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Abstract

Semantic parsing, the task of translating user-issued natural language (NL) ut-
terances (e.g., Flights from Pittsburgh to New York) into formal meaning representa-
tions (MRs, e.g., an SQL database query or a Python program), has become an impor-
tant direction in developing natural language interfaces to computational systems.
Recent years have witnessed the burgeoning of applying neural network-based
semantic parsers in various tasks and domains. However, meaning representa-
tions typically exhibit strong syntactic structure, and are de�ned following domain-
speci�c structured knowledge schemas (e.g., a database schema or Python API spec-
i�cation), which is not easily captured by standard neural sequence transduction
models. Neural semantic parsers are also data-hungry, requiring non-trivial manual
annotation e�ort by domain experts. These issues limit the scope of applications
supported by a neural semantic parser, impeding the progress of applying the sys-
tem to broader scenarios, especially those with diverse and complex structure of
meaning representations.

In this thesis, we explore developing neural semantic parsing models that could
better capture the structure in various types of logical formalisms and knowledge
schemas, while providing approaches to mitigate the cost of labeled data acquisi-
tion. The dissertation consists of three parts. The �rst part introduces a general-
purpose parsing model with built-in syntactic knowledge of the grammatical struc-
ture of meaning representations. Next, in the second part, we investigate approaches
to encode structured information in domain knowledge schemas (e.g., database ta-
bles) useful to understand user-issued utterances. Speci�cally, we focus on ground-
ing elements in the schema (e.g., columns like departure_city in database tables,
or functions like GetFlight(from=GetCityByName(·)) in API speci�cations) to
their corresponding NL constituents (e.g., from Pittsburgh) in utterances. Finally, in
the third part, we aim to improve the data e�ciency of semantic parsers via semi-
supervised learning, while developing machine-assisted approaches to accelerate
training data acquisition.
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Chapter 1

Introduction

Semantic parsing studies the task of transducing natural language (NL) utterances into struc-
tured formal meaning representations (MRs, e.g., �rst-order logic or computer programs) [8].
Research in semantic parsing could be categorized into two major threads. The �rst thread of re-
search considers parsing to general-purpose logical forms that represent the meaning of natural
language sentences, like λ-calculus [177, 178] and abstract meaning representations [9, 12, 137].
Another direction, which is the central topic of this thesis, is task-oriented semantic parsing,
where a system accomplishes user-issued tasks by translating her natural language queries
into machine-executable programs [184, 235]. Fig. 1.1 illustrates two representative scenarios
of task-oriented semantic parsing. The �rst example shows a semantic parser as an interface to
a �ight booking system, where a user’s utterance is converted to an sql query executable on a
database of �ight information [81]. The second example features code generation from a pro-
grammer’s natural language intent, where the intent is directly translated into source code writ-
ten in general-purpose programming languages like Python (e.g., Github Copilot [30]). Indeed,
task-oriented semantic parsers play a key role in building natural language interfaces to compu-
tational systems, with other applications like conversational virtual assistants [38, 43, 65, 166],
robot instruction following [7, 19], question answering over knowledge bases [18, 27], and se-
mantic search [15]. Those systems also power some of the most popular commercial AI prod-
ucts, like Wolfram Alpha, Amazon Alexa, Apple Siri and Google Assistant.

Recent years have witnessed the proliferation of development in neural network-based se-
mantic parsers [50, 51, 64, 84, 157, 188, 202, 207, 244, inter alia]. The simplest form of such neural
parsers is based on attentional sequence-to-sequence models [10, 123], where utterances and
meaning representations (e.g., those in Fig. 1.1) are treated as tokenized sequences, and the
model predicts MR tokens given the input utterance [50, 81, 84]. Despite the e�ectiveness of
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Flight Booking Assistants

SELECT FlightId from Flight
WHERE Flight.Origin = ‘PIT’
AND Flight.Destination = ‘SEA’

Show me flights from Pittsburgh to Seattle?

Python Code Generation

Sort my_list in descending order

sorted(my_list, reverse=True)

?

(a) (b)

Figure 1.1: Example applications of task-oriented semantic parsing.

those semantic parsers based on vanilla neural sequence transduction models, they fail to cap-
ture the underlying structure of the task. Speci�cally, in this thesis, we consider the following
two types of structure.

Syntactic Structure in Meaning Representations Meaning representations exhibit rich
syntactic structure. For example, the sql query and Python code in Fig. 1.1 are de�ned follow-
ing the grammar speci�cations of their programming languages (e.g., Fig. 1.2, Part I). Generating
MRs using vanilla neural sequence decoders without modeling the syntactic knowledge could
potentially yield grammatically incorrect outputs. Such models could also be data hungry, re-
quiring more data to learn the underlying grammatical structure of MRs [84]. Therefore, to
capture the grammar knowledge and ensure the syntactic correctness of generation results, a
neural semantic parser often employs speci�cally-designed components tailored to the struc-
ture of task-dependent MRs. As an example, a parser that generates sql queries over databases
would use dedicated neural modules to predict columns in the SELECT clause and conditional
expressions in the WHERE clause when generating an sql query [207, 244]. However, modeling
syntactic structure using dedicated neural components would easily become intractable for ap-
plications with complex MRs, like Python code generation (Fig. 1.1b). Such strong reliance of
a parser’s neural architecture on the underlying syntactic structure of MRs renders designing
neural semantic parsers a non-trivial domain-speci�c endeavor.

Structure in Domain Knowledge Schemas To understand user-issued utterances in a par-
ticular domain, semantic parsers often need to encode necessary task-dependent knowledge
schemas. Such domain knowledge is also typically de�ned in a structured fashion. As illus-
trated in part II of Fig. 1.2, the text-to-SQL parser in Fig. 1.1a will need to process a relational
database schema of �ight information, consisting of structured DB tables like Flight. Addi-
tionally, the code generation system in Fig. 1.1b could potentially rely on an API speci�cation
de�ning signatures of domain functions (e.g., sorted( arr , reverse= bool )) and their ex-
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emplar natural language intents (e.g., sort an array arr ). Such schematic speci�cation of custom
functions and their NL query patterns is adopted by commercial semantic parsing systems to
allow developers add new functionalities.1 When encoding those domain knowledge schemas,
a key issue is to ground NL constituents in utterances (e.g., “from Pittsburgh” in Fig. 1.1a, or “in
descending order” in Fig. 1.1b) to their corresponding elements in the schema (e.g., the table col-
umn Origin, or the named argument reverse=True), which is bene�cial for semantic parsers
to infer the meaning representations related to these NL constituents [107, 157, 188, 227].

Neural Semantic Parsers are also Data Hungry Besides the lack of modeling structure in
meaning representations and domain schemas, another issue pertaining to the design of neural
semantic parsers is the cost of data acquisition. Classical supervised learning of neural semantic
parsers requires large amounts of parallel training data consisting of NL utterances with man-
ually annotated MRs [84]. However, understanding task-speci�c MRs requires strong domain
knowledge, and its annotation can be expensive, cumbersome, and time-consuming [18]. There-
fore, the limited availability of parallel data has become the bottleneck of existing supervised-
based models.

The rich structure in meaning representations and domain knowledge schemas are not eas-
ily captured by semantic parsers based on standard neural sequence-to-sequence models. This
issue, together with the cost of data annotation, has signi�cantly impeded the process of apply-
ing neural semantic parsing systems to a broader range of applications, especially those with
complex structure of domain knowledge and formalisms of meaning representations.

1.1 Thesis Overview

In this thesis, we put forward a series of methods to tackle the challenges in modeling struc-
ture in meaning representations and domain knowledge schemas, as well as to mitigate the
cost of annotating parallel training data. Fig. 1.2 presents an illustrative overview of the thesis.
Speci�cally, we �rst develop syntax-driven parsing models that generate MRs following their
grammatical structure, reducing the output space of valid MRs while ensuring their syntactic
correctness (Part I). Next, we explore modeling approaches that could encode and understand
structured knowledge schemas of target domains (Part II). Finally, to reduce the cost of ac-
quiring labeled training data, we improve the data-e�ciency of neural semantic parsers using

1For example, Google Assistant supports this feature using custom intents.
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ASTBWRBMR(¦ ¦   )
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Flight
FlightID Int
Origin String

Destination String

Airport
Name String
City String
Category string

,

..

Figure 1.2: Roadmap of the thesis covering the entire life cycle of neural semantic parsing. First, Par-
allel training data of utterances and MRs is collected using an e�cient machine-in-the-loop pipeline
(Chapter 9). Next, schema understanding models aim to encode domain knowledge schemas useful to
interpret the semantics of utterances, such as database tables and API speci�cations (Part II). Those do-
main schemas can be encoded using pre-trained encoders (Chapter 5), or used to improve prediction of
meaning representations by modeling the alignments between NL phrases and MR spans in API speci�-
cations (Chapter 6). The schemas could also be used to synthesize parallel training data in an unsuper-
vised fashion, which helps parsers implicitly learn schema information when trained on the synthetic
data (Chapter 7). Given the domain knowledge and an input utterance, a syntactic driven parsing model
translates the utterance into an MR represented by its abstract syntax tree, using a transition system that
encodes the domain grammar as prior syntactic knowledge (Part I, Chapters 3 and 4). Finally, the perfor-
mance of a semantic parser could be further improved using semi-supervised learning with additional
unlabeled utterances (Chapter 8).

semi-supervised learning, while expediting the data acquisition process with a semi-automatic
machine-in-the-loop annotation framework (Part III). The thesis consists of three parts. A de-
tailed overview of each part is as follows:

4



Part I Structured Program Generation Models In this part, we build general-purpose
structured semantic parsing networks that capture the syntax of meaning representations as
prior knowledge. As illustrated in Fig. 1.2(Part I), instead of designing specialized parsing mod-
ules to re�ect the structure of domain grammars, we put forward generalized parsing models
that abstract the domain-speci�c syntactic formalisms of meaning representations using ab-
stract syntax trees (ASTs), which serve as a general-purpose syntax-agnostic form of meaning
representation. Speci�cally, we design a uni�ed parsing model that transduces NL utterances
into domain-general ASTs. This process is gauged by the underlying domain-speci�c grammar,
ensuring the syntactic well-formedness of generated ASTs. We �rst show that the proposed
syntax-driven parsing model leads to signi�cant improvements in code generation, where the
grammar of MRs is larger and more complex than classical semantic parsing tasks (Chapter 3).
To demonstrate the approach could be generalized to di�erent paradigms of MRs and tasks,
we further develop a general-purpose parsing framework (Chapter 4), which provides a uni�ed
interface to specify task-dependent grammars for the syntax-driven parsing model, while re-
maining �exible enough to incorporate extra domain-speci�c knowledge. We show the model
achieves competitive performance on a variety of semantic parsing and code generation bench-
marks.

Part II Understanding Structured Domain Schemas In this part, we explore methods to
encode structured domain knowledge schemas essential to understand the semantics of user-
issued utterances. We start with a Transformer model [185] for learning joint contextual rep-
resentations of utterances and (semi-)structured database tables (Chapter 5). This model is
pre-trained on massive parallel corpora of Web tables and their NL contexts, which implicitly
captures the general alignments between NL constituents in utterances (e.g., from Pittsburgh,
Fig. 1.1a) and schema elements like table columns (e.g., Origin) using self-attention. Next,
in Chapter 6 we generalize the notion of knowledge schema from database tables to speci�-
cations of domain function signatures (e.g., sorted( arr , reverse= bool ), Fig. 1.1b) and
their exemplar NL intents (e.g., Sort an array arr ), and attempt to explicitly model the ground-
ing of phrases in utterances to those schema elements, such as functions (e.g., “Sort an array

arr ”↔sorted( arr , ? )) and their arguments (e.g., “in descending order”↔reverse=True).
We propose a supervised attention mechanism, encouraging the model to predict MR segments
(e.g., reverse=True) using aligned spans in the utterance (e.g., in descending order), as shown
in Fig. 1.2(Ch. 6). Finally, to quickly adapt a semantic parser to understand knowledge schemas
presented in emerging new domains, in Chapter 7 we lift the requirement of having annotated

5



MRs for training the schema understanding model using zero-shot data synthesis, where we
automatically generate compositional utterances (e.g., Sort arr in descending order) labeled with
MRs from a grammar speci�cation that de�nes canonical NL intents and their MR implementa-
tion (e.g., “Sort arr”↔sorted(arr, ? ), “in descending order”↔reverse=True, as in Fig. 1.2).
We also study approaches to bridge the gap between those synthetic utterances and real-world
user-issued ones using grammar engineering and paraphrasing by pre-trained language mod-
els. The resulting model achieves competitive performance without using annotated training
data.

Part III Data E�cient Approaches In the third part, we seek measures to mitigate the
paucity of annotated training data. We �rst present an algorithm for semi-supervised learning
of semantic parsers, where a parser is trained with both limited amount of labeled parallel data,
as well as readily-available unlabeled natural language utterances. We propose a variational
auto-encoding model that treats MRs not observed in the unlabeled data as tree-structured
latent variables (Chapter 8). Next, we study the problem of training data collection in the con-
text of code generation, with the aim of acquiring relatively large amounts of utterances and
labeled programs with fewer annotation e�orts required from domain experts. We resort to cu-
rated resources on community question answering websites (Stack Overflow), and propose
a machine-in-the-loop approach for cost-e�ective collection of parallel corpora, where annota-
tors work with a mining model that proposes candidate examples to verify and revise, whose
performance is iteratively improved using the newly annotated data (Chapter 9).

* * *

To summarize, this thesis put forward neural semantic parsers that better capture the struc-
ture in meaning representations and knowledge schemas, as well as data annotation and learn-
ing paradigms that are more cost e�ective. Before diving into the details of those proposed
approaches, we �rst present a survey of related research topics in Chapter 2.

6



Chapter 2

Background

In this chapter, we present a holistic overview of research in semantic parsing related to this the-
sis. We survey existing approaches from two perspectives. Speci�cally, §2.1 describes di�erent
formalisms of meaning representations and their representative semantic parsing algorithms,
which is closely related to our proposed parsing and schema understanding models in Parts I
and II. Next, §2.2 outlines learning paradigms to train semantic parsers with various types of
supervision, which inspire our data e�cient learning methods in Part III. When discussing
those related works, we also try to draw the connections between existing approaches and our
contributions made in this thesis.

2.1 Logical Formalisms and Parsing Algorithms

Central to a semantic parser is the logical formalism that the parser adopts to represent mean-
ing of natural language utterances. We start with a brief review of di�erent kind of logical
formalisms for meaning representation, together with the parsing algorithms that convert ut-
terances into MRs.

2.1.1 Classical Representations: λ-calculus and Others

Lambda Calculus Lambda (λ)-calculus is a general-purpose formal symbolic system to rep-
resent computation, and has been adopted as a commonly-used formalism to represent the
meaning of NL sentences for semantic parsing [28]. Fig. 2.1 gives example MRs de�ned in λ-
calculus. The basic constructs ofλ-calculus expressions are constants, like entities (e.g., pittsburgh)
and functions (e.g., flight, from). The simplest form of functions map entities to binary

7



u1: Show me �ights from Pittsburgh to Seattle.

z1: λx.flight(x) ∧ from(x,pittsburgh) ∧ to(x,seattle)

u2: What is the largest state?

z2: argmax (λx.state(x), λx.size(x))

Figure 2.1: Example utterances with λ-calculus meaning representations. Examples are adapted from
Zettlemoyer and Collins [236, 237]

boolean values (e.g., flight(x) in z1 returns True if x is a �ight, or False otherwise) or
numbers (e.g., size(x) in z2). More complex functions can be composed via logical connec-
tors like conjunction (∧). A λ-expression, like those in Fig. 2.1, de�nes a function that takes
an input x and returns the output value following computation speci�ed by the function body.
Some functions also accept λ-expressions as input arguments. For instance, the argmax opera-
tor in Fig. 2.1 returns the set of entities that are states (state(x) evaluates to True) and have the
largest area (size(x) is the highest).

Combinatory Categorial Grammar Combinatory Categorial Grammar (CCG, [177, 178]) is
a commonly used grammar formalism to parse utterances into λ-calculus logical forms [236]. A
CCG consists of a lexicon specifying the mapping of NL constituents (e.g., the noun Pittsburgh

and the preposition from) to elements in logical forms (e.g., the constant entity pittsburgh and
the lambda function λxλy.from(x,y)). Those logical elements for lower-level constituents
can be composed recursively to form more expressive expressions. For example, the constant
denoting Pittsburgh could substitue the variable y in the lambda function that represents from,
yielding a new lambda function λx.from(x,pittsburgh) for the phrase from Pittsburgh. A
full introduction of CCG is beyond the scope of this thesis, and interested readers are referred
to Artzi et al. [8] for a comprehensive review.

Semantic Parsing usingCCGs Statistical semantic parsers typically use probabilistic CCGs.
Similarly to probabilistic context-free grammars (PCFGs), given an utterance u, probabilistic
CCGs de�ne the conditional distribution over MRs z and the derivation d recording the com-
position of z conditioned on u, i.e., p(z, d|u). p(z, d|u) can be parameterized using log-linear
models, with features de�ned over triples 〈z, d,u〉 [41]. Since the features only depend on local
segments of 〈z, d,u〉 (e.g., a binary feature denoting if from in z co-occurrs with from in u in
training data), inference can be performed using dynamic programming, similar to CKY parsing
with PCFGs. As discussed above, central to semantic parsing with (probabilistic) CCGs is the
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lexicon, which speci�es the alignments between NL constituents and logical predicates. A core
research issue is therefore learning the lexicon together with the model parameters (e.g., the
feature vector in log-linear models). Early work assumed access to derivations d, which are
costly to label [41]. A more practical solution is learning lexicons only using utterances and
MRs 〈u, z〉, where derivations are modeled as latent variables. Along this line, Zettlemoyer and
Collins [236] proposed a hard EM algorithm, which interleaves between lexicon induction, and
parameter update using the newly induced lexicon. In the lexicon induction step, a seed lexicon
is �rst constructed by over-generating all the possible (and redundant) lexical entries pairing NL
phrases with logical entries, a more compact lexicon is then induced from the highest-scoring
derivations inferred by the current model parameter. Zettlemoyer and Collins [237] further
introduced more relaxed CCG combination rules to parse utterances with free-form language
styles, such as �exible word ordering, together with an online learning algorithm that is more
e�cient (update model parameters per example instead of per batch). Later work focused on
learning more compact lexicons, creating lexical entries by splitting MRs top-down instead of
exhaustive pairing [98], or factorization of lexical entries to allow for more information shar-
ing [99].

NeuralApproaches Like other sequence generation tasks in NLP, neural sequence-to-sequence
models [10] have been applied to semantic parsing around 2016, where meaning representa-
tions like λ-calculus logical forms are decoded from recurrent neural networks as tokenized
sequences [50, 81, 84]. To capture structure in MRs, Dong and Lapata [50] propose a sequence-
to-tree model that generates logical forms (e.g., λ-calculus) following their tree-structured hi-
erarchy, where the prediction of child nodes is dependent on the information (e.g., RNN hidden
states) from their parent nodes. Besides being tree-structured, another strong prior for MRs is
that they are de�ned following a pre-speci�ed grammar. To model the grammatical informa-
tion in decoding, Xiao et al. [202] put forward a syntax-based decoder, which generates MRs
by predicting the sequence of production rules used to construct an MR following the domain
grammar. This approaches guarantees the syntactic correctness of model outputs, since the
space of valid continuating predictions is constrained by the grammar. In this sense, it is re-
lated to our code generation model in Part I which also generates MRs using productions, while
we consider generating more complex programs in general-purpose programming languages,
with a model output space augmented with other actions besides productions to support gen-
eration of programs in di�erent languages and formalisms (see §2.1.2, more in Part I). Apart
from constraining the decoding space with grammar rules, other approaches also explored us-
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ing typing information for constrained decoding [96], reminiscent of the pre-neural type-driven
parsing algorithms like Zhao and Huang [243].

Language Compositionality and Compositional Generalization As an interesting side
note, natural utterances can be highly compositional, and human can easily understand the
meaning of a compositional utterance (e.g., Flights from Pittsburgh to the host city of ACL 2022)
by interpreting the meaning of its simpler segments (e.g., “the host city of ACL 2022”, and “Flights
from Pittsburgh to ? ”). Indeed, compositionality is believed to be the key characteristic of hu-
man minds to attain strong generalization ability from limited data [103]. Classical semantic
parsing methods based on CCG could also generalize well to inputs with novel compositional
patterns, as such models are equipped with explicit inductive biases about language composi-
tionality, which �rst maps NL phrases into atomic logical constituents according to the lexicon,
and then compositionally builds up the meaning representation of a larger span from the MRs
of its child spans. However, end-to-end neural semantic parsers based on sequence-to-sequence
networks without such inductive bias could fail spectacularly when extrapolating to composi-
tionally novel examples [101]. In Chapter 6, we will attempt to tackle the problem of improving
compositional generalization of neural sequence transduction models using supervised at-
tention [133], which injects lexicon-level NL-MR alignments into recurrent decoding networks.
Please refer to Chapter 6 for a detailed review of compositional generalization and our proposed
method.

Other Variants

As a general-purpose formalism of meaning representation, λ-calculus is adopted by many task-
oriented semantic parsers. However, certain applications might not require the full generality
of λ-calculus, and it makes sense to develop task-oriented MRs based on λ-calculus. Here we
brie�y review some representative examples.

Lambda Dependency-based Compositional Semantics (λ-DCS) λ-DCS is a formal lan-
guage built for semantic parsing over structured knowledge bases [112], where the parser trans-
lates NL questions into executable database queries (e.g., sql or sparql queries. See Fig. 1.1a
for an example). Utterances in this domain usually concern querying over a set of entities
(e.g., �ights). λ-DCS is a simpli�ed version of λ-calculus, which models sets of entities as �rst-
class citizens. For instance, the λ-DCS representation for z1 in Fig. 2.1 is de�ned as

from.Pittsburgh ∩ to.Seattle
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Here, from is a binary predicate denoting the set of pairs of �ights and their departure cities.
When it is joined with a unary predicate Pittsburgh representing the single entity, the re-
sulting expression from.Pittsburgh denotes the set of �ights from Pittsburgh. The logical
form to.Seattle is de�ned similarly. Similar to the dependency-based compositional seman-
tics formalism [113], λ-DCS eliminates explicit usage of variables in λ-calculus, making the
representation more conscience.

QueryGraphs Query graphs are another form of meaning representations targeted for knowledge-
based question answering (KBQA) [163, 216]. The intuition behind the design of query graphs
is that information stored in structured knowledge bases is typically represented as graphs
(e.g., Pittsburgh

UA123
Seattle

UA456
from to ). Therefore question answering over such KBs can be refor-

mulated as a sub-graph matching problem, where answers are obtained by matching the KB
graph with the query graph parsed from utterances (e.g., Pittsburgh ? Seattle

from to , [247]). Query
graphs can be viewed as a graphic representation of λ-calculus, and are also similar to λ-DCS
since they both capture joining operations over sets of entities.

2.1.2 Programming Languages as Meaning Representations

Besides representing utterance meaning using specialized formalisms like λ-calculus, another
stream of research attempts to translate utterances into executable computer programs in mod-
ern programming languages (PLs), which is also a major contribution of this thesis. In this sec-
tion, we survey two distinctive examples of using PLs as MRs — natural language interface to
databases (NLIDBs), where utterances are parsed to executable DB queries like sql (Fig. 1.1a),
and code generation, where a programmer’s NL intent is translated to code in general-purpose
programming languages (e.g., Python, Fig. 1.1b).

