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Chapter 1

Introduction

1.1 The regulatory genome and cis-regulatory mechanisms

Diversity in forms of animal life, diversity in function of an organism’s cells, and diversity in
function of a single cell over its lifetime or in response to different stimuli drives a whole plethora
of processes in biology. Questions about genomic processes underlying such diversity and their
resulting biological role have been well studied in the past few decades, and their contribution
lies in the gene regulatory mechanisms encoded in the DNA. The gene control circuitry actually
dictates whether or not, and when and by how much a particular gene should be expressed in a
cell. Such control mechanisms are most often present in the genome in the form of cis-regulatory
modules (CRMs). These are genomic regions in the neighborhood of each gene which contain
sequence “motif”s (particular genetic subsequences which are noisy copies of each other) where
proteins that regulate its expression bind, causing up-regulation or down-regulation of expression
levels [35].

The regulatory genome therefore consists of such regulatory regions, as well as the coding
regions of the proteins (known as transcription factors (TFs)) performing the regulation, making
up the cis and trans components of the regulatory mechanism respectively. The entire regulatory
process is often conveniently viewed in terms of a regulatory network, with directed edges from
transcription factors to regulated genes [35].

Detection of regulatory regions and motifs require significant computational analysis. Unlike
gene coding sequences, there are no high-throughput, accurate biological experiments for deter-
mining the location of these motifs. The explosion of genomic and population genetic data in the
2000s have led to new avenues of exploring and understanding regulatory mechanisms in organ-
isms at the genomic level. Detection of the exact location of the transcription factor binding sites
(TFBSs) in the organism’s genome, analyzing their evolutionary dynamics, and reconstructing the
underlying regulatory networks are among the biggest problems which are required to understand
their function in development, cell differentiation and other critical biological processes. The large
amounts of genomic (and often corresponding experimental) data involved, and the complexity of
the resulting analysis lends itself well to a machine learning setting. There is presently a large and
growing body of work in this area [16, 191].
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The rest of this document is organized as follows: in the remaining part of this chapter, we
look at contemporary approaches to computational analyses of the cis-regulatory mechanism and
the goals of this thesis. The next three chapters analyze in detail our work so far on analyzing
cis-regulatory mechanisms.

The second chapter looks at generalized hierarchical hidden Markov models for capturing the
intrinsic organization and grammar of cis-regulatory regions and predicting binding site locations
in a supervised setting [106].

The third chapter explores a graphical model for modelling an evolutionary phenomenon called
functional turnover, and predicting binding sites in a supervised fashion from multiple aligned
genomes [148].

The fourth chapter outlines a conditional random field based discriminative model for super-
vised binding site prediction and analyzing what genomic and epigenomic feature correlate well
with binding site locations [57].

The fifth chapter outlines the evolutionary analysis of regulatory regions, exploring a way to
cluster together co-evolving parts of regulatory regions and then outlining a bag-of-words model
for analyzing how a mixture of stochastic dictionaries evolve across species (preliminary work
in [147]).

The sixth chapter is the concluding chapter which summarizes the chronological changes in
the field of motif analysis and cis-regulatory analysis, and of the changing nature of motif analysis
in the light of Chromatin Immunoprecipitation technologies, and the work presented in this thesis
in the context of the literature.

1.2 Contemporary approaches to computational cis-regulatory
analysis

Prediction of the location of TFBS and CRMs in the vicinity of coding regions is typically modelled
as a classification problem with each nucleotide in the sequences of interest being assigned a class
label denoting its functionality (like binding site, background nucleotide, etc) either by unsuper-
vised methods without training data [7], or by supervised methods using training data where some
instances of TFBS and CRMs are already known from the outcome of biological experiments.

Computational models of the TFBS of a single TF have existed for many years, with the most
effective and common model being the position weight matrix (PWM), which was introduced more
than 20 years ago [179].The popularity of the PWM is associated with the simplicity of the model,
associating a TFBS with an ordered set of multinomials of A, T, G and C. More intricate models for
TFBS have been suggested like modelling position with Markov models rather than independent
multinomials, and using Dirichlet priors rather than directly estimating the multinomials, in a
Bayesian setting [8, 202]. Over the past decade, the focus has been on predicting CRMs comprising
several binding sites, typically of a few different TFs, as opposed to predicting binding sites for
one single TF.

The major challenge in supervised TFBS prediction is in the fact that TFBSs are noisy copies of
each other, but can easily confound an inference algorithm into predicting more false positives than
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true positives. This is due to the fact that nucleotide k-mer distributions are often skewed inside
regulatory regions based on the fact that selection is at work, and other evolutionary events like
duplication, while suppressed are not entirely absent [71]. In terms of the underlying classification
problem, typical precision and recall values for TFBS prediction in eukaryotic genomes is in the
range of 0.1 to 0.4, with the typical precision - recall tradeoff seen in P-R curves [106]. This is
surprisingly low given that concerted efforts have been made to model such problems from as early
on as 1984 [179].

One early line of approach for CRM and TFBS discovery is a window-based approach, by
simply counting the number of matches above a certain predefined match score for a particular
motif pattern inside a window of fixed length in the DNA [41, 146, 149, 166]. Such methods
are akin to hypothesis testing over the length of the window to determine positions of TFBSs.
However, the length of the window, and the threshold for the match score are parameters which are
typically decided on an ad-hoc basis and are not model-based, and are thus difficult to set in a new
dataset.

A second line of methods takes an entirely different approach by modeling the occurrences
of motifs and CRMs as the output of a first-order hidden Markov process on the genomic se-
quence [54, 56, 72, 174, 190, 210]. This approach does not suffer from the problem of having
to set arbitrary window sizes and thresholds, and enjoys the rigorous guarantees of estimation and
inference using Hidden Markov Models (HMMs) and its variants. It takes into account not only the
strengths of motif matches, but also the spatial distances between matches (arguably more informa-
tive than co-occurrence within a window). The HMM translates to a set of soft specifications of the
expected CRM length and the inter-CRM distance (i.e., in terms of geometric distributions). How-
ever, such generative models typically train parameters by maximizing the joint likelihood over the
observed sequence and the hidden labels, and are thus often misled by noise in the data [57]. Fur-
ther, the law of diminishing returns is in effect on using Markov Models for supervised learning of
location of CRMs and TFBSs. Sophisticated models like BayCis (usng a generalized hierarchical
HMM)[106] obtain only mild performance gains over the state of the art.

Additional sources of evidence need to be combined besides the regulatory sequences them-
selves to help improve performance, but generative models do not lend themselves well to integrat-
ing various kinds of evidence. Typically, it is not always intuitive how to generate values for new
kinds of evidence, especially continuous valued ones, and even when additional evidence can be
combined into the model, like evolutionary data, they typically result in an exponential increase in
the state space of the model [171] (number of class labels), causing the performance of estimation
and inference algorithms to go down drastically.

However, the most commonly integrated source of additional evidence into generative models
for predicting regulatory function is to use multiple aligned genomes of related species. Compar-
ative genomic methods for CRM prediction started with the Loots et al paper [110]. However,
these approaches are restricted to very closely related organisms, because for evolutionarily distant
organisms, not only are the non-coding regions hard to align, but the assumption that the aligned
sequences are orthologous is also often not substantiated for small and typically degenerate func-
tional elements such as motifs and CRMs. A number of recent investigations have shown that
TFBS loss and gain are fairly common events during genome evolution [113, 128]. For example,
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Patel et al [112] showed that aligned “motif sites” in orthologous CRMs in the Drosophila clade
may have varying functionality in different taxa. Such cases usually occur in regions with reduced
evolutionary constraints, such as regions where motifs are abundant, or near a duplication event.
The sequence dissimilarities of CRMs across taxa include indel events in the spacers, as well as
gains and losses of binding sites for TFs. Nevertheless, the fact that sequence similarity is absent
does not necessarily mean that the overall functional effect of the CRM as a whole is vastly dif-
ferent. In fact, for the Drosophila clade, despite the substantial sequence dissimilarity in gap-gene
CRMs such as eve2, the expression of these gap genes shows similar spatio-temporal stripe pat-
terns across the taxa [112, 113]. Orthology-based motif detection methods developed so far are
mainly based on nucleotide-level conservation. Some of the methods do not resort to a formal
evolutionary model [16], but are guided by either empirical conservation measures [15, 42, 158],
such as parsimonious substitution events or window-based nucleotide identity, or by empirical
likelihood functions not explicitly modeling sequence evolution [10, 88, 195]. The advantage of
these non-phylogeny based methods lies in the simplicity of their design, and their non-reliance on
strong evolutionary assumptions. However, since they do not correspond to explicit evolutionary
models, their utility is restricted to purely pattern search, and not for analytical tasks such as an-
cestral inference or evolutionary parameter estimation. Some of these methods employ specialized
heuristic search algorithms that are difficult to scale up to multiple species, or generalize to aligned
sequences with high divergence. Phylogenetic methods such as EMnEM [127], MONKEY [126],
and CSMET [148] employ rigorous model based techniques for inferring the position of CRMs
and TFBSs.

Discriminative models have also been used for predicting regulatory function. Craven et al [17]
first applied such a scheme to identify regulatory signals in prokaryotic sequences; but their model
employs a simple feature set to resolve the motif sequence overlap problem, and also requires a
prescreening of motif scores via basic PWM-based models. Discriminative models explicitly tailor
towards maximizing the likelihood of predicting motifs, rather than maximizing the joint likelihood
- which often confounds the analysis in the case of generative models. Secondly, discriminative
frameworks like Conditional Random Fields [57] employ a comprehensive set of features carefully
selected from the literature designed to capture a variety of characteristics of the motif and CRM
patterns. An additional goal of such models is to empirically test the correlation of various types
of genetic and epigenetic features with binding site locations.

In the past few years, advances on the side of biological experimentation have provided two
methods of detecting protein-DNA binding events in vivo on a high throughput basis. The first ex-
periments to expressly investigate transcription factor - DNA binding was ChIP-Chip, which com-
bined chromatin immunoprecipitation with DNA microarray technology to identify which parts of
the genome are bound by transcription factors. [82, 104, 151]. However, ChIP-Chip suffers from
noise inherent in the microarray chip read-out, and has in the past few years been primarily replaced
with ChIP-Seq technology, which combines chromatin immunoprecipitation with next-generation
sequencing technology to identify the areas of the genome where the transcription factor binds
in vivo. This is less noisy than ChIP-Chip methods, as sequencing techniques are inherently less
noisy than DNA microarray technology [84, 154]. However, the output of ChIP-Seq experiments
cannot directly be translated into positions of TFBSs. The DNA subsequences to which the TF
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binds (known as “tag”s), and which are consequently sequenced, are of magnitude 20 bp - 200 bp,
whereas typically the exact length of a TFBS is typically 6 - 20 bp long.

Finally, a lot of work has been done in the recent past analyzing the evolutionary trends in
regulatory regions. Selection is a driving force of evolution, and is well known to constrain func-
tionally important regions of the genome, causing negative selection [92]. Positive selection, on
the contrary, is defined to be faster than normal rates of nucleotide evolution which can affect
the functionality of coding or regulatory regions. Recently, positive selection has been reported
in regulatory regions, using population genetics and phylogenetic tests based on indel events and
substitutions in binding sites versus nonbinding sites [74, 155, 156]. A recent spurt of work in
detecting selection and other evolutionary parameters in eukaryotes has coincided with the appear-
ance of a large volume of comparative genomic data, including the 12-way Drosophila and other
insect multiple alignment, and the 30-way mammalian multiple alignment. These works include
the analysis of evolutionary signatures for different functional annotations on the Drosophila clade
[186], analysis of selection in conserved non coding sequences in humans,chimpanzee, mouse, rat
and dog by Kim and Pritchard [91], a study of adaptive substitutions in Drosophila [101], a study
of selection in TFBS inside repeats in humans [142], and a genome-wide analysis of selection on
human cis-elements [164].

1.3 An overview of the thesis
One goal of this thesis is to explore supervised motif detection in regulatory sequences by maxi-
mally utilizing the inherent “grammar” or structure of the cis-regulatory modules. We achieve this
goal by using hierarchical and generalized Hidden Markov Models (HMMs) in a Bayesian setting.
Hierarchical HMMs help capture correlation among binding sites should they exist, as well as be-
ing able to model flanking regions specific to different kinds of binding sites, Generalized HMMs
help model spacer distances between motifs and a bayesian framework ensures that whatever prior
knowledge we have about the architecture (possible correlations of types of binding sites, etc) can
be incorporated into the model by using priors on the parameters. The work is presented in detail
in Chapter 2 [106].

Another goal of this thesis is to explore supervised motif detection by using comparative ge-
nomic data (multiple sequence alignment), with a specific focus of taking into account the phe-
nomenon of functional turnover. Functional turnover is a phenomenon where orthologous se-
quences across even closely related species may have varying functionality due to gain or loss in
functionality in the specific subsequence in question. Functional turnover is one of the biggest con-
founding factors plaguing comparative genomic analyses, and we developed a generative graphical
model which models the multiple sequence alignment as the output of a mixture of phylogenies.
The mixture variables themselves are not drawn from a simple Bernoulli distribution [127], but
are themselves the product of a higher level phylogenetic tree modelling the evolution of binary
function indicators. The work is presented in detail in Chapter 3 [148].

A third goal of this thesis is to analyze diverse sources of evidence and conclude which genetic
and epigenetic features correlate well with binding site locations, and to use such information to
create a discriminative model for supervised prediction of binding sites. We use the discrimina-

7



tive framework of a conditional random field (CRF) for the purpose, which assigns weights to
each genetic or epigenetic feature or “score”. Evolutionary features, annotation of transcribed and
translated regions, features like GC content related to chromatin stability, as well as epigenetic
features like nucleosome binding affinity were explored. The work is presented in detail in Chap-
ter 4 [57]. DISCOVER aims to be the standard tool for integrative analysis based on Conditional
Random Fields, with the ability to integrate differing datasets like epigenetic marks, transcription
factor binding, genomic information, and evolutionary context.

Obtaining a deeper understanding of the evolution of the regulatory genome is crucial to
be able to model generative processes which account for evolution of regulatory regions like
CSMET [148], and EMnEM [127], as well as for analyzing what kinds of evolutionary fea-
tures may prove discriminative with respect to motif-finding in discriminative models like DIS-
COVER [57]. A final goal of this thesis is to model the evolutionary dynamics of regulatory
regions. We modelled co-evolving regions inside cis-regulatory modules by analyzing and spectral
clustering evolutionary parameters in different parts of regulatory regions. Another goal was ana-
lyzing selectional forces in the regulatory genome by identifying which k-mers are preferentially
present in regulatory regions across species by modelling regulatory regions as evolving mixtures
of stochastic dictionaries. We explored the predictive ability of the mixture components in our
stochastic dictionaries, as well as understanding how we can track the evolution of such stochastic
dictionaries across species. This work is presented in detail in Chapter 5, with preliminary work
having been presented in [147].

This thesis provides novel statistical frameworks for identifying regulatory regions, and ana-
lyzing them in terms of their architecture, function, evolutionary properties and correlation with
other genomic and epigenomic features in a computationally optimal and statistically sound way.
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Chapter 2

Variations on Markov Models for
cis-regulatory analysis

2.1 Related work

Motif models of binding sites for a single transcription factor have existed for many years, currently
the most common model being the position weight matrix (PWM) introduced more than twenty
years ago [179]. In recent years, focus has shifted from predicting binding sites for a single TF
towards predicting CRMs comprising several binding sites, often for several distinct TFs. Several
models have been proposed, making use of certain architectural features of the CRMs. Some
of these models apply comparative genomic methods for CRM prediction [110, 127, 169, 173].
These approaches are, however, restricted to very closely related organisms, because non-coding
sequences are hard to align and more subject to events like duplication and shuffling which make
orthology prediction difficult. A large number of CRM and motif prediction algorithms, including
the one we propose thus rely on single species data. One line of methods for the discovery of
CRMs count the number of matches (of some minimal strength) to given motif patterns within
a certain window of DNA sequence [41, 146, 149, 166] From a modeling point of view, this
family of algorithms assumes that motifs are uniformly and independently distributed within each
window; an ad hoc window size needs to be specified, and careful statistical analysis of matching
strength is required to determine a good cutoff or scoring scheme [80, 166]. Rajewsky et al.
addressed the issue of compensating the matching scores for co-occurring weak motif sites using an
updatable “word-frequency” measure, which leads to higher scores for motifs co-occurring more
frequently within a window of a given size. This algorithm also contains an important extension for
unsupervised CRM prediction, in which representations of novel motifs are estimated directly from
the input DNA sequences. However, under a modular formulation of the CRM prediction problem
(cf. the LOGOS model [203]), the prediction of motif instances from given representations, and
the estimation of motif representations from predicted instances, can be treated as two orthogonal
sub-problems. These sub-problems may be solved separately and coupled as two components of
a higher-level joint model, with estimates exchanged in an iterative fashion. We only focus on the
aspect of CRM prediction given motif representations. [146].
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Another approach to the problem involves modelling the occurrences of motifs and CRMs as
the output of a first-order hidden Markov process. This approach alleviates the necessity of both the
window size and the score cutoff, and takes into account not only the strengths of motif matches,
but also the spatial distances between matches (arguably more informative than co-occurrence
within a window). The hidden Markov model (HMM) translates to a set of soft specifications of
the expected CRM length and the inter-CRM distance (i.e., in terms of geometric distributions).
However, since training data for fitting the HMM parameters hardly exist, these parameters typ-
ically have to be specified based on empirical guesses. HMMs and similar models that captures
binding site distributions, as well as intra-CRM and inter-CRM backgrounds, have been used in
several CRM discovery methods, e.g. in Cister [54], Cluster-Buster [56], CisModule [210] and
EMCModule [72]. As these methods employ a general inter-motif background, they do not infer
any ordering between motifs. This model is extended to include distinct motif-to-motif transition
probabilities in the methods Stubb [174] and Module Sampler [190].

2.2 The formal model

To model the complex architecture of metazoan transcriptional regulatory sequences (TRS), we
propose to use a hierarchical hidden Markov model (hHMM) that can encode a set of stochastic
syntactic rules presumably underlying the CRM organizations and motif dependencies. A first-
order Markov process over a hierarchy of states allows us to describe the structure of regulatory
regions at different levels of granularity, offering more modeling power than existing methods.
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Figure 2.1: The BayCis hHMM state transition diagram with 3-level hierarchy. Circular nodes represent functional
states in DNA sequences, and round boxes represent start and end states in each sub-model. CRM and motif states are
sub-models invoked by higher level models. Arrows between nodes represent permissible state transtions, including
horizontal transitions denoted as black arrows, and verticle transitions denoted as dashed arrows.
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2.2.1 A Hierarchical HMM of TRS

As first proposed in [51], the hHMM is an extension of the classical HMM for modeling domains
with hierarchical structures. In an hHMM, all hidden states are not equal, but follow a hierarchical
organization that constrains stochastic transitions among states—transitions are only permissible
for (certain pairs of) states at the same level or adjacent levels in the hierarchy; different states can
emit either single observations or strings of observations, depending on their position in the state
hierarchy; and the strings emitted from the non-leaf states in the hierarchy are themselves governed
by a sub-hHMM (or more generally, by an arbitrary generative model, which would further extend
the overall model beyond an hHMM).

An hHMM can explicitly capture nested generative structures (e.g., TRS → CRM → Motif
→ Single Nucleotide Site) underlying complex sequential data, and dependencies among elements
at different levels of granularity (e.g., motif versus motif, site versus site, etc.), which makes it
a powerful and natural approach to model genomic regions harboring transcriptional regulatory
sequences. Figure 2.1 shows an example of an hHMM encoding typical hierarchical structures
of the metazoan TRSs we are concerned with in this study. At the top (i.e., coarsest) level, this
hHMM represents a TRS as a concatenation of long stretches of sequences corresponding to global
backgrounds and CRMs. We can think of this top level as an HMM whose states emit whole CRMs
and inter-CRM (global) background sequences. Formally, we let Q1 ≡ {bg, c1, c2, . . . , cI} denote
the set of these possible states. At the next level, each CRM is represented as a sequence of motifs
and intra-CRM (local) background states. Accordingly we have Q2 ≡ {bc,m1,m2, . . . ,mK}. At a
finer level below, each motif is represented as a sequence of buffer states and nucleotide sites. (We
will explain shortly why we include non-motif buffer states at this level.) Accordingly, we define
Q3 ≡ B ∪ (∪iMi), where B corresponds to the non-motif buffer states padding right before and
after the motif sequences and Mi corresponds to all possible sites within motif i. More specifically,
we define: Mi ≡ Mf

i ∪Mr
i , where Mf

i = {1(i) . . . L(i)
i } is the set of all possible sites within motif

i on the forward DNA strand, and Mr
i is the set of all possible sites within motif i if it is on the

reverse complementary DNA strand.; B ≡ Bp ∪ Bd, where Bp = {b(1)
p , . . . , b

(K)
p } denotes the set of

proximal-buffer states associated with each type of motif 1, and Bd = {b(1)

d , . . . , b
(K)

d } denotes the
set of distal-buffer states associated with each type of motif.

The possible transitions between these states are made explicit by the arrows in the hierarchical
state diagram in Figure 2.1. (Note that to make the hHMM model well-defined, we also introduce
dummy states START and END at appropriate levels to enable instantiation of state-traversal, and
proper termination of subsequences at each level.) The biological motivation for such a state hi-
erarchy is that we expect to see occasional motif clusters in a large ocean of global background
sequences (represented by state bg); each motif instance in a cluster is like an island in a sea of
intra-cluster background sequences (bc); and adjacent motifs may be statistically coupled (we will
elaborate on this point in the next section). Our model assumes that the distance between clusters
is geometrically distributed with mean 1/(1 − βg,g), and the span of the intra-cluster background
is also geometrically distributed with mean 1/(1 − βc,c). These modeling choices are intended to

1Here, proximal-buffer refers to the background sites immediately next to the proximal-end of the motif. For
consistency, orientations are defined with respect to the initial position of the input sequence. That is, the 1st position
of the input sequence corresponds to the proximal end, and the last position corresponds to the distal end.
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not only reflect our uncertainty about the CRM structure, but also to offer substantial flexibility
to accommodate potential 1st-order syntactic characteristics within the CRMs. In this hHMM,
only the bottom-level motif-site and motif-buffer states, as well as the global and local background
states, are capable of emitting individual nucleotides constituting the TRS, according to a stochas-
tic emission model (which we will elaborate in §2.1.3). A stochastic traversal of the hHMM states
according to the hHMM state-transition diagram would generate a TRS of arbitrary length but with
a structure consistent with our empirical knowledge of the functional organization of the metazoan
TRS. Note that this hHMM model does not impose rigid constrains on the number of motif in-
stances or modules; the actual number of instances is determined by the posterior distribution of
the hHMM states given the observed sequence. Also note that we have not included functional
states related to gene annotation and basic promoters, but such extensions are straightforward if
co-identification of CRMs and genes is desired.

Given the observed sequences, and proper (i.e., biologically meaningful) construction of the
state space and its hierarchical organization, one can infer the latent state-traversal path, which
correspond to a plausible annotation or segmentation of the input sequence, using a number of
exact posterior inference algorithms. The original algorithms given by [51] is a variant of the
inside-outside algorithm for stochastic context free grammar, and takes O(T 3QD), where T is
the length of the sequence, Q is the total number of states, and D is the depth of the hierarchy.
A linear time algorithm was developed by [129] based on a transformation of hHMM into an
equivalent dynamic Bayesian network. It is also possible to flatten the hHMM to an HMM with a
block-structured sparse transition, and use a modified forward-backward algorithm for linear-time
inference. We use a Bayesian extension of hHMM.

Motif bigram via hHMM

An hHMM not only encodes hierarchical segmental structures in a sequence, but it can also be
used to capture dependencies between sequence elements at different levels of granularity at a cost
much smaller than that would be needed by a ”flat” Markovian model which must resort to heavily
parameterized high-order conditional probabilities. For example, we can capture the dependen-
cies between neighboring CRMs in a TRS by modeling transitions between the CRM states. Of
particular importance here, we use hHMM to capture the dependencies between occurrences of
motifs within a CRM. As discussed earlier, the spatial arrangement of motifs within a CRM may
encode intricate combinatorial transcriptional regulatory signal. Thus modeling at least 1st-order
dependencies between motifs may be beneficial to the unraveling of motifs in long TRS bear-
ing complex regulatory function, as well-known in the case of Drosophila enhancers. Note that
a direct transition between trivially defined motif states (e.g., last site of motif i and first site of
motif j) would suggest that coupled motifs always occur right next to each other, which is bio-
logically not always true. To capture possible dependencies between motifs in the vicinity of each
other, we define the emission of a motif state (in Q2) to contain not only the motif sequence itself,
but also non-motif sequences denoted as proximal and distal buffers. Such an emission can be
understood as an extended instance of a motif, which we referred to as a motif envelope. Thus
cross-background (i.e., high-order) dependencies between motifs can be captured by immediate
(i.e., 1st-order) dependencies between the motif envelopes.
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We write A2 ≡ {ai,j} as the stochastic matrix for transitions among states in Q2, which defines
a bigram of motifs (and their local backgrounds) within CRMs. The length of the proximal and
distal buffers of a motif is geometrically distributed with mean 1/(1 − αi,i) and 1/(1 − βi,i),
and can be generated via self-transitions of the corresponding states at the third level (i.e., in Q3)
with probability αi,i and βi,i, respectively. Then with equal probability αi,m/2, a proximal buffer
state b(i)

p reaches the start states 1(i) (resp. L(i′)
i ) of motif i on the forward (resp. reverse) strand,

deterministically passes through all internal sites of motif i, and transitions to the distal-buffer state
b(i)

d , thereby stochastically generating a non-empty motif envelope 2. Each bid has probability βi,j of
transitioning to the proximal-buffer state of another motif j (or of the same motif when j = i) to
concatenate another motif envelope, or it may choose to pad with some inter-cluster background
before adding more envelopes, with probability βi,c. All distal-buffer states also have probability
βi,g of returning to the global background, terminating a CRM.

Spacer length distribution via GhHMM

A spacer is the interval seperating adjacent motif instances, modeled as bc, bp, and bd states in
BayCis. It has been suggested that the range of spacer length is under selection forces according
to comparative genomics data of several Drosophila species [111]. Empirically, we found that the
distribution of spacer lengths can be approximated by a negative binomial distribution, whereas un-
der an hHMM, the state durations of cluster backgrounds is distributed as a goemetric distribution,
which is not a good approximation of the space length distribution. Our generalized hierarchical
hidden Markov model (GhHMM) implements an approximate negative binomial distribution of
spacer lengths by joining several geometrically distributed cluster background states.

The emission models: PWM and higher-order Markov background

Once the hHMM enters the motif-site states, we resort to a motif model to generate the nucleotides
at the corresponding sites. To maintain our focus on the hHMM and relevant algorithmic issues, we
only consider the scenario of searching for known motifs here (although extending our model for de
novo motif detection is straightforward based on, for example, the LOGOS framework [203]). For
motif model we choose the classical product-multinomial (PM) model, which can be represented
by a PWM [179].

Several previous studies have stressed the importance of using a richer background model for
the non-motif sequences [108, 189]. In accordance with these results, BayCis uses a standard
global k-th order Markov model for the emission probability of the global background state. For
the intra-CRM states, we used locally estimated Markov models. Since the models are defined
to be local, the conditional probability of a nucleotide at position t is now estimated only from a
window of length 2d centered at t. These probabilities can still be computed off-line and stored
for subsequent uses, by using a careful bookkeeping scheme (i.e., using a “sliding-window” to

2Note that the distinction between the proximal and distal buffers avoids generating empty envelops (because
otherwise, a single buffer state would not be able to remember whether a motif has been generated beyond k positions
prior to the current position under a k-th order Markov model.)
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compute the local Markov model of each successive position, each with a constant “update cost”
based on the previous one).

2.2.2 Bayesian hHMM

One caveat of the standard HMM approach for CRM modeling is the difficulty of fitting the model
parameters, such as the state-transition probabilities, due to rarity of fully annotated CRM-bearing
genomic sequences. In principle, using the Baum-Welsh algorithm one can learn the maximal-
likelihood (ML) estimates of the model parameters directly from the unannotated sequences while
analyzing them. In practice, however, such a completely likelihood-driven approach tends to result
in spurious results, such as over-estimation of the motif and CRM frequencies and poor stringency
of the learned models for potential motif patterns. Previous methods tried to overcome this by
reducing the number of parameters needed as much as possible, and by setting them according to
some good guesses of the motif/CRM frequencies or CRM sizes [54]. But as a result, such reme-
dies compromise the expression power of the already simple HMM, and risk mis-representing the
actual CRM structures. In the following, we propose a Bayesian approach that introduces the de-
sired “soft constraints” and smoothing effect for an HMM of rich parameterization, using only a
small number of hyper-parameters. Essentially, this approach defines a posterior probability distri-
bution of all possible value-assignments of the HMM parameters, given the observed un-annotated
sequences and empirical prior distributions of the parameters that reflect general knowledge of
CRM structures. The resulting model allows probabilistic queries (i.e., estimating the probability
of a functional state) to be answered based on the aforementioned posterior distribution rather than
on fixed given values of the HMM parameters.

We assume that the self-transition probability of the global background state βg,g, and the to-
tal probability mass of transitioning into a motif-buffer state

∑
k∈Bp βg,k (note that βg,g = 1 −∑

k∈Bp βg,k), admit a beta distribution, Beta(ξg,1, ξg,2). We choose a small value for ξg,2
ξg,1+ξg,2

, cor-
responding to a prior expectation of a low CRM frequency. Similarly, we define a beta prior
Beta(ξc,1, ξc,2) for the self- and total motif-buffer-going transition probabilities [βc,c,

∑
k∈Bp βc,k]

associated with the intra-cluster background state; and another beta prior Beta(ξp,1, ξp,2) for the
self- and motif-going transition probabilities [αi,i, αi,m] associated with the proximal-buffer state
of a motif. Finally, we assume that for the distal-buffer state, the self-transition probability, the
total mass of transition probabilities into a proximal-buffer state, the probability of transitioning
into the intra-cluster background, and the probability of transitioning into the global background,
[βi,i,

∑
k∈Bp βi,k, βi,c, βi,g], admit a 4-dimensional gamma distribution,Gamma(ξd,1, ξd,2, ξd,3, ξd,4).

