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Abstract

People can acquire knowledge not only from media such as books, but
also through interactions with other people. Automated dialog agents,
however, typically limit their learning from labeled data, and program-
ming.

This thesis describes an approach that enables such agents to actively
acquire new knowledge through spoken dialog interaction. To acquire
knowledge in different situations, we propose several key dialog-driven
strategies that include user-initiated, system-detected and system-initiated
processes. Using these techniques, an agent can acquire domain-specific
knowledge both from the public domain (through open domain knowledge
bases) and in the informal space (through human users). Our approach
incorporates two sets of techniques:

First, we design techniques that allow a spoken dialog agent to detect
when an interaction contains unknown entities. These unknowns can
manifest as unseen words/phrases, or unseen references to known entities.
We use various spoken dialog features to detect and handle unknown
entities. We then use open-domain knowledge bases and appropriate
semantic-relatedness measures to deal with unknown references to known
entities.

Second, we show that our novel conversational strategies allow our
agent to acquire additional information about detected unknowns, which
can improve the execution of appropriate dialog tasks. These strategies
are designed to support two primary goals: (i) Validate the genuineness of
detected unknowns, (ii) Elicit relevant information about these unknowns.
In this thesis we show that the proposed strategies are effective, and use-
ful. We demonstrate their effectiveness through a system that solicits
situational information to augment its knowledge base from its users in a
domain that provides information on events. We find that this knowledge
is consistent and useful and that it provides reliable information to users.
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iv Abstract

Together these techniques allow agents to use spoken dialog capabili-
ties to acquire and extend their knowledge bases of language and world
knowledge without the need for expert intervention.
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Chapter 1

Introduction

An interactive agent should aim for efficient interaction with a user and
for effective completion of tasks. An interaction is efficient, when the
agent and the user exchange their intentions with few or no misunder-
standings (dialog-costs). An agent is effective, when it finishes a task with
few or no failures (task success). Therefore, dialog agents are primarily
evaluated in terms of their dialog-costs and task success (Walker et al.,
1997). However, in real life, an agent is highly vulnerable to errors. The
user’s input goes through several layers of processing — from capturing
the speech, converting the speech to text, parsing the text, and finally,
understanding intention of the user. Errors cascade through this pipeline.
Thus, it is difficult for an agent to achieve high efficiency and effectiveness.
Previous work in spoken dialog research (Hazen et al., 2002; Williams and
Young, 2004; Skantze, 2007a; Bohus, 2007; Raux, 2008) has focused on
errors due to capturing the input speech, misrecognition of the speech,
errors in spoken language understanding and non-topical / incomplete
input from the user. Besides these issues, an agent can also suffer from
insufficient domain knowledge to understand intention of the user. For
example, the user needs to know how to get to a new or less-known land-
mark, but the agent does not have any information including the name
of the landmark. Consider the dialog in Figure 1.1. The agent attempts
to resolve this problem by refering to other places that are acoustically
similar to the landmark’s name, after few turns it picks up that user is
refering to an indian restaurant. This results in a large list of candidate
landmarks and finally the user gives up on their query. It not only leads to
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long and ineffective interaction, but also hurts effectiveness of the agent.
In such situations, if the agent were able to learn the name of the landmark
from the user, then it will learn more information about the landmark
from alternative sources and provide information to the user in future. In
this work, we focus on how an agent might fill the gaps in its knowledge
to help improve its effectiveness and efficiency.

U: Where is shiva’s restaurant located?
S: Sorry. Did you mean chivas?
U: No. shivas
S: Did you mean kiva han cafe?
U: shivas indian restaurant
S: Did you mean indian restaurant?
U: Yes
S: There are 56 indian restaurants in the database? Which one.
U: [Hangup]

Unknown Information

Figure 1.1: Fictitious Dialog in unknown information scenario

In general, incomplete knowledge is a common problem for artificial
agents — both for the interactive and for the non-interactive ones. For
example, in a new environment, a mobile robot cannot navigate to a place
without an annotated map of the environment. Creating an annotated
map is laborious and time-consuming task for people. On the other hand,
a robot, with basic sensory mechanism and interactive skills, can ask and
learn about the places in the environment. This will not only reduce
the annotation effort, but also allows the agent to quickly adapt to new
environments. Similarly, a product recommendation agent may interact
(implicitly through user behavior/explicitly through surveys) with its users
to learn what they like and dislike to help make better recommendations.
Whatever the domain may be, knowledge acquisition is essential for the
agents to accomplish their tasks.

New knowledge can manifest itself in different forms e.g., as unknown
words, as unknown facts, as unknown topics, as novel/indirect references
to existing items in the knowledge etc. Detecting the unknown words in
speech is popularly known as out-of-vocabulary (OOV) detection. Detect-
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ing indirect references to stored knowledge can be understood as a concept
detection problem. Many researchers have developed algorithms to detect
the OOV words (Schaaf, 2001; Chung et al., 2003; Qin and Rudnicky, 2012)
and the topics/concepts (Cristianini et al., 2002; Blei et al., 2003; Carlson
et al., 2010) from natural language. Most of these algorithms were devel-
oped in standalone or batch setting (as opposed to interactive setting). For
a spoken dialog agent, detecting the OOV words and the topics/concepts is
important to perform tasks. All processes in a dialog system pipeline, such
as recognition, parsing and dialog management, depend on the words in
an input. Therefore, it is critical to have a tighter integration of knowledge
detection methods with an interactive system.

The problem with most of the spoken dialog frameworks (McTear,
1998; Bohus et al., 2007b; Young et al., 2010) is that they make no allowance
for knowledge acquisition. A typical dialog agent is equipped with a static
knowledge base — under an assumption that the agent knows everything
that it needs to know about a domain to function properly. Although it is a
reasonable assumption to make, it is not always true. (Bohus and Rudnicky,
2005c) found that a flight information dialog agent missed considerable
portion of utterances due to novel words or phrases in those utterances. In
such situations, an agent typically asks the person to rephrase or repeat the
utterance. After a threshold, agent gives up on such utterances. Learning
unknown information from these utterances can make the agent more
efficient and effective than earlier.

Knowledge acquisition requires the agent to have conversational strate-
gies. A conversational strategy determines what the agent needs to ask the
user, how it should ask them, and when does it need to stop asking them.
Different strategies need to be used in different acquisition scenarios. But
existing conversational strategies are primarily targetted at helping a new
user, providing context to the user and recovering from misrecognitions
in user’s speech. It is useful for an agent to have these strategies, but it is
also important to have additional strategies to recover from inadequate
knowledge.

1.1 Handling New Information

Spoken Dialog Systems are challenged by misunderstandings and non-
understanding errors. Bohus and Rudnicky (2005c) found that some of
the non-understanding errors are caused due to novel information in an
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such as, out-of-vocabulary words, out-of-grammar utterances. The novel
information can manifest in different forms out-of-domain utterances or
out-of-topic discourse. In dialog systems, the size of speech recognition
vocabulary is limited. As a consequence of this limitation, a recognition
engine can encounter out-of-vocabulary words. A spoken language parser
can be challenged by phrases not covered in the domain grammar. Novice
users who are not familiar with system’s domain limitations, may request
queries that might be part of the system’s domain of operation. Off-topic
discourse can occur when the dialog manager is not expecting a particular
user input although it is a well-parsed utterance.

In most spoken dialog systems, non-understanding errors are either
rejected or attempted to recover using certain dialog strategies. Bohus and
Rudnicky (2005a) proposed a systematic rejection of non-understanding
utterances by learning state-specific rejection thresholds. Filisko and Sen-
eff (2006) developed a user-simulation driven approach to ignore non-
understanding utterances and recover relatively easier ones by implicit or
explicit confirmations and asking the user to spell the concept value. It is
important to note that the rejected utterances may have novel information,
if detected the system could learn this information.

1.2 Recovering and Discovering New Information

Acquiring new information depends on the nature of the information.
According to Waxman and Booth (2000), infants learn words differently
from the facts . This is against the popular argument that cognitive pro-
cesses involved in learning words and facts are quite same (Markson and
Bloom, 1997). However, Waxman and Booth (2000) found that children
extend the usage of newly learned words but do not over-generalize the
facts. Although, it is well studied that cognitive processes involved in
memorizing words could be similar to memorizing phrases. Pinker (1984)
theorizes that children memorize utterances i.e., string of words like audi-
tory templates and later learn the meaning of words/phrases. The audi-
tory templates are later segmented using stochastic techniques employing
syllable-transition probabilities. A similar theory Peters (1983) claims that
children employ different acquisition strategies to learn different pieces of
information. From a dialog agent’s perspective, it is necessary to employ
different strategies to acquire words, meaning of the words and facts.

Typically, spoken dialog research (Lee et al., 2007; Filisko and Seneff,
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2004b; Bohus and Rudnicky, 2005c) has focused on recovering from misun-
derstanding and non-understanding errors by asking the user to rephrase,
repeat their utterance or suggesting system understandable prompts. Bo-
hus and Rudnicky (2005c) has analyzed that 62% of the non-understanding
errors and 72% of the misunderstanding errors are caused due to speech
recognition. It is understandable that the previous research has focused on
devising recovery strategies. Nevertheless, one should not overlook that
38% of the non-understanding errors are caused due to a system’s inability
to acquire new information presented in a user utterance. Attempts have
been made to design dialog systems to acquire new information such as
out-of-vocabulary (OOV) words. (Chung et al., 2003; Filisko and Seneff,
2005) have developed speak-spell strategy to acquire spellings of city names
through interaction. The user is asked to say the city name and then spell
or type the word through a dialog interface.

1.3 Learning New Information Through
Interaction

Learning through interaction has been studied, but there was not much
focus on spoken dialog strategies for learning. The popular spoken dialog
strategy was speak-spell and variants of it to learn OOV words. Chung et al.
(2003); Holzapfel et al. (2007) have looked at dialog systems that can detect
OOV words using head-tail approach then ask the user to spell the word.
Standard spelling language models were used for the spelling recognition.

Learning new words and their semantics has been the focus of early
approaches in interactive learning. Haas and Hendrix (1980) has developed
a system that not only learns new words and concepts, but also linguistic
constructions used to express those concepts. This system has a first-order-
logic KB, an initial set of concepts and words in the KB, an NLP parser based
on pragmatic grammar, and a text-based dialog interface. This was one of
the first attempts to acquire domain knowledge from non-expert users to
improve a system. In their Nanoklaus system, Haas and Hendrix (1980)
used an exploratory strategy to ask questions about a concept introduced
by the user. This system is akin to popular twenty-question game where a
player asks different questions to guess the concept or word. This strategy
could exhaust a user, thus impractical for a longterm knowledge acquisition
process. (Holzapfel et al., 2008) employed a similar approach to acquire
category and properties of a physical object. Their system either asks
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the user to provide a one word/phrase description for a new object or
browses through its knowledge base (KB) to ask yes/no questions about
the object. The one-shot approach is efficient but not effective because
the user description can be verbose and unfit for a category label. The
browsing strategy can exhaust the interacting user, thus impractical.

Marcus and McDermott (1989) has proposed a knowledge-acquisition
language to support an interface between the system and the domain
experts. The system interrogates an expert about inconsistencies in the
KB and help the expert revise the knowledge. Later, Witbrock et al. (2003)
have developed a text-dialog based knowledge acquisition system that uses
Cyc, a commonsense KB. This system asks the user about their favorite
topics and then prepares an interaction agenda based on these topics. The
agenda contains a wish-list knowledge items that system wants the user
to amend. The user is allowed to add more items to this agenda. There
is another line of work ((Kim and Gil, 2007)) that treated knowledge
acquisition problem as analogous to a tutorial dialog system, with roles
reversed. The system becomes student and the user becomes the tutor.
They presented an analysis of principles followed in tutorial dialog and
how these strategies can be used in an acquisition system.

Interactive learning in the context of human-robot interaction have
been studied broadly under two settings: object learning and plan learning.
In a broader context, object or plan learning involves multi-disciplinary
areas of research such as vision and robotics. In the current context,
however, we will focus on learning semantic information of an entity,
grounding a physical object and learning a navigation plan between two
points in an environment. A popular spoken dialog strategy is to use a
trigger-phrase to initiate learning. Spexard et al. (2006) created an approach
that makes the user say a trigger phrase “This is the object_name” to initiate
the learning. Teaching new objects and their spatial orientation in an
environment to a newcomer robot has been studied by Ghidary et al.
(2002); Kruijff et al. (2007); Araki et al. (2011); Wei et al. (2009); Chai et al.
(2014). This helps the robot to generate a topological map for the new
environment. Griffith et al. (2009); Holzapfel et al. (2008); Thomaz and
Cakmak (2009) have shown that physical properties of an object can be
taught interactively. This allows an agent to associate visual characteristics
of an object with the physical properties described in spoken utterances.
Object recognition in bad-vision conditions is a challenging task. Kurnia
et al. (2004); Holzapfel et al. (2008); Griffith et al. (2009); Ros et al. (2010)
have demonstrated that an interactive agent can overcome that challenge
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by taking assistance from a human. Instruction-based learning is another
popular approach for teaching things to the robot. Perzanowski et al.
(1998); Theobalt et al. (2002); Bugmann et al. (2004b); Skubic et al. (2004);
Doshi and Roy (2008); Rudnicky et al. (2010) have shown that the robot
can be taught locations and navigation plans between locations through
spoken instructions. Allen et al. (2007) have proposed a more generic
approach to teach new tasks to a web-based agent in interactive fashion.
This work is similar to (Witbrock et al., 2003), but the difference being
task learning as opposed to knowledge base population.

Much of the above work did not focus on spoken dialog strategies,
because vision is the primary input modality in most of the situated interac-
tions. However, many of the spoken dialog systems operate in non-situated
domains such as movie-recommendation, bus-schedules, and other non-
visual entities. Although, some of the work attempted to devise strategies
for such domains, they have employed browsing strategies.

My research is about enabling such agents to acquire new knowledge
through dialog. We posit three situations in which an agent would in-
teractively learn from users (1) user guided learning (2) system detected
learning (3) system initiated learning.

1.3.1 User Guided Learning

A user can guide the agent when they are aware of limitations of system’s
knowledge about the domain. For example, in command-and-control
domains, the user can teach the agent on how to navigate from point A to
point B in an environment. This mechanism enables the agent to store new
locations and new plans in a knowledge base and later use this information
to perform navigational tasks.

This form of learning is potentially vulnerable to non-understandable
instructions i.e., utterances with out-of-vocabulary (OOV) words and un-
seen references to known entities. In such situations, most systems ask the
user to repeat their instruction until they succeed. We propose that system
could automatically detect such utterances and learn new knowledge from
them.

1.3.2 System Detected Learning

To detect and learn new knowledge from utterances with OOV words, we
propose a sequence labeling approach. This approach looks for major or
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critical errors in machine’s understanding of the user’s utterance, since
most OOV words manifest as errors in a non-understanding utterance.

Sometimes entities are part of the recognition vocabulary but they are
semantically unknown to the agent. In such situations, the agent may fail
to understand the user goal, since many agents typically use a semantic
parser to understand user goals. We propose a robust method for user
goal prediction that uses open-domain knowledge bases viz., NELL, Word-
net, Freebase.com to expand the semantic context of the user utterance.
Open-domain knowledge bases are vast and can provide useful contextual
information for common words in an utterance. However, they may
not contain entities specific to the agent’s domain. We address this issue
through system-driven learning process that allows the agent to augment
its knowledge base through interactions with its users.

1.3.3 System Initiated Learning

To compensate for domain knowledge that may not be available on the
web, we propose that the agent solicit knowledge from its users through
dialog. Our hypothesis is that these strategies are practical (in terms of
time consumed), provide reliable knowledge about the domain. Such
a knowledge can potentially improve the task performance of a dialog
system.

1.4 Thesis Statement

Knowledge Discovery Through Spoken Dialog is feasible, useful and
portable across domains with the help of data-driven techniques and con-
versational strategies.

1.5 Thesis Contributions

This thesis contributes following to our understanding of Spoken Dialog
Research:

1. User Guided Learning Framework for Dialog Agents. This frame-
work as a part of Spoken Dialog Architecture allows systems that
can learn from humans in the course of their activities. See Chapter
2, (Rudnicky et al., 2010), Chapter 3, and (Pappu and Rudnicky,
2012).
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2. System Detected Learning mechanism that identifies whether a
user input speech has new information to learn. It will help the
system identify new words and new facts using different information
sources such as speech recognizers, dialog manager, parsers, and
knowledge bases. See Chapter 4, (Pappu et al., 2014) and Chapter 5,
(Pappu and Rudnicky, 2013).

3. System Initiated Knowledge Acquisition Strategies: to allow the
system to acquire new information in any particular dialog state.
These system initiated strategies are guided by quality of interactions
with users. See Chapter 6, (Pappu and Rudnicky, 2014a) and Chapter
7, (Pappu and Rudnicky, 2014b).



Part I
User Initiated Learning



Chapter 2

Expert User Initiated Learning

Dialog systems are often implemented as static information access systems.
Such systems are not able to process information outside of the domain, as
defined by the developer. A dialog agent such as a speech-enabled domestic
robot operating in a new home will encounter new information. For
example, the name of a furniture not previously known to the robot. This
can lead to failure in tasks that require to understand instructions with
this name. With ability to absorb new information and store it, the agent
can succeed in tasks related to this information.

Interactive learning, a process of absorbing knowledge through inter-
action, becomes necessary for systems to adapt to new environments and
people. When a robot enters a new environment and interacts with a user
it can learn either by detecting novel information from the user or detect
gaps in its existing knowledge, then ask relevant questions to seek knowl-
edge. Earlier works Perzanowski et al. (1998); Billard and Dautenhahn
(1999); Lauria et al. (2001) have shown that this process can help the user
to train the agent seamlessly and improve the task success of the agent.

Spoken dialog frameworks need to include the learning mechanism
as an essential part of their architecture. State-of-the-art dialog frame-
works such as Ravenclaw-Olympus (RAVEOLY) (Bohus et al., 2007b),
CLSU toolkit (Sutton et al., 1998), AT&T SDT (Williams, 2010), HIS Dialog
Framework (Young et al., 2010) and others (e.g., VoiceXML) only allow a
static knowledge base (KB) for the applications built using them. A dialog
application typically recognizes a user’s utterance, parses it, if valid reads a
static KB for the user query and responds back with an answer. The agent

11
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either correctly interprets the user’s query, misinterprets it (“misunder-
standing”), or does not interpret it at all (“non-understanding”). In order
to verify whether the user’s input is “non-understanding” or “misunder-
standing”, dialog systems typically use error-recovery dialog strategies.
However, they do not verify if the user’s input has novel information in
it. Dialog systems are often built for a specific domain. In some domains
(e.g., new-comer robot in a household setting), the items in the KB can-
not be listed exhaustively. This leads to system failures, when dealing
with the user’s input that is not coherent with the KB. Such systems can
benefit from a learning mechanism and fill the gaps in their KB through
interaction.

We present a interactive learning mechanism integrated into Raven-
Claw/Olympus dialog framework. This allows us to build dialog systems
that stay longer in an environment and incrementally improve their knowl-
edge through long-term interaction with the users.

2.1 Interactive Learning Framework

We have proposed a framework for knowledge acquisition through spoken
dialog interaction. Our proposed framework lies within the Ravenclaw-
Olympus (RAVEOLY) Spoken Dialog Architecture. As shown in Figure
2.1, in a RAVEOLY based dialog system, Audio Server receives audio signal
from the audio device and sends it to the Automatic Speech Recognizer
(ASR). Then ASR decodes the speech signal into text and sends back the text
to Audio Server. Then the text is transmitted to the Parser to extract the
semantics, i.e., concepts. Confidence Annotator (CA) assigns confidence
scores for the input concepts. Based on user’s input and the context,
Dialog Management (DM) component decides what to do next. This may
involve communicating with the Domain Reasoner (DR), particularly
with a Knowledge Base (KB). A natural language response is generated by
Natural Language Generation (NLG) and sent to Output Manager (OM).
The OM requests a Text-to-Speech Synthesizer (TTS) to synthesize the
system’s response. Finally, the synthesized speech is played back to the
user by the OM.

Typically, DM interacts with DR to fetch information from the KB,
analogous to a database query. In the proposed framework, the DR encom-
passes two new components to perform the learning mechanism. These
components are 1) Knowledge Manager and 2) Knowledge Acquisition
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Interface (dark blocks in the Figure 2.1).

ASR

Audio
Server

Parser Confidence
Annotator

Dialog
Manager

Knowledge
Base

Knowledge
Acquisition

Interaction
Manager

Knowledge
ManagerLanguage

Generation
Output
Manager

TTS

Domain Reasoner

Figure 2.1: Typical Dialog System Components (white) with Learning
Components (dark)

An ontology captures the knowledge about a domain. It describes
concepts and their relationships in that domain. In our work, we use
Protégé, a knowledge development toolkit as the platform. Protégé pro-
vides a knowledge editing tool that allows a domain expert to specify seed
concepts and relations for a domain.

An ontology mainly constitutes of individuals, classes object-properties
and datatype-properties. An individual or instance represents an object
in an environment or a domain. A class is a collection of individuals.
A class can have two types of properties: object and datatype. Object
properties bear relation between two classes, whereas datatype properties
are attributes of a class. Examples for each constituent in an ontology are
given in the Table 2.1.

Classes in an ontology are arranged in a hierarchical taxonomy. An
example taxonomy from navigation domain is shown in the Table 2.2. In
Protégé every user-defined class is a subclass of a superclass called Thing.
Every user-defined class should be specified as disjoint in order to avoid
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an individual to be part of more than one class (if intented). Properties
of a class can be transitive, inverse, symmetric, and/or functional. For a
detailed explanation of Protégé OWL ontology refer to its documentation.

We discussed the building blocks for the KB. In the following sections
we discuss how different components interact with each other and the KB.

Table 2.1: Examples of Individuals, Classes and Properties

Ontology Component Navigation Domain Hobby Domain
Individual Instance of hallway Chess
Class hallway Board Game
Object Property hallway connected to stairs Person likes

a Board Game
Datatype Property hallway has a carpet Board Game

has number of players

2.1.1 Knowledge Manager Interface

A knowledge manager (KM) mediates between the KB and rest of the dialog
system. KM provides different operations on the KB such as inserting a
new concept, modifying a property of a concept, or deleting a concept
from the KB. In Protégé a concept or individual must be named. However,
there is a need for anonymous concepts or individuals during a discourse.
In a typical discourse some of the discourse items mentioned are used
in a short-term context. Thus, we create anonymous concepts with a
temporary name in the KB to include short-term items.