Natural Language Interface to Databases (NLIDBs)

Early versions of NLIDBs relied on rule-based pattern-matching (e.g., from $city_name 7→Departure_City

=$city_name) or hand-crafted grammars (similar to CCGs in §2.1.1) to convert utterances to
database queries. Most early works were from the database research community, with the
goal of developing systems with high precision but could only handle queries with simple in-
tents (e.g., [196, 201], refer to Androutsopoulos et al. [6] for a comprehensive survey). Later on,
NLP researchers attempted to build systems using statistical machine learning, aiming to gener-
alize NLIDB from querying domain-speci�c relational databases to answering complex, compo-
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sitional NL questions over large-scale open-domain databases of world knowledge (e.g., Free-
base, as in [17, 18, 27, 100]). Therefore, many works in this line fall to the topic of knowledge-
based question answering. In short, these models typically employed a feature-based ranking
approach, where multiple hypothesized DB queries are �rst generated from input NL questions
using CKY-style parsing [13, 18], rule-based pattern matching [54], or query graph generation
(§2.1.1). Next, a ranking model scores the generated hypotheses using features extracted from
the question and the hypothesis (e.g., a binary indicator feature that returns 1 i� the question to-
ken from is mapped to the DB column Departure_City), and returns the highest-scoring query.
A core step in this process is entity and schema linking, where entity mentions (e.g., Pittsburgh)
and relational phrases (e.g., from) in utterances are grounded to the corresponding DB entities
and relations [107].

IntermediateMeaningRepresentations Mapping utterances to structured database queries
is not a straight-forward task, as NL utterances and DB queries exhibit di�erent syntax and
structures. Therefore, most NLIDB systems capture utterance semantics using intermediate
form of meaning representations, and then convert the intermediate MR into DB queries. Early
rule-based systems rely on hand-crafted intermediate semantic representations [6]. λ-calculus
(and its variants) is widely used as a form of intermediate MR [18, 27] owing to its matured
parsing algorithms (e.g., CCG or λ-DCS, as in §2.1.1). The query graphs outlined in §2.1.1 are
another popular choice due to their homogeneous structure with bankend graph KBs. Other
approaches also use simpli�ed query languages as intermediate MRs. For example, Guo et al.
[64] proposed a syntactically simpli�ed version of sql queries without FROM and JOIN clauses,
which could be deterministically inferred for databases with simple schemas [229]. However,
even parsing to intermediate MRs could still be non-trivial. As discussed in Yin [217], free-form
natural language utterances are highly �exible, and the same intents could be expressed in dif-
ferent styles (e.g., “What did Barack Obama do before he was a president?”, and “Barack Obama’s

occupation before he took o�ce”). On the other hand, information stored in databases are highly
structured, typically following a pre-de�ned schema (e.g., a table recording histories of job titles
and start/end dates). To close the gaps between the �exible NL space and the rigid DB schema,
Kwiatkowski et al. [100] proposed decoupling schema matching from semantic parsing, where
utterances are �rst parsed to an intermediate MR that is not grounded to the DB, and a separate
matching model is learned to link entity mentions and relations in the MR to DB entries. Other
works also attempted to close the gap by augmenting the structured DB schema with semi-
structured natural language assertions (e.g., 〈Barack Obama, was, a senator, before he became
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president〉) that can be more easily matched with utterances [54, 221].

Neural Models Recent advances in NLIDBs have been largely attributed to the success of
neural network-based models. The simplest form of such models uses standard attentional neu-
ral sequence-to-sequence networks, where tokenized utterances are encoded using a bidirec-
tional LSTM network, and sql queries are predicted using another LSTM decoder network [81].
Later works have been mainly focused on improving the encoder and decoder networks.

To improve the encoding network, the �eld has explored incorporating contextual informa-
tion in the DB schema useful to infer queries. Such contextual information could be broadly
divided into two categories: (a) information of the database schema itself, such as the names
of tables and the columns of each table; and (b) alignments between utterance tokens and ele-
ments in the schema (i.e., schema linking, such as “What is the GDPcolumn:gross_domestic_product of

United Satescell_value:USA?”). To represent information of tables in a schema, a commonly used ap-
proach is to �atten the structured schema of table names and their header information (columns)
as a sequence of tokens consumable by a sequence encoding network [78, 227, 244]. To model
schema linking, a simple solution is to augment the encodings of utterance tokens with in-
formation about their aligned schema elements, such as the entity type of the token [227],
and features indicating whether it is a mention of cell values or columns [64, 111]. Besides
these simple methods by �attening structured information in schemas or feature augmenta-
tion, there are also more systematic solutions for schema encoding while preserving its struc-
tured information. Speci�cally, Bogin et al. [21] used graph neural networks (GNNs) to cap-
ture the topology between multiple tables in a schema, and Wang et al. [188] augmented self-
attention in Transformers with biased attention weights between aligned tokens in utterances
and schemas (e.g., utterance tokens that are mentions of columns), and related schema ele-
ments (e.g., columns connected via primary-foreign key mappings), reminiscent of the rela-
tional self-attention mechanism in text [167] and source code encoding [71]. This thesis also
studies understanding schema information of DB tables in Part II. Speci�cally, Chapter 5 will
introduce a pre-trained Transformer for learning representations of (semi-)structured database
tables. Di�erent from the biased attention approach in Wang et al. [188], our model uses stan-
dard self-attention mechanisms to encode tables, while pre-trained on large-scale tabular data
to learn how to represent such structured information. Recently, pre-training Transformers for
table understanding has gained increasing popularity [47, 48, 75, 168, 232, 233, inter alia]. We
will discuss more possible future directions in this line in Chapter 10.

To improve the decoding module that predicts database queries, a major research focus
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is to capture the syntactic structures of DB queries, which could reduce the output space of
possible queries while guarantee the syntactic correctness of generated results [244]. Many
works along this line were based on our model in Part I, which generates the abstract syntax
trees of DB queries using a decoder that predicts tree construction production rules guided
by the grammar. The generated syntax trees can be deterministically converted to the tar-
get query. Other work generalized this idea of grammar-constrained decoding to token level,
and design grammars that constrain the space of valid contiuating tokens when predicting a
query [116, 207, 228]. Grammar-constrained generation could be further combined with coarse-
to-�ne decoding [51], factorizing the generation of queries into sketch (e.g., SELECT ? WHERE

Column? Op? Value? ) and arguments prediction (�lling in ? , as in [207, 228]).

General-purpose Code Generation

Programming is the act of turning the programmer’s intention into source code. Every pro-
grammer has experienced the situation where they know what they want to do, but do not
have the ability to turn it into a concrete implementation. For example, a Python program-
mer may want to “sort my_list in descending order,” but not be able to come up with the proper
syntax sorted(my_list, reverse=True) to realize his intention (Fig. 1.1b). To resolve this
impasse, it is common for programmers to search the web in natural language (NL), �nd an
answer, and modify it into the desired form [23, 24]. However, this is time-consuming, and thus
the software engineering literature is ripe with methods to directly generate code from NL
descriptions, mostly with hand-engineered methods highly tailored to speci�c programming
languages [11, 67, 118].

Research in code generation aims to develop models to automatically translate a program-
mer’s natural language intent into source code written in programming languages. Early works
in this line have focused on generating code in domain-speci�c languages (DSLs), like regu-
lar expressions [97], string manipulations formulas in spreadsheets [127, 162], or instructions
for task automation [16, 156]. Later research attempts to generalize code generation to high-
level, general-purpose programming languages, like Python and Java (Fig. 1.1b), while limited
to speci�c application scenarios [106] or languages [160]. Ling et al. [117] proposed a language-
agnostic data-driven code generation method, which treats code generation as a sequence-to-
sequence modeling problem, and introduce methods to generate words from character-level
models, and copy variable names from input descriptions. However, unlike most work in se-
mantic parsing, it does not consider the fact that code has to be well-de�ned programs in the
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target syntax. In Part I of this thesis, we study syntax-driven code generation models, which
capture the grammar of target programming languages as prior knowledge, ensuring the syn-
tactic correctness of generated code. Instead of predicting code tokens using sequential decod-
ing networks (e.g., LSTMs), we use abstract syntax trees of programs as intermediate meaning
representations, and design structured decoding models to generate ASTs following the gram-
mar of the PL. Once the AST is generated, it can be deterministically converted to surface code
snippets using libraries provided by the PL.

Since our �rst work in this area, code generation has become a popular research topic,
with extensions to handle programmatic context (e.g., previously de�ned class members and
functions [82]), model idiomatic implementations [79, 170], leverage prior knowledge in API
documentations [203], and augment generation with code retrieval [68, 69]. The idea of syntax-
driven program generation has also been applied to some domain-speci�c semantic parsing
scenarios, like natural language interfaces to database systems (§2.1.2), as well as other program
synthesis tasks, such as code translation [32] and editing [213, 224].

2.2 Learning Paradigms

In the previous section, we discussed formalisms of logical meaning representations and their
representative semantic parsing models. These parsers can be trained with various types of
supervision signals, for which we present a systematic overview in this section.

2.2.1 Classical Supervised Learning

In the standard supervised learning setting, a parametric semantic parser pθ(z|u) is trained on
parallel corpora of utterances (u) annotated with meaning representations (z). The parameters
can be estimated using maximum likelihood estimation (MLE), with the following objective to
maximize the log likelihood of generating gold-standard MRs in the labeled training data L.

JMLE =
∑
〈u,z〉∈L

log p(z|u) (2.1)

For neural semantic parsers, optimizing Eq. (2.1) is straight-forward by performing stochas-
tic gradient descent to minimize a cross-entropy loss. However, for CKY-style parsers based on
grammar formalisms like probabilistic CCGs, optimization could involve latent variables not
observed in L, such as the derivation of MRs. This requires specialized learning methods for
lexicon induction. Interested readers are referred to §2.1.1 for more details.
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Cost in Annotating Training Data

To collect training data of NL utterances annotated with meaning representations, most ap-
proaches hired domain-experts that are pro�cient in the target logical formalisms. For tasks
that use code in programming languages (e.g., SQL, Python) as logical representations, �nd-
ing annotators (e.g., professional programmers) is relatively easy due to the popularity of those
PLs. For example, the Spider text-to-SQL dataset [229] was created by 11 college students in
computer science. The Python code generation dataset CoNaLa that will be discussed in Chap-
ter 9 was constructed by a group of professional programmers annotating questions and Python
implementations on Stack Overflow. However, data annotation is a laborious and costly en-
deavor. Yu et al. [229] reported 1, 000 man hours spent in curating 10K text-to-SQL examples,
while the CoNaLa dataset costs roughly 1 US dollar to annotate only one example (Chapter 9).
Data annotation is perhaps even more challenging for tasks using domain-speci�c meaning
representations like λ-calculus, due to the di�culty in �nding annotators who are �uent in the
those MRs. In such cases, parallel data was typically hand-annotated by authors of the sys-
tem [236], or converted semi-automatically from other versions of the dataset where MRs are
de�ned in more commonly-used programming languages [237]. Therefore, semantic parsing
datasets annotated with MRs are often limited in size due to the signi�cant amount of cost and
expertise required, with most corpora consisting of hundreds [235] or thousands [18, 46] of
examples, and few with more than 10K instances [166, 229, 244]. The cost of data acquisition
is a hurdle to deploying semantic parsers to emerging domains where labeled data is scarce,
and becomes even more problematic with the dominance of neural semantic parsers, which are
especially data-hungry [84].

E�cient Annotation Methods

Machine-in-the-loop To more e�ciently annotate MRs while lowering the cost, the �eld has
explored machine-in-the-loop approaches where human annotators are assisted by automated
systems. This method was adopted in the creation of the ATIS dataset back in 1990s [46], where
new utterances are �rst interpreted by a parser before veri�ed by annotators. Iyer et al. [81]
further put forward an online learning framework for data collection with a semantic parser
in the loop, where annotators accept or revise the parser’s hypothesized MRs as new training
instances. The parser is then updated after collecting a batch of new examples. In Chapter 9, we
will discuss generalizing this idea to mine parallel corpora of NL questions and Python code.
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Alternative Annotation Targets Besides accelerating annotation using feedback from a
model, another line of research considers alternative annotation targets that are easier to la-
bel than meaning representations. Instead of hand-annotating MRs, one intuitive alternative
is to automatically synthesize MRs since they are de�ned following a grammar, and then de-
sign annotation tasks that match those synthetic MRs with NL utterances. This idea is pro-
posed by the seminal OverNight work [195], which synthesizes parallel training data by
using a synchronous grammar to align elements in MRs and their canonical NL expressions
(e.g., Filter(paper,venue= ? ) ↔ papers in ? and acl↔ACL), and generates examples of
compositional utterances (e.g., Papers in ACL) with MRs (e.g., Filter(paper,venue=acl))
from the grammar. The synthesized canonical utterances are then paraphrased by annotators,
a much easier task than writing MRs. Follow-up work has focused on further mitigating the
cost in writing paraphrases of canonical utterances. Instead of manually creating paraphrases,
Herzig and Berant [73] cast this step as a paraphrase identi�cation problem, where annota-
tors pair canonical utterances with the real ones, assuming access to the set of (unlabeled)
real utterances. In Chapter 7, we will explore further lifting the requirement of manually an-
notating paraphrases using automated paraphrase generation models, which enables training
downstream semantic parsers using synthesized data without manual labeling.

In the following section, we will discuss more related works using alternative annotation
targets. Those approaches do not consider building datasets with annotated MRs at all, and
instead leverage other forms of supervision (e.g., the execution results of utterances) to train
semantic parsers.

2.2.2 Weakly-supervised Learning from Executions

Given the cost of annotating NL utterances with MRs, a large body of work explores train-
ing semantic parsers using alternative weak supervision signals that are cheaper to acquire.
Weakly-supervised learning methods leverage the denotations (execution results) of utterances
as indirect supervision [18, 42].1 Under this paradigm, meaning representations are modeled as
latent variables. Given an NL utterance u, a parser predicts one or multiple (latent) MRs of u,
executes the hypothesized MRs, and collect training signals by comparing the execution results

1The term “weakly-supervised learning” was broadly used to refer to the general idea of training semantic
parsers using indirect supervision other than annotated logical forms. Besides denotations, other works have
also considered signals such as syntactic parse [95]. In this section, we follow later development of the �eld and
dedicate this term for denotation-based methods. Other approaches, like Krishnamurthy and Mitchell [95], are
categorized as unsupervised learning and discussed in §2.2.4.
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with the annotated ones (e.g., using the binary rewards of execution correctness). There are
two commonly used optimization methods for weakly supervised learning, namely maximum
marginal likelihood estimation and reinforcement learning.

Maximum Marginal Likelihood Estimation Maximum marginal likelihood (MML) max-
imizes the probability of observing the correct denotation by marginalizing over latent choices
of MRs [18, 179]. Speci�cally, let y be the target denotation of u, the learning objective of MML
is

JMML =
∑
〈u,y〉

log p(y|u) =
∑
〈u,y〉

log
∑
z

p(y, z|u)

=
∑
〈u,y〉

log
∑
z

p(y|z)p(z|u)

=
∑
〈u,y〉

log
∑
z∈Z(y)

p(z|u)

(2.2)

Where Z(y) denotes the set of MRs that execute to the denotation y, which can be approxi-
mated using beam search [18, 66].

Reinforcement Learning Reinforcement learning (RL) models semantic parsers as RL agents,
and maximizes the expected rewards that the agent receives when generating the correct de-
notation [110].

JRL = Eu∼p(u)Ez∼p(z|u)R(z) =
∑
〈u,y〉

∑
z

R(z)p(z|u) =
∑
〈u,y〉

∑
z∈Z(y)

p(z|u) (2.3)

where R(z) is the binary reward function that returns 1 i� z executes to y. The gradient of
Eq. (2.3) with respect to model parameters could be estimated using policy gradient with the
REINFORCE algorithm [198], as in [110]. One key challenge of optimizing Eq. (2.3) is that the
binary reward R(z) is sparse, and also delayed since the reward is only calculated after a full
episode (i.e., after the parser �nishes predicting an MR z). This could lead to large variance in
the policy gradient estimator. To reduce the variance during gradient estimation, Liang et al.
[111] proposed a low-variance gradient estimator by separately (a) sampling from a memory
bu�er caching high-reward MRs discovered so far, and (b) sampling additional on-policy exam-
ples from the model.

Weakly-supervised learning is highly non-trivial since MRs are not observed from data, and
the model is trained using the noisy binary reward signal of execution correctness. Learning
using such sparse and under-speci�ed rewards could lead to two issues. First, the search space
of MRs is combinatorial and exponentially exploding, and a parser need to explore a large
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search space to discover high-reward programs. Second, since the reward is binary and under-
speci�ed, there are spurious MRs, which are programs that happen to execute to the correct
answer while semantically incorrect (e.g., z = multiply(2,2) for u :What is two plus two).

ExplorationE�ciency of LatentMRs To improve the e�ciency in discovering high-reward
latent programs amid the combinatorial search space, the �eld has focused on methods that re-
duce the size of the search space by pruning invalid partial hypotheses. The key insight is to
leverage extra MR semantics (e.g., typing and execution information) to constrain valid con-
tinuations during auto-regressive decoding of MRs. Liang et al. [110] used execution results of
partially generated programs to prune the set of valid functions and variables to be predicted in
the next time step. Krishnamurthy et al. [96] leveraged the type information, constraining the
choices of next MR tokens to have compatible types with the current hypothesis. Other work
aims to guide the search process using extra supervision that captures the pattern of correct
MRs, such as abstract sketches of MRs without variable instantiations [60], and e�cient online
learning algorithms to predict MRs using sketches [240].

Spurious MRs Another long-standing issue of learning with weak supervision is the exis-
tence of spurious MRs, which are programs that happen to execute to the correct denotation,
but are semantically wrong [151]. The fundamental reason of spuriousness is that the reward
function used in Eq. (2.3) is under-speci�ed, which lacks the granularity to distinguish semanti-
cally correct MRs with the spurious ones. These spurious high-reward MRs will bring noise to
the optimization process. Pasupat and Liang [151] �rst used crowdsourcing to rule out spuri-
ous MRs. Besides manual annotation, another line of research attempts to augment the under-
speci�ed reward function to better capture the similarity between utterances and hypothesized
MRs. Intuitively, assume an oracle similarity metric s(u, z) between utterances u (e.g., What is

two plus two) and MRs z, if z is semantically correct (e.g., plus(2,2)), s(u, z) should be high,
while s(u, z′) will be lower for spurious predictions z′ (e.g., multiply(2,2)). Such similarity
metric could be captured by prede�ned lexical alignments (e.g., plus ∈ z ↔ plus ∈ u) and
injected into the existing reward function via policy shaping [60, 136]. Later work generalized
this idea and model s(u, z) as the “back-translation” probability p(u|z), measuring the likeli-
hood of reconstructing the original utterance given information in predicted MRs [35]. Besides
reward shaping, another strategy is to directly learn reward functions that favor non-spurious
hypotheses that generalize well on validation data using meta learning [1].

We remark that the two issues of exploration e�ciency and spuriousness are often inter-
connected. Intuitively, methods that explore the space of high-reward MRs more e�ciently
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could potentially discover more spurious MRs, as only very few (most of the time, only one)
MRs among all the those reward-earning ones are indeed semantically correct. Therefore, it is
important to carefully control the exploration process to bias towards potentially correct sam-
ples [111], or using special gradient update rules to ensure gradients from possibly spurious
samples will not dominate optimization [66, 136]. Additionally, some e�cient exploration ap-
proaches could also tackle the issue of spurious programs as well. For instance, the sketch-based
exploration methods introduced above reduce spuriousness using idiomatic MR sketches that
generalize well across similar utterances [60, 240].

2.2.3 Semi-supervised Learning

Instead of relying on weak supervision signals that are noisy. Semi-supervised learning re-
duces the requirement of annotated parallel data using additional unlabeled NL utterances.
Speci�cally, besides the labeled data L used in the supervised learning objective Eq. (2.1), we
assume the model additionally has access to a relatively large amount of unlabeled NL utter-
ancesU = {u}, semi-supervised learning then aims to maximize the log-likelihood of examples
in both L and U:

Jsemi_supervised =
∑
〈u,z〉 ∈L

log pφ(z|u)︸ ︷︷ ︸
supervised obj. Js

+α ·
∑
u∈U

log p(u)︸ ︷︷ ︸
unsupervised obj. Ju

(2.4)

The joint objective consists of two terms: (1) a supervised objective Js that maximizes the
conditional likelihood of annotated MRs, as in standard supervised training of semantic parsers;
and (2) a unsupervised objectiveJu, which maximizes the marginal likelihood p(u) of unlabeled
NL utterancesU, controlled by a tuning parameter α. Intuitively, if the modeling of pφ(z|u) and
p(u) is coupled (e.g., they share parameters), then optimizing the marginal likelihood p(u) using
the unsupervised objective Ju would help the learning of the semantic parser pφ(z|u) [246].

For semi-supervised learning of semantic parsing, Kate and Mooney [86] �rst explored using
transductive SVMs to learn from a semantic parser’s predictions. Konstas et al. [92] applied
self-training to bootstrap an existing parser for AMR parsing. Kociský et al. [91] employed
variational auto-encoders (VAEs) for semi-supervised semantic parsing, where NL utterances
as modeled as discrete latent variables, and the model uses extra synthetically generated MRs
for learning.

In Chapter 8, we put forward a novel variational auto-encoding architecture for semi-supervised
learning. Di�erent from Kociský et al. [91], we model the unobserved MRs of unlabeled utter-
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ances as tree-structured latent variables (e.g., representing MRs using abstract syntax trees),
generalizing VAEs to handle latent variables with rich internal structures.

2.2.4 Unsupervised Learning

To further reduce the amount of supervision required, unsupervised learning methods do not
use any annotated training data. The majority of work in this line only uses unlabeled ut-
terances (U in Eq. (2.4)) for learning. The intuition is to leverage distant supervision signals,
such as lexicons that de�ne the natural language expressions for entities and relations in a
knowledge base, as well as existing linguistic analysis of utterances (e.g., dependency parse)
as sca�olds to infer logical forms that contain relevant entity and relation mentions and also
share similar syntactic structures. Krishnamurthy and Mitchell [95] captured the above intu-
ition as factors in a probabilistic graphical model, and learned parameters of semantic parsers
that agree with these constraints. Poon [154] further generalized this idea to handle complex
logical forms with multi-hop relations, using a hidden Markov model that assigns latent seman-
tic states to nodes (e.g., the token Pittsburgh has state entity) and edges (e.g., the dependency

edge from Pittsburgh
pobj

has state flight.from_city) on dependency parse trees of NL utter-
ances (Fig. 1.1a), which are used to generate MRs. This method requires prede�ned lexicons
to capture alignments between NL phrases and logical predicates [61], and also unlabeled ut-
terances for learning. The design of semantic states is also strongly dependent on the target
domain and its database schema, and it is unclear if this method could be applied to other sce-
narios with di�erent domain schemas [94].