To define priors for the GhHMM parameters, the GhHMM with a single cluster background
state (bc) is considered as an HMM with several cluster background states ({b1

c , · · · , bgcrc }) sharing
the same self-transition probability βc,c. Similar to other background states, we define a beta prior
Beta(ξc,1, ξc,2) on the total probability mass of transitions into motif-buffer states

∑
k∈Bp βc,k (note

that βc,c =
∑

k∈Bp βc,k).
Note that due to conjugacy between the prior distributions described above and the corre-

sponding transition probabilities they model, the hyper-parameters of the above prior distribu-
tions can be understood as pseudo-counts of the corresponding transitioning events, which can be
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roughly specified according to empirical guesses of the motif and CRM frequencies. But unlike
the standard HMM approach, of which the transition probabilities are fixed once specified, the
hyper-parameters only lead to a soft enforcement of the empirical syntactic rules of CRM organi-
zation in terms of prior distributions, allowing controlled posterior update of the HMM transition
probabilities while analyzing the un-annotated sequences. For the BayCis hHMM, we specify
the hyper-parameters (i.e., the pseudo-counts) using estimated frequencies of the corresponding
state-transition events, multiplied by a “prior strength” N , which corresponds to an imaginary
“total number of events” from which the estimated frequencies are “derived”. That is, for the
beta priors, we let [ξ[·,1], ξ[·,2]] = [1 − ω[·], ω[·]] × N , where the “·” in the subscript denotes ei-
ther the g, c, or p state, and ω[·] is the corresponding frequency. For the gamma prior, we let
[ξd,1, ξd,2, ξd,3, ξd,4] = [ωd,1, 1 −

∑
j ωd,j, ωd,2, ωd,3] × N . Overall, we need to specify 7 hyper-

parameters (of course one can use different “strengths” for different priors, with a few additional
parameters), a modest increase compare to, say, 3 needed in Cister [54].

2.3 Experiments
We evaluated BayCis on both synthetic transcriptional regulatory sequences and a rich set of care-
fully compiled real genomic TRSs of Drosophila melanogaster (available at our website). The
prediction performance of BayCis was compared with 5 popular published methods for supervised
discovery of motifs/CRMs based on a wide spectrum of models: Cister [54], Cluster-Buster [56],
MSCAN [1], Ahab [146] and Stubb [174] (all of which were applied to the real data, and two
seemingly superior ones to the semi-synthetic data), which cover a wide spectrum of different
models/algorithms (e.g., HMMs, windows) for motif search. We ran other methods with default
parameters, specifying 500 bp CRM window where needed. Overall, the prediction performance
of BayCis is competitive or superior to all chosen benchmark methods on this quite comprehen-
sive selection of data sets, according to a wide assortment of performance measures. By employing
sound and flexible probabilistic modeling of regulatory regions, BayCis is also able to strike a good
balance between precision and recall with its default MAP solution.

Synthetic TRSs are useful in that the ground truth for motif/CRM locations is known exactly.
To generate semi-realistic synthetic TRSs, we planted selected TFBS from the Transfac [199]
database in simulated background sequences according to the model assumptions underlying Bay-
Cis on the background distribution and the length distributions between CRMs and between motif
instances within CRMs. Specifically, 30 sequences of length 20,000 bp were generated, each con-
taining zero to three CRMs. The length of the CRM is uniformly distributed between 200 bp and
1600 bp, while the average motif spacer length is 50 bp. Each CRM contains 3 to 6 motif types
and about 14 motif instances. To simulate motif co-occurrence, about 25% of the motif instances
in each CRMs appear in predefined pairs. The background sequences inside or outside the CRM
are simulated by a 3rd-order Markov model learned from an intergenic region.

As shown in Figure 2.2, the performance of BayCis using either hHMM or GhHMM is signifi-
cantly better than CISTER and ClusterBuster in terms of the overall precision/recall (P/R) trade-off
at the MAP prediction. The P/R curve of BayCis is also well above the default predictions from
other methods. It also shows that GhHMM performs consistently better than hHMM in both preci-
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Figure 2.2: The precision-recall curves of two models of BayCis (hHMM and GhHMM) versus the P/R of default
predictions by CISTER and ClusterBuster. From [106].

sion and recall, although the difference is not very large. CISTER and ClusterBuster were chosen
for the simulation study based on their good performance on real data.

The synthetic TRSs are generated partially based on the same model assumptions underlying
BayCis, and thus the results cannot be interpreted as conclusive. In this section we present an
empirical evaluation based on a rich and carefully compiled Drosophila TRS dataset, although it
is noteworthy that even though we have tried our best to gather the most complete annotations for
each test sequence based on footprinting results from the literature, this ”gold standard” is still
possibly only a subset of the ground truth.

The dataset

We created a manually curated dataset containing 97 CRMs pertaining to 35 early developmental
genes. This collection was compiled based on a filtering of all known CRMs from a number of
public databases (e.g., the REDfly CRM database [61] and the Drosophila cis-regulatory Database
at the National University of Singapore [131]), through which we only chose CRMs that are at
least 200 bp long, and contain at least 5 experimentally confirmed motif instances (2 CRMs with
a borderline count of 4 motif instances were also included). Each test sequence consists of the
CRMs pertinent to a particular gene, all intra-CRM background inbetween, with flanking regions
on either side of the extremally located CRMs such that the entire sequence is at least 10 kbp
long, and the boundaries of the sequence are at least 2 kbp from the extremal CRMs. We included
the exonic regions of the genes only when they fell in the aforementioned selected region, and
not otherwise. This database is available at http://www.sailing.cs.cmu.edu/BayCis,
where the BayCis tool is publicly available.
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Experimental setup

BayCis is a Bayesian framework based on hHMMs and GhHMMs to model the organization and
distribution of TFBS. Prior beliefs pertaining to the parameters of the model thus could be specified
by the user before running on experimental data in the form of hyperparameters (i.e., pseudocounts)
of the hHMM or GhHMM parameters. The PWMs of the motifs to be searched for also need to
be provided because here we are interested in identifying TFBS of existing TF motifs, rather than
de novo motif detection. As mentioned in previous sections, extending BayCis for this function is
straightforward by introducing an EM step for the PWM estimation.

Hyperparameters: The choice of hyperparameters should in principle be dealt with via an “em-
pirical Bayes scheme”, which employs maximal likelihood estimates of these hyperparameters
based on some fully labeled training sequences. Upon prediction on an unannotated sequence,
the hHMM or GhHMM parameters themselves can be adjusted in an unsupervised fashion via
the variational EM algorithm. We specify the hyperparameters as follows: for the global back-
ground, ωg = 0.002; for the inter-module background, ωc = 0.05; for the proximal motif buffer,
ωp = 0.25; for the distal buffer hyperparameters, ωd,1 = 0.125 (distal to global background),
ωd,2 = 0.125 (distal to clustal background), and ωd,3 = 0.25 (distal to proximal buffer). Finally,
the “strength” of the hyperparameters are set to 1/10 of the expected counts of the transitions on
a 15 kbp dataset, with the exception of ωg which is set to 10, 000. The background probability
of the nucleotide at each position was computed locally using a 2nd-order Markov model from a
sliding window of 1100 bp centered at the corresponding position. For the GhHMM, based on
visual inspection of spacer length distributions between motifs, we choose the parameter as r = 2.

Prediction scheme: BayCis provides three kinds of prediction schemes for motifs. The maxi-
mum a posteriori (MAP) prediction is based on the posterior probabilities of the labeling state at
each site, which allows overlapping motifs. A Viterbi prediction, which gives a consistent pre-
diction in the Bayesian setting analogous to an ML prediction under a classical setting can also be
used. A third scheme is based on a simple but effective thresholding scheme where we directly pre-
dict motifs based on whether the motif states have a higher probability than the specified threshold
in the posterior probabilities. For simplicity, we only present the MAP results and the P/R curve
of the threshold method. Note that unlike many other scoring schemes for motif/CRM detection,
such as logodds (i.e., the PSSM score) or a likelihood score regularized by word frequencies, our
MAP prediction does not require a cutoff value for the scores, nor a window to measure the local
concentration of motif instances, both of which are difficult to set optimally.

Evaluation measures: There is no unanimous way of evaluating the prediction performance
of a motif/CRM discovery method against annotations. To avoid reliance on a single evaluation
procedure and measure, we have chosen to present the performance of BayCis in comparison with
other methods using several different evaluation procedures. This also ensures a thorough and
objective presentation of results. For an overall evaluation we compare the prediction performance
of BayCis with other methods using both the F1-score of precision and recall, and the coefficient
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of correlation (CC) score at nucleotide-level [191] as single point measures. We do this by first
summing true/false positives/negatives across datasets at the nucleotide level, and then computing
F1/CC from these combined counts. To present the behavior of BayCis with respect to site-level
precision/recall, we plot the binding-site level P/R curve from different thresholds in extracting
predictions, along with the P/R at MAP predictions.
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Figure 2.3: Performance of BayCis (hHMM) on a representative eve TRS. (a) The posterior probability plot of
the global background (blue), cluster background (green) and motif specific (red and other colors) states. (b) The
precision versus recall performance of the MAP and thresholded predictions of the hHMM and GhHMM algorithms,
as compared to those made by other methods. From [106].

Motif prediction performance

As an illustration, Figure 2.5a shows a plot of the MAP prediction along the even-skipped gene
TRS, under a particular hyperparameter setting. As revealed in the ground-truth annotation bar
bellow the plot, this region contains 5 CRMs (from left to right): stripe3+7, stripe2, stripe4+6,
stripe1, and stripe5. BayCis picks out all of them, although the CRM boundary appears to be
more stringent in most cases. We believe this can be improved by adopting a more specialized
cluster background model (i.e., local higher-Markov model, better GhHMM model, etc.), which
we have not fully explored yet. BayCis also identifies motif-rich regions proximal and distal to the
stripe3+7 CRM, which is not reported before, and it also finds another putative motif-rich region
spanning the core promoter and the CDS of eve, which can be a false positive or a putative CRM.
The overall MAP prediction score of BayCis, and the P/R curves resulted from applying different
threshold values under BayCis, are shown in Figure 2.5b, along with the scores of 5 other com-
peting algorithms in their default configurations. The BayCis MAP predictions seem significantly
better than other methods, and strike a good balance between recall and precision. It is important
to realize that although the threshold method can reach high precision or recall at both extremes,
in practice it is very hard to pick the optimal threshold without knowing the prediction results,
and typically a threshold optimal for one sequence is not necessarily good for another sequence;
significance-test based determination of threshold is also difficult for a complex model or large se-
quence. Thus, a default prediction such as MAP, which automatically finds an appropriate trade-off
between precision and recall, is highly desirable. The overall CC and F1-scores of running BayCis
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and five competing methods on the full set of Drosophila melanogaster sequences are shown in
Figure 2.4a. According to either measure, both the hHMM and the GhHMM version of BayCis out-
performs all existing methods. The hHMM version of BayCis performs slightly better overall com-
pared to GhHMM according to both measures. For both versions of BayCis, the MAP solution was
chosen. To look at the behavior of BayCis in the precision recall landscape on our entire dataset, we
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Figure 2.4: (a) F1 and CC scores, and (b) Precision - Recall performances of the MAP and thresholded predictions
of the hHMM and GhHMM, in comparison with other algorithms on the full Drosophila TRS dataset. From [106].

plot the precision-recall curve resulting from different thresholds for BayCis predictions. For other
methods we provide the single points in precision-recall landscape corresponding to their default
output. As is apparent from Figure 2.4b, the 5 competing methods strike different balances between
precision and recall in their default output. MSCAN focuses on very high precision predictions,
while Cister is geared towards high values of recall. The precision-recall curves of both versions
of BayCis span a balanced range in the precision-recall landscape, with MAP estimates lying in
the middle of the curves. Again, in practice the precision and recall values are not available for use
by methods, so the balance between precision and recall has to be found based solely on the input
data. Thus the ability to appropriately balance the precision and recall automatically is essential.
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Figure 2.5: A boxplot show-
ing variation in CC across datasets.
From [106].

To further investigate the prediction performance, we look at
the variation of individual dataset prediction performance across
all datasets. The boxplot in figure 2.5 shows the median CC-
score for each method, as well as upper and lower quartiles
and minimum/maximum values. We see that prediction scores
varies much between datasets for all methods, and that the over-
all performance differences between methods is not very large
compared to the variation of individual methods across datasets.
This confirms what has long been acknowledged in the motif
discovery field, that even the best performing methods will in
many cases give misleading predictions (although some of the
low scores may be due to lack of annotations). Among the high
scoring methods (hHMM, GhHMM, Cluster-Buster and Cister),
GhHMM and Cister come out as the most stable with low vari-
ance across datasets, a criterion which is useful when handling a
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varied set of data. The posterior expectations of the hHMM/GhHMM parameters also carry rich
architectural information of each TRS we processed, and merits systematic analyses.
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Chapter 3

Modelling functional turnover in regulatory
regions

3.1 Related work

Uncovering motifs in eukaryotic cis-regulatory modules from multiple evolutionarily related species,
such as the members from the Drosophila clade is a natural extension of modelling regulatory re-
gions of a single species using HMMs. Due to high degeneracy of motif instances, and complex
motif organization within the CRMs, pattern-matching-based motif search in higher eukaryotes re-
mains a difficult problem, even when representations such as the position weight matrices (PWMs)
of the motifs are given. Extant methods that operate on a single genome or simpler organisms such
as yeast often yield a large number of false positives, especially when the sequence to be examined
spans a long region (e.g., tens of thousands of bps) beyond the basal promoters, where possible
CRMs could be located. As in gene finding, having orthologous sequences from multiple evo-
lutionarily related taxa can potentially benefit motif detection because a reasonable alignment of
these sequences could enhance the contrast of sequence conservation in motifs with respect to that
of the non-motif regions, However, the alignment quality of non-coding regions is usually signif-
icantly worse than that of the coding regions, so that the aligned motif sequences are not reliably
orthologous. This is often unavoidable even for the best possible local alignment software because
of the short lengths and weak conservation of TFBSs. When applying a standard shadowing model
on such alignments, motif instances aligned with non-orthologous sequences or gaps can be hard to
identify due to low overall shadowing score of the aligned sequences. In addition to the incomplete
orthology due to imperfect alignment, a more serious concern comes from a legitimate uncertainty
over the actual functional orthology of regions that are alignment-wise orthologous. A number of
recent investigations have shown that TFBS loss and gain are fairly common events during genome
evolution [113, 128]. For example, Patel et al [112] showed that aligned “motif sites” in ortholo-
gous CRMs in the Drosophila clade may have varying functionality in different taxa. Such cases
usually occur in regions with reduced evolutionary constraints, such as regions where motifs are
abundant, or near a duplication event. The sequence dissimilarities of CRMs across taxa include
indel events in the spacers, as well as gains and losses of binding sites for TFs. A recent statistical
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analysis of the Zeste binding sites in several Drosophila taxa also revealed existence of large-scale
functional turnover [128]. Nevertheless, the fact that sequence similarity is absent does not nec-
essarily mean that the overall functional effect of the CRM as a whole is vastly different. In fact,
for the Drosophila clade, despite the substantial sequence dissimilarity in gap-gene CRMs such
as eve2, the expression of these gap genes shows similar spatio-temporal stripe patterns across the
taxa [112, 113].

Although a clear understanding of the evolutionary dynamics underlying such inter- and intra-
taxa diversity is still lacking, it is hypothesized that regulatory sequences such as TFBSs and
CRMs may undergo adaptive evolution via stabilizing selections acting synergistically on different
loci within the sequence elements [113, 128], which causes site evolution to be non-iid and non-
isotropic across all taxa. In such a scenario, it is crucial to be able to model the evolution of
biological entities not only at the resolution of individual nucleotides, but also at more macroscopic
levels, such as the functionality of whole sequence elements such as TFBSs over lineages. To our
knowledge, so far there have been few attempts along this line, especially in the context of motif
detection. The CSMET model intends to address this issue.

Orthology-based motif detection methods developed so far are mainly based on nucleotide-
level conservation. Some of the methods do not resort to a formal evolutionary model [16], but
are guided by either empirical conservation measures [15, 42, 158], such as parsimonious substitu-
tion events or window-based nucleotide identity, or by empirical likelihood functions not explicitly
modeling sequence evolution [10, 88, 195]. The advantage of these non-phylogeny based methods
lies in the simplicity of their design, and their non-reliance on strong evolutionary assumptions.
However, since they do not correspond to explicit evolutionary models, their utility is restricted to
purely pattern search, and not for analytical tasks such as ancestral inference or evolutionary pa-
rameter estimation. Some of these methods employ specialized heuristic search algorithms that are
difficult to scale up to multiple species, or generalize to aligned sequences with high divergence.
Phylogenetic methods such as EMnEM [127], MONKEY [126], and our in-house implementation
of PhyloHMM (originally implemented in [18] for gene finding, but in our own version tailored for
motif search) explicitly adopt a complete and independent shadowing model at the nucleotide level.
These methods are all based on the assumption of homogeneity of functionality across orthologous
nucleotides, which is not always true even among relatively closely related species (e.g., of diver-
gence less than 50 mya in Drosophila). Empirical estimation and simulation of turnover events
is an emerging subject in the literature [81, 128], but to our knowledge, no explicit evolution-
ary model for functional turnover has been proposed and brought to bear in comparative genomic
search of non-conserved motifs. Thus our CSMET model represents an initial foray in this direc-
tion. Closely related to our work, two recent algorithms, rMonkey [128] - an extension over the
MONKEY program, and PhyloGibbs [169] - a Gibbs sampling based motif detection algorithm,
can also explicitly account for differential functionality among orthologs, both using the technique
of shuffling or reducing the input alignment to create well conserved local subalignments. But in
both methods, no explicit functional turnover model has been used to infer the turnover events.
Another recent program PhyME [173] partially addresses the incomplete orthology issue via a
heuristic that allows motifs only present in a pre-chosen reference taxon to be also detectable, but
it is not clear how to generalize this ability to motifs present in arbitrary combination of other taxa,
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and so far no well-founded evolutionary hypothesis and model is provided to explain the heuris-
tic. Non-homogeneous conservation due to selection across aligned sites has also been studied
in DLESS [171] and PhastCons [120], but unlike in CSMET, no explicit substitution model for
lineage-specific functional evolution was used in these algorithms, and the HMM-based model
employed there makes it computationally much more expensive than CSMET to systematically
explore all possible evolutionary hypotheses. A notable work in the context of protein classifi-
cation proposed a phylogenomic model over protein functions, which employs a regression-like
functional to model the evolution of protein functions represented as feature vectors along lineages
in a complete phylogeny [46], but such ideas have not been explored so far for comparative ge-
nomic motif search. Various nucleotide substitution models, including the Jukes-Cantor 69 (JC69)
model [85], and the Felsenstein 81 (F81) model [47], have been employed in current phylogenetic
shadowing or footprinting algorithms. PhyloGibbs and PhyME use an analogue of F81 proposed in
[172], which is one of the simplest models to handle arbitrary stationary distributions, necessary to
model various specific PWMs of motifs. Both PhyME and PhyloGibbs also offer an alternative to
use a simplified star-phylogeny to replace the phylogenetic tree when dealing with a large number
of taxa, which corresponds to an even simpler substitution process.

3.2 The generative model

3.2.1 The CSMET approach

Our CSMET model differs from these existing methods in several important ways. First, it uses
a different evolutionary model based on a coupled-set of both functional and nucleotide substitu-
tion processes, rather than a single nucleotide substitution model to score every alignment block.
Second, it uses a more sophisticated and popular nucleotide substitution process based on the
Felsenstein84 (F84) model [49], which captures the transition/transversion bias. Third, it employs
a hidden Markov model that explicitly models autocorrelation of evolutionary rates on successive
sites in the genome. Fourth, it uses an efficient deterministic inference algorithm that is linear to
the length of the input sequence and either exponential (under a full functional phylogeny) or linear
(under a star-shaped functional phylogeny) to the number of the aligned taxa, rather than the Monte
Carlo or heuristic search algorithms that require long convergence times. Essentially, CSMET is
a context-dependent probabilistic graphical model that allows a single column in a multiple align-
ment to be modeled by multiple evolutionary trees conditioned on the functional specifications of
each row (i.e., the functional identity of a substring in the corresponding taxon) (Figure 3.1). When
conjoined with a hidden Markov model that auto-correlates the choices of different evolutionary
rates on the phylogenetic trees at different sites, we have a stochastic generative model of phylo-
genetically related CRM sequences that allows both binding site turnover in arbitrary subsets of
taxa, and coupling of evolutionary forces at different sites based on the motif organizations within
CRMs. Overall, CSMET offers an elegant and efficient way to take into consideration complex
evolutionary mechanisms of regulatory sequences during motif detection. When such a model is
properly trained on annotated sequences, it can be used for comparative genomic motif search in
all aligned taxa based on a posterior probabilistic inference algorithm. This model can be also
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used for de novo motif finding as programs such as PhyloGibbs and PhyME, with a straightfor-
ward extension of the inference procedure that couples the training and prediction routines in an
expectation-maximization (EM) iteration on unannotated sequence alignments. We focus on su-
pervised motif search in higher eukaryotic genomes. We compare CSMET with representative
competing algorithms, including EMnEm, PhyloHMM, PhyloGibbs, and a mono-genomic base-
line Stubb (which uses an HMM on single species) on both simulated data, and a pre-aligned
Drosophila dataset containing 14 developmental CRMs for 11 aligned Drosophila species. Anno-
tations for motif occurrences in D. melanogaster of 5 gap-gene TFs - Bicoid, Caudal, Hunchback,
Kruppel and Knirps - were obtained from the literature. We show that CSMET outperforms the
other methods on both synthetic and real data, and identifies a number of previously unknown
occurrences of motifs within and near the study CRMs. The CSMET program, the data used
in this analysis, and the predicted TFBS in Drosophila sequences, are available for download at
http://www.sailing.cs.cmu.edu/csmet/.
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Figure 3.1: Diagrams showing the underlying generative models underlying basic phylogenetic shadowing ap-
proaches and the CSMET approach. (a) The basic mixture of full-phylogeny model underlying PhyloHMM and
EMnEM, where functional homogeneity across aligned sequences is assumed, and all aligned taxa (i.e., rows) are ei-
ther under a full motif phylogeny (when Zt = 1) or a full background phylogeny (when Zt = 0). (b) The conditional
shadowing model underlying CSMET, with an explicit evolutionary model Tf for species-specific functional turnover,
and partial motif or background phylogenies over subsets of taxa according to the turnover status. From [148].

3.3 Results

3.3.1 The CSMET model
Model for Phylogenetically Related Motif Sequences

To motivate and explain the statistical foundation and biological rationale underlying the CSMET
model, we begin with a brief description of a conventional model for phylogenetically related se-
quences based on the classical molecular substitution process, where functional turnover of motifs
is not explicitly modeled. This model will be used as a component in our proposed model. Consider
a multiple alignment ofM instances of a motif of length L. Let A denote anM×Lmatrix contain-
ingM rows a1, . . . , aM , each representing an instance of this motif, i.e., ai ≡ [ai,1, . . . , ai,L], where
ai,l ∈ N ≡ {A,G,C,T}. Due to the stochastic nature of the sequence composition of TFBSs, a
popular representation of a motif pattern is the position weight matrix (PWM), θ ≡ (θ1, . . . , θL),
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of which each column vector θl defines a multinomial probability distribution of the nucleotides
observed at the lth position of instances of this motif. That is, P (ai,l|θl) =

∏
k∈N θ

I(ai,l,k)

l,k , where
I(x, y) is an indicator function that equals to 1 when x = y and 0 otherwise. Under a PWM, all sites
in the motif are assumed to be mutually independent, thus the probability of a length-L instance
is simply a product of the probabilities of nucleotides at every site: P (ai|θ) =

∏L
l=1 P (ai,l|θl).

When the motif instances in A are from different genomic locations of a single species (i.e., they
are phylogenetically unrelated), the likelihood of the aligned motifs A is simply a product of the
likelihoods of every instance ai, P (A) =

∏M
i=1 P (ai|θ) =

∏L
l=1

∏M
i=1 P (ai,l|θl), which means all

the rows in A are independent of each other (although in reality, they might not evolve indepen-
dently.) If A contains M phylogenetically related motif instances each from a different species,
then a straightforward way to model the likelihood of A is to assume that the instances therein
from different taxa are shadowed by a phylogenetic tree that defines a nucleotide-level substitu-
tion process from an ancestral sequence [48, 127] (Figure 3.1a). Our proposed method uses this
model as a building block. Formally, a phylogenetic shadowing model Tm for a motif is a tree-
likelihood model specified by a four-tuple {θ, τ ,β,λ}, where θ ≡ (θ1, . . . , θL) represents the
equilibrium nucleotide distributions at the root of the evolutionary tree of every site within the mo-
tif; τ ≡ (τ1, . . . , τL) denotes the (usually identical) topologies of the evolutionary trees of every
site; β ≡ (β1, . . . , βL) denotes the sets of branch lengths of the evolutionary trees; and λ rep-
resents where necessary some additional evolutionary parameters of the motif depending on the
specific nucleotide substitution models. Under a phylogenetic shadowing model, the probability
distribution of nucleotides in any taxon that corresponds to a leaf conditioning on its predecessor
in the tree can be derived based on a continuous-time Markov model of nucleotide substitution
along the tree branches [48]. We employ the F84 substitution model parameterized by a given
equilibrium distribution, a transition/tranversion ratio ρ, and a total substitution rate µ that can be
estimated from training data [49].

Typically, we can use the PWM of the motif as the equilibrium distribution of the motif phy-
logeny. For simplicity, one can also assume that all sites within the motif share the same topology
τ and the same branch lengths β. This means that the evolutionary processes underlying each site
within the motif are homogeneous. Similarly, we can define Tb ≡ {θb, τb, βb, λb} for the back-
ground. Assuming that sites within the motif evolve independently, the likelihood of M aligned
L-mers can be expressed as:

P (A|Tm) =
L∏
l=1

PN(Al|θl, τ, β, λ), (3.1)

where Al denotes the lth column in A, and PN(·|θl, τ, β, λ) is the marginal likelihood of the leaves
under an motif-site-specific evolutionary tree T (l)

m ≡ {θl, τ, β, λ} for nucleotide substitution, which
can be computed using Felsenstein’s pruning algorithm [48]. To model a multiple alignment of
regulatory regions that is N base-pairs long and contains motifs at unknown positions, we can
assume that every L-mer block in the alignment can correspond to either a motif sequence, or
the background, specified by a hidden functional state Zt, where t denotes the position of the
left-most column of the block in the alignment. (For simplicity, we consider only one motif type
here, but the formulation readily generalizes to multiple motif types.) The state sequence Z ≡
Z1:N can be thought of as a functional annotation sequence of an ancestral regulatory region of
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length N . In the EMnEM model [127], the Zt’s are assumed to be independently sampled from a
Binomial distribution of motif and background states, similar to the classic mixture models of motif
underlying MEME (Figure 3.1a). In a PhyloHMM originally proposed in [170] for comparative
gene finding, which can be easily extended for motif search, Z1:N can follow a hidden Markov
model that captures the transition probabilities between background and motifs.

Model for Motif Turnover

A caveat of the phylogenetic shadowing model described above is that, at every location t, the
functionality indicator Zt must apply to all the taxa (i.e., rows) in the alignment (as illustrated in
(Figure 3.1a)), meaning that the aligned substrings from all taxa at this position are derived from
the same evolutionary tree (either the motif or the background tree, depending on the value of
Zt; when Zt is hidden, this results in a mixture of two complete trees). This is a strong ortholo-
gous assumption which insists that every row in the alignment block must have evolved from the
same most recent common ancestor (MRCA) according to the same molecular evolution model.
This assumption might not be valid for every region in the alignment due to abrupt functional
turnover such as whole motif insertion/deletion, or due to imperfect alignment that fails to iden-
tify the true sequence orthology. We assume that every sequence segment in an alignment block,
generically referred as At where t denotes the left-most position of the alignment, has its own
functionality indicator Zi

t . Generalizing the molecular evolution model for base substitution, we
posit that the functional annotation vector Zt ≡ [Z1

t , . . . , Z
M
t ]′ of a block of aligned segments are

themselves governed by a coarser-grained evolutionary tree that models the evolution of the func-
tionalities of the attendant segments in different taxa (Figure 3.1b). We refer to this evolutionary
tree as a (functional) annotation tree (or, interchangeably, a functional phylogeny), denoted by
Tf ≡ {α, τf , bf , λf}. In such a tree model, each leaf represents a random variable Zi

t whose value
reveals the functional status (i.e., being a motif, background, or more detailed function information
such as motif types, etc.) of the segment from taxon i, and the root is characterized by a hypo-
thetical ancestral functionality indicator Zr

t and an equilibrium distribution α. Along the branches
of this tree, the functional states evolve according to a functionality substitution model, in much
the same way the nucleotides do under a molecular substitution model, except that now the model
parameters Tf are fitted differently (we will return to this point in the methodology section) and the
evolutionary dynamics can also have richer structures. For example, in the model proposed by [46]
for protein function evolution, the evolutionary dynamics were captured by a logistic regression
rather than a constant-rate continuous-time Markov process used in standard molecular substitution
models. For simplicity,here we adopt a simple JC69 model for functionality substitution, which is
denoted as PF (Zt|Tf ). In summary, the functional phylogeny Tf models the quantum changes of
functional elements (rather than the fine-grained changes at the nucleotide level) during evolution
in terms of whether an entire functional element is preserved, lost, or emerged, during the course
of speciation.
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Conditional Shadowing Under Motif Turnover

To capture the effect of motif turnover, we assume that, conditioning on the functional states of
all rows (i.e., species), which are represented as a random column vector Zt ≡ [Z1

t , . . . , Z
M
t ]′ dis-

tributed according to the functional phylogeny specified by Tf , the sequences in alignment block
t admit either a marginal motif phylogeny or a marginal background phylogeny. As shown in
Figure 3.1b, typically, for a given block, only a subset of the rows A′t correspond to conserved
instances of a motif (e.g., rows 1, 2, and 3), and therefore their joint probability is defined by a
marginal phylogeny T ′m of the full motif phylogeny (i.e., the subtree highlighted by solid red lines
in Figure 3.1b). The remaining part of the motif phylogeny (represented by the subtree in dotted red
lines in Figure 3.1b), which corresponds to taxa where the corresponding motifs had turned-over
to background sequences, needs to be marginalized out. We can efficiently compute the likelihood
of the preserved motif instances A′t ≡ {ai(t) : s.t. Zi

t = 1} under the marginal motif phylogeny
T ′m, expressed as P (A′|T ′m) using the standard pruning algorithm. Similarly, the subset of rows
A′′t ≡ {ai(t) : s.t. Zi

t = 0} corresponding to the background or merely gaps admit a marginal
background phylogeny T ′b (e.g., the blue tree with leaves only correspond to rows 4 and 5 in Fig-
ure 3.1b). Putting these two parts together, now for every position t in the input alignment, we
have the following joint probability (i.e., the complete likelihood) of the observed alignment block
At, the vector of instantiated extant functional states zt, and an instantiated ancestral functional
state zrt under a conditional shadowing model with multiple evolutionary trees (aka, CSMET):

P (At, zt, z
r
t ) = P (At|Zt = zt, Tm, Tb)P (Zt = zt|Zr

t = zrt , Tf )P (Zr
t = zrt )

= P (A′t|T ′m)P (A′′t |T ′b)P (zt|zrt , Ta)P (zrt ).
(3.2)

In practice, the leaf functional states zt of an alignment block starting at position t, and the an-
cestral functional state zrt are not observed. Thus the likelihood score of At follows a complex
mixture of marginal phylogenies defined by all possible joint configurations of functional states
zt ≡ [z1

t , . . . , z
M
t ]′ and the ancestral state zr, rather than a simple motif/background mixture as

in extant models. The typical tasks in motif detection involves either computing the marginal
conditional likelihood P (At|zrt ) for all possible states of zrt , which will be used as the emission
probability in an HMM of the ancestral functional states over the entire alignment (to be detailed
in the next section); or the marginal posterior P (zt|A1:T ), which will be used to extract the maxi-
mum a posteriori (MAP) motif annotation of the alignment. Both tasks involve a marginalization
step that sums over all joint configurations of the internal tree nodes, zr’s, and zt’s. This leads
to an inference problem in a state space defined by the product of multiple trees and therefore
can be computationally intensive. Since in practice it is unusual to encounter more than 20 or so
taxa in the comparative genomic setting, inference is still feasible. In this case, one can apply a
coupled-pruning algorithm or a standard junction tree algorithm [31] for exact inference. For an
alignment of a large number of species and/or for a problem which involves searching for a large
number of motifs simultaneously, marginalization of the product space of trees can be prohibitive.
In these circumstances, we can apply an approximate inference method such as the generalized
mean field algorithm [201, 204], which decomposes the coupled trees in CSMET into disjoint
trees and applies iterative message-passing across these trees to obtain an approximate posterior
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of zt or the conditional likelihood of At. Alternatively we can replace some or all of the full phy-
logenetic trees for motif, background and functional evolution by star-topology phylogenies as in
PhyloGibbs [169].