Operations on a KB can be initiated either explicitly or implicitly.
Example of an explicit operation is that the dialog system asks the KM

to create or read a particular individual’s value. An implicit operation
would be that KM records every dialog act/action (along with a timestamp)
in the form of history in the KB. Every dialog act/event is treated as an
anonymous individual with corresponding properties and values. For
example, if system performs a request act, then the object requested and
information provided in the request prompt are recorded as properties of
this particular request individual. Similarly, in navigation domain, one can
record events performed by a robot. This information can help the agent
give a critique about its status at a particular time. Another important
application of implicit operation is to defer complex processes to later
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time. When an utterance is spoken, a parser may not be able extract the
concepts requested by the system. In a typical dialog system, the user is
either asked to rephrase or repeat the utterance and finally the system gives
up. To perform a diagnosis on “give up” situations, we let the KM record
the utterance-id associated with the object requested by the system. This
allows the system to represent the unknown object value in the form of an
utterance-id which can be recovered after the parser is re-trained.

Besides operations on KB, we use KM to instruct actions to the DM. The
KB represents present state of the environment/domain. In a navigation
example, a robot may have moved from place A to B during the interaction
with the user. Assume that the user has earlier commanded an action after
moving to B. Such instructions needs to be recorded and later executed
when the condition is satisfied. The role of KM is to record conditional
commands and later notify the DM to acknowledge the command on
behalf of the agent.

2.1.2 Knowledge Acquisition Interface

The gaps in the knowledge can be identified either by the system or de-
tected while interacting with a user. Therefore, the gap needs to be filled
proactively or contextually. KA interface interacts with the DM to ask user
about the unknown information.

KA interface is responsible for retrieving knowledge gaps that the
system would like validate with a user. We allow the domain expert to
specify the criteria for the unknown information a system should clarify
in a particular dialog state. For example, in a hobby domain, the expert
wants the system to know a user’s hobby and also inquire information
related to the user’s friend. The KA interface fetches gaps (if any) related
to the user’s friend and sends them to DM. This criteria can be specified in
the Ravenclaw dialog task tree of the application.

KA is responsible for initiating learning related conversation with the
user. The conversational behaviors/strategies are implemented as library
agents. These library agents are domain-independent discourse agents part
of the Ravenclaw library. We created learning related library agents in
order to acquire information such as spelling of a word, concept of a word
and plans.

We discuss an application of this framework in the following section.
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2.2 Teamtalk: Search and Rescue Domain

Teamtalk, the navigation dialog system provides a command-and-control
interface for a mobile robot (illustrated in Figure 2.2). This system is based
on RAVEOLY dialog architecture and was originally developed by (Harris
and Rudnicky, 2007). System is capable of understanding and executing
navigation commands such as “go forward”, “turn right” , “stop” etc.

Figure 2.2: Screenshot of the TeamTalk interface with 3D virtual environment, 2D map
and the dialog interface.

This system was further extended to learn plans and locations in the
environment using the learning framework (Rudnicky et al., 2010). Record-
ing plans can be helpful when the system needs to navigate from one place
to another regularly. Recording landmarks is essential because a user can
easily refer to location with a name instead of specifying coordinates to
ask the robot to go to a location. The system operates in two modes: a)
command mode and b) learning mode. In command mode, system only
understands and executes an instruction. In learning mode, system can
save a set of instructions as a plan for immediate and future execution of a
plan. Similarly, it can remember a location with a user-specified name for
the location. User can trigger the learning phase by using key-phrases such
as “start learning plan_name”, to initiate plan learning and “stop learning”
to end the learning phase. Similarly, the user can initiate location learning
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with a trigger phrase e.g., “remember this location as location_name”.
Besides learning plans and locations, this system also records history

of events (commands issued) for diagnosis in later dialog sessions. These
events are organized as episodes and stored in the KB. An episode is a
temporally-related set of events e.g., an episode may constitute a spoken
instruction event followed by the execution of an action event.

2.2.1 Ontology

The TeamTalk ontology keeps track of relevant entities in the search
domain. The ontology is based on the OWL representation using the
Protege environment (as shown in Figure 2.3). The ontology component
responds to queries from the Domain Reasoner and accepts dynamic
updates (e.g., the identity of newly labeled locations). The ontology also
maintains a complete history of events that have occurred and stores this
information for use in later sessions. Events are organized into episodes
representing a coherent, temporally-related set of events. TeamTalk is able
to process simple factual queries about the past. The system currently
maintains a single knowledge base; once a new instance is created it is
immediately transparently available to all robots. While we understand
that private knowledge may have a role in team activities it does not appear
critical for our current scenarios.

Figure 2.3: Screenshot of the TeamTalk Ontology in the Protege Editor.
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User: Alphie Go forward Five meters
System: going forward five meters
U: Alphie call it as “jupiter”
S: ok, this is “jupiter”

Learning Locations

Figure 2.4: Example Dialog for Location Learning

U: Alphie [system] learn zigzag
S: start learning zigzag
U: go forward four meters
S: okay, adding forward four meters to zigzag
U: turn right forty five degrees
S: adding turn right forty five degrees to zigzag
U: go forward six meters
S: adding go forward six meters to zigzag
U: turn left forty five degrees
S: adding turn left forty degrees to zigzag
U: go forward four meters
S: adding go forward four meters to zigzag
U: stop learning zigzag
S: I have learned “zigzag”.

Learning Plans

Figure 2.5: Example Dialog for Play Learning

2.2.2 Plans

TeamTalk is able to learn and represent action sequences consisting of
individual commands and aggregates. For example, the current system can
learn a zig-zag behavior by listening to a series of movement instructions
(illustrated in Figure 2.5). We refer to these as plays, and the implementa-
tion makes use of the Play Manager (PM) mechanism described in (Dias
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U: alphie edit zigzag
S: there are 2 moves and 2 turns in zigzag, what do you want to change?
U: change the distance of move from four to two
S: okay, changed the distance from four to two
U: change the distance of move from three to two
S: no operation found with distance two
U: stop editing
S: ok. Storing procedure.
U: Do a zigzag

Editing Plans

Figure 2.6: Example Dialog for Plan Editing

et al., 2006). In TeamTalk, we add a Play Dispatcher to allow multiple
plays to execute simultaneously. Plays are implemented as dynamic Ruby
programs. Each play consists of steps corresponding to individual com-
mands as well as standard programming constructs such as blocks and
iteration. The human specifies a new play interactively while the robot
manages the recording process and performs consistency checks. This
ensures reasonable behaviors, although these may not necessarily abstract
to reasonable interaction with the environment. Plays are stored in the
ontology and subsequently become available to all robots. Plan provide
functional descriptions of new robot behavior, therefore they can be cus-
tomized to new situations.

2.2.3 Editing Plans for a New Environment

The purpose of abstract representation of a plan is allow the agent to
adapt a plan to a new environment. We have designed dialog strategies
to allow an expert user to modify an existing plan to suit the dynamics
of a new environment. As illustrated in in the Figure 2.6, a user can
trigger plan editing behavior and change the command values through
dialog. First the user initiates plan editing dialog, then the system gives an
overview of the instructions involved in this plan. Then the user requests
the system to modify certain attribute of an instruction category. The
system is also capable of handling exceptions when a requested attribute
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or instruction-type is not available in the plan.

2.3 Chapter Summary

In this chapter, we have presented a learning framework integrated into the
RAVEOLY dialog architecture. We have incorporated new constituents into
the framework namely Knowledge Manager and Knowledge Acquisition
Interface. We have demonstrated that this framework can support user-
initiated learning in a search-and-rescue application. We show that an
agent can learn plans and locations in the given environment and store
them in a knowledge base. The gathered information can be later used to
perform tasks in the environment. Now that the agent can understand
instructions and also learn plans composed of these instructions, we would
like to know if we can use the same machinery in different environments.
In the next chapter we are going to discuss how can we adapt learning
mechanism to new environments given what the agent has learned in its
initial environment.





Chapter 3

Adapting User-Initiated Learning to
New Situations

In the previous chapter, we have discussed how can an expert user can
teach the agent about its situation. In this chapter, we are going to look at
how can we adapt the learnings of one situation to new situations. This is
an important problem because a mobile robot or an agent is expected to
move from one situation to the other. It can be challenging if an expert
user has to teach the agent for every new environment that the agent visits.
Hence it is essential to adapt the learning machinery to new situations.

Generating and interpreting instructions is a topic of enduring inter-
est. Cognitive psychologists have examined how people perceive spatial
entities and structure route instructions (Daniel and Denis, 1998; Allen,
1997). Linguists and others have investigated how people articulate route
instructions in conversation with people or agents (Eberhard et al., 2010;
Gargett et al., 2010; Stoia et al., 2008; Marge and Rudnicky, 2010). Artifi-
cial intelligence researchers have shown that under supervised conditions
autonomous agents can learn to interpret route instructions (Kollar et al.,
2010; MacMahon et al., 2006; Matuszek et al., 2010; Bugmann et al., 2004a;
Chen and Mooney, 2010).

The language of instructions contains a variety of relevant proposi-
tions: a preface to a route, an imperative statement, or a description of a
landmark. Following example illustrates instructions of different types.

23
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PREFACE: You are going to La Prima Cafe in Wean Hall it is to our west
IMPERATIVE: You want to take a right then walk straight
DESCRIPTION: then you will see green wall with a tv screen

Previous work has proposed both coarse and fine-grained instruction
taxonomies. Bugmann et al. (2004a) proposed a taxonomy of 15 primitive
categories in a concrete “action” framework. In contrast, Daniel and Denis
(1998) suggested a five-way categorization based on cognitive properties of
instructions.

Instructions vary greatly and can include superfluous detail. (Denis
et al., 1999) found that when people were asked to read and assess a set
of instructions some of the instructions were deemed unnecessary and
could be discarded. There is some evidence (Lovelace et al., 1999; Caduff
and Timpf, 2008) that only the mention of significant landmarks along
the route leads to better-quality instructions. Computational (rather than
descriptive) approaches to this problem include: using sequence labeling
approach to capture spatial relations, landmarks, and action verbs (Kollar
et al., 2010; Wei et al., 2009), generating a frame structure for an instruction
(MacMahon et al., 2006), or using statistical machine translation techniques
to translate instructions into actions (Matuszek et al., 2010).

In order to adapt the instruction understanding system to new situa-
tions, first we need to analyze how route instructions are given in various
scenarios. First we will describe a user study where we have collected a
corpus of route instructions in different scenarios. Then we present its
analysis in terms of a taxonomy suitable for automated understanding and
a verification that the instructions are in fact usable by humans. With a
view to automating understanding, we also constructed a grammar capable
of processing this language, and show that it provides good coverage for
both our corpus and corpora from three other situations (Kollar et al.,
2010; Marge and Rudnicky, 2010; Bugmann et al., 2004a).

3.1 The Navagati Corpus

We collected a corpus of spoken instructions describing how to get from
one part of a large building complex to another. To ensure consistency
we recruited individuals who were familiar with the situation and conse-
quently could formulate such instructions without reference to maps or
other materials. Since we are also interested in how such instructions are
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edited, we also included conditions in which subjects were asked to modify
their instructions in several ways. The corpus is publicly available1.

3.1.1 Participants and Procedure

We recruited subjects who were both fluent English speakers and were also
familiar with the situation (a university building complex). Subjects were
told to imagine that they had encountered a visitor, not familiar with the
campus, at a specific location (in front of elevators on a particular floor)
who needed instructions to a specific location, a café two buildings away.

For each set of instructions, subjects were asked to think about the
route and their instructions, then record them as a single monologue.
Subjects sat in front of a computer and wore a close-talking microphone.
Initially no map was provided and they were expected to rely on their
memory. In subsequent tasks they were shown a floor-plan indicating
a specific location of the visitor and asked to modify their instructions.
Speech was transcribed using Amazon Mechanical Turk. Transcriptions
were normalized to standardize spellings (e.g., building names).

3.1.2 Design

We were interested in two general cases: normal instructions (Simple sce-
nario) and repairing existing instructions (Repair scenario). Each scenario
included three tasks, as described below.

We selected two locations that could be walked between without nec-
essarily going outside. The first location (A) was in front of an elevator on
the seventh floor of Gates Hillman Center, the second location (B) was a
cafe on the fifth floor of Wean Hall at CMU campus. The expected path-
way included changes in floor, direction and passing through a different
building. It required reasonably detailed instructions.

In the Simple scenario, subjects were asked to generate three variants,
as follows: (1) instructions for A→ B ; (2) for B→A; and (3) a simplified
version of (2). For the latter, we were interested in the degree of instruction
reuse and the condensation strategy.

The Repair scenario was designed to probe how a subject would alter
their instructions in response to complications. Subjects were asked to
modify their initial Simple instructions (A→ B) to cope with: (1) visitor

1http://tts.speech.cs.cmu.edu/apappu/navagati/
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missing a landmark and takes a wrong turn; (2) an obstruction (construc-
tion) blocking the original path; and (3) the visitor getting lost and ends
up in an unknown part of the (middle) building. For each case, the subject
was given a map that marked the visitor’s location and had to get the visitor
back on track.

3.1.3 Analysis

Nine subjects performed 6 tasks each, producing 54 sets of instructions,
for a total of 65 minutes of speech. The transcriptions were segmented
semi-automatically into atomic units corresponding to instruction steps.
For example, the instruction “Go left, then turn right” was segmented
into: “go left”, and “then turn right” based on bigram heuristics. We
compiled a list of most frequent bigrams and trigrams in the corpus e.g.,
“and then”, “after that” etc. The transcriptions were segmented at the
bigram/trigram boundaries and were manually verified for the correctness
of a segment. The Simple scenario generated 552 instructions, the Repair
part contained 382 instructions, a total of 934. The vocabulary has 508
types and 7937 tokens. Table 3.1 summarizes the factors measured in both
the scenarios. Only two (marked by *) differed between scenarios (t-test at
p < 0.05). We examined acoustic properties (for example mean pitch) but
did not find any significant differences across scenario type. Figures 3.1
and 3.2 show excerpts of route instructions in simple and repair scenarios.
Primary difference between them is within instructions 3 and 5. Here we
see that the direction-giver has changed the path when they understood
that there is an obstruction on the hallway.

Table 3.1: Simple vs Repair Scenario

Factors Simple Repair
# Tokens 4461 3476
# Types 351 375
# Instructions 552 382
# Words-per-Instruction* 7.5 8.0
# Landmarks 450 314
# Motion Verbs* 775 506
# Spatial Prepositions 61 60
# Filler Phrases 414 380
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1. then you go the end of the hallway
2. then you turn right
3. you are going to see an elevator
4. if you take the elevator
5. and go to the fifth floor you get to your destination

Simple Scenario

Figure 3.1: Excerpt of Instructions in Simple Scenario

3. since the hallway is impassable
4. you want to take the stairs instead of the elevators
5. then you will turn right and see the cafe in front of you

Simple Scenario

Figure 3.2: Excerpt of Instructions in Repair Scenario

We can compare language similarity across scenarios by comparing
the perplexity of text in the two scenarios. If the instructions and repairs
are similar, we would expect that a model built from one scenario should
be able to capture data from the other scenario. We randomly divided
data from each scenario into training (70%) and testing data (30%). We
built a trigram language model (LM) smoothed with absolute discounting
using the CMU-SLM toolkit (Rosenfield, 1995). Then, we computed
the perplexity on testing data from each scenario against each model.
From Table 3.2, Simple-LM has lower perplexity compared to Repair-LM
on the test sets. The perplexity of Simple-LM on Repair-Test is slightly
higher when compared to Simple-Test. This could be due to the lexical
diversity of the Repair scenario or simply to the smaller sample size. Table
3.1(row 1) indicates that the data in Repair scenario is smaller than data in
Simple scenario. To explore the lexical diversity of these two scenarios
we conducted a qualitative analysis of the instructions from both the
scenarios.

In Task 1 of the Simple scenario, we only observed a sequence of in-
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structions. However in Task 2 of Simple Scenario, we noticed references
to instructions from Task 1 via words like “remember”, “same route”, etc.
This suggests that instructions may be considered in context of previous
exchanges and that this history should normally be available for interpreta-
tion purposes. In Task 3 of the Simple scenario, 7 out of 9 subjects simply
repeated the instructions from Task 2 while the rest provided a different
version of the same instructions. We did not observe any other qualitative
differences across three tasks in the Simple scenario.

In Task 1 of the Repair scenario, all but one subject gave instructions
that returned the visitor to the missed landmark, instead of bypassing the
landmark. In Task 2, the obstruction on the path could be negotiated
through a shorter or longer detour. But only 4 out of 9 participants sug-
gested the shorter detour. In Task 3, we did not observe anything different
from Task 2. Despite the difference in the situations, the language of repair
was found to be quite similar. The structure of the delivery was organized
as follows: (1) Subjects introduced the situation of the visitor; (2) then
modified the instructions according to the situation. Introduction of the
situation was different in each task, (e.g., “you are facing the workers” vs
“looks like you are near office spaces” vs “if you have missed the atrium you
took a wrong turn”). But the modification or repair of the instructions
was similar across the situations. The repaired instructions are sequences
of instructions with a few cautionary statements inserted between instruc-
tions. We believe that subjects added cautionary statements in order to
warn the visitor from going off-the-route. We observed that 6.3% of the
repaired instructions were cautionary statements; we did not observe cau-
tionary statements in the original Simple scenario. In order to see the
effect of these cautionary statements we removed them from both training
and testing sets of the Repair scenario, then built a trigram LM using this
condensed training data (Repair–w/o-cautionLM). Table 3.2 shows that
perplexity drops when cautionary statements are excluded from the repair
scenario, indicating that Simple and Repair scenarios are similar except
for these cautionary statements.

3.2 Taxonomy of Route Instructions

Taxonomies have been proposed in the past. Daniel and Denis (1998)
proposed a taxonomy that reflected attributes of spatial cognition and
included 5 classes: (1) Imperatives; (2) Imperatives referring a landmark; (3)
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Table 3.2: Perplexity of Simple/Repair Language Models

LM/Test Simple-Test Repair-Test

Repair
w/o

caution
Simple-LM 29.6 36.5 30.3
Repair-LM 37.4 37.3 35.6

Repair
w/o

cautionLM 31.9 37.6 26.8

Introduction of a landmark without an action; (4) Non-spatial description
of landmarks and (5) Meta comments. Bugmann et al. (2004a) suggested 15
primitive (robot-executable) actions. We present a hierarchical instruction
taxonomy that takes into account both cognitive properties and the needs
of robot navigation.

Category SubCategory Distribution

Imperative

Leave-Location 2.3%
Follow-Path 7.0%
Floor-Transition 11.2%
Turn 24.2%
Go-To 27.2%
Continue 28.0%

Advisory

Floor-Level 5.4%
Floor-Transition 12.2%
Compound-Location 13.4%
End-of-Pathway 21.5%
Landmark 47.5%

Grounding

Compound-Location 5.9%
End-of-Pathway 8.2%
Floor-Level 42.4%
Landmark 43.5%

Meta Comments
Caution 14.7%
Miscellaneous 36.0%
Preface 49.3%

Table 3.3: Taxonomy of Categories
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3.2.1 Categories

We segmented the spoken instructions using a criterion that split individual
actions and observations. Our taxonomy is roughly comparable to that
of (Daniel and Denis, 1998) but differs in the treatment of landmarks,
which we place into their own category. The taxonomy has four major
categories that subsume 18 sub-categories; these are given in Table 3.3. We
now describe them in detail.
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Figure 3.3: First Tier Instruction Categories

• Imperative Instructions
Imperative instructions are executable and can result in physical
displacement. We identified seven subcategories of Imperatives that
distinguish different contexts (e.g., going along a corridor, changing
floors via elevator or stairs, or going to a specific location).

Imperative instructions can also include preconditions or postcondi-
tions. The order of their execution varies based on the directionality
of the condition between two instructions. Continue is interesting
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because it can have travel-distance and travel-direction arguments,
or even no arguments. In the latter case the follower continues an
action (e.g., “keep walking”), until some unspecified condition ends
it.

• Advisory Instructions
While giving route instructions people mention landmarks along
the route as feedback to the direction-follower. Some of these land-
marks are not part of the path but do serve as waypoints for the
follower (e.g., “you will see a hallway right there”). We observe that
landmarks are distinct either functionally and/or physically. For
example, a hallway is similar to a door as it connects two waypoints
on the route that are located at same level. However it is different
from elevators or stairs because they connect waypoints that are
located on different levels of a building. Based on this distinction,
we divided advisory instructions into five sub-categories depending
on the type of landmark mentioned in the instruction (see Table
3.3).

Compound locations (see Table 3.3) are closely located but physi-
cally distinct. They may constitute part-whole relationships e.g.,
“TV screen with a motion sensor”. We observed that compound
locations are used to disambiguate when multiple instances of a
landmark type are present e.g., “chair near the elevator vs “chair
near the hallway”.

• Grounding Instructions
Grounding instructions report absolute position. These instruc-
tions indicate current view or location as opposed to future view or
location (indicated through advisory instructions). These instruc-
tions constitute a landmark name similar to advisory instructions
and also follow the distinction between the type of landmark men-
tioned in the instruction (see Table 3.3).

• Meta Comments
Meta comments are non-executable instructions added to route in-
structions. People often make these comments at the beginning
of instructions and sometimes in between two imperative state-
ments e.g., a precautionary statement. In our corpus we found
meta-comments in two situations: (1) Preface or introduction of the
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route; (2) Caution against a (metaphorical) pitfall in the route. Both
the example instructions and the distribution of the subcategories
are given in Table 3.3.

The language of meta comments is more diverse than that of the
other three categories. If we build trigram language models for each
category and measure the perplexity on a held-out set from same
category the perplexity is relatively high for Meta (49.6) compared
to other categories (Advisory: 19.5; Imperative: 18.5; Grounding:
11.4). This suggests that automatic understanding of meta comments
might be problematic, consequently it would be useful to determine
the relative utility of different instruction categories. The next
section describes an attempt to do this.