Recently, Xu et al. [205] proposed an unsupervised semantic parsing approach that alleviates
the requirement of unlabeled utterances. Similar to the OverNight framework introduced in
§2.2.1, this approach uses synthesized training data of canonical utterances and MRs generated
from a domain grammar capturing NL-MR alignments, while the crowdsourced paraphrases of
the canonical utterances are replaced with automatically generated ones using paraphrase gen-
eration models. In Chapter 7, we extend this unsupervised learning framework and show that
the auto-paraphrased synthetic data with diverse compositional patterns could help a semantic
parser capture the grounding of NL phrases to relations and entities in the domain schema.
We also present solutions to bridge the gap between synthetic utterances and real-world user-
issued ones, improving the linguistic diversity and logical pattern coverage of the synthetic
data.
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Tasks Code Generation
Natural Language Database Interface

Fixed Schema Multiple Schemas

Datasets
CoNaLa [Chapter 9],

Codex HumanEval [30]
Geo [235], ATIS [46],

JOBs [184], Scholar [81]

WikiSQL [244],
WikiTableQuestions [150],

SQA [83], Spider [229]
Modeling Approaches

General Topics
xModel Program Structure Part I Part I [64, 188, 244]
xCompositional Generalization ? Chapter 6 ?
x Pre-training on NL-MR Data [30, 203] ? ?
Database-speci�c
xUtterance-Schema Linking — [Chapter 6; 107]
xEncode Multi-table DB Structure — — [21, 188]
x Pre-training on Tabular Data — — [Chapter 5; 75, 232]

Cost-e�ective Learning Methods

Weakly-supervised (§2.2.2) ? [190] [111, 150]
Semi-supervised (§2.2.3) Chapter 8 Chapter 8 ?
Unsupervised (§2.2.4) ? [154] ?
Data Synthesis (§2.2.4) ? [Chapter 7; 205] ?

Table 2.1: Systematic overview of semantic parsing tasks, datasets, and their applicable modeling tech-
niques and learning methods. “?” denotes unexplored territories.

2.3 Summary

So far we have discussed a variety of tasks, benchmarks, modeling techniques and learning
paradigms in semantic parsing. Indeed, semantic parsing is a highly domain-speci�c task, and
each application scenario has its own focused research problems and suitable solutions. It could
be a bit di�cult to get a grasp of those di�erent applications and their applicable methods at
�rst glance. We therefore present a holistic overview of the task hierarchy discussed in this
chapter and their corresponding research topics and solutions. Such an overview could also
help us understand the status quo of the �eld and �nd potential future directions in those un-
explored areas (denoted as ? in Tab. 2.1). As an example, most cost-e�ective learning methods,
such as unsupervised learning and training using synthetically generated data, have only con-
sidered semantic parsing tasks with �xed database schemas, since some of those approaches,
like the data synthesis model based on OverNight, would require domain-dependent grammar
rules to capture the grounding of NL expressions to schema-speci�c logical forms. A potential
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future avenue would be making those methods more generalizable to cross-domain scenarios
with multiple (and held-out) database schemas. On the other head, some directions are broadly
applicable to many tasks, like modeling program structure during decoding. Advance in those
areas could potentially have a higher impact on a variety of application scenarios.

Finally, we remark that the literature review presented in this chapter is far from complete.
It does not cover many other important directions in the �eld that are not directly related to this
thesis, such as visual question answering [128, 215], robot command-and-control with natural
language [7, 125, 131, 172], interactive semantic parsing [53, 211, 212], as well as semantic
parsing for task-oriented dialogue systems [43, 65, 166]. We refer readers to the above cited
references for more information about those topics.
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Part I

Structured Program Generation Models
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Chapter 3

Syntactic Models for Code Generation

In this chapter, we introduce a general-purpose neural semantic parsing model that captures
the grammatical structure of MRs as prior syntactic knowledge. The model uses abstract syntax
trees (ASTs) as general-purpose intermediate meaning representations. ASTs are abstract data
structures that represent the syntactic and structural information of programs, without model-
ing domain-speci�c details of how the program is actually written in the target programming
language (e.g., whether to use semicolons as line delimiters). Under this model, domain-speci�c
MRs are represented as ASTs to abstract away their task-dependent details. Throughout this
chapter, we will use code generation as a running example to demonstrate the proposed model
could scale to generating MRs with complex syntactic structures (e.g., Python code). Later on,
in Chapter 4, we discuss how to generalize the approach to a parsing framework that handles
a variety of semantic parsing tasks. This line of work �rst appears in:

• Pengcheng Yin and Graham Neubig. a syntactic neural model for general-purpose code
generation. In Proceedings of ACL, 2017

3.1 Overview

We aim to develop models that could translate a programmer’s natural language intent into code
written in general-purpose programming languages like Python and Java. Compared to classi-
cal semantic parsing tasks using meaning representations de�ned in domain-speci�c languages
(e.g., λ-calculus, §2.1.1), code generation targets programming languages with more complex
schema and syntactic structures.

As introduced in §2.1.2, prior work in this line [117] does not consider the fact that code
has to be well-de�ned programs in the target syntax. In this chapter, we propose a data-driven
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Production Rule Role Explanation

Call 7→ expr[func] expr*[args] keyword*[keywords] Function Call . func: the function to be invoked . args:
arguments list . keywords: keyword argu-
ments list

If 7→ expr[test] stmt*[body] stmt*[orelse] If Statement . test: condition expression . body: state-
ments inside the If clause . orelse: elif or
else statements

For 7→ expr[target] expr*[iter] stmt*[body] For Loop . target: iteration variable . iter: enumer-
able to iterate over . body: loop body .

orelse: else statements
stmt*[orelse]

FunctionDef 7→ identi�er[name] arguments*[args] Function Def. . name: function name . args: function argu-
ments . body: function bodystmt*[body]

Table 3.1: Example production rules for common Python statements [155]

syntax-based neural network model tailored for generation of general-purpose PLs like Python.
In order to capture the strong underlying syntax of the PL, we de�ne a model that transduces
an NL statement into an Abstract Syntax Tree (AST; Fig. 3.1(a), §3.2) for the target PL. ASTs can
be deterministically generated for all well-formed programs using standard parsers provided by
the PL, and thus give us a way to obtain syntax information with minimal engineering. Once
we generate an AST, we can use deterministic generation tools to convert the AST into surface
code. We hypothesize that such a structured approach has two bene�ts.

First, we hypothesize that structure can be used to constrain our search space, ensuring
generation of well-formed code. To this end, we propose a syntax-driven neural code gener-
ation model. The backbone of our approach is a grammar model (§3.3) which formalizes the
generation story of a derivation AST into sequential application of actions that either apply
production rules (§3.3.1), or emit terminal tokens (§3.3.2). The underlying syntax of the PL is
therefore encoded in the grammar model a priori as the set of possible actions. Our approach
frees the model from recovering the underlying grammar from limited training data, and in-
stead enables the system to focus on learning the compositionality among existing grammar
rules. Xiao et al. [202] have noted that this imposition of structure on neural models is useful
for semantic parsing, and we expect this to be even more important for general-purpose PLs
where the syntax trees are larger and more complex.

Second, we hypothesize that structural information helps to model information �ow within
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the neural network, which naturally re�ects the recursive structure of PLs. To test this, we ex-
tend a standard recurrent neural network (RNN) decoder to allow for additional neural connec-
tions which re�ect the recursive structure of an AST (§3.3.3). As an example, when expanding
the node ? in Fig. 3.1(a), we make use of the information from both its parent and left sibling
(the dashed rectangle). This enables us to locally pass information of relevant code segments
via neural network connections, resulting in more con�dent predictions.

Experiments (§3.4) on two Python code generation tasks show 11.7% and 9.3% absolute im-
provements in accuracy against the state-of-the-art system [117]. Our model also gives com-
petitive performance on a standard semantic parsing benchmark1.

3.2 The Code Generation Problem

Given an NL description x, our task is to generate the code snippet c in a modern PL based on
the intent of x. We attack this problem by �rst generating the underlying AST. We de�ne a
probabilistic grammar model of generating an AST y given x: p(y|x). The best-possible AST ŷ
is then given by

ŷ = argmax
y

p(y|x). (3.1)

ŷ is then deterministically converted to the corresponding surface code c.2 While this chapter
uses examples from Python code, our method is PL-agnostic.

Before detailing our approach, we �rst present a brief introduction of the Python AST and
its underlying grammar. The Python abstract grammar contains a set of production rules, and
an AST is generated by applying several production rules composed of a head node and multiple
child nodes. For instance, the �rst rule in Tab. 3.1 is used to generate the function call sorted(·)
in Fig. 3.1(a). It consists of a head node of type Call, and three child nodes of type expr, expr*
and keyword*, respectively. Labels of each node are noted within brackets. In an AST, non-
terminal nodes sketch the general structure of the target code, while terminal nodes can be
categorized into two types: operation terminals and variable terminals. Operation terminals
correspond to basic arithmetic operations like AddOp.Variable terminal nodes store values for
variables and constants of built-in data types3. For instance, all terminal nodes in Fig. 3.1(a) are
variable terminal nodes.

1Implementation available at https://github.com/neulab/NL2code
2We use astor library to convert ASTs into Python code.
3bool, float, int, str.
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Figure 3.1: (a) the Abstract Syntax Tree (AST) for the given example code. Dashed nodes denote termi-
nals. Nodes are labeled with time steps during which they are generated. (b) the action sequence (up to
t14) used to generate the AST in (a)

3.3 Grammar Model

Before detailing our neural code generation method, we �rst introduce the grammar model at
its core. Given an input description x, our probabilistic grammar model de�nes the genera-
tive story of a derivation AST. We factorize the generation process of an AST into sequential
application of actions of two types:

• ApplyRule[r] applies a production rule r to the current derivation tree;

• GenToken[v] populates a variable terminal node by appending a terminal token v.

Fig. 3.1(b) shows the generation process of the target AST in Fig. 3.1(a). Each node in
Fig. 3.1(b) indicates an action. Action nodes are connected by solid arrows which depict the
chronological order of the action �ow. The generation proceeds in depth-�rst, left-to-right
order (dotted arrows represent parent feeding, explained in §3.3.3).

Formally, under our grammar model, the probability of generating an AST y is factorized
as:

p(y|x) =
T∏
t=1

p(at|x, a<t), (3.2)

where at is the action taken at time step t, and a<t is the sequence of actions before t. We
will explain how to compute the action probabilities p(at|·) in Eq. (3.2) in §3.3.3. Put simply,
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the generation process begins from a root node at t0, and proceeds by the model choosing
ApplyRule actions to generate the overall program structure from a closed set of grammar rules,
then at leaves of the tree corresponding to variable terminals, the model switches to GenToken
actions to generate variables or constants from the open set. We describe this process in detail
below.

3.3.1 ApplyRule Actions

ApplyRule actions generate program structure, expanding the current node (the frontier node at
time step t: nft) in a depth-�rst, left-to-right traversal of the tree. Given a �xed set of production
rules, ApplyRule chooses a rule r from the subset that has a head matching the type of nft , and
uses r to expand nft by appending all child nodes speci�ed by the selected production. As an
example, in Fig. 3.1(b), the rule Call 7→ expr. . . expands the frontier node Call at time step t4,
and its three child nodes expr, expr* and keyword* are added to the derivation.

ApplyRule actions grow the derivation AST by appending nodes. When a variable terminal
node (e.g., str) is added to the derivation and becomes the frontier node, the grammar model
then switches to GenToken actions to populate the variable terminal with tokens.

Unary Closure Sometimes, generating an AST requires applying a chain of unary produc-
tions. For instance, it takes three time steps (t9 − t11) to generate the sub-structure expr* 7→
expr 7→ Name 7→ str in Fig. 3.1(a). This can be e�ectively reduced to one step of ApplyRule
action by taking the closure of the chain of unary productions and merging them into a single
rule: expr* 7→∗ str. Unary closures reduce the number of actions needed, but would poten-
tially increase the size of the grammar. In our experiments we tested our model both with and
without unary closures (§3.4).

3.3.2 GenToken Actions

Once we reach a frontier node nft that corresponds to a variable type (e.g., str), GenToken
actions are used to �ll this node with values. For general-purpose PLs like Python, variables and
constants have values with one or multiple tokens. For instance, a node that stores the name
of a function (e.g., sorted) has a single token, while a node that denotes a string constant
(e.g., a=‘hello world’) could have multiple tokens. Our model copes with both scenarios by
�ring GenToken actions at one or more time steps. At each time step, GenToken appends one
terminal token to the current frontier variable node. A special </n> token is used to “close” the
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node. The grammar model then proceeds to the new frontier node.
Terminal tokens can be generated from a pre-de�ned vocabulary, or be directly copied from

the input NL. This is motivated by the observation that the input description often contains
out-of-vocabulary (OOV) variable names or literal values that are directly used in the target
code. For instance, in our running example the variable name my_list can be directly copied
from the the input at t12. We give implementation details in §3.3.3.

3.3.3 Estimating Action Probabilities

We estimate action probabilities in Eq. (3.2) using attentional neural encoder-decoder models
with an information �ow structured by the syntax trees.

Encoder

For an NL description x consisting of nwords {wi}ni=1, the encoder computes a context sensitive
embedding hi for eachwi using a bidirectional Long Short-Term Memory (LSTM) network [76],
similar to the setting in [10]. See supplementary materials for detailed equations.

Decoder

The decoder uses an RNN to model the sequential generation process of an AST de�ned as
Eq. (3.2). Each action step in the grammar model naturally grounds to a time step in the decoder
RNN. Therefore, the action sequence in Fig. 3.1(b) can be interpreted as unrolling RNN time
steps, with solid arrows indicating RNN connections. The RNN maintains an internal state to
track the generation process (§3.3.3), which will then be used to compute action probabilities
p(at|x, a<t) (§3.3.3).

Tracking Generation States

Our implementation of the decoder resembles a vanilla LSTM, with additional neural connec-
tions (parent feeding, Fig. 3.1(b)) to re�ect the topological structure of an AST. The decoder’s
internal hidden state at time step t, st, is given by:

st = fLSTM([at−1 : ct : pt : nft ], st−1), (3.3)

where fLSTM(·) is the LSTM update function. [:] denotes vector concatenation. st will then
be used to compute action probabilities p(at|x, a<t) in Eq. (3.2). Here, at−1 is the embedding of
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Figure 3.2: Illustration of a decoder time step (t = 9)

the previous action. ct is a context vector retrieved from input encodings {hi} via soft attention.
pt is a vector that encodes the information of the parent action. nft denotes the node type
embedding of the current frontier node nft4. Intuitively, feeding the decoder the information
of nft helps the model to keep track of the frontier node to expand.

ActionEmbedding at We maintain two action embedding matrices,WR andWG. Each row
in WR (WG) corresponds to an embedding vector for an action ApplyRule[r] (GenToken[v]).

Context Vector ct The decoder RNN uses soft attention to retrieve a context vector ct from
the input encodings {hi} pertain to the prediction of the current action. We follow Bahdanau
et al. [10] and use a Deep Neural Network (DNN) with a single hidden layer to compute attention
weights.

Parent Feeding pt Our decoder RNN uses additional neural connections to directly pass
information from parent actions. For instance, when computing s9, the information from its
parent action step t4 will be used. Formally, we de�ne the parent action step pt as the time step
at which the frontier node nft is generated. As an example, for t9, its parent action step p9 is
t4, since nf9 is the node ?, which is generated at t4 by the ApplyRule[Call7→. . .] action.

We model parent information pt from two sources: (1) the hidden state of parent action
spt , and (2) the embedding of parent action apt . pt is the concatenation. The parent feeding
schema enables the model to utilize the information of parent code segments to make more

4We maintain an embedding for each node type.
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con�dent predictions. Similar approaches of injecting parent information were also explored
in the Seq2Tree model in Dong and Lapata [50]5.

Calculating Action Probabilities

In this section we explain how action probabilities p(at|x, a<t) are computed based on st.

ApplyRule The probability of applying rule r as the current action at is given by a softmax6:

p(at = ApplyRule[r]|x, a<t) = softmax(WR · g(st))ᵀ · e(r) (3.4)

where g(·) is a non-linearity tanh(W · st + b), and e(r) the one-hot vector for rule r.

GenToken As in §3.3.2, a token v can be generated from a prede�ned vocabulary or copied
from the input, de�ned as the marginal probability:

p(at = GenToken[v]|x, a<t) = p(gen|x, a<t)p(v|gen, x, a<t)

+ p(copy|x, a<t)p(v|copy, x, a<t).

The selection probabilities p(gen|·) and p(copy|·) are given by softmax(WS·st). The probability
of generating v from the vocabulary, p(v|gen, x, a<t), is de�ned similarly as Eq. (3.4), except that
we use the GenToken embedding matrix WG, and we concatenate the context vector ct with
st as input. To model the copy probability, we follow recent advances in modeling copying
mechanism in neural networks [62, 84, 117], and use a pointer network [186] to compute the
probability of copying the i-th word from the input by attending to input representations {hi}:

p(wi|copy, x, a<t) =
exp(ω(hi, st, ct))∑n
i′=1 exp(ω(hi′ , st, ct))

,

where ω(·) is a DNN with a single hidden layer. Speci�cally, if wi is an OOV word (e.g., the
variable name my_list), which is represented by a special <unk> token during encoding, we
then directly copy the actual word wi from the input description to the derivation.

3.3.4 Training and Inference

Given a dataset of pairs of NL descriptions xi and code snippets ci, we parse ci into its AST yi

and decompose yi into a sequence of oracle actions, which explains the generation story of yi
5Seq2Tree generates tree-structured outputs by conditioning on the hidden states of parent non-terminals,

while our parent feeding uses the states of parent actions.
6We do not show bias terms for all softmax equations.
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under the grammar model. The model is then optimized by maximizing the log-likelihood of
the oracle action sequence. At inference time, given an NL description, we use beam search to
approximate the best AST ŷ in Eq. (3.1). See supplementary materials for the pseudo-code of
the inference algorithm.

3.4 Experimental Evaluation

3.4.1 Datasets and Metrics

Dataset HS Django Ifttt

Train 533 16,000 77,495
Development 66 1,000 5,171
Test 66 1,805 758

Avg. tokens in description 39.1 14.3 7.4
Avg. characters in code 360.3 41.1 62.2
Avg. size of AST (# nodes) 136.6 17.2 7.0

Statistics of Grammar
w/o unary closure

# productions 100 222 1009
# node types 61 96 828
terminal vocabulary size 1361 6733 0
Avg. # actions per example 173.4 20.3 5.0

w/ unary closure

# productions 100 237 –
# node types 57 92 –
Avg. # actions per example 141.7 16.4 –

Table 3.2: Statistics of datasets and associated grammars

HearthStone (HS) dataset [117] is a collection of Python classes that implement cards for the
card game HearthStone. Each card comes with a set of �elds (e.g., name, cost, and description),
which we concatenate to create the input sequence. This dataset is relatively di�cult: input
descriptions are short, while the target code is in complex class structures, with each AST
having 137 nodes on average.
Django dataset [146] is a collection of lines of code from the Django web framework, each
with a manually annotated NL description. Compared with the HS dataset where card imple-
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mentations are somewhat homogenous, examples in Django are more diverse, spanning a wide
variety of real-world use cases like string manipulation, IO operations, and exception handling.
Ifttt dataset [156] is a domain-speci�c benchmark that provides an interesting side compari-
son. Di�erent from HS and Django which are in a general-purpose PL, programs in Ifttt are
written in a domain-speci�c language used by the IFTTT task automation App. Users of the App
write simple instructions (e.g., If Instagram.AnyNewPhotoByYou Then Dropbox.AddFileFromURL)
with NL descriptions (e.g., “Autosave your Instagram photos to Dropbox”). Each statement inside
the If or Then clause consists of a channel (e.g., Dropbox) and a function (e.g., AddFileFromURL)7.
This simple structure results in much more concise ASTs (7 nodes on average). Because all ex-
amples are created by ordinary Apps users, the dataset is highly noisy, with input NL very
loosely connected to target ASTs. The authors thus provide a high-quality �ltered test set,
where each example is veri�ed by at least three annotators. We use this set for evaluation. Also
note Ifttt’s grammar has more productions (Tab. 3.2), but this does not imply that its gram-
mar is more complex. This is because for HS and Django terminal tokens are generated by
GenToken actions, but for Ifttt, all the code is generated directly by ApplyRule actions.
Metrics As is standard in semantic parsing, we measure accuracy, the fraction of correctly
generated examples. However, because generating an exact match for complex code structures
is non-trivial, we follow Ling et al. [117], and use token-level BLEU-4 with as a secondary
metric, de�ned as the averaged BLEU scores over all examples.8

3.4.2 Setup

Preprocessing All input descriptions are tokenized using nltk. We perform simple canon-
icalization for Django, such as replacing quoted strings in the inputs with place holders. See
supplementary materials for details. We extract unary closures whose frequency is larger than
a threshold k (k = 30 for HS and 50 for Django).

Con�guration The size of all embeddings is 128, except for node type embeddings, which
is 64. The dimensions of RNN states and hidden layers are 256 and 50, respectively. Since our

7Like Beltagy and Quirk [16], we strip function parameters since they are mostly speci�c to users.
8These two metrics are not ideal: accuracy only measures exact match and thus lacks the ability to give credit

to semantically correct code that is di�erent from the reference, while it is not clear whether BLEU provides
an appropriate proxy for measuring semantics in the code generation task. A more intriguing metric would be
directly measuring semantic/functional code equivalence, for which we present a pilot study at the end of this
section (cf. Error Analysis). We leave exploring more sophisticated metrics (e.g. based on static code analysis) as
future work.

36



HS Django

acc bleu acc bleu
Retrieval System† 0.0 62.5 14.7 18.6
Phrasal Statistical MT† 0.0 34.1 31.5 47.6
Hierarchical Statistical MT† 0.0 43.2 9.5 35.9

nmt 1.5 60.4 45.1 63.4
Seq2Tree 1.5 53.4 28.9 44.6
Seq2Tree–UNK 13.6 62.8 39.4 58.2
lpn† 4.5 65.6 62.3 77.6

Our system 16.2 75.8 71.6 84.5

Ablation Study
– frontier embed. 16.7 75.8 70.7 83.8
– parent feed. 10.6 75.7 71.5 84.3
– copy terminals 3.0 65.7 32.3 61.7
+ unary closure – 70.3 83.3
– unary closure 10.1 74.8 –

Table 3.3: Results on two Python code generation tasks. †Results previously reported in Ling et al. [117].

datasets are relatively small for a data-hungry neural model, we impose strong regularization
using recurrent dropouts [57] for all recurrent networks, together with standard dropout layers
added to the inputs and outputs of the decoder RNN. We validate the dropout probability from
{0, 0.2, 0.3, 0.4}. For decoding, we use a beam size of 15.

3.4.3 Results

Evaluation results for Python code generation tasks are listed in Tab. 3.3. Numbers for our
systems are averaged over three runs. We compare primarily with two approaches: (1) Latent
Predictor Network (lpn), a state-of-the-art sequence-to-sequence code generation model [117],
and (2) Seq2Tree, a neural semantic parsing model [50]. Seq2Tree generates trees one node
at a time, and the target grammar is not explicitly modeled a priori, but implicitly learned from
data. We test both the original Seq2Tree model released by the authors and our revised one
(Seq2Tree–UNK) that uses unknown word replacement to handle rare words [124]. For com-
pleteness, we also compare with a strong neural machine translation (nmt) system [140] using
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a standard encoder-decoder architecture with attention and unknown word replacement9, and
include numbers from other baselines used in Ling et al. [117]. On the HS dataset, which has
relatively large ASTs, we use unary closure for our model and Seq2Tree, and for Django we
do not.

