1p10-1 11 1.12 3.08 1.05 (0.29) 1.05 (0.21)
h1p10-2 10 1.08 1.44 1.02 (0.40) 1.02 (0.39)
h1p10-3 11 1.13 1.27 1.07 (0.42) 1.06 (0.38)
h1p10-4 10 1.32 2.26 1.19 (0.21) 1.12 (0.34)
h1p10-5 11 1.02 2.79 1.04 (0.62) 1.04 (0.50)
h1p10-6 9 1.08 2.53 1.08 (0.54) 1.09 (0.49)
h1p10-7 12 1.13 6.78 1.15 (0.28) 1.34 (0.38)
h1p10-8 8 1.11 1.73 1.10 (0.66) 1.08 (0.64)
h1p10-9 8 1.03 2.34 1.02 (0.67) 1.03 (0.59)
h2p10-0 9 1.60 1.56 1.11 (0.32) 1.14 (0.28)
h2p10-1 12 1.66 1.70 1.12 (0.36) 1.19 (0.42)
h2p10-2 12 2.02 2.34 1.39 (0.18) 1.65 (0.14)
h2p10-3 11 1.64 1.63 1.09 (0.33) 1.17 (0.31)
h2p10-4 12 1.64 5.10 1.12 (0.27) 1.18 (0.37)
h2p10-5 11 1.52 14.92 1.27 (0.33) 1.31 (0.30)
h2p10-6 11 1.61 2.09 1.27 (0.23) 1.24 (0.26)
h2p10-7 9 1.81 1.86 1.10 (0.35) 1.18 (0.31)
h2p10-8 9 1.59 1.91 1.09 (0.30) 1.21 (0.30)
h2p10-9 12 1.75 1.82 1.24 (0.12) 1.23 (0.15)
h3p10-0 10 2.61 4.72 1.40 (0.11) 1.36 (0.11)
h3p10-1 10 3.02 2.90 1.20 (0.12) 1.28 (0.14)
h3p10-2 9 2.73 2.63 1.22 (0.13) 1.34 (0.10)
h3p10-3 8 3.23 2.98 1.20 (0.13) 1.38 (0.11)
h3p10-4 10 3.05 2.95 1.00 (0.98) 1.01 (0.94)
h3p10-5 12 3.30 3.06 1.40 (0.10) 1.40 (0.09)
h3p10-6 8 2.79 2.57 1.59 (0.07) 1.44 (0.05)
h3p10-7 9 3.51 3.27 1.79 (0.06) 1.50 (0.06)
h3p10-8 8 3.30 3.08 1.47 (0.09) 1.45 (0.07)
h3p10-9 12 2.50 3.39 1.17 (0.71) 1.62 (0.50)

Table B.6: Complete results on problems with |S| ' 10
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Problem Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

h1p15-0 17 1.01 3.10 1.03 (0.51) 1.05 (0.45)
h1p15-1 13 1.16 2.14 1.05 (0.59) 1.07 (0.49)
h1p15-2 13 1.16 2.91 1.07 (0.51) 1.08 (0.47)
h2p15-0 14 2.12 4.99 1.01 (0.97) 1.01 (0.96)
h2p15-1 17 2.24 2.10 1.33 (0.07) 1.31 (0.12)
h2p15-2 16 2.18 4.87 1.02 (0.97) 1.03 (0.97)
h3p15-0 15 2.96 2.76 1.34 (0.07) 1.36 (0.13)
h3p15-1 16 2.87 5.48 1.38 (0.09) 1.31 (0.21)
h3p15-2 13 2.83 2.86 1.19 (0.09) 1.31 (0.17)
h1p15-0 17 1.01 3.10 1.03 (0.51) 1.05 (0.45)
h1p15-1 13 1.16 2.14 1.05 (0.59) 1.07 (0.49)
h1p15-2 13 1.16 2.91 1.07 (0.51) 1.08 (0.47)
h2p15-0 14 2.12 4.99 1.01 (0.97) 1.01 (0.96)
h2p15-1 17 2.24 2.10 1.33 (0.07) 1.31 (0.12)
h2p15-2 16 2.18 4.87 1.02 (0.97) 1.03 (0.97)
h3p15-0 15 2.96 2.76 1.34 (0.07) 1.36 (0.13)
h3p15-1 16 2.87 5.48 1.38 (0.09) 1.31 (0.21)
h3p15-2 13 2.83 2.86 1.19 (0.09) 1.31 (0.17)