Tree- and Rate-Transition Along Alignment

Different sites in the genome are subject to different evolutionary constraints and therefore follow
phylogenetic trees with different equilibriums, topologies and rates. The conditional phylogenetic
shadowing model described above couples multiple site-specific trees of all sites within a moving
window of alignment block via a functional phylogeny; but it does not explicitly model transitions
between possibly different evolutionary processes as the window scans over different functional
entities along the aligned sequences, for example, transitions between motifs and different back-
ground regions, and among different motifs. We introduce a hidden Markov model to model the
transitions between functional annotations along the alignment. In principle, this HMM can em-
ploy highly structured transition models such as the global HMMs used in LOGOS [203] or CIS-
TER [55], which intend to capture sophisticated “motif grammars” underlying higher eukaryotic
CRMs. We adopt a simplistic 3-state HMM that models the length of the spacer between motifs
as a geometric distribution, and allows the motifs to be on either strand of the DNA. We define
the HMM over the sequence of ancestral functional states Zr

1:N , modeling the spatial transitions
of functionalities along a hypothetical ancestral regulatory sequence underlying the aligned se-
quences from the study species. To model TFBS on either DNA strand with opposite orientations,
two functional states are needed for each type of motifs, which determine the appropriate orien-
tation for the PWM employed by the motif tree Tm for defining the likelihood of a selected DNA
substring; but these two functional states correspond to a degenerated motif state (i.e., Zr

t = 1) at
the root of the functional tree Tf in CSMET, and follow the same turnover process. Details of such
an HMM is provided. Unlike the standard HMM for mono-genomic motif detection where the
emission probability uses a simple conditional multinomial distribution of a single nucleotide, or a
PhyloHMM for comparative-genomic motif detection ignoring motif turnover where the emission
probability is defined by a conditional likelihood of a column of aligned nucleotides under a single
phylogeny, to accommodate functional turnover of segments in certain species in the alignment,
we define the emission model to be the CSMET conditional likelihood of an alignment block,
Pc(At|Tm, Tb, Tf , zrt ) =

∑
zt
P (At|zt, Tf , Tb)P (zt|zrt , Tf ), and thereby enable conditional shad-

owing over the taxa at each site. A technical issue arising from this construction is that unlike the
PhyloHMM, which is still a standard 1st-order HMM, in our case we have a higher-order HMM
due to the contex-dependent coupling of all the sites within a motif by the functional phylogeny
Tf , which models the whole sequence segment within a window of length L as a unit. In the next
section, we outline statistical inference strategies that address this technical issue.
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3.3.2 Strategy

Posterior Inference

The incorporation of the functional phylogeny Tf to explicitly model functional turnover of entire
segments (rather than individual sites) of DNA sequences in different taxa in a multiple alignment
introduces not only higher-order Markov dependencies among sites, but also context-dependent
dependencies among taxa. Thus CSMET is essentially a probabilistic model with context-specific
independencies, which is well-known to be intractable in general [19]. Figure 3.2a and 3.2b show
an example of the context-specific relationships among variables due to two different possible
value-configurations of the hidden variables corresponding to ancestral and taxa-specific functional
annotations (of a small chunk of the alignment). Computing the likelihood of the entire alignment
requires a summation of all joint configurations of all of these hidden variables, for which no
efficient exact algorithm resembling the dynamic programming algorithms applied to HMMs is
available.

While it is possible to implement a Monte Carlo algorithm that performs sampling over the
functional annotation space of {Z1:M

1:N } ∪ {Zr
1:N} conditioning on the observed multiple alignment,

we propose an approximate algorithm for posterior inference. As illustrated in Figure 3.2c, we can
treat an N -column alignment as a sequence of (N −L+ 1) consecutive L-column aligned blocks.
We assume each such block At is either generated from a CSMET emission model conditioning on
the ancestral function of this segment being a background, i.e., P (At|Zr

t = 0), or it can be gener-
ated from a CSMET conditioning on the ancestral function being a motif, say, of type k, expressed
as P (At|Zr

t = k). We can pre-compute the emission probabilities for all the aligned blocks, plug
them back into an equivalent HMM of Zr

t ’s on blocks rather than on columns, and then compute
the posterior probabilities or Viterbi-sequence of the labels of each block using the standard dy-
namic programming algorithms (e.g., forward-backward) for HMMs (see the method section for
details). The approximation introduced here lies in the approximate computing of the emission
probabilities for the blocks, specifically at the boundary between motifs and background. For
these blocks the likelihood of the aligned sequences should be defined by two different emissions,
one on the background sub-block and the other on the motif sub-block, whereas our approximation
employs only a single emission—either an entirely background-derived CSMET P (At|Zr

t = 0)
or an entirely motif-derived CSMET P (At|Zr

t = k). But since our approximation results in a
poorer fit only for the boundary regions, we expect that the overall posterior indication of the
motifs, which is primarily driven by the emission probabilities of the motif blocks, will only suf-
fer moderate weakening of contrast at the boundaries. We refer to this approximation method as
block-approximation (BA). Another more subtle approximation due to BA is the ignoring of dif-
ferent turnover behaviors within a block At conditioning on the ancestral function of this segment(
being a motif or a background), as exemplified in Figure 3.2b. Unlike a motif block derived from
an ancestral motif, a segment of ancestral background sites do not evolve as a whole block, thus a
block At entirely originated from a ancestral background can contain rows (descendants) that are
either entirely non-motif, or partially non-motif and partially motif (i.e., starting from an arbitrary
position t′ in window t : t + L, the segment t′ : t′ + L, part of which extends out of At, in an
arbitrary taxon can evolve into a motif), whereas a block At entirely originated from a motif can
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(a)

(b)

(c)

Figure 3.2: Context-specific relationships among variables due to two possible value configurations of hidden vari-
ables shown in (a) and (b). Note that when the ancestral state is a motif, the segment corresponding to the TBFS
evolves as a unit (as shown by the arrow from an extant functional state pointing to a multi-column segment), either
retaining its functionality as a motif, or turning-over to a background segment, as illustrated in (a). When the ancestral
state is a background, then every position can evolve independently as long as it is still in the background (as shown
by the arrow from a functional state pointing to a single column). But when a motif emerges out of the background,
as shown in (b), the segments corresponding to the TFBS start to evolve as a unit, causing even the aligned nucleotide
positions to evolve under different positional constraints. Panel (c) outlines the idea of a block approximation of the
CSMET emission probability. From [148].

only contain either fully preserved motif rows or turned-over non-motif rows. BA simply treats
each entire row in At as a homogeneous functional evolutionary unit. The computational time for
BA is linear in the length of the input, with a multiplicative factor determined by the length of
the motif and the number of species concerned in the alignment. In case of multiple motifs, the
emission probabilities of the blocks should be computed under the unique CSMET of each motif.
Since motifs can have different lengths, bookkeeping of all the emissions can be slightly more
complicated due to the need to handle blocks of different lengths. But the computational cost is
only increased by the order of the number of the motifs in question.

With the BA strategy, we arrive at an approximation to the posterior distribution of motif anno-
tation at every position given the entire alignment, P (Z1:M

t |A1:N), and the posterior of the sequence
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of ancestral functions, P (Zr
t |A1:N). For an alignment block of which only a few taxa correspond

to motifs and others are merely background, under the CSMET model, the Zr
t of this block can be

either motif or background. In the first case, it means that absence of motifs in some taxa is inter-
preted as the result of loss of ancestral motifs, whereas in the second case, the presence of motifs
in some taxa is interpreted as the result of emergence of nascent motifs out of the background. As
far as we are aware of, CSMET is the only motif-finding algorithm that rigorously offers a closed-
form deterministic solution to the posterior probability distribution of motif annotations both in the
alignment and in the ancestral sequence over the entire space of binding site configurations. Phy-
loGibbs [169] offers a sample-based solution to the posterior of Z1:M

t , t = 1, . . . , N given A1:N ,
but as mentioned earlier, it is not based on an explicit model of binding site turnover, and thus does
not have a closed-form expression that can motivate efficient deterministic approximation.

Maximum Likelihood Training

The CSMET can be trained on annotated CRM alignments. We need to learn the nucleotide phy-
logenetic trees for motifs and backgrounds, and the phylogenetic tree that describes the evolution
of functional annotation. We use the F84 model for nucleotide substitution on the motif and back-
ground trees; for evolution of functional annotation, we use the simpler JC69 model. As detailed
later, for a given tree topology, for the JC69 model all we need to estimate is the branch length on
the tree, which relates to total substitution probability. For the F84 model, besides the tree topology,
we need to estimate the stationary distribution, which we set to be the PWM for motif phylogenies
or the background nucleotide frequencies for background phylogeny; and also two additional evo-
lutionary parameters: the overall substitution rate per site µ and the transition/transversion ratio ρ.
Given a multiple alignment, the ground truth of functional annotation, the PWMs for motifs, and
nucleotide frequency for the background, we use the following strategy for estimating the trees and
the evolutionary parameters.

• Find a tree topology τ and the branch lengths β by running fastDNAml [135] over the entire
alignment.

• Find a scaling factor rf over branch lengths βf of the functional tree Tf , by maximizing the
likelihood of aligned functional annotations under Tf via a line-search in parameter space.

• Find a scaling factor rm over branch lengths βm of the motif tree Tm, and the Felsenstein rate
µm, by maximizing the likelihood of aligned motif sequence under Tm with the F84 model.

• Find a tree topology τb and branch lengths b0 for background tree Tb by running fastDNAml
directly over only the background sequences. The Felsenstein rate µb is then estimated by
maximizing the likelihood under Tb with a simple line-search.

To compute the Felsenstein substitution rate µ, we use a fixed transition-transversion ratio of 2. If
the stationary nucleotide distribution defined by the motif PWM is incompatible with this value of
the transition-transversion ratio, we set it to the smallest value that is compatible with the stationary
distribution as in [122].
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3.4 Functional turnover in the Drosophila clade

3.4.1 Performance on Synthetic Data

At present, biologically validated orthologous motifs and CRMs across multiple taxa are extremely
rare in the literature. In most cases, motifs and CRMs are only known in some well-studied refer-
ence taxa such as the Drosophila melanogaster; and their orthologs in other species are deduced
from multiple alignments of the corresponding regulatory sequences from these species according
to the positions and PWMs of the “reference motifs” in the reference taxon. This is a process that
demands substantial manual curation and biological expertise; rarely are the outcomes from such
analysis validated in vivo (but see [113] for a few such validations in some selected Drosophila
species where the transgenic platforms have been successfully developed). At best, these real an-
notations would give us a limited number of true positives across taxa, but they are not suitable for
a systematic performance evaluation based on precision and recall over true motif instances. Thus
we first compare CSMET with a carefully chosen collection of competing methods on simulated
CRM sequences, where the motif profiles across all taxa are completely known. We choose to
compare CSMET with 3 representative algorithms for comparative genomic motif search, Phy-
loGibbs, EMnEM, PhyloHMM; and the program Stubb, which is specialized for motif search in
eukaryotic CRMs, and is set to operate in mono-genomic mode.

Multi-specific CRM simulator

We developed a simulator of multi-specific CRMs with flexible TFBS turnover dynamics across
taxa and realistic TFBS arrangement within CRM. Specifically, the input of the simulator includes:
1) topologies of the phylogenetic trees for nucleotide (e.g., in motif sites and background) and func-
tionality substitutions; 2) prior distributions of the stationary distribution of states (i.e., nucleotide
or functionalities) at the roots of the trees; 3) prior distributions of the branch lengths of the trees
and the substitution rates, and other evolutionary parameters where necessary (e.g., the Felsenstein
rate µ and ρ in F84 model); 4) a global HMM encoding the motif grammar in the CRMs. As
detailed in the Material and Methods, during simulation, all building blocks of a CRM, such as
the motif instances, background sequences, functionality states (that determines motif turnover) in
different taxa, and positions of the motifs in the CRM are sampled separately, and put together to
synthesize an artificial CRM. This simulator can be used to simulate realistic multi-specific CRMs
resulting from various nontrivial evolutionary dynamics. It is useful in its own right for consis-
tence/robustness analysis of motif evolution models and performance evaluation of comparative
genomic motif-finding programs.

Below, we report results of four experiments based on simulated datasets. Each experiment
was based upon varying one parameter of the model, keeping all the others fixed, in order to ana-
lyze robustness of CSMET and various other methods under different conditions. Every simulated
CRM alignment contained 10 taxa, and for each experiment we simulated 50 datasets. The sim-
ulated data is available at the CSMET website to allow external comparisons. Performance of all
the tested programs were based on the precision, recall and their F1 score (i.e., the harmonic mean
of precision and recall) [191].
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Performance under varying degrees of motif turnover

To examine the effect of motif turnover (i.e., functional conservation) in aligned regions across taxa
on the motif-detection performance, we simulated CRM alignments with differing magnitudes of
the evolutionary rate along the functional phylogeny. Since known motifs in the Drosophila species
we are working with usually have around 75% conservation, we chose our evolutionary rates so
as to achieve conservation percentages between 64 − 75% (or equivalently, turnover percentages
between 25− 36%) at the species-specific motif-instance level.

Figure 3.3: Performance under varying degrees of functional conservation.

We find that even with increasing rates of functional turnover, the performance of CSMET
and Phylogibbs remain largely stable, with CSMET consistently dominating PhyloGibbs in F1
score with a modest margin (Figure 3.3). The margin is statistically significant with p = 2.48 ×
10−7 under a paired t-test. EMnEM has a high recall score, but overall its F1-scores are well
below CSMET and PhyloGibbs, also it appears to be affected more by the increased turnover rates.
PhyloHMM shows an interesting trend, it performs better than its non-phylogenetic cousin Stubb
on data with low turnover rates, but its performance worsens when compared to Stubb on data with
increasing turnover rate. This shows that a naive application of phylogenetic shadowing in multi-
species alignment with high functional divergence can actually result in degraded performance
compared even to just single species analysis.

Performance under varying degree of motif/background contrast

The difference in conservation between the motif and background sequences will have an impact
on the performance of the model. However, this experiment can be performed in two different
ways: changing the degree of similarity between motif and background stationary distributions;
and changing the evolutionary rates of one or the other. We choose the second method and conduct
the simulation as follows: we attribute the motif phylogeny with a low entropy stationary distribu-
tion resembling a PWM, and with a fixed evolutionary rate; and we let the background to have a
stationary distribution similar to but with higher entropy than that of the motif, and have a variable
evolutionary rate. The evolutionary rate in the background tree is changed gradually from low val-
ues to high values, by varying the scaling factor applied to the background tree from 1 to 8. This
is to check how well the CSMET model may detect motifs emerging out of the background with
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differing degrees of sequence-level conservation with respect to the background caused by their
relative evolutionary rates. The corresponding performances are shown in Figure 3.4. We found

Figure 3.4: Performance under varying degree of motif/background contrast.

that even under low variation between the motif and background, i.e., both following an evolution-
ary tree with similar stationary distribution, and the same branch lengths and scaling parameters,
CSMET outperforms all the other methods. CSMET steadily improves in performance upto the
scaling factor of 4, after which its performance roughly plateaus. PhyloGibbs behaviors similarly,
but overall with lower F1 scores that is statistically significant (p = 1.41 × 10−14). EMnEM, on
the other hand outperforms all other methods for scaling factors of 6 or more; meaning that when
motifs are extremely highly conserved compared to the background, the advantage of modeling
their turnover as in CSMET and PhyloGibbs over using a basic phylogenetic model diminishes,
which is well expected. Since in real CRMs, the evolutionary rates of of the non-functional regions
with respect to that of the functional regions (e.g., coding regions, TFBSs) in eukaryotes have been
shown to be lie between 1.2 and 2.5 [18], we can claim that CSMET outperforms all other software
in the region of biologically relevant parameter settings.

Robustness on data violating CSMET model assumptions

Figure 3.5: Effect of varying motif turnover rates across sequence. In the pair of barplots of each method, the left
bar corresponds to performance with varying turnover rates ranging from 20% to 32%; the right bar corresponds to
performance under a fixed turnover rate at 25%. From [148].
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Effect of non-uniform functional evolution rates We analyzed the robustness of CSMET (com-
pared to other algorithms) in the face of a breakdown of a key CSMET model assumption — that
the motif turnover rates are allowed to vary along the simulated CRM sequences instead of staying
constant, which is possible in real regulatory sequences. The CSMET model does not explicitly
address this dynamics and simply assumes an invariant turnover rate throughout the sequence. We
simulated a dataset where the motif turnover rates are chosen uniformly from 4 pre-specified cat-
egories, corresponding to branch scaling factors of 1.00, 1.50, 2,00 and 2.50, respectively, over
the baseline phylogeny. The corresponding motif turnover rates were 20%, 25%, 30% and 32%,
respectively. As shown in Figure 3.5, we found that while performance of CSMET on such data
declines compared to its performance on data simulated with a invariant turnover rate, it still per-
forms no worse than any of the other software even though a primary assumption it adopts (that of
a constant functional turnover rate) is violated.

Effect of different generative model To examine the robustness of CSMET under the violation
of many of its model assumptions all at the same time, we then performed an experiment using
an external simulator PSPE [81], which is based on an entirely different generative model with
respect to CSMET (in terms of nucleotide substitution, motif placement, motif turnover, etc.) to
synthesize multi-specific CRM sequences. However, at times PSPE generates motifs in some
species with some lateral displacements, which appears to be an empirical operation not universal
to evolutionary mechanisms that lead to functional turnover in aligned motifs (e.g., see [128]),
but similar to an assumption underlying PhyloGibbs. To obtain a fair comparison, we suppress
the lateral displacements by a post-processing of the sequences simulated by PSPE. In the post-
processing step, we remove any motif instances that are laterally displaced in the multiple sequence
alignment that is generated. This leaves us with a multiple sequence alignment with all the motif
instances perfectly aligned.

Figure 3.6: Performance on modified PSPE data.The label on the X-axis denotes the scaling factor used by the PSPE
tree with respect to a reference Drosophila phylogeny. From [148].

We used PSPE driven by five different scaled versions of the phylogenetic tree on the 11
Drosophila species to simulate different degrees of motif evolution, and test CSMET and Phy-
loGibbs on simulations under each scaled tree. For sequence evolution, an HKY nucleotide sub-
stitution model with parameter set to 0.05 was used; for the gap distribution, a negative binomial
distribution with parameters {1, 0.5} was used (note that none of these assumptions are used in
CSMET). The motif sequence was generated by PSPE from the default constraints provided. We
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generated sequences of length 1000 for training, each with about 7-10 motifs; and we test on se-
quences of length 500 containing 4-5 motifs. For each tested simulation condition (i.e., tree scaling
factor), 50 samples were generated, and the performance of CSMET and PhyloGibbs are shown in
Figure 3.4.1. We can see that the F1 scores of CSMET are quite stable under different tested con-
ditions and with low variance, and in all conditions CSMET outperforms Phylogibbs on F1 scores,
and the margins are statistically significant (p = 1.875 × 10−13). This suggests that CSMET is
reasonably robust with respect to violations of its model assumptions.

3.4.2 Performance on Aligned Drosophila CRMs
We applied CSMET and competing methods to a multi-specific dataset of Drosophila early de-
velopmental CRMs and motifs compiled from the literature [140]. However, in this situation, we
score accuracy only on the motifs annotated in Drosophila melanogaster (rather than in all taxa),
because they are the only available gold-standard. Upon concluding this section, we also report
some interesting findings by CSMET of putative motifs, some of which only exist in other taxa
and do not have known counterparts in melanogaster.

Real CRMs from 11 Drosophila taxa

To evaluate CSMET on real sequence data, we use a pre-aligned benchmark data set containing
multiple alignments of orthologous CRMs from 11 related Drosophila species, whose divergence
time with respect to the most recent common ancestor is roughly 50 million years. The species
included are: melanogaster, simulans, sechellia, yakuba, erecta, ananassae, persimilis, pseudoob-
scura, mojavensis, virilis, and grimshawi. Our data set contains 14 different multiple-alignments
ranging from 3640-bp to 5316 bp long; each alignment corresponds to a DNA segment containing
a CRM (Table 3.4.2) that has been annotated in Drosophila melanogaster [12, 140] plus 1000bp
flanking regions on both ends, and its putative orthologs in the other 10 taxa identified using the
precompiled Drosophila genome data from the UCSC Genome browser website [52]. Overall, our
data set contains 250 instances of motifs in a total of 14 CRMs. To our knowledge, it represents
one of the most complete multi-genomic collection of Drosophila CRM/motifs. This dataset, along
with a full graphical representation of the CRMs and TFBSs, are available at the CSMET website.

Results on real CRM data sets

Using a 1 versus K − 1 cross validation scheme, where K is the total number of CRMs in which
a motif in question is present, we tested all algorithms on five motifs, Bicoid, Caudal, Hunchback,
Kruppel and Knirps, one motif type at a time, and the results are summarized in Figure 3.7. We
used posterior decoding for CSMET and PhyloHMM, since even motifs of the same type can
overlap on opposite strands or even on the same strand. For the other three algorithms, we explored
their optimum parameter configuration to get meanful results. The five algorithms were compared
on the basis of precision, recall, and their F1 score only on the melanogaster motifs they manage
to identify within the CRMs. Overall, CSMET outperforms all other methods in all motifs except
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Name of CRM Length Motif types
Abdominal A 1745 Hunchback, Kruppel

Buttonhead 1429 Bicoid, Hunchback

Engrailed 900 Caudal

Eve Str 2 730 Bicoid, Hunchback, Kruppel

Eve Str 3+7 512 Hunchback, Knirps

Eve Str 4+6 602 Hunchback, Knirps

FushiTarazu Zebra 653 Caudal

Hairy Str 5 1574 Kruppel

Hairy Str 6 556 Caudal, Hunchback, Knirps, Kruppel

Hairy Str 7 1471 Bicoid, Hunchback, Kruppel

Kruppel 730 1158 Bicoid, Hunchback, Knirps

Runt 1335 Bicoid, Hunchback, Knirps, Kruppel

Spalt 721 Bicoid, Caudal, Hunchback, Kruppel

Tailless 635 Caudal, Bicoid

Table 3.1: A short summary of the nature of the annotated CRMs. From [148].

for Kruppel. For Kruppel, all methods perform poorly because the quality of the PWM that can
be obtained from training data has very high entropy. Figure 3.7b and 3.7c also show that CSMET
gives a much higher recall score than other softwares in most cases while maintaining a precision
comparable to them (except in some cases where Stubb has very high precision but very low recall).
It is worth mentioning that in these real CRMs, biological annotations tend to be conservative
because they are only based on existing footprinting experiments performed in a non-exhaustive
fashion in most of the CRMs. Thus a high recall is not very surprising. Since real CRM data are

Figure 3.7: Comparison of algorithms on motif search performance over 5 motifs on real CRMs.

more complex than simulated data due to the presence of a significant number of gaps, broken
motifs etc., there is a significant variance in the performances across different motifs by CSMET,
as well as by all other algorithms; on the other hand, training data for fitting the model parameters
needed in a CSMET is extremely limited. We found that the performance of CSMET can be
improved over its maximum likelihood configuration (determined from training data) by adjusting
the values of the evolutionary parameters. The evolutionary parameters that are estimated from
the training data are: the tree evolutionary rates (represented as the scaling coefficients of the tree
branches) for the motif and annotation tree, and the Felsenstein rates for the motif and background
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nucleotide substitution models. Of these parameters, we found that the predictive power of the
model is most significantly affected by the evolutionary rate of the functional tree. Figure 3.8
shows the ROC curve of CSMET performance under various values of the evolutionary rate r
ranging from a half to 4 times the maximum likelihood estimator of r, along with the scores
of 3 competing softwares at a working parameterization adjusted based on their default setting.
From Figure 3.8, it is noteworthy that the performance of all programs on the Hunchback motif is
generally good. This is probably because the Hunchback motif instances are generally very well
conserved, and thus the quality of our training annotation based upon visual inspection is relatively
more reliable.

Figure 3.8: ROC of CSMET with different values of functional evolutionary (i.e., TFBS turnover) rates on
Drosophila CRMs. From [148].

Findings on real CRM data sets

CSMET has correctly retrieved a significant portion of previously known TFBSs within the 14
CRMs in the melanogaster taxon, along with their putative conserved orthologs in other taxa, or
in some cases, apparent site turnovers in other taxa. Furthermore it has also found numerous in-
teresting instances of alignment blocks of putative TFBSs not known before, both inside CRMs as
well as in CRM flanking regions, where TFBS turnovers are apparent in some taxa. A database
containing the complete summary of our predictions is available at:
http://www.sailing.cs.cmu.edu/csmet/, where the positions and taxonomic-identities
of all predicted TFBSs and turnovers are documented graphically with appropriate color highlights
for each of the 14 CRM alignments we analyzed. Some interesting examples of the predicted TF-
BSs are presented in Figure 3.9.

Due to the functional heterogeneity across taxa in many of these alignment blocks of putative
TFBSs, these motifs can be difficult for other algorithms to detect. Some of these instances cor-
respond to putative TFBSs appearing in non-melanogaster taxa, such as the putative Knirps motif
block in the Kruppel 730 CRM (Fig. 3.9h), and the putative Hunchback motif in the flanking re-
gion of Spalt CRM (Fig. 3.9f). Another interesting observation is that numerous putative TFBS
blocks were identified not just inside the developmental CRMs but also in the flanking regions of
the CRMs we analyzed. We had chosen 1000 bp of flanking region from D. melanogaster, and
found that while some putative sites are located within 100 bp of established CRM boundaries
(e.g., Fig. 3.9h), others may lie as far away as 1000 bp (our limit of analysis) and possibly further
away from established CRM boundaries (e.g., Fig. 3.9f). We also noted several interesting pat-
terns in examples of functional turnover. These include single species loss of TFBSs, as for the
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Caudal motif in the Tailless CRM region (Fig. 3.9c) and for the Knirps motif in Even Skipped
Stripes 4+6 CRM region (Fig. 3.9g); and subclade specific loss or gain of binding sites, as in
the Hunchback motif block in the Abdominal A CRM region (Fig. 3.9d) and the Hunchback motif
block in the Hairy Stripe 7 CRM region (Fig. 3.9e). A common form of subclade specific loss
or gain is that they take place in closely related sister taxa, like D. pseudoobscura and D. per-
similis as in the Caudal motif in the Fushi Tarazu Zebra CRM (Fig. 3.9b) and the Hunchback
motif in the Spalt CRM (Fig. 3.9f). To assess whether CSMET predicts TFBSs of biological sig-
nificance, we tried validating our findings by checking which of our predicted motif blocks with
functional turnover had been biologically validated. While this is not possible for motifs predicted
only in non-melanogaster taxa, or for motifs predicted in CRM flanking regions, we found nu-
merous examples of conserved motif blocks which were biologically validated for the ortholog
in D.melanogaster. For example, based on the binding site database of [140], the Caudal motif
block in Tailless CRM (Fig. 3.9c) and the Hunchback block in Abdominal A CRM (Fig. 3.9d)
were both biologically validated. We further used two recently available large public TF databases
– Oreganno [123] and the RegFly [13] – to check if we could find biologically validated binding
sites outside those listed in [140]. Of the 8 motifs displayed, 2 additional cases were confirmed in
this independent dataset - the Caudal motif in the Fushi Tarazu Zebra enhancer (Fig. 3.9b) region,
and the Hunchback in the Hairy Stripe 7 (Fig. 3.9e) region. Even though we did not perform an
exhaustive search to examine whether the validated binding sites (with functional turnover in other
species) predicted by CSMET were also predicted by other programs, our results include several
non-conserved biologically validated binding sites which are predicted by CSMET but not by Phy-
loGibbs, including the Hunchback motif in Abdominal A CRM (Fig. 3.9d), and the Hunchback
motif in Hairy Stripe 7 CRM (Fig. 3.9e). Other such binding sites like mel3L+:8639083 were also
noted.

3.5 Discussion
CSMET is a novel phylogenetic shadowing method that can model biological sequence evolution at
both nucleotide level at each individual site, and functional level of a whole TFBS. It offers a prin-
cipled way of addressing the problem that can seriously compromise the performance of many ex-
tant conservation-based motif finding algorithms: motif turnover in aligned CRM sequences from
different species, an evolutionary event that results in functional heterogeneity across aligned se-
quence entities and shatters the basis of conventional alignment scoring methods based on a single
function-specific phylogeny. CSMET defines a new evolution-based score that explicitly models
functional substitution along the phylogeny that causes motif turnover, and nucleotide divergence
of aligned sites in each taxa under possibly different function-specific phylogenies conditioning on
the turnover status of the site in each taxon.

In principle, CSMET can be used to estimate the rate of turnover of different motifs, which
can elucidate the history and dynamics of functional diversification of regulatory binding sites.
But we notice that experimentally validated multi-species CRM/TFBS annotations that support an
unbiased estimate of turnover rates are yet to be generated, as currently almost all biologically val-
idated motifs only exist in a small number of representative species in each clade of the tree of life,
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Figure 3.9: Example of previously unknown or biologically validated motif instances uncovered by CSMET in the
presence of functional turnover or misalignment. CRM regions are shown in yellow in the alignment. The genomic
loci for the flanking region borders, CRM borders and display snippet borders for melanogaster assembly 4 are shown
on the immediate left of the alignment; with the logos of the identified motifs shown on the far left [32]. (a) A Caudal
motif in Engrailed CRM Alignment. (b) A Caudal in FushiTarazu Zebra CRM. (c) A Caudal in Tailless. (d) A
Hunchback in the Abda CRM. (e) A Hunchback in Hairy stripe7 CRM. (f) A Hunchback in Spalt CRM flanking
region about 1000 bp apart from the CRM. (g) A Knirps in Even skipped stripe 4/6 CRM. (h) A Knirps in Kruppel
730 CRM flanking region 38bp apart from the CRM. From [148].
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such as melanogaster in the Drosophila clade. Manual annotation on CRM alignments, as we used
in this work, tends to bias the model toward conserved motifs. Thus, at this time, the biological
interpretation of evolutionary parameters on the functional phylogeny remains preliminary. Nev-
ertheless, these estimated parameters do offer important utility from a statistical and algorithmic
point of view, by elegantly controlling the trade-off between two competing molecular substitution
processes — that of the motif sequence and of the background sequence — at every aligned site
across all taxa beyond what is offered in any existing motif evolution model. Empirically, we find
that such modelling is useful in motif detection.