System Comparison As in Tab. 3.3, our model registers 11.7% and 9.3% absolute improve-
ments over lpn in accuracy on HS and Django. This boost in performance strongly indicates
the importance of modeling grammar in code generation. For the baselines, we �nd lpn out-
performs nmt and Seq2Tree in most cases. We also note that Seq2Tree achieves a decent
accuracy of 13.6% on HS, which is due to the e�ect of unknown word replacement, since we
only achieved 1.5% without it. A closer comparison with Seq2Tree is insightful for understand-
ing the advantage of our syntax-driven approach, since both Seq2Tree and our system output
ASTs: (1) Seq2Tree predicts one node each time step, and requires additional “dummy” nodes
to mark the boundary of a subtree. The sheer number of nodes in target ASTs makes the pre-
diction process error-prone. In contrast, the ApplyRule actions of our grammar model allows
for generating multiple nodes at a single time step. Empirically, we found that in HS, Seq2Tree
takes more than 300 time steps on average to generate a target AST, while our model takes only
170 steps. (2) Seq2Tree does not directly use productions in the grammar, which possibly leads
to grammatically incorrect ASTs and thus empty code outputs. We observe that the ratio of
grammatically incorrect ASTs predicted by Seq2Tree on HS and Django are 21.2% and 10.9%,
respectively, while our system guarantees grammaticality.

Ablation Study We also ablated our best-performing models to analyze the contribution of
each component. “–frontier embed.” removes the frontier node embeddingnft from the decoder
RNN inputs (Eq. (3.3)). This yields worse results on Django while gives slight improvements
in accuracy on HS. This is probably because that the grammar of HS has fewer node types, and
thus the RNN is able to keep track of nft without depending on its embedding. Next, “–parent
feed.” removes the parent feeding mechanism. The accuracy drops signi�cantly on HS, with
a marginal deterioration on Django. This result is interesting because it suggests that parent
feeding is more important when the ASTs are larger, which will be the case when handling
more complicated code generation tasks like HS. Finally, removing the pointer network (“–copy
terminals”) in GenToken actions gives poor results, indicating that it is important to directly
copy variable names and values from the input.

9For nmt, we also attempted to �nd the best-scoring syntactically correct predictions in the size-5 beam, but
this did not yield a signi�cant improvement over the nmt results in Tab. 3.3.
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Figure 3.3: Performance w.r.t reference AST size on Django
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Figure 3.4: Performance w.r.t reference AST size on HS

The results with and without unary closure demonstrate that, interestingly, it is e�ective
on HS but not on Django. We conjecture that this is because on HS it signi�cantly reduces
the number of actions from 173 to 142 (c.f., Tab. 3.2), with the number of productions in the
grammar remaining unchanged. In contrast, Django has a broader domain, and thus unary
closure results in more productions in the grammar (237 for Django vs. 100 for HS), increasing
sparsity.

Performance by the size of AST We further investigate our model’s performance w.r.t. the
size of the gold-standard ASTs in Figs. 3.3 and 3.4. Not surprisingly, the performance drops
when the size of the reference ASTs increases. Additionally, on the HS dataset, the BLEU score
still remains at around 50 even when the size of ASTs grows to 200, indicating that our proposed
syntax-driven approach is robust for long code segments.

Domain Speci�c Code Generation Although this is not the focus of our work, evaluation
on Ifttt brings us closer to a standard semantic parsing setting, which helps to investigate
similarities and di�erences between generation of more complicated general-purpose code and
and more limited-domain simpler code. Tab. 3.4 shows the results, following the evaluation
protocol in [16] for accuracies at both channel and full parse tree (channel + function) levels.
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Channel Full Tree

Classical Methods

posclass [156] 81.4 71.0
LR [16] 88.8 82.5

Neural Network Methods

nmt 87.7 77.7
NN [16] 88.0 74.3
Seq2Tree [50] 89.7 78.4
Doubly-Recurrent NN [5] 90.1 78.2

Our system 90.0 82.0
– parent feed. 89.9 81.1
– frontier embed. 90.1 78.7

Table 3.4: Results on the noise-�ltered Ifttt test set of “>3 agree with gold annotations” (averaged over
three runs), our model performs competitively among neural models.

Our full model performs on par with existing neural network-based methods, while outper-
forming other neural models in full tree accuracy (82.0%). This score is close to the best clas-
sical method (LR), which is based on a logistic regression model with rich hand-engineered
features (e.g., brown clusters and paraphrase). Also note that the performance between nmt
and other neural models is much closer compared with the results in Tab. 3.3. This suggests
that general-purpose code generation is more challenging than the simpler Ifttt setting, and
therefore modeling structural information is more helpful.

Case Studies We present output examples in Tab. 3.5. On HS, we observe that most of the
time our model gives correct predictions by �lling learned code templates from training data
with arguments (e.g., cost) copied from input. This is in line with the �ndings in Ling et al.
[117]. However, we do �nd interesting examples indicating that the model learns to generalize
beyond trivial copying. For instance, the �rst example is one that our model predicted wrong —
it generated code block A instead of the gold B (it also missed a function de�nition not shown
here). However, we �nd that the block A actually conveys part of the input intent by destroying
all, not some, of the minions. Since we are unable to �nd code block A in the training data, it
is clear that the model has learned to generalize to some extent from multiple training card
examples with similar semantics or structure.
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input <name> Brawl </name> <cost> 5 </cost> <desc> Destroy all minions except one

(chosen randomly) </desc> <rarity> Epic </rarity> ...

pred. class Brawl(SpellCard):

def __init__(self):

super().__init__(’Brawl’, 5, CHARACTER_CLASS.WARRIOR, CARD_RARITY.EPIC)

def use(self, player, game):

super().use(player, game)

targets = copy.copy(game.other_player.minions)

targets.extend(player.minions)

for minion in targets:

minion.die(self)
A

ref. minions = copy.copy(player.minions)

minions.extend(game.other_player.minions)

if len(minions) > 1:

survivor = game.random_choice(minions)

for minion in minions:

if minion is not survivor: minion.die(self)

B

input join app_con�g.path and string ’locale’ into a �le path, substitute it for localedir.

pred. localedir = os.path.join(app_config.path, ’locale’) 3

input self.plural is an lambda function with an argument n, which returns result of boolean

expression n not equal to integer 1

pred. self.plural = lambda n: len(n) 7

ref. self.plural = lambda n: int(n!=1)

Table 3.5: Predicted examples from HS (1st) and Django. Copied contents (copy probability > 0.9) are
highlighted.

The next two examples are from Django. The �rst one shows that the model learns the
usage of common API calls (e.g., os.path.join), and how to populate the arguments by copy-
ing from inputs. The second example illustrates the di�culty of generating code with complex
nested structures like lambda functions, a scenario worth further investigation in future studies.
More examples are attached in supplementary materials.

Error Analysis To understand the sources of errors and how good our evaluation metric (ex-
act match) is, we randomly sampled and labeled 100 and 50 failed examples (with accuracy=0)
from Django and HS, respectively. We found that around 2% of these examples in the two
datasets are actually semantically equivalent. These examples include: (1) using di�erent pa-
rameter names when de�ning a function; (2) omitting (or adding) default values of parameters
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in function calls. While the rarity of such examples suggests that our exact match metric is
reasonable, more advanced evaluation metrics based on statistical code analysis are de�nitely
intriguing future work.

For Django, we found that 30% of failed cases were due to errors where the pointer network
failed to appropriately copy a variable name into the correct position. 25% were because the
generated code only partially implemented the required functionality. 10% and 5% of errors
were due to malformed English inputs and pre-processing errors, respectively. The remaining
30% of examples were errors stemming from multiple sources, or errors that could not be easily
categorized into the above. For HS, we found that all failed card examples were due to partial
implementation errors, such as the one shown in Table 3.5.

3.5 Related Work

CodeGeneration Interested readers are referred to §2.1.2 for a review of the code generation
task. To draw connections with the broader literature in machine learning for code, our work
also falls into the �eld of probabilistic modeling of source code [126, 142]. Our approach of
factoring an AST using probabilistic models is closely related to Allamanis et al. [4], which
uses a factorized model to measure the semantic relatedness between NL and ASTs for code
retrieval, while our model tackles the more challenging generation task.

Neural Semantic Parsing with Syntactic Information Prior to this work, several exist-
ing approaches in semantic parsing have be proposed to utilize grammar knowledge in a neu-
ral parser, such as augmenting the training data by generating examples guided by the gram-
mar [84, 91]. Liang et al. [110] used a neural decoder which constrains the space of next valid
tokens in the query language for question answering. Finally, the structured prediction ap-
proach proposed by Xiao et al. [202] is closely related to our model in using the underlying
grammar as prior knowledge to constrain the generation process of derivation trees, while our
method is based on a uni�ed grammar model which jointly captures production rule application
and terminal symbol generation, and scales to general purpose code generation tasks.

3.6 Summary

In this chapter we propose a syntax-driven neural code generation approach. Instead of directly
predicting surface-level code tokens as in prior works, this model generates abstract syntax
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trees of programs guided by the grammar of the target programming language as prior syntac-
tic knowledge. ASTs are generated by sequentially applying tree-construction actions from a
grammar model. Experiments on both code generation and semantic parsing tasks demonstrate
the e�ectiveness of our proposed approach.
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Chapter 4

Generalized Parsing Framework

The previous chapter introduced a syntax-driven neural parsing model for general-purpose
code generation, and demonstrated its e�ectiveness in generating open-domain programs with
complex grammars. In this chapter, we generalize the approach and build a semantic parsing
framework Tranx, which is applicable to various parsing tasks with di�erent logical formalisms
of meaning representations. Tranx provides a convenient interface for users to quickly adapt
the parsing model in Chapter 3 to the domain at hand, with the help of a programmable tran-
sition system based on the abstract syntax description language. This work is presented in:

• Pengcheng Yin and Graham Neubig. TRANX: A transition-based neural abstract syntax
parser for semantic parsing and code generation. In Proceedings of EMNLP Demonstration

Track, 2018

4.1 Overview

As discussed in §2.1, meaning representations in semantic parsing could be de�ned according
to a wide variety of formalisms. Because of these varying formalisms for MRs, the design of
semantic parsers, particularly neural network-based ones has generally focused on a small sub-
set of tasks — in order to ensure the syntactic well-formedness of generated MRs, a parser is
usually speci�cally designed to re�ect the domain-dependent grammar of MRs in the structure
of the model [207, 244]. To alleviate this issue, there have been recent e�orts in neural seman-
tic parsing with general-purpose grammar models [51, 202]. In Chapter 3, we put forward a
neural sequence-to-sequence model that generates tree-structured MRs using a series of tree-
construction actions, guided by the task-speci�c context free grammar provided to the model
a priori. Concurrently, Rabinovich et al. [157] proposed the abstract syntax networks (ASNs),
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where domain-speci�c MRs are represented by abstract syntax trees (ASTs, Fig. 4.2 Left) speci-
�ed under the abstract syntax description language (ASDL) framework [194]. An ASN employs
a modular architecture, generating an AST using speci�cally designed neural networks for each
construct in the ASDL grammar.

Inspired by this existing research, we have developed Tranx, a TRANsition-based abstract
syntaX parser for semantic parsing and code generation. Tranx is designed with the following
principles in mind:

pandas read top 100 lines in file.csv

ApplyConstr(Expr)

ApplyConstr(Call)

ApplyConstr(Attr.)

stmt   Expr(expr value)

expr   Call(expr func, expr* args,

ASDL Grammar Transition System

. . .

s1

s2

s3

s4

s5

GenToken(sorted)

Expr

Call

Attr.

pandas

Name

file.csv

Keyword

Abstract Syntax Tree

. . . pandas.read_csv(

keyword* keywords)

Attribute(expr value, 

↦
↦

Name(identifier id)|

|

Meaning Representation

AST_to_MR(      )

Input Utterance

(to domain-specific MR)(general-purpose intermediate MR)(actions to construct AST)

read_csv

identifier attr)

Str(string s)|

file.csv,
nrows=100)

Figure 4.1: Work�ow of Tranx

• Generalization ability Tranx employs ASTs as a general-purpose intermediate meaning
representation, and the task-dependent grammar is provided to the system as external knowl-
edge to guide the parsing process, therefore decoupling the semantic parsing procedure with
speci�cities of domain grammars.

• ExtensibilityTranx uses a simple transition system to parse NL utterances into tree-structured
ASTs. The transition system is designed to be easy to extend, requiring minimal engineering
to adapt to tasks that need to handle extra domain-speci�c information.

• E�ectiveness We test Tranx on four semantic parsing (Atis, Geo) and code generation
(Django, WikiSQL) tasks, and demonstrate that Tranx is capable of generalizing to di�er-
ent domains while registering strong performance, out-performing existing neural network-
based approaches on three of the four datasets (Geo, Atis, Django).

4.2 Methodology

Given an NL utterance, Tranx parses the utterance into a formal meaning representation, typ-
ically represented as λ-calculus logical forms, domain-speci�c, or general-purpose program-
ming languages (e.g., Python). In the following description we use Python code generation as a
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nf11
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t nft Action

t1 root Expr(expr value)
t2 f1 Call(expr func, expr* args,

keyword* keywords)
t3 f2 Attribute(expr value, identifier attr)
t4 f5 Name(identifier id)
t5 f7 GenToken[pandas]
t6 f6 GenToken[read_csv]
t7 f3 Str(string s)
t8 f8 GenToken[�le.csv]
t9 f8 GenToken[</f>]
t10 f3 Reduce (close the frontier �eld f3)
t11 f4 keyword(identifier arg, expr value)
t12 f9 GenToken[nrows]
t13 f10 Num(object n)
t14 f11 GenToken[1000]
t15 f4 Reduce (close the frontier �eld f4)

Figure 4.2: Le� The ASDL AST for the target Python code in Fig. 4.1. Field names are labeled on upper
arcs, and indexed as fi. Purple squares denote �elds with sequential cardinality. Grey nodes denote
primitive identi�er �elds. Fields are labeled with time steps at which they are generated. Right The
action sequence used to construct the AST. Each action is labeled with its frontier �eldnft . ApplyConstr
actions are represented by their constructors.

running example, where a programmer’s natural language intents are mapped to Python source
code. Fig. 4.1 depicts the work�ow of Tranx. We will present more use cases of Tranx in §4.3.

The core of Tranx is a transition system. Given an input NL utterance u, Tranx employs
the transition system to map the utterance u into an AST z using a series of tree-construction
actions (§4.2.2). Tranx employs ASTs as the intermediate meaning representation to abstract
over domain-speci�c structure of MRs. This parsing process is guided by the user-de�ned,
domain-speci�c grammar speci�ed under the ASDL formalism (§4.2.1). Given the generated
AST z, the parser calls the user-de�ned function, AST_to_MR(·), to convert the intermediate
AST into a domain-speci�c meaning representation y, completing the parsing process. Tranx
uses a probabilistic model p(z|u), parameterized by a neural network, to score each hypothesis
AST (§4.2.3).

4.2.1 Modeling ASTs using ASDL Grammar

Tranx uses ASTs as the general-purpose, intermediate semantic representation for MRs. ASTs
are commonly used to represent programming languages, and can also be used to represent
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other tree-structured MRs (e.g., λ-calculus). The ASDL framework is a grammatical formalism
to de�ne ASTs. See Fig. 4.1 for an excerpt of the Python ASDL grammar. Tranx provides APIs
to read such a grammar from human-readable text �les.

An ASDL grammar has two basic constructs: types and constructors. A composite type is
de�ned by the set of constructors under that type. For example, the stmt and expr composite
types in Fig. 4.1 refer to Python statements and expressions, repectively, each de�ned by a
series of constructors. A constructor speci�es a language construct of a particular type using
its �elds. For instance, the Call constructor under the composite type expr denotes function
call expressions, and has three �elds: func, args and keywords. Each �eld in a constructor is
also strongly typed, which speci�es the type of value the �eld can hold. A �eld with a composite
type can be instantiated by constructors of the same type. For example, the func �eld above
can hold a constructor of type expr. There are also �elds with primitive types, which store
values. For example, the id �eld of Name constructor has a primitive type identifier, and is
used to store identi�er names. And the �eld s in the Str (string) constructor hold string literals.
Finally, each �eld has a cardinality (single, optional ? and sequential ∗), denoting the number
of values the �eld holds.

An AST is then composed of multiple constructors, where each node on the tree corresponds
to a typed �eld in a constructor (except for the root node, which denotes the root constructor).
Depending on the cardinality of the �eld, a node can hold one or multiple constructors as its
values. For instance, the func �eld with single cardinality in the ASDL grammar in Fig. 4.1 is
instantiated with one Name constructor, while the args �eld with sequential cardinality have
multiple child constructors.

4.2.2 Transition System

Inspired by our grammar-constrained decoding model in Chapter 3, we develop a transition sys-
tem that decomposes the generation procedure of an AST into a sequence of tree-constructing
actions. We now explain the transition system using our running example. Fig. 4.2 Right lists
the sequence of actions used to construct the example AST. In high level, the generation pro-
cess starts from an initial derivation AST with a single root node, and proceeds according to a
top-down, left-to-right order traversal of the AST. At each time step, one of the following three
types of actions is evoked to expand the opening frontier �eld nft of the derivation:

ApplyConstr[c] actions apply a constructor c to the opening composite frontier �eld
which has the same type as c, populating the opening node using the �elds in c. If the frontier

48



�eld has sequential cardinality, the action appends the constructor to the list of constructors
held by the �eld.

Reduce actions mark the completion of the generation of child values for a �eld with
optional (?) or multiple (∗) cardinalities.

GenToken[v] actions populate a (empty) primitive frontier �eld with a token v. For ex-
ample, the �eld f7 on Fig. 4.2 has type identifier, and is instantiated using a single GenTo-
ken action. For �elds of string type, like f8, whose value could consists of multiple tokens
(only one shown here), it can be �lled using a sequence of GenToken actions, with a special
GenToken[</f>] action to terminate the generation of token values.

The generation completes once there is no frontier �eld on the derivation. Tranx then calls
the user speci�ed function AST_to_MR(·) to convert the generated intermediate AST z into the
target domain-speci�c MR y. Tranx provides various helper functions to ease the process of
writing conversion functions. For example, our example conversion function to transform ASTs
into Python source code contains only 32 lines of code. Tranx also ships with several built-in
conversion functions to handle MRs commonly used in semantic parsing and code generation,
like λ-calculus logical forms and SQL queries.

4.2.3 Computing Action Probabilities p(z|u)

Given the transition system, the probability of an z is decomposed into the probabilities of the
sequence of actions used to generate z

p(z|u) =
∏
t

p(at|a<t,u),

Following Chapter 3, we parameterize the transition-based parser p(z|u) using a neural encoder-
decoder network with augmented recurrent connections to re�ect the topology of ASTs.

Encoder The encoder is a standard bidirectional Long Short-term Memory (LSTM) network,
which encodes the input utterance u of n tokens, {xi}ni=1 into vectorial representations {h}ni=1.

Decoder The decoder is also an LSTM network, with its hidden state st at each time temp
given by

st = fLSTM([at−1 : s̃t−1 : pt], st−1),

where fLSTM is the LSTM transition function, and [:] denotes vector concatenation. at−1 is the
embedding of the previous action. We maintain an embedding vector for each action. s̃t is the
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expr

= Variable(var variable)

| Entity(ent entity)

| Number(num number)

| Apply(pred predicate, expr* arguments)

| Argmax(var variable, expr domain, expr body)

| Argmin(var variable, expr domain, expr body)

| Count(var variable, expr body)

| Exists(var variable, expr body)

| Lambda(var variable, var_type type, expr body)

| Max(var variable, expr body)

| Min(var variable, expr body)

| Sum(var variable, expr domain, expr body)

| The(var variable, expr body)

| Not(expr argument)

| And(expr* arguments)

| Or(expr* arguments)

| Compare(cmp_op op, expr left, expr right)

cmp_op = Equal | LessThan | GreaterThan

Figure 4.3: The λ-calculus ASDL grammar for Geo and Atis, de�ned in Rabinovich et al. [157]

attentional vector de�ned as in Luong et al. [123]

s̃t = tanh(Wc[ct : st]).

where ct is the context vector retrieved from input encodings {hi}ni=1 using attention.

Parent Feeding pt is a vector that encodes the information of the parent frontier �eld nft on
the derivation, which is a concatenation of two vectors: the embedding of the frontier �eld nft ,
and spt , the decoder’s state at which the constructor of nft is generated by the ApplyConstr ac-
tion. Parent feeding re�ects the topology of tree-structured ASTs, and gives better performance
on generating complex MRs like Python code (§4.3).
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Action Probabilities The probability of an ApplyConstr[c] action with embedding ac is1

p(at = ApplyConstr[c]|a<t,u) = softmax(aᵀ
cWs̃t) (4.1)

For GenToken actions, we employ a hybrid approach of generation and copying, allowing for
out-of-vocabulary variable names and literals (e.g., “�le.csv” in Fig. 4.1) inu to be directly copied
to the derivation. Speci�cally, the action probability is de�ned to be the marginal probability

p(at = GenToken[v]|a<t,u) = p(gen|at,u)p(v|gen, at,u)+ p(copy|at,u)p(v|copy, at,u)

The binary probability p(gen|·) and p(copy|·) is given by softmax(Ws̃t). The probability of
generating v from a closed-set vocabulary, p(v|gen, ·) is de�ned similarly as (4.1). The copy
probability of copying the i-th word in u is de�ned using a pointer network [186]

p(xi|copy, a<t,u) = softmax(hᵀ
iWs̃t).

4.3 Experiments

4.3.1 Datasets

To demonstrate the generalization and extensibility of Tranx, we deploy our parser on four
semantic parsing and code generation tasks.

Semantic Parsing

We evaluate on Geo and Atis datasets. Geo is a collection of 880 U.S. geographical ques-
tions (e.g., “Which states border Texas?” ), and Atis is a set of 5,410 inquiries of �ight infor-
mation (e.g., “Show me �ights from Dallas to Baltimore” ). The MRs in the two datasets are de-
�ned in λ-calculus logical forms (e.g., “lambda x (and (state x) (next_to x texas))”
and “lambda x (and (flight x dallas) (to x baltimore))”). We use the pre-processed
datasets released by Dong and Lapata [50]. We use the ASDL grammar de�ned in Rabinovich
et al. [157], as listed in Fig. 4.3.

Code Generation

We evaluate Tranx on both general-purpose (Python, Django) and domain-speci�c (SQL, Wik-
iSQL) code generation tasks. The Django dataset [146] consists of 18,805 lines of Python source

1Reduce is treated as a special ApplyConstr action.
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stmt = Select(agg_op? agg, idx column_idx,

cond_expr* conditions)

cond_expr = Condition(cmp_op op, idx column_idx,

string value)

agg_op = Max | Min | Count | Sum | Avg

cmp_op = Equal | GreaterThan | LessThan | Other

Figure 4.4: The ASDL grammar for WikiSQL

code extracted from the Django Web framework, with each line paired with an NL description.
Code in this dataset covers various real-world use cases of Python, like string manipulation,
I/O operation, exception handling, etc.