Table B.7: Complete results on problems with |S| ' 15
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Problem Price of anarchy (monarchy)
ID Population PNE -m +m+n IMPRES

pop-0
100 2.71 2.69 1.24 (0.08) 1.32 (0.07)
500 2.81 2.79 2.05 (0.01) 1.97 (0.01)
1000 2.81 2.81 2.35 (0.01) 2.28 (0.01)

pop-1
100 2.04 2.13 1.68 (0.12) 1.67 (0.02)
500 2.12 2.15 2.06 (0.94) 1.97 (0.01)
1000 2.13 2.16 2.10 (0.97) 2.07 (0.00)

pop-2
100 2.23 2.12 1.27 (0.06) 1.30 (0.05)
500 2.23 2.12 1.85 (0.01) 1.79 (0.01)
1000 2.23 2.12 1.98 (0.01) 1.99 (0.01)

pop-3
100 1.00 1.01 1.00 (0.43) 1.01 (0.03)
500 1.00 1.01 1.00 (0.95) 1.01 (0.01)
1000 1.00 1.01 1.00 (0.98) 1.01 (0.00)

pop-4
100 1.10 1.11 1.05 (0.08) 1.04 (0.08)
500 1.10 1.11 1.08 (0.21) 1.09 (0.01)
1000 1.10 1.11 1.09 (0.32) 1.10 (0.00)

pop-5
100 1.47 1.51 1.05 (0.14) 1.08 (0.13)
500 1.53 1.55 1.27 (0.02) 1.25 (0.02)
1000 1.53 1.72 1.37 (0.01) 1.36 (0.01)

Table B.8: On growing population size
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Problem1 Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

mix40-0 6 1.18 1.20 1.14 (0.12) 1.14 (0.12)
mix40-1 3 1.00 1.01 1.00 (0.12) 1.00 (0.13)
mix40-2 4 1.00 1.02 1.02 (0.12) 1.02 (0.12)
mix40-3 4 1.00 1.00 1.00 (0.13) 1.00 (0.13)
mix40-4 6 1.25 1.23 1.20 (0.12) 1.20 (0.13)
mix40-5 7 1.02 1.04 1.03 (0.12) 1.04 (0.12)
mix40-6 5 1.04 1.21 1.03 (0.12) 1.03 (0.12)
mix40-7 3 1.08 1.64 1.05 (0.12) 1.05 (0.12)
mix40-8 5 1.08 1.16 1.05 (0.13) 1.05 (0.13)
mix40-9 3 1.15 1.20 1.05 (0.13) 1.05 (0.12)
mix40-10 6 2.19 2.16 1.31 (0.11) 1.30 (0.11)
mix40-11 3 2.47 2.33 1.34 (0.10) 1.33 (0.10)
mix40-12 3 2.54 2.49 1.33 (0.10) 1.28 (0.10)
mix40-13 3 2.41 2.32 1.38 (0.11) 1.39 (0.11)
mix40-14 7 2.08 2.23 1.32 (0.08) 1.34 (0.08)
mix40-15 3 2.23 2.25 1.39 (0.12) 1.37 (0.12)
mix40-16 6 2.78 3.00 1.47 (0.05) 1.49 (0.05)
mix40-17 3 2.16 2.07 1.30 (0.11) 1.29 (0.10)
mix40-18 5 2.39 2.49 1.50 (0.05) 1.51 (0.05)
mix40-19 5 2.18 2.29 1.35 (0.10) 1.34 (0.10)
mix40-20 3 3.05 2.90 1.41 (0.11) 1.40 (0.11)
mix40-21 3 3.56 2.92 1.17 (0.06) 1.29 (0.06)
mix40-22 4 3.22 2.61 1.19 (0.10) 1.17 (0.09)
mix40-23 3 3.12 2.90 1.24 (0.05) 1.29 (0.06)
mix40-24 3 3.18 2.72 1.26 (0.05) 1.39 (0.05)
mix40-25 6 3.00 3.17 1.83 (0.11) 1.84 (0.11)
mix40-26 7 3.03 2.80 1.18 (0.06) 1.21 (0.06)
mix40-27 3 3.71 3.29 1.23 (0.05) 1.28 (0.05)
mix40-28 4 3.61 3.19 1.38 (0.09) 1.38 (0.09)
mix40-29 6 3.43 2.90 1.18 (0.09) 1.21 (0.09)
mix40-30 6 4.22 3.35 1.19 (0.08) 1.24 (0.07)
mix40-31 4 4.37 3.43 1.18 (0.06) 1.35 (0.06)
mix40-32 3 4.34 3.70 1.22 (0.08) 1.26 (0.08)