3.3 Instructions Relevant for Navigation

In order to find that out we asked people to follow instruction sets selected
from our corpus. Daniel and Denis (1998) conducted a similar study where
they asked subjects to read a set of instructions and strike-off instructions
with too much or too little information. However, people may or may
not feel the same when they follow (physically navigate) these instructions.
Therefore, in our study the experimenter read instructions (of varying
amount of detail) to the subjects while they physically navigated through
the situation.

3.3.1 Participants and Procedure

We chose 5 out of the 9 instruction sets, spoken by different subjects (of
average length 26.8 instructions per set) from Task 1 of the Simple scenario
discussed above. We did not use the others because they contained few
instructions (average of 13.5) and provided fewer instances of instructions
in different categories.

Our set of instructions included the full set, a set with only imperatives
and additional sets adding only one of the remaining categories to the
imperative set (see Table 3.4), producing 25 distinct sets of instructions.
Additionally, building names and the destination name (transcribed in the
instructions) were anonymized to avoid revealing the destination or the
“heading” at the early stage of the route.
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We recruited 25 subjects, each doing one variant of the instructions. In
the session, the experimenter read one instruction at a time to the subject
and walked behind the subject as they proceeded. Subjects were asked
to say “done” when ready for the next instruction; they were allowed to
ask the experimenter to repeat instructions but otherwise were on their
own. The experimenter kept track of how and where a subject got lost
on their way to destination. (No systematic effects were observed, but
see below.) At the end subjects were handed the entire set of instructions
and were asked to mark which instructions were difficult to follow or
were redundant. Remaining instructions were deemed to be useful and
interpretable.

Table 3.4: Variants of an Instruction Set

Variant Imperative Advisory Grounding Meta
Imp Ø
Imp+Adv Ø Ø
Imp+Grnd Ø Ø
Imp+Meta Ø Ø
Entire Set Ø Ø Ø Ø

3.3.2 Analysis

Except for one subject, everybody reached the destination. Subjects found
Imperative and Advisory instructions more useful compared to Grounding
instructions and Meta comments, irrespective of the instruction-set they
followed (see Figure 3.5). However, they also found a few of the imperative
and advisory instructions difficult to follow as shown in Figure 3.4. While
following these difficult instructions, people realized that they got lost and
asked the experimenter to repeat the instructions. Examples of difficult
instructions and the people’s complaint on that instruction are as follows:

• So you kind of cross the atrium Complaint: participants reported
that they were not sure how far they had to walk across the atrium.

• Go beside the handrails till the other end of this building Complaint:
no absolute destination, multiple hallways at the end of handrails
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• Just walk down the hallway exit the building Complaint: multiple
exits to the building

• After you get off the elevator, take a left and then left again Complaint:
more than one left confused the subjects

• You can see the building just in front of you Complaint: there were
three buildings standing in front and the target building was slightly
to the left.

• You will see the corridor that you want to take Complaint: there were
two corridors and the orientation was unspecified in the instruction.

Category/Variant Imp Imp+Grnd Imp+Meta Imp+Adv Entire Set

Diff-Imp 11 10 12 9 12

Diff-Adv 0 10 5 10 10

Diff-Grnd 0 0 13 0 0

Diff-Meta 4 15 12 4 4

Diff-All 6 9 11 7 9

Figure 3.4: What percent of instructions are Difficult (Diff)?
Darker=Difficult

3.4 Adapting to New Situations

The Navagati (NAV) corpus instructions were divided into training set
(henceforth abbreviated as NAV-train) and testing set (abbreviated as NAV-
test) of size 654 (of 6 subjects) and 280 (of 3 subjects). The training set was
used to create a grammar based on the taxonomy described in the earlier
section.

3.4.1 Grammar

A domain-specific grammar was written to cover most frequent phrases
from the training set using the Phoenix (Ward, 1991) format. Phoenix
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Category/Variant Imp Imp+Grnd Imp+Meta Imp+Adv Entire Set

Redun-Imp 5 8 12 11 8

Redun-Adv 5 10 19 10 29

Redun-Grnd 20 13 47%47 53%53 27

Redun-Meta 19 31 65%65 23 50%50

Redun-All 9 13 26 17 21

Figure 3.5: What percent of instructions are Redundant (Redun)?
Darker=More Redundant Instructions

Corpus #Instr Words/Instr Environmnt Modality H/R-H/R

NAV 934 9 UnivCampus Speech Humn-Humn

MIT 684 15 UnivCampus Written Humn-Humn

IBL 769 8 ModelCity Speech Human-Robot

TTALK 1619 7 OpenSpace Speech Human-Robot

Figure 3.6: Nature of the Corpora

Corpus LiftingDevice PathWays Landmarks Adjectives

NAV 0.029 0.046 0.169 0.13

MIT 0.045 0.016 0.163 0.062

IBL n.a. 0.039 0.076 0.13

TTALK n.a. 0.027 0.01 0.039

Figure 3.7: Type-Token Ratio of Concepts across Corpora

grammars specify a hierarchy of target concepts and is suited to parsing
spontaneous speech. The resulting grammar produced correct and com-
plete parses on 78% of the training data (NAV-train). The remaining
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training instances were not included due to unusual phrasing and disfluen-
cies. The concepts in the grammar are listed in the Table 3.5.

Table 3.5: Higher level and Leaf node Concepts in Grammar

Category Concepts Examples
Imperative GoToPlace, Turn, etc
Conditional Imperative Move_Until_X where X is a condition
Advisory Instructions You_Will_See_Location
Grounding Instructions You_are_at_Location
Auxillary Concepts Examples
Locations buildings, other landmarks on the route
Adjectives-of-Locations large, open, black, small etc.
Pathways hallway, corridor, bridge, doors, etc.
LiftingDevice elevator, staircase, stairwell, etc.
Spatial Relations behind, above, on right, on left, etc.
Numbers turn-angles, distance, etc.
Ordinals first, second as in floor numbers
Filler phrases you may want to; you are gonna; etc.

• Vocabulary from New Situations
Concepts such as Locations, Pathways and Adjectives-of-Location
use vocabulary that is specific to an situation, and the vocabulary of
these concepts will change with surroundings. We used an off-the-
shelf part-of-speech tagger (Toutanova et al., 2003) on NAV-train to
identify “location-based” nouns and adjectives. These were added
to the grammar as instances of their respective concepts.

3.4.2 Parsing Instructions

A parse can fall into one of the following categories: 1) Complete: clean and
correct parse with all concepts and actions mentioned in the instruction.
2) Incomplete: If some arguments for an action are missing. 3) Misparse:
no usable parse produced for an instruction.

Table 3.6 shows that 87% of the instructions from the NAV corpus
(excluding meta comments) are parsed correctly. Correct parses were pro-
duced for 89% of Imperatives, 87% of Advisory and 73% of Grounding
instructions. Meta comments were excluded because they do not consti-
tute any valid actions and can be ignored. Nevertheless 20% of the meta
comments produced a valid parse (i.e. unintended action).
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3.4.3 Evaluating Adaptability

The results for the NAV corpus seem encouraging but it would be useful to
know whether the NAV grammar generalizes to other directions scenarios.
We selected three corpora to examine this question: MIT (Kollar et al.,
2010), IBL2 (Bugmann et al., 2004a) and TTALK3 (Marge and Rudnicky,
2010). All were navigation scenarios but were collected in a variety of
settings (see Figure 3(a)). Corpus vocabularies were normalized using
the process described in 5.1.1 and location specific nouns and adjectives
added to the grammar. Punctuation was removed. Figure 3(b) shows the
type-token ratios for “variable” concepts. There are more landmarks and
adjectives (that tag along landmarks) in NAV and MIT compared to IBL
and fewest in TTALK corpus (a closed space with two robots). Since,
IBL and TTALK do not involve extensive navigation inside the buildings
there are no instances of the elevator concept. However, IBL corpus has
“exits, roads, streets” in the city environment which were included in the
PathWay concept.

3.4.4 Performance across Corpora

We randomly sampled 300 instructions from each of the three corpora
(MIT, IBL and TTALK) and evaluated their parses against manually-created
parses. Table 3.6) shows results for each type of parse (Complete, Incom-
plete, or Misparse). Meta comments were excluded, as discussed earlier.
The NAV grammar appears portable to three other corpora. As shown in
Category-Accuracy of Table 3.6, Imperatives and Advisory instructions
are well-parsed by the grammar. In TTALK corpus, there are very few
landmark names but there are certain unusual sentences e.g., “she to the
rear left hand wall of the room” causing lower accuracy in Advisory in-
structions. We noticed that MIT corpus had longer description of the
landmarks, leading to lower accuracy for Grounding. From Table 3.6 11%
to 16% of Imperative instructions fail to get parsed across the corpora. We
consider these failures/errors below.

2http://www.tech.plym.ac.uk/soc/staff/guidbugm/ibl/readme1.html
3http://www.cs.cmu.edu/˜robotnavcps/
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Table 3.6: Parse Results

Parse Results NAV MIT IBL TTALK
# Instructions 280 300 300 300
% Complete 87% 78.8% 83.8% 83.4%
% Incomplete 3.1% 17% 6.6% 3.7%
% Misparse 9.8% 4.1% 9.5% 13%
Category Accuracy
Imperative 89% 89.4% 86.5% 84.7%
Advisory 87% 93.4% 87.4% 60%
Grounding 73% 62% 100% 100%

3.4.5 Error Analysis

We found six situations that produced incomplete and misparsed instruc-
tions: (1) Underspecified arguments; (2) Unusual or unobserved phrases;
(2) False-starts and ungrammatical language; (3) Uncovered words; (4) Pro-
longed description of landmarks within an instruction; (5) Coreferences;
6) Non-specific instructions (eg. either take the right hallway or the left
hallway).

• Incomplete and Misparsed Instructions
Out-of-Vocabulary (OOV) words were responsible for the majority
of incomplete parses across all the corpora; many were singletons.
Unusual phrases such as “as if you are doubling back on yourself”
caused incomplete parses. We also observed lengthy descriptions in
instructions in the MIT corpus, leading to incomplete parses. This
corpus was unusual in that it is composed of written, as opposed to
spoken, instructions.

Misparsed instructions were caused by both ungrammatical phrases
and OOV words. Ungrammatical instructions contained either
missed key content words like verbs or false starts. These instruc-
tions did contain meaningful fragments but they did not form a
coherent utterance e.g., “onto a roundabout”. We note that incom-
plete or otherwise non-understandable utterances can in principle
be recovered through clarification dialog.
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Table 3.7: Error Analysis for Incomplete and Misparsed instructions

Incomplete NAV MIT IBL TTALK
# Incomplete Instructions 8 49 19 10
MissingArgs 50% 8% 0% 0%
UnusualPhrases 0% 28% 35% 60%
Lengthy Descriptions 0% 20.4% 0% 0%
Coreferences 0% 0% 20.2% 0%
Non-concrete phrases 3% 2% 5% 0%
OOVs 47% 41.6% 39.8% 40%
Misparse
# Misparse Instructions 25 12 27 39
Ungrammatical phrases 24% 44% 16% 10%
OOVs 76% 66% 84% 90%

3.5 Chapter Summary

In this chapter, we wanted to address the problem of adapting learning
mechanism and the underlying instruction understanding process to new
situations. In order to have a better understanding of the structure of
instructions and to investigate how these might be automatically processed,
we collected a corpus of spoken instructions. We found that instructions
can be organized in terms of a straighforward two-level taxonomy. We
examined the information contents of different components and found
that that the Imperative and Advisory categories appear to be the most
relevant, though our subjects had little difficulty dealing with instructions
composed of only Imperatives; physical context would seem to matter.

We found that it was possible to design a grammar that reasonably
covered the information-carrying instructions in a set of instructions. And
that a grammar built from our corpus generalized quite well to corpora
collected under different situations.

This chapter shows that robust instruction-understanding systems can
be implemented and, other than the challenge of dealing with location-
specific data, can be deployed in different situations. We believe that this
study also highlights the importance of dialog-based clarification and the
need for strategies that can recognize and capture out-of-vocabulary words.
In the next chapter, we will discuss how can we handle such errors and
recover useful information from these errors.
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Chapter 4

Detecting and Learning from
Critical Errors in Dialog

In the previous chapter, we have seen that user-guided learning is chal-
lenged by out-of-vocabulary words that cause misunderstanding or non-
understanding of the instructions. Bohus and Rudnicky (2005c) found
that some of the non-understanding errors are caused due to novel infor-
mation in an such as, out-of-vocabulary words, out-of-grammar language,
utterance. The novel information can manifest in different forms out-of-
domain utterances or out-of-topic discourse. In dialog systems, the size of
speech recognition vocabulary is limited. As a consequence of this limi-
tation, a recognition engine can encounter out-of-vocabulary words. A
spoken language parser can be challenged by phrases not covered in the do-
main grammar. Novice users who are not aware of system’s boundaries of
operation, may request queries that might be part of the system’s domain
of operation. Off-topic discourse can occur when the dialog manager is
not expecting a particular user input although it is a well-parsed utterance.

In a slot-filling setting (e.g., flight reservation domain), a spoken dialog
system (SDS) can use the domain-knowledge to verify the slots (e.g., city
names) and their values (e.g., Florence) in the utterance. In SMS setting,
there is no such domain-knowledge available to verify the errors. Consider
the following example:

REFERENCE: We are planning to meet at Madras Cafe

41
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HYPOTHESIS-1: We are planning to meet at MY ADDRESS COFFEE
HYPOTHESIS-2: We are planning _ meet to madras cafe

While HYPOTHESIS-1’s error lead to miscommunication, the HYPOTHESIS-
2’s error usually does not affect communication and can be tolerated 1.
This leads to the question: How do we detect significant errors that lead
to miscommunication? In a slot-filling SDS, the error detection module
labels the slot-values as error or correct, and assigns a confidence score
to the label. Then, the dialog manager looks at these labels and makes a
decision whether to use the ASR-result, or reject it. In this pipeline, the
error detection typically has no access to the dialog decisions made, thus
no feedback on the detected errors. This leads to another question: Can
we optimize the major error detection to maximize the correction of major
errors? This work investigates the two questions posed in this paragraph.

Conventional error detection, both in slot-filling (Filisko and Seneff,
2004a; Pincus et al., 2013; Bechet and Favre, 2013) and in dictation (Shi
and Zhou, 2005; Ogawa et al., 2012), does not discriminate errors based on
severity. Studies that discriminate between errors (Bohus and Rudnicky,
2001; Prasad et al., 2012; Dufour et al., 2012), do not optimize the detection
process to ensure that the errors are worth clarifying. Bohus and Rudnicky
(2005b); Skantze (2007a) optimize confidence thresholds to task success for
slot-filling. In this work, we present an error detection technique, as well
as dialog-action optimized error detection. In particular, we investigate:

1. Which errors are more important and how do we detect them? We
propose a 3-way labeling method that labels words as either correct,
MAJOR errors or MINOR errors. We also show that our method
outperforms 2-way labeling methods such as (Ogawa et al., 2012;
Pincus et al., 2013; Bechet and Favre, 2013) that only distinguish
between correct and error words.

2. Can we optimize the detection of major errors to maximize their cor-
rection? To this end, we optimize the detection step using metacosts
that update word error labels and show that it performs better at
selecting corrective-actions. We simulate the dialog using a hand-
crafted dialog policy in our experiments.

1Especially when texting is a secondary task, such as while driving
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In this chapter, first we will analyze speech recognition errors based
on their severity. Then we will present dialog strategies that can help
us recover information from such errors. We will describe our sequence
labeling approach for error detection that optimizes towards the dialog
action selection. We show that optimized approach outperforms the
unoptimized version significantly, thus helps in recovering information
from errors. We will discuss the interactive version of the error detection
system. We have successfully applied our approach for spoken short
messages and for speech-to-speech translation application. In the speech-to-
speech translation application, we show that we can recover OOV words
and learn their concept category through dialog.

4.1 Analysis of Recognition Errors

4.1.1 Data Collection

We collect the spoken SMS corpus in two phases 2. (1) Subjects are given a
set of scenarios and asked to respond with an SMS in their own words. (2)
A different set of subjects are asked to read the messages that are collected
in the previous step.

The scenarios are associated with daily activities that subjects might be
familiar with. An example scenario is You are scheduling when to meet with
your friend. Send a message on it. In both phases, subjects are provided
with a web interface to type in their text messages or to read the prompted
text-message. Subjects are recruited from Amazon Mechanical Turk.

In the first phase of the data collection, we have 66 scenarios with
about 5K subjects typing in 40K text messages based on these scenarios. In
the second phase, we have 2746 spoken messages from 238 subjects. These
messages are transcribed using Google’s Speech Recognition Engine. The
recognizer’s output contains a list of n-best hypotheses and confidence
score associated with the 1-best hypothesis. Some of these utterances are
discarded by the recognizer and only 2692 utterances are decoded. We
observe that the discarded utterances are either badly recorded or contain
heavy background noise. We also observe that such observations are
specific to a particular set of subjects. In order to get a fair notion of the

2Since coming up a text message is cognitively-intense process for subjects, we separate
this step from speaking the message
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Table 4.1: Corpus Statistics

#Utts #Errors Avg Errors/Utt Avg Tokens/Utt WER
Correct Utts 1028 -NA- - 10.41 0.0%
Error Utts 1127 4472(27%) 3.96 14.59 24.62%
All Utts 2155 4472(16%) 2.07 13.38 15.48%

errors in this corpus, we discard sessions recorded by these subjects. After
discarding those sessions, we are left with 2155 utterances to analyze.

4.2 Corpus Analysis

To get an insight into the errors in text messages, we first analyze the corpus.
As shown in the Table 4.1, in this corpus, a little over 50% utterances have
recognition errors. Most of the erroneous utterances are longer due to
false-starts and insertion errors. On average there are 3.96 erroneous
words per utterance in the utterances with errors. We did not observe a
strong correlation (kendall’s τ = -0.01) between length of the utterance
and number of errors in an utterance.

First, we would like to know the error-breakdown by part-of-speech.
We observe that majority of the tokens belong to open-class of words
i.e., verbs, and nouns. We also find that errors occur in prepositions,
determiners, and the other closed-class of words. Adjectives and adverbs
belong to open class of words but with fewer errors. One explanation is
that colloquial expressions typically use fewer modifiers when compared
to written text. We would like to highlight that the ratio of errors:correct-
instances is higher for verbs, nouns and proper names compared to closed-
class words.

Second, we look at severity of the errors. Misrecognizing a closed-
class word is typically less severe. Misrecognizing a sequence of words
can change the meaning of a message. Also, function words can contain
important temporal/locative information (e.g., in vs on) and those errors
can affect the meaning of the message.

Third, we want to inspect number of these errors that are part of
a continguous sequence of errors. Figure 4.1 shows length of the error
sequence and its frequency in the corpus. It is obvious that there are a lot
more isolated errors (length= 1), but it is interesting to note that there are
almost as many errors in two-word error sequences as in isolated errors.
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Sequential errors are distinct from isolated ones mainly because most
of erroneous words are commonly found bigrams, trigrams in spoken
language e.g., “you are”, “they are going” etc. Errors in such sequences
may affect the meaning of the message.
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Figure 4.1: Length of sequence of errors vs frequency of errors

4.2.1 Major Errors and Minor Errors

Based on our pilot analysis of the corpus, we find that some errors impact
the interpretation of a message than the others. To get an empirical esti-
mate of the error severity, we annotate the errors in the 1-best hypotheses
of the utterances. Our objective is to label isolated errors as MAJOR, or
MINOR. If an error is part of a sequence of errors then all these errors are
labeled as MAJOR errors.

We have following suggestions for the annotators:

• If the error leads to misunderstanding the message then it is a major
error

• Otherwise it is a minor error

Example scenarios for the major and minor errors:

• If pronouns, prepositions, adjectives or adverbs doesn’t change the
meaning, then the error is minor.

• If the error is due spelling-mistake (baby vs babie) or word-compounds
(highway vs high way), then it is minor.
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• If the error deletes or substitutes a content word like noun, verb or
a proper name then it is major.

• If the error occurs in a sequence of errors then it is major.

We divide the erroneous utterances into three equal parts. Three anno-
tators together have labeled the errors occurred in the 1-best hypotheses
100 of utterances. The inter-annotator agreement on these utterances has
a high kappa score (κ= 0.74) overall and on single-word errors the agree-
ment is κ= 0.66. In these 100 utterances, there are 208 errors in sequence
and 195 (˜95%) of them are critical for understanding the message. Figure
4.2 shows that majority of the errors are part of a sequence of errors. This
is in agreement with our observations from the pilot analysis. Most of
the major errors are nouns, verbs and proper-names. Occassionally, some
instances of closed-class words are labeled major because they affect the
meaning of the utterance. For example, “your” instead of “our” changes
the meaning of “when is your appointment”. We observe that majority
of the open-class word-errors i.e., nouns, verbs and proper-nouns are part
of a phrase. We also observe deletions are mostly part of phrase errors.
Therefore we need to treat the phrase errors as critical as the isolated ones.
In the following two sections, we discuss our dialog policy to handle er-
rorneous utterances and approach to detect major and minor errors in an
utterance.

Figure 4.2: Major and Minor Errors Breakdown by POS
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4.3 Dialog-Actions to Recover New Information

To recover information from “major” errors, we simulate dialog-actions
based on the errors in the message. The defined dialog actions are naive
3, since the current focus is not error correction, but to improve error
detection to accurately select an action. The policy is as follows:

• Confirm: Playback (sliced from user’s speech) the error segment
of the utterance and seek for correction, if there is a major error.
Similar to (Prasad et al., 2012; Stoyanchev et al., 2013).

• Repeat: Discard the current ASR result and ask to repeat the mes-
sage, if there are more than two major errors. This means that false
alarm does not matter when there are more than two major errors
that are correctly predicted.

• Continue: Confirm implicitly and send the message, if there are
no errors or only minor errors.

Based on these actions and the annotated errors: Out of 1127 error ut-
terances, 694 require Confirm action, 80 require Repeat, and 353 have
only minor errors and do not require corrections ( Continue). Note that,
accurate action-selection of Confirm and Repeat is important in this
task to avoid miscommunication of messages i.e., false acceptances. In
speech-based applications, typically false acceptances are not desirable as
they increase the interaction overhead (Komatani and Kawahara, 2000).
Next, we discuss our approach to detect major and minor errors.