On both synthetic data and 14 CRMs from 11 Drosophila taxa, we find that the CSMET per-
forms competitively against the state-of-the-art comparative genomic motif finding algorithm, Phy-
loGibbs, and significantly outperforms other methods such as EMnEM, PhyloHMM and Stubb.
In particular, CSMET demonstrates superior performance in certain important scenarios, such as
cases where aligned sequences display significant divergence and motif functionalities are appar-
ently not conserved across taxa or over multiple adjacent sites. We also find that both CSMET and
PhyloGibbs significantly outperform Stubb when the latter is naively applied to sequences of all
taxa without exploiting their evolutionary relationships. Our results suggest that a careful explo-
ration of various levels of biological sequence evolution can significantly improve the performance
of comparative genomic motif detection.

Recently, some alignment-free methods [88] have emerged which search for conserved TFBS
rich regions across species based on a common scoring function, e.g., distribution of word frequen-
cies (which in some ways mirrors the PWM of a reference species). One may ask, given perhaps
in the future a perfect search algorithm (in terms of only computational efficiency), do we still
need explicit model-based methods such as CSMET? We believe that even if exhaustive search of
arbitrary string patterns becomes possible, models such as CSMET still offer important advantage
not only in terms of interpretability and evolutionary insight as discussed above, but possibly also
in terms of performance because of the more plausible scoring schemes they use. This is because
it is impractical to obtain the PWM of a motif in species other than a few reference taxa, thus the
scores of putative motif instances in species where their own versions of the PWM are not available
can be highly inaccurate under the PWM from the reference species due to evolution of the PWM
itself in these study species with respect to the PWM in the reference species. The CSMET places
the reference PWM only at the tree root as an equilibrium distribution; for the tree leaves where all
study species are placed, the nucleotide substitution model along tree branches allows sequences in
each species to be appropriately scored under a species-specific distribution that is different from
the reference PWM, thereby increasing its sensitivity to species-specific instantiations of motifs.

A possible future direction for this work lies in developing better approximate inference tech-
niques for posterior inference under the CSMET model, especially under the scenarios of studying
sequences from a large clade with many taxa, and/or searching for multiple motifs simultaneously.
It is noteworthy that our methods can be readily extended for de novo motif detection, for which
an EM or a Monte Carlo algorithm can be applied for model-estimation based on the maximum
likelihood principle. Currently we are exploring such extensions. Also we intend to develop a
semi-supervised training algorithm that does not need manual annotation of motifs in other species
on the training CRM alignment, so that we can obtain a less biased estimate of the evolutionary
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parameters of the CSMET model.
A problem with most of the extant motif finders, including the proposed CSMET, is that the

length variation of aligned motifs (e.g., alignments with gaps) cannot be accommodated. In our
model, while deletion events may be captured as gaps in the motif alignment, insertion events
cannot be captured as the length of the motif is fixed. This is because in a typical HMM sequence
model the state transitions between sites within motifs are designed to be deterministic. Thus
stochastically accommodating gaps (insertion events) within motifs is not feasible. Hence, some
of the actual motifs missed by the competing algorithms were “gapped” motifs. These issues
deserve further investigation.

3.6 Materials and Methods

3.6.1 The Molecular and Functional Substitution Model
We use the Felsenstein 1984 model (F84) [49], which is similar to the Hasegawa - Kishino - Yano’s
1985 model (HKY85) [76] and widely used in the phylogenetic inference and footprinting litera-
ture [49, 122], for nucleotide substitution in our motif and background phylogeny. Formally, F84
is a five-parameter model, based on a stationary distribution π ≡ [πA, πT , πG, πC ]′ (which consti-
tutes three free parameters as the equilibrium frequencies sum to 1) and the additional parameters
κ and ι which impose the transition/transversion bias. According to this model, the nucleotide-
substitution probability from an internal node c to its descendant c′ along a tree branch of length b
can be expressed as follows:

PN(Vc′ = j|Vc = i, β) = e−(κ+ι)bδij + e−ιβ(1− e−κβ)
( πj∑

h(πhεjh)

)
εij + (1− e−ιβ)πj, (3.3)

where i and j denote nucleotides, δij represents the Kronecker delta function, and εij is a func-
tion similar to the Kronecker delta function which is 1 if i and j are both pyrimidines or both
purines, but 0 otherwise. The summation in the denominator concisely computes purine frequency
or pyrimidine frequency.
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Figure 3.10: A 3-state HMM for a single motif.

To model functional turnover of aligned substrings along functional phylogeny Tf , we addi-
tionally define a substitution process over two characters (0 and 1) corresponding to presence or
absence of functionality. Now we use the single parameter Jukes-Cantor 1969 model (JC69) [85]
for functional turnover due to its simplicity and straightforward adaptability to an alphabet of size
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2. The transition probability along a tree branch of length β (which represents the product of
substitution rate µ and evolution time t, which are not identifiable independently,) is defined by:

PF =

(
1
2

+ 1
2
e−2β 1

2
− 1

2
e−2β

1
2
− 1

2
e−2β 1

2
+ 1

2
e−2β

)
. (3.4)

We perform maximum likelihood estimates of the phylogeny parameters, for details refer to
Appendix.

3.6.2 Computing Complete- and Partial-Alignment Likelihood

A complete phylogenetic tree T ≡ {τ, π, β, λ}with internal nodes {Vi ; i = 1 : K ′} and leaf nodes
{Vi ; i = K ′ + 1 : K}, where K denotes the total number of nodes (i.e., current and ancestral
species) instantiated in the tree and the node indexing follows a breath-first traversal from the root,
defines a joint probability distribution of all-node configurations (i.e., the nucleotide contents at an
aligned site in all species instantiated in the tree), which can be written as the following product of
nt-substitution probabilities along tree branches:

P (V1, . . . , VK) = P (V1)
K∏
i=2

PN(Vi|Vpa(i)), (3.5)

where Vpa(i) denotes the parent-node of the node i in the tree, and the substitution probability PN()
is defined by Eq. (8.2). For each position l of the multiple alignment, computing the probability of
the entire column denoted by Al of aligned nucleotides from species corresponding to the leaves
of a phylogenetic tree T (l) defined on position l, i.e., P (Al|T (l)), where Al correspond to an instan-
tiation of the leaf nodes {Vi ; i = K ′ + 1 : K}, takes exponential time if performed naively, since
it involves the marginalization of all the internal nodes in the tree, i.e.,

P (Al|T (l)) =
∑
v1:K′

P (V1:K′ = v1:K′ ,VK′+1:K = Al). (3.6)

We use the Felsenstein pruning algorithm [48], which is a dynamic programming method that
computes the probability of a leaf-configuration under a tree from the bottom up. At each node of
the tree, we store the probability of the subtree rooted at that node, for each possible nucleotide
at that node. At the leaves, only the probability for the particular nucleotide instantiated in the
corresponding taxon is non-zero, and for all the other nucleotides, it is zero. Unlike the naive
algorithm, the pruning algorithm requires an amount of time that is proportional to the number of
leaves in the tree.

We use a simple extension of this algorithm to compute the probabilities of a partial-alignment
A′l defined earlier under a marginal phylogeny, which is required in the coupled-pruning algorithm
for CSMET, by considering only the leaves instantiated in A′l (but not in A′′l ≡ Al \ A′l) that is
under a subtree T ′(l) that forms the marginal phylogeny we are interested in. Specifically, let A′′l
correspond to possible instantiations of the subset of nodes we need to marginalized out. Since
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we already how to compute P (Al|T (l)) via marginalization over internal nodes V1:K′ , we simply
further this marginalization over leaf nodes V′′ that corresponds to taxa instantiated in A′′l , i.e.,

P (A′l|T ′(l)) =
∑
A′′l

P (A′l, A
′′
l |T (l)) =

∑
A′′l

∑
v1:K′

P (V1:K′ = v1:K′ ,V
′′ = A′′l ,V

′ = A′l), (3.7)

where V′ ≡ VK′+1:K \ V′′ denotes the leaves instantiated in A′l. This amounts to replacing
the leaf-instantiation step, which was originally operated on all leaves in the Felsenstein pruning
algorithm, by a node-summation step over those leaves in V′′. In fact, in can be easily shown that
this is equivalent to performing the Felsenstein pruning only on the partial tree T ′(l) that directly
shadows A′l, which is a smaller tree than the original T (l), and only requires time O(|A′l|).

3.6.3 Computing the Block-Emission Probabilities
Under the CSMET model, to perform the forward-backward algorithm for either motif prediction
or unsupervised model training, we need to compute the emission probability given each func-
tional state at every alignment site. This is nontrivial because a CSMET is defined on an alignment
block containing whole motifs across taxa rather than on a single alignment-column. We adopt
a “block-approximation” scheme, where the emission probability of each state at a sequence po-
sition, say, t, is defined on an alignment block of length L started at t, i.e., P (At|zrt ), where
At ≡ (A1(t), A2(t), . . . , AL(t)), and Al(t) denotes the lth column in an alignment block started
from position t.

The conditional likelihood At given the nucleotide-evolutionary trees T and Tb coupled by the
annotation tree Ta under a particular HMM state st is also hard to calculate directly, because the
leaves of the two nucleotide trees are connected by the leaves of the annotation tree (Fig. 3.1b).
However, if the leaf-states of the annotation tree are known, the probability components coming
from the two trees become conditionally independent and factor out (see Eq. (3.2)). Recall that for
a motif of length L, the motif tree actually contains L site-specific trees, i.e., Tm ≡ (T (1)

m , . . . , T (L)
m ),

and the the choice of these trees for every site in the same row (i.e., taxon), say, ati in the alignment
block At, is coupled by a common annotation state Zi

t . Hence, given an annotation vector Zt for all
rows of At, we actually calculate the probability of two subset of the rows given two subtrees (i.e.,
marginal phylogenies) of the original phylogenetic trees for motif and backgrounds, respectively
(Fig. 3.1b).

The subset A′t ≡ {ai(t) : s.t. Zi
t = 1} is constructed by simply stacking the DNA bases of

those taxon for which the annotation variables indicate that they were generated from the motif
tree. The subtree T ′m is constructed by simply retaining the set of nodes which correspond to the
chosen subset, and the ancestors thereof. Similarly we have A′′t and T ′b. Hence, we obtain

P (At|Zt = zt, Tm, Tb) = P (A′t|T ′m)P (A′′t |T ′b) =
L∏
l=1

P (A′l(t)|T ′(l)m )P (A′′l (t)|T ′b). (3.8)

The probability of a particular leaf-configuration of a tree, be it a partial or complete nucleotide
tree, or an annotation tree, can be computed efficiently using the pruning algorithm. Thus for each
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configuration of zt, we can readily compute P (At|Zt = zt, Tm, Tb) and P (zt|Tf , Zr
t = zrt ). The

block emission probability P (At|zrt ) under CSMET can be expressed as:

P (At|zrt ) =
∑
zt

P (At, zt|zrt ) =
∑
zt

P (A′t(zt)|T ′m(zt))P (A′′t (zt)|T ′b(zt))P (zt|Ta, zrt ),(3.9)

where we use A′t(zt), A′′t (zt), T ′m(zt) and T ′b(zt) to make explicit the dependence of the partial
blocks and marginal trees on functional indicator vector zt. We call this algorithm a coupled-
pruning algorithm.

Note that in this algorithm we need to sum over a total number of 2M configurations of zt where
M is the total number of taxa (i.e., rows) in matrix At. It is possible to reduce the computational
complexity using a full junction tree algorithm on CSMET, which will turn the graphical model
underlying CSMET into a clique tree of width (i.e., maximum clique size) possibly smaller thanM .
But this algorithm is complicated and breaks the modularity of the tree-likelihood calculation by
the coupled-pruning algorithm. In typical comparative genomic analysis, we expect thatM will not
be prohibitively large, so our algorithm may still be a convenient and easy-to-implement alternative
to the junction-tree algorithm. Also this computation can be done off-line and in parallel.

3.6.4 Posterior Inference Under CSMET
Given the emission probabilities for each ancestral functional state at each site, we use the forward-
backward algorithm for posterior decoding of the sequence of ancestral functional statesZr

1:N along
the input CRM alignment of lengthN . The procedure is the same as in a standard HMM applied to
a single sequence, except that now the emission probability at each site, say with index t, is defined
by the CSMET probability over an alignment block At at that position under an ancestral functional
state Zr

t , rather than the conditional probability of a single nucleotide observed at position t as in
the standard HMM. The complexity of this FB-algorithm is O(Nk2) where k denotes the total
number of functional states. In this work, we only implemented a simple HMM with one type
motif allowed on either strand, so that k = 3. We defer a more elaborate implementation that
allows multiple motifs and encodes sophisticated CRM architecture as in LOGOS [203] to a future
extension.

Given an estimate of Zr
1:N , we can infer the MAP estimates of Zi

t – the functional annotation
of every site t in every taxon i of the alignment. Specifically, the posterior probability of a column
of functional states Zt under ancestral functional state zrt can be expressed as:

P (Zt|At, Z
r
t = zrt ) =

P (Zt,At|Zr
t = zrt )

P (At|Zr
t = zrt )

=
P (At|Zt)P (Zt|Zr

t = zrt )

P (At|Zr
t = zrt )

. (3.10)

Recall that in the coupled-pruning algorithm, we can readily compute all the three conditional
probability terms in the above equation.

Performing posterior inference allows us to make motif predictions in two ways. A simple way
is look at blocks in the alignment at which the posterior inference produces ones, and predict those
to be motifs. Alternatively, we can also use the inferred state of the alignment block together with
the inferred ancestral state to compute a probability score (as a heuristic) based on the functional
annotation tree. The score for the block is the sum of probabilities of each block element being
one.
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3.6.5 Tree Estimation

Given blocks of aligned substrings {At} containing motif instances in at least one of the aligned
taxa, in principle we can estimate both the annotation tree Tf ≡ {α, τf , βf} and the motif trees
Tm ≡ {θ, τm, βm, λm} based on a maximum likelihood principle. But since in our case most
training CRM sequences do not have enough motif data to warrant correct estimation of the motif
and function tree, we use the topology and branch lengths of a tree estimated by fastDNAml [135]
from the entire CRM sequence alignment (containing both motif and background) as the common
basis to build the Tf and Tm. Specifically, fastDNAml estimates a maximum likelihood tree under
the F84 model from the entire CRM alignment; we then scale the branch lengths of this tree to
get the sets of branch lengths for Tf and Tm by doing a simple linear search (see below) of the
scaling coefficient that maximize the likelihood of aligned motif sequences and aligned annotation
sequences, under the Tm and Tf (scaled based on the coefficients) respectively.

For simplicity, we estimate the background tree Tb ≡ {θb, τb, βb, λb} separately from only
aligned background sequences that are completely orthologous (i.e., containing no motifs in any
taxon).

For both motifs and background phylogenies, the Felsenstein rate parameter µ for the corre-
sponding nucleotide substitution models must also be estimated from the training data. Ideally,
the optimal value of the rate parameter should be obtained by performing a gradient descent on
the likelihood under the corresponding phylogeny with respect to the Felsenstein rate parameter
µ. However, due to the phylogenetic tree likelihood terms involved in the likelihood computation,
there is no closed form expression for the gradient that can be evaluated for a specific value of the
rate parameter to determine the direction to choose for optimization. Therefore, to find an approx-
imation to the optimal value of µ, we again perform a simple linear search in the space of µ. For
example, to find the Felsenstein rate parameter for motif evolution: µminl and µmaxl are lower and

for µ = µminl to µ = µmaxl in steps of δ do
L(µ)= Training motif likelihood under motif phylogeny T with Felsenstein rate µ

end for
Choose µ that gives maximum likelihood: µbest = argmaxµ L(µ)

upper bounds respectively on the space of µ that is searched, and are heuristically chosen based
on observation. The step δ can be chosen to be as small as desired or is allowable, since having a
smaller δ increases the number of values of µ that must be tested and hence increases computation,
but gives a more accurate optimum.

More technically, for the motif phylogeny, the scaling coefficient and the Felsenstein rate pa-
rameter should be optimized jointly, for example via a gradient ascent in 2-d parameter space.
However, that is impractical since there is no closed form expression for the gradient of the like-
lihood with respect to either parameter. So we chose to optimize each parameter separately by a
heuristic iterative linear search. At convergence, this gives an approximation to the optimal values
of the parameter.
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3.6.6 Estimation of HMM parameters

For prediction of motifs and non-motifs on test sequences, we use an HMM to find the highest
probability state (forward or reverse motif/ background) at each site. The parameters for the HMM
are the initial probability vector π and the transition probability matrix B. Figure 3.10 shows the
state space of the HMM.

The initial probabilities are fixed by assuming that the HMM always starts in the background
state. Thus π0 = 1 and π1 = π2 = 0. For the transition matrix, we use the maximum likelihood
estimator for transition from state i to state j (which has probabilityBi,j), this is given by the count
of the number of such events in the training data divided by the total number of sites in state i. We
follow the no-strand-bias assumption, and allow equal transition probabilities from the background
state to both the forward-motif and reverse-motif states. Also, in the case where we do not have
annotated training alignments, we can use the Baum-Welch algorithm for unsupervised estimation
of the transition probability matrix.

3.6.7 Comparison of CSMET to available software

We compare CSMET with four other software - PhyloGibbs, EMnEM, PhyloHMM and Stubb.
PhyloGibbs is chosen as it is presently a state of the art in multi-species motif detection [169]

and it handles motif turnover. PhyloGibbs is an unsupervised algorithm for de novo motif detec-
tion, and it can also optionally run in supervised mode given PWM for motif search. For a fair
comparison, we run PhyloGibbs by specifying the motif PWM based on a maximum likelihood
estimation from training data. We run PhyloGibbs with the default set of parameters. We approx-
imately specify the number of motifs expected to be seen, as needed by PhyloGibbs, since the
actual number of conserved motifs can vary a lot in both our simulated data and in real biological
data.

EMnEM is chosen as it is another popular multi-species motif detection algorithm based on
a different phylogenetic model that does not handle motif turnover and evolutionary-rate auto-
correlation. EMnEM performs de novo motif detection, but also has a supervised motif search
mode, which we choose to operate on. Again, we also approximately specify the number of motifs
expected to be seen, and run EMnEM with the default set of parameters.

PhyloHMM is chosen since it is a direct analog of CSMET, which assumes functional ho-
mogeniety across aligned sites. Available PhyloHMM-based tools are implemented for detecting
genes [122] and conserved regions [120, 171], but no PhyloHMM implementations were avail-
able for motif finding. Hence, we implemented our own in-house PhyloHMM for the purpose of
supervised motif detection.

Finally, Stubb is chosen as a representative single-species HMM based motif finder to investi-
gate the advantage of comparative-genomic motif detection over traditional approaches that treat
each species independently. Stubb can be run both as a single species or as an aligned two species
model. Since we are interested in comparing our performance with single species motif detector,
we use the single species mode. Also, it might not always be apparent as to which two species
to compare in order to get the most meaningful contrast for separating functional sites and non-
functional sites. Stubb was run individually on all the aligned sequences, with all the results
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collated for analysis.

3.6.8 Drosophila CRM data processing and experimental setup
Our dataset was created based on the motif database in [12, 140], from which we chose to predict
TFBS of TF which have at least 10 or more biologically validated training instances. The five
TFs which met this requirement were Bicoid, Caudal, Kruppel, Knirps and Hunchback motifs.
Motif finding was performed on 14 CRMs listed in Table 1 which contained instances for these
5 binding sites. The multiple sequence alignment corresponding to the CRMs were obtained by
using the UCSC Genome Browser pre-compiled alignments [52]. The sequence corresponding to
D. willistoni was left out due to poor alignment quality and missing contigs. Flanking regions of
1000 bp on each side of the CRMs were also analyzed. For each CRM alignment, we use the
motifs identified in melanogaster as references to mark all alignment blocks that contain at least
one instance of motifs among the 11 taxa to be analyzed. 1 The melanogaster CRMs contain both
biologically validated motifs and computationally identified but plausible motifs, as documented
in [12, 140].

To train the CSMET, we manually annotated the functional states (i.e., Zt) across all taxa in all
alignment blocks (i.e., At) containing the melanogaster motif. We employ a 1 versus K− 1 cross-
validation scheme for testing on each motif type, where K is the total number of CRMs where a
motif type is present. Specifically, for each motif type we trained all programs on K − 1 out of
the K CRMs hosting the motif, and tested them on the remaining one, and we iterated this until
all K CRMs had been tested. Recall that the test accuracy is accessed only for reported motifs in
melanogaster, but not on those manually annotated ones in other taxa.

To avoid overfitting the motif and functional phylogenies of CSMET under limited training
data, for all our experiments, we used a single phylogenetic tree estimated from the entire train-
ing sequence alignment dataset as the un-scaled version of the motif and functional trees. We
assumed that the Tf ’s of every type of motif share the same topology and branch lengths, but dif-
ferent equilibriums. Thus Tf can be fitted from a concatenation of motif-instance alignments of
all types of motifs. For the motif sequence phylogenies, we enforced the trees at every site in the
same motif have the same topology, branch length, and the Felsenstein total substitution rate, but
different equilibriums. A second tree was estimated on background sites only, and was used as the
background phylogeny.

To handle real data which contains gaps and other complexities, it is necessary to change some
settings of the competing software from their defaults to ensure proper behavior. EMnEM was run
with default parameters, but with the threshold set to 0.999 to reduce false positives; as for the
suggested threshold of 0.5, virtually every location was being classified as a motif. PhyloGibbs
was run with default parameters, but for handling gaps, the modes of using the full alignment, as
well as using partial alignments were tried, and the pre-estimated phylogeny on all species for the
entire sequence was given to it. PhyloHMM was run naively using posterior decoding. Stubb was
run with default settings with a slightly reduced threshold of 6.0. At the suggested threshold of
10.0 for a window size of 500, Stubb predicts no true positives.

1As a result our benchmark is biased toward melanogaster, because annotations in other taxa are not available to
mark motifs that are present in other Drosophila taxa but not in melanogaster.
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Chapter 4

CRFs for correlating genetic and epigenetic
features with binding sites

4.1 Related work

Discriminative models make it easier to incorporate various sources of evidence for predicting
TFBS locations, while at the same time keeping the estimation and inference procedures sim-
ple. We developed DISCOVER, a discriminative method for motif detection in higher eukaryotic
genomes that enjoys the dual advantage of modelling CRM architecture of sequences and features
of individual motifs. It is a Conditional Random Field (CRF) model [95], which incorporates a
wide range of both CRM structure-based and individual motif-based features. CRFs have pre-
viously been used in sequence analysis, most notably in gene prediction [37, 70], since coding
regions are much better characterized in terms of sequence level features with respect to regulatory
regions. Craven et al [17] has applied a similar scheme to identify regulatory signals in prokaryotic
sequences; but their model employs a simple feature set to resolve the motif sequence overlap prob-
lem, and also requires a prescreening of motif scores via basic PWM-based models. Our method
is important in several respects in the context of the literature. Firstly, it is a discriminative model
explicitly tailored towards maximizing the likelihood of predicting motifs, rather than maximizing
the joint likelihood - which often confounds the analysis in the case of generative models. Sec-
ondly, it employs a comprehensive set of features carefully selected from the literature designed
to capture a variety of characteristics of the motif and CRM patterns. Thirdly, it is an integra-
tive model which allows sequence specific features to be added at will to enhance the prediction
scheme. Further, since feature scores are computed offline, it is easier to incorporate scores involv-
ing complicated computation and long computation times as well as long range dependencies. We
evaluate the CRF model on both simulated CRMs and actual biologically validated transcription
regulatory sequences of Drosophila melanogaster, in comparison with a wide spectrum of existing
models including, Cister [55], Cluster-Buster [56], BayCis [106], MSCAN [1], Ahab [146] and
Stubb [174]. The results suggest that our proposed method significantly outperforms others on real
Drosophila sequences.
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Figure 4.1: A schematic of the workflow. From [57].

4.2 The discriminative model
The conventional PWM representation for transcription factor binding sites is not discriminative
enough to distinguish true binding sites from false binding sites. We desire a model for TFBSs and
genomic sequence that supports a more complex motif representation without losing the ability
to characterize sequence-wide properties, which means a flexible feature design. The CRF model
- a feature-based log-linear model in which features are easily incorporated - is an appropriate
model choice under the circumstances. The basic inputs to such a computational model is a set of
genetic sequences, a set of feature values corresponding to every nucleotide in the sequences, and
the PWMs of TFs which are being predicted. The output of the model is a prediction of a set of
TFBSs which are being predicted, ranked in order of decreasing likelihood. The CRM boundaries
can also be similarly predicted, but we focus on the analysis of the TFBS predictions. A CRF
model that describes a conditional probability distribution of a genomic sequence is defined as:

P (y | x,λ) =
1

Z
exp

{
λ · F(y, x)

}
(4.1)

where Z =
∑

y

exp
{

λ · F(y, x)
}

(4.2)

where we use xi to represent the type of the observed nucleotide at site i in a sequence, and yi
to represent the hidden state associated with xi, which corresponds to the functionality of the
site in the genomic sequence. The value of a hidden state is also called a state label. Vector
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x = {xi : i = 1, 2, . . . , L}, and vector y = {yi : i = 1, 2, . . . , L}, where L is the length of the
sequence. Vector F is the set of features, each element F of which is the sum of feature scores
of a particular feature category (where feature scores refer to the numerical value of the feature).
Vector λ corresponds to the feature weights assigned to the set of features, and is learnt from data
to decide which features may be more important in predicting TFBSs. Z is a partition function
that normalizes the pdf and is a function of x and λ. The value space for each xi is {A,C,G,T}.
The values represent the four types of nucleotide in DNA, adenine, cytosine, guanine and thymine
respectively. The value space for hidden states yi, however, is not so straightforward, and it will be
defined in next subsection.
State Design: We design a set of hidden states based on the possible functionality of each nu-
cleotide in the genomic sequence being analyzed.We incorporate each motif type as a state since
this is our prediction goal. We number the types of motifs and name the state for the m-th motif
type M(m). Representation-wise, a hidden state yi being state M(m) implies that a motif of them-th
type is located starting at site i of the sequence. Those states are all that we need to represent bind-
ing sites. Next, we know that transcription factors are usually working together to regulate genes,
especially in genomes of higher organisms. In order to work together, different types of TFBSs of-
ten lie close to each other in the range of hundreds of base pairs forming a so-called cis-Regulatory
Module [35]. We use state C to represent all nucleotides in the CRM regions except those binding
sites which have already been labeled as Ms. The nucleotides which are still unlabeled after the
first two rounds are set to state G, which represents a global background in the genomic sequence.
Hence the set of hidden states for modelling the functionality at a nucleotide position is given by
S={G,C,M(1),...,M(NM )}, where NM is the number of motif types. We do not allow two motifs
to share the same starting position, but such occurrences are infrequent. It is still an improvement
on HMM-based approaches where modelling even partial overlap of motifs causes a combinatorial
increase in the state space. Overlapping of starting positions of TFBSs can be accommodated in
our model by using marginal probabilities in the prediction step.
Feature Design: Each element F (y, x) of vector F(y, x) in Eq 4.1 is the sum of feature scores of a
particular feature category, where feature score simply refers to the numerical value of the feature.
It sums up feature function f ’s over the sequence, which have a common meaning and share the
same weight. An example is shown in Eq 9.5, after we see some concrete features. The design of
fs is a critical part of CRF models. We include a rich set of features, most of which are introduced
in the Results section. Features with a one-to-one correspondence with nucleotide base pairs can
be easily integrated into the framework by defining as:

f(yi, x) =

(∑
m

δ(yi,M(m))

)
S(i, x) (4.3)

where S(i, x) is the feature score, All features are in the form of f(y, x), but as for now, they are
have a simpler common form of f(yi, yi+1, x), which we called a chain-structure CRF model.
Model Parameters: Feature weights constitute the set of model parameters, some of which are
fixed and some are free to be estimated. More free parameters make the CRF model more complex,
which might be harder to learn. The set of free parameters are modelled to avoid redundant pa-
rameters, which will not make any contribution. Also, parameters that are not likely to be properly
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estimated from training data should never be included, because including them will only increase
the chance of over-fitting the model. Our focus is on the weight of state transition features, be-
cause they account for a large proportion of the whole parameter set and good estimation of the
weights are critical for successfully predicting TFBSs. In the CRF model, we assign a parameter
as a weight to each of the features defined previously which are collectively the vector λ in Eq 4.1.
Not all of these parameters are free parameters. Among state transition parameters, we constrain
an M state to be only directly reachable from a C state, and not from a G state, since motifs are
not present outside CRMs. Thus, state transition features corresponding to taboo transitions have a
weight−∞ (a low enough number in practice), meaning that the transitions never occur in the CRF
model. However, we want to have a reasonable number of free model parameters as more free pa-
rameters increase the expressibility of the model. With increase in the number of free parameters,
the hardness of estimating model parameters increase, the running time of the learning algorithm
also rises, and some parameters may overfit due to data scarcity for corresponding features.

4.2.1 Model Training and Inference
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Figure 4.2: (a) Means of two dis-
criminative features plotted for G-
C content and PhastCons score for
Motifs, CRMs, and background nu-
cleotides ,(b) Distribution of Phast-
Cons scores in motifs vs non-
motifs (c) Multimodal empirical
distribution of feature values for the
transformed Distance to TSS fea-
ture. From [57].

In this section, we briefly describe the model training and inference
procedures in which feature weights of the CRF model are learnt
from training data and subsequently used to make TFBS predic-
tions.
Model training: Firstly, a learning criterion is set up, which can
either be to maximize likelihood or maximize posterior probability.
It is then converted to a convex optimization problem, and finally a
Quasi-Newton method is applied. Our goal here is to learn the best
setting for λ, the weights of features in the CRF model given a set
of sequences as training data with their nucleotide types x and state
labels y. The value of feature functions f can be computed given
necessary hyper-parameters.

A reasonable criteria to learn the feature weights λ from nu-
cleotide types x and state labels y (or more precisely from feature
values f) in a CRF model is to maximize likelihood of λ wrt y con-
ditioned on x, which equals the probability of state labels y given
feature weights λ conditioned on nucleotide types x, because the
probability model itself is defined in this conditional scheme. The
max likelihood estimator of λ can be expressed as:

λ̂ = arg max
λ

L(λ | y, x)

where L(λ | y, x) = P (y | x,λ)

Inference: The learnt feature weights of the CRF model are used
to predict TFBSs on a new genomic sequence - the inference
step. There are two categories of prediction schemes analogous
to the popular inference schemes for HMMs: sequence decoding
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by Viterbi algorithm and marginal decoding by Forward-Backward
algorithm. We chose the marginal probability rank scheme as it
enables us to predict overlapping TFBSs. Marginal decoding considers one hidden state at a time,
making predictions based on the marginal probability, P (yi | x,λ), which can be computed by the
dynamic programming Forward-Backward algorithm in a chain-structure CRF model [95, 165].
Variants on the marginal decoding scheme include maximum a posteriori decoding (MAP) where
we predict a TFBS if the marginal probability of it is the highest among all state labels

ŷi = arg max
yi

P (yi | x,λ) (4.4)

Alternatively, we make a positive prediction whenever the marginal probability is above a
threshold, known as threshold decoding. It is a flexible method, but a good threshold is hard
to set in practice. We use a similar scheme that takes advantage of thresholding by choosing a
threshold automatically by limiting the number of predictions. Thus we calculate a list of TFBS
and marginal probability pairs, sort them by probability in descending order, and output the top
P ones as predictions, P being the number of desired predictions. We make P for each sequence
proportional to its length L, as a longer sequence tends to contain more TFBSs. The coefficient
k = P/L is called prediction factor. We call this rank decoding.