WikiSQL [244] is a code generation task for domain-speci�c languages (i.e., SQL). It consists
of 80,654 examples of NL questions (e.g., “What position did Calvin Mccarty play?” ) and anno-
tated SQL queries (e.g., “SELECT Position FROM Table WHERE Player = Calvin Mccarty”).
Di�erent from other datasets, each example also has a table extracted from Wikipedia, and the
SQL query is executed against the table to get an answer.

Extending Tranx for WikiSQL In order to achieve strong results, existing parsers, like
most models in Tab. 4.3, use speci�cally designed architectures to re�ect the syntactic structure
of SQL queries. We show that the transition system used by Tranx can be easily extended
for WikiSQL with minimal engineering, while registering strong performance. First, we use
de�ne a simple ASDL grammar following the syntax of SQL (Fig. 4.4). We then augment the
transition system with a special GenToken action, SelColumn[k]. A SelColumn[k] action is
used to populate a primitive column_idx �eld in Select and Condition constructors in the
grammar by selecting the k-th column in the table. To compute the probability of SelColumn[k]
actions, we use a pointer network over column encodings, where the column encodings are
given by a bidirectional LSTM network over column names in an input table. This can be simply
implemented by overriding the base Parser class in Tranx and modifying the functions that
compute action probabilities.

4.3.2 Results

In this section we discuss our experimental results. All results are averaged over three runs
with di�erent random seeds.
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Methods Geo Atis

ZH15 [243] 88.9 84.2
ZC07 [237] 89.0 84.6
WKZ14 [187] 90.4 91.3

Neural Network-based Models

Seq2Tree [50] 87.1 84.6
ASN [157] 87.1 85.9
Tranx 88.2 86.2

Table 4.1: Semantic parsing accuracies on Geo and Atis

Methods Acc.
nmt [140] 45.1
lpn [117] 62.3
Yin and Neubig [218] (Chapter 7) 71.6
Tranx 73.7

Table 4.2: Code generation accuracies on Django

Semantic Parsing Tab. 4.1 lists the results for semantic parsing tasks. We test Tranx with
two con�gurations, with or without parent feeding (§4.2.3). Our system outperforms existing
neural network-based approaches. This demonstrates the e�ectiveness of Tranx in closed-
domain semantic parsing. Interestingly, we found the model without parent feeding achieves
slightly better accuracy on Geo, probably because that its relative simple grammar does not
require extra handling of parent information.

Code Generation Tab. 4.2 lists the results on Django. Tranx achieves state-of-the-art re-
sults on Django. We also �nd parent feeding yields +1 point gain in accuracy, suggesting the
importance of modeling parental connections in ASTs with complex domain grammars (e.g.,
Python).

Tab. 4.3 shows the results on WikiSQL. We �rst discuss our standard model which only uses
information of column names and do not use the contents of input tables during inference, as
listed in the top two blocks in Tab. 4.3. We �nd Tranx, although just with simple extensions to
adapt to this dataset, achieves impressive results and outperforms many task-speci�c methods.
This demonstrates that Tranx is easy to extend to incorporate task-speci�c information, while
maintaining its e�ectiveness. We also extend Tranx with a very simple answer pruning strat-
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Methods AccEM AccEX
Seq2SQL [244] 48.3 59.4
SQLNet [207] – 68.0
PT-MAML [77] 62.8 68.0
TypeSQL [227] – 73.5

Tranx 62.9 71.7
PointSQL [192]† 61.5 66.8
TypeSQL+TC [227]† – 82.6

STAMP [182]† 60.7 74.4
STAMP+RL [182]† 61.0 74.6
Tranx 68.4 78.6

Table 4.3: Exact match (EM) and execution (EX) accuracies on WikiSQL. †Methods that use the contents
of input tables.

egy, where we execute the candidate SQL queries in the beam against the input table, and prune
those that yield empty execution results. Results are listed in the bottom two-blocks in Tab. 4.3,
where we compare with systems that also use the contents of tables. Surprisingly, this (frus-
tratingly) simple extension yields signi�cant improvements, outperforming many task-speci�c
models that use speci�cally designed, heavily-engineered neural networks to incorporate in-
formation of table contents.

4.4 Summary

In this chapter we present Tranx, a transition-based abstract syntax parser. Tranx is gen-
eralizable, extensible and e�ective. It provides a convenient interface for users to specify the
grammar of their task-speci�c programming languages, and uses a simple transition system to
parse NL utterances into tree-structured ASTs. The transition system is designed to be easy
to extend, requiring minimal engineering to adapt to tasks that need to handle extra domain-
speci�c information. We test Tranx on four semantic parsing and code generation tasks, and
demonstrate the system achieves competitive results on all those benchmarks. Since the release
of Tranx and our prior code generation model in Chapter 3, there has been extensive follow-up
work on grammar-constrained neural semantic parsing, with applications to text-to-sql pars-
ing [188, 193, 207, 228, inter alia] and general-purpose program synthesis [69, 79, 82, 170, inter
alia]. This framework has also been extended to related �elds like program translations [32]
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and modeling code edits [213, 224]. We believe our Tranx model, as a general-purpose syntax-
driven structured decoding framework, can be generalized to other structured prediction tasks
whose constraints can be speci�ed as context-free grammars. We provide more possible future
directions in Chapter 10.
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Chapter 5

Pretraining for Structured Data

Understanding

In previous chapters, we introduce structured decoding models that generate meaning represen-
tations following their syntactic structures, while the encoding model is assumed as a generic
sequence-encoding network over input utterances. In many applications, however, in order
to understand user-issued utterances, a semantic parser needs to process necessary domain-
speci�c knowledge schemas that are rich in structures. A representative example is semantic
parsing over databases, which requires the model to understand the structured information pre-
sented in database tables. To this end, we develop TaBert, a pre-trained Transformer model
for learning joint representations of NL utterances and structured schemas of tabular data. This
work is published in:

• Pengcheng Yin, Graham Neubig, Wen tau Yih, and Sebastian Riedel. TaBERT: Pretraining
for joint understanding of textual and tabular data. InAnnual Conference of the Association

for Computational Linguistics (ACL), July 2020

5.1 Overview

Recent years have witnessed a rapid advance in the ability to understand and answer questions
about free-form natural language (NL) text [161], largely due to large-scale, pretrained language
models (LMs) like BERT [49]. These models allow us to capture the syntax and semantics of text
via representations learned in a unsupervised manner, before �ne-tuning the model to down-
stream tasks [59, 122, 130, 132, 152, 209]. It is also relatively easy to apply such pretrained LMs
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to comprehension tasks that are modeled as text span selection problems, where the boundary
of an answer span can be predicted using a simple classi�er on top of the LM [85].

However, it is less clear how one could pretrain and �ne-tune such models for other QA
tasks that involve joint reasoning over both free-form NL text and structured data. One example
task is semantic parsing for access to databases (DBs) [18, 216, 235, refer to §2.1.2 for a survey],
the task of transducing an NL utterance (e.g., “Which country has the largest GDP?” ) into a
structured query over DB tables (e.g., SQL querying a database of economics). As discussed in
Chapter 1 and §2.1.2, a key challenge in this scenario is understanding the structured schema
of DB tables (e.g., the name, data type, and stored values of columns), and more importantly,
the alignment between the input text and the schema (e.g., the token “GDP” refers to the Gross
Domestic Product column), which is essential for inferring the correct DB query [17].

Neural semantic parsers tailored to this task therefore attempt to learn joint representa-
tions of NL utterances and the (semi-)structured schema of DB tables (e.g., representations of
its columns or cell values, as in Bogin et al. [21], Krishnamurthy et al. [96], Wang et al. [188],
inter alia). However, this unique setting poses several challenges in applying pretrained LMs.
First, information stored in DB tables exhibit strong underlying structure, while existing LMs
(e.g., BERT) are solely trained for encoding free-form text. Second, a DB table could potentially
have a large number of rows, and naively encoding all of them using a resource-heavy LM
is computationally intractable. Finally, unlike most text-based QA tasks (e.g., SQuAD) which
could be formulated as a generic answer span selection problem and solved by a pretrained
model with additional classi�cation layers, semantic parsing is highly domain-speci�c, and the
architecture of a neural parser is strongly coupled with the structure of its underlying DB (e.g.,
systems for SQL-based and other types of DBs use di�erent encoder models). In fact, existing
systems have attempted to leverage BERT, but each with their own domain-speci�c, in-house
strategies to encode structured information in DB [64, 78, 238], and importantly, without pre-
training representations on structured data. These challenges call for development of general-
purpose pretraining approaches tailored to learning representations for both NL utterances and
structured DB tables.

In this chapter we present TaBert, a pretraining approach for joint understanding of NL
text and (semi-)structured tabular data (§5.3). TaBert is built on top of BERT, and jointly learns
contextual representations for utterances and the structured schema of DB tables (e.g., a vector
for each utterance token and table column). Speci�cally, TaBert linearizes the structure of
tables to be compatible with a Transformer-based BERT model. To cope with large tables, we
propose content snapshots, a method to encode a subset of table content most relevant to the
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input utterance. This strategy is further combined with a vertical attention mechanism to share
information among cell representations in di�erent rows (§5.3.1). To capture the association
between tabular data and related NL text, TaBert is pretrained on a parallel corpus of 26 million
tables and NL paragraphs (§5.3.2).

TaBert can be plugged into a neural semantic parser as a general-purpose encoder to com-
pute representations for utterances and tables. Our key insight is that although semantic parsers
are highly domain-speci�c, most systems rely on representations of input utterances and the
table schemas to facilitate subsequent generation of DB queries, and these representations can
be provided by TaBert, regardless of the domain of the parsing task.

We apply TaBert to two di�erent semantic parsing paradigms: (1) a classical supervised
learning setting on the Spider text-to-SQL dataset [229], where TaBert is �ne-tuned together
with a task-speci�c parser using parallel NL utterances and labeled DB queries (§5.4.1); (2) a
challenging weakly-supervised learning benchmark WikiTable�estions [150], where a sys-
tem has to infer latent DB queries from its execution results (§5.4.2). We demonstrate TaBert
is e�ective in both scenarios, showing that it is a drop-in replacement of a parser’s original
encoder for computing contextual representations of NL utterances and DB tables. Speci�cally,
systems augmented with TaBert register state-of-the-art performance on WikiTable�es-
tions, while performing competitively on Spider (§5.5).

5.2 Background

Semantic Parsing over Tables We focus on parsing utterances u to access database tables,
where the meaning representation z is a structured query (e.g., an SQL query) executable on
a set of relational DB tables T = {Tt}. A relational table T is a listing of N rows {Ri}Ni=1 of
data, with each row Ri consisting of M cells {s〈i,j〉}Mj=1, one for each column cj . Each cell s〈i,j〉
contains a list of tokens. Refer to §2.1.2 for a review of existing works in this line.

Depending on the underlying data representation schema used by the DB, a table could
either be fully structured with strongly-typed and normalized contents (e.g., a table column
named distance has a unit of kilometers, with all of its cell values, like 200, bearing the
same unit), as is commonly the case for SQL-based DBs (§5.4.1). Alternatively, it could be
semi-structured with unnormalized, textual cell values (e.g., 200 km, §5.4.2). The query lan-
guage could also take a variety of forms, from general-purpose DB access languages like SQL
to domain-speci�c ones tailored to a particular task.

Given a utterance and the its associated tables, a neural semantic parser generates a DB
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Figure 5.1: Overview of TaBert for learning representations of utterance and table schema with an
example from WikiTable�estions. (A) A content snapshot of the table is created based on the input
NL utterance. (B) Each row in the snapshot is encoded by a Transformer (only R2 is shown), producing
row-wise encodings for utterance tokens and cells. (C)All row-wise encodings are aligned and processed
by V vertical self-attention layers, generating utterance and column representations.

query from the vector representations of the utterance tokens and the structured schema of
tables. We refer schema as the set of columns in a table, and its representation as the list of vec-
tors that represent its columns1. We will introduce how TaBert computes these representations
in §5.3.1.

Masked Language Models Given a sequence of NL tokens x = x1, x2, . . . , xn, a masked
language model (e.g., BERT) is an LM trained using the masked language modeling objective,
which aims recover the original tokens in x from a “corrupted” context created by randomly
masking out certain tokens in x. Speci�cally, let xm = {xi1 , . . . , xim} be the subset of tokens
in x selected to be masked out, and x̃ denote the masked sequence with tokens in xm replaced
by a [MASK] symbol. A masked LM de�nes a distribution pθ(xm|x̃) over the target tokens xm
given the masked context x̃.

BERT parameterizes pθ(xm|x̃) using a Transformer model. During the pretraining phase,
BERT maximize pθ(xm|x̃) on large-scale textual corpora. In the �ne-tuning phase, the pre-
trained model is used as an encoder to compute representations of input NL tokens, and its

1Column representations for more complex schemas, e.g., those capturing inter-table dependency via primary
and foreign keys, could be derived from these table-wise representations.
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parameters are jointly tuned with other task-speci�c neural components.

5.3 TaBert: Learning Joint Representa- tions over Tex-

tual and Tabular Data

We �rst present how TaBert computes representations for NL utterances and tables schemas
(§5.3.1), followed by the pretraining procedure (§5.3.2).

5.3.1 ComputingRepresentations forNLUtterances andTable Schemas

Fig. 5.1 presents a schematic overview of TaBert. Given a utterance u and a table T , TaBert
�rst creates a content snapshot of T , which are sampled rows that summarize the most relevant
information in T to the input utterance. The model then linearizes each row in the snapshot
(and concatenate with the utterance) as input to a Transformer (e.g., BERT) model, which out-
puts row-wise encoding vectors of utterance tokens and cells. The encodings for all the rows
in the snapshot are fed into a series of vertical self-attention layers, where a cell representation
(or a utterance token representation) is computed by attending to vertically-aligned vectors of
the same column (or the same NL token). Finally, representations for each utterance token and
column are generated from a pooling layer.

Content Snapshot One major feature of TaBert is its use of the table contents, as opposed
to just using the column names, in encoding the table schema. This is motivated by the fact
that contents provide more detailed information about the semantics of a column than just the
column’s name, which might be ambiguous. For instance, the Venue column in Fig. 5.1 which is
used to answer the example question actually refers to host cities, and encoding the sampled cell
values while creating its representation may help match the term “city” in the input utterance
to this column.

However, a DB table could potentially have a large number of rows, with only few of
them actually relevant to answering the input utterance. Encoding all of the contents using
a resource-heavy Transformer is both computationally intractable and likely not necessary.
Thus, we instead use a content snapshot consisting of only a few rows that are most relevant
to the input utterance, providing an e�cient approach to calculate content-sensitive column
representations from cell values.

1Example adapted from stanford.io/38iZ8Pf
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We use a simple strategy to create content snapshots of K rows based on the relevance
between the utterance and a row. For K > 1, we select the top-K rows in the input table
that have the highest n-gram overlap ratio with the utterance. For K = 1, to include in the
snapshot as much information relevant to the utterance as possible, we create a synthetic row
by selecting the cell values from each column that have the highest n-gram overlap with the
utterance.

Row Linearization TaBert creates a linearized sequence for each row in the content snap-
shot as input to the Transformer model. Fig. 5.1(B) depicts the linearization for R2, which
consists of a concatenation of the utterance, columns and their cell values. Speci�cally, each
cell is represented by the name and data type2 of the column, together with its actual value, sep-
arated by a vertical bar. As an example, the cell s〈2,1〉 valued 2005 in R2 in Fig. 5.1 is encoded
as

Year︸︷︷︸
Column Name

| real︸︷︷︸
Column Type

| 2005︸︷︷︸
Cell Value

(5.1)

The linearization of a row is then formed by concatenating the above string encodings of all
the cells, separated by the [SEP] symbol. We then pre�x the row linearization with utterance
tokens as input sequence to the Transformer.

Existing works have applied di�erent linearization strategies to encode table with Trans-
former [31, 78], while our row approach is speci�cally designed for encoding content snapshots.
We present in §5.5 results with di�erent linearization choices.

Vertical Self-AttentionMechanism The base Transformer model in TaBert outputs vector
encodings of utterance and cell tokens for each row. These row-level vectors are computed
separately and therefore independent of each other. To allow for information �ow across cell
representations of di�erent rows, we propose vertical self-attention, a self-attention mechanism
that operates over vertically aligned vectors from di�erent rows.

As in Fig. 5.1(C), TaBert has V stacked vertical-level self-attention layers. To generate
aligned inputs for vertical attention, we �rst compute a �xed-length initial vector for each cell
at position 〈i, j〉, which is given by mean-pooling over the sequence of the Transformer’s output
vectors that correspond to its variable-length linearization as in E.q. (5.1). Next, the sequence
of word vectors for the NL utterance (from the base Transformer model) are concatenated with
the cell vectors as initial inputs to the vertical attention layer.

2We use two data types, text, and real for numbers, predicted by majority voting over the NER labels of cell
tokens.
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Each vertical attention layer has the same parameterization as the Transformer layer in Vaswani
et al. [185], but operates on vertically aligned elements, i.e.,, utterance and cell vectors that cor-
respond to the same question token and column, resp. This vertical self-attention mechanism
enables the model to aggregate information from di�erent rows in the content snapshot, allow-
ing TaBert to capture cross-row dependencies on cell values.

Utterance and ColumnRepresentations A representation cj is computed for each column
cj by mean-pooling over its vertically aligned cell vectors, {s〈i,j〉 : Ri in content snapshot},
from the last vertical layer. A representation for each utterance token, xj , is computed similarly
over the vertically aligned token vectors. These representations will be used by downstream
neural semantic parsers. TaBert also outputs an optional �xed-length table representation T

using the representation of the pre�xed [CLS] symbol, which is useful for parsers that operates
on multiple DB tables.

5.3.2 Pretraining Procedure

TrainingData Since there is no large-scale, high-quality parallel corpus of NL text and struc-
tured tables, we instead use semi-structured tables that commonly exist on the Web as a sur-
rogate data source. Speci�cally, we collect tables and their surrounding NL text from English
Wikipedia and the WDC WebTable Corpus [105], a large-scale table collection from Common-
Crawl. The raw data is extremely noisy, and we apply aggressive cleaning heuristics to �lter
out invalid examples (e.g., examples with HTML snippets). We will include more details of the
data preprocessing in the �nal thesis. The pre-processed corpus contains 26.6 million paral-
lel examples of tables and NL sentences. We perform sub-tokenization using the Wordpiece
tokenizer shipped with BERT.

Unsupervised Learning Objectives We apply di�erent objectives for learning representa-
tions of the NL context and structured tables. For NL contexts, we use the standard Masked
Language Modeling (MLM) objective [49], with a masking rate of 15% sub-tokens in an NL
context.

For learning column representations, we design objectives motivated by the intuition that
a column representation should contain both the general information of the column (e.g., its
name and data type), and representative cell values relevant to the NL context. We use two
objectives to capture such intuition. First, a Masked Column Prediction (MCP) objective
encourages the model to recover the names and data types of masked columns. Speci�cally, we
randomly select 20% of the columns in an input table, masking their names and data types in
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each row linearization (e.g., if the column Year in Fig. 5.1 is selected, the tokens Year and real

in E.q. (5.1) will be masked). Given the column representation cj , TaBert is trained to predict
the bag of masked tokens from cj using a multi-label classi�cation objective. Intuitively, MCP
encourages the model to recover column information from its contexts.

Next, we use an auxiliary Cell Value Recovery (CVR) objective to ensure information of
representative cell values in content snapshots is retained after additional layers of vertical self-
attention. Speci�cally, for each masked column cj in the above MCP objective, CVR predicts
the original tokens of each cell s〈i,j〉 (of cj) in the content snapshot conditioned on its cell
vector s〈i,j〉

3. For instance, for the example cell s〈2,1〉 in E.q. (5.1), we predict its value 2005

from s〈2,1〉. Since a cell could have multiple value tokens, we apply the span-based prediction
objective [85]. Speci�cally, to predict a cell token s〈i,j〉k ∈ s〈i,j〉, its positional embedding ek and
the cell representation s〈i,j〉 is fed into a two-layer network f(·)with GeLU activations [72]. The
output of f(·) is then used to predict the original value token s〈i,j〉k from a softmax layer.

5.4 Example Application: Semantic Parsing over Tables

We apply TaBert for representation learning on two semantic parsing paradigms, a classi-
cal supervised text-to-SQL task over structured DBs (§5.4.1), and a weakly supervised parsing
problem on semi-structured Web tables (§5.4.2).

5.4.1 Supervised Semantic Parsing

Benchmark Dataset Supervised learning is the typical scenario of learning a parser using
parallel data of utterances and queries. We use Spider [229], a text-to-SQL dataset with 10,181
examples across 200 DBs. Each example consists of a utterance (e.g., “What is the total number

of languages used in Aruba?” ), a DB with one or more tables, and an annotated SQL query,
which typically involves joining multiple tables to get the answer (e.g.,SELECT COUNT(*) FROM

Country JOIN Lang ON Country.Code = Lang.CountryCode WHERE Name = ‘Aruba’).

Base Semantic Parser We aim to show TaBert could help improve upon an already strong
parser. Unfortunately, as the time of writing, none of the top systems on Spider was pub-
licly available. To establish a reasonable testbed, we developed our in-house system based on
the TranX system proposed in Chapter 4, an open-source general-purpose semantic parser.

3The cell value tokens are not masked in the input sequence, since predicting masked cell values is challenging
even with the presence of its surrounding context.
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TranX translates an NL utterance into an intermediate meaning representation guided by a
user-de�ned grammar. The generated intermediate MR could then be deterministically con-
verted to domain-speci�c query languages (e.g., SQL).

We use TaBert as encoder of utterances and table schemas. Speci�cally, for a given ut-
terance u and a DB with a set of tables T = {Tt}, we �rst pair u with each table Tt in T as
inputs to TaBert, which generates |T | sets of table-speci�c representations of utterances and
columns. At each time step, an LSTM decoder performs hierarchical attention [114] over the
list of table-speci�c representations, constructing an MR based on the prede�ned grammar. Fol-
lowing the IRNet model [64] which achieved the best performance on Spider, we use SemQL,
a simpli�ed version of the SQL, as the underlying grammar. We will include more details of the
system in the �nal thesis.

5.4.2 Weakly Supervised Semantic Parsing

BenchmarkDataset Weakly supervised semantic parsing considers the reinforcement learn-
ing task of inferring the correct query from its execution results (i.e.,, whether the answer is
correct). Compared to supervised learning, weakly supervised parsing is signi�cantly more
challenging, as the parser does not have access to the labeled query, and has to explore the
exponentially large search space of possible queries guided by the noisy binary reward signal
of execution results.

WikiTable�estions [150] is a popular environment for weakly supervised semantic pars-
ing, which has 22,033 utterances and 2,108 semi-structured Web tables from Wikipedia. Com-
pared to Spider, examples in this dataset does not involve joining multiple tables, but typically
require compositional, multi-hop reasoning over a series of entries in the given table (e.g., to
answer the example in Fig. 5.1 the parser need to reason over the row set {R2, R3, R5}, locating
the Venue �eld with the largest value of Year).

Base Semantic Parser MAPO [111] is a strong system for weakly supervised semantic pars-
ing. It improves the sample e�ciency of the REINFORCE algorithm by biasing the exploration
of queries towards the high-rewarding ones already discovered by the model. MAPO uses a
domain-speci�c query language tailored to answering compositional questions on single ta-
bles, and its utterances and column representations are derived from an LSTM encoder, which
we replaced with our TaBert model. We will include implementation details of the system in
the �nal thesis.
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5.5 Experiments

In this section we evaluate TaBert on downstream tasks of semantic parsing to DB tables.