4.4 Multi-Level Error Detection

In the last section, we discussed the nature of the errors in the text messages
and observed that some errors are more critical than the others. In this
section, we present our approach to detect both major and minor errors in
an utterance. We cast this problem as a sequence labeling problem where
each word in an utterance is labeled as correct, major-error or minor error.
Our goal is to detect as many errors as possible, particularly the major
ones that are critical for understanding the text message.

3Ideally action selection is done considering the likelihood of error recovery.
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Table 4.2: features used for error detection

Feature Type feature

LEX
word itself
word position BEG, MID, END

ASR

log posterior confidence
duration of word (in sec)
presence of ngram for current word 3gram,2gram,1gram,OOV
number of alternative nodes in the confusion network

SYN
POS tag
log posterior of POS confidence
Chunk label for the word

SUB presence of subword in time frame of hybrid decoder output

4.4.1 Method

To train an error detection model, we use off-the-shelf Linear-Chain
Conditional-Random-Fields (CRF) toolkit (Kudo, 2013). We use lexi-
cal, acoustic, syntactic and other features to train this model. Table 4.2
gives an overview of features in this model. Previous work (Pincus et al.,
2013) found that word position has predictive power to determine the
errors. ASR features such as posterior probability and duration of the
word-segment are standard features to determine errors.

In our case, the recognizer does not provide word-level confidence
scores. Therefore, we estimate these scores through an alternative process.
First, we force-align each of the hypotheses in the n-best list with the speech
using Sphinx 3 (Placeway et al., 1997) and obtain the word-level time and
acoustic model (AM) score. Then, we obtain language model (LM) scores
by measuring the perplexity of the hypotheses over a trigram language
model using SRI-LM toolkit (Stolcke, 2002). The language model is trained
on a dataset of tweets 4. Finally, we generate a confusion network from the
n-best hypotheses along with the word-level AM and LM scores obtained in
the previous steps using SRI-LM. The resultant confusion network contains
word-level posterior probabilities. We use the log-posterior probabilites
of words in the 1-best hypothesis as features in our model.

We also use presence of an ngram for the word in the language model
as a feature. Since speech recognition is a generative process based on an

4We collected conversational tweets from 04/13 to 07/13. We exempt retweets and
status tweets because they do not suit our domain
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underlying distribution, every word in the recognition output can be either
generated from a trigram, bigram or unigram with different probabilities.
For example, if the candidate word in the output is “boy”, it can be because
the history (context before that word) was either “the young boy” (trigram),
OR “young boy” (bigram), OR “boy” (unigram). Given a language model
and a word output, we can generate this “categorical” feature for the CRF
[unigram, bigram, trigram, oov]. We use “oov” category If the word
doesn’t exist in the language model.

Another important feature is ratio of alternative nodes to a current
node in a word confusion network. Figure 4.3 shows a portion of a word
confusion network. For word positions 1 and 3, there is only one candidate
word and ratio would be 1/1. For word position 2 (highlighted in gray),
there are 3 candidates and the ratio of nodes to that position would be 1/3.

to a boy

the

one

Figure 4.3: a snapshot of the confusion network

We also use part-of-speech tag as a feature. We use the twitter pos
tagger (Owoputi et al., 2013) to obtain the pos-tags for each word in the
1-best hypothesis. In addition to pos-tag, we use the chunk-label (NP,
VP, PP, ADJP etc.) associated with each word using OPEN-NLP chunker
(OpenNLP). We believe that disfluent phrases lead to abrupt chunking
when compared to fluent phrases, helping us discriminate between errors
and correct words.

Utterances with major errors typically have open-class words and
some of them are out-of-vocabulary(OOV) words for the recognizer. We
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detect their presence using a hybrid decoder (Qin and Rudnicky, 2012).
A hybrid decoder is a standard speech recognition engine (e.g. sphinx)
that takes a hybrid language model, hybrid dictionary and a standard
acoustic model (e.g., WSJ acoustic model) as its input. Hybrid language
model is a combination of subword language model and a conventional
word language model, where subwords are phone sequences of variable
length such as “AA_SH”, “IY_SH”, “P_AH_P” etc. Hybrid dictionary
has pronunciations (represented as a phoneme sequence) for both regular
words and subwords. Example entries in hybrid dictionary:

TEST T EH S T
AA_SH AA SH
JOHN JH AA N
IY_SH IY SH

We train a hybrid language model from a corpus of tweets with 84,867
tokens and 812,722 utterrances. While training the hybrid model, we
consider the nouns and proper-nouns (39,451 out of 84,867) appearing in
tweets as OOV tokens. We use sphinx3 decoder with HUB4 acoustic model
and the hybrid language model.

Figure 4.4 shows temporally aligned outputs of regular decoder (“hyp”),
and hybrid decoder (“hybrid”). We also show truth (“ref”) of the actual
speech only for the reader’s understanding. Within the time frame of a
word in the regular output (“hyp”), we note whether it is aligned with
a subword (e.g., AY*T*M*AY) in the “hybrid” output. If it is aligned
then we assign “1” as the feature value of sub_feat, otherwise “0”. In the
example below, last three words of the “hyp” output (excluding the trailing
silence) have subwords in their time frame. This approach is similar to a
previous work (Burget et al., 2008) that uses a combination of multiple
recognizers to improve the OOV detection.

4.4.2 Optimizing Error Detection

The error detection approach mentioned above is designed to optimize
word-level prediction. We wish to optimize the error prediction to maxi-
mize the action selection performance. For example, the detection method
should know that an utterance is rejected beyond a certain threshold of
major errors, so classifying multiple major errors correctly does not im-
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time

t=0 t=1 t=2 t=3 t=4 t=5

ref see you sil at macys

hyp see you sil at my seas

hybrid see you sil AY*T*M*AY S*IY*Z

sub feat 0 0 0 1 1 1 1

Figure 4.4: illustration of subword feature extraction for error detection

pact the action. Similarly action is same for correct utterance and minor
errors, so it is not necessary to distinguish them to select the dialog-action.

We define this problem as re-scoring problem from N-best hypotheses
of error prediction. The action-optimized approach is two-phased and
illustrated in Figure 4.5.

(1) Optimization Phase: We apply metacosts (Domingos, 1999) to
the detection output and optimize the costs with randomized grid-search
that selects optimal action. Metacosts can turn any arbitrary error-based
classifier into a cost-sensitive classifier and found to perform well in label-
imbalance setting such as ours (Wu et al., 2008). We divide the data into
validation data and testing data. Then we run the error detection method
discussed earlier over the validation data to optimize the metacosts dur-
ing gridsearch. We manually picked a range of costs based on our pilot
experiments. We could derive these costs from data if we have had longer
interactions instead of one-shot interaction. Our method, a CRF model,
produces marginal probabilities for all the candidate labels for a token
in the sequence. The 1-best output of the model may not be optimal for
action-selection, therefore we apply metacost matrix to revise the labels in
the sequence. The revised label is chosen as follows:

revisedt = argmax(costt ,i × Pi ). (4.1)

Where t is the predicted label of a word,
i ∈ [Correct,Major,Minor], cos t is n× n, metacost matrix (n is number
of labels) and Pi is marginal probability of a candidate label. Once we revise
the label sequence, we repeat this process for the n-best label sequences
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produced by the model. Then, we apply ROVER (Fiscus, 1997), a voting
algorithm on the revised error sequences. ROVER was found to be useful
in minimizing the error in ASR, thus we apply it to the revised error
sequences to get a voted error sequence.

ROVER uses a two step approach. In the first step, it takes multiple
label sequences as its input and combines them into a single label transition
network. This network is created by running a dynamic-time warping
algorithm to align multiple label sequences. In the second step, this net-
work is evaluated for candidate labels at each word position with respect
to a voting criterion (e.g., confidence score of a label). Voting criterion
determines which label should be selected at any given position in the
sequence.

• By frequency: select most frequent label across different sequences
as the best label for that word position.

• By average confidence score: Rank the candidate labels by taking
the average of their confidence scores across sequences.

• By maximum confidence score: Just pick the label that got highest
confidence score in any sequence for that word position.

In our experience, we found average confidence score often produces
optimal output and we have used that as our voting criterion in all our
reported results. Based on the voted error sequence (obtained from ROVER)
and the dialog policy, we choose the dialog action, then evaluate if it
matches the action based on the true-error-sequence. For randomized grid
search (Bergstra and Bengio, 2012), we use the implementation available
in scikit-learn (Pedregosa et al., 2011).

(2) Evaluation Phase: We apply the optimized costs to the error detec-
tion output. We detect errors in a test utterance, apply the metacosts on
the nbest-list of error sequences, pass the list through ROVER and obtain
voted error sequence to select the target dialog-action for the utterance.

4.5 Detection Experiments

Our objective is to evaluate how these features fare in major error detec-
tion, i.e., accurately label whether a word is “correct”, “major-error” or
“minor-error”. We have two baselines for critical error detection (a) MA-
JORITY baseline: simply labels every word as “correct”. (b) RULE BASED
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Major-Minor
Error

Detection

validation
data test data

apply
metacost to
error-labels

Randomized
metacost
params

Optimal
metacost
params

ROVER
voting

better
action

selection?

DialogAction
policy

Update Costs
Output
Dialog
Action

error sequences

revised sequences

voted sequence
voted sequence

yesyes

Figure 4.5: Workflow for Optimizing the Detection to Dialog-Action. Bold lines show
evaluation phase and dotted lines shows the metacost-optimization.

major/minor error detection: first we measure ASR confidence scores for
each word (estimated as mentioned in the Method section), label words
as errors below a confidence threshold and then based on their POS tag
all the nouns, proper-nouns, verbs are tagged as major errors otherwise
minor. We compute the confidence threshold in a 10-fold cross validation
setting. The threshold is measured as the average confidence of the correct
words in the training data of that fold.

Deletion errors are often major and they are distinct from other major
errors because there is no superficial evidence for the deleted words in a
hypothesis. This leads to absence of token-related features such as pos-tag,
chunk-label etc. Therefore, we handle deletions separately and the results
are presented separately for the deletion errors.

4.5.1 Experiment Setup

We normalize the colloquial expressions (e.g., I’ve to I have) to their stan-
dardized version in the corpus. We extract features described above for
each utterance in the corpus. We use these features to train a CRF model.
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Since CRF models only allow binary features we postprocess the real-
valued features by binning them into intervals. We bin them into 10 bins
from 0.1 to 1.0. For example if the feature value is 0.4 then the feature
vector looks like [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]. We perform 10-fold cross
validation on the entire corpus of 2155 utterances.

4.6 Detection Results

We compare the baseline models discussed above against the sequence
labeling models with features. Table 4.3 shows that the proposed model
(ALLFEATS) in word-level classification of errors significantly ( p < 0.05)
outperforms both the baselines, MAJORITY and RULE BASED by 1.87%
and 1.53% respectively. We observe from Table 4.4 that individual feature
models do well in a particular class. Although we expected the SUB feature
model to contribute to major error detection, the results show otherwise.
One explanation to this result could be that we have used it as a binary
feature instead of a real-valued feature. We have further analyzed the
features and their predictive power in the next section.

We observe that consistent low-recall is due to the fact that the corpus
is heavily imbalanced towards the correct-labels (only 16% of the words
have errors in them). Up-sampling the corpus could improve the recall.
Since our focus is to investigate the features that are promising for the
detection task rather than handling the imbalance in the dataset, we will
leave up-sampling for future work.

Table 4.3: Word level performance of the Multi-Level Error Detection
Model against the Baselines in-terms of Precision(%), Recall(%) and F-
score(%)

Class MAJORITY RULE BASED ALLFEATS

P R F P R F P R F
Cor 91.03 100 95.30 93.32 91.71 92.50 92.66 98.07 95.28
Maj 0.00 0.00 0.00 21.18 21.18 21.18 40.15 16.83 23.42
Min 0.00 0.00 0.00 9.38 18.22 12.34 33.06 10.33 15.54
All 82.61 90.89 86.56 88.03 85.97 86.90 87.39 90.52 88.43

Detecting the type of error in an utterance is important for the dialog
strategy. Therefore, we evaluate our model at the utterance level to see if
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Table 4.5: Utterance level Accuracy (in %) of Baselines and the Multi-level
Error Detection Model

Class MAJORITY RULE BASED ALLFEATS

Correct 100 100 99.91
Major 0 22.62 26.23
Minor 0 15.19 15.92
All 53.45 62.87 64.1

it can predict if an utterance has at least one “major error”, only a “minor
error” or none of them (“correct”). Table 4.5 shows that the proposed
model can make a prediction about error occurrence with an overall
accuracy of 64.1%.

As mentioned earlier, we train a separate model for deletion detec-
tion. The force-align algorithm inserts silence breaks in between the
words and we use these breaks as surface tokens to train deletion detection
model. While training the deletion detection model we use the reference-
hypothesis alignment output to these label silence markers as deletion
errors. We collapse sequence of deletions as a single deletion error. Al-
though several features are absent for the silence segment, yet we have
the context surrounding this segment to help the model predict deletion
errors. We use all set of features that we described in the previous section.
We compare this model against two baselines (a) MAJORITY baseline: la-
bels every token as “correct” and (b) HEURISTIC baseline: labels a silence
segment as deletion when the segment duration is greater than 0.39. This
threshold is equal to average of the duration of all the silence segments in
the corpus. The proposed ALLFEATS model significantly outperforms
both baselines.

From Table 4.7 we see that 3-way method performs 18% better than
baselines selecting actions (from 50.0/47.4 to 59.2). We believe that 3-WAY

LABEL model can be optimized to improve on correcting major errors.
In the subsequent sections, we present the action-optimized version.

4.7 Error Analysis of Error Detection

In a sequence labeling method, errors are often predicted in the context
where features interact with each other. Some features, however, have bet-
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Table 4.6: Deletions detection results in terms of Precision, Recall and
F-score

Class MAJORITY HEURISTIC ALLFEATS

P R F P R F P R F
Corr 91.03 100 95.30 99.37 95.71 97.50 92.84 97.85 95.27
Del 0.0 0.0 0.0 10.59 45.43 17.17 53.84 29.26 37.51
All 82.99 91.09 86.85 83.06 88.47 85.62 88.91 90.9 89.48

Table 4.7: Sentence level Action-Selection F-score(%) of the Proposed
Model (3-WAY LABEL) against the Baselines. Our approach has 59.2% F1
score for action selection, significantly better than the baselines.

Action MAJORITY
RULE
BASED

3-WAY
LABEL

Continue 78.1 65.0 80.2
Confirm 0.0 17.3 22.4
Repeat 0.0 2.2 16.3
All 50.0 47.4 59.2

ter predictive power in isolation. We inspected these features by measuring
the χ 2 score (Chi-squared goodness of fit test) in different classification
settings. Table 4.8 shows the features ranked by their scores in different
classification settings. First row shows that the errors (irrespective of
severity) are better discriminated from correct words by confusion-net
feature, ASR confidence score, followed by other syntactic features. We
observe that some features are better in context (e.g., subword) than in
isolation. We observe similar trend in the second row of Table 4.8. Dele-
tion errors are well discriminated by the position of the word segment,
ASR confidence, duration, and subword features. This shows a striking
contrast between the tasks of detecting deletion errors and detecting other
critical errors.

We have further analyzed the predictions made by the model in com-
parison to the marginal probability associated with each prediction. Figure
4.6(a) shows the density of predictions against the intervals of margin prob-
ability associated with the prediction. Each line plot is associated with the
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Table 4.8: Predictive power (measured in χ 2 test score) of isolated features
in different settings

Type 1 2 3 4 5 6

Cor vs Err
confusion

(2407)
asr-conf
(2325)

ngram
(735)

pos
(585)

pos-conf
(325)

chunk-label
(140)

Cor vs
Maj vs
Min

confusion
(2493)

asr-conf
(2344)

pos-tag
(2344)

ngram
(771)

pos-conf
(326)

chunk-label
(168)

Cor vs Del
position
(72.26)

asr-conf
(64.55)

duration
(46.19)

subword
(14.31)

pos-tag
(0.0)

pos-conf
(0.0)

actual label when the predicted label is “correct”. A similar trend can be
noticed with respect to deletions Figure 4.6(b). We understand when the
model predicts the word as correct with a probability less than 0.9, then
its more likely to be a major or minor error. This reinforces the notion
that the model is highly biased towards correct label and raises the need
for error optimization.

To understand how the error detection performance varies by POS,
we brokedown the F1-score of our proposed model by POS tag. This is
presented in Figure 4.7. We see that the error detection is particularly good
for Names, followed by adjectives, numbers and nouns. One explanation
for this result is that open-class words are relatively more frequent class of
words in a corpus compared to closed-class of words. Therefore it makes
it easier for the error detection module to spot them if they ever occur in
wrong context.

4.8 Optimized Detection Experiments

4.8.1 Optimized Detection Setup

We want to optimize the error detection process to improve action selec-
tion. This helps us to minimize the false-alarms by clarifying major errors.
We compare optimized action selection results (VOTED ACTION OPTI-
MIZED) with the 3-WAY LABEL. We use 4-best error sequences throughout
the experiments based on pilot experiments on a development set.
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Figure 4.6: Histogram of the (actual, predicted) tuples against the marginal
probability of the prediction

4.8.2 Optimized Detection Results

Table 4.9 shows significant improvement ( p < 0.01) in predicting corrective-
actions (Confirm and Repeat), when we use VOTED ACTION OPTIMIZED

model without degrading overall performance measured by F1 score. The
optimized model improves the selection of corrective-actions by weighted
average of 31% (25% for Confirm and 85% for Repeat). We improve re-
call for error-correction, which is important in label imbalance tasks e.g.,
anomaly detection (Akoglu et al., 2012).
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Figure 4.7: F1 score of Major and Minor Errors Breakdown by POS
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Strategy
3-WAY
LABEL

3-WAY VOTED
ACTION OPTIMIZED

P R F P R F
Continue 72.4 89.8 80.2 78.4 78.0 78.2
Confirm 37.6 15.9 22.4 33.5 24.3 28.2
Repeat 44.4 10.0 16.3 38.4 25.0 30.3
All 60.2 58.2 59.2 62.3 58.0 60.1

Table 4.9: Sentence level Action-Selection performance Action-Optimized
Model (VOTED ACTION OPTIMIZED) against the unoptimized ones in
terms of Precision, Recall and F-score. Optimization improves F1 for
corrective actions by 31% (25% for confirm and 85% for repeat.)

We list the word-level precision and recall in Table 4.10 to investigate
the reasons for this improvement. Recall of our method 3-WAY VOTED

ACTION OPTIMIZED for major and minor is significantly higher than
that of 3-WAY. This confirms that optimized weight lead to aggressive
error detection because false alarm for “Repeat” is tolerated if at least two
predicted errors are correct. When the predicted label is “Correct” an
example of optimized costs is [1.1,3.2,2.1] for [Correct,Major,Minor]
labels. This shows that missing major errors is more critical than missing
minor errors. We believe that combination of voting and metacosts boosts
the performance of the optimized model.

In summary, VOTED ACTION OPTIMIZED model improves the action
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Class
3-WAY
LABEL

3-WAY VOTED
ACTION OPTIMIZED

P R F P R F
Cor 92.6 98.0 95.2 94.3 95.4 94.8
Maj 40.1 16.8 23.4 28.8 27.9 28.3
Min 33.0 10.3 15.5 24.0 15.7 19.0
All 87.4 90.5 88.4 88.9 89.7 89.3

Table 4.10: Word level performance of Action-Optimized Model (VOTED ACTION
OPTIMIZED) against the unoptimized ones in terms of Precision, Recall and F-score.
Optimization improves error detection by an additional 1% (88.4 to 89.3)

selection by 1.5% (59.2 to 60.1) and error detection by an additional 1%
(88.4 to 89.3), bringing the overall improvement in error detection to 2.7%
(86.9 to 89.3).

Although our objective is to improve the performance on corrective-
actions, Table 4.10 shows that the optimized model has also significantly
(p < 0.01) improved at detecting major errors by 5% (from 23.4 to 28.3),
minor errors by 4% (from 15.5 to 19.0) and overall 1% (from 88.4 to 89.3).

We have analyzed the major error detection result by breaking them
down by their POS. In Figure 4.8, we see that our optimized approach
consistently outperforms the unoptimized version across all the POS tags.

Figure 4.8: Breakdown by POS: F1 score of Major Error Prediction by
unoptimized vs optimized
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4.9 Interactive Detection and Recovery

Our goal is to develop an error detection and recovery application. Figure
4.9 shows example dialog of a system with the user to recover from errors
in spoken short messages. Our application is based on a web-based dialog
architecture that we have developed on top of Freeswitch 5.

4.9.1 Error Detection Module

This module implements the ideas discussed earlier in this chapter. We
extract various features in this module. An example feature vector looks as
follows. This feature vector is an input to the CRF module that performs
error detection.

example_feature_dict = {
’hypothesis’: ’good morning <sil> this is a test <sil>’,
’confusion_net’: ’0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5’,
’pos_tag_confidence’: ’0.9954 0.9947 1.0 0.9529 0.9983 0.9985 0.9989 1.0’,
’begin_timestamp’: ’0.39 0.55 0.96 0.99 1.28 1.39 1.47 1.98’,
’end_timestamp’: ’0.54 0.95 0.98 1.27 1.38 1.46 1.97 2.9’,
’pos_tag’: ’A N sil O V D N sil’,
’ngram’: ’2gram 3gram sil 1gram 2gram 3gram 3gram sil’,
’subword_feature’: ’0 0 0 0 0 0 0 1’,
’asr_confidence’: ’1 1 1 1 1 1 1 0.99923’,
’word_position’: ’BEG BEG BEG MID MID END END END’,
’duration’: ’0.15 0.4 0.02 0.28 0.1 0.07 0.5 0.92’
}

4.9.2 Error Recovery Module

We select a dialog action based on the error detection output as discussed
earlier in the chapter. For confirm dialog action, we need to slice the audio
corresponding to the error region and play it back to the user in the step
3 of dialog shown in Figure 4.9. To do that we need the begin and end
timestamps of the error region. Then we use sox to slice the audio in the
error region.

We want to fix the error region using the output from new fragment
of user speech. In step 4 user repeats the error region and the speech

5http://www.freeswitch.org
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gets transcribed. Then we take the n-best list produced by the ASR and
search for phonetically closest hypothesis to the target error region. E.g.,
nbest list: [madras, address, madras cafe] and target error region: mad
address cafe. In the example, third item in the nbest list is the closest match.
To obtain closest match, we convert the n-best list into their phonetic
equivalents using a g2p program 6. Then compute levenshtein distance
between phonetic transcriptions of the target error region and each item
on the nbest-list. Then, system replaces the new candidate in the original
utterance and confirms with the user if the updated message is correct.