4.3 Framework and experiments using genetic and epigenetic
data

We evaluate our method of TFBS prediction on a set of real genomic Transcription Regulatory
Sequences (TRSs) of Drosophila melanogaster, as well as a set of synthetic TRSs. The pre-
diction performance is compared with 6 popular published methods for supervised discovery of
motifs/CRMs based on a wide spectrum of models: Cister [55], Cluster-Buster [56], BayCis [106],
Stubb [174], Ahab [146] and MSCAN [83]. In general, the prediction performance of the CRF
model is superior or competitive wrt all the chosen benchmark methods on this comprehensive
selection of real D. melanogaster dataset. The semi-synthetic dataset was generated by artificially
simulated CRM structures with a 3rd-order Markov model for background sequences and planting
real TFBSs from the TRANSFAC database [200] into the simulated background sequences based
on the generative model for the HMM-based TFBS prediction tool Baycis and published in Lin
et al [106]. It involves 30 20kbp-long sequences, containing 887 TFBSs of 10 types. The real
D. melanogaster binding site data was obtained from the Drosophila cis-regulatory Database at
National University of Singapore [131]. The PWM and CRM boundary data were obtained in-
dependently of the binding site database from the REDfly CRM database [61]. This TRS dataset
was previously published in Lin et al [106]. The dataset contains 97 CRMs pertaining to 35 early
developmental genes of Drosophila melanogaster (in 35 sequences). Each of the 35 sequences
contains 1 to 4 CRMs. The lengths of sequences range from 10 thousand base pairs to 16 thou-
sand base pairs, except two extremely long sequences whose length are around 40k bps and 79k
bps respectively. There are 700 TFBSs of 44 types labeled in the dataset in all. It is worthwhile
noticing that 12 out of the 44 types appear in only one sequence, which account for 10 percent of
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the binding sites. A visualization of the dataset illustrating the locations of TFBSs and CRMs is
presented in Fig 4.3.

4.3.1 Input features
We include a rich set of features in our model, based on previous findings in the literature as well as
some derived features which empirical evidence suggests are more discriminative than the original
features from which they were derived. Most of the feature scores are accurately or heuristically
calculated based solely on the sequence data, but some require external annotation (like translated
and transcribed regions, and transcription start site). It is also easy to change feature values from
sequence-derived heuristic values to actual experimental results should they become available. See
the work schematic (Fig 5.1) for a visual schema of feature calculation.

Figure 4.3: Aligned data and pre-
diction visualizations with CRMs
in blue, ground truth and true pos-
itive TFBSs in red and false posi-
tive TFBSs in green. Very long se-
quences are broken in two for ease
of depiction. From [57].

CRFs adjust feature weights based on training data, so it is also
interesting to try new features to check if they improve the predic-
tive power of the model. Binding site positioning and characteriza-
tion of the nucleotide content of binding sites in terms of binding
site specificity have been the most standard features which have
been used in motif finding, especially in generative models like
HMMs. This is based on sound biological validation of the fact
that specificity of binding sites and CRM “architecture”s are per-
vasive in regulatory regions [35].
PWM Constraints: The basic feature we use is the PWM con-
straint, which implements the information present in the PWM of
a motif. It represents the binding specificities of the DNA binding
domain(s) of the TF in question as an ordered set of multinomials,
and is an indicator of the level of evolutionary constraint, and hence
selection each nucleotide is under. Some PWMs tend to be more
constrained (under greater purifying selection) than others. Some
PWMs also tend to suffer from noisy data. Because of this, the
discriminative power of the PWM constraints feature varies from
PWM to PWM. For PWMs with poor discriminative power, addi-
tional features are critical for improving predictability. The PWM
score provides a good baseline measure for the CRF model in mo-
tif prediction, though it is not an essential feature in our model.
State Transition: State transition features are an effort to model
the architecture of the regulatory region. The state transition fea-
ture models the relationship between the functionality of neigh-
boring nucleotides, which correspond to neighboring states in the
CRF and is based on the differing likelihoods of the hidden CRF states transitioning from one
to the other. Evolutionary conservation and presence or absence of evolutionary events like du-
plication and repeats can also play a role in identifying TFBS, as evidenced by the large body
of work in phylogenetic motif finding. The basic premise in such cases is that functionally rele-
vant nucleotides like TFBS would be under selection, and would hence be distinguishable from
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surrounding sequence on the basis of evolutionary parameters. While we do not explicitly use
multiple species sequence data, we implicitly use evolutionary data in terms of feature data.
Presence of Repeats: Interspersed repeats and low complexity DNA sequences are common ele-
ments in the genome, often near coding regions and inside regulatory sequences. The repeat feature
is a simple single nucleotide based feature indicative of whether that nucleotide is part of a repeat
as predicted by RepeatMasker using the repeat database RepBase [86]. On one hand, repeats with
motif-like patterns may lead to a large number of false positive results, but repeats have also been
reported to have been under purifying selection [21] and to have been harnessed into the regulatory
machinery [87]. Thus, instead of masking out repeats to lower the false positive rate, we choose to
identify repeats in the sequence in a bid to find locational correlations with TFBSs.
PhastCons Score & related features: We use the PhastCons score as an evolutionary score based
feature. PhastCons [120] is a phylogenetic 2-state HMM which predicts if nucleotide positions
in a multiple alignment are in an evolutionarily conserved state or not. The PhastCons score at a
nucleotide position is merely the posterior probability that the nucleotide was generated from the
conserved state based on the 15-way Multiz [14] alignment of the Drosophilae species, A. mel-
lifera, A. gambiae and T. castaneum. We also use two other derived binary features which we
feel to be discriminative based on an empirical analysis of PhastCons score distributions (see Fig
4.2): “ Is PhastCons score < 0.05” and “Is PhastCons score > 0.95”. We also keep an additional
feature indicating whether PhastCons data is available or not for bookkeeping purposes. It is well
established in the literature that the distance of the TFBS to the transcription start site (TSS) plays
an important role of the efficacy of the TFBS in regulating the gene [38], and of the nature of
function of the TFBS [45]. We therefore incorporate several features which contain information of
the distance to the TSS, the locations of the transcribed and translated regions, and the positioning
of binding site with respect to the gene transcription-translational direction.
Distance to TSS & Translated: TFBS are typically present near coding sequences, and we utilize
two features indicative of that fact. The binary feature “Translated” indicates at each nucleotide
position whether it is translated or not by the gene translation/transcription machinery. It has also
been shown that TFBSs are not uniformly distributed wrt their distance from the TSS [38], and the
Distance to TSS feature is a score of the distance of each nucleotide from the transcription start
site in question.
5’UTR & 3’UTR: The position of the TFBS wrt directionality of the gene being coded has been
shown to be a discriminative feature for identifying TFBS. We use 2 binary features indicative
of this fact, the “5’UTR” feature indicates for each nucleotide if it is located in the 5’prime un-
translated region, and the “3’UTR” feature indicates likewise for the 3’ prime untranslated region.
Recent work in the literature has approached the TFBS prediction problem as a non-binary clas-
sification problem, instead choosing to model the affinity of a TF to bind to a particular oligonu-
cleotide sequence with an affinity score [196]. This has led to the realization that TFBS may also
be effective gene regulators in cases of low binding affinity but high chromatin stability and ac-
cessibility [139]. While we model our TFBS prediction as a sort of classification problem, we still
incorporate the notions of chromatin accessibility and stability.
G-C Content & Melting Temperature: The G-C content feature of a genomic sequence or the
fraction of G+C bases in a sequence is a simple heuristic which can be used to estimate several
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factors reflective of the stability of the chromatin structure like the melting temperature and in
higher eukaryotes is a determining factor for identifying CpG islands [209], thus being indicative
of how easy it might be for a TF to actually bind in the locality. The window size w for the ge-
nomic neighborhood over which to estimate the G-C content is a hyper-parameter that must be
determined ahead of time, and is usually chosen to be of the order of magnitude of the binding site.
The Melting temperature feature is defined as the temperature for which half the DNA strands of
an oligonucleotide are in the double helical structure, while the other half are in a random coil for-
mation. It corresponds strongly to chromatin stability, and has been shown as a feature to correlate
well with TFBS [143].
Nucleosome Occupancy: Recent research has suggested that nucleosome occupancy has a strong
correlation with binding preference of TFs [163]. This is due to the non-feasibility of access to the
chromatin by the TF when a nucleosome is already bound there. Some research has successfully
used nucleosome occupancy scores to improve TFBS predictions [132].

We also tried several other features directly computable from sequence information, and found
that the following features can help in discriminating between TFBS and non-TFBS. The cause of
the discriminative power of these tracks may stem from the nature of the binding specificities of
the TFs in question, and a closer investigation is warranted.
Reverse Complementarity & Conservation Symmetry: We also try two additional features for
the CRF based on symmetry of the oligonucleotide in question. The Reverse Complementarity
feature indicates as a fraction between 0 and 1 how similar a nucleotide sequence is to its reverse
complement. It is exactly 1 only when an oligonucleotide sequence is identical to its reverse com-
plement. The Conservation Symmetry feature models how symmetric the degree of conservation
in the PWM is wrt the center of the binding site. This is based on the empirical observation that
DNA binding domain binding specificities often have symmetric sequence conservation profiles.
As a working example, we show how the feature is defined:

fCS(yi, x) =
∑
m

δ(yi,M(m))
(
cs(θ(m), xi:i+l(m)−1)− cs0

)
(4.5)

cs(θ(m), xi:i+l(m)−1) =
1

bl(m)/2c

bl(m)/2c∑
j=1

∣∣∣β(θ
(m)
j , xi+j−1)−

β(θ
(m)

l(m)+1−j, xi+l(m)−j)
∣∣∣ (4.6)

where cs averages the conservation symmetry score over a potential binding site, cs0 is an offset
value of choice, l(m) is the length of the motif, and β function is the conservation score of a single
base. As an example of summing the feature scores, the sum of conservation symmetry features
can be computed as:

FCS(y, x) =
L∑
i=1

fCS(yi, x) (4.7)

where fCS is defined in Eq 9.8 and L is the length of the sequence. FCS(y, x) is one of the elements
in function vector F(y, x) used in a CRF model in Eq 4.1.
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Figure 4.4: On (a) GC-percentage score,
(b) reverse complementary score and (c)
conservation symmetry score, a compar-
ison of cumulative distribution function
curves between TP group and FP group.
From [57].

The design of new features has exciting new possibil-
ities. Long range regulatory effects have been reported in
the literature [23]. The CRF model also readily enables us to
model long range dependencies if we deviate from the chain
structured CRF structure. It can also be used as a form of
ensemble learning by incorporating predictions by other in-
dependent tools as features. Other features which have been
shown in the literature to correlate well with the data and
which are candidates for future inclusion on this and other
datasets include the presence of the nucleotide in the first
intron of the regulated gene, and presence of the nucleotide
in the neighborhood of a CpG island. We tested the discrim-
inative nature of these features on the dataset in Figure 4.2.
4.2(a) shows the difference in mean values for background,
CRM and motif nucleotides for two of the most discrimi-
native features : G-C content and PhastCons score. 4.2(b)
shows the distribution of PhastCons scores in motif versus
non-motif nucleotides, with the most discriminative bins be-
ing at either end of the score range, which offered us some
insight as to how to define a derived feature which is more
discriminative than the original one. 4.2(c) shows the inter-
esting multimodal distribution of the normalized and trans-
formed values of the feature Distance to the TSS, suggesting
a complicated, non-uniform distribution worth additional in-
vestigation.

4.3.2 Experimental setup
In this part, we include biological and empirical bases for se-
lection of some features, data preparation, hyper-parameter
setting, test scheme, and evaluation scheme. For training
data, we use a part of the sequences with ground truth labels.
For testing, the required hyper-parameters in the CRF model
are the window size used in GC-percentage calculation and
pseudo-counts used to smooth the probabilities in PWMs to allow for greater tolerance in motif
discovery. We set the window size of GC-percentage to 8 bps (approximately the average length
of a motif) and pseudo-count for smoothing PWM probabilities to 0.5.

Our evaluation is based on a leave-one-out cross validation (LOOCV) scheme. Each time we
take all but one sequences as training data, and predict on the remaining sequence by the model
with parameters learnt from the training data. We use the rank decoding scheme with the prediction
factor k set to 0.0015 by default. This threshold is obtained by analyzing the empirical density
of TFBSs in training data. Varying the value of the threshold results in increasing one of the
performance metrics of precision or recall at the cost of the other. For evaluating performance, we
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use the standard definitions of precision, recall and the F1 score using counts of true positive (TP),
false positive (FP) and false negative (FN) prediction instances. Specificity scores and ROC-curves
are not shown as these evaluation schemes are inappropriate in the context of motif detection. True
negative (TN) instances in ground truth for motif data is rare as instances labelled as negatives in
the ground truth may be discovered to contain motifs in the future.Also, the number of positive
instances and number of predictions are much smaller than the number of total instances, causing
the specificity to be very close to 1 almost always.

4.3.3 Tests on features

We have empirically established the discriminative nature of our feature set, but we also examine
the soundness of the designed features in the context of the CRF model after incorporating some
basic features, before including all of them in the model to test for feature redundancy and compat-
ibility in the CRF framework. The state transition features and sequence conservation features are
fundamental, so we check the validity of the other features based on predictions made by a basic
model consisting of only state transition features and sequence conservation features. The sound-
ness of additional feature is shown by comparing the distributions of the set of TPs and the set of
FPs as predicted by the basic model. We learn a CRF model using the two kinds of fundamental
features, and use it to get a set of predictions of TFBSs, which contains both TP predictions and
FP predictions. We split the predictions into two groups, TP group and FP group, and compute the
GC-percentage score, reverse complementary score and conservation symmetry score for each of
the instances in the two groups. We can show the soundness of a feature by a statistical analysis
on the difference between scores of the two groups.

There are 193 instances in TP group and 499 instances in FP group. Comparisons of cumula-
tive distribution function (CDF) curves between TP group and FP group on GC-percentage scores,
reverse complementary scores and conservation symmetry scores are shown in Figure 4.4. The
scores plotted are raw scores without an offset. We can see that the CDF curve of TP group is al-
most always lower than that of FP group in GC-percentage score and reverse complementary score,
while the CDF curve of TP group is almost always higher than that of FP group in conservation
symmetry score. For the feature of GC-percentage, the scores in TP group have a mean at 0.4641
and sample variance at 0.0043, and the scores in FP group have a mean at 0.4323 and sample
variance at 0.0065. Assuming that they both follow Gaussian distributions, we have a difference
between means at 0.0318 with a standard deviation at 0.0059, which gives us a confidence value at
1− 4 ∗ 10−8 that the mean of TP group is bigger than the mean of FP group.

It is credible that GC-percentage feature is informative. Following a similar analysis, for the
feature of reverse complementarity, the mean TP score is 0.3041 and sample variance 0.0349, and
the mean FP score is 0.2413 and sample variance 0.0360. With a difference between means at
0.0159 with a standard deviation at 0.0059, we have a confidence value at 1 − 4 ∗ 10−5 that the
mean of TP group is bigger than the mean of FP group. For the feature of conservation symmetry,
the TP scores have mean 0.5215 and sample variance 0.0541, and the FP scores have a mean 0.5950
and sample variance 0.0666. The confidence value that TP group has a smaller average score than
FP group is 1− 1.5 ∗ 10−4.
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4.3.4 Performances on TFBS prediction
Synthetic dataset

We compare the CRF model with BayCis, ClusterBuster, and Cister on the synthetic TRS dataset.
CRF model outperforms ClusterBuster and Cister but not BayCis (Fig 4.5a) on the synthetic
dataset. BayCis has an advantage over the other tools having the same background model as
the simulation scheme, but we outperform Baycis on the real dataset.

Drosophila dataset

We compare the CRF model with BayCis, Ahab, Cluster-Buster, Cister, Mscan and Stubb on the
real D. melanogaster TRS dataset. The overall F1-scores of the CRF model and six comparing
methods are shown in Fig 4.5. All the algorithms are set to default configurations. The feature-
based CRF model outperforms all other methods on the F1-score measure. It is 22% higher than
the best competing tool. We also show the precision-recall (P-R) curves of the our methods and
BayCis, as well as points in the P-R landscape for other tools in Fig 4.5. We plot P-R curves of the
CRF model by varying the prediction factor k (from 0.0005 to 0.0040). For BayCis, we plot a P-R
curve resulting from different thresholds for predictions, in addition to its default MAP setting.
The CRF model outperforms BayCis, Ahab, ClusterBuster and Stubb in their default settings. The
other two methods strike extremely different balances between precision and recall in their default
output. MSCAN focuses on very high precision predictions, while Cister is geared towards high
values of recall. It is noticeable that Stubb’s performance is much below the rest, possibly because
it uses distinct motif-to-motif transition probabilities, which can only be properly learned without
over-fitting from datasets richer in scope than the present one. Addition of further non-redundant
features like other epigenetic feature scores is expected to improve performance further. A set
of predictions by the CRF model with default setting comparing with that of Cluster-Buster is
shown in Fig 4.3. While they have comparable TP predictions, CRF model makes much less FP
predictions than Cluster-Buster does. In a way, the performance gap between the CRF model and
the HMM based models may be looked upon as a combination of two factors : the discriminative
nature of the analysis, and the availability of features besides PWM and transition data.
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Figure 4.5: (a) Precision-recall performance of CRF, BayCis, Cluster-Buster and Cister on the synthetic dataset (b)
F1-score and (c) P-R curve of the CRF model in comparison with other algorithms at their default settings on the real
D. melanogaster TRS dataset
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Chapter 5

Admixture of Dictionaries Analysis of the
Regulatory Genome

5.1 Related work

Research to date suggests that a large proportion of important phenotypic differences within or
across species may originate from changes in gene expression rather than changes in coding se-
quences of the genes themselves. As a good example, Hox genes related to body segmentation are
highly conserved across arthropods, including diverse groups of species ranging from insects to
crustaceans. More interestingly, the determination of different body plans during embryogenesis
are controlled by the spatio-temporal differential expression of these Hox genes, rather than by
the utilization of any new Hox genes with no counterpart in other species [35]. Apparently, this
is a consequence of the changes in the transcription regulation system. Therefore, understanding
the rate, pattern and driving force of regulatory changes within and across species is critical for a
comprehensive understanding of biological evolution, and is essential for more accurate character-
ization and prediction of the functional state of important biological processes.

The spatio-temporal expression of genes is controlled by numerous interacting elements known
either as the trans-elements (e.g., transcription factors (TFs)) or the cis-elements (e.g., TF binding
sites (TFBS)) [35]. Of particular importance to the transcription regulation of higher eukaryotes
are the cis-regulatory modules (CRMs). CRMs are genetically hardwired information processors
encoded by clusters of TFBSs. There is a large and growing body of work on predicting CRMs
and TFBSs [191].

The occurrence of a specific TFBS in a CRM indicates that the CRM will listen to the signals
from a corresponding TF; and the overall architecture of the CRM determines what combinatorial
regulatory signals encoded by multiple TFs it can interpret and process to influence the behavior
of its downstream gene. One important characteristic of CRM function in higher organisms is that
they are often multi-functional: under different conditions and times, CRMs can drive very differ-
ent biological regulatory functions via the differential recruitment of a combination of transcription
regulatory proteins. Furthermore, functional selection acting on CRMs causes differential enrich-
ment of nucleotide contents across evolutionarily related orgamisms. The exact impact of such
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selection on gene regulatory mechanisms has not been fully understood.

Despite the availability of whole genome sequences from several model organisms, the lack of
methodologies for modeling the structural and functional evolution of these regulatory elements
has hindered an in-depth investigation of the mechanism and process of gene regulation and its
evolution. Existing models for transcription factor binding site include the PWM [179], which
models binding sites as fixed length oligomers where every position in the oligomer is modelled
by a multinomial over nucleotides. Fratkin et al [53] performed min-cut on a similarity matrix
over the set of all oligomers (called words, and their realization in the sequence called motifs
henceforth) in a regulatory region to obtain strongly connected components corresponding to sets
of motifs in a regulatory region. Sonnenburg et al [178] treat sequence based function prediction as
a classification problem solved by training support vector machines with complex string kernels.
More generic and model-based analyses like those of [73] and [22] model regulatory sequences
using a single stochastic dictionary : which is a set of oligomers (the vocabulary) and a distribution
over them. However, none of these methods can capture the multi-functionality of the CRM, and
offer limited insight into the organizational and evolutionary mechanism of this phenomenon. Here
we present a probabilistic graphical model called Admixture of Stochastic Dictionaries (ASD) for
compactly extracting and exposing the sequence compositional information of CRMs.

More specifically, our generative model analyzes a collection of CRMs or regulatory sequences
as being generated from a set of stochastic dictionaries with vocabularies of fixed length oligomers
(see Fig 5.1 for a broad work schema). One crucial advantage of ASDs compared to earlier
works [22, 53, 73] is that it recruits multiple dictionaries for modeling a variety of combinato-
rial usage of TFBSs, and hence models multi-functionality of CRMs. The functional differences
across CRMs are compactly represented as the differential and proportional composition of these
stochastic dictionaries, which we call function composition vectors. As we show in our results, the
learnt stochastic dictionaries and the function composition vectors indeed succinctly capture func-
tionally discriminative sequence infomation, and can be used for predicting regulatory regions. We
note that similar modeling ideas are established in the literature : beginning with the introduction
of Latent Dirichlet Allocation (LDA) models to model words and topics in text documents in the
field of information retrieval [133]. Such models have been pursued in evolution and SNP variation
[144] using “admixture model”s to explain the SNP variation in human beings as a mixture model
over the genetic variations in different populations, to identify mRNA - microRNA modules from
gene expression data [107], and for the purposes of functionally annotating coding sequences in
E. coli [26] . However, we first aim to study gene regulation at the sequence level, for which our
algorithm ASD is novel. We then establish a novel evolutionary extension of our model (EASD)
to show how such stochastic dictionaries may evolve across species, in order to study regulatory
evolution. Our algorithms are unsupervised methods and require no training based on binding
site annotation, which allows us to avoid overfitting or false positive predictions that plague other
regulatory genomic analyses [57].

Another key advantage of our method is that it can readily incorporate evolutionary informa-
tion from multiple species. Naive applications of our ASD model to multiple species will either
analyze each species sparately or model all regulatory sequences using a single ASD by throw-
ing away the information that these sequences are evolutionarily related. Here we also propose
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Figure 5.1: Schema of our single species and multiple species model, showing how the model parameters correspond
to the different regulatory functions of CRMs

a sophisticated extension of ASD, an Evolutionary Admixture of Stochastic Dictionaries (EASD)
model, which employs a star topology to integrate a set of species specific as well as function
specific dictionaries. Such construction achieves the effect of “killing two birds with one stone”:
the species specific dictionaries allows us to model differential enrichment of nucleotide contents
due to multiple functional selectional forces acting on CRMs; while the star topology tying these
component dictionaries together captures the evolutionary relatedness of these species. Interest-
ingly, in our later experiments, we find that the function specific dictionaries are nicely aligned
across species, which suggests that annotated regulatory information from one species can be used
to infer un-annotated regulatory sequences in other species.

It is worth noting that ASD can also be augmented with richer topologies such as a tree topology
according to known phylogenetic information, though with increased computational costs. For
simplicity, we will focus on the EASD with star topology here, and present an efficient sampling
algorithm for learning the parameters of the model. From here onwards, we will start by presenting
the modelling principles, and then show how to construct an evolutionary ASD by combining
multiple basic ASD model. In the results section, we will show how the stochastic dictionaries
and function composition vectors obtained from our model can be interpreted and used to predict
regulatory regions and to analyze the regulatory regions of multiple species simultaneously. We
will conclude the analysis with a discussion and future work.
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5.2 Methods
Modeling principle: Over the course of a biological process, such as yeast cell cycles or Drosophila
embryonic development, there may exist multiple underlying “themes” that determine the func-
tions of each gene and their relationships with each other, and such themes are dynamic and
stochastic. To tailor a gene’s expression to a diverse range of internal and extenal conditions,
multiple control elements need to be coded in the regulatory region of a gene, and signals received
in these multiple loci are then integrated for the control of gene expression [35]. The two key
organizational principles of regulatory sequences are: (1) The existence of cis-regulatory modules
suggests that the control of gene expression is achieved by combinatorial use of multiple sequence
elements. (2) Experimental observations on eukaryotic genomes further indicate that sets of func-
tionally related genes typically share transcription factor binding motifs.

(a) (b)

Figure 5.2: (a) Probabilistic graphical model for
discovering a set of T stochastic dictionaries φ
for a collection of D regulatory sequences. (b)
Probabilistic graphical model for discovering S
sets of T stochastic dictionaries φs for S species
based on D collection of aligned regulatory se-
quences across species.

Based on these biological observations, we
model the regulatory sequences as a conglom-
erate of motifs drawn from a collection of
stochastic dictionaries. More specifically: (1)
Each stochastic dictionary is a probability dis-
tribution over oligomers of a particular length.
Each dictionary captures one way of combina-
torial use of sequence motifs. Within each dic-
tionary, motifs with high probability are those
that tend to occur together often, while the low
probability ones are those that rarely co-occur
with high probability ones. Each stochastic
dictionary is thus loosely correlated with one or
more regulatory roles. (2) Multiple stochastic
dictionaries are used to model the observation
that regulatory modules tend to have multiple
combinatorial usage of its sequence motifs (ie.
their involvement in multiple regulatory activ-
ities). A particular regulatory role uses some
motifs more than others (as dictated by the cor-
responding stochastic dictionary probabilities)
in a regulatory sequence, and is loosely dic-
tated by the transcription factors that are re-
cruited for that regulatory activity. (3) Differ-
ent dictionaries share the same motifs, but the probability assigned to each motif is different from
dictionary to dictionary. Such a model is chosen based on the observation that each gene can have
multiple functions, and depending on the biological needs, this gene may be controlled by differ-
ent regulatory modules at different points of time and in different conditions. Hence the dynamic
usage of the set of binding motifs can be very different. Each regulatory sequence is modelled
as an unordered set of motifs, each potentially associated with different stochastic dictionaries.
Each motif can thus participate in multiple regulatory activity. (4) The set of stochastic dictio-
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naries are shared across the whole collection of regulatory sequences. The sharing of stochastic
dictionaries across regulatory regions models the observation that regulatory regions of function-
ally related genes share common regulatory roles and are often co-regulated by the same TFs. (5)
The proportional usage of these stochastic dictionaries varies from regulatory sequence to regula-
tory sequence. Such proportional usage reflects the differential contribution of different regulatory
regions in a certain regulatory role (as measured by the number of binding motifs associated with
each stochastic dictionary). (6) We do not explicitly model genomic distances between motifs or
the distance from motif to the Transcription Start Site (TSS), factors known to play a role in gene
regulation. This is due to the fact that we aim to analyze the regulatory role of nucleotide content in
a regulatory region, without being confounded by the regulatory role played by the positioning of
individual motifs in a regulatory region. (7) Epigenetic regulatory forces are not directly modelled,
since the nature of selection on epigenetic forces is unclear. However, we analyze CRMs which are
part of the promoter and proximal enhancers (and not distal enhancers), hence less prone to cell-
type specific regulation by changing chromatin accessibility through histone modifications [78].
Regulation by methylation of CRMs is also possible, but it has been demonstrated in the literature
that a bag-of-oligomers model is sufficient to predict methylation status upto 85% accuracy [34],
hence our stochastic dictionaries should be informative with respect to genomic features like CpG
islands, that have a bearing on methylation status.

Besides regulatory genomics, our work is also well suited to be applied to metagenomics [153],
which is used to analyze next-gen DNA sequence data of all bacteria or other organisms in a
particular biome simultaneously. Each bag of words (see Fig 5.1) would correspond to a replicate
experiment. The stochastic dictionaries would thus correspond to oligomer distributions in specific
species, and the function composition vectors would correspond to the proportion of genetic data
from each species obtained in different replicate experiments.

Motif likelihood: If we have T stochastic dictionaries, we can write the probability of the ith
motif in regulatory sequence d as

P(wi) =
T∑
t=1

P(wi|zi = t)P(zi = t) (5.1)

where zi is a latent variable indicating which stochastic dictionary is associated with motif wi, and
P(wi|zi = t) is the probability of motif wi occurring in stochastic dictionary t. P(zi = t) gives
the probability of motifs in regulatory sequence d being associated with stochastic dictionary t.
In other words, P(w|z) indicates which motifs are more likelily to occur in a particular stochastic
dictionary, whereas P(z) implies the prevalence of various stochastic dictionaries in particular
regulatory sequences.

5.2.1 Illustrative example of the ASD model
In the following, we give a simplistic example of this model. Suppose there are two regulatory
sequences d1 = GCTCTG and d2 = AGCTAG. Then there are 7 dimers appearing in the two
sequences

W = {AG,GA,GC,CT, TA, TG, TC}.

65



which are generated from T = 3 stochastic dictionaries
AG GA GC CT TA TG TC

φ1 0.94 0.06 0 0 0 0 0
φ2 0 0 0 0.99 0 0 0.01
φ3 0 0 0.5 0 0.25 0.25 0

where we have defined the vector φt := (P(w|z = t))w∈W for t = 1 . . . T . Then the vectors of
dimers wd1 and wd2 for d1 and d2 and their associated dictionary indicator are

wd1 = {GC,CT, TC,CT, TG} , zd1 = {3, 2, 2, 2, 3}
wd2 = {AG,GC,CT, TA,AG} , zd2 = {1, 3, 2, 3, 1}

respectively indicating which stochastic dictionary is used to generate the corresponding dimers.
Then the prevalence of the 3 stochastic dictionaries in the two sequences are

θd1 = {0, 0.6, 0.4} , θd2 = {0.4, 0.4, 0.2} ,

where we have defined the vector θ := (P(z = t))Tt=1. The fact that multiple stochastic dictionaries
can contribute to the regulatory sequence is a key feature of our model.

Mixture model of regulatory sequences: Viewing regulatory regions as mixtures of multiple
stochastic dictionaries makes it possible to automatically discover these stochastic dictionaries
given a collection of regulatory sequences.

Formally, given D regulatory sequences containing T stochastic dictionaries based on W
unique motifs, we can represent P(w|z) with a set of T multinomial distributions φt := {φtv}Wv=1 (t =
1 . . . T ) over these W motifs, such that

P(w|z,φz) =
W∏
v=1

(φzv)
δv(w) (5.2)

where δv(w) is an indicator function which returns 1 if w = v and 0 otherwise. Since φt is a
probability distribution, we require that its entries are normalized, i.e.