1This table continues on the next page.
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mix40-33 3 4.14 3.34 1.20 (0.06) 1.32 (0.06)
mix40-34 3 4.25 3.74 1.31 (0.09) 1.33 (0.09)
mix40-35 5 4.08 3.41 1.21 (0.07) 1.31 (0.06)
mix40-36 3 4.21 3.58 1.20 (0.08) 1.27 (0.08)
mix40-37 4 4.39 4.51 2.49 (0.11) 2.51 (0.11)
mix40-38 6 4.43 3.92 1.29 (0.07) 1.36 (0.07)
mix40-39 4 4.15 3.32 1.23 (0.09) 1.22 (0.09)

Table B.9: On dynamic population: when a new agent is added every 10th iteration
(i = 10)
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Problem2 Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

mix40-0 6 1.18 1.22 1.17 (0.08) 1.17 (0.08)
mix40-1 3 1.00 1.01 1.00 (0.08) 1.00 (0.08)
mix40-2 4 1.00 1.02 1.02 (0.08) 1.02 (0.08)
mix40-3 4 1.00 1.00 1.00 (0.08) 1.00 (0.08)
mix40-4 6 1.25 1.23 1.22 (0.08) 1.22 (0.08)
mix40-5 7 1.02 1.04 1.04 (0.08) 1.04 (0.08)
mix40-6 5 1.04 1.31 1.03 (0.07) 1.03 (0.08)
mix40-7 3 1.08 1.80 1.07 (0.08) 1.06 (0.07)
mix40-8 5 1.08 1.12 1.07 (0.08) 1.06 (0.08)
mix40-9 3 1.15 1.27 1.08 (0.08) 1.08 (0.08)
mix40-10 6 2.19 2.18 1.49 (0.08) 1.48 (0.08)
mix40-11 3 2.47 2.33 1.61 (0.08) 1.58 (0.07)
mix40-12 3 2.54 2.53 1.52 (0.07) 1.52 (0.07)
mix40-13 3 2.41 2.32 1.60 (0.07) 1.60 (0.07)
mix40-14 7 2.08 2.30 1.54 (0.07) 1.51 (0.07)
mix40-15 3 2.23 2.26 1.56 (0.07) 1.55 (0.07)
mix40-16 6 2.78 3.01 1.61 (0.06) 1.67 (0.06)
mix40-17 3 2.16 2.07 1.51 (0.07) 1.51 (0.08)
mix40-18 5 2.39 2.49 1.55 (0.06) 1.58 (0.06)
mix40-19 5 2.18 2.33 1.57 (0.07) 1.56 (0.07)
mix40-20 3 3.05 2.91 1.70 (0.07) 1.69 (0.07)
mix40-21 3 3.56 2.92 1.28 (0.06) 1.33 (0.06)
mix40-22 4 3.22 2.61 1.33 (0.07) 1.31 (0.07)
mix40-23 3 3.12 2.90 1.44 (0.07) 1.45 (0.06)
mix40-24 3 3.18 2.72 1.33 (0.05) 1.43 (0.06)
mix40-25 6 3.00 3.18 1.90 (0.08) 1.88 (0.08)
mix40-26 7 3.03 2.89 1.34 (0.07) 1.37 (0.07)
mix40-27 3 3.71 3.29 1.38 (0.06) 1.42 (0.06)
mix40-28 4 3.61 3.19 1.75 (0.08) 1.65 (0.07)
mix40-29 6 3.43 2.90 1.41 (0.07) 1.41 (0.07)
mix40-30 6 4.22 3.35 1.38 (0.07) 1.38 (0.07)
mix40-31 4 4.37 3.43 1.34 (0.06) 1.38 (0.06)
mix40-32 3 4.34 3.70 1.50 (0.07) 1.47 (0.07)