We built this dialog system based on our web-based dialog architecture.
We describe this architecture in the following section.

S[1]: Speak your message now
U[2]: the applying to me [we are planning to meet] to [at]Madras Cafe
S[3]: please repeat the phrase <....>
U[4]: planning to meet
S[5]: did you say the planning to meet madras cafe
U[6]: yes
S[7]: sending the message "the planning to meet madras cafe"

Error Clarification in SMS domain

Figure 4.9: Example Dialog for Error Clarification in SMS domain. Note:
text in [] shows inline ground truth

4.9.3 Web-Based Dialog Architecture

Freeswitch is the backbone of this architecture. It supports VOIP, SIP
based calling, call routing, and simultenous calls to a freeswitch applica-
tion and provides boilerplate code to write an application in many of
the popular computer languages. This allows easy integration of existing
code as library calls from the application code. Figure 4.10 shows the
flow chart of the architecture. A call is initiated via front-end such as,
phone-line, SIP, web-based RTMP connection or VOIP. Then the audio

6http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
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from the user’s channel is streamed to a freeswitch server and recorded
to a unix named pipe. A voice-activity-detection component reads the
audio stream from the named-pipe to detect speech. This component uses
Sphinx’s VAD algorithm (available in sphinxbase library 7 to segment the
audio into speech and silence chunks. When a speech segment is detected,
it is sent to an automatic speech recognizer (ASR) engine via TCP socket.
Then the recognition hypothesis is sent to dialog application. The dialog
application processes the hypothesis and sends a response back to the user
via text-to-speech engine and the application front-end (e.g., GUI). In the
current configuration, two speech recognizers are plugged into the system
— a local recognizer, Pocketsphinx (Huggins-Daines et al., 2006) and a
commercial cloud-based recognizer. Any recognition engine can be incor-
porated (given an appropriate interface), using a simple TCP connection,
allowing the use of different recognition schemes. Additionally, devel-
opers are able to evaluate different (acoustic and language) modelsin the
context of the same dialog application. The source code for VAD, ASR in-
terfaces (C/C++) and example configuration for a freeswitch application
is available as tar ball 8.

Application
Frontend

Freeswitch
PBX

platform

Voice
Activity
Detec-
tion

ASR
Engine

Dialog
App

TTS
Engine

Figure 4.10: Architecture Flowchart

7http://sourceforge.net/projects/cmusphinx/files/sphinxbase
8http://www.speech.cs.cmu.edu/apappu/pubdl/fs-dialog-interface.tar.gz
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4.10 Recovering OOVs in Speech-To-Speech MT

Besides spoken short messages domain, we have conducted preliminary
experiments to detect and recover new information in the context of a
speech-to-speech translation system. Our task is to recognize a user’s
English utterance, detect potential errors in the recognition, report to the
user and finally translate corrected recognition into target language (Iraqi).
The dialog system reports to the user about the low-confident region and
asks them to spell the OOV phrase, rephrase their original sentence or
inform if they are satisfied with recognition. Six users participated in this
experiment, total 81 dialog sessions were conducted with 179 utterances
spoken by the users. Some of these utterances are clarification replies
to the dialog system. In this experiment, we are only interested in the
utterances intended for translation because we want to know whether
confidence scores are useful features to determine OOV regions in such
utterances. After the user speaks, there can be more than one possible
action as shown in Table 4.11. If the user is not satisfied with the response
they can restart the session manually otherwise the system can either
approve the recognition or pose a clarification to the user.

Table 4.11: Possible actions after user utterances

Action on User utterances Frequency
System requests correction 68
System approves utterance 23
User suspends session 8
Total domain utterances 99

In response to system’s clarification question, the user can take one of
the actions listed in Table 4.12. Remember, we are interested in finding
out what is the actual WER of utterances that the system predicted as low
confident input. Table 4.13 shows that the difference between the WER of
user approved and that of system approved utterances is quite small. In
contrast, utterances that required clarification have relatively higher WER.
Therefore, it can be understood that confidence scores obtained from a
ROVER mechanism can be reliable for detecting badly recognized inputs,
in turn potential OOV regions.
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Table 4.12: User Action on System’s Clarification

User Action Frequency
suspend the session 9
spells OOV phrase 22
rephrased 22
approved 15
Clarification Requested 68

Table 4.13: User Action on System’s Clarification

Utterance type WER %
clarification requested 43.4
system approved 29.7
user approved 27.1

4.10.1 OOV Learning Strategy

We developed OOV learning this system. This strategy requires the speech
recognizer to use a spelling language model. We evaluated this language
model on two datasets, eval1 and eval2. These two datasets were actual
dialog sessions with the end-users using a dialog system for speech-to-
speech machine translation. The spelling language model is trained using
a list of 37K words available in the recognizer’s vocabulary. Table 4.14
shows that the spelling recognition used with the OOV strategy is accurate
on both datasets. We found that higher WER on the second dataset (eval2)
is because of badly segmented speech utterances.

4.10.2 Category Learning Strategy

We developed a category learning strategy for newly acquired word in the
same system as discussed above. After the system acquires the spelling
for the new word, it asks the user if word belongs to a particular category
and lists a set of categories as options to the user. This is another popular
strategy to acquire category labels for a word. On both eval1 (72 category
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Table 4.14: WER for the spelling recognition of OOV words

DataSet Number of WER

Utterances
eval1 88 8.7%
eval2 22 16.3%

state utterances) and eval2 (11 category state utterances) datasets, we had
100% accuracy at recognizing user’s input for the target category. Figure
4.11 shows an example dialog of the system while it handles the OOV

errors.

U: I’m looking for big [KAHUNA]
S: I’m looking for big. Either spell <> in the NATO alphabet. say Rephrase or say
Continue
U: Kilo Bravo[Alpha]Hotel Uniform November Alpha
S: Is KBHUNA, person, location or other?
U: person
S: Adding KBHUNA and translating
S: Translating: "I’m looking for big @kbhuna@"

OOV Dialog

Figure 4.11: Example Dialog for Error Clarification in S2SMT. Note: text
in [] shows inline ground truth

An alternative approach to category learning is to ask the user to
suggest a category word/phrase to label newly acquired word. For example,
system asks the user to give a synonym for the newly acquired word. Then
the synonym word/phrase can be associated with the newly acquired word.
We have used this strategy but it comes with obvious limitations. There
were only 7 instances of this strategy overall and the WER is 77%. There
are couple of reasons for this bad performance. Firstly, it assumes that
synonym word or phrase is part of the recognition vocabulary which is
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not necessarily true. Secondly, it assumes that the user can come up with
a simple and generic label. This assumption can fail if the newly acquired
word cannot be described in one word or the user cannot think of it at
that moment.

4.11 Discussion

Early work on error detection (Zhang and Rudnicky, 2001; Shi and Zhou,
2005) showed that combining multiple features, mitigates the drawbacks
of individual features. Our approach uses lexical, syntactic, ASR and sub-
word features to detect errors. Bechet and Favre (2013); Pincus et al. (2013)
found that error detection in speech-to-speech translation can benefit from
lexical and syntactic features. In news transcribing domain, dictation set-
ting, Dufour et al. (2012) applied the sequence labeling approach using
a CRF. The main difference between our work and their work is that
we revise the error sequence by applying metacosts, improving the ac-
curacy of error detection and the accuracy of action-selection. Shichiri
et al. (2008) proposed minimum bayes-risk decoding as an alternative to
standard decoding approach to better recognize the “significant” words in
the spoken query. In this work, we show that assigning different costs to
the errors and optimizing them, can improve the error detection accuracy.

Our approach is similar to decision-theoritic work on dialog planning
and grounding problems. For example Wu (1991) has proposed a decision
theoritic approach to generate navigation plans to points-of-interest. They
have used multi-attribute utility metric to generate suitable plan. These
attributes are based on difficulty of plan execution, degree of conflict
with other goals, over specificness of the plan, productiveness and success
likelihood of the plan. In our case, we do not directly use any of these
attributes because metacost matrix is based on the risk of missing the
major errors in the detection process. We could include success and diffi-
cultness attributes if we have realistic estimates from several live dialogs.
Difficultness attribute measures the effort or time required to have the
user help the system recover from errors. Success attribute would measure
how likely is that a particular type of error can be recovered. If there are
discontinuous errors then we could estimate which errors are recoverable.

Grounding is the problem of finding a suitable interpretation of a
natural language instruction and converting it a system action. Some
instructions can be ambiguous and may have different executional costs
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associated with different interpretations. Therefore systems employ a
decision-theoritic approach to select a suitable action. Paek and Horvitz
(2003); Skantze (2007b) have shown that grounding decisions can be made
cost-effectively, both based on live interactions and collected dialog data.
In (Skantze, 2007b), they have used different sets of handcrafted confidence
thresholds for making grounding decisions, then find optimal thresholds
based on user studies. In our work, we use different set of metacosts and
determine optimal costs based on grid-search on the held-out data.

Decision-theoritic approach has been applied to other fundamental
problems in conversational systems such as turn-taking. For example
Raux and Eskenazi (2009) has applied cost matrix to floor-transition / turn-
taking problem. They have presented a finite state turn-taking approach
with non-deterministic transitions between the states. The cost matrix
represents risk associated with actions that the system can take in each
state. In our case metacost matrix represents risk associated with different
label candidates with respect to top candidate label.

Potential future direction to our work would be deriving metacost
matrix from scratch instead of optimizing over different sets of cost values.
We could also reformulate this into a multi-attribute cost/utility problem
by factoring in difficultness and success likelihood attributes.

Although dialogs are sequential in nature we did not consider POMDP

based approach in this work, since we are primarily dealing with one-
shot interactions in almost-open-domain scenario. Moreover, there are
no finite set of concept-value pairs in this domain. This makes policy
learning less feasible in a POMDP setting, that is otherwise feasible in
standard spoken dialog systems (Thomson and Young, 2010; Liang et al.,
2013). However, we could apply reinforcement learning (RL), if we could
restrict the concept-value space to certain context e.g., people names in
the sender’s address book or activities/events related to sender’s location
(in the SMS domain). Daubigney et al. (2011) have shown that Gaussian
Processes with RL can help in policy-learning for large-scale dialog systems.
In a POMDP setting, it is possible to have different rewards for different
actions in a state. Similarly, we can derive different metacosts for Repeat,
Confirm and Continue actions by replacing the optimization function i.e.,
average F1-score metric with weighted average F1-score metric.
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4.12 Chapter Summary

In this chapter, we presented an approach to detect critical errors and learn
new information from those errors. First we presented an analysis on
errors that occur in spoken SMS messages and proposed an approach to
detect these errors. We found that some errors are more important than
the others. We observed that major errors often occur in a sequence of
errors, and they also occur in content words such as verbs, nouns and
proper-nouns.

In order to detect the errors, we use a CRF model with lexical, syntac-
tic, ASR and subword features. Our method shows good improvements
over a majority-baseline and a rule-based baseline. Our analysis shows
that although features in-combination give best results, some features have
better predictive power than others in insolation. Features such as ASR

posterior score, confusion-score, ngram-label and part-of-speech are better
at discriminating between non-deletion errors and correct words. How-
ever, word position, ASR posterior score, segment duration, and subword
can discriminate well between deletion errors and correct words.

Since major errors cause misinterpretation in text messages, it is useful
to optimize error detection to maximize major-error correction. We
achieve this by revising the error-sequence produced by the error detection
model. We use metacosts to revise the error-sequence and optimize these
costs using gridsearch. We show that our optimized model improves
the selection of corrective-actions by weighted average of 31% (25% for
Confirm and 85% for Repeat) and the overall error detection is improved
by 2.7% (86.9% to 89.3%) over the rule-based baseline. We have also
shown that we can recover OOV words in speech-to-speech translation
applications to help translate a sentence accurately.

The focus of this chapter was restricted to learning information through
recognition errors. However, errors could occur at semantic level as well.
Sometimes entities are part of the recognition vocabulary but they are
semantically unknown to the agent. In such situations, the agent may fail
to understand the user goal, since many agents typically use a semantic
parser to understand user goals. In the next chapter we will focus on this
issue.



Chapter 5

Learning Through Open-Domain
Semantic Knowledge Bases

Spoken dialog agents are designed with particular tasks in mind. These
agents could provide information or make reservations, or other such
tasks. Many dialog agents often can perform multiple tasks: think of a
customer service kiosk system at a bank. The system has to decide which
task it has to perform by talking to its user. This problem of identifying
what to do based on what a user has said is called task prediction. Consider
the following example:

PHRASE-1: go to the table
PARSE-1: [GotoLocation] (go to the [location] table)

PHRASE-2: go to the desk
PARSE-2: NO PARSE

Both Phrase-1 and Phrase-2 refer to same task “[GotoLocation]”. How-
ever, system understands Phrase-1 but fails to understand Phrase-2. This
happens because task prediction is typically framed as a parsing problem:
A grammar is written to semantically parse the input utterance from users,
and these semantic labels in combination are used to decide what the in-
tended task is. However, this method is less robust to errors in user-input.
A dialog system consists of a pipeline of cascaded modules, such as speech

71
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recognition, parsing, dialog management. Any errors made by these mod-
ules propogate and accumulate through the pipeline. Bohus and Rudnicky
(2005c) have shown that this cascade of errors, coupled with users em-
ploying out-of-grammar phrases results in many “non-understanding” and
“misunderstanding” errors.

There have been other approaches to perform dialog task prediction.
Gorin et al. (1997) has proposed a salience-phrase detection technique that
maps phrases to their corresponding tasks. Chu-Carroll and Carpenter
(1999) casted the task detection as an information retrieval — detect tasks
by measuring the distance between the query vector and representative
text for each task. Bui (2003) and Blaylock and Allen (2006) have cast it as
a hierarchical sequence labeling problem using Hidden Markov Models
(HMM). More recently, Bangalore and Stent (2009) built an incremental
parser that gradually determines the task based on the incoming dialog
utterances. Chen and Mooney (2010) have developed a route instructions
frame parser to determine the task in the context of a mobile dialog robot.
These approaches mainly use local features such as dialog context, speech
features and grammar-based-semantic features to determine the task. How-
ever grammar-based-semantic features would be insufficient if an utterance
uses semantically similar phrases that are not in the system’s domain or
semantics. If the system could explore semantic information beyond the
scope of its local knowledge and use external knowledge sources then they
will help improve the task prediction.

Cristianini et al. (2002); Wang and Domeniconi (2008); Moschitti
(2009) found that open-domain semantic knowledge resources are useful
for text classification problems. Their success in limited data scenario is
an attractive prospect, since most dialog agents operate in scarce training
data scenarios. Bloehdorn et al. (2006) has proposed a semantic smoothing
kernel based approach for text classification. The intuition behind their
approach is that terms (particularly content words) of two similar sentences
or documents share superconcepts (e.g., hypernyms) in a knowledge base.
Semantic Similarity between two terms can be computed using different
metrics (Pedersen et al., 2004) based on resources like WordNet.

Open domain resources such as world-wide-web, had been used in
the context of speech recognition. Misu and Kawahara (2006) and Creutz
et al. (2009) used web-texts to improve the language models for speech
recognition in a target domain. They have used a dialog corpus in order
to query relevant web-texts to build the target domain models. Although
Araki (2012) did not conduct empirical experiments, yet they have pre-
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sented an interesting architecture that exploits an open-domain resource
like Freebase.com to build spoken dialog systems.

In this work, we have framed the task prediction problem as a classifi-
cation problem. We use the user’s utterances to extract lexical semantic
features and classify it into being one of the many tasks the system was
designed to perform. We harness the power of semantic knowledge bases
by bootstraping an utterance with semantic concepts related to the tokens
in the utterance. The semantic distance/similarity between concepts in the
knowledge base is incorporated into the model using a kernel. We show
that our approach improves the task prediction accuracy over a grammar-
based approach on two spoken corpora (1) Navagati (Pappu and Rudnicky,
2012): a corpus of spoken route instructions, and (2) Roomline (Bohus,
2003): a corpus of spoken dialog sessions in room-reservation domain.

This chapter is organized as following: First we describe the problem of
dialog task prediction and the standard grammar based approach to predict
the dialog task. Then, we describe the open-domain knowledge resources
that were used in our approach and their advantages/disadvantages. We
will discuss our semantic kernel based approach after that. Finally, We
report our experiment results on task prediction and we will analyze the
errors that occur in our approach, followed by concluding remarks and
possible directions to this work.

5.1 Parser based Dialog Task Prediction

In a dialog system, there are two functions of a semantic grammar — en-
code linguistic constructs used during the interactions and represent the
domain knowledge in-terms of concepts and their instances. Table 5.1
illustrates the tasks and the concepts used in a navigation domain gram-
mar. The linguistic constructions help the parser to segment an utterance
into meaningful chunks. The domain knowledge helps in labeling the
tokens/phrases with concepts. The parser uses the labeled tokens and the
chunked form of the utterance, to classify the utterance into one of the
tasks.

The dialog agent uses the root node of a parser output as the task.
Figure 5.1 illustrates a semantic parser output for a fictitious utterance in
the navigation domain. The dialog manager would consider the utterance
as an “Imperative” for this example.
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Table 5.1: Tasks and Concepts in Grammar

Tasks Examples
Imperative GoToPlace, Turn, etc
Advisory Instructions You_Will_See_Location
Grounding Instructions You_are_at_Location
Concepts Examples
Locations buildings, other landmarks
Adjectives-of-Locations large, open, black, small etc.
Pathways hallway, corridor, bridge, etc.
LiftingDevice elevator, staircase, etc.
Spatial Relations behind, above, on left, etc.
Numbers turn-angles, distance, etc.
Ordinals first, second, etc. floor numbers

Imperative

go direction

forward

distance

number

five

units

meters

Figure 5.1: Illustration of Semantic Parse Tree used in a Dialog System

5.1.1 Grammar: A Knowledge Resource

Grammar is a very useful resource for a dialog system because it could
potentially represent an expert’s view of the domain. Since knowledge
engineering requires time and effort, very few dialog systems can afford
to have grammars that are expert-crafted and robust to various artefacts of
spoken language. This becomes a major challenge for real world dialog
systems. If the system’s grammar or the domain knowledge does not
conform to its users and their utterances, the parser will fail to produce
a correct parse, if the parse is incorrect and/or the concept labeling is
incorrect. Lack of comprehensive semantic knowledge is the cause of this
problem. An open-domain knowledge base like Wordnet (Miller, 1995),
Freebase (Bollacker et al., 2008) or NELL (Carlson et al., 2010) contains
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comprehensive information about concepts and their relationships present
in the world. If used appropriately, open-domain knowledge resources
can help compensate for incomplete semantic knowledge of the system.

5.2 Open-Domain Semantic Knowledge Bases

Like grammars, open-domain knowledge resources contain concepts, in-
stances and relations. The purpose of these resources is to organize com-
mon sense and factoid information known to the mankind in a machine-
understandable form. These resources, if filtered appropriately, contain
valuable domain-specific information for a dialog agent. To this end, we
propose to use three knowledge resources along with the domain gram-
mar for the task prediction. A brief overview of each of the knowledge
resources is given below:

5.2.1 Wordnet: Expert Knowledge Base

Wordnet(Miller, 1995) is an online lexical database of words and their
semantics curated by language experts. It organizes the words and their
morphological variants in a hierarchical fashion. Every word has at least
one synset i.e., sense and a synset has definite meaning and a gloss to
illustrate the usage. Synsets are connected through relationships such as
hypernyms, hyponyms, meronyms, antonyms etc. Each synset can be
considered as an instance and their parent synsets as concepts. Although
Wordnet contains several (120,000) word forms, some of our domain-
specific word forms (e.g., locations in a navigation domain) will not be
present. Therefore, we would like to use other open-domain knowledge
bases to augment the agent’s knowledge.

5.2.2 Freebase: Community Knowledge Base

Freebase.com (Bollacker et al., 2008) is a collaboratively evolving knowl-
edge base with the effort of volunteers. It organizes the facts based on
types/concepts along with several predicates/properties and their values
for each fact. The types are arranged in a hierarchy and the hierarchy
is rooted at “domain”. Freebase facts are constantly updated by the vol-
unteers. Therefore, it is a good resource to help bootstrap the domain
knowledge of a dialog agent.
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5.2.3 NELL: Automated Knowledge Base

Never-Ending Language Learner(NELL) (Carlson et al., 2010) is a program
that learns and organizes the facts from the web in an unsupervised fash-
ion. NELL is on the other end of the knowledge base spectrum which
is not curated either by experts or by volunteers. NELL uses a two-step
approach to learn new facts: (1) extract information from the text using
pattern-based, semi-structured relation extractors (2) improve the learning
for next iteration based on the evidence from previous iteration. Every
belief/fact in its knowledge base has concepts, source urls, extraction pat-
terns, predicate, the surface forms of the facts and a confidence score for
the belief. Although the facts could be noisy in comparison to ones in
other knowledge bases, NELL continually adds and improves the facts
without much human effort.

5.3 Semantic Kernel based Dialog Task Prediction

We would like to use this apriori knowledge about the world and the do-
main to help us predict the dialog task. The task prediction problem can
be treated as a classification problem. Classification algorithms typically
use bag-of-words representation that converts a document or sentence
into a vector with terms as components of the vector. This representation
produces very good results in scenarios with sufficient training data. How-
ever in a limited training data or extreme sparseness scenario such as ours,
Siolas and D’Alché-Buc (2000) has shown that Semantic Smoothing Kernel
technique is a promising approach. The major advantage of this approach
is that they can incorporate apriori knowledge from existing knowledge
bases. The semantic dependencies between terms, dependencies between
concepts and instances, can be encoded in these kernels. The semantic
kernels can be easily plugged into a kernel based classifier help us predict
the task from the goal-oriented dialog utterances.

In our experiments, we used an implementation of Semantic Kernel
from (Bloehdorn et al., 2006) and plugged it into a Support Vector Machine
(SVM) classifier (SVMlight) (Joachims, 1999). As a part of experimental
setup, we will describe the details of how did we extract the semantic
dependencies from each knowledge base and encoded them into the kernel.
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5.4 Experiments

Our goal is to improve the task prediction for a given spoken dialog utter-
ance by providing additional semantic context to the utterance with the
help of relevant semantic concepts from the semantic knowledge bases.
The baseline approach would use the Phoenix parser’s output to deter-
mine the intended task for an utterance. From our experiments, we show
that our knowledge-driven approach will improve upon the baseline per-
formance on two corpora (1) Navagati Corpus: a navigation directions
corpus (2) Roomline Corpus: a room reservation dialog corpus.