∑W
v=1 φtv = 1, ∀t.

We represent P(z) with a set of D multinomial distributions θd := {θdt}Tt=1 (d = 1 . . . D) over
the set of T stochastic dictionaries, such that for regulatory sequence d

P(z|θd) =
T∏
t=1

(θdt)
δt(z). (5.3)

where δt(z) is also an indicator function which returns 1 if z = t and 0 otherwise.
For convenience, we denote the vector of motifs occurring in regulatory sequence d as wd :=

{wdi}Ndi=1, where Nd is the total number of motifs in sequence d; the associated vector of stochastic
dictionary indicator as zd := {zdi}Ndi=1. Furthermore, we denote the aggregation of these wd as
w := {wd}Dd=1; likewise z := {zd}Dd=1, φ := {φt}Tt=1, and θ := {θd}Dd=1. We also provide a
prior to the set of stochastic dictionaries φt and θd. To faciliate subsequent Bayesian inference
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on these parameters, we will use Dirichlet distributions which are conjugate to the multinomial
distribution, i.e.

P(θd) =
Γ(Tα)

(Γ(α))T

T∏
t=1

(θdt)
α−1, d = 1 . . . D (5.4)

P(φt) =
Γ(Wβ)

(Γ(β))W

W∏
v=1

(φtv)
β−1, t = 1 . . . T (5.5)

where Γ(·) is a gamma function defined as Γ(n) := (n − 1)!, and α and β are hyperparameters
specifying the nature of the prior on θd and φt. Therefore, the complete generative process of the
probabilistic graphical model can be summarized below (and the corresponding plate diagram can
be found in Figure 5.2(a))

1: for each stochastic dictionary t = 1 . . . T do
2: φt ∼ Dirichlet(β) according to (5.4)
3: end for
4: for each regulatory sequence d = 1 . . . D do
5: θd ∼ Dirichlet(α) according to (5.5)
6: for each motif i = 1 . . . Nd do
7: zi ∼ Multinomial(θd) according to (5.3)
8: wi|zi ∼ Multinomial(φzi) according to (5.2)
9: end for

10: end for
Inferring model parameters: To discover the set of stochastic dictionaries φ and the dictio-

nary mixture proportion θ, we want to obtain an estimate of them that gives high probability to
the motifs that actually appear in the collection of regulatory sequences. One strategy for such
inference tasks is to use a collapsed Gibbs sampling techique. This approach does not explicitly
represent φ and θ as parameters to be estimated, but instead considers the posterior distribution
over the assignments of motifs to stochastic dictionaries, P(z|w). We then obtain estimates of
φ and θ by examining this posterior distribution. We evaluate P(z|w) using a Gibbs sampling
technique, resulting in a simple algorithm that only requires the counts of motifs assigned to the
stochastic dictionaries.

Inference of ASD model parameters: To discover the set of stochastic dictionaries φ and the
dictionary mixture proportion θ, we want to obtain an estimate of them that gives high probability
to the motifs that actually appear in the collection of regulatory sequences. One strategy for such
inference tasks is to use a collapsed Gibbs sampling techique. This approach does not explicitly
represent φ and θ as parameters to be estimated, but instead considers the posterior distribution
over the assignments of motifs to stochastic dictionaries, P(z|w). We then obtain estimates of
φ and θ by examining this posterior distribution. We evaluate P(z|w) using a Gibbs sampling
technique, resulting in a simple algorithm that only requires the counts of motifs assigned to the
stochastic dictionaries.

More formally, since P(w, z) = P(w|z)P(z) and φ and θ only appear in the first and the
second terms, respectively, we can integrate out φ and θ by performing two separate operations.

67



First, integrating out φ from P(w|z,φ) gives

P(w|z) =

∫
φ

P(w|z,φ)P(φ) dφ

=

(
Γ(Wβ)

(Γ(β))W

)T T∏
t=1

∏W
v=1 Γ(ntv + β)

Γ(nt∗ +Wβ)
(5.6)

where ntv is the number of times motif v assigned to stochastic dictionary t in the vector of assign-
ment z, and nt∗ :=

∑W
v=1 ntv. Second, integrating out θ from P(z|θ) gives

P(z) =

∫
θ

P(z|θ)P(θ) dθ

=

(
Γ(Tα)

(Γ(α))T

)D D∏
d=1

∏T
t=1 Γ(mdt + α)

Γ(md∗ + Tα)
(5.7)

where mdt is the number of times a motif from regulatory sequence d assigned to stochastic dic-
tionary t, and md∗ :=

∑T
t=1mdt. Our goal is then to evaluate the posterior distribution of the

dictionary assignment vector z given the observed sequence motifs w, i.e. P(z|w) = P(w,z)P
z P(w,z)

.
However, computing P(z|w) requires the normalization factor P(w) =

∑
z P(w, z) which is an

integration problem on a large discrete state space. We deal with this problem of evaluating the
posterior using a Gibbs sampling techique.

More specifically, in a Gibbs sampler, a simple Markov chain is constructed to converge to the
target distribution P(z|w). Each state of the chain is an assignment of values to the variables being
sampled, in this case z, and transitions between states follow a simple rule where the next state is
reached by sequentially sampling each individual variable zi conditioned on the current values of
all other variables z \ zi and the observations w. Therefore, we first compute the full conditional
distribution P(z̄i|z \ zi,w)

P(z̄i = t|z \ zi,w) ∝
ntwi − δt(zi) + β

nt∗ − δt(zi) +Wβ

mdit − δt(zi) + α

mdi∗ − δt(zi) + Tα
(5.8)

where we have used z̄i and zi to distinguish the current value and previous value of the variable
being sampled; wi and di are the motif and regulatory sequence corresponding to the dictionary
indicator variable zi. This sampling formula is quite intuitive: the first ratio estimates the likelihood
of motifs equal to wi being generated from stochastic dictionary t, and the second ratio estimates
the proportion of contribution of stochastic dictionary t to regulatory sequence di. Importantly, the
four counts used to estimate the ratio are the only information necessary for computing the full
conditional distribution, allowing the algorithm to be implemented efficiently.
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With a set of samples from the posterior distribution P(z|w), we can estimate φ and θ from
the value z by

φtv =
ntv + β

nt∗ +Wβ
, t = 1 . . . T, v = 1 . . .W (5.9)

θdt =
mdt + α

md∗ + Tα
, t = 1 . . . T, d = 1 . . . D (5.10)

Joint modeling of multiple species: In principle, one can use the mixture model discussed in
the last section to build separate models for each individual species. However, there may be better
way of making use of the information that these species are closely related. In this case, although
the genomes of these species have evolved away from each other in order to accomplish slightly
different biological functions, one would expect that the regulatory sequences could still be better
conserved than intergenic regions. One way to accommodate such evolutionary conservation is
to assume that the high level organizational principle of homologous regulatory sequences remain
the same, but the stochastic dictionaries of these species can be different. In this section, we will
present a model that augments the mixture model from the last section for simultaneously modeling
multiple species.

Suppose the total number of related species be S, and we obtain a set Ds = {dsi}
D
i=1 of size

D regulatory sequences for each species s. (We will use the convention that the superscript s is
used to denote index of species.) These S collection of regulatory sequences are aligned such that
sequences with the same subscript i are homologous. The joint model for multiple species uses
the mixture model for single species as building blocks, but there are two important augmentations
to accommodation the evolutionary changes and conservation: (1) Each species has its own set
of stochastic dictionaries φs = {φs

t}
T
t=1 of size T . These S collections of stochastic dictionaries

allow the model to adapt to evolutionary changes. (2) Each set of homologous regulatory sequences
{dsi}

S
s=1 compiled from different species share the same mixture vector θdi . By sharing the same

mixture vector, the model takes into account conservation in homologous regulatory sequences.
In the above two augmentations, the sharing of θdi is essential for borrowing information across

species. At first glance, the model does not specify the correspondence between the stochastic
dictionaries across species; and it seems that allowing each species to have their own stochastic
dictionaries could lead to arbitarily different dictionaries for different species. By forcing homol-
ogous sequences to have the same mixture vector actually implicitly requires that the stochastic
dictionaries across species to be aligned as well. Aligned stochastic dictionaries can be exam-
ined quantatively to see the evolutionary change and conservation which we will illutrate in later
experiments.

As a summary, the complete probabilistic generative model for multiple species is given below
(and the corresponding plate diagram can be found in Figure 5.2(b)):

1: for each species s = 1 . . . S do
2: for each stochastic dictionary t = 1 . . . T do
3: φs

t ∼ Dirichlet(β) according to (5.5)
4: end for
5: end for
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6: for each set of aligned regulatory sequences d = 1 . . . D do
7: θd ∼ Dirichlet(α) according to (5.4)
8: for each species s = 1 . . . S do
9: for each motif i = 1 . . . N s

d do
10: zsi ∼ Multinomial(θd) according to (5.3)
11: wsi |zsi ∼ Multinomial(φs

zsi
) according to (5.2)

12: end for
13: end for
14: end for
Here, we have used N s

d to denote the number of motifs contained in the regulatory sequence d
from species s. We will again use the same Gibbs sampling technique for estimating the model
parameter φ := {φs}Ss=1 and θ := {θd}Dd=1. Therefore we first need to integrate out φ and θ in
P(w|z,φ) and P(z|θ) respectively.

For jointly modelling multiple species, we use the algorithm corresponding to the inference
procedure of the EASD model. We have used N s

d to denote the number of motifs contained in
the regulatory sequence d from species s. We will again use the same Gibbs sampling technique
for estimating the model parameter φ := {φs}Ss=1 and θ := {θd}Dd=1. Therefore we first need to
integrate out φ and θ in P(w|z,φ) and P(z|θ) respectively.

Note that the vector w := {ws}Ss=1 collects motifs from all sequences and all species, and
z := {zs}Ss=1 is the corresponding vector of dictionary indicator. Integrating out all φ gives

P(w|z) =

∫
φ

P(w|z,φ)P(φ) dφ (5.11)

=
S∏
s=1

(∫
φs

P(ws|zs,φs)P(φs) dφs

)
(5.12)

=
S∏
s=1

((
Γ(Wβ)

(Γ(β))W

)T T∏
t=1

∏W
v=1 Γ(nstv + β)

Γ(nst∗ +Wβ)

)
(5.13)

where nstv is the number of times motif w has been assigned to stochastic dictionary t in the species
s, and nst∗ :=

∑
w n

s
tw. Note that the counts nstw are computed within each species. Integrating out

θ gives

P(z) =

∫
θ

P(z|θ)P(θ) dθ (5.14)

=

(
Γ(Tα)

Γ(α)T

)D D∏
d=1

∏T
t=1 Γ(ldt + α)

Γ(ld∗ + Tα)
(5.15)

where ldt is the number of times a motif from the dth set of aligned regulatory sequences being
assigned to stochastic dictionary t no matter which species it is coming from, and ld∗ :=

∑T
t=1 ldt.

Note that the count ldt here is computed across multiple species, and the sum of counts from each
individual species.
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Having P(w|z) and P(z) allows us to compute the posterior P(z|w) and derive the Gibbs
sampling formula below

P(z̄si = t|z \ zsi ,w) ∝
nstwsi − δt(zi) + β

nst∗ − δt(zi) +Wβ

ldsi t − δt(zi) + α

ldsi ∗ − δt(zi) + Tα
(5.16)

where we have used z̄si and zsi to distinguish the current value and previous value of the variable
being sampled; wsi and dsi are the motif and regulatory sequence corresponding to the dictionary
indicatory variable zi. Note that this formula is different from the sampling formula (5.8) for a
single species. Here the first ratio uses information within a single species, but the second ratio
integrates information across species.

Similarly, with a set of samples from the posterior distribution P(z|w), we can estimate φ and
θ from the value of z by

φstv =
nstv + β

nst∗ +Wβ
, s = 1 . . . S, t = 1 . . . T, v = 1 . . .W (5.17)

θdt =
ldt + α

ld∗ + Tα
, t = 1 . . . T, d = 1 . . . D (5.18)

5.3 Results
In the previous section, we developed algorithms for learning the Admixture of Stochastic Dic-
tionaries (ASD) model from regulatory sequences in one species as well for learning the more
sophisticated evolving ASD (EASD) model across multiple species. Experiments using the single
species ASD model allows us to carefully examine the multi-functionality of the analyzed CRMs.
Experiments using the EASD model for multiple related species allows us to analyze how CRMs
and their multi-functionalities evolve by analyzing the extent and nature of change of functionality-
specific dictionaries across organisms.

Datasets: Our primary dataset of regulatory data consists of cis-regulatory regions from 21
early developmental genes in Drosophila melanogaster, along with TFBS positional information
and independently estimated binding specificities for 75 TFs and positional information of the con-
stituent CRM boundaries. However, many of these TFs have too few binding sites or have poorly
estimated PWMs and are not amenable for purposes of regulatory analysis. Typically, in our exper-
iments we use data from 17 TFs which have sufficient robustly estimated PWMs in the dataset for
our analyses. The dataset is from [57], with the positions of TFBSs and CRM boundaries obtained
from the REDfly database [61] and the Drosophila Cis-regulatory Database at the National Univer-
sity of Singapore [131]. Orthologous sequences in 9 other related Drosophila species - simulans,
sechellia, yakuba, erecta, pseudoobscura, ananassae, persimilis, virilis, mojavensis was obtained
from precomputed BLAT alignments [90] from UCSC Genome Browser [79]. We also perform
regulatory region prediction on a secondary yeast dataset (details present in the experimental de-
scription) of regulatory regions [97] showing our methods are not species- or clade-specific and
can work over a wide range of eukaryotic sequences.
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Figure 5.3: F1 score obtained using SVM and function
vectors as features versus using SVM and spectrum string
kernels. The horizontal axis is F1 score using function vec-
tors, and the vertical axis is F1 score using spectrum string
kernels. Dots lying on the diagonal indicates a tie. Dots ly-
ing in the lower half triangle indicates that function vectors
leads wrt classifers with higher F1 score. In 43 datasets,
functions vectors lead with better results. The horizon-
tal and vertical error bars are standard error for classifiers
trained with function vectors and spectrum string kernel re-
spectively.

Model selection: We perform model se-
lection by specifying the number of stochas-
tic dictionaries to be estimated and the length
of the words in the dictionary. For the pur-
poses of model selection, we can use an in-
formation theoretic criteria like Bayesian In-
formation Criteria, or choose the model based
on biological insight. We use a vocabulary of
fixed length words, which avoids the problem
of determining the size of words adaptively,
but requires us to choose the length of words
in the dictionary. Conserved cores of TFBSs
in most eukaryotes are between 6 and 10 bps
long [123]. We choose a word length in this
range, since this size offers an appropriate level
of granularity for studying regulatory organi-
zation and evolution and the analysis remains
stable for slightly smaller or larger choice of
word length. Flanking regions of conserved
cores are also somewhat conserved in TFBS if
our choice is slightly larger than a binding site
in the sequence. If it is slightly smaller, the
method will analyze subsequences of the actual
motifs which are subject to the same organiza-
tional and selectional forces in the genome. However, a significantly larger choice of word length
(say 20) will cause difficulties in analysis as the stochastic dictionaries will become ultra-sparse.
A significantly shorter choice of word length (say 2) will be able to analyze genomic phenom-
ena like variation of GC content which operate at such resolutions but not regulatory evolution.
The choice of number of the number of dictionaries is explained in the experimental details. We
perform subsequent experiments using 20 stochastic dictionaries and oligomers of length 9 if not
specified otherwise. The evolutionary analysis is performed with oligomers of length 7 and 10 dic-
tionaries, to re-iterate that such analyses can be performed with oligomer sizes between 5 and 10,
and number of dictionaries between 10 and 40; and tradeoff in terms of computational efficiency
and biological interpretability is smooth.

Functional discrimination using ASD: Our model can be viewed as an unsupervised method
for extracting information from a collection of regulatory sequences. Applying our model results
in a set of stochastic dictionaries and a function indication vector for each sequence. A natural
question is that whether the CRM-specific function composition vectors θi capture any information
for discriminating transcription binding target.

In this experiment, we used yeast ChIP-ChIP data to create classification datasets, and use the
function vector as features for classification [97]. We view TF binding as a classification prob-
lem, where those regulatory sequences with a p-value smaller than 0.01 will be treated as positive
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sequences and otherwise as negative sequences. This thresholding results in highly unbalanced
binary classification problem for each transcription factor. Typically, at most a few hundred reg-
ulatory sequences have p-value smaller than 0.01 (potential binding targets for a TF) while the
remaining a few thousands have p-value larger than 0.01. We only use those datasets where the
number of positive examples are larger than 30. This result in 75 binary classification datasets with
the number of positive examples varying from 30 to 348. To avoid an unbalanced classification
problem, we create training and test subsets for each dataset by randomly sampling 3/4 of the
positive examples and an equal number of negative examples. We repeat such random samplings
of training and test pairs 10 time for each dataset, and the classification results using these pairs
are used to estimate the mean and standard error. We evaluate the estimation procedures using an
F1 score, which is the harmonic mean of precision (Pre) and recall (Rec).

We evaluate the estimation procedures using an F1 score, which is the harmonic mean of preci-
sion (Pre) and recall (Rec), i.e. F1 := 2∗Pre∗Rec

Pre+Rec
. Precision is calculated as Pre := |P̂∩P|

|P̂| , and recall

as Rec := |P̂∩P|
|P| , where P and P̂ are the set of actual positive examples and predicted positive

examples in a test set, and | · | compute the number of elements in a set. The F1 score is a natural
choice of the performance measure as it tries to balance between precision and recall; only when
both precision and recall are high can F1 be high.

We compare our classification using the function composition vectors to those using spectrum
string kernel [98]. Particularly, we use oligomers of length 5 to learn the function composition vec-
tor and corresponding oligomers are also used for the spectrum kernel. We use an SVM classifier
where the regularization parameters are chosen from {0.01, 0.1, 1, 10, 100} using cross-validation.
The classification results on the 75 datasets are summarized in Figure 5.3. Although standard
errors show that our method tends to have larger standard error, it better captures disciminative
information than the spectrum string kernel in more datasets.

Discriminative parameters for predicting CRMs : We first learn an ASD for regulatory
sequences from Drosophila melanogaster, and show that the learnt parameters can be more dis-
criminative than PWMs when prediciting CRMs. The goal of this experiment is not to produce a
high-quality, supervised CRM predictor but to show potential usage of the stochastic dictionaries
for predicting CRM in new regulatory sequences by choosing the right discriminative parameters.

For predicting the regulatory region, we use a sliding window based approach and a local score
is computed from the window to predict the location of the CRM. We use PWM scores in the
sliding window and utilize those PWMs which are known to regulate the gene in question. We
also use stochastic dictionary based scores using those stochastic dictionaries which were known
to have good correlation with TFBSs of the TFs known to regulate the gene.

The results (see Fig 5.4) for predicting the regulatory region of hunchback gene is depicted
here as it is particularly illustrative, using both PWM scores of the regulating TFs as well as the
parameters of the stochastic dictionaries of the ASD model. We use a sliding window to score the
genomic sequence around the regulatory region. We find that while the PWM scores in the sliding
window find the CRM, they also find numerous other false positives. The stochastic dictionary
probability scores in the sliding window, on the other hand has a few non-zero scores (due to the
sparse nature of dictionaries over words of length 9).

However, the few non-zero scores the sliding window has are on the regulatory region or near it.
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(a) (b)

Figure 5.4: (a) PWM scores on words of length 9 from known regulatory TFs used to predict the location of the
hunchback CRM. (b) Dictionary parameters from stochastic dictionaries known to have good correlation with TFBSs
of the regulatory TFs used to predict the location of the hunchback CRM

The significantly richer representation of the stochastic dictionary enables more accurate prediction
of the CRM, while the PWM based score has a severe limitation in the fact that it cannot recognize
nucleotide composition changes as a result of selection due to several different functions, as in the
case of the CRM. We looked into these ultra-discriminative stochastic dictionaries, and found them
to be sparse which also explains the higher standard errors (albeit in a different experiment) in Fig
5.3. Further, we found that the some members of the sets of words with non-zero entries in the
three discriminative stochastic dictionaries that we depict have overlaps with each other.

Understanding the model parameters: Each stochastic dictionary potentially plays a role in
the regulatory process. The function of a stochastic dictionary is determined by the distribution
of the oligomers insider it. The multi-functionality of each CRM arises due to the influence of
the different stochastic dictionaries and the precise nature of the multi-functionality is based on
the values of the function composition vector corresponding to the CRM. We first analyze the
function composition vectors for 21 CRMs in Drosophila melanogaster, which clearly show that
different CRMs are generated from very different proportions of the 20 different function-specific
stochastic dictionaries (see Fig 5.5). This effectively causes most CRMs to be able to uniquely
perform a variety of regulatory functions.

Transcription factor binding affinity of a word can be well approximated by the Position Weight
Matrix (PWM) score: the likelihood of the word given the PWM (ordered set of multinomials)
model. The best correlated PWMs and stochastic dictionaries are depicted in a bipartite graph over
PWMs and stochastic dictionaries in Fig 5.6, depicting a relatively sparse graph. The expected
value of the PWM score with the expectation calculated over the distribution of the oligomer in
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Figure 5.5: This figure shows the varying values of the function composition vector for each of the 21 CRMs we
analyzed. Each color corresponds to a stochastic dictionary with a specific regulatory function.

Figure 5.6: This bipartite graph with nodes arranged in a circle shows the association between 17 transcription
factors (TF) and 20 stochastic dictionaries as measured by the correlation between the TF PWM expected binding
affinities and the 20 dictionaries estimated from the Drosophila CRMs.
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the dictionary is the Expected Binding Affinity (EBA) score. We also find that only a handful of
stochastic dictionaries account for the highest EBA scores of most of the PWMs. Three particular
stochastic dictionaries generate the highest EBA scores for 10 out of the 17 PWMs we analyzed.
This can be explained by some stochastic dictionaries having disproportionately high probabilities
of certain words which have high binding affinity scores. These stochastic dictionaries thus model
regulatory functions controlled by high affinity binding events.

In order to check whether there were functionally redundant stochastic dictionaries in the set of
20 stochastic dictionaries we generated, we obtained correlation coefficients between every pair of
stochastic dictionary estimated for every species (see Fig 5.7). It was found that stochastic dictio-
naries within the same species in general correlated much worse than stochastic dictionaries across
species confirming that only minimal functional redundancy by having two stochastic dictionaries
model similar distributions over words.

Typically, the number of dictionaries is chosen to be comparable to the number of transcrip-
tion factors binding in the CRMs. The number of dictionaries can be systematically increased in
experiments and stopped after the analysis becomes stable, when the number of dictionaries is
overestimated. We tried obtaining an even broader spectrum of regulatory functions by increas-
ing the number of stochastic dictionaries upto size 50, but the outcome of the experiment with 20
stochastic dictionaries is indicative of the results obtained with higher numbers of stochastic dic-
tionaries. The choice of the number of stochastic dictionaries is thus not critical, as long as it is not
trivially low or high. One may draw an analogy with cladistics where a choice of too few clades
would cause related taxa to be merged into one, and a choice of too many clades cause some taxa
to be split into two or more closely related sub-taxa.

Analyzing the regulatory genome using EASD: In this section, we learn our model with regu-
latory sequences from all 10 Drosophila species using the EASD model. We would typically like to
investigate the nature of functional evolution in the regulatory genome. Since each stochastic dic-
tionary has a potential regulatory role, it is interesting to investigate whether functionally aligned
stochastic dictionaries are similar across species. Such similarity indicates the conservation of
the constituent composition of the stochastic dictionaries, and hence its function. Alternatively,
if we find that functionally aligned stochastic dictionaries are very different, it would emphasize
that the specific function of the stochastic dictionary is undergoing rapid change, possibly due to
positive selection. We compute the correlation coefficient for these 10 sets of stochastic dictio-
naries, and visualize them in Figure 5.7. We find that functionally aligned stochastic dictionaries
have significantly higher correlations, though they are different from each other as well, imply-
ing some functional evolution is undergoing. The correlation coefficients of functionally aligned
stochastic dictionaries can be taken to be noisy indicators of the evolutionary rate at the locations of
oligomers with high probabilities in these stochastic dictionaries. Assuming functional alignment,
stochastic dictionaries can be used to detect selection by choosing a range of correlation coef-
ficients corresponding to stochastic dictionaries learnt from genomic regions known to be under
neutral selection [92]. Correlation coefficients of aligned stochastic dictionaries above the neutral
range thus correspond to negative selection (oligomers evolving slower than the neutral rate due to
functional constraints), while correlation coefficients below the neutral range correspond to posi-
tive selection. Regulatory regions are notoriously hard to align, due to high turnover in nucleotide
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Figure 5.7: Correlations of stochastic dictionaries across species. Each of the 10 species have their own set of 20
stochastic dictionaries over observed 7-mers. Heat map shows correlations between these 200 = 20 × 10 stochastic
dictionaries. It can be seen that diagonal blocks have low correlation compared to other blocks, while the clear
diagonal pattern within other blocks indicates that functionally aligned stochastic dictionaries are highly correlated
across species.
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content [111] and presence of repeats, hence this would be an alignment-free way to test selection.
Biological validation of binding sites implicated in regulation is a labor and cost intensive process,
since ChIP-Seq experiments merely confirm biochemical and not neccessarily regulatory function.
Our algorithm provides a convenient alternative to algorithms which detect selection in regulatory
sequences based on nucleotide level alignment and binding site annotation [125].

5.4 Discussion
As future work, we may perform experiments allowing us to transfer TFBS and CRM annotation
information from one species to help perform regulatory region prediction or other kinds of reg-
ulatory analysis on unannotated species. This may be achieved by finding stochastic dictionaries
that achieve functional discrimination in an annotated species, and using the corresponding aligned
stochastic dictionary in unannotated species to perform regulatory analysis.

Here we present an Admixture of Stochastic Dictionaries (ASD) modeling regulatory sequences.
We have developed sophisticated algorithms for learning the Admixture of Stochastic Dictionaries
within one organism, and across multiple evolutionarily related organisms, which allow us to ex-
amine multi-functionality of CRMs, and the way it evolves by analyzing the extend of change of
every functional specific dictionary in the ASD models across organisms. We show that the learnt
component dictionaries in our model are indeed functionally discriminative, and can be used for
predicting regulatory regions. We further show that such discriminative ability is based on their TF
binding affinity scores. We find that the corresponding function specific dictionaries across species
have similar (but non-identical) distributions over oligomers, such that regulatory information from
one species can be used to predict regulatory regions in other species. We conclude that our model
is easy to estimate and interpret, and serves as a good platform for modeling functional evolution of
the regulatory genome, and a useful tool to identify regulatory function based on these properties.
Our current model can be extended in many ways to model richer aspects of regulatory sequence
evolution. At present, our model performs analysis based on a predefined set of oligomers of fixed
length and may be extended to automatically discover the set of most important oligomers from the
data. Integrating additional discriminative information for well-studied species such as Drosophila
melanogaster into our model can potentially improve TFBSs prediction in other species.
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Chapter 6

The changing face of DNA binding motif
finding and cis-regulatory module analysis

6.1 Development of the motif model

DNA binding motif finding has been very successfully used ever since the discovery of the lac op-
erator [40, 64, 116] and the lambda operators [117, 118, 194] provided evidence that DNA binding
protein factors could regulate gene expression. Advances went hand in hand with improvement
in technologies for effecient sequencing of DNA [121, 160], and with the advent of detection of
binding specificities of protein - DNA binding using DNAse-footprinting [60], and the ability of
DNA synthesis technologies to synthesize arbitrary sequences of nucleotides and place them in
promoter regions to gauge the effect of specific oligonucleotides on protein binding and hence
gene regulation [68].

In modelling the binding site, initially simplistic models like modelling binding specificity as a
fixed recognition site of constant length or a small set of such sites; and as consensus sequences (
a combinatorial way of combining position specific information at the binding site ) were tried for
transcription factor binding sites [119], which had proved successful for modelling cleavage sites of
restriction enzymes [2, 89, 94, 176], ribosomal binding sites in prokaryotes [168] , and translation
initiation sites in eukaryotes [24, 93]. As these methods did not scale well to sequence motifs with
more variability and other constraints, various other computational approaches began to be tried
starting in the late 1970s : switch sites and regulatory sequence patterns modelled as palindromes
to capture molecular conformations [36, 136], quantitative estimates of binding specificity and
calculation of dissociation constants [105], and models of distance between a cis-acting site and
the coding sequence [44]. Use of weight matrices to characterize diversity in different positions of
fixed length binding sites was first successfully formulated by Stormo et al [187] to characterize
translation start sites. However, the weight matrices were used to compute the decision function for
a perceptron, and the model was not a probabilistic one - returning a decision but no likelihoods for
ranking candidate sequences. The work of Rodger Staden at Cambridge [179, 180, 181, 182, 183,
184, 185] firmly established the Position Weight Matrix (PWM) as the primary model for sequence
motifs in DNA, proteins and RNA in a probabilistic framework by generating a likelihood based
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score for each oligomer based on motif and background models, and convert the scores to p-value.
Later algorithms which have built on top of this basic model also apply False Discovery Rate
control or multiple testing correction to generate a q-value [69].

The placement of the PWM model in an information theoretic framework [161], and in the
perspective of binding energies in a statistical mechanics framework [11], the ability of the model
to act as a discriminative feature to distinguish one set of sequences against another [150, 175],
along with Occam’s Razor of being the simplest model to accurately model binding specificities for
transcription factors has ensured that it remains the de facto sequence motif model 25 years later
[191]. The large number of variations on this model and the accompanying algorithms to perform
estimation and inference in both supervised and unsupervised frameworks have been thoroughly
reviewed in the earlier chapters of this thesis.

6.2 Traditional approaches to binding site detection
Sequence motif finding algorithms, which became popular with the rise in the number of sequenced
regulatory regions, aimed at in silico characterization and detection of transcription factor binding
sites in genomic DNA. They proceed in their exploration in an iterative manner, starting from
a handful of biologically validated binding sites, by learning a binding motif model ( position
weight matrix ) from them in a supervised fashion. If such an initial set is not readily available,
unsupervised approaches are used to identify statistically significantly over-represented motifs [5].
The algorithms then perform a whole genome scan based on the learnt motif, to predict a novel set
of putative binding sites. Because of the potential of high rates of false positives in the predicted set,
these algorithms typically filter the set of predictions using features like evolutionary conservation.
Finally, a new, high-confidence set of putative binding sites are selected for biological validation,
and successfully validated binding sites are fed back into the model as training data, taking care to
avoid overfitting issues.

Motif finding algorithms have been at the heart of this binding site discovery framework.
Whilst being immensely successful [191] at predicting binding events in regulatory sequences,
this traditional motif finding approach suffers from several shortcomings :

• This approach initially suffered from experiential bias, where the inductive bias of the learn-
ing algorithm was based on the initial set of binding sites used. If the original set of binding
sites were not representative enough (did not sample the space of oligomers with respect
to binding specificity in a faithful way), this approach would get stuck by identifying only
a subset of real binding events. However, with the increase in sequenced and biologically
validated regulatory sequences, as well as bayesian frameworks allowing priors over motif
models [202], this is no longer a problem.