2This table continues on the next page.
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mix40-33 3 4.14 3.34 1.32 (0.06) 1.40 (0.06)
mix40-34 3 4.25 3.74 1.65 (0.07) 1.59 (0.07)
mix40-35 5 4.08 3.41 1.44 (0.06) 1.46 (0.07)
mix40-36 3 4.21 3.58 1.50 (0.07) 1.50 (0.07)
mix40-37 4 4.39 4.51 2.72 (0.08) 2.70 (0.08)
mix40-38 6 4.43 4.05 1.65 (0.07) 1.63 (0.07)
mix40-39 4 4.15 3.32 1.44 (0.07) 1.40 (0.07)

Table B.10: On dynamic population: when a new agent is added every 5th iteration
(i = 5)
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Problem3 Price of anarchy (monarchy)
ID |S| PNE -m +m+n IMPRES

mix40-0 6 1.18 1.23 1.22 (0.03) 1.22 (0.03)
mix40-1 3 1.00 1.01 1.00 (0.02) 1.00 (0.02)
mix40-2 4 1.00 1.02 1.02 (0.02) 1.02 (0.02)
mix40-3 4 1.00 1.00 1.00 (0.03) 1.00 (0.03)
mix40-4 6 1.25 1.23 1.23 (0.03) 1.23 (0.03)
mix40-5 7 1.02 1.04 1.04 (0.02) 1.04 (0.02)
mix40-6 5 1.04 1.37 1.05 (0.02) 1.05 (0.02)
mix40-7 3 1.08 1.78 1.12 (0.02) 1.12 (0.02)
mix40-8 5 1.08 1.10 1.10 (0.03) 1.10 (0.03)
mix40-9 3 1.15 1.22 1.16 (0.03) 1.15 (0.03)
mix40-10 6 2.19 2.23 1.89 (0.02) 1.87 (0.02)
mix40-11 3 2.47 2.33 2.08 (0.02) 2.05 (0.02)
mix40-12 3 2.54 2.59 2.06 (0.02) 2.04 (0.02)
mix40-13 3 2.41 2.32 2.02 (0.02) 1.99 (0.02)
mix40-14 7 2.08 2.40 2.11 (0.02) 2.05 (0.02)
mix40-15 3 2.23 2.32 2.02 (0.02) 2.00 (0.02)
mix40-16 6 2.78 3.07 2.52 (0.02) 2.48 (0.02)
mix40-17 3 2.16 2.07 1.88 (0.02) 1.86 (0.02)
mix40-18 5 2.39 2.49 2.12 (0.02) 2.08 (0.02)
mix40-19 5 2.18 2.39 2.08 (0.02) 2.04 (0.02)
mix40-20 3 3.05 2.96 2.31 (0.02) 2.28 (0.02)
mix40-21 3 3.56 2.92 2.26 (0.02) 2.08 (0.02)
mix40-22 4 3.22 2.61 1.89 (0.02) 1.83 (0.02)
mix40-23 3 3.12 2.90 2.25 (0.02) 2.22 (0.02)
mix40-24 3 3.18 2.72 2.32 (0.02) 2.25 (0.02)
mix40-25 6 3.00 3.11 2.54 (0.03) 2.47 (0.03)
mix40-26 7 3.03 3.02 2.09 (0.02) 2.06 (0.02)
mix40-27 3 3.71 3.29 2.36 (0.02) 2.29 (0.02)
mix40-28 4 3.61 3.19 2.62 (0.03) 2.58 (0.03)
mix40-29 6 3.43 2.90 2.09 (0.02) 1.96 (0.02)
mix40-30 6 4.22 3.35 2.30 (0.02) 2.17 (0.02)
mix40-31 4 4.37 3.43 2.37 (0.02) 2.35 (0.02)
mix40-32 3 4.34 3.70 2.41 (0.02) 2.32 (0.02)