5.4.1 Setup

We have divided each corpus into training and testing datasets. We train
our task classification models on the manual transcriptions of the training
data and evaluated the models on the ASR output of the testing data. Both
Navagati and Roomline corpora came with manually annotated task labels
and manual transcriptions for the utterances. We filtered out the non-task
utterances such as “yes”, “no” and other clarifications from the Roomline
corpus. We obtained the ASR output for the Navagati corpus by running
the test utterances through PocketSphinx (Huggins-Daines et al., 2006).
The Roomline corpus already had the ASR output for the utterances. Table
5.2 illustrates some of the statistics for each corpus.

Our baseline model for the task detection is the Phoenix (Ward, 1991)
parser output, which is the default method used in the Ravenclaw/Olympus
dialog systems (Bohus et al., 2007a). For the Navagati Corpus we have
obtained the parser output using the grammar and method described in
(Pappu and Rudnicky, 2012). For the Roomline corpus, we extracted the
parser output from the session logs from the the corpus distribution.

Semantic Facts to Semantic Kernel

The semantic kernel takes a term proximity matrix as an input, then
produces a positive semidefinite matrix which can be used inside the kernel
function. In our case, we build a term proximity matrix for the words
in the recognition vocabulary, as shown in the Figure 5.2. Bloehdorn
et al. (2006) found that using the term-concept pairs in the proximity
matrix is more meaningful following the intuition that terms that share

1Originally has 10356 utts; filtered out non-task utts.
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Corpus-Stats Navagati RoomLine
Tasks 4 7
Words 503 498
Word-Error-rate 46.3% 25.6%
Task Utts 934 18911

Task Training-Utts 654 1324
Task Testing-Utts 280 567
Tasks

N1. Meta R1. NeedRoom
N2. Advisory R2. ChooseRoom
N3. Imperative R3. QueryFeatures
N4. Grounding R4. ListRooms

R5. Identification
R6. CancelReservation
R7. RejectRooms

Table 5.2: Corpus Statistics

more number of concepts are similar as opposed to terms that share fewer
concepts. We have used following measures to compute the proximity
value P and some of them are specific to respective knowledge bases:

• gra: No weighting for term-concept pairs in the Grammar, i.e.,
P = 1, for all concepts ci of t , P = 0 otherwise. Here ci is i t h

concept associated with the term t .

• fb: Weighting using normalized Freebase.com relevance score, i.e.,

P =
fbscore(t , ci )− fbscore(t , cmi n)

fbscore(t , cmax )− fbscore(t , cmi n)
(5.1)

• nell: Weighting for the NELL term-concept pairs using the proba-
bility for a belief i.e.,

P = nellprob(t , ci ) (5.2)

, for all concepts ci of t , P = 0 otherwise.
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Figure 5.2: flowchart of building a semantic kernel

• wnpath: Weighting for the term-concept pairs in the Wordnet based
on the shortest path, i.e.,

P =wnPAT H (t , ci ) (5.3)

for all concepts ci of t , P = 0 otherwise.

• wnlch: Weighting for the term-concept pairs in the Wordnet based
on the Leacock-Chodorow Similiarity, i.e.,

P =wnLC H (t , ci ) (5.4)

for all concepts ci of t , P = 0 otherwise.

• wnwup: Weighting for the term-concept pairs in the Wordnet based
on the Wu-Palmer Similarity, i.e.,

P =wnW U P (t , ci ) (5.5)

for all concepts ci of t , P = 0 otherwise.

• wnres: Weighting for the term-concept pairs in the Wordnet based
on the Resnik Similarity using Information Content, i.e.,

P =wnRES (t , ci ) (5.6)

for all concepts ci of t , P = 0 otherwise.
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To create a grammar-based proximity matrix, we extracted the concept-
token pairs from the parser output on the reference transcriptions in both
corpora. In order to create a wordnet-based proximity matrix, we retrieve
the hypernyms for the corresponding from Wordnet using the Wordnet
3.0 database2. For the freebase concept-token pairs, we query tokens for
a list of types with the help of the MQL query interface3 to the freebase.
To retrieve beliefs from NELL we downloaded a tsv formatted database
called every-belief-in-the-KB4 and then queried for facts using unix grep
command.

5.4.2 Results

Our objective is to evalute the effect of augmented semantic features on
the task detection. As noted earlier, we divided both corpora into training
and testing datasets. We build our models on the manual transcriptions
from the training data and evaluate on the ASR hypotheses of the testing
data. For the Navagati corpus, we use the same training-testing split that
we used in our previous work because the grammar was developed based
on the training data. For the Roomline corpus, we randomly sample
30% of the testing data from the entire corpus. First we will look at
the performance of bag-of-words (BOW) based classifiers in comparison to
semantic parser (semparser) baseline. Then we will compare BOW baselines
with Latent-Semantic-Indexing (LSI) based models. Finally, we will discuss
how semantic models are built and how they compare to these baselines
in terms of F1-score.

We built BOW baselines using following classifiers: perceptron, KNN,
naive-bayes and a linear SVM classifier. These results are reported in
Table 5.3. On Navagati corpus, linear SVM outperforms the semparser
baseline and on Roomline corpus, none of the BOW classifiers outperform
the semparser baseline. The language used in navagati corpus was more
verbose since it was collected in the context of a monologue setting as
opposed to the roomline corpus that is collected through woz/system
driven dialog. Roomline corpus has more tasks compare to Navagati
corpus (in proportion to the actual data available). Although both corpora
has similar sized vocabulary, Roomline corpus has more tasks compare to

2http://www.princeton.edu/wordnet/download/
3https://www.googleapis.com/freebase/v1/search
4http://rtw.ml.cmu.edu/rtw/resources
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Navagati corpus. That might explain poorer performance of BOW models
on Roomline.

Table 5.3: F1 (in %) comparison of semparser baseline against bag-of-words
baselines

Corpus semparser perceptron KNN naive-bayes SVM
Navagati 40.1 58.0 57.5 56.9 58.5
Roomline 54.3 38.9 43.5 47.3 46.4

We have seen that BOW models may fall short in performance because
of data sparsity of the represenative features (words). In order to see if we
can alleviate this problem by reduce the dimensionality, we propose to
compare our approach with a Latent Semantic Indexing (LSI) based model.
For this purpose, we use LSI method as implemented in the GENSIM

toolkit (Řehůřek and Sojka, 2010). First we create LSI model from a large
corpus (brown corpus (Francis and Kucera, 1979)). Then we use this model
to transform input BOW vectors in Navagati and Roomline corpora into
their corresponding latent dimensional vectors. Then we build an SVM

classification model using the training split on these latent dimensional
vectors. We present the results of this approach in Table 5.4. We varied
the number of dimensions while building the LSI model. We saw that
model built with 400 dimensions performs best on Navagati corpus and
model with 500 dimensions performs best on Roomline corpus. These
models perform better than than best BOW models. Our hypothesis is
that semantic knowledge base based models can perform better than these
models. Intuitively, concepts in KB are equivalent to latent dimensions and
they are “verified” by experts and humans as opposed to latent dimensions
that were derived in an unsupervised fashion.

Our first semantic-kernel based model SEM-GRA uses the domain
grammar as a “knowledge base”. This is a two step process: (1) we extract
the concept-token pairs from the parse output of the training data. (2)
Then, assign a uniform proximity score (1.0) for all pairs of words that
appear under a particular concept otherwise 0.0 ( gra as mentioned in the
previous section). We augment the grammar concepts to the utterances in
the datasets, learn SEM-GRA model and classify the test-hypotheses. For
all our models we use a fixed C = 0.07 value (soft-margin parameter) for
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Table 5.4: F1 (in %) of LSI based Model with different latent dimensions
on corpora

#Dimensions Navagati Roomline
100 64.9 47.2
200 66.8 46.7
300 66.6 46.5
400 68.8 46.0
500 67.9 47.9

the SVM classifiers. This model achieved highest performance at this value
during a parameter-sweep. SEM-GRA model outperformed the semparser
baseline on both datasets (see Table 5.5). It clearly takes advantage of the
domain knowledge encoded in the form of semantic-relatedness between
concepts and token pairs.

Table 5.5: F1 (in %) comparison of parse baseline against semantic-kernel
models with their corresponding similarity metrics

Corpus semparser SEMGRA SEMFBASE SEMNELL

Navagati 40.1 65.8 68.7 66.2
Roomline 54.3 79.7 83.3 81.1

What if a dialog system does not have grammar to begin with? We use
the same two step process to build semantic-kernel based models using one
open-domain knowledge base at a time. We built Wordnet based models
(SEM-WNWUP, SEM-WNPATH, SEM-WNLCH, SEM-WNRES) using different
proximity measures described in the previous section. From Table 5.6
SEM-WNRES model, one that uses information content performs the best
among all wordnet based models. In order to compute the information
content we used the pair-wise mutual information scores available for
brown-corpus.dat (Francis and Kucera, 1979) in the NLTK (Bird et al.,
2009) distribution. Other path based scores were also computed using
NLTK API for Wordnet.

We observed that our wordnet-based models capture relatedness be-
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Table 5.6: F1 (in %) comparison of wordnet semantic-kernel models with
different similarity metrics

Corpus SEMWNWUP SEMWNPATH SEMWNLCH SEMWNRES

Navagati 67.1 67.7 66.4 69
Roomline 77.3 79.5 79.6 80.6

tween most-common nouns (e.g., room numbers) and their concepts but
not for some of the less-common ones (e.g., location names). To compen-
sate this imbalance, we use larger knowledge resources freebase.com and
NELL. First we searched for the facts in each of these knowledge bases
using every token in the vocabulary of both corpora. We pick the top
concept for each token based on the score provided by the respective search
interfaces. In freebase we have about 100 concepts that are relevant to the
vocabulary and in the NELL model we have about 250 concepts that are
relevant to the vocabulary in each of the corpora. The models based on
NELL (SEM-NELL) and Freebase (SEM-FBASE) capture relatedness between
less-common nouns and their concepts. We can see that both of these mod-
els perform comparable to the domain grammar model SEM-GRA which
also captures the relatedness between less-common nouns and their con-
cepts. We believe that both freebase and NELL has a superior performance
because of wider-range of concept coverage and non-uniform proximity
measures used in the semantic kernel, which gives a better judgement of
relatedness than a uniform measure used in the SEM-GRA model.

Since we observed that an individual model is good at capturing a
particular aspect of an utterance, we extended the individual semantic
models by combining the proximity matrices from each of them and
augmenting their semantic concepts to the training and testing datasets.
We built four combined models as shown in Table 5.7 by varying the
wordnet’s proximity metric to identify which one of them works best in
combination with other semantic metrics. The wnres metric performs
the best both in standalone and combination settings. Bloehdorn et al.
(2006) also found that wnres particularly performs well for lower values
of the soft-margin parameter in their experiments.
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Table 5.7: F1-Score (in %): Models with semantics combined from different
KBs (ALL-KB)

Model Navagati Roomline
GRA+WNWUP+FBASE+NELL 70.8 82.2
GRA+WNPATH+FBASE+NELL 70.1 81.4
GRA+WNLCH+FBASE+NELL 70.8 81.3
GRA+WNRES+FBASE+NELL 73.4 83.7

5.5 Discussion

We have built a model that exploits different semantic knowledge bases
and predicts the task on both corpora with high accuracy. But how is it
affected by factors like misrecognition and context ambiguity?

5.5.1 Influence of Recognition Errors

When the recognition is bad, it is obvious that the accuracy would go
down. We would like to know which of these knowledge resources can
augment useful semantics despite misrecognitions. Table 5.2 shows that
WER on the Navagati corpus is about 46% and the Roomline corpus is
about 25%. We compared the F1-score of different models on utterances
for different ranges of WER as shown in the Figure 5.3 on the Navagati
Corpus. We notice that the model built using all knowledge bases is more
robust even at higher WER. We did similar analysis on the Roomline
corpus and did not notice any differences across models due to relatively
lower WER (25.6%).

Table 5.8: Most confusable pairs of tasks (confusability in %) in Navagati
Corpus for KB based classification models

KBType ALL-KB WNRES NELL FBASE

ActualTask N2 N4 N2 N4 N2 N4 N1 N2 N4
Predicted N3 N1 N3 N3 N3 N3 N3 N3 N3
Confusion 10 27 26 33 26 39 22 29 44
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Figure 5.3: Word Error Rate vs F1-Score for KB-based Models on Navagati
Corpus

Table 5.9: Most confusable pairs of tasks (confusability in %) in Roomline
Corpus for KB based classification models

KBType ALL-KB WNRES NELL FBASE

ActualTask R4 R4 R6 R4 R6 R3 R4 R5 R6
Predicted R3 R5 R5 R1 R1 R1 R3 R1 R1
Confusion 36 49 44 25 44 32 23 53 55

5.5.2 Confusion among Tasks

We found that particular pairs of tasks are more confusing than others.
Here we present an analysis of such confusion pairs for both corpora for
different classification models. Table 5.8 and Table 5.9 show the pairs of
tasks that are most confused in the experiments. The ALL-KB model (a
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combination of all knowledge bases) has least number of confusion pairs
among all the models. This is due to more relevant concepts are augmented
to an utterance compared to fewer relevant concepts that augmented while
using individual models.

We inspected the confused tasks by examining the feature vectors of
misclassified examples. While using the ALL-KB model 10% of the utter-
ances from N2 (Advisory) were confused for N3 (Imperative) because of
phrases like “your left”, “your right”. These phrases were often associated
with N3 utterances. To recover from such ambiguities, the agent could
ask a clarification question e.g., “are we talking about going there or find
it on the way?” to resolve the differences between these tasks. The system
could not only get clarification but also bootstrap the original utterance
of the user with the clarification to gather additional context to retrain the
task detection models. The individual models were also confused about
N2 and N3 tasks, where we could use similar clarification strategies to
improve the task prediction. 27% of the N4 (grounding about current
robot’s position) utterances were confused for N1 (meta comments about
the robot’s navigation route) because these utterances shared more number
of freebase concepts with the N1 model. The system could resolve such
utterances by asking a clarification question “are we talking about the
current position?”. Individual models i.e., SEM-WNRES, SEM-FBASE and
SEM-NELL suffered mostly from the lack of concepts capturing semantics
related to all types of entities (e.g., most common nouns, less common
entities etc.,) found in an utterance.

We examined the confusion pairs in the Roomline corpus and observed
that R4 (ListRooms) and R3 (Queries) tasks were most confused in the
ALL-KB model. On closer inspection, we found that R4 utterances are
about listing the rooms that are retrieved by the system. Whereas, R3
utterances are about asking whether a room has a facility (e.g., projector
availability). In the ambiguous utterances, often the R4 utterances were
about filtering the list of rooms by a facility type.

5.6 Chapter Summary

In this chapter, we proposed framing the dialog task prediction problem as
a classification problem. We used an SVM classifier with semantic smooth-
ing kernels that incorporate information from external knowledge bases
such as Wordnet, NELL, Freebase. Our method shows good improvements
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over three types of baselines: (i) parser-based baseline (ii) BOW baseline
and (iii) LSI based classifier. Our analysis also shows that our proposed
method makes task prediction be more robust to moderate ASR errors.

We presented an analysis on task ambiguity and found that these
models can confuse one task for another. We believe that this analysis
highlights the need for dialog based clarification strategies that cannot only
help the system for that instance but also help the system improve its task
prediction accuracy in future dialog sessions. Open-domain knowledge
bases are vast and can provide useful contextual information for common
words in an utterance. However, they may not contain entities specific to
the agent’s domain. We address this issue through system-initiated learning
process (as discussed in Chapter 6 and 7) that allows the agent to augment
its knowledge base through interactions with its users.



Part III
System Initiated Learning



Chapter 6

System-Initiated Knowledge
Acquisition Strategies

Many spoken dialog agents are designed to perform specific tasks in a
specified domain e.g., information about public events in a city. To carry
out its task, an agent parses an input utterance, fills in slot-value pairs, then
completes the task. Sometimes, information on these slot-value pairs may
not be available in its knowledge base. In such cases, typically the agent
categorizes utterances as non-understanding errors. Ideally the incident is
recorded and the missing knowledge is incorporated into the system with
a developer’s assistance — a slow offline process.

There are other sources of knowledge: automatically crawling the web,
as done by NELL (Carlson et al., 2010), and community knowledge bases
such as Freebase (Bollacker et al., 2008). These approaches provide globally
popular slot-values (Araki, 2012) and high-level semantic contexts (Pappu
and Rudnicky, 2013). Despite their size, these knowledge bases may not
contain information about the entities in a specific target domain. West
et al. (2014) have shown in their study that Freebase.com has attribute-
value information available for the most popular (by query frequency)
person entities. There is a significant amount of attribute information
missing for 90% of the person-type entities. To compensate for domain
knowledge that may not be available on the web, we propose that the
agent solicit knowledge from its users through dialog.

Users in the agent’s domain can potentially provide specific informa-
tion on slot/values that are unavailable on the web, e.g., regarding a recent

89
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interest/hobby of the user’s friend. Lasecki et al. (2013) have elicited natu-
ral language dialogs from humans to build NLU models for the agent and
Bigham et al. (2010) have elicited answers to visual questions by integrating
users into the system. One observation from this work is that both users
and non-users can impart useful knowledge to system. In this chapter,
we propose spoken language strategies that allow an agent to elicit new
slot-value pairs from its own user population to extend its knowledge base.
Open-domain knowledge may be elicited through text-based question-
naires from non-users of the system, but in a situated interaction scenario
spoken strategies may be more effective. We address the following research
questions:

1. Can an agent elicit reliable knowledge about its domain from users? Par-
ticularly knowledge it cannot locate elsewhere (e.g., on-line knowl-
edge bases). Is the collective knowledge of the users sufficient to
allow the agent to augment its knowledge through interactive means?

2. What strategies elicit useful knowledge from users? Based on previ-
ous work in common sense knowledge acquisition(Von Ahn, 2006;
Singh et al., 2002; ?), we devise spoken language strategies that allow
the system to solicit information by presenting concrete situations
and by asking user-centric questions.

We address these questions in the context of the EVENTSPEAK dialog
system, an agent that provides information about seminars and talks in
an academic environment. This chapter is organized as follows. First
we discuss knowledge acquisition strategies. After that, we describe a
user study on these strategies. Then, we present an evaluation on system
acquired knowledge and finally we summarize the discussion made in this
chapter.

6.1 Knowledge Acquisition Strategies

We posit three different circumstances that can trigger knowledge acquisi-
tion behavior: (1) initiated by expert users of the system(Holzapfel et al.,
2008; Spexard et al., 2006; Lütkebohle et al., 2009; Rudnicky et al., 2010),
(2) triggered by “misunderstanding” of the user’s input(Chung et al., 2003;
Filisko and Seneff, 2005; Prasad et al., 2012; Pappu et al., 2014), or (3)
triggered by the system. They are described below:
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QUERYDRIVEN. The system prompts a user with an open-ended
question akin to “how-may-I-help-you” to learn what “values” of a slot
are of interest to the user. This strategy does not ground user about
system’s knowledge limitations. However, it allows the system to acquire
information (slot-value pairs) from user’s input. The system can choose
to respond to the input or ignore the input depending on its knowledge
about the slot-value pairs in the input. Table 6.1 shows strategies of this
kind i.e., QUERYEVENT and QUERYPERSON.

PERSONAL. The system asks a user about their own interests and
people who may share those interests. This is an open-ended request as
well, but the system expects the response to be confined to the user’s
knowledge about specific entities in the environment. BUZZWORDS and
FAMOUSPEOPLE expects the user to provide values for the slots.

SHOW&ASK. The system provides a description of an event and asks
questions to ground user’s responses in relation to that event. E.g., given
the title and abstract of a technical talk, the system asks the user questions
about the talk.

TWEET strategy is expected to elicit a concise description of the event,
which eventually may help the agent to both summarize events for other
users and identify keywords for an event. KEYWORDS strategy expects the
user to explicitly supply keywords for an event. PEOPLE strategy expects
the user to provide names of likely event participants.

We hypothesized that these strategies may allow the agent to learn
new slot-value pairs that may help towards better task performance.

6.2 Knowledge Acquisition Study

We conducted a user study to determine reliability of the information
acquired by the system. We performed this study using the EVENTSPEAK
1 dialog system, which provides information about upcoming talks and
other events that might be of interest, and about ongoing research on
campus. The system presents material on a screen and accepts spoken
input, in a context similar to a kiosk.

The study evaluated performance of the seven strategies described
above. For SHOW&ASK strategies, we had users respond regarding a
specific event. We used descriptions of research talks collected from the
university’s website. We used a web-based interface for data collection;

1http://www.speech.cs.cmu.edu/apappu/kacq
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the interface presented the prompt material and recorded the subject’s
voice response. Testvox2 was used to setup the experiments and Wami3

for audio recording.

6.2.1 User Study Design

We recruited 40 researchers (graduate students) from the School of Com-
puter Science, at Carnegie Mellon, representative of the user population
for the EVENTSPEAK dialog system. Each subject responded to prompts
from the QUERYDRIVEN, PERSONAL and SHOW&ASK strategies.