PretrainingCon�guration We train two variants of the model, TaBertBase and TaBertLarge,
with the underlying Transformer model initialized with the uncased versions of BertBase and
BertLarge, resp4. During pretraining, for each table and its associated NL context in the corpus,
we create a series of training instances of paired NL sentences (as synthetically generated utter-
ances) and tables (as content snapshots) by (1) sliding a (non-overlapping) context window of
sentences with a maximum length of 128 tokens, and (2) using the NL tokens in the window as
the utterance, and paring it with randomly sampled rows from the table as content snapshots.
TaBert is implemented in PyTorch using distributed training.

Comparing Models We mainly present results for two variants of TaBert by varying the
size of content snapshots K . TaBert(K = 3) uses three rows from input tables as content
snapshots and three vertical self-attention layers. TaBert(K = 1) uses one synthetically gen-
erated row as the content snapshot as described in §5.3.1. Since this model does not have multi-
row input, we do not use additional vertical attention layers (and the cell value recovery learn-
ing objective). Its column representation cj is de�ned by mean-pooling over the Transformer’s
output encodings that correspond to the column name (e.g., the representation for the Year

column in Fig. 5.1 is derived from the vector of the Year token in E.q. (5.1)). We �nd this strat-
egy gives better results compared with using the cell representation sj as cj . We also compare
withBert using the same row linearization and content snapshot approach as TaBert(K = 1),
which reduces to a TaBert(K = 1) model without pretraining on tabular corpora.

Evaluation Metrics As standard, we report execution accuracy on WikiTable�estions
and exact-match accuracy of DB queries on Spider.

5.5.1 Main Results

Tab. 5.1 and Tab. 5.2 summarize the end-to-end evaluation results on WikiTable�estions
and Spider, respectively. First, comparing with existing strong semantic parsing systems, we
found our parsers with TaBert as the utterance and table encoder perform competitively. On

4We also attempted to train TaBert on our collected corpus from scratch without initialization from BERT,
but with inferior results, potentially due to the average lower quality of web-scraped tables compared to purely
textual corpora. We leave improving the quality of training data as future work.
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Previous Systems on WikiTableQuestions

Model Dev Test
Pasupat and Liang [150] 37.0 37.1
Neelakantan et al. [139] 34.1 34.2

Ensemble 15 Models 37.5 37.7
Zhang et al. [240] 40.6 43.7
Dasigi et al. [45] 43.1 44.3
Agarwal et al. [1] 43.2 44.1

Ensemble 10 Models – 46.9
Our System based on MAPO [111]

Dev Best Test Best
Base Parser 42.3 ±0.3 42.7 43.1 ±0.5 43.8
w/ BertBase (K = 1) 49.6 ±0.5 50.4 49.4 ±0.5 49.2
− content snapshot 49.1 ±0.6 50.0 48.8 ±0.9 50.2

w/ TaBertBase (K = 1) 51.2 ±0.5 51.6 50.4 ±0.5 51.2
− content snapshot 49.9 ±0.4 50.3 49.4 ±0.4 50.0

w/ TaBertBase (K = 3) 51.6 ±0.5 52.4 51.4 ±0.3 51.3
w/ BertLarge (K = 1) 50.3 ±0.4 50.8 49.6 ±0.5 50.1
w/ TaBertLarge (K = 1) 51.6 ±1.1 52.7 51.2 ±0.9 51.5
w/ TaBertLarge (K = 3) 52.2 ±0.7 53.0 51.8 ±0.6 52.3

Table 5.1: Execution accuracies on WikiTable�estions. Models are evaluated with 10 random runs.
We report mean, standard deviation and the best results. Test 7→Best refers to the result from the run
with the best performance on Dev. set.

the test set of WikiTable�estions, MAPO augmented with a TaBertLarge model with three-
row content snapshots, TaBertLarge(K = 3), registers a single-model exact-match accuracy of
52.3%, surpassing the previously best ensemble system (46.9%) from Agarwal et al. [1] by 5.4%
absolute.

On Spider, our semantic parser based on TranX and SemQL (§5.4.1) is conceptually similar
to the base version of IRNet as both systems use the SemQL grammar, while our system has a
simpler decoder. Interestingly, we observe that its performance with BertBase (61.8%) matches
the full BERT-augmented IRNet model with a stronger decoder using augmented memory and
coarse-to-�ne decoding (61.9%). This con�rms that our base parser is an e�ective baseline.
Augmented with representations produced by TaBertLarge(K = 3), our parser achieves up to

69



Top-ranked Systems on Spider Leaderboard

Model Dev. Acc.
Global–GNN [20] 52.7
EditSQL + Bert [238] 57.6
RatSQL [188] 60.9
IRNet + Bert [64] 60.3
+ Memory + Coarse-to-Fine 61.9

IRNet V2 + Bert 63.9
RyanSQL + Bert (Anonymous) 66.6

Our System based on TranX (Chapter 4 [219])

Mean Best
w/ BertBase (K = 1) 61.8 ±0.8 62.4
− content snapshot 59.6 ±0.7 60.3

w/ TaBertBase (K = 1) 63.3 ±0.6 64.2
− content snapshot 60.4 ±1.3 61.8

w/ TaBertBase (K = 3) 63.3 ±0.7 64.1
w/ BertLarge (K = 1) 61.3 ±1.2 62.9
w/ TaBertLarge (K = 1) 64.0 ±0.4 64.4
w/ TaBertLarge (K = 3) 64.5 ±0.6 65.2

Table 5.2: Exact match accuracies on the public development set of Spider. Models are evaluated with 5
random runs.

65.2% exact-match accuracy, a 2.8% increase over the base model using BertBase. Note that
while other competitive systems on the leaderboard use BERT with more sophisticated seman-
tic parsing models, our best Dev. result is already close to the score registered by the best
submission (RyanSQL+Bert). This suggests that if they instead used TaBert as a featurizer,
they would see further gains.

Comparing semantic parsers augmented with TaBert and Bert. We found TaBert is more
e�ective across the board. Overall, the results on the two benchmarks demonstrate that pre-
training on aligned textual and tabular data is necessary for joint understanding of NL utter-
ances and tables, and TaBert works well with both structured (Spider) and semi-structured
DBs (WikiTable�estions), and agnostic of the task-speci�c structures of semantic parsers.
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u: How many years before was the �lm Bacchae out before the Watermelon?

Input to TaBertLarge (K = 3) . Content Snapshot with Three Rows

Film Year Function Notes

The Bacchae 2002 Producer Screen adaptation of...
The Trojan Women 2004 Producer/Actress Documutary �lm...
The Watermelon 2008 Producer Oddball romantic comedy...

Input to TaBertLarge (K = 1) . Content Snapshot with One Synthetic Row

Film Year Function Notes

The Watermelon 2013 Producer Screen adaptation of...

Table 5.3: Content snapshots generated by two models for a WikiTable�estions Dev. example.
Matched tokens between the question and content snapshots are highlighted.

E�ect of Content Snapshots In this chapter we propose using content snapshots to cap-
ture the information in input DB tables that is most relevant to answering the NL utterance.
We therefore study the e�ectiveness of including content snapshots when generating schema
representations. We include in Tab. 5.1 and Tab. 5.2 results of models without using content in
row linearization (“−content snapshot”). Under this setting a column is represented as “Column
Name | Type” without cell values (c.f., E.q. (5.1)). We �nd that content snapshots are helpful for
both Bert and TaBert, especially for TaBert. As discussed in §5.3.1, encoding sampled values
from columns in learning their representations helps the model infer alignments between entity
and relational phrases in the utterance and the corresponding column. This is particularly help-
ful for identifying relevant columns from a DB table that is mentioned in the input utterance.
As an example, empirically we observe on Spider our semantic parser with TaBertBase using
just one row of content snapshots (K = 1) registers a higher accuracy of selecting the correct
columns when generating SQL queries (e.g., columns in SELECT and WHERE clauses), compared
to the TaBertBase model without encoding content information (87.4% v.s. 86.4%).

Additionally, comparing TaBert using one synthetic row (K = 1) and three rows from
input tables (K = 3) as content snapshots, the latter generally performs better. Intuitively,
encoding more table contents relevant to the input utterance could potentially help answer
questions that involve reasoning over information across multiple rows in the table. Tab. 5.3
shows such an example, and to answer this question a parser need to subtract the values of Year
in the rows for “The Watermelon” and “The Bacchae”. TaBertLarge (K = 3) is able to capture
the two target rows in its content snapshot and generates the correct DB query, while the
TaBertLarge(K = 1) model with only one row as content snapshot fails to answer this example.
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Cell Linearization Template WikiQ. Spider
Pretrained TaBertBase Models (K = 1)

Column Name 49.6 ±0.4 60.0 ±1.1
Column Name | Type† (−content snap.) 49.9 ±0.4 60.4 ±1.3
Column Name | Type | Cell Value† 51.2 ±0.5 63.3 ±0.6

BertBase Models
Column Name [78] 49.0 ±0.4 58.6 ±0.3
Column Name is Cell Value (Chen19) 50.2 ±0.4 63.1 ±0.7

Table 5.4: Performance of pretrained TaBertBase models and BertBase on the Dev. sets with di�erent
linearization methods. Slot names are underlined. †Results copied from Tab. 5.1 and Tab. 5.2.

E�ect of Row Linearization TaBert uses row linearization to represent a table row as se-
quential input to Transformer. Tab. 5.4 (Upper-Half ) presents results using various linearization
methods. We �nd adding type information and content snapshots improves performance, as
they provide more hints about the meaning of a column.

We also compare with existing linearization methods in literature using a TaBertBase model
(Tab. 5.4 Lower-Half ). Hwang et al. [78] uses BERT to encode concatenated column names to
learn column representations. In line with our previous discussion on the e�ectiveness content
snapshots, this simple strategy without encoding cell contents underperforms (although with
TaBertBase pretrained on our tabular corpus the results become slightly better). Additionally,
we remark that linearizing table contents has also be applied to other BERT-based tabular rea-
soning tasks. For instance, Chen et al. [31] propose a “natural” linearization approach for check-
ing if an NL statement entails the factual information listed in a table using a binary classi�er
with representations from Bert, where a table is linearized by concatenating the semicolon-
separated cell linearization for all rows. Each cell is represented by a phrase “column name

is cell value”. For completeness, we also tested this cell linearization approach, and �nd
BertBase get improved results. We leave pretraining TaBert with this linearization strategy as
promising future work.

Impact of Pretraining Objectives TaBert uses two objectives (§5.3.2), a masked column
prediction (MCP) and a cell value recovery (CVR) objective, to learn column representations
that could capture both the general information of the column (via MCP) and its representative
cell values related to the utterance (via CVR). Tab. 5.5 shows ablation results of pretraining
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Learning Objective WikiQ. Spider
MCP only 51.6 ±0.7 62.6 ±0.7
MCP + CVR 51.6 ±0.5 63.3 ±0.7

Table 5.5: Performance of pretrained TaBertBase(K = 3) on Dev. sets with di�erent pretraining objec-
tives.

TaBert with di�erent objectives. We �nd TaBert trained with both MCP and the auxiliary CVR
objectives gets a slight advantage, suggesting CVR could potentially lead to more representative
column representations with additional cell information.

5.6 Related Works

Semantic Parsing over Tables Tables are important media of world knowledge. Semantic
parsers have been adapted to operate over structured DB tables [51, 169, 193, 195, 207, 228],
and open-domain, semi-structured Web tables [139, 150, 181]. To improve representations of
utterances and tables for neural semantic parsing, existing systems have applied pretrained
word embeddings (e.g.,., GloVe, as in Liang et al. [111], Sun et al. [182], Yu et al. [227], Zhong et al.
[244]), and BERT-family models for learning joint contextual representations of utterances and
tables, but with domain-speci�c approaches to encode the structured information in tables [64,
70, 78, 238]. TaBert advances this line of research by presenting a general-purpose, pretrained
encoder over parallel corpora of Web tables and NL context. Another relevant direction is
to augment representations of columns from an individual table with global information of
its linked tables de�ned by the DB schema [20, 188]. TaBert could also potentially improve
performance of these systems with improved table-level representations.

Knowledge-enhanced Pretraining Recent work has incorporated structured information
from knowledge bases (KBs) into training contextual word representations, either by fusing
vector representations of entities and relations on KBs into word representations of LMs [153,
241, 242], or by encouraging the LM to recover KB entities and relations from text [121, 183].
TaBert is broadly relevant to this line in that it also exposes an LM with structured data (i.e.,,
tables), while aiming to learn joint representations for both textual and structured tabular data.

73



5.7 Summary

In this chapter we present TaBert, a pretrained encoder for joint understanding of textual and
tabular data. We show that semantic parsers using TaBert as a general-purpose feature rep-
resentation layer achieved strong results on two benchmarks. Future directions would include
evaluating TaBert on other table-based reasoning tasks, such as fact checking [31] or text gen-
eration from tables [149]. We will also consider exploring other table representation strategies
(e.g., [58]), improving the quality of pretraining data, as well as designing novel pretraining
objectives. Since this work and the concurrent paper by [75], pre-training for semantic parsing
has become a rapily growing research area [47, 48, 168, 232, 233]. In Chapter 10 we will discuss
more promising future directions in this line.
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Chapter 6

Ground Utterances to Schema with

Structured Inductive Bias

The previous chapter describes a pre-training approach for joint understanding of utterances
and (semi-)structured schemas of database tables, where we use self-attention over tokens in ut-
terances (e.g.,GDP of France) and �attened table headers (e.g., Country [SEP] Gross_Domestic

_Product) to capture the alignments between the two modalities. This approach enables self-
supervised pre-training over large-scale weakly aligned corpora of text and tables to implic-
itly learn such alignments. However, learning could be data-hungry, as unconstrained self-
attention does not explicitly model the association between NL phrases (e.g., GDP) and their
corresponding schema elements (e.g., the column Gross_Domestic_Product). In this chapter,
we attempt to augment attentional sequence transduction networks (e.g., LSTMs, Transform-
ers) with explicit inductive bias of NL-schema alignments. Intuitively, when an autoregressive
decoder generates a logical form constituent (e.g., Gross_Domestic_Product), we regularize
its attention distribution over utterance tokens to focus on the tied NL phrase (e.g., GDP). In this
chapter, we also generalize the notion of knowledge schemas from database tables to speci�ca-
tions of domain functions (e.g., FindManager( ? )) and their canonical NL intents (e.g., Who’s

? ’s manager), a commonly used approach to con�gurate dialogue systems. We show this ap-
proach improves generalization ability of semantic parsers to utterances with compositionally
novel contexts (e.g., Add meeting with Jean’s manager). This work is published in:

• Pengcheng Yin, Hao Fang, Graham Neubig, Adam Pauls, Emmanouil Antonios Platan-
ios, Yu Su, Sam Thomson, and Jacob Andreas. Compositional generalization for neural
semantic parsing via span-level supervised attention. In Meeting of the North American

Chapter of the Association for Computational Linguistics (NAACL), June 2021
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(a) Utterance-LISP Expression Alignments (b) Utterance-SPARQLAlignments

Block 1

Block 2

DISTINCT

SELECT

SELECT DISTINCT 

?x0 {  directed_by { ?x1 } edited_by { ?x1 } }

?x1 {  art_directed { M1 } gender { female } }

Figure 6.1: Token and span level alignments (shown in Aᵀ
|u|×|z|) between utterances and programs in

Lisp-style expressions (a) and Sparql queries (b). Token alignments are marked in . Span-level align-
ments are marked using dashed bounding boxes (alignment to program sketch tokens are marked in

). Programs in matrices are simpli�ed for presentation. We use simpli�ed Sparql representation [56]
grouping relations (e.g., directed_by and edited_by) by subjects (e.g., ?x0).

6.1 Overview

As in many language understanding problems, a central challenge in semantic parsing is com-
positional generalization [55, 87]. Consider a personal digital assistant for which developers
have assembled separate collections of annotated utterances for user requests involving their
calendars (e.g., Schedule a meeting with Jean) and their contact books (e.g., Who is Jean’s man-

ager?). An e�ective model should learn from this data how to additionally handle requests
like Schedule a meeting with Jean’s manager, composing skills from the calendar and contacts
domains, with little or no supervision for such combinations.

Neural sequence-to-sequence models, which provide the foundation for state-of-the-art se-
mantic parsers (e.g., [50], Chapter 3), tend to perform poorly at out-of-distribution general-
ization of this kind [56, 101, 180]. Methods have been proposed to bridge the generalization
gap using meta-learning [102, 189] or specialized model architectures [33, 74, 109, 120, 164].
These have registered impressive performance on small synthetic benchmark datasets, but it
has proven di�cult to e�ectively combine them with large-scale pre-training [108, 159] and
natural data [56].
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In contrast to this extensive literature on data transformations and model architectures, the
design of loss functions to encourage compositional generalization has been under-explored.
This chapter investigates attention supervision losses that encourage attention matrices in
neural sequence models to resemble the output of word alignment algorithms [119, 133] as a
source of inductive bias for compositional tasks. Previous work has found that aligning pro-
gram tokens (e.g., FindManager in Fig. 6.1) to natural language tokens (manager) improves
model performance [74, 147, 157]. However, the token-level alignments derived from o�-the-
shelf aligners are often noisy, and the correspondence between natural language and program
tokens is not always a many-to-one map of the kind returned by standard alignment algorithms.
Programs also have explicit hierarchical structure that is not captured by existing attention reg-
ularizers. Here we investigate the use of span-level alignments, identifying sub-programs
that should be predicted as a unit and aligning all tokens in a sub-program to a corresponding
natural language span.

We present a simple algorithm to derive span-level alignments from token-level alignments.
Our approach is compatible with multiple models (RNNs, transformers, and structured tree-
based decoders), pretrained or not. In experiments, span-based attention supervision consis-
tently improves over token-level objectives, achieving strong results on three semantic parsing
datasets featuring diverse formalisms and tests of generalization.

6.2 Span-level Supervised Attention

Neural Semantic Parsers In this chapter, we consider neural parsers using token-based at-
tentive decoders, in which the meaning representation (program) z is predicted as a sequence
of consecutive tokens {z|z|j=1} by attending to tokens in the utterance u = {u|u|i=1}. Exam-
ples include sequence-to-sequence models based on recurrent networks [50, 84] or transform-
ers [159, 185], as well as structured parsing methods that predict a program following its syn-
tactic structure ([51], see Chapter 2 and §6.3 for more details).

Supervised Attention Existing token-level supervised attention approaches assume access
to an alignment matrix A|u|×|z| with entries ai,j , where ai,j = 1 i� the i-th source (utterance)
token ui is aligned to the j-th target (program) token zj . A|u|×|z| can be inferred using latent
variable models [25, 52, 145]. During training, when the decoder predicts a target token zj ,
supervised attention encourages the target-to-source attention distribution patt(ui|zj) to match
the prior alignment distribution pprior(ui|zj) = ai,j∑

k ak,j
, which is normalized by the number of

77



source tokens aligned to zj . We use a squared error loss [119]:

Lsup_att =
1

|z|

|z|∑
j=1

|u|∑
i=1

(
patt(ui|zj)− pprior(ui|zj)

)2
. (6.1)

Previous work has also used a cross entropy loss [147, 157].

Sub-program-to-Span Alignment We present a simple heuristic algorithm to extract span-
level alignments between programs and utterances from existing token-level results (Algo. 1).
Fig. 6.1 illustrates example span-level alignments for two types of programs (Lisp and sim-
pli�ed Sparql). Similarly to Dong and Lapata [51], we assume each program can be decom-
posed into a top-level sketch and a set of sub-programs.1 For the Lisp expression in Fig. 6.1a,
the sketch contains the top-level function call (CreateEvent( ? , ? )) and sub-programs are
named arguments paired with values (attendees=FindManager. . .). For the Sparql expres-
sion in Fig. 6.1b, sketches include the query form (e.g., SELECT DISTINCT) and sub-programs
hold individual subject-relation-object assertions (e.g., ?x0 edited_by ?x1).

In this chapter, we use these program decompositions to guide span-level alignment. The
underlying intuition is that every token in a sketch or sub-program will get aligned to the same

set of utterance tokens. Algo. 1 extracts such set of utterance spans aligned to a sub-program
zs from the set Tzs of NL tokens that are aligned to tokens in zs (line 3). We present two
variants of this approach, depending on the properties of the dataset (§8.4). In the �rst case
(lines 5-6), similar to bilingual phrase extraction in machine translation [MT; 144], we create
a single consecutive utterance span um:n via the outer bound of the aligned utterance tokens
in Tzs (e.g., Block 1, Fig. 6.1a). In the second variant (lines 8-9), we �nd internally contiguous
utterance spans in Tzs and align them to zs. For instance, the sub-program (?x1 art_directed

M1) in Block 2 of Fig. 6.1b aligns to two utterance spans: M1 ’s and art director. While this
case does not have an exact analog in MT, it is reminiscent of the model of Chiang [40] which
extracts translation rules with discontinuous phrase segments. Span-level alignments for a sub-
program are then generated by pairing its program spans zp:q (spans with consecutive program
tokens) with all its aligned utterance spans (lines 11-12). Finally, we generate alignments for
sketch spans in z by pairing them with any utterance tokens that have not yet been aligned to
a sub-program (lines 13-14).

1Unlike D&L, we allow sub-programs to include non-consecutive (and possibly overlapping) spans of program
tokens, e.g., {?x0 {edited_by {?x1}} in Fig. 6.1b. We also permit non-disjoint sub-programs.
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Algorithm 1: Span Alignment Extraction
input : Utterance u, program z, token-level alignment matrix A|u|×|z|
output: Span-level alignment matrix Aspan

|u|×|z|

1 Initialize set AS = ∅ to store span-level alignments
2 foreach sub-program zs

do

3 Tzs = {ui|∃zj ∈ zs, ai,j = 1}, Uzs = ∅
4 . Case 1 (Consecutive Alignment):

5 m = mini{ui ∈ Tzs}, n = maxi{ui ∈ Tzs}
6 Uzs = {um:n}
7 . Case 2 (Nonconsecutive Alignment):

8 foreach consecutive span um:n ⊂ Tzs do
9 Add utterance span um:n to Uzs

10

11 foreach zp:q ∈ zs, um:n ∈ Uzs do
12 Add span alignment zp:q ↔ um:n to AS

. Generate sketch-utterance span alignments:

13 foreach unaligned span zp:q ∈ z and um:n ∈ u do

14 Add span alignment zp:q ↔ um:n to AS
15 Generate Aspan

|u|×|z|, such that aspani,j = 1 i� ∃zp:q ↔ um:n ∈ AS , i ∈ [m,n], j ∈ [p, q]

16 return Aspan
|u|×|z|

6.3 Experiments

We evaluate span-level supervised attention on three benchmarks of compositional generaliza-
tion.

6.3.1 Datasets and Models

SMCalFlow Compositional Skills (SMCal Flow-CS) is a new dataset created in this study
based on the task-oriented dialogue corpus SMCalFlow [166]. Like the motivating story in
§6.1, we create training data of single-turn utterances for skills S involving event creation
(e.g., Schedule a meeting with Adam) and organization structure (e.g., Who’s on Adam’s team?),
while evaluating on examplesC featuring compositional skills (e.g.,Addmeetingwith Adam and his team).
Utterances are annotated with Lisp-style programs (Fig. 6.1a). Zero-shot generalization in this
setting is highly non-trivial due to novel language patterns (e.g., Adam and his team) and pro-
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SEventCreation

(24,403 Examples)
Schedule dinner with Adam tomorrow.