3This table continues on the next page.
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mix40-33 3 4.14 3.34 2.42 (0.02) 2.34 (0.02)
mix40-34 3 4.25 3.74 2.56 (0.02) 2.52 (0.02)
mix40-35 5 4.08 3.41 2.50 (0.02) 2.37 (0.02)
mix40-36 3 4.21 3.58 2.39 (0.02) 2.28 (0.02)
mix40-37 4 4.39 4.51 3.49 (0.03) 3.49 (0.03)
mix40-38 6 4.43 4.52 3.27 (0.03) 3.13 (0.03)
mix40-39 4 4.15 3.32 2.21 (0.02) 2.10 (0.02)

Table B.11: On dynamic population: when a new agent is added every iteration
(i = 1)
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minimax values, 18

complexity, 28
minimax-safety, 75
minimum-cost-flow algorithm, 22
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Nash equilibria, 59, 62

approximate, 63
complexity, 26
of a repeated game, 20, 61
of a single-shot game, 20
Pareto-optimal, 63

network congestion games, 21

potential games, 23
price curve, 77
price of anarchy, 65, 66, 72
price of collusion, 99
price of monarchy, 66, 73
prisoner’s dilemma, 52

iterative, 109

rational learning, 4
rationality

bounded, 61
objective, 61
unconscious, 61

rationality property, the, 40

self-play, 3
social norm, 51
stationary strategy, 40
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correlated strategy, 20
mixed-strategy, 19
pure-strategy, 19

subjective equilibria, repeated games, 63
symmetric congestion games, 22

tragedy of the commons, the, 2

144



Bibliography

[1] W. Brian Arthur. Inductive reasoning and bounded rationality (the El Farol
problem). American Economic Association Annual Meeting, Complexity in Eco-
nomics Theory, 1994.

[2] Robert J. Aumann. Correlated equilibrium as an expression of Bayesian ratio-
nality. Econometrica, 55(1):1–18, 1987.

[3] Christian Borgs, Jennifer Chayes, Nicole Immorlica, Adam Tauman Kalai, Va-
hab Mirrokni, and Christos Papadimitriou. The myth of the folk theorem. In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
pages 365–372, New York, NY, USA, 2008. ACM.

[4] Michael H. Bowling and Manuela M. Veloso. Multiagent learning using a variable
learning rate. Artificial Intelligence, 136(2):215–250, 2002.

[5] Gearge W. Brown. Some notes on computation of games solutions. Technical
report, RAND CORP, Santa Monica, CA, April 1949.

[6] Jan-P. Calliess and Geoffrey J. Gordon. No-regret learning and a mechanism
for distributed multiagent planning. In Proceedings of the Seventh international
joint conference on Autonomous agents and multiagent systems, pages 509–516,
Estoril, Portugal, 2008. IFAAMAS.