• Even though putative motif discovery can be performed using whole genome scans in silico
in a high throughput way, the biological validation of predicted binding sites is still low
throughput, and remains a bottleneck in the discovery procedure.

• This approach identifies all linear DNA sequences for which the binding specificity is high.
However, typically these methods suffer from high rates of false positives [191], primar-

80



ily due to two reasons. Firstly, whole genome scans will tend to throw up lots of oligonu-
cleotides which have sequence specificity scores marginally above empirically chosen thresh-
old for long motifs (greater than 10 bp) with multiple high entropy positions due to the
combinatorially large search space with few constraints. Potential false positives may be
filtered by carefully modelling the sequence by autoregressing nucleotide distributions and
modelling eukaryotic regulatory architecture using Hidden Markov Models or Conditional
Random Fields, using evolutionary conservation and other genomic cues in a systematic
and model based way, as explained in Chapters 2, 3 and 4 of this thesis. Secondly, tradi-
tional approaches primarily use only genomic sequence for predicting DNA binding events,
and are agnostic to the cell type and cell type specific chromatin accessibility, and cell type
specific regulatory mechanisms like epigenetic modifications that can impact transcription
factor binding. Hence, in vivo validation in a particular cell type at a fixed time point will
only validate a subset of the predicted instances, without shedding light on which binding
events are cell type specific. High throughput ways of biologically validating events are
thus required to identify cell type specific binding events by comparing binding profiles in
multiple cell types.

It was primarily to overcome the above shortcomings that high throughput chromatin immuno-
precipitation based techniques were developed for identifying binding sites.

6.3 Chromatin Immunoprecipitation based techniques and mo-
tif finding

In 1984, Gilmour and Lis developed a protocol to use ultra-violet irradiation to cross-link DNA
with proteins in contact with the DNA in an in vivo [66, 67] fashion. This was the birth of chromatin
immunoprecipitation (ChIP) studies for in vivo studies of protein - DNA binding, where proteins
in contact with DNA are first cross-linked, the DNA is then sheared by sonication, followed by
cell lysis, addition of bead-attached antibodies specific to the protein of interest for the purpose of
immunoprecipitation, after which the DNA fragments are purified. This basic protocol has been
improved in various ways [30], and has been used in combination Polymerase Chain Reaction
[157] (ChIP - PCR [77]) , microarrays [25, 207] (ChIP on Chip or ChIP-Chip [104, 151]) and
next-generation sequencing [29, 75] (ChIP - Seq [84, 154] ). One of the biggest advantages of
ChIP techniques is that they provide an in vivo snapshot of the binding of the protein of interest
at a particular time point, and hence experiments across cell types can identify cell type specific
binding [175]. Another aspect of ChIP technologies is that it is blind to sequence specificity,
and both sequence specific and non-specific binding is captured, and such signals thus need to be
deconvoluted.

The first popular incarnation of ChIP technologies was chromatin immunoprecipitation fol-
lowed by a tiling array experiment, also known as ChIP on Chip or ChIP-Chip [104, 151]. Typi-
cally, the resolution of the tiling array is of the magnitude of 100s of bps, while individual binding
sites typically vary in the range of 5 - 10 bps. As a result, the outcome of the experiment typically
provides a set of bound regions [104, 151] and not specific binding sites. If binding specificities
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for the protein of interest are known, these “bound” regions are used as a filter for motif scans
of the genome to obtain individual binding sites. If binding specificities are unknown, these re-
gions are subject to motif finding, typically by finding the most discriminative motifs between
bound and unbound regions of the tiling array [175]. However, since hybridization based tech-
niques suffer from noise and batch effects and required multiple biological replicates for reliable
inference, ChIP-Chip turned out to be a costly platform, and was soon replaced by next-generation
sequencing alternatives for identifying the bound DNA fragments.

ChIP-Seq [84, 154] platforms provided chromatin immunoprecipitation, followed by next gen-
eration sequencing. It provides an economical (compared to ChIP-Chip), and more robust estimate
of the whole genome binding profile for a protein of interest. Typically, ChIP-Seq analysis fo-
cusses on identifying high coverage regions of the genome based on mapping the DNA fragments
isolated from the ChIP process. These regions are called “peak”s and the algorithms to identify
the bound regions are referred to as peak-callers. Several model based peak callers have been well
referenced in the literature [124, 198, 208], and several approaches go further to differentiate be-
tween sequence specific versus non-specific peaks, histone versus transcription factor peaks, and
characterize the shape of the peaks [205].

Peak calling typically aims to identify regions of specific binding for transcription factors, but
again regions identified (peaks) have a larger resolution (around 100 bps) as opposed to a DNA
binding event (5 - 10 bp). Hence, in order to obtain binding specificities and exact binding sites, we
still need to perform motif analysis on the ChIP-Seq data. Again, for known binding motifs, peaks
calls act as a filter to weed out false positives, while for unknown binding motifs, novel motifs are
obtained by sampling oligomers from the whole genome or the called peaks, using coverage depth
as a guide for the sampling distribution, as well as by using Expectation Maximization approaches
for de novo motif finding [4, 114, 115, 208]. Motif finding may or may not use called peaks
when sampling motifs, peak indicators are at best a filter, and at worst nuisance variables with
respect to the motif finding algorithm. Newer generations of ChIP-Seq technology, like ChIP-Exo
[152], aim to lower resolution of ChIP-Seq to that of DNA binding [152], reducing motif finding
primarily to a multiple sequence alignment problem. Chip-Exo uses an exonuclease that degrades
unbound DNA ( double stranded) in the 5’ to 3’ direction completely and specifically, providing
theoretically single base pair resolution.

Similar technologies have been developed for identifying regions of RNA bound by protein :
ChIP-Chip technologies have an anologue in RIP - Chip (Ribonucleoprotein Immunoprecipitation
on a Chip / microarray )[192], and ChIP-Seq technologies have an analogue in ClIP-Seq ( Cross-
linking Immunoprecipitation High Throughput Sequencing ) [159]. All motif analysis techniques
devised for identifying motifs for DNA binding events can be readily ported to explore RNA-
binding events.

However, Chip-Seq technology, and the accompanying motif detection algorithms, also suffers
from certain problems :

• Since ChIP-Seq uses next generation sequencing technology, it suffers from all the known
problems suffered in next generation sequencing approaches. Primarily, these are :

Mapping to novel genomes is difficult, since in situ de novo genome assembly of novel
genomes is typically not possible from ChIP-Seq data, which only binds a fraction of
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the genome. In such situations, motif sampling can be performed directly from the
ChIP-Seq fragments or from partial assemblies.

Mapping reads in repeat regions is problematic, and this is typically solved by ei-
ther generating single end reads of longer length, or by the usage of paired end tags (
paired end sequencing [59] ) to generate uniquely mappable DNA “fragments”. Chip-
Sequencing with paired-end tags (PET) is known as ChIP-PET [27]. However, this is
in direct contrast to generate shorter reads to achieve higher resolution. Thus, in prin-
ciple, there is a tradeoff in Chip-Seq techniques between resolution of the binding data
and mappability of reads, with motif finding gaining more importance towards the end
of the spectrum of lower resolution. However, Chip-Exo [152] techniques combined
with paired end tags are able to circumvent this inherent trade-off.

Distribution of mapped read coverage given the set of original fragments is inevitably a
Poisson distribution, whereas ideally for sampling the fragments one prefers a uniform
distribution : this bias effectively lowers the probability of detection of low affinity
binding events. Motif finding algorithms, however, can rescue some low affinity bind-
ing events by changing their sampling strategy.

Mapping artifacts due to incorrect reference genomes (especially in the presence of
Copy Number Variations / CNVs), or from fragment distribution bias or mapping prob-
lems can lead to false positives in Chip-Seq peaks. Typically, negative controls are
performed by the process of input control, by sequencing fragmented DNA with non-
specific antibody like Immunoglobulin G, allows for normalization or calibration of the
ChIP - Seq signal against the control [102].

• A drawback of all immunoprecipitation based methods is the requirement of a specific an-
tibody with respect to the protein of interest. Obtaining such an antibody, and performing
controls to validate its specificity is non-trivial. If such an antibody is not available, the only
recourse is to fall back on the traditional binding site discovery paradigm using traditional
motif detection techniques. New techniques, like DamID aims to identify binding sites with-
out requiring protein specific antibodies, by expressing the protein of interest as a fusion
protein with DNA methyltransferase [193]. The shortcoming of DAMID basd binding site
detection is that the resolution of the method is variable across the genome, and is a function
of the oligomer content of the genome, typically at 100s of bps. Further, it profiles a trace of
where the protein interacted with DNA over a time period, rather than a fixed time snapshot.
Typically, for transcription factors, there is low temporal variability.

• Another problem with ChIP-Seq technology is the typically large number of cells required
for sequencing ( typically in the millions ) in order to obtain DNA material in the magnitude
of nanograms for chromatin immunoprecipitation. Often, especially with samples that re-
quire a long protocol stretching into weeks or field samples, such large number of cells may
not be available, and the only recourse is to fall back on traditional techniques of binding
site analysis. However, recent improvements in ChIP-Seq protocols enable ChIP-Seq exper-
iments on as few as one hundred cells [65]. Thus, all ChIP-Seq experiment outcomes are
really based on populations of cells, and the mixture components are reflected in the statis-
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tics. They are especially sensitive to contamination or mixtures of cell types, which may
cause convolution of multiple ChIP-Seq signals : such convoluted signals can however, be
teased apart by motif models, which can be made to work with inferencing mixture models.
However, it is not possible to harness single cell sequencing technology to obtain a single
cell snapshot of the binding profile in order to understand competitive binding and steric hin-
drance effects among pairs of binding sites. For such situations, Competition-ChIP protocols
[103] aims to profile kinetics of transcription factor binding, since binding site prediction by
itself is a poor predictor of transcription factor function.

• Since ChIP-Seq techniques create a high-throughput, genome-wide profile of binding of the
protein of interest, it is especially difficult to assign function to specific binding events. Typ-
ically, identification of peaks and validated motif instances in promoters can predict a regu-
latory role in the downstream coding region, but identification of peaks and motif instances
in enhancers typically lead to the question : disambiguating which enhancer - promoter
unit(s) is / are linked to the enhancer. Identifying function therefore translates to identify-
ing linkages between the promoter and enhancer by mapping long range interaction using
techniques like Chromatin Interaction Analysis by Paired-End Tag Sequencing (Chia-PET)
[58] or Chromosome Conformation Capture (3C) [39], or by predicting enhancer - promoter
units (EPUs) [167].

• Another aspect of ChIP-Seq technologies is that it will profile both direct and indirect bind-
ing. As a result, it is possible to obtain signal from both direct and co-factor mediated binding
events. Typically, in motif search terms, this translates to finding multiple motifs in the bound
regions, an important cue which may lead to clues about which co-factors may be at work.
If the transcription factor - co-factor interaction is already known, it is possible to perform
sequential ChIP-Seq protocols [62] to obtain a simultaneous snapshot of two binding profiles
: in such situations, one way to understand whether the binding is co-operative, competitive
or indirect is to resort to binding site analysis using motif detection. Co-binding studies is
becoming one of the major areas of ChIP-Seq sequence analysis. Various algorithms have
been developed for identifying direct versus indirect binding [6], identification of transcrip-
tion factor complexes [197], and identifying co-binding transcription factors [206].
However, for a gene of interest with unknown specificity, if the motifs found in a particu-
lar region of bound genome are novel, there is no way to distinguish between the facts of
whether it is sequence specificity of the gene of interest or a co-factor. This has led to interest
in in vitro methods of capturing sequence specificity of proteins. Both well-known methods
of capturing sequence specificity in an in vitro fashion require the learning of sequence mo-
tifs in a model-based way in order to analyze the specificity in in vivo studies.

The traditional approach to sequence specificity and position weight matrix determi-
nation was based on evolving oligomers with high binding affinity to the protein in
question, and is named Systematic Evolution of Ligands by Exponential Enrichment
(SELEX) [134]. DNA motifs may then be learnt by sampling from the sequenced frag-
ments. However, given that the probability of success in a SELEX experiment depends
on a host of factors [99], including the number of rounds of the protocol, an alternative,
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easier-to-use on-chip protocol has become more popular recently.

Martha Bulyk et al have developed an on-chip methodology for analyzing the binding
specificity of a protein of interest in an in vitro fashion. The method of Protein Binding
Microarray (PBM) [141] allows quantification of binding intensities of the protein in
question to a large set of oligomers. The binding specificities can then be estimated
in a systematic model-based manner and the motif extracted : multiple model based
methods have been developed for this purpose [137].

Another aspect of identification of binding specificities in vitro is to be able to compare
them against a database of known binding specificities, with the goal of being able to
identify the co-factor or family of co-factors for a protein of interest. Several such
algorithms based on the motif model exist [162, 188].

Finally, models of sequence specificity (like binding motifs or nucleotide content) is
essential for deconvoluting sequence-specific versus non-specific binding [109].

• However, the most dominant use of motif analysis in ChIP-Seq studies is in the generaliza-
tion of results across cell types, conditions and time-points. ChIP-Seq experiments are in
vivo and provide only a single binding profile for the gene of interest at a particular time
point under specific conditions, for a population of cells. The binding profile is inevitably
cell-type and condition-specific. In order to infer binding profiles in other cell types, or at
other conditions or time points in a model based fashion, either multiple ChIP-Seq exper-
iments need to be carried out (not always feasible due to economic constraints and due to
the fact that ChIP-Seq destroys the cell population) or integrative analysis can be performed
to predict binding sites using various available cues for the data in question, like epigenetic
marks, chromatin accessibility (experiments like DNAse-Seq [177] and FAIRE-Seq [130])
and the presence or absence of other binding factors, as well as temporal information (if
relevant and available). Integrating multiple information sources for binding site predic-
tion was the major focus of Chapter 4 of this thesis. The ability to identify discriminative
evolutionary features was a focus of Chapter 5 of this thesis. The best genetic feature for
identifying binding sites which remains the simplest to estimate is the Position Weight Ma-
trix, which is why motif-based analysis has remained so valid for such a long time in such
transfer learning scenarios, even in the face of rapidly changing technologies. There has
been significant work in the literature on modelling such integrative analysis as multifeature
classifiers [57], bayesian priors integrating epigenetic information [33], and in the perspec-
tive of integrative analysis for transcriptional activity prediction using multiple transcription
factor binding data [28, 138].

In conclusion, it is best to understand transcription factor binding site analysis and the analysis
of the evolution and architecture of regulatory regions not just as a standalone problem, but as the
critical first step towards building up a theoretical, model-based understanding of the process of
gene regulation as shown in some preliminary work in the literature [28, 138].
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Chapter 7

Appendix A: Details of the BayCis model
and algorithm

A1. Modeling spacer length distribution via GhHMM

Consider the actual spacer length histogram in D. melanogaster in Figure 7.1. Smoothed dis-
tribution fitted by maximum likelihood estimation according to geometric, normal, and negative
binomial distribution are also shown. The normal distribution is definitely a very poor approxima-
tion. In the tail, the exponential and the negative binomial is not very different but in the shorter
region, the negative binomial provides a better fit to the distribution. Furthermore, the peak lies
between 5 and 10, not lying between 0 and 5.
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Figure 7.1: The histogram of spacer length distribution with known standard distributions superimposed.

Generalized hidden Markov models (GHMM) have been proposed for the explicit modeling of
the state durations in an HMM [50, 100, 145]. A state in a GHMM does not generate one character
at a time but instead a region of arbitrary length. The length of the regions is determined according
to an explicit duration distribution

The explicit duration models accurately models the state durations at the cost of computa-
tion. Alternatively, the negative binomial distributions can be modeled by using instead of one
self-transiting state, several externally indistinguishable but internally distinguishable states joined
together, as shown in Figure 7.2. This allows approximation of the GHMM functionality in a HMM
[43], where the efficient forward-backward and posterior decoding algorithms can be reused.
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Figure 7.2: The state-transition diagram of a gHMM.

In the GhHMM version of BayCis, we model the cluster background as negative binomial dis-
tribution, but leave the global, proximal and distal background as geometric distribution. Unlike
the Poisson distribution, the negative binomial distribution can model different mean and variance,
allowing a better fit to the empirical distribution shown in Figure 7.1. This scenario has been used
to model exon length distribution by EasyGene to achieve better accuracy [96]. To control com-
putation cost, we approximate the negative binomial distribution by joining several geometrically
distributed states. This also makes assigning conjugate priors possible, which will be explained in
detail shortly. For the global background, the length distribution has a heavy tail, and in practical
usage of BayCis system its length is dependent on how the user cuts the upstream sequence. For
the proximal and distal background, the lengths tend to be very short, and the joining of a distal
and then a proximal background already provides better expressive power.

A2. Details of Flattening hHMM and the modified FB-algorithm

When a hHMM is flattened to a HMM, if there are re-used models in the hHMM, these models
must be duplicated, and the heirarchical structure will be lost under unsupervised learning of the
parameters [129]. If the hierarchy is a tree, as in BayCis hHMM, the hHMM can be converted to
a HMM without losing the hierarchical structure. The HMM state space is exactly the production
states in the hHMM, denoted as Q = {bg, bc} ∪ B ∪

(
∪k Mk

)
.

Due to the sparsity of our transition probability matrix, as shown in Figure 2, we can further
reduce the time complexity of inference for obtaining the probability of a hidden state given the
sequence, i.e. the forward-backward algorithm, which is a subroutine in the Bayesian learning
algorithm. For notational simplicity, we assume the number of cluster background states is 3.
The state space consists of a global background, 3 cluster backgrounds, K proximal and distal
backgrounds, and 2Lk motif states for each motif k (including sense and antisense), so the total
size of the state space N is

N = 4 + 2K + 2
K∑
k=1

Lk.
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Following Rabiner’s notation [145], let αt(j) be the probability of the partial sequence Y1 · · ·Yt
and state sj at location t, or αt(j) = p(Y1 · · ·Yt, Xt = sj). Let βt(j) be the probability of the
partial sequence Yt+1 · · ·YT given the state sj at location t, or βt(j) = p(Yt+1 · · ·YT |Xt = sj) (in
this section the term βt(j) is used in backward algorithm for convention, not to be confused with
the parameters βg,k, βc,k, etc.) The induction step in the forward and backward algorithm are thus

αt+1(j) = [
N∑
i=1

αt(i)Aij]Bj(Yt+1), t = 1, 2, · · · , T − 1, 1 ≤ j ≤ N, (7.1)

βt(i) =
N∑
j=1

AijBj(Yt+1)βt+1(j), t = T − 1, T − 2, · · · , 1, 1 ≤ j ≤ N, (7.2)

It is known that the standard forward and backward algorithm both takeO(N2T ) = O(K2L̄2T ),
where L̄ is the averaged motif length, L̄ = 1

K

∑K
k=1 Lk. If there are many motifs, the amount of

calculations in the forward algorithm may still be large. Our modified forward-backward algorithm
further reduces the amount of calculations in the matrix multiplication in (7.2), based on the fact
that ”non-trivial” transitions, i.e. transitions whose probability is not 0 nor 1, are restricted to tran-
sitions from any of the background states going to either any background state or to the first sense/
last antisense motif position. These transitions correspond to a smaller block of size (4 + 2K)
by (4 + 4K) in the transition probability matrix, marked as ”‘non-trivial transitions”’ in Figure 2.
With this observation, the modified induction step in the forward algorithm is described here. The
vector α̃ is a holder for temporary values.

1. Let Q̃1 and Q̃2 be the sets of source and target states of the non-trivial transitions, repectively.
Formally speaking, if 0 < Aij < 1, we know i ∈ Q̃1 and j ∈ Q̃1, where

Q̃1 = {bg, bc, b(1)
p , · · · , b(K)

p , b
(1)
d , · · · , b(K)

d },
Q̃2 = Q̃1 ∪ {1(1), 1(2), · · · , 1(K), L(1′), L(2′), · · · , L(K′)}

2. Forward induction: for each t = 1, 2, · · · , T − 1,

α̃(j) ←
∑
i∈Q̃1

αt(i)Aij, j ∈ Q̃2,

α̃(l(k)) ← αt((l − 1)(k)), 2 ≤ l ≤ Lk, 1 ≤ k ≤ K,

α̃(l(k
′)) ← αt((l + 1)(k′)), 1 ≤ l ≤ Lk − 1, 1 ≤ k ≤ K,

α̃(bkd) ← α̃(bkd) + αt(L
(k)
k ) + αt(1

(k′)), 1 ≤ k ≤ K,

αt+1(j) ← α̃(j)Bj(Yt+1), j ∈ Q

3. Backward induction: for each t = T − 1, T − 2, · · · , 1,
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βt(i) ←
N∑
j=1

AijBj(Yt+1)βt+1(j), i ∈ Q̃1, j ∈ Q̃2

βt(l
(k)) ← B(l+1)(k)(Yt+1)βt+1((l + 1)(k)), 1 ≤ l ≤ Lk − 1, 1 ≤ k ≤ K,

βt(l
(k′)) ← B(l−1)(k′)(Yt+1)βt+1((l − 1)(k′)), 2 ≤ l ≤ Lk, 1 ≤ k ≤ K,

βt(L
(k)
k ) ← Bbkd

(Yt+1)βt+1(bkd), 1 ≤ k ≤ K,

βt(1
(k′)) ← Bbkd

(Yt+1)βt+1(bkd), 1 ≤ k ≤ K,

The time complexity of the modified forward-backward algorithm is O((K2 + KL̄)T ). Since
the motif length is typically short, we can assume L̄ < K and the time complexity of the modified
forward-backward algorithm will be O(K2T ), instead of O(K2L̄2T ) of the standard forward-
backward algorithm.

Figure 7.3: The transition probability matrix of the flattened HMM, shown as a heat map. G, C, P, D, and the num-
bers correspond to global, cluster, proximal and distal background, and the motif states. The motif states are ordered
as: 1(1), 1(2), · · · , 1(K), L

(1′)
1 , L

(2′)
2 , · · · , L(K′)

K , 2(1), (L1−1)(1
′), 3(1), (L1−2)(1

′), · · · , L(1)
1 , 1(1′), · · · , 2(K), (LK−

1)(K
′), 3(K), (LK − 2)(K

′), · · · , L(K)
K , 1(K′).

A3. Posterior decoding of DNA binding sites
We can read off the functional annotation (or segmentation) of the input sequences from the poste-
rior probability distribution of the functional states at each position of the sequences according to a
maximal a posteriori (MAP) scheme. In this scheme, the predicted functional state X∗t of position
t is: X∗t = arg maxs∈S p(Xt = s|Y ), where S is the set of functional states (motifs and different
kinds of background) and Y is the observed (genomic) sequence.

Note that by using such a posterior decoding scheme (rather than a Viterbi), we integrate the
contributions of all possible functional-state-paths for the input sequence (rather than a single
“most probable” path), into the posterior probability of each position. Therefore, although in the
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HMM architecture we do not explicitly model overlapping motifs, our inference procedure does
take into account possible contributions of DNA binding sites interacts with competing TFs.

A4. Bayesian inference and learning
Under the Bayesian framework described in the main chapter, the parameters in the HMM are
treated as continuous random variables (collectively referred as Ξ) with a prior distribution. Now to
compute the posterior probability of functional states, we need to marginalize out these parameter
variables:

p(Xt|Y ) =

∫
p(Xt = s|Y,Ξ)p(Ξ|Y )dΞ (7.3)

This computation is intractable in closed form. One approach to obtain an approximate solution
is to use Markov chain Monte Carlo methods (e.g., a Gibbs sampling scheme). Here we use a more
efficient, deterministic approximation scheme based on Generalized Mean Field inference [201],
also referred to as variational Bayesian learning [63] in the special scenario applied to our problem
setting. Omitting theoretical and technical details, our algorithm can be understood as replacing
the single-round posterior decoding with an iterative procedure consisting of the following two
step:
• Compute the expected counts for all state-transition events (formally called sufficient statis-

tics) using the forward-background algorithm, using current values of the HMM parameters.
• Compute the Bayesian estimation (to be detailed shortly) of the HMM parameters based on

its prior distribution and the expected sufficient statistics from last step. Update the HMM
parameters with these estimations.

This procedure is different from the standard EM algorithm which alternates between inference
about the hidden variables (the E step) and maximal likelihood estimation of the model parameters
(the M step). In our algorithm, the “M” step is a Bayesian estimation step, in which we compute
the posterior expectation of the HMM parameters.

Now we outline the formulas for Bayesian estimation of the HMM parameters. Note that since
the state-transition probability distributions (which are multinomial) and the prior distributions
(which are either beta or gamma) of the transitioning parameters are conjugate-exponential [9] 1,
we have to compute the Bayesian estimation of the logarithm of the transitioning parameters (re-
ferred to as the natural parameterizations) rather than of the parameters themselves. For example,

1 Strictly speaking, this claim is only partially true. Because the conjugacy only applies to the transition probability
between a pair of states, but not to the total transition probability mass from a state of interest to all motif-buffer
states,

∑
k∈Bp

β[·,k], which is treated as a single “motif-buffer-going” probability in our beta or gamma prior models.
(Defining priors for each individual β[·,k], k ∈ Bp would require too many hyper-parameters.) As a heuristic surrogate,
in certain computational step, we split the prior mass (total pseudocounts) corresponding to the total “motif-buffer-
going” probability equally among all individual “motif-buffer-going” probabilities as if each has its own pseudocounts,
and install strict conjugacy. Since each prior distribution involves at most one such “motif-buffer-going” probability,
and that the state-transition probabilities are multinomial parameters subject to a normalization constrain, we only
need to use the installed conjugate-exponential property for Bayesian parameter estimation for each “non-motif-going”
transition probability, and then obtain the Bayesian estimation of the total “motif-buffer-going” probability indirectly,
by subtracting all newly estimated “non-motif-going” transition probabilities from 1.
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for the state-transitioning parameter βg,g, we have:

E[ln(βg,g)]

∫
βg,g

ln βg,gp(βg,g|ξg,1, ξg,2, E[ng,g])dβg,g

= Ψ(ξg,1 + E[ng,g])−Ψ(
∑
j

ξg,j +
∑
k∈Bp

E[ng,k]), (7.4)

where Ψ(x) = ∂ log Γ(x)
∂x

Γ
′
(x)

Γ(x)
is the digamma function; E[·] denotes the expectation with respect

to the posterior distribution of the argument; and ng,g refers to the sufficient statistic of parameter
βg,g (i.e., counts of transitioning event g → g). The Bayesian estimate of the original parameter
is simply β∗g,g = exp(E[ln(βg,g)]). (In fact we will keep using the natural parameterization in
the actual forward-background inference algorithm to avoid numerical underflow caused by long
products of probability terms.)

The total “motif-buffer-going” probability is estimated as described in footnote 1, e.g., β∗g,ḡ =∑
k∈Bp

β∗g,k = 1 − β∗g,g. To estimate each individual “motif-buffer-going” probability, we use the
standard Baum-Welch update based on expected sufficient statistics computed from the matrix of
co-occurrence probabilities p(Xt, Xt+1|Y ), scaled by the Bayesian estimation of the total “motif-
buffer-going” probability, for example:

βg,i = β∗g,ḡ

∑
t p(Xt = g,Xt+1 = i|Y )∑
t,k p(Xt = g,Xt+1 = k|Y )

(7.5)

The initial state probability of the the BayCis HMM is not important for CRM prediction as
it only directly determine the functional state of the first position of the input sequences and its
influence diminishes quickly along the sequence. We simply fix the initial state to be a global
background with probability 1.

A5. Bayesian learning of the GHMM parameters

The Bayesian estimation of the GHMM parameters is similar to the estimation of the HMM param-
eters, with some modifications. Note that although we use HMM state space to simulate a negative
binomial duration distribution, the self-transition probability of all the cluster background state
must remain the same. Otherwise, the duration distribution will no longer be negative binomial.
Hence the averaged number of self-transitions and transitions to the next state is used.

Let cj denotes the j-th cluster background states, ncj ,cj denotes the number of self transition
on state cj , ncj ,cj+1 denotes the number of transition from state cj to cj+1. Let E[nc,c] denotes the
average of expected number of self-transitions from every cluster background states, and E[nc,c1]
denotes the average of expected number of transitions out of every cluster background states, de-
fined as:
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E[nc,c] =
1

ξcr

ξcr∑
j=1

E[ncj ,cj ], (7.6)

E[nc,c1] =
1

ξcr

( ξcr−1∑
j=1

E[ncj ,cj+1 ] +
∑
k∈Bp

E[ncξcr ,k]
)

(7.7)

Bayesian estimation of the expected value of (log) self-transition probability, with respect to
the posterior distribution, would be

E[ln(βcj ,cj)]Ψ(ξc,1 + E[nc,c])−Ψ(ξc,1 + ξc,2 + E[nc,c] + E[nc,c1]) 1 ≤ j ≤ ξcr. (7.8)

As in other parameters, the natural parameterization ln(βcj ,cj) is used, but when the Bayesian
estimation of the original parameter is preferred, we use β∗

cj ,cj
= exp(E[ln(βcj ,cj)]).

A6. The Drosophila TRS dataset
We tested our model on a selective dataset consisting of transcriptional regulatory regions regu-
lating the Drosophila melanogaster developmental genes. Each TRS in the dataset consists of the
CRMs pertinent to a particular gene, any intra-CRM background inbetween, with flanking regions
on either side of the extremally located CRMs such that the entire sequence is at least 10K bp
long, and the boundaries of the dataset are at least 2K bp from the extremal CRMs. We included
the exonic regions of the genes only when they fell in the aformentioned selected region, and not
otherwise.

Selection of the datasets was based on the REDfly CRM database and the Drosophila Cis-
regulatory Database at the National University of Singapore [61, 131]. We initially chose 89
CRMs pertaining to 34 early developmental genes. This selection was based on a filtering of
CRMs, through which we only chose CRMs which were at least 200 bp long, and contained at
least 5 motif instances (2 CRMs with a borderline count of 4 motif instances were also included).

All motif instances used were based on biological curation, and motif instances of the same
type in the database often correspond to varying lengths of nucleotide sequences. This is at odds
with most computational models of the motifs, which assume a fixed length of the motif in terms of
nucleotides. We overcome this issue by searching a 10 bp neighborhood of the annotated location
for a fixed width nucleotide sequence which has a high log odds probability of being a motif over
background (based on the PWM counts of the motif). Since both our motif algorithm and most
competing motif search algorithms assume a PWM based model of the motif, this curation provides
more accurate annotation data without placing any competing algorithm at a disadvantage. A short
summary of our input sequences is provided in this section.