Please add dinner with Adam Wallen next Wednesday night at 6:00 PM.

Put a reminder on my calendar half an hour before my dinner.

SOrgChart

(733 Examples)
Who’s on Abby’s team now?

Who are the reports of Dan Scho�el?

Compositional
Skills (C)
(1,426 Examples)

Add a meeting with my manager after lunch.

Add Amanda and her boss to project meeting.

Right after I’m done with breakfast, put a meeting with Sally’s team.

Table 6.1: Examples from SMCalFlow-CS

gram structures (e.g., usage of List(·) to concatenate named entities) in the compositional
evaluation set. We therefore consider a few-shot learning scenario, where we include a few
compositional examples {16, 32, 64, 128} into the training sets. The sizes of training (without
compositional samples)/development/test splits are 23,838/1,298/1,298, respectively. Tab. 6.1
presents more examples in SMCalFlow-CS.
Compositional FreebaseQuestions (cfq) is a challenging compositional generalization dataset
of 130K synthetic utterances with Sparql queries (Fig. 6.1b). Training and evaluation splits are
constructed such that they have di�erent distributions of compositional structures, while the
distributions of atomic language (e.g., director) and program (e.g., film.director) constructs
remain similar [87].
ATISText-to-SQL is a dataset of 3,809 SQL-annotated utterances about �ight querying (e.g., Flights
from Seattle to Austin.). We follow Oren et al. [147] and use the program split [55], where train-
ing and evaluation programs do not overlap at template level.

Models We apply span-level supervised attention to strong neural models on each dataset.
We evaluate two systems on SMCalFlow-CS: Bert2Seq, a sequence-to-sequence model with
a Bert encoder and an LSTM decoder using copy mechanism, and Coarse2Fine [51], which
uses (a Bert encoder and) a structured decoder that factorizes the generation of a program into
sketch and value predictions. On cfq, we use T5-base [159], and apply attention supervision
on all the cross-attention heads in the last decoder layer. For Atis, we take the best system
from Oren et al. [147] that is tuned for better generalization on this dataset, which is a sequence-
to-sequence model with an Elmo encoder and coverage-based attention mechanism [165].

We extract word alignments using IBM Model 4 in GIZA++ [145], and canonicalized pro-
grams (e.g., remove parentheses) to improve alignment quality. To extract span-level align-
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|Ctrain| 16 32 64 128
Domain S C S C S C S C

Bert2Seq 82.8 ±1.0 33.6 ±7.2 82.8 ±0.6 53.5 ±10.3 83.7 ±0.6 64.2 ±4.9 83.0 ±0.8 71.3 ±2.3
+TS (Token-level Sup.) 83.4 ±0.7 39.7 ±1.3 83.2 ±0.3 59.9 ±1.6 83.7 ±0.6 65.7 ±1.5 83.4 ±0.4 73.2 ±0.7
+SS (Span-level Sup.) 83.9 ±0.2 46.8 ±1.2 83.5 ±0.7 61.7 ±2.2 83.6 ±0.7 66.9 ±1.0 83.5 ±0.9 74.3 ±0.7

Coarse2Fine (DL18) 83.0 ±1.0 40.6 ±7.0 83.6 ±0.6 54.6 ±6.8 83.8 ±0.3 65.7 ±3.2 83.4 ±1.2 72.9 ±0.6
+TS (Token-level Sup.) 83.7 ±0.5 44.6 ±1.5 83.1 ±1.0 60.7 ±2.5 83.7 ±0.8 67.1 ±1.4 83.3 ±0.7 74.1 ±0.9
+SS (Span-level Sup.) 83.8 ±0.4 47.4 ±2.1 83.7 ±1.0 61.9 ±1.8 83.0 ±0.8 67.5 ±1.4 83.5 ±0.8 75.0 ±1.2

Table 6.2: Test. accuracies on the SMCalFlow-CS Compositional Skills dataset w.r.t. the size of compo-
sitional examples included in the training set. We report both the results on the in-domain single-skill
examples (S) as well as the generalized multi-skill examples (C). Results are averaged over �ve random
random seeds. Bold results have p-values≤ 0.05when comparing to other systems in the same category
under a permutation test.

ments, we use consecutive alignments (Case 1) in Algo. 1 for SMCalFlow-CS and Atis, as
those datasets feature simple one-to-one mapping between sub-programs and utterance spans.
For cfq, we use nonconsecutive alignments (Case 2) to handle assertions aligned to disjoint
NL spans (Fig. 6.1b). We apply Eq. (6.1) during model optimization using either the token and
span level alignment matrix for token (+TS) and span (+SS) level supervised attention, re-
spectively.

6.3.2 Results

Tab. 6.2 lists the evaluation results on SMCalFlow-CS with varying numbers of compositional
examples in the training set (Ctrain).2 We report accuracies on both the in-domain single-skill
examples (S) as well as on the generalized compositional-skill examples (C). Both methods
improve compositional generalization for Bert2Seq and Coarse2Fine, while span-level su-
pervised attention is more e�ective. Intuitively, span-level alignments could better capture
the correspondence between sub-structures in utterances and programs, helping the parser to
correctly predict such sub-programs in compositionally novel contexts by focusing on the cor-
responding utterance span. Besides more accurate predictions of sub-programs, models trained
with span-level supervision also achieves better accuracies in predicting program sketches. For
example, when using Bert2Seq with |Ctrain| = 16, the program sketch accuracy jumps from
41.9% without supervised attention to 68.3% using span-level supervision, compared to 63.3%

2We ran GIZA++ and extracted span-level alignments for each training split separately.
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Figure 6.2: Sub-program prediction accuracy w.r.t. the sum of attention weights over oracle utterance
spans. Models are trained on |Ctrain| = 32. Results averaged over three runs.

for models trained with token-level supervision. Finally, we remark that in extremely low-
resource learning scenarios with only a handful of compositional training samples, span-level
supervised attention o�ers more gains in extreme low-resource settings (|Ctrain| = 16), outper-
forming the base Bert2Seq model by 13% absolute (33.6% v.s. 46.8% for Bert2Seq).

Indeed, we found that more alignment-like attentions are associated with more accurate
model predictions. For a Bert2Seq model with span-level supervision trained on |Ctrain| = 64,
when predicting sub-programs for the attendees argument (e.g., attendees=FindManager(
recipient=self)) on compositional samples in C, the model achieves 86% sub-program ac-
curacy if it assigns a time-step average of at least 90% of its attention weights over the aligned
utterance spans (e.g., with my manager) identi�ed by Algo. 1. Otherwise, the accuracy drops to
70%.

To further investigate the positive correlation between the “quality” of the attention distri-
bution patt(ui|zj) (how concentrated patt(ui|zj) is) over an utterance span (e.g., with my man-

ager) and the prediction accuracy of its target sub-program (e.g., attendees=FindManager(·)).
Here we present more results. Speci�cally, we identify compositional examples in the Dev. set
for which a model predicts sub-programs zs for the attendees, start, and location argu-
ments in a CreateEvent function call (refer to Fig. 6.1a for the �rst two arguments, location
is used to specify event location). We compute the sum of the attention weights over the “or-
acle” utterance span identi�ed by Algo. 1, and averaged over the decoder’s time step when
predicting zs. We measure the sub-program prediction accuracy w.r.t. the attention weights,
as illustrated in Fig. 6.2. We observe that models trained with span-level supervised attention
shows a stronger correlation between the sub-program accuracy and the degree the attention
focuses on utterance tokens within the oracle span.
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Split
MCD1 MCD2 MCD3 Average

C R All C R All C R All

T5-base 55.8 ±4.8 77.4 ±4.7 62.4 ±4.5 34.8 ±2.9 29.4 ±2.5 33.0 ±2.4 21.6 ±8.6 34.4 ±2.8 23.0 ±1.7 39.5
+ TS 44.9 ±4.7 86.4 ±2.4 57.7 ±3.4 32.4 ±3.1 32.7 ±1.4 32.5 ±2.1 14.3 ±1.5 36.6 ±1.7 22.0 ±0.7 37.4
+ SS 48.2 ±4.4 80.5 ±2.2 58.2 ±2.8 34.8 ±2.3 36.4 ±2.8 35.4 ±1.6 14.6 ±2.1 40.1 ±3.5 23.8 ±1.0 39.1

Table 6.3: Mean Test Accuracies on cfq MCD splits with 95% con�dence interval, for Conjunctive,
Recursive, and All the samples. The last column lists averaged accuracies for the three splits. Bold

results have p-values ≤ 0.01 when comparing to other systems in the same category.

Moreover, supervised attention may be a su�cient substitute for structured model architec-
tures in some cases. Despite the unstructured Bert2Seq model’s generally inferior performance
without supervised attention, it matches the accuracies of Coarse2Fine when both models are
trained with span-level supervision.3 We also remark that span-based supervision maintains or
improves performance on in-domain single-skill examples (S). For instance, the accuracy for
Bert2Seq increases from 82.8% to 83.9% when |Ctrain| = 16.

Next, on cfq (Tab. 6.3), we report break-down results based on the syntactic types of ques-
tions: Recursive questions with chained multi-hop relations (e.g., ur :Was M1 in�uenced by a

German writer?), and Conjunctive ones with only conjunctions of entities and relations and
without chained relations (e.g., uc :Was M1 directed and edited by M2 and M3?). While super-
vised attention is e�ective on recursive questions, it struggles on conjunctive ones. This may
be because the model learns to attend to discontinuous utterance spans (e.g., “M1 directed” and
“M2 and M3” in uc) when predicting a relation (e.g., directed_by) in a conjunction, which
could be more sensitive to alignment errors. Additionally, utterance spans aligned to a sub-
program in conjunctive questions are usually longer and more complex (e.g., having multiple
conjunctive entity mentions like DidM1 write M2, M3, M4, and M5?), which might require more
�ne-grained supervision than uniformly treating every aligned utterance tokens equally as in
Eq. (6.1).

k
Finally, we present the results on the Atis query splits in Tab. 6.4, where span-level super-

vision is comparable with token-level one, further improving upon an already-strong model
that targets for compositional generalization (Elmo with coverage based attention). Interest-
ingly, token-level supervised attention is slightly worse than the baseline model on the standard

3We found that the sketch and sub-program decoders in Coarse2Fine do not achieve their best Dev. accuracy
at the same iteration during training, which could hurt performance in our few-short learning setting.
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Model
Query Split i.i.d. Split

Dev. Test. Dev. Test.

Oren et al. [147] 28.9 34.4 78.4 74.5
+ Token-level Sup. 31.2 ±1.2 34.5 ±0.9 76.7 ±0.6 72.5 ±1.6
+ Span-level Sup. 31.1 ±0.6 35.0 ±2.0 78.4 ±0.8 74.0 ±0.5

Table 6.4: Accuracies and standard deviation on the Atis text-to-SQL query (program template) and
standard i.i.d. split splits. Results averaged over �ve random runs.

i.i.d. splits, while span-level supervision does not o�er further improvements. Empirically we
observe that the utterance-SQL alignments in Atis are much noisier than other two datasets
due to redundant structures in SQL queries (e.g., Join statements with intermediary tables),
whose aligned NL constituents are often not well de�ned.

6.4 Summary

In this chapter, we demonstrated the e�ectiveness of span-level supervised attention as a simple
and �exible tool for improving neural sequence models in a diverse set of architectures and
tests of generalization. Future work will include applications to other prediction tasks, as well
as designing generative modeling approaches that capture span-level alignments as structured
latent variable models (c.f., Chapter 8), which jointly learn utterance-program alignments with
parameters in the neural semantic parser.

84



Chapter 7

Ground Language to Schema without

Labeled Data

Chapters 5 and 6 demonsrate how pre-training and regularized attention could capture the
grounding of NL constituents in utterances (e.g., Who is my manager) to structured logical
predicates in domain schemas (e.g., the program FindManager(recipient=User)). These ap-
proaches still require supervised learning using compositional utterances annotated with log-
ical forms. In this chapter, we attempt to relax this requirement with a schema understanding
model that grounds NL utterances to logical forms without the supervision of annotated exam-
ples. Speci�cally, we capture such mappings between NL phrases and MR predicates (e.g., “my

manager” 7→FindManager(recipient=User), “Add meeting with ? ”7→CreateEvent(

attendees= ? )) in the domain’s schema speci�cation using a synchronous grammar, and au-
tomatically synthesize parallel examples of compositional utterances (e.g., Add meeting with

my manager) and programs from the grammar as training data. Intuitively, semantic parsers
trained on the synthetic data with diverse compositionality patterns could implicitly capture
the grounding of NL phrases to elements in the domain schema in a data driven fashion.

This work is currently under peer review:

• Pengcheng Yin, John Wieting, Avirup Sil, and Graham Neubig. On the ingredients of an
e�ective zero-shot semantic parser. under reivew
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7.1 Overview

Learning semantic parsers typically requires parallel data of NL utterances annotated with pro-
grams, and annotating such data requires signi�cant expertise and cost. In §2.2, we reviewed
a range of data e�cient approaches, like the OverNight annotation framework that automat-
ically synthesizes parallel training data using a synchronous grammar, where the syntheti-
cally generated canonical utterances are further manually paraphrased (§2.2.1). Later, Xu et al.
[205] build upon OverNight and develop a zero-shot semantic parser replacing the manual
paraphrasing process with an automatic paraphrase generator (§2.2.4, more in §7.2). While
promising, there are still several issues with the current approach. First, such systems are not
truly zero-shot — they still require labeled validation data (e.g., to select the best checkpoint
during training). Next, to ensure the quality and broad-coverage of synthesized canonical ex-
amples, existing models rely on heavily curated grammars (e.g., with 800 production rules),
which are cumbersome to maintain. More importantly, as suggested by Herzig and Berant [73]
who study OverNight models using manual paraphrases, such systems trained on synthetic
canonical samples su�er from fundamental mismatches between the distributions of the auto-
matically synthesized examples and the natural ones issued by real users. Speci�cally, there
are two types of gaps. First, there is a logical gap between the synthetic and real programs, as
real utterances (e.g., Paper coauthored by Peter and Jane) may exhibit logic patterns outside of
the domain of those covered by the grammar (e.g., Paper by Jane). The second is the language

gap between the synthetic and real utterances, as paraphrased utterances (e.g., u′1 in Fig. 7.1)
still follow similar linguistic patterns as the canonical ones they are paraphrased from (e.g., u1),
while user-issued utterances tend to be more linguistically diverse (e.g., u2).

In this chapter we analyze zero-shot parsers through the lenses of language and logical gaps,
and propose methods to close those gaps (§7.3). Speci�cally, we attempt to bridge the language
gap using stronger paraphrasers and more expressive grammars tailored to the domain-speci�c
idiomatic language patterns. We replace the large grammars of previous work with a highly
compact grammar with only 46 domain-general production rules, plus a small set of domain-
speci�c productions to capture idiomatic language patterns (e.g., u2 in Fig. 7.1, §7.3.1). We
demonstrate that models equipped with such a smaller but more expressive grammar catered
to the domain could generate utterances with more idiomatic and diverse language styles.

On the other hand, closing the logical gap is non-trivial. This is because canonical examples
are generated by exhaustively enumerating all possible programs from the grammar up to a
certain depth, and increasing the threshold to cover more complex real-world examples will lead
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to exponentially more canonical samples, the usage of which is computationally intractable. To
tackle the exponentially exploding sample space, we propose an e�cient approach to sample
canonical examples from the grammar by retaining canonical samples that most likely appear
in real data (§7.3.1). Speci�cally, we approximate the likelihood of canonical examples using the
probabilities of their utterances measured by pre-trained language models (LMs). This enables
us to improve logical coverage of programs while maintaining a tractable number of highly-
probable examples as training data.

In experiments, we show that with the proposed methods to bridge the language and logical
gaps, our system achieves strong results on two semantic parsing datasets featuring realistic
utterances (Scholar and Geo). Despite the fact that the proposed system uses zero annotated
data for training and validation, it outperforms other supervised methods like OverNight and
Granno [73] that require manual annotation. Our analysis also shows that current models are
far from perfect, suggesting that logical gap still remains an issue, while stronger paraphrasing
models are needed to further close the language gap.

7.2 Zero-shot Semantic Parsing via Data Synthesis

ProblemDe�nition Semantic parsers translate a user-issued NL utteranceu into a machine-
executable program z (Fig. 7.1). We consider a zero-shot learning setting without access to
parallel data in the target domain. Instead, the system is trained on a collection of machine-
synthesized examples.

Overview Our system is inspired by the existing zero-shot parser by Xu et al. [205]. Fig. 7.1
illustrates our framework. Intuitively, we automatically create training examples with canon-
ical utterances from a grammar, which are then paraphrased to increase diversity in language
style. Speci�cally, there are two stages. First, a set of seed canonical examples (Fig. 7.1b) are
generated from a synchronous grammar, which de�nes compositional rules of NL expres-
sions to form utterances (Fig. 7.1a). Next, in the iterative training stage, a paraphrase gen-

eration model rewrites the canonical utterances to more natural and linguistically diverse al-
ternatives (Fig. 7.1c). The paraphrased examples are then used to train a semantic parser. To
mitigate noisy paraphrases, a �ltering model, which is the parser trained on previous iterations,
rejects paraphrases that are potentially incorrect. This step of paraphrasing and training could
proceed for multiple iterations, with the parser trained on a dataset with growing diversity of
language styles.

87



Paper in deep learning and the biggest year of publication

What is the biggest year for publishing deep learning?

Most recent research in deep learning

What is the latest deep learning study?

What’s new in deep learning?

Citation count of Allan Turing
How many citations does Allan Turing have?

Allan Turing’s citations
How many citations did Allan Turing get?

The citations of Allan Turing

What’s the latest study on 
deep learning?

Recent research on deep learning

What’s the latest deep learning 
research?Most recent  paper in deep learning 

Paper that has the largest 

publication year and  in deep learning

<latexit sha1_base64="j6vDHfmdlVHICsanq3iiw1jhWdI=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CRMugjWUE8wHJEfY2e8mS3b1jd08Ix4G/wVZrO7H1r1j6T9wkV5jEBwOP92aYmRfEnGnjut9OYWNza3unuFva2z84PCofn7R1lChCWyTikeoGWFPOJG0ZZjjtxopiEXDaCSZ3M7/zRJVmkXw005j6Ao8kCxnBxkrdfiDSJBt4g3LFrbpzoHXi5aQCOZqD8k9/GJFEUGkIx1r3PDc2foqVYYTTrNRPNI0xmeAR7VkqsaDaT+f3ZujCKkMURsqWNGiu/p1IsdB6KgLbKbAZ61VvJv7n9RIT3vgpk3FiqCSLRWHCkYnQ7Hk0ZIoSw6eWYKKYvRWRMVaYGBvR0pZAZDYTbzWBddKuVb16tfZwVWnc5ukU4QzO4RI8uIYG3EMTWkCAwwu8wpvz7Lw7H87norXg5DOnsATn6xfXUpaP</latexit>u1

<latexit sha1_base64="fWzj9eNaURLV0tnS/A0ZauP6K5w=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CRMugjWUE8wHJEfY2e8mS3b1jd08Ix4G/wVZrO7H1r1j6T9wkV5jEBwOP92aYmRfEnGnjut9OYWNza3unuFva2z84PCofn7R1lChCWyTikeoGWFPOJG0ZZjjtxopiEXDaCSZ3M7/zRJVmkXw005j6Ao8kCxnBxkrdfiDSJBvUBuWKW3XnQOvEy0kFcjQH5Z/+MCKJoNIQjrXueW5s/BQrwwinWamfaBpjMsEj2rNUYkG1n87vzdCFVYYojJQtadBc/TuRYqH1VAS2U2Az1qveTPzP6yUmvPFTJuPEUEkWi8KEIxOh2fNoyBQlhk8twUQxeysiY6wwMTaipS2ByGwm3moC66Rdq3r1au3hqtK4zdMpwhmcwyV4cA0NuIcmtIAAhxd4hTfn2Xl3PpzPRWvByWdOYQnO1y/Y5ZaQ</latexit>u2

<latexit sha1_base64="BNmlmVFQgftJF3KqFQJZbOLYJ4o=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6iqGXQxjKC+YDkCHubvWTJ7t6xuyeE48DfYKu1ndj6Vyz9J26SK0zig4HHezPMzAtizrRx3W+nsLa+sblV3C7t7O7tH5QPj1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+O7qd9+okqzSD6aSUx9gYeShYxgY6VOLxBpkvUv+uWKW3VnQKvEy0kFcjT65Z/eICKJoNIQjrXuem5s/BQrwwinWamXaBpjMsZD2rVUYkG1n87uzdCZVQYojJQtadBM/TuRYqH1RAS2U2Az0sveVPzP6yYmvPFTJuPEUEnmi8KEIxOh6fNowBQlhk8swUQxeysiI6wwMTaihS2ByGwm3nICq6RVq3pX1drDZaV+m6dThBM4hXPw4BrqcA8NaAIBDi/wCm/Os/PufDif89aCk88cwwKcr1/aeJaR</latexit>u3

(b) Canonical Data Generation (c) Iterative Paraphrasing and Training

<latexit sha1_base64="3RZ9nTNNcK3h0PuMb7kYjnATB1M=">AAAB/3icbVA9SwNBEJ3zM8avqKXNYhCtwl0QtQzaWEYwH5IcYW+zlyzZ3Tt294RwXOFvsNXaTmz9KZb+EzfJFSbxwcDjvRlm5gUxZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaPbid96okqzSD6YcUx9gQeShYxgY6XHbiDSJDvreb1S2a24U6Bl4uWkDDnqvdJPtx+RRFBpCMdadzw3Nn6KlWGE06zYTTSNMRnhAe1YKrGg2k+nB2fo1Cp9FEbKljRoqv6dSLHQeiwC2ymwGepFbyL+53USE177KZNxYqgks0VhwpGJ0OR71GeKEsPHlmCimL0VkSFWmBib0dyWQGQ2E28xgWXSrFa8y0r1/qJcu8nTKcAxnMA5eHAFNbiDOjSAgIAXeIU359l5dz6cz1nripPPHMEcnK9fPK2WwA==</latexit>

u0
1

that has the largest

$prep $Entity$PrepNP
<latexit sha1_base64="YimTOk6posdIrsBDIbl/qaJLv3o=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZXiEswW/wqmdv4tVv8eifOEn2YBILGoqqbrq7okRwC77/7a2tb2xubRd2irt7+weHpaPjptWpoaxBtdCmHRHLBFesARwEayeGERkJ1opGd1O/9cSM5Vo9wjhhoSQDxWNOCTip1ZUksaB7pbJf8WfAqyTISRnlqPdKP92+pqlkCqgg1nYCP4EwIwY4FWxS7KaWJYSOyIB1HFVEMhtms3Mn+NwpfRxr40oBnql/JzIirR3LyHVKAkO77E3F/7xOCvFNmHGVpMAUnS+KU4FB4+nvuM8NoyDGjhBquLsV0yExhIJLaGFLJCcuk2A5gVXSrFaCq0r14bJcu83TKaBTdIYuUICuUQ3dozpqIIpG6AW9ojfv2Xv3PrzPeeual8+coAV4X79XDZZN</latexit>7!