[7] Deeparnab Chakrabarty, Aranyak Mehta, and Viswanath Nagarajan. Fairness
and optimality in congestion games. In Proceedings of the Sixth ACM conference
on Electronic commerce, pages 52–57, New York, NY, USA, 2005. ACM.

[8] Xi Chen and Xiaotie Deng. Settling the complexity of 2-player Nash-equilibrium.
In Proceedings of the Forty-Seventh Annual IEEE Symposium on Foundations
of Computer Science, pages 261–272, 2006.

145



[9] George Christodoulou and Elias Koutsoupias. Coordination mechanisms. Lec-
ture Notes in Computer Science, 3142:345–357, 2004.

[10] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning
in cooperative multiagent systems. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 746–752, 1998.

[11] Vincent Conitzer and Tuomas Sandholm. AWESOME: A general multiagent
learning algorithm that converges in self-play and learns a best response against
stationary opponents. In Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

[12] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to algorithms. The MIT Press, Cambridge, Massachusetts, 1 edition, 1990.

[13] Richards Cornes and Todd Sandler. The theory of externalities, public goods,
club goods. Cambridge University Press, New York, 1996.

[14] Jacob W. Crandall and Michael A. Goodrich. Learning to compete, compro-
mise, and cooperate in repeated general-sum games. In Proceedings of the
Twenty-Second International Conference on Machine learning, pages 161–168,
New York, NY, USA, 2005. ACM.

[15] Laura A. Dabbish and Robert E. Kraut. Email overload at work: an analysis of
factors associated with email strain. In Proceedings of the Twentieth Anniver-
sary Conference on Computer Supported Cooperative Work, pages 431–440, New
York, NY, USA, 2006. ACM.

[16] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou.
The complexity of computing a Nash equilibrium. In Proceedings of the Thirty-
Eighth Annual ACM Symposium on Theory of Computing, pages 71–78, New
York, NY, USA, 2006. ACM.

[17] Richard Dawkins. The selfish gene. Oxford University Press, 1976.

[18] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of
pure Nash equilibria. In In Proceedings of the 36th ACM Symposium on Theory
of Computing, pages 604–612. ACM, 2004.

[19] Julie Farago, Amy Greenwald, and Keith Hall. Fair and efficient solutions to the
Santa Fe bar problem. In Grace Hopper Celebration of Women in Computing,
2002.

146



[20] Eugene Fink, P. Matthew Jennings, Ulas Bardak, Jean Oh, Stephen F. Smith,
and Jaime G. Carbonell. Scheduling with uncertain resources: Search for a
near-optimal solution. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[21] Dean P. Foster and H. Peyton Young. On the impossibility of predicting the
behavior of rational agents. Working Papers 01-08-039, Santa Fe Institute,
August 2001.

[22] Michael Freed, Jaime Carbonell, Geoff Gordon, Jordan Hayes, Brad Myers,
Dan Siewiorek, Stephen Smith, Aaron Steinfeld, and Anthony Tomasic. Radar:
A personal assistant that learns to reduce email overload. In Proceedings of
the Twenty-Third Conference on Artificial Intelligence, pages 1287–1293, Menlo
Park, CA, USA, 2008. AAAI.

[23] Drew Fudenberg and Eric Maskin. The folk theorem in repeated games with
discounting or with incomplete information. Econometrica, 54(3):533–554, May
1986.

[24] Amy R. Greenwald. Learning to play network games: Does rationality yield
Nash equilibrium? PhD thesis, New York University, 1999.

[25] James Hannan. Approximation to Bayes risk in repeated play. Contributions
to the Theory of Games, 1957.

[26] Garrett Hardin. The tragedy of the commons. Science, 162:1243–1248, 1968.

[27] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to
correlated equilibrium. Econometrica, 68(5):1127–1150, 2000.

[28] Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 1:26–54, 2001.
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