In the QUERYDRIVEN tasks, the QUERYEVENT strategy, the system
responds to the user’s query with a list of talks. The user’s response is
recorded, then sent to an open-vocabulary speech recognizer; the result is
used as a query to a database of talks. The results are then displayed on
the screen. The system applies the QUERYPERSON strategy in a similar
way. Example responses from the user study for these strategies are given
below:

QueryEvent
Are there any talks on Spoken Language Processing

QueryPerson
Are there any talks by Alex Rudnicky

In the PERSONAL tasks, the system applies the BUZZWORDS strategy
to ask the user about popular keyphrases in their research area. The system
then asks about well-known researchers (FAMOUSPEOPLE) in the user’s
area. Example responses from the user study for these strategies are given
below:

Buzzwords
Prosody
Parametric Speech Synthesis
Intonation Modeling

2https://bitbucket.org/happyalu/testvox/wiki/Home
3https://code.google.com/p/wami-recorder/
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FamousPeople
Kishore Prahallad
Alan Black

In the SHOW&ASK tasks, we use two seminar descriptions per subject
(in our pilot study, we found that people provide more diverse responses
(in term of entities) in the SHOW&ASK based on the event abstract, com-
pared to PERSONAL, QUERYDRIVEN . We used a set of 80 research
talk announcements (consisting of a title, abstract and other information).
Example talk information given below:

TITLE: Efficient and Effective Large-scale Search
ABSTRACT: Efficient and Effective Large-scale Search Search engine indexes
for large document collections are often divided into “shards” that are dis-
tributed across multiple computers and searched in parallel to provide rapid
interactive search. Typically, “all” index shards are searched for each query.
For organizations with modest computing resources the high query process-
ing cost of this exhaustive search setup can be a deterrent to working with
large collections. This thesis questions the necessity of exhaustive search
and investigates “distributed selective search” as an alternative where only a
few shards are searched for each query.For selective search to be as effective
as exhaustive search it is important for the chosen shards to contain the
majority of the relevant documents...

For each talk, the system used all three strategies viz., TWEET, KEY-
WORDS and PEOPLE. For the TWEET tasks, subjects were asked to
provide a one sentence description. They were allowed to give a non-
technical/high-level description if they were unfamiliar with the topic.
For the PEOPLE task, subjects had to give names of colleagues who might
be interested in the talk. For the KEYWORDS task, subjects provided key-
words, either their own words or ones selected from the abstract. Example
responses from the user study for these strategies are given below:

Tweet
so this talk is about trying to replace exhaustive search with a more
efficient search which is distributed selective search which basically
tries to search in a distributed environment
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Keywords
information retrieval
search
distributed systems
large scale search

People
bhavana dalvi
derry wijaya
jamie callan

Since the material is highly technical, we were interested whether the
tasks are cognitively demanding for people who are less familiar with the
subject of a talk. Therefore, users were asked to indicate their familiarity
with a particular talk (research area in general) using a scale of 1–4: 4 being
more familiar and 1 being less familiar.

6.2.2 Corpus Description

This user study produced 64 minutes of audio data, on average 1.6 minutes
per subject. We transcribed the speech then annotated the corpus for
people names, and for research interests. Table 6.2 shows the number of
unique slot-values found in the corpus. We observe that the number of
unique research interests produced during SHOW&ASK is higher than for
other strategies. This confirms our initial observations that this strategy
elicits diverse responses. The PERSONAL task produced a relatively higher
number of researcher names (FAMOUSPEOPLE strategy) than other tasks.
One explanation might be that people may find it easier to recall names in
their own research area, as compared to other areas. Overall, we identified
139 unique researcher names and 485 interests.

6.2.3 Analysis of Dialog Strategies

One of the objectives of this work is to determine What strategies can the
agent use to elicit knowledge from users? Although, time-cost will vary with
task and domain, a usable strategy should, in general, be less demanding.
We analyzed the time-per-task for each strategy, shown in Figure 6.1. We
found that the TWEET strategy is not only more demanding, it has higher
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Table 6.2: Corpus Statistics

StrategyType
Unique

Researcher
Names

Unique
Research
Interests

QUERYDRIVEN 21 30
PERSONAL 77 107
SHOW&ASK 76 390
Overall 139 485

variance than other tasks. One explanation is that people would attempt
to summarize the entire abstract including technical details, despite the
instructions indicated that a non-technical description was acceptable. We
can see a similar trend in Figure 6.2 that irrespective of expertise-level,
subjects take more time to give one sentence descriptions. We also observe
high variance and higher time-per-task for QUERYPERSON; this is due to
the system deliberately not returning any results for this task. This was
done to find out whether subjects would repeat the task on failure. Ideally
the system needs to only rarely use this strategy to not lose user’s trust
and solicit multiple values for a given slot (e.g., person name) as opposed
to requesting list of values as in FAMOUSPEOPLE and PEOPLE strategies.
We find that PEOPLE, KEYWORDS, FAMOUSPEOPLE and BUZZWORDS

strategies are efficient with a time-per-task of less than one minute. As
shown in Figure 6.2, subjects do not take much time to speak a list of
names or keywords.

6.3 Evaluation of Acquired Knowledge

To answer Can an agent elicit reliable knowledge about its domain from
users? we analyzed the relevance of acquired knowledge. We have two
disjoint list of entities, (a) researchers and (b) research interests; in addi-
tion we have speaker names from the talk descriptions. Our goal is to
implicitly infer a list of interests for each researcher without soliciting
the user for the interests of every researcher exhaustively. To each re-
searcher in the list, we attribute list of interests that were mentioned in the
same context as researcher was mentioned. We tag list of names acquired
from the FAMOUSPEOPLE strategy with list of keywords acquired from
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Figure 6.1: Time per Task for all strategies
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the BUZZWORDS strategy — both lists acquired from same user. We
repeat this process for each name mentioned in relation to a talk in the
SHOW&ASK strategy. We tag keywords mentioned in the KEYWORDS

strategy to researchers mentioned in the PEOPLE strategy.

6.3.1 Analysis

We produced 200 entries for researchers and their set of interests. We
then had two annotators (senior graduate students) mark whether the
system-predicted interests were relevant/accurate. The annotators were
allowed to use information found on researchers’ home pages and Google
Scholar4 to evaluate the system-predicted interests.

This can be seen as an information retrieval (IR) problem, where
researcher is “query” and interests are “documents”. So, we use Mean
Precision, a common metric in IR, to evaluate retrieval. In our case, the
ground truth for relevant interests comes from the annotators. The results
are shown in Figure 6.3. Our approach has high precision, 90.5%, for all
200 researchers. We see that irrespective of the strategy used to acquire

4scholar.google.com
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Figure 6.2: Time per Task vs Expertise
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entities, precision is good. We also compared our predicted interests with
interests listed by researchers themselves on Google Scholar. There are
only 85 researchers from our list with a Google Scholar page; for these our
accuracy is 80%, again good. Moreover, significant knowledge is absent
from the web (at least in our domain) yet can be elicited from users familiar
with the domain.

6.4 Appendix: Example Derived Interests

Here we show a list of example derived interests for some of the researchers.

System Predicted Researcher-Interests 1
rich stern deep neural networks, speech recognition, signal pro-

cessing, neural networks, machine learning, speech synthesis
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Figure 6.3: Mean Precision for 200 researchers, broken down by the
“source” strategy used to acquire their name
Note: Only 85 of 200 researchers had Google Scholar pages, GScholar
Accuracy is computed for only those 85.

System Predicted Researcher-Interests 2
kishore prahallad dialogue systems, prosody, speech synthesis,

text to speech, pronunciation modeling, low resource languages

System Predicted Researcher-Interests 3
carolyn rose crowdsourcing, meta discourse classification, sta-

tistical analysis, presentation skills instruction, man made system,
education models, human learning

System Predicted Researcher-Interests 4
florian metze dialogue systems, speech recognition, nlp, prosody,

speech synthesis, text to speech, pronunciation modeling, low re-
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source languages, automatic accent identification

System Predicted Researcher-Interests 5
madhavi ganapathiraju protein structure, continuous graphi-

cal models, generative models, structural biology, protein structure
dynamics, molecular dynamics

System Predicted Researcher-Interests 6
alexander hauptmann discriminatively trained models, deep

learning, computer vision, big data

System Predicted Researcher-Interests 7
jamie callan learning to rank, search, large scale search, web

search, click prediction, information retrieval, web mining, user ac-
tivity, recommendation, relevance, machine learning, web crawling,
distributed systems, structural similarity

System Predicted Researcher-Interests 8
lori levin natural language understanding, knowledge reasoning,

construction grammar, knowledge bases, natural language processing

6.5 Chapter Summary

We describe a set of knowledge acquisition strategies that allow a system
to solicit novel information from users in a situated environment. To
investigate the usability of these strategies, we conducted a user study in
the domain of research talks. We analyzed a corpus of system-acquired
knowledge and have made the material available5. Our data show that
users on average take less than a minute to provide new information using
the proposed elicitation strategies. The reliability of acquired knowledge

5www.speech.cs.cmu.edu/apappu/pubdl/eventspeak_corpus.zip
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in predicting relationships between researchers and interests is quite good,
with a mean precision of 90.5%. We note that the PERSONAL strategy,
which tries to tap personal knowledge, appears to be particularly effective.
More generally, automated elicitation appears to be a promising technique
for continuous learning in spoken dialog systems. In this chapter, we have
only focused on how can we elicit useful information. In the next chapter,
we are going to discuss how can we exploit this knowledge to improve task
performance of the agent.





Chapter 7

Learning Situated Knowledge
Graphs

In many information access applications, systems need to update their
domain knowledge over time to maintain accuracy. For example, an event-
recommendation agent would need to know when new events appear in its
domain. General information is available from the web. For example com-
monsense knowledge bases such as NELL (Carlson et al., 2010), Freebase
(Bollacker et al., 2008). The agent can find information in these knowledge
bases, but only about popular entities. Other types of information are also
available, for example about popular concerts, but only those with a web
presence. We are interested in acquisition of the latter type of knowledge,
not always present on-line but shared on an informal basis within groups,
and how it can be obtained through interaction with people.

Knowledge bases such as NELL, Freebase, and Wordnet can help
in expanding semantic context, thus improve text classification in low
training data scenarios (Cristianini et al., 2002; Wang and Domeniconi,
2008; Moschitti, 2009). In our previous work (Pappu and Rudnicky, 2013),
we found that these knowledge bases are useful in improving dialog task
prediction by expanding a user query with additional semantic context.
However, the semantic context is only applicable to common content
words as opposed to specific entities in the domain e.g., names of specific
events. On the other hand, people that might interact with a dialog system
providing information access in a domain, can provide knowledge which
is useful. The dialog agent could therefore proactively seek information
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from its users and build a knowledge base or a folksnomy for its domain.
This process is sometimes known as collaborative tagging (Golder and
Huberman, 2006). As a result, the agent gains access to ontologies of
information that are present in the users’ minds.

Building knowledge bases is essential for a system that needs to answer
user queries with situated and contextual information. Systems such as
Google Now (goo), Apple Siri (app) use a variety of secondary knowledge
sources about the user to answer a query. This knowledge might include
the user’s previous search behavior, emails and other information about the
user 1. Such knowledge is not readily available in a general commonsense
knowledge base or a domain knowledge base for a typical dialog agent. To
this end, we aim to define dialog strategies that an agent can use to build
up a knowledge base based on information obtained through interaction
with users.

Collaborative effort from people can help an agent solve complex
problems. For example (Von Ahn, 2006) have shown that people can
build a commonsense knowledge base by playing games with a computer.
Our work aims at building a knowledge base through purposeful dialog
between a system and its users. (Bigham et al., 2010) have shown that a
variety of information can be obtained: for example, people can provide
answers to visual questions and aid physically-disabled users. In our work,
we seek to acquire knowledge available only through users to help the
system provide better quality responses to subsequent user queries. We
address the following questions:

1. Can dialog-driven acquisition capture domain knowledge? The agent
solicits information from its users according to dialog strategies.
This information is used to augment a knowledge base for the do-
main. We evaluate the coverage provided by this knowledge base
both qualitatively and quantitatively.

2. Is the acquired knowledge useful to the system? The knowledge ac-
quisition process should aid the system to improve its task success
rate. To this end, we evaluate the system’s performance in its event
information-access domain, before and after knowledge acquisition.
We show that acquired knowledge significantly improves the sys-
tem’s performance, as assessed by independent judges.

1http://googleblog.blogspot.com/2013/08/just-ask-google-for-your-flights.html
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3. Can we time the solicitation to reduce user annoyance? The knowledge
acquisition process may annoy the user if the system decides to
seek information randomly. If the system can assess the quality
of an ongoing interaction, then it could decide whether to ask a
question or not. The quality of interaction can rely on factors such
as task completion, number of turns, speech recognition quality
etc. Previous work Ultes and Minker (2014) has shown interaction
quality can be reliably measured using statistical methods. In this
chapter, we build an interaction quality measurement model using
various dialog features. Then we conduct a user study to evaluate
whether a human judge would agree with the system’s decision to
solicit information or not. Finally, we show that the system can
select questions based on certain utility factor such that it improves
the quality of the knowledge graph (KG).

This chapter is organized as follows. First we present a qualitative
and quantitative analysis of the knowledge base. Then, we evaluate the
performance of the system on an information-access task, to show that
acquired knowledge is indeed useful for system performance. Then we
will discuss when to solicit information and how solicitation questions
can be selected.

7.0.1 Knowledge Acquisition Study Corpus

The user study described in the previous chapter, yielded 64 minutes of
audio data, with on average 1.6 minutes per participant. We have ortho-
graphically transcribed the user utterances. Then annotated the corpus
2 for people names, and research interests. Table 7.1 shows the number
of unique slot-values found in the corpus. We observe that Personal task
yielded relatively higher number of researcher names (the FamousPeople
strategy) than other tasks. This may have happened due to people finding
it easier to recall people names from their own research area, compared to
names in other areas. Overall, the user study yielded 139 unique researcher
names and 485 research interests.

2Corpus is available for download
http://www.speech.cs.cmu.edu/apappu/pubdl/eventspeak_corpus.zip

http://www.speech.cs.cmu.edu/apappu/pubdl/eventspeak_corpus.zip
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Table 7.1: Breakdown of unique number of researcher names and re-
searcher interests elicited/acquired by strategy type

StrategyType Researcher Names Research Interests
Query Driven 21 29
Personal 77 107
Show & Ask 76 390
Overall 139 485

7.1 Acquired Situated Knowledge Base

In this section, we address our first question: Can the dialog-driven acqui-
sition capture domain knowledge? From the corpus collection, we have
a list of researcher names and a list of research interests. To address our
question, the system should infer a list of interests for each researcher
i.e, link each researcher to a set of interests. In short, the system creates
a bipartite graph with links between two disjoint sets: researchers and
interests. We quantitatively analyze the consistency of this bipartite graph
with respect to domain. We analyze this graph qualitatively by creating
a network of blocks/communities of researchers based on their mutual
interests. Details given below.

7.2 Entities and Relations

We have a disjoint list of entities: (a) researchers and (b) research interests.
Our goal is to infer a list of interests for each researcher. For each researcher
that was co-mentioned with a research interest, we create a link between
researcher and that interest. For example, in a given dialog session with a
user, researcher names mentioned in FamousPeople strategy are linked
to interests mentioned in Buzzwords strategy. We repeat this process
for researcher names and interests mentioned with respect to a talk i.e.,
Keywords associated with a particular talk are linked to People mentioned
with that talk. This process produces a bipartite graph with connections
between researchers and research interests.

We have 200 researchers (including the ones listed on the talk descrip-
tion), each mapped to a subset of interests from 485 unique interests. On
average a researcher has 7.8 interests, with a standard deviation of 7.6 (this
is because some researchers got more mentions across talks than others).
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Table 7.2: Mean Precision for 200 researchers breakdown by the “source”
strategy used to acquire their name.

Source-of-Instance Researchers Mean Precision
Query Driven 21 86.2%
Personal 77 93.6%
Show & Ask 76 86.9%
Talk Description 61 89.5%
Overall 200 90.5%

We observed that some interests are linked to researchers more often than
others — machine learning, information retrieval and big data are top-3
interests, linked with 49% of the researchers. To assess the quality of pre-
dicted interests, we asked two senior Carnegie Mellon graduate students
to label whether a predicted interest of a researcher is accurate. Table 7.2
shows the mean precision 3 for the predicted interests with a breakdown
by source of researcher name and has good accuracy irrespective of the
source.

To better understand how researchers are linked to interests and in gen-
eral how researchers are aligned to each other, we construct an adjacency
matrix of researchers. The details are described in the next subsection.

7.3 Analysis of Entity Network

To create an adjacency matrix of entities, i.e., the researchers, we compute
the Jaccard index (Jaccard, 1901) for each pair of researchers based on their
interests. The Jaccard index compares similarity of sample sets (say A and
B) and is computed as: We use the Jaccard index of two researchers as the
weight of their connecting edge. We then convert the adjacency matrix
to a network (an undirected graph) using a graph tool package 4. To find
communities or blocks in the resultant network, we use a stochastic block
inference algorithm (Peixoto, 2013). This algorithm tries to minimize
description length (MDL) of the network (measured in nats-per-edge) to
produce a block-partitioned version of the network. Intuitively, a block

3We use only precision because we do not have exhaustive list of relevant interests to
measure the recall

4http://graph-tool.skewed.de
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Figure 7.1: Network of researchers colored by their community

5

12

13

4

10

11

15

10

9

13

11

15

4

5

12

4

4

315

4

2

5

4

10

9

1

4

4

4

11

4

4

4

11

4

12

9

4

5

6

14

4

0

2

7

9

11

4

5

4

1

16

16

5

4

9

10

4

16

13

4

4

14

16

1

4

5

7

9

1

8

1

4

7

4

7

0

16

14

0

7

16

0

5 22

13

4

10

13

15

6

12

15 1

4

10

4

12

0

4

1

11

14

4

9

1

10

14

12

4

16

10

7
716

9

4

4 1

10

7

6

7

8

4

4

3

4

2

5

6
7

4

8

3

4

0

3

5

1

4

7

1

0

4 4

0

15

8

0 13

4

4

9

2

4
3

9

13

14

3

7

2

16

8

13

1

2

3

4

8

4

9

7

2

4

0

13

13

13

7

2

9

2

0

55

0

4

4

4

4

10
4

13

9

represent a set of nodes that more often interact within each other than
with rest of the network; in our case, blocks are research communities.
An illustration of a full-blown network is shown in Figure 7.1 and a
condensed version of the network is shown in Figure 7.2 with research
interests associated with each block shown in Figure 7.3.

J (A,B) =
|A∩B |
|A∪B |

(7.1)

Since the block inference algorithm optimizes the MDL, it may over-
fit the number of blocks needed to represent the network. Although in
certain graphs (e.g., citation network) it is impossible to have modular or
well-separated blocks, it is desirable to have reasonably separated blocks.
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Figure 7.2: Condensed version of the block partitioned network of re-
searchers. Each vertex represents a block of researchers.
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Newman’s modularity (Newman, 2006) is a metric, typically used to mea-
sure the strength of division in a graph Modularity cannot capture blocks
in smaller graphs, hence we do not use it directly for block partition. To
achieve a reasonable separation, we ran several iterations of the block infer-
ence algorithm, varying the minimum number of blocks required for the
network. In Figure 7.4, we see that MDL is lowest (8.8) and MODULARITY

is highest (0.08) when we set the minimum number of blocks to 16. This
yielded a network of 17 blocks, as shown in Figure 7.1.
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Figure 7.3: Research Interests associated with each block in the network.
Blocks with similar interests have thicker edges.

0. speech synthesis, crowdsourcing
1. neural networks, graphical models
2. natural language processing, active learning
3. machine translation, social media
4. big data, active learning
5. information retrieval, distributed systems
6. high dimensional problems, sample complexity
7. speech recognition, human-computer interaction
8. clustering, applied machine learning
9. scalable optimization, structured sparse learning
10. protein structure, graphical models
11. information extraction
12. search, learning to rank
13. crowdsourcing, deep learning
14. community detection
15. deep learning, computer vision
16. information extraction, neuro science

7.4 Using Knowledge: Query Expansion

Now, we want to know whether the acquired knowledge is useful to the
system This can be demonstrated by showing that the EventSpeak System
can respond more precisely to user queries by returning more relevant
talks, after knowledge acquisition than before. Previous work (Navigli
and Velardi, 2003) has shown that query expansion based on semantic
networks can improve retrieval performance. We compare performance
by expanding user query with acquired knowledge against the unexpanded
queries.

7.4.1 Query Expansion Setup

We built a database of 160 research talks using abstracts, titles and speaker
names as indices. For this purpose, we use Latent Semantic Indexing
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Figure 7.4: MDL and MODULARITY of network against minimum number
of blocks at initialization
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method as implemented in the GENSIM toolkit (Řehůřek and Sojka, 2010).
In the user study described earlier, we collected 40 queries (29 unique)
about research areas and 40 (21 unique) about researchers — a total of
50 unique queries. We use these 50 queries to evaluate retrieval perfor-
mance. Research area queries were expanded with their top-3 co-occurring
research interests in the corpus. For researcher queries, we used the top-3
researcher’s interests. Ten results with and without query expansion were
retrieved. We then asked human judges (senior graduate students) to assess
the relevance of each result on a scale of 1-4 (higher the better) with respect
to a query. Our hypothesis is that results based on query expansion will
have higher relevance compared to the results without query expansion.
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7.4.2 Query Expansion Results

We asked 5 human judges to rate the relevance of results from 50 queries
with and without query expansion. We measured inter-annotator agree-
ment by having a pair of judges annotate the same set of 20 queries. Overall
we obtained ratings for 100 (5x10x2) queries: 5 sets of 10 queries each,
rated by 2 judges per set — with good agreement (Cohen’s κ= 0.41).

Table 7.3 shows the mean relevance, as rated by the annotators, for
the retrieved talks with respect to the query. The query based expansion
system outperforms the baseline, as observed in previous work (Navigli
and Velardi, 2003). Expansion works particularly well for “researcher”
queries. One reason may be that person names may not have appeared in
the talk description (and not indexed), but the research interests used to
expand the query may appear in the talk descriptions (and indexed). We
show that using this knowledge in expanding user queries can result in
significantly 5 ( p < 0.01) more relevant results (2.5/4 vs 1.8/4) than before
acquisition.

Table 7.3: Mean relevance-per-query on scale of 1-4 (higher the better).
Knowledge-based query expansion results are statistically ( p < 0.01) more
relevant than those without expansion.

QueryType Without Expansion With Expansion
Researcher 1.1 (stdev=0.8) 2.4 (stdev=0.6)
ResearchArea 2.2 (stdev=0.6) 2.5 (stdev=0.6)
Overall 1.8 (stdev=0.9) 2.5 (stdev=0.6)

7.5 Timing the Knowledge Solicitation

In the previous sections we discussed how can we solicit information
through system initiated dialog. The acquisition process was untimed
i.e., the system would seek information after every interaction. In a real
interaction, it is undesirable to solicit information anytime or every time.
Often interactions are solely measured in terms of objective measures such
as task completion and turns taken. However, it is important to assess
the overall experience of an interaction. One way to measure the overall

5using unpaired t-test



7.5. Timing the Knowledge Solicitation 113

experience is by measuring the quality of interaction on a likert scale. In
this section we will discuss how can we build a statistical model to measure
interaction quality and then ask a question that could potentially improve
the quality of KG.