$Compl.
<latexit sha1_base64="YimTOk6posdIrsBDIbl/qaJLv3o=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZXiEswW/wqmdv4tVv8eifOEn2YBILGoqqbrq7okRwC77/7a2tb2xubRd2irt7+weHpaPjptWpoaxBtdCmHRHLBFesARwEayeGERkJ1opGd1O/9cSM5Vo9wjhhoSQDxWNOCTip1ZUksaB7pbJf8WfAqyTISRnlqPdKP92+pqlkCqgg1nYCP4EwIwY4FWxS7KaWJYSOyIB1HFVEMhtms3Mn+NwpfRxr40oBnql/JzIirR3LyHVKAkO77E3F/7xOCvFNmHGVpMAUnS+KU4FB4+nvuM8NoyDGjhBquLsV0yExhIJLaGFLJCcuk2A5gVXSrFaCq0r14bJcu83TKaBTdIYuUICuUQ3dozpqIIpG6AW9ojfv2Xv3PrzPeeual8+coAV4X79XDZZN</latexit>7! $property

𝑟!: Prepositional Phrase (e.g., in deep learning)

𝑟": Complementary (e.g., that has the largest citation count)

$SuperlativeAdj

and

$EntSet

$EntSet
<latexit sha1_base64="YimTOk6posdIrsBDIbl/qaJLv3o=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZXiEswW/wqmdv4tVv8eifOEn2YBILGoqqbrq7okRwC77/7a2tb2xubRd2irt7+weHpaPjptWpoaxBtdCmHRHLBFesARwEayeGERkJ1opGd1O/9cSM5Vo9wjhhoSQDxWNOCTip1ZUksaB7pbJf8WfAqyTISRnlqPdKP92+pqlkCqgg1nYCP4EwIwY4FWxS7KaWJYSOyIB1HFVEMhtms3Mn+NwpfRxr40oBnql/JzIirR3LyHVKAkO77E3F/7xOCvFNmHGVpMAUnS+KU4FB4+nvuM8NoyDGjhBquLsV0yExhIJLaGFLJCcuk2A5gVXSrFaCq0r14bJcu83TKaBTdIYuUICuUQ3dozpqIIpG6AW9ojfv2Xv3PrzPeeual8+coAV4X79XDZZN</latexit>7! $EntSet $PrepNP

$EntSet
<latexit sha1_base64="YimTOk6posdIrsBDIbl/qaJLv3o=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZXiEswW/wqmdv4tVv8eifOEn2YBILGoqqbrq7okRwC77/7a2tb2xubRd2irt7+weHpaPjptWpoaxBtdCmHRHLBFesARwEayeGERkJ1opGd1O/9cSM5Vo9wjhhoSQDxWNOCTip1ZUksaB7pbJf8WfAqyTISRnlqPdKP92+pqlkCqgg1nYCP4EwIwY4FWxS7KaWJYSOyIB1HFVEMhtms3Mn+NwpfRxr40oBnql/JzIirR3LyHVKAkO77E3F/7xOCvFNmHGVpMAUnS+KU4FB4+nvuM8NoyDGjhBquLsV0yExhIJLaGFLJCcuk2A5gVXSrFaCq0r14bJcu83TKaBTdIYuUICuUQ3dozpqIIpG6AW9ojfv2Xv3PrzPeeual8+coAV4X79XDZZN</latexit>7!

𝑟#: Entity type (e.g., paper) and relative clause

𝑟$: Conjunctives

𝑟%: Idiomatic superlative expressions

(a) Grammar

$EntSet
<latexit sha1_base64="YimTOk6posdIrsBDIbl/qaJLv3o=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZXiEswW/wqmdv4tVv8eifOEn2YBILGoqqbrq7okRwC77/7a2tb2xubRd2irt7+weHpaPjptWpoaxBtdCmHRHLBFesARwEayeGERkJ1opGd1O/9cSM5Vo9wjhhoSQDxWNOCTip1ZUksaB7pbJf8WfAqyTISRnlqPdKP92+pqlkCqgg1nYCP4EwIwY4FWxS7KaWJYSOyIB1HFVEMhtms3Mn+NwpfRxr40oBnql/JzIirR3LyHVKAkO77E3F/7xOCvFNmHGVpMAUnS+KU4FB4+nvuM8NoyDGjhBquLsV0yExhIJLaGFLJCcuk2A5gVXSrFaCq0r14bJcu83TKaBTdIYuUICuUQ3dozpqIIpG6AW9ojfv2Xv3PrzPeeual8+coAV4X79XDZZN</latexit>7! $property of $Entity

𝑟&: Get property of an entity

$EntSet
<latexit sha1_base64="YimTOk6posdIrsBDIbl/qaJLv3o=">AAAB/XicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZXiEswW/wqmdv4tVv8eifOEn2YBILGoqqbrq7okRwC77/7a2tb2xubRd2irt7+weHpaPjptWpoaxBtdCmHRHLBFesARwEayeGERkJ1opGd1O/9cSM5Vo9wjhhoSQDxWNOCTip1ZUksaB7pbJf8WfAqyTISRnlqPdKP92+pqlkCqgg1nYCP4EwIwY4FWxS7KaWJYSOyIB1HFVEMhtms3Mn+NwpfRxr40oBnql/JzIirR3LyHVKAkO77E3F/7xOCvFNmHGVpMAUnS+KU4FB4+nvuM8NoyDGjhBquLsV0yExhIJLaGFLJCcuk2A5gVXSrFaCq0r14bJcu83TKaBTdIYuUICuUQ3dozpqIIpG6AW9ojfv2Xv3PrzPeeual8+coAV4X79XDZZN</latexit>7! $EntType $PrepNP $Compl.( )|

<latexit sha1_base64="b/IpelZHYOEsA4P0S/VZ7GW2ZsY=">AAAB/3icbVA9SwNBEJ3zM8avqKXNYhCtwl0QtQzaWEYwH5IcYW+zlyzZ3Tt294RwXOFvsNXaTmz9KZb+EzfJFSbxwcDjvRlm5gUxZ9q47rezsrq2vrFZ2Cpu7+zu7ZcODps6ShShDRLxSLUDrClnkjYMM5y2Y0WxCDhtBaPbid96okqzSD6YcUx9gQeShYxgY6XHbiDSJOtVz3qlsltxp0DLxMtJGXLUe6Wfbj8iiaDSEI617nhubPwUK8MIp1mxm2gaYzLCA9qxVGJBtZ9OD87QqVX6KIyULWnQVP07kWKh9VgEtlNgM9SL3kT8z+skJrz2UybjxFBJZovChCMTocn3qM8UJYaPLcFEMXsrIkOsMDE2o7ktgchsJt5iAsukWa14l5Xq/UW5dpOnU4BjOIFz8OAKanAHdWgAAQEv8ApvzrPz7nw4n7PWFSefOYI5OF+/PoOWwQ==</latexit>

u0
2

<latexit sha1_base64="IL7v/rsQuSYPhpZd2B4fjwf50GQ=">AAACAHicbVA9TwJBEJ3DL8Qv1NJmIzFYkTti1JJoY4mJfES4kL1lDzbs7l1290zIhcbfYKu1nbH1n1j6T1zgCgFfMsnLezOZmRfEnGnjut9Obm19Y3Mrv13Y2d3bPygeHjV1lChCGyTikWoHWFPOJG0YZjhtx4piEXDaCka3U7/1RJVmkXww45j6Ag8kCxnBxkqP3UCkyaRXLZd7xZJbcWdAq8TLSAky1HvFn24/Iomg0hCOte54bmz8FCvDCKeTQjfRNMZkhAe0Y6nEgmo/nV08QWdW6aMwUrakQTP170SKhdZjEdhOgc1QL3tT8T+vk5jw2k+ZjBNDJZkvChOOTISm76M+U5QYPrYEE8XsrYgMscLE2JAWtgRiYjPxlhNYJc1qxbusVO8vSrWbLJ08nMApnIMHV1CDO6hDAwhIeIFXeHOenXfnw/mct+acbOYYFuB8/QKkO5by</latexit>

u00
2

superlative(
filter(paper, topic=DL), 
key=year)

<latexit sha1_base64="ZRa3LB1O3Qf93OBoe4+UmZpbKPA=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXQxjKC+YDkCHubvWTJ7t6xuyfE48DfYKu1ndj6Vyz9J26SK0zig4HHezPMzAtizrRx3W+nsLa+sblV3C7t7O7tH5QPj1o6ShShTRLxSHUCrClnkjYNM5x2YkWxCDhtB+Pbqd9+pEqzSD6YSUx9gYeShYxgY6VOLxDpU9av9csVt+rOgFaJl5MK5Gj0yz+9QUQSQaUhHGvd9dzY+ClWhhFOs1Iv0TTGZIyHtGupxIJqP53dm6EzqwxQGClb0qCZ+ncixULriQhsp8BmpJe9qfif101MeO2nTMaJoZLMF4UJRyZC0+fRgClKDJ9Ygoli9lZERlhhYmxEC1sCkdlMvOUEVkmrVvUuq7X7i0r9Jk+nCCdwCufgwRXU4Q4a0AQCHF7gFd6cZ+fd+XA+560FJ585hgU4X7/g05aV</latexit>z2

Figure 7.1: Illustration of the learning process of our zero-shot semantic parser with real model outputs.
(a) Synchronous grammar with production rules. (b) Canonical examples of utterances with programs
(only z2 is shown) are generated from the grammar (colored spans show productions used). Unnatural
utterances like u1 can be discarded, as in §7.3.1 (c) At each iteration, canonical examples are paraphrased
to increase diversity in language style, and a semantic parser is trained on the paraphrased examples.
Potentially noisy or vague paraphrases are �ltered (marked as ) using the parser trained on previous
iterations.

Synchronous Grammar Seed canonical examples are generated from a synchronous con-
text free grammar (SCFG). Fig. 7.1a lists simpli�ed production rules in the grammar. Intu-
itively, productions specify how utterances are composed from lower-level language constructs
and domain lexicons. For instance, given a database entity allan_turing with a property
citations, u3 in Fig. 7.1 could be generated using r1. Productions could be applied recur-
sively to derive more compositional utterances (e.g., u2 using r2, r4 and r6). Our SCFG is based
on Herzig and Berant [73], consisting of domain-general rules of generic logical operations
(e.g., superlative, r3) and domain-speci�c lexicons of entity types and relations. Di�erent
from Xu et al. [205] which uses a complex grammar with 800 rules, we use a compact grammar
with only 46 generic rules plus a handful of idiomatic productions (§7.3.1) to capture domain-
speci�c language patterns (e.g., “most recent” in u2, c.f., u1). Given the grammar, examples are
enumerated exhaustively up to a threshold of number of rule applications, yielding a large set
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of seed canonical examples Dcan (Fig. 7.1b) for paraphrasing.

Paraphrase Generation and Filtering The paraphrase generation model rewrites a canon-
ical utterance u to more natural and diverse alternatives u′. u′ is then paired with u’s program
to create a new example. Our paraphraser is a Bart model speci�cally �ne-tuned to produce
lexically and syntactically diverse outputs. Some paraphrases are noisy or potentially vague
( in Fig. 7.1c). We follow Xu et al. [205] and use the parser trained on previous iterations as
the �ltering model, and reject paraphrases for which the parser cannot predict their programs.

7.3 Bridging theGaps betweenCanonical andNaturalData

Language and Logical Gaps The synthesis approach in §7.2 will generate a large set of
paraphrased canonical data (denoted as Dpar). However, as noted by Herzig and Berant [73]
(hereafter HB19), the synthetic examples cannot capture all the language and programmatic
patterns of real-world natural examples from users (denoted as Dnat). There are two mismatches
between Dpar and Dnat. First, there is a logical gap between the programs in Dnat capturing real
user intents, and the synthetic ones in Dpar. Notably, since programs are exhaustively enumer-
ated from the grammar up to a certain compositional depth, Dpar will not cover more complex
programs in Dnat beyond the threshold. Ideally we could improve the coverage using a higher
threshold. However, the space of possible programs will grow exponentially, and combinatorial
explosion happens even with small thresholds.

Next, there is a language gap between paraphrased canonical utterances and real-world
user-issued ones. Real utterances (e.g., the u2 in Fig. 7.1, modeled later in §7.3.1) enjoy more
lexical and syntactical diversity, while the auto-paraphrased ones (e.g., u′1) are typically biased
towards the monotonous and verbose language style of their canonical source (e.g., u1). While
we could increase diversity via iterative rounds of paraphrasing (e.g., u2 7→ u′2 7→ u′′2), the
paraphraser could still fail on canonical utterances that are not natural English sentences at all,
like u1.

7.3.1 Bridging Language and Logical Gaps

We introduce improvements to the system to close the language (§7.3.1) and logical (§7.3.1)
gaps.

89



Idiomatic Productions

To close language gaps, we augment the grammar with productions capturing domain-speci�c
idiomatic language styles. Such productions compress the clunky canonical expressions (e.g.,u1

in Fig. 7.1) to more succinct and natural alternatives (e.g., u2). We focus on two language pat-
terns:

Non-compositional expressions formulti-hop relations Compositional canonical utter-
ances typically feature chained multi-hop relations that are joined together (e.g., Author that
writes paper whose topic is NLP), which can be compressed using more succinct phrases to denote
the relation chain, where the intermediary pivoting entities (e.g., paper) are omitted (e.g., Au-
thor that works on NLP). The pattern is referred to as sub-lexical compositionality in Wang et al.
[195] and used by annotators to compress verbose canonical utterances, while we model them
using grammar rules. Refer to Appendix A.1 for more details.

Idiomatic Comparatives and Superlatives The general grammar in Fig. 7.1a uses canoni-
cal constructs for comparative (e.g., smaller than) and superlative (e.g., largest) utterances (e.g.,u1),
which is not ideal for entity types with special units (e.g., time, length). We therefore create pro-
ductions specifying idiomatic comparative and superlative expressions (e.g., paper published before
2014, and u2 in Fig. 7.1). Sometimes, answering a superlative utterance also requires reasoning
with other pivoting entities. For instance, the relation in “venue that X publish mostly in” be-
tween authors and venues implicitly involves counting the papers that X publishes. For such
cases, we create “macro” productions, with the NL phrase mapped to a program that captures
the computation involving the pivoting entity (see Appendix A.1 for more information).

In line with Marzoev et al. [129], Su and Yan [179], we remark that such functionality-
driven grammar engineering to cover patterns in real data is more e�cient and cost-e�ective
than example-driven annotation, as SCFG rules are easily comprehensible with basic knowledge
of English syntax, and synthetic samples can be further paraphrased to signi�cantly increase
linguistic diversity.

Naturalness-driven Data Selection

To cover real programs in Dnat with complex structures while tackling the exponential sam-
ple space, we propose an e�cient approach to sub-sample a small set of examples from this
space as seed canonical data Dcan (Fig. 7.1b) for paraphrasing. Our core idea is to only retain a
set of examples 〈u, z〉 that most likely re�ect the intents of real users. We use the probability
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pLM(u)measured by a language model to approximate the “naturalness” of canonical examples.1

Speci�cally, given all canonical examples allowed by the grammar, we form buckets based on
their derivation depth d. For each bucket D(d)

can, we compute pLM(u) for its examples, and group
the examples using program templates as the key (e.g., u1 and u2 in Fig. 7.1 are grouped to-
gether). For each group, we �nd the example 〈u∗, z〉 with the highest pLM(u

∗), and discard
other examples 〈u, z〉 if pLM(u

∗)− pLM(u)>δ (δ = 5.0), removing unlikely utterances from
the group (e.g., u1). Finally, we rank all groups in D(d)

can based on pLM(u
∗), and retain examples

in the top-K groups. This method o�ers trade-o� between program coverage and e�ciency
and, more surprisingly, we show that using only 0.2%∼1% top-ranked examples also results
in signi�cantly better �nal accuracy (§7.4).

7.3.2 Generating Validation Data

Zero-shot learning is non-trivial without a high-quality validation set, as the model might over-
�t on the (paraphrased) canonical data, which is subject to language and logical mismatch.
While existing methods [205] circumvent the issue using real validation data, in this work
we create validation sets from paraphrased examples, making our method truly labeled data-
free. Speci�cally, we consider a two-stage procedure. First, we run the iterative paraphrasing
algorithm (§7.2) without validation, and then sample 〈u, z〉 from its output with a probability
p(u, z) ∝ pLM(u)

α (α = 0.4), ensuring the resulting sampled set Dval
par is representative. Second,

we restart training usingDval
par for validation to �nd the best checkpoint. The paraphrase �ltering

model is also initialized with the parser trained in the �rst stage, which has higher precision and
accepts more valid paraphrases. This is similar to iterative training of weakly-supervised se-
mantic parsers [45], where the model searches for candidate programs for unlabeled utterances
in multiple stages of learning.

7.4 Experiments

We evaluate our zero-shot parser on two datasets.
Scholar [81] is a collection of utterances querying an academic database (Fig. 7.1). Examples
are collected from users interacting with a parser, which are later augmented with Turker para-
phrases. We use the version from HB19 with programs represented in λ-calculus logical forms.
The sizes of the train/test splits are 579/211.

1We use the GPT-2 XL model [158].

91



Geo [235] is a classical dataset with queries about U.S. geography (e.g.,Which rivers run through

states bordering California?). Its database contains basic geographical entities like cities, states,
and rivers. We also use the release from HB19, of size 537/237.

7.4.1 Setup

Models and Con�guration Our semantic parser is a sequence-to-sequence model with a
pre-trained BertBase encoder [49] and an LSTM decoder augmented with a copy mechanism.
The paraphraser is a BartLarge model [108], �ne-tuned on the paraphrase generation dataset
released by Krishna et al. [93], which consists of lexically and syntactically diverse paraphrases.
We use the same set of hyper-parameters for both datasets. Speci�cally, we synthesize canonical
examples from the SCFG with a maximal program depth of 6, and collect the top-K (K = 2, 000)
GPT-scored sample groups for each depth as the seed canonical data Dcan (§7.3.1). We perform
the iterative paraphrasing and training procedure (§7.2) for two iterations. We create validation
sets of size 2, 000 in the �rst stage of learning (§7.3.2), and perform validation using perplexity in
the second stage. We select the above hyper-parameters using the natural Dev sets of Scholar.
Note that our model does not use any natural examples in both datasets during model training
and validation.2

Measuring Language and Logical Gaps We measure the language mismatch between ut-
terances in the paraphrased canonical (Dpar) and natural (Dnat) data using perplexities of nat-
ural utterances in Dnat given by a GPT-2 LM �ne-tuned on Dpar. For logical gap, we follow
HB19 and compute the coverage of natural programs z ∈ Dnat in Dpar.

Metric We report denotation accuracy on the execution results of model-predicted pro-
grams. We ran all experiments with �ve random restarts.

7.4.2 Results

We �rst compare our model with existing approaches using labeled data. Next, we analyze
how our proposed methods close the language and logical gaps. Tab. 7.1 reports accuracies of

2Ideally, we should not use any natural data when developing the model. However, it is hard to create a
truly zero-shot scenario since we already have prior knowledge about the language style and query patterns of
utterances in these datasets. We envision that a better evaluation setting is through shared tasks, where evaluation
examples are held-out from participants, who are only presented with a handful of natural examples for model
development.
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System Supervision Scholar Geo

Supervised† Labeled Examples 83.4 86.3
OverNight† Manual Paraphrases 40.8 61.9
Granno† Real Utterances, Manual Para-

phrase Detection
69.2 72.0

Our System − 75.5 74.1

Table 7.1: Denotation accuracies on Test sets. †Results reported in Herzig and Berant [73].

various systems on the test sets, as well as their form of supervision. Speci�cally, the super-

vised parser uses a standard parallel corpus Dnat of real utterances annotated with programs.
OverNight uses paraphrased synthetic examplesDpar like our model, but with manually writ-
ten paraphrases. Granno uses unlabeled real utterances unat ∈ Dnat, and manual paraphrase
detection to pair unat with the canonical examples Dcan. Our model outperforms existing ap-
proaches on the two benchmarks without using any annotated data, while Granno, the cur-
rently most cost-e�ective approach, still spends $155 in manual annotation (besides collecting
real utterances) to create training data for the two datasets (Herzig and Berant [73], HB19).
Overall, the results demonstrate that zero-shot parser based on idiomatic synchronous gram-
mars and automatic paraphrasing using pre-trained LMs is a data-e�cient and cost-e�ective
paradigm to train semantic parsers for emerging domains.

Still, our system falls behind fully supervised models trained on natural datasets Dnat, due to
language and logical gaps between Dpar and Dnat. In following experiments, we explore whether
our proposed methods are e�ective at narrowing the gaps and improving accuracy. Since the
validation splits of the two datasets are small (e.g., only 99 samples for Scholar), we use the
full training/validation splits for evaluation to get more reliable results.

More expressive grammars narrow language and logical gaps We capture domain-speci�c
language patterns using idiomatic productions to close language mismatch (§7.3.1). Tables 7.2
and 7.3 list the results when we gradually improve the expressiveness of the grammar by adding
di�erent types of idiomatic productions. We observe that more expressive grammars help close
the language gap, as indicated by the decreasing perplexities. This is especially important for
Scholar, which features diverse idiomatic language styles that are hard to infer from plain
canonical utterances. For instance, it could be non-trivial to paraphrase canonical utterances
with multi-hop relations (e.g., Author that cites paper by X ) or superlative queries (e.g., Topic of
the most number of ACL paper) to more idiomatic alternatives (e.g., “Author that cites X”, and
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Grammar Acc. PPL
Logical Coverage
Dcan Dpar

Base 66.3 23.0 80.6 75.8
+Multihop Rel. 67.0 22.0 87.7 81.2
+Comparison 67.3 21.7 86.5 80.2
+Superlative 77.8 20.9 90.6 86.1
−Multihop Rel. 75.8 20.8 83.9 81.1

Table 7.2: Ablation of grammar categories on
Scholar.

Grammar Acc. PPL
Logical Coverage
Dcan Dpar

Base 64.5 8.2 84.4 79.7
+Multihop Rel. 67.9 8.1 83.6 79.7
+Superlative 72.8 8.0 84.1 79.4
−Multihop Rel. 66.5 8.2 84.1 80.0

Table 7.3: Ablation study of grammar categories
on Geo.

“The most popular topic for ACL paper”), while directly including such patterns in the grammar
(+Multihop Rel. and +Superlative) is helpful.

Additionally, we observe that more expressive grammars also improve logical coverage. The
last columns (Logical Coverage) of Tables 7.2 and 7.3 report the percentage of real programs
that are covered by the seed canonical data before (Dcan) and after (Dpar) iterative paraphrasing.
Intuitively, idiomatic grammar rules could capture compositional program patterns like multi-
hop relations and complex superlative queries (e.g., Author that publish mostly in ACL, §7.3.1)
within a single production, enabling the grammar to generate more compositional programs
under the same threshold on the derivation depth. Notably, when adding all the idiomatic
productions on Scholar, the number of exhaustively generated examples with a program depth
of 6 is tripled (530K 7→ 1, 700K).

Moreover, recall that the seed canonical dataset Dcan contains examples with highly-likely
utterances under the LM (§7.3.1). Therefore, examples created by idiomatic productions are
more likely to be included in Dcan, as their more natural and well-formed utterances often have
higher LM scores. However, note that this could also be counter-productive, as examples