This database is available online at http://www.sailing.cs.cmu.edu/BayCis. Each
TRS is graphically depicted with color coded CRM and motif regions, and is extensively hyper-
linked so that the corresponding sequences may be obtained by clicking on a relevant gene dataset
or CRM. A snapshot of the front page of the online database is shown in the main chapter.
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Gene(Length)CRM/Length Motif Gene/Length CRM(Length) Motif
1.28 (10072) 1.28 DRE / 664 DEAF1 / 8 abd-a (10045 abd-A) iab-2(1.7) / 1745 EVE / 4 KR / 1

DFD / 4 GT / 1 HB / 5
alphaTub84B alphaTub84B alpha1- TRL / 5 ap (10050) ap ApME680 / 680 ANTP / 5
(10055) tubulin promoter / 855
bap(10000) bap baplac4.5 / 4957 MAD / 4 betatub60D (10181)betaTub60D beta3-14/vm1 / 524 BAP / 1 UBX / 2
ct(10068) ct wing margin enhancer / 2692 SD / 7 dfd (11658) Dfd EAE / 2658 DEAF1 / 2

wingmargin Guss / 668 Dfd EAE-D / 833 DFD / 13
Dfd EAE-F9 / 329 EXD / 1
EAE-F2 / 392

dpp (30199) dpp dpp813 / 812 ABD-A / 9 en (11004) en stripe enhancer intron 1 / 900 EN / 6
dpp dpp261 / 256 BIN / 3 en intron / 720 EVE / 3
dpp dpp419 / 419 DL / 14 en upstream enhancer / 2401 FTZ / 12
dpp intron2 / 1983 EN / 5 FTZ-F1 / 2
dpp dl mel / 539 EXD / 5 HB / 2
dpp BS1.0 / 8801 GRH / 1 KR / 1
dpp BS1.1 / 1738 UBX / 13 ZEN / 3

ems (10304) ems elementIV / 304 ABD-B / 7 TLL / 2 twi (10415) twi dl mel / 1415 DL / 7
ems ARFE / 1244 BCD / 2 EMS / 3

ftz (10487) ftz upstream enhancer / 2562 CAD / 2 salm (10144) salm salE/Pv / 1078 BCD / 7
ftz proxA / 580 FTZ / 21 salm wingpouch Guss / 328 CAD / 4
ftz Prox-323 / 324 FTZ-F1 / 1 salm blastoderm early enhancer / 512 HB / 1
ftz neurogenic enhancer / 2250 GRH / 4 TTK / 4 salm sal242S/P / 242 HKB / 2 SD / 2
ftz zebra element / 745 HR39 / 1 SLP1 / 1 salm sal272P/P / 276 KR / 3 UBX / 5

h (10867) h stripe 3+4 ET22 / 1745 BCD / 10 hb (12055) hb 0.7 / 730 BCD / 8
h h7 element / 932 HB / 29 hb anterior activator / 245 HB / 1
h stripe 6+2 / 1081 KNI / 22 hb HZ1.4 / 1421 TLL / 9
h stripe 6 / 547 KR / 13 hb upstream enhancer / 1424

TLL / 7 hb HZ526 / 528
kni (15498) kni KD / 870 BCD / 2 kr (11348) Kr CD1 / 1159 BCD / 4

kni L2 enhancer / 1360 CAD / 1 Kr StBg1.2HZ / 1130 GT / 1
GT / 2 TLL / 6 Kr StH0.6HZ / 540 HB / 6
HB / 8 KR / 4 Kr H/I / 950 KNI / 1 TRL / 7
HIS2B / 5 SD / 5 Kr Kr/F / 1587 TLL / 7

otp (10000) otp C / 441 BYN / 4 rho (10589) rho NEE-600 / 590 DL / 4
rho NEE-300 / 328 SNA / 4
rho NEE / 299 TWI / 2

gsb (10916) gsb fragIV / 516 EVE / 3 FTZ / 3 ser (10000) Ser minimal wing enhancer / 812 AP / 14 SUH / 2
PRD / 7 PAN / 9

scr (13258) Scr 5.5HH / 5653 CAD / 2 SLP1 / 1 tsh (11144) tsh enhancer / 2144 ABD-A / 4
Scr 3.0XX / 2953 FTZ / 21 GRH / 4 tsh del-1-5 / 463 ANTP / 4
Scr 6.5KS / 6985 FTZ-F1 / 1 HR39 / 1 tsh 220bp / 221 FTZ / 4

TTK / 4 UBX / 4
slp1 (10000) slp1 5-2 / 1554 PAN / 9 sna (10013) sna 2.8kb / 2913 DL / 10

sna VA / 612 TWI / 2
so (10012) so so10 / 428 EY / 3 tll (10063) tll P2 / 2764 BCD / 8 TRL / 1

so so7 / 1612 TOY / 5 tll P3 / 1725 GRH / 1 TTK / 1
tin (10000) tin tinD / 350 MAD / 7 MED / 3 TIN / 2 sim (10065) sim mesectoderm / 631 SNA / 3 TWI / 2
eve (14256) eve stripe 3+7 / 511 BCD / 5 ubx (78414) Ubx bx1 / 1705 EN / 5

eve stripe2 / 484 GT / 3 Ubx BRE / 502 EVE / 2 ZEN / 2
eve MHE / 312 HB / 12 Ubx basal promoter / 1189 FTZ / 10 TLL / 5
eve EME-B / 395 KNI / 5 Ubx PRE polycomb response element / 1556GRH / 1 TRL / 17
eve EME-B5 / 233 KR / 10 Ubx PBX enhancer / 1378 HB / 27
eve eme2 / 300 MED / 5 TIN / 4 Ubx pbxPB / 297 KNI / 3 TWI / 6
eve EME-B3 / 262 PAN / 6 ZFH1 / 1 Ubx pbxSB / 623 KR / 1 UBX / 2

Ubx pbxAS / 584 PHO / 5 Z / 20
vg (12096) vg boundary enhancer / 754 MAD / 2 w (11737) w Bmdel-W / 6628 Z / 11

vg minimal boundary enhancer / 360NUB / 4 SUH / 1 w HPst-W / 7737
vg quadrant enhancer / 798 SD / 4 VVL / 1 w H-del-BgRVdel-W / 770

zen (10662) zen 0.7 / 726 BRK / 6
zen 1.4 / 1513 DL / 3
zen dorsal ectoderm / 624 GRH / 1 MAD / 10

Table 7.1: Summary of the Drosophila TRS dataset used for in performance comparison.
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A7. Hyperparameter selection scheme

Choosing hyperparameters for transition probabilities can be a difficult problem and has significant
impact on the performance of the model. As discussed in the Methods section, the hyperparameters
of the BayCis model reflect prior beliefs about the architectural features of the CRM structure, such
as rough spans of the inter- or intra-module background and distances between motif instances.

A standard way of specifying hyperparameters would be to see which parameter settings work
best for datasets with known TFBS, and apply the same on all datasets on which TFBS discovery
is to be performed. This is somewhat similar to the supervised learning setup of “training” and
“test” sets. The basic assumption here is that in CRMs regulating genes of similar functionality,
the CRM architecture would be somewhat similar causing the same set of hyperparameters to work
well. More formally, the hyperparameters can be also estimated in the maximal likelihood fashion
based on the empirical Bayes principle. We chose to use a representative dataset based on the
CRMs of the even-skipped gene to choose our hyperparameters for the hHMM and GhHMM.

Based on our observations, the most important hyperparameters governing precision and recall
are those regulating transition probabilities into and out of the CRM background state(s). The
CRM background state(s) and motif specific states are the only states from where one can enter the
motif specific states of the HMM. Hence, hyperparameters which cause the HMM to stay in the
CRM background states more frequently than usual risk a low precision, high recall performance
while hyperparameters which cause the CRM background states to be rarely visited risk a high
precision, low recall scenario. Accurate prediction of CRMs cause the HMM to obtain acceptable
values of precision and recall.

We specify the hyperparameters as follows: for the global background, ωg = 0.002; for the
inter-module background, ωc = 0.05; for the proximal motif buffer, ωp = 0.25; for the distal
buffer hyperparameters, ωd,1 = 0.125 (distal to global background) ωd,2 = 0.125 (distal to clustal
background) and ωd,3 = 0.25 (distal to proximal buffer), and the strength of the hyperparameters
are set to 1/10 of the expected counts of the transitions on a 15 kbp dataset with the exception of
ωg which is set to 10, 000. The background probability of the nucleotide at each position was com-
puted locally using a 2nd-order Markov model from a sliding window of 1100 bp centered at the
corresponding position. For the GhHMM, based on visual inspection of spacer length distributions
between motifs, we choose the parameter as r = 2.

A8. More on F1 and CC scores

The nucleotide-based prediction error is used in the Nature Biotechnology benchmark paper by
Tompa et al. [191]. The formulas for the F1 and CC scores are as follows:

CC =
nTP × nTN − nFN × nFP√

(nTP + nFN)(nTN + nFP )(nTP + nFP )(nTN + nFN)
, (7.9)

F1 =
2× Pr ×Re
Pr +Re

, (7.10)

where Pr = nTP
nTP+nFP

(Precision) and Re = nTP
nTP+nFN

(Recall).
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Both CC and F1 are calculated from the number of nucleotides (single positions) that are cor-
recly/wrongly predicted as positives/negatives. The value range of CC is in principle between -1
and +1 (as it is a correlation), but in practice it would lie between 0 (random predictions) and 1
(perfect predictions). As F-1 measure is also a value between 0 and 1, we use the same numerical
units in the plot.
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Chapter 8

Appendix B: Details of the CSMET model
and algorithm

B1. The Molecular and Functional Substitution Model
We use the Felsenstein 1984 model (F84) [49], which is similar to the Hasegawa - Kishino - Yano’s
1985 model (HKY85) [76] and widely used in the phylogenetic inference and footprinting litera-
ture [49, 122], for nucleotide substitution in our motif and background phylogeny. Formally, F84 is
a five-parameter model, based on a stationary distribution π ≡ [πA, πT , πG, πC ]′ (which constitutes
three free parameters as the equilibrium frequencies sum to 1) and the additional parameters κ and
ι which impose the transition/transversion bias. Using concise notation for the purine frequency
πR = πA + πG and pyrimidine frequency πY = πT + πC , the instantaneous rate matrix can be
written as:

QN =


∗ (1 + κ/πY )ιπC ιπA ιπG

(1 + κ/πY )ιπT ∗ ιπA ιπG
ιπT ιπC ∗ (1 + κ/πR)ιπG
ιπT ιπC (1 + κ/πR)ιπA ∗

 (8.1)

Since rows of the instantaneous rate matrix must sum to zero, the starred elements of the matrix
are determined from the other 3 elements of the row, and not shown for clarity. According to
the continuous-time Markov process theory, the corresponding nucleotide-substitution probability
matrix over a period of time t is given by PN(t) = eQN t. To apply this model to a motif or a back-
ground phylogeny, we set the stationary distribution π to be the empirical nucleotide-frequency in
the corresponding sequence entity that the phylogeny is defined on (e.g., for phylogeny T (l)

m defined
on site l of a motif, we let π ≡ θl, the l-th column of the PWM of the motif), and the nucleotide-
substitution probability from an internal node c to its descendant c′ along a tree branch of length b
can be expressed as follows:

PN(Vc′ = j|Vc = i, β) = e−(κ+ι)bδij + e−ιβ(1− e−κβ)
( πj∑

h(πhεjh)

)
εij + (1− e−ιβ)πj, (8.2)

where i and j denote nucleotides, δij represents the Kronecker delta function, and εij is a function
similar to the Kronecker delta function which is 1 if i and j are both pyrimidines or both purines,
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but 0 otherwise. The summation in the denominator concisely computes πR or πY .
A less concise, but more intuitive parameterization involves the overall substitution rate per

site µ and the transition/transversion ratio ρ, which can be easily estimated or specified. We can
compute the transition matrix PN from µ and ρ using Eq. (8.2) based on the following relationship
between (κ, ι) and (µ, ρ):

κ =
2πRπTρ− (2πAπG + 2πCπT )

(2πAπG/πR + 2πCπT/πY )

µ

1 + ρ
, ι =

1

2πRπY

µ

1 + ρ
.

To model functional turnover of aligned substrings along functional phylogeny Tf , we addi-
tionally define a substitution process over two characters (0 and 1) corresponding to presence or
absence of functionality. Now we use the Jukes-Cantor 1969 model (JC69) [85] for functional
turnover due to its simplicity and straightforward adaptability to an alphabet of size 2. The JC69
model is a single parameter model, using an instantaneous substitution rate µ which is confounded
with the time variable. The instantaneous rate matrix under JC 69 is:

QF =

(
−µ µ
µ −µ

)
. (8.3)

And the transition probability along a tree branch of length β (which now represents the product
of substitution rate µ and evolution time t, which are not identifiable independently,) is defined by:

PF =

(
1
2

+ 1
2
e−2β 1

2
− 1

2
e−2β

1
2
− 1

2
e−2β 1

2
+ 1

2
e−2β

)
. (8.4)

From Eqs. (8.2) and (8.4), we can see that the likelihood of aligned nucleotides and functional
states can be expressed as a function of the evolutionary parameters, based on which a maximum
likelihood estimation of these parameters can be obtained from training data.

B2. Multi-specific CRM simulation and experimental setup
The synthetic CRMs where true TFBS annotations are known for evaluating CSMET are generated
as follows. First, the simulator stochastically samples the evolutionary trees of motif, background,
and functional-annotation, Tm, Tb and Tf , from the prior distributions (recall that each tree is a
three-tuple including the stationary distribution, the tree topology, and the branch lengths). The
Felsenstein transition/transversion coefficient can in principle be also sampled, but for simplicity
and biological validity we pre-specify it to be 2. Then it simulates motif instances, background
sequences, and functionality states (that determine motif turnover) in different taxa from their
respective evolutionary trees under certain substitution rates. It can also simulate motifs with
changing substitution rates according to a scheduling along a sequence, or in random order. Then
it uses the global HMM to generate positional organization of the motifs and backgrounds in the
CRM. Finally these building blocks are put together to synthesize an artificial CRM. This simulator
can be used to simulate realistic multi-specific CRMs resulting from various nontrivial evolutionary
dynamics. It is useful in its own right for consistency/robustness analysis of motif evolution models
and performance evaluation of comparative genomic motif-finding programs.
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Figure 8.1: A schematic diagram of CSMET training. For the functional phylogeny, motif-instance
alignments were generated by concatenating columns of indicators of motif presence/loss along
the sequence alignment; and the scaling factor was fitted using the common topology. For the
motif phylogeny, the nt-alignment of only each attendant site was generated by concatenating all
columns of aligned nucleotides from that site and the corresponding multinomial estimated from
them; the common topology was used for all sites. The motif specific mutation rate and scaling
factor were estimated using the common topology from aligned nucleotides corresponding to all
motif sites. For the background phylogeny, all segments of inter-motif sequences and flanking
regions of CRMs were used.
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We performed three sets of simulation experiments based on simulated datasets. In each case,
we generate a data set of CRM alignments from the simulator that is simulating a pre-specified
coupled functional and molecular evolution processes unknown to the programs used in the test
phase. Each data set contains 50 simulated alignments, each of which is 1500 basepairs in length
and includes 10 taxa whose divergence is controlled by the topologies and the branch lengths of the
functional and molecular phylogenies being used. Each alignment contains instances of a single
type of motif, whose length is set to be 8-bp. The parameters of the generative model used for the
simulations are chosen to be representative of such parameters estimated from real biological data.

The density of motif instances is subject to a systematic adjustment for each data set over a
wide range to generate problems of different degrees of difficulty.

The experiment for evaluating performance of CSMET under varying TFBS turnover rates was
performed by using a different annotation tree for each experimental point. An initial benchmark
evolutionary tree was chosen with branch lengths and topology based on estimation from actual
nucleotide alignments on 11 aligned fly species. All parameters of the Jukes Cantor model based
evolutionary tree were kept fixed across experimental data points, except for the fact that the branch
lengths were scaled by a constant factor at each data point with respect to the initially chosen tree.
The scaling factors correspondingly used for the data points were respectively: 1.50, 2.00, 2.50,
3.00, and 3.50. With increasing branch lengths, the amount of turnover per site in the simulated
data increases - for a scaling factor tending to infinity the turnover model becomes random and
approximates 50% For our data points, the estimated turnover rates corresponding to the chosen
scaling factors were : 25%, 30%, 32%, 34% and 36%.

The simulated sequences with non-uniform TFBS turnover rates were generated by allowing
the annotation tree scaling factor to vary for each motif block inside every simulated sequence.
The scaling factor for each instance of a generated motif was equiprobably picked from the values
of 1.00, 1.50, 2.00 and 2.50 . The corresponding turnover rates were 20%, 25%, 30% and 32%.

B3. Evaluation
Given each 1500bp multiple alignment, we use 1000 bp for training, and the remaining 500 for
testing the performance of the trained models. We base our evaluation of every program on three
commonly used evaluation metrics - precision, recall and the F1 score (i.e., the harmonic mean)
based on precision and recall [191]. The precision is defined as the ratio of number of true pre-
dicted positives over number of all predicted instances; and recall is defined as the number of true
predicted positives to the number of all positives in the gold-standard annotation. (By this choice
of evaluation score we avoided trivial specificity measure due to very large number of both pre-
dicted and true negatives.) We also allow a little leeway in the prediction of the motif location –
a predicted hit falling within a tolerance window of size 5bp on either side of the actual starting
location of the motif is also counted as a correct hit. When an algorithm fails to make any pre-
dictions, both precision and recall are taken to be zero. F1 score in such cases is also taken to be
zero. For simulation-based evaluation, since the ground-truth of motif locations is known in all
taxa, the numbers of true and false predictions are counted over motif instances in all taxa. For
each experiment, we report summary statistics of performance scores over all 50 alignments for
each algorithm.
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Chapter 9

Appendix C: Details of the DISCOVER
model and algorithm

C1.Formal definitions of some features
Sequence Conservation

This feature captures the degree of conservation of a potential motif binding site i given the position
weight matrix of the motif, θ(m). The feature function is defined as:

f
(m)
SC (yi, x) = f

(m)
SC (yi, xi:i+l(m)−1)

= δ(yi,M(m))
l(m)∑
j=1

β(θ
(m)
j , xi+j−1) (9.1)

β(θ
(m)
j , k) = log θ

(m)
jk − log θ0k; (9.2)

where θ(m) = {θ(m)
jk : j = 1, ..., l(m), k ∈ {A,C,G,T}} is the PWM of motif type m, l(m) is the

length of the motif, and θ0 = {θ0k : k ∈ {A,C,G,T}} is the nucleotide frequency in background.
The δ function equals 1 when yi is assigned to state M(m) and 0 otherwise.

GC-Content

A high percentage of nucleotide guanine (G) and cytosine (C) may indicate a region containing
regulatory elements. The feature function is defined as:

fGC(yi, x) = δ(yi,M)
(
p(xi−w/2:i+w/2)− p0

)
(9.3)

p(xleft:right) =
1

right− left+ 1

right∑
i=left

(
δ(xi,G) + δ(xi,C)

)
(9.4)

where w is the window size, p is the GC-percentage inside the window whose value lies in [0,1],
and p0 is the average GC-percentage over the dataset. The δ(yi,M) function equals 1 when yi is
assigned to any motif state and 0 otherwise.
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As an example, the sum of conservation symmetry features can be computed as:

FCS(y, x) =
L∑
i=1

fCS(yi, x) (9.5)

where fCS is defined in Eq 9.8 and L is the length of the sequence. FCS(y, x) is one of the elements
in function vector F(y, x) used in a CRF model in Eq 4.1.

Reverse Complementarity

This feature assesses how likely a potential binding site i is reverse complementary with itself.
In other words, that is how similar the site is to its counterpart on the other genomic strand. The
higher similarity may suggest a true motif. The feature function is defined as:

fRC(yi, x) =
∑
m

δ(yi,M(m))
(
s(xi:i+l(m)−1)− s0

)
(9.6)

s(xi:i+l−1) =
1

bl/2c

bl/2c∑
j=1

δpair(xi+j−1, xi+l−j) (9.7)

where s is the reverse complementary score of a potential binding site whose value lies in [0,1], s0

is an offset value that is set at the mean, and l is the length of the motif. The δ(yi,M(m)) function
equals 1 when yi is the state of motif type m and 0 otherwise. The δpair(a, b) function equals 1 if
and only if a and b are a Watson-Crick pair.

Conservation Symmetry

This feature captures the symmetry of the degree of sequence conservation given motif PWM
within a motif binding site with respect to the center. The feature is defined as:

fCS(yi, x) =
∑
m

δ(yi,M(m))
(
cs(θ(m), xi:i+l(m)−1)− cs0

)
(9.8)

cs(θ(m), xi:i+l(m)−1) =
1

bl(m)/2c

bl(m)/2c∑
j=1

∣∣∣β(θ
(m)
j , xi+j−1)−

β(θ
(m)

l(m)+1−j, xi+l(m)−j)
∣∣∣ (9.9)

where cs averages the conservation symmetry score over a potential binding site, cs0 is an offset
value of choice, l(m) is the length of the motif, and β function is the conservation score of a single
base defined in Eq 9.2.
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Melting Temperature

This feature provides an estimated melting temperature of sequences within a certain size of win-
dow by a formular:

fMT (yi:i+w−1, x) = 64.9 +
41 ∗ (G+ C − 16.4)

A+ T +G+ C
(9.10)

where w is the window size, and A, T, G and C are the counts of the four types of nucleotides
within the window. We set the window size to 15, which is about the length of a long TFBS.

Distance to Transcription Start Site

Sites closer to a transcription start site are more likely to be TFBSs, so we adopt this feature to
assess how close each site is to a nearest transcription start site. It is easy to understand that a
distance change from 0-bp to 1k-bp makes more difference than a distance change from 10k-bp
to 11k-bp though both of them are shifted by 1k-bp, so the feature score should not be linear on
distance. We apply a logarithm function and a small constant to avoid logarithm going to negative
infinity. The feature scores are calculated as:

f(z) = log(z + 5) (9.11)

where z is the distance in base-pair.

C2. Model Parameters
Feature weights constitute the set of model parameters. Some of them can be fixed and the others
are free. More free parameters make the CRF model more complex, which might be harder to
learn. As a guide line, we want to avoid redundant free parameters, since they will not make any
contribution. On the other hand, parameters that are not likely to be properly learned from training
data should never be included, because including them will only increase the chance of over-fitting.
In this part, our main focus is on the weight of state transition features, because they account for a
large portion in the whole parameter set.

In the CRF model, we assign a parameter as a weight to each of the features defined in the
previous subsection. Those are the vector λ in Eq 4.1. However, some of them are not free
parameters because of the context. In state transition, it is not allowed to reach an M state directly
from a G state, since it is enforced that state M’s representing TFBSs are surrounded by state C
representing cis-Regulatory Module region. Thus, the corresponding state transition features have
a weight being -inf, which means that the transitions will never happen in the CRF model. In
practice, we set the weights to a small enough number.

For the sake of a good performance, we want to have a reasonable number of free model
parameters. More free parameters will promote the expressing ability of the model, but at the same
time the hardness of model learning will increase, the running time of learning algorithm will rise,
and some parameters may be overfitting due to the lack of data describing the related features. In
our case, the state transitions from a motif state to a motif state are rare, if they ever happened,
which will make those transition features an inevitable overfit if we set them free. Our solution is
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banning the transition between motif states and setting the matching weights to −inf . As a result,
the number of all possible state transitions reduces dramatically.

A close look at the remaining set of state transitions will reveal redundancy. Assuming that no
CRM region is on the edge, the sequence of hidden states will start with a global background state
and end with a global background state. In that case, the number of transition from state G to state
C will be exactly the same as the number of transition from state C to state G along the sequence
of states. The models are identical to each other as long as the sum of the weight of transition
feature G-C and the weight of transition feature C-G is a constant, given all the other parameters
unchanged. Only one of the two weights need be a free parameter, leaving the other one to be fixed
at any finite value. For simplicity, we set the weight of C-G to zero. Similar situations happen to
the pair of state transition C-M(m) and M(m)-C, so we fix the weight of M(m)-C at zero.

The free parameters of state transition features left so far are G-G, C-C, G-C and C-M’s. The
number of state transitions along the sequence is unchanging given the sequence, so there is one
more degree of redundancy, a common offset within the weights of state transition features. We
get rid of the common offset by fixing the weight of G-G at zero. The final free parameters of state
transition features are those of C-C, G-C and C-M’s.

For those free parameters, it is not a good idea to let them be totally free. A prior can be
imposed on each of them, as a way to encode prior knowledge on them. This may help in the
attempt to avoid over-fitting issues. For example, we can make a prior be a normal distribution of
mean 0 and variance σ2.

C3. Model training
In this section, we briefly describe the model training procedure in which feature weights of the
CRF model are learned from training data. A more thorough exposition is presented in the Ap-
pendix.Firstly, a learning criterion is set up, which can be either to maximize likelihood or to
maximize posterior probability. Then, it is turned into a convex optimization problem, and finally
a Quasi-Newton method is applied.

Our goal in the model learning task is to learn the best setting for λ, the weights of features
in the CRF model. What we have are a group of sequences as training data with their nucleotide
types x and state labels y, so the value of feature functions f can be computed given necessary
hyper-parameters.

A criterion is needed to learn the feature weights λ from nucleotide types x and state labels y,
or more precisely from feature values f. In the CRF model, a reasonable criterion is to maximize
the likelihood of λ with respect to y conditioned on x, which equals the probability of state labels
y given feature weights λ conditioned on nucleotide types x, because the probability model itself
is defined in this conditional scheme. The max likelihood estimator of λ can be expressed as:

λ̂ = arg max
λ

L(λ | y, x)

where L(λ | y, x) = P (y | x,λ)

For the simplicity of notation, we just showed likelihood function in a one-training-sequence
circumstance. When multiple (for example, m) training sequences are used, as we do in our
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experiment, the likelihood function will be:

L(λ | y, x) = P (y | x,λ) =
m∏
k=1

P (y(k) | x(k),λ)

where x(k) and y(k) represent the vector of nucleotide types and a vector of state labels of the k-th
sequence, respectively.

Getting the maximum point of a likelihood function is equivalent to getting the maximum
point of a log-likelihood function Lλ = logL(λ | y, x), since logarithm function is monotonically
increase.

Lλ =
m∑
k=1

[
λ · F(y(k), x(k))− logZ(x(k),λ)

]
We can prove that the function of Lλ is concave with respect to λ , so it turns into a typical con-

vex optimization problem to find the maximum point [20]. Gradient method or Newton’s method
can be adopted, and convergence is assured in theory. Both of them are iterative methods which
first get a search direction and then find a proper step length in each iteration. The update scheme
is:

λ(n+1) = λ(n) + t4λ

where n is the iteration round, 4λ is the search direction, and t is the step length. The search
direction is set to the negative of the first derivative of log-likelihood function −OLλ in Gradient
method, and −OLλ/O2Lλ in Newton’s method. The step length is determined by a Back-track
Search method. The initial point λ(0) can be picked by experience.

It can be shown that the first derivative of log-likelihood function with respect to λ is:

Oλ =
m∑
k=1

{
F(y(k), x(k))− E

[
F(y, x(k))

∣∣ x(k),λ
]}

The derivative is tractable, because the conditional expectation of feature sums F(y, x(k)) given
genomic sequence x(k) and feature weights λ is computational feasible.

In practice, however, gradient method is likely to converge slowly, and the second derivative
term in Newton’s method is hard to compute efficiently. A Quasi-Newton method [3] is more prac-
tical, in which an approximation is applied to the inverse of the second derivative of log-likelihood
with respect to feature weights λ and the rest parts are the same as Newton’s method. More specif-
ically we use BFGS approximation method.

Besides choosing the likelihood of λ as the target function to maximize, we can instead use the
posterior probability:

P (λ | y, x) =
P (λ, y, x)

P (y, x)
=
P (y | x,λ)P (x | λ)P (λ)

P (y, x)

As long as feature weights are independent of genomic sequences, P (x | λ) = P (x), which is
constant. So,

P (λ | y, x) ∝ P (y | x,λ)P (λ)
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The full version of posterior probability for multiple (m) training sequences is:

P (λ | y, x) ∝ P (λ)
m∏
k=1

P (y(k) | x(k),λ)

assuming state labels of different sequences y(k) are independent of each other given x(k) and y(k)

is independent of x(j) given x(k) when j 6= k.
The new target function is concave, as long as the prior distribution function of λ is log-

concave. We keep using Lλ to represent the logarithm of posterior probability. As an example, the
full version for multiple (m) training sequences is:

Lλ =
m∑
k=1

[
λ · F(y(k), x(k))− logZ(x(k),λ)

]
− λ · λ

2σ2
+ C

if each λ follows a N (0, σ2) as a prior. C is a constant in the equation. The equation has a similar
form to a regularized log-likelihood.

C4. Facets of present work and scope of future work
We have proposed a new method based on Conditional Random Fields for transcription factor
binding site prediction in genomic sequences. Our approach takes advantage of the CRF models,
which can overcome label bias problems that often happen in HMM models. The CRF model is
a discriminative method that is based on a set of feature designs. The flexible forms of feature
designs make it possible and easier to encode current knowledge in the field as well as to incor-
porate new information on TFBS when they are available. For example, we have made use of the
knowledge about cis-Regulatory Module architecture as well as the abundance level of guanine
and cytosine in nearby region in our predictor for TFBS. A feature weight, a parameter in the CRF
model, determines the degree to which the feature influences the probability model. Priors can
be put on the parameters, as long as they do not break the concavity of the target function. The
concavity (or convexity) is such a good characteristic that we no longer need to worry about the
annoying local maximum (or minimum) issues in iterative methods, and convergence is guaran-
teed theoretically. As expected, our method outperforms window-based methods and HMM-based
methods in the experiment.

The CRF model also allow us to put together more than necessary features, because the feature
weights that we got from the learning step will decide whether they are in use or not in the final
model. However, as for now, the limited data size we got may prevent us from learning out the
actual value of some under-represented features, and may result in severe over-fitting if we intro-
duce too many features at a time. On the other hand, the iterative methods in the learning step
may have a higher difficulty in convergence as more and more free feature parameters are added
into the model, because an approximation is being used. Sometimes, singularity may occur in
the approximation to the Hessian matrix 1. In such case, we used the identity matrix to replace it,

1The second derivative matrix of target function, log-likelihood or log-posterior-probability, with respect to the
variable vector, λ.
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which is the same as its initial setting. The analysis and improving of convergence speed regarding
various free parameter set could be a future work.

As for now, our feature functions are limited to containing only neighboring hidden states.
More variety of features, such as long distance features between two hidden states that are away
from each other and features involving more than two hidden states, are desired when trying to
encode some knowledge. For example, we will need long distance features to encode motif co-
occurrence, some other kind to directly describe motif spacing and CRM length, etc. However,
complex feature functions could make the algorithms currently used in the learning step invalid,
therefore alternative algorithms need be studied. There is a (hidden) trade-off between the express
power of feature functions and the efficiency of learning. This will be one of the future directions
to work on.

It is noticeable that an offset is presented in Eq (9.3) (9.6) (9.8), which tries to move the mean
value of a feature to 0. The motivation is trying to minimize the impact of adding/removing the
feature to other weights. It is helpful in practice.

A special prediction scheme, rank decoding, is used here. We control the number of positive
predictions made rather than a common threshold for probability values. This can strike a good
balance between sequences, because longer sequences tend to fit into a model worse when it is
different from the (unknown) real model. On the other hand, this scheme is reasonable in the
sense of working load when we want to verify the predictions in biology experiments. Sequence
decoding, another prediction scheme, does not work at most time, which barely output positive
predictions, because of the modeling error accumulated along the long sequence. MAP decoding
may sometimes work well.
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