7.5.1 Interaction Quality Measurement

To measure the interaction quality (IQ) we use LEGO corpus (Schmitt
et al., 2011) with features described in that work and we apply sequence
labeling techniques that are similar to the ones proposed in their work.
Note that we are not particularly interested in the novelty of the measur-
ing IQ, rather interested to find out whether IQ can be a deciding factor
to solicit information. LEGO corpus contains interactions of the Lets
Go! Bus information system from 2006. Every interaction is divided
into exchanges where an exchange includes system’s turn and user’s turn.
We show statistics of this corpus in Table 7.4. Originally there are 348
interactions in the corpus but we only 237 have been labeled with interac-
tion quality. There are 6379 exchanges and on average 27 exchanges per
interaction.

Table 7.4: Data Statistics

Metric Statistics
No. Interactions 237
No. Exchanges 6379
Avg. Exchanges 26.9
Avg. Interaction Quality of an Interaction 3.4 (stdev=1.4)
Avg. IQ per Exchange 3.8 (stdev=0.9)

7.5.2 Experiment Setup

To measure the interaction quality we divide the corpus into training (187
interactions) and testing (50 interactions) data. We cast the interaction
quality measurement as a sequence labeling problem with exchange labeled
with one of the 5 classes {1,2,3,4,5} as proposed in (Ultes and Minker,
2014). We use two statistical approaches (i) a linear chain CRF (mallet
implementation (McCallum, 2002)) and (ii) a sequence labeling SVM (SVM
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struct implementation (Joachims, 2008)). We compare models built using
these approaches with a rule-based baseline. Often turn count is consid-
ered as an indicator of efficient interaction. Therefore, we construct our
baseline based on the turn count. We will rate each exchange on the scale
of 1-5 (higher the better) based on the turn counter. Thus, lower the turn
counter higher the interaction quality. Intuitively this is a strong baseline.
Table 7.5 shows an analysis of turn count by interaction quality for ex-
changes in the training data. We see that the median number of turns is
quite distinct for each quality. We can reliably use the turn counter range
to determine the quality of exchange.

Table 7.5: Number of User Turns in Training Interactions w.r.t. Quality
of Exchange

Quality Mean Turns Median Turns Min Max
1 65.2 37 7 257
2 31.4 24 6 125
3 21.2 17.5 4 72
4 16.6 12 3 74
5 10.3 6 1 78

Schmitt et al. (2011) have proposed large set of features and presented
an analysis of features and their correlation with interaction quality. We
performed a χ 2 (chi-squared) test on the features and observe that features
shown in Table 7.6 highly correlate with interaction quality. This obser-
vation agrees with analysis presented in (Schmitt et al., 2011). #System
Questions, RoleIndex, Turn Counter (#UserTurns and #SystemTurns) are
highly ranked features with good predictive power.

7.5.3 Evaluation

In the table 7.7 we present evaluation of the baseline and the statisti-
cal methods to predict interaction quality sequences. We see that CRF

model outperforms both baseline and SVM_HMM with respect to F-score.
Whereas, when we measure the Root Mean Square Error (RMSE) of the
interaction quality with respect to the ground truth, both SVM_HMM

and CRF perform similarly (1.26). We should remember that measuring
interaction quality is a difficult task, even for humans.
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Table 7.6: χ 2 statistic between features and IQ

Feature Chi-val Rank
#SystemQuestions 1413.66 1
RoleIndex 1205.3 2
#UserTurns 1085.1 3
#SystemTurns 1085.1 3
%RePrompts 904.5 5
#TimeOuts_ASRRej 849.9 6
#ASRRejections 822.4 7
ASRConfidence 402.0 8
#RePrompts 373.1 9
MeanASRConfidence 267.4 10
#TimeOutPrompts 255.7 11
#HelpRequests 0 12

Table 7.7: F-score in % (higher the better) and RMSE (lower the better) of
Interaction Quality using Sequence Labeling Models

Model RMSE F-score
1 2 3 4 5 OverAll

RuleBased 2.34 24.2 23.1 21.6 28.8 57.4 37.2
CRF 1.27 41.1 31.8 34.8 40.4 72.3 50.4
SVM_HMM 1.26 53.9 29.0 14.6 39.1 71.0 47.0

7.5.4 Interaction Quality Based Solicitation

To evaluate how well humans can predict the interaction quality and how
do they judge its effect on knowledge solicitation, we have conducted a
user study. In this study, we presented an interaction to a human judge
and asked them to rate that interaction on the scale of 1-5. An excerpt
of one of the interaction is illustrated in the Figure 7.5. LEGO corpus
contains interactions with system prompt and ASR hypothesis of the user’s
response. We use these interactions in our user study. In the study, we
asked human judges to assess whether the user in that interaction would
be annoyed if the system would ask a survey question at the end of the
interaction. We have used 50 test interactions in this user study and divided
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them into 5 sets with 10 per set. 5 human judges were presented with two
sets each and the inter-annotator agreement on average is 0.64.

S: Welcome to the CMU Let”s Go bus information system.
S: To get help at any time, just say Help or press zero.
S: What can I do for you?
U: 54C
S: The 54C . Is this correct?
U: YES
S: Right
S: Where do you wanna leave from?
U: PENN AND MAIN
S: Leaving from PENN AND MAIN . Did I get that right?
U: YES
S: Alright
S: What is your destination?
U: OAKLAND
S: Going to OAKLAND . Is this correct?

Excerpt from Let’s Go! corpus

Figure 7.5: Excerpt of an Interaction from Let’s Go! corpus

Table 7.8 shows that there is a good correlation between interaction
quality and opportunity to solicit information. In other words, higher
the quality of interaction stronger the opportunity to solicit information.
Therefore, we can reliably use IQ to trigger knowledge acquisition.

Table 7.8: Correlation between Possibility of Solicitation and IQ obtained
from the study and average IQ computed from the LEGO corpus

Correlation IQ (from the study) IQ (from the corpus)
pearson 0.73 (p < 0.01) 0.57 (p < 0.01)
spearman 0.72 (p < 0.01) 0.56 (p < 0.01)
kendall 0.65 (p < 0.01) 0.46 (p < 0.01)
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Once the system decides to acquire new knowledge, it can either elicit
list of instances or it can validate existing information in the KG. As the
time progresses, there will be fewer new instances to elicit and the system
accumulates noisy information in the KG. Therefore, it makes more sense
to validate information that can improve the quality of the KG. In the
following section, we shall look at how can a system can validate existing
information by asking questions and can rank those questions when there
are several questions to ask.

7.6 Validating Knowledge Graphs

To build a KG for the Let’s Go! domain, we need to identify entities in this
domain. We identify these entities from the interaction log files available
in the LEGO corpus. First we filter out the semantic parser’s output
from the log files using unix grep command. Then we select semantic
slot-value pairs that map to neighborhoods, bus stops and bus routes.
Remember in the earlier sections we have discussed semantic slots in the
academia domain. Researchers are analogous to neighborhoods/bus stops
and research interests are analogous to bus routes.

A KG for the Let’s Go! domain, intuitively, should connect neighbor-
hoods through bus routes. From the log files we obtained several entities of
the domain as shown in the Table 7.9. We can derive potential routes asso-
ciated with each neighborhood by observing their co-occurrence. First we
list out all the dialog sessions that an entity belongs to. Then we compute
jaccard similarity (Jaccard, 1901) between a pair of entities. In this case,
we compute similarity between a bus route and a neighborhood based
on their dialog session sets. If the similarity is greater than 0, we create a
link between that pair of entities. Through this process, we obtained 635
relations between neighborhoods and routes, and 2289 relations between
stops and routes.

We organize the entities and their relations in the form of an affinity
matrix to build a graph of entities. The matrix contains neighborhoods
connected to other neighborhoods that are similar to themselves. We com-
pute cosine similarity between vectors of bus routes associated with a pair
of neighborhoods. We build two such matrices — one for neighborhoods
and another for bus stops. We compute cosine similarity between entities
as follows:
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Table 7.9: Statistics of Let’s Go! Entities and Relations

Entity Frequency
Neighborhood 74
Routes 63
Stops (Intersections) 188
Relations
Neighborhood <–> Route 635
Stops <–> Routes 2289

cos(θ) =
n
∑

i=1

neigh_Ai×neigh_Bi
s n
∑

i=1
(neigh_Ai )

2×
s n
∑

i=1
(neigh_Bi )

2
(7.2)

neigh_A is a vector with bus routes as dimensions and jaccard index
scores as values. Once we construct a graph from this affinity matrix, we
run the block partition algorithm on this graph. This yields communities
in the graph. One can use modularity of this graph to assess the quality of
the network. Since this is a bus route network, ideally, it should be well
partitioned network with more connections among a region of neighbor-
hoods and fewer connections outside the region. However, our graph may
have invalid edges due to the cascade effect of ASR errors that have trickled
into the dialog session logs. Therefore, we want to remove potentially
weak or invalid edges. To this end, we can use edge weight as a criterion
to select weaker edges and validate them. We ask users to verify whether
neighborhoods connected through these edges are indeed connected via
bus routes associated with the edges.

We select candidate edges for validation if their edge weight is in 2nd
quartile, when we sort all the edges in increasing order of their edge weight.
This is a reasonable criteria because edges with lowest weights are mostly
invalid and edges in the upper quartile are mostly valid. We only want to
validate ambiguous edges. We have randomly selected 50 edges in the 2nd
quartile. We frame a validation question based on the edge attributes i.e.,
neighborhood A, neighborhood B and bus routes. For example,
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S: Could you tell me whether DOWNTOWN and WILKINSBURG
neighborhoods are connected by anyone of these routes [61C,61A]?

If the answer is No then we eliminate that edge, otherwise we leave it
intact. These questions are asked in the user study described above and
the judges have answered Yes, No or I don’t know to those 50 questions.
We had two judges answer every question with an average inter-annotator
agreement of 0.72. We have automatically eliminated the edges in the 1st
quartile. This increased the modularity of the network from 0.05 to 0.1.
From the user study, we have identifed 33 out of 50 edges are invalid. After
we eliminate them the modularity has increased to 0.13.

7.6.1 Qualitative Analysis of Neighborhood Graph

Figure 7.6 shows a graph of neighborhoods where each node is colored by
its community/cluster color. There are 12 clusters in the graph. To provide
a qualitative analysis of the graph, we have tagged these neighborhoods in
google maps with their respective colors (cluster color) as shown in the
Figure 7.7.

We observe that most of the clusters are geographically aligned. Re-
member that these clusters were originally derived directly from the dialog
session logs with noisy ASR output. There are no geo-tags related to these
sessions which makes this graph more interesting. Most of the downtown
and uptown neighborhoods viz., SouthSide, Squirrel Hill, Downtown,
North Side, Sheraden etc. are part of central cluster. Interestingly, Collier
and West Miffin are also part of this central cluster. Although they are
not geographically close to other neighborhoods in that cluster, they are
port authority garages and share the bus routes with neighborhoods in
that cluster.

Most of the north western neighborhoods viz., Pittsburgh Interna-
tional Airport, Moon Valley, Robinson Township are part of one cluster.
There is another cluster in the north with Indiana township, McCandles
Township, Zoo area.

There are two isolated clusters with geographically distant members.
One with Bellevue and Sharpsburg, another with Crafton and North
Versailles. They are not directly connected to each other but they share
most bus routes with neighborhoods in the downtown cluster. That could
explain their membership in their respective clusters.
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Figure 7.6: Network of bus neighborhoods colored by their cluster
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Since we construct our graph based on noisy entities, there are outliers
in all of these clusters. We could improve the quality of this graph, by ob-
serving the system initiated explicit confirmations in the dialog exchanges.
In addition, we can use interaction quality of an exchange to assign confi-
dence scores to the discovered entities. In this work, we show that we can
use noisy dialog logs to reliably reconstruct a KG.

7.7 Discussion

In this work, we have only shown that KG can be useful for improving
information relevance through query expansion. We believe that there are
other applications of KG for a conversational agent such as:
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• to improve NLU component,

• to disambiguate entities in a dialog,

• to improve state-specific language modeling

• to improve belief tracking in a dialog.

Heck and Hakkani-Tur (2012) has shown that language understanding
component can benefit from an open-domain KG. They proposed an
unsupervised approach for training NLU component. They show their
approach approximately matches supervised NLU method. We believe
that a domain-dependent KG (such as the one discussed in this chapter)
can improve NLU even more. It could potentially reduce the search space
while parsing an utterance with relevant entity labels from KG. (Heck
and Hakkani-Tur, 2012) also discusses how out-of-domain (textsc{ood})
utterances can be detected using KG. They show that with almost 90%
accuracy one can detect OOD queries. In certain domains e.g., movies
and books, different entities may have similar/same surface form. It
can be challenging for an NLU component to have them disambiguate
through user. Since it may not be possible to do that when there are
several candidate entities. Mika et al. (2008) has proposed an entity linking
method that makes uses of wikipedia and a domain corpus to improve
entity disambiguation for entities in that domain. We can employ such
an approach that makes use of graph properties (centrality, betweenness,
degree etc.) to disambiguate the slot-types.

For recognition of utterances in a certain dialog state, typically dialog
systems use state-specific language models for a better accuracy over a
generic language model. Raux et al. (2010) has shown that the recogni-
tion can be even better if a bayesian network is included into this setup.
This bayesian network encodes dependencies between user intent and the
words used to express this intent. One of the benefits this approach is
that it can capture various surface realizations and map them to a certain
concept/intent. An example from the Let’s Go domain, airport can be
referred as international airport or pittsburgh airport. The bayesian net-
work encodes this information by marginalizing the distribution of words
that could potentially refer to same neighborhood. In our KG analysis, we
have observed that airport and pittsburgh airport nodes have stronger edge
weight and both belong to same community in the graph. Similarly pitts-
burgh downtown and downtown nodes belong to same community with a
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stronger edge. It shows that KG implicitly captures this prior knowledge
and it can be exploited in the same way as bayesian networks were used in
(Raux et al., 2010). Similar ideas can be applied to belief tracking. Raux
and Ma (2011) have extended their previous work on language modeling
to belief tracking. In this work, they use two types of networks: a static
network that represents the user goal and a set of dynamic networks that
represent observations (ASR / NLU) in the dialog. The static network is a
form of KG discussed in this work. We could their approach to incorpo-
rate dynamic edges in a subsection of our graph that capture beliefs in an
ongoing dialog.

In addition to belief tracking, we can borrow ideas from query-chaining
approaches used in the information retrieval community to improve task
success of a dialog. (Boldi et al., 2008) have proposed a graph-based rep-
resentation to improve the understanding of user intent. They connect
potential “followup” queries with a directed edge, since intuitively they
belong to the same search intent. Thus, any path over a query graph repre-
sents overall search behavior. They show that such a query-flow graph can
be obtained from a large scale query log. They demonstrate its usefulness
through query recommendation. We could use such a graph for prompt-
ing a user with potential query phrases. This is similar to YOU-CAN-SAY

error-recovery strategy proposed in (Bohus and Rudnicky, 2005c). Key
difference is that we would use dynamically generated YOU-CAN-SAY

prompt from the query-flow-graph.

7.8 Chapter Summary

In this chapter, we discussed a method that helps an agent to acquire
domain knowledge through dialog with users and uses it to build a semantic
representation of an academic field. The system uses a set of strategies to
collect entities (researchers and research interests). These entities are linked
by their co-occurrence to produce a bipartite graph linking researchers
and research interests.

To verify that the acquired knowledge is consistent, we asked human
annotators to judge whether the interests predicted by the system were
accurate. We found that the predicted interests for researchers have a high
mean precision of 90.5%, i.e., annotators agree with the system’s predic-
tions in most cases. To analyze this knowledge qualitatively, we build
a network of researchers connected through their mutual interests and
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divide this network into blocks using a block inference algorithm. This re-
sults in a set of blocks/communities of researchers (like a citation network)
that covers the original academic field. We found that acquired knowledge
used for query expansion provides more relevant results (2.5/4 vs 1.8/4),
according to human judges, than without this acquired knowledge.

We can reliably construct KGs both from knowledge elicitation dialogs
and existing dialog logs. We reliably constructed KGs for two domains:
academic domain and bus information domain. Knowledge acquisition
involves cost (user’s time) and incentive (new knowledge for system). We
have shown that interaction quality is a reliable measure to judge whether
to solicit information from a user or not. To this end, we conducted a
user study and observed that there is a strong correlation (pearson = 0.7)
between interaction quality and the possibility of knowledge acquisition.
We have also shown that quality of a KG can be improved by validating
ambiguous edges through dialog with users.



Chapter 8

Conclusion and Future Work

This thesis has examined dialog-driven techniques for domain knowledge
population. These techniques lay down a foundation of automated domain
learning for conversational systems. This can potentially reduce human
effort required to deploy a dialog system for new domains and improve
user experience during interaction.

We have shown that a conversational agent can learn about its domain
under three different settings viz., user initiated learning, system detected
learning and system initiated learning. We have also shown that a system
can improve its task performance by learning in each of these settings.
Learning through dialog is therefore important for a dialog system. We
have shown that proposed knowledge detection techniques and conversa-
tional strategies allow us to capture domain knowledge while interacting
with a user. We have also shown that these techniques are usable across
different domains such as navigation domain, speech to speech translation,
spoken short messages, and information-access domains. Traditionally,
conversational agents have been equipped with a static domain knowledge
base which is based on domain expert’s knowledge of the domain. The
proposed dialog-driven techniques can manipulate an existing domain
knowledge base and improve the agent’s awareness of its domain.

This thesis proposed knowledge detection techniques and show that it
can recover useful information from non-understood user input utterances.
However, the techniques themselves, along with their domain-independent
extensions are generic and can be applied to problems other than knowl-
edge detection. We cast the out-of-vocabulary detection in dialog as an
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error detection problem. We can extend this approach to perform named
entity detection for out-of-vocabulary phrases. The proposed semantic
smoothing kernel approach can be extended to learn new concepts during
the interaction. The proposed system initiated knowledge acquisition
strategies are also extensible to new domains. While we have only seen
its impact in information access domain in this thesis, the strategies can
be useful for discovering entities in command-and-control domains (e.g.,
navigation) and open-domain interactions (e.g., spoken short messages).

LiteSF, a lightweight speech interface architecture built on top of
Freeswitch, an open source softswitch platform is one of the contributions
of this thesis work. A softswitch enables us to provide users with access
over several types of channels (phone, VOIP, etc.) as well as support
multiple users at the same time. We demonstrated this architecture through
the interactive error detection system discussed in Chapter 4.

8.1 Future Directions

This thesis has only looked at learning new instances and relations between
those instances for a given set of concepts. We have not directly addressed
the problem of learning new concepts and dialog management for new
domains. Learning new instances for a new domain itself has several
interesting challenges that are not addressed in this thesis. If we were to
build dialog systems for a wide range of users, we may encounter issues
with multilingualism and accented speech. We could adapt a dialog agent
to multilingualism by discovering new instances across several languages
using a set expansion method as proposed in (Wang and Cohen, 2007). Set
expansion methods are commonly used to bootstrap lexicons with the help
of large amount of unlabeled and unstructured data. For example (Pantel
et al., 2009) has proposed a set expansion technique based on distributional
similarity statistics. Their approach uses the world-wide web as a source
of information to grow a list of instances of a certain concept.

Open-domain ontologies often surrogate for lack of domain-specific
ontology. Open-domain ontologies could create conceptual and termi-
nological confusion. (Navigli and Velardi, 2004) has proposed a method
and a tool OntoLearn that could learn domain-specific ontologies from
raw text such as domain web sites, manuals and documents shared among
a community. Their method extracts domain-specific keywords from
the documents and organizes them in a hierarchical fashion. Then these
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keywords are semantically mapped to concepts in Wordnet. Mapping step
involves computing distributional similarity statistics for domain-specific
keywords and Wordnet concepts.

Many domains lack sufficient documents or web sites to apply ontol-
ogy learning techniques as the one discussed above. We could perform
domain adaptation to mine domain-specific relations and concepts from
an open-domain ontology. Plank and Moschitti (2013) have proposed a
tree-kernel based domain adaptation technique for relation extraction (RE).
Their approach combines word clustering techniques and kernel-based RE

techniques. Such approaches are often promising for dialog systems that
suffer from data scarcity.

As the domain knowledge base evolves, it is important to validate
whether it has valid information. One way to attest this is by asking a
user explicitly but this may not be possible everytime. Another way to
attest or validate new information is by using it understand user input.
An utterance is typically parsed for semantic slot value pairs and one can
use knowledge-based approach for semantic role labeling. Thus validating
the knowledge implicitly. Pradet et al. (2013) has proposed a semantic role
labeling approach that is facilitated by a knowledge base. They use English
Verb Net as their knowledge base to transform syntactically-analyzed sen-
tences into semantically-analyzed ones. One benefit of such an approach is
that it does not require a priori training data. Such a knowledge base based
approach is extensible to a larger scale semantic role labeling as proposed in
(Heck et al., 2013). Such unsupervised methods can tremendously improve
intent understanding for conversational agents.

Learning domain ontologies present one set of challenges and learning
dialog task structure presents a different set of them. Often dialog task
structure are hand crafted to restrict errors in an interaction. However that
would curb adaptability of an agent. Gasic et al. have proposed POMDP

based domain adaptation techniques for dialog management. They use
a transfer learning approach to select a candidate source domain from
a pool of domains to adapt to a target domain. They show that their
adaptation technique guarantees good performance even in the initial
stages of adaptation.

This work stands as a platform to make a spoken dialog system learn
relevant semantic information both from humans and external knowledge
sources. We would able to extend this paradigm to let the system elicit
new references to a known semantic concept. For example, a navigation
agent knows a task called “GoToRestaurant” but the user-utterance had the
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word “diner” and it was not seen in the context of “restaurant”. The agent
somewhat predicts this utterance is related to “GoToRestaurant” using the
approach described in this dissertation. It could ask the user an elicitation
question: “You used diner in the context of a restaurant, is diner really a
restaurant?”. The answer to this question will help the system gradually
understand what parts of an open-domain knowledge base can be added
into its own domain knowledge base. We believe that the holistic approach
of learning from automated processes and learning through dialog, will
help the dialog systems get better interaction by interaction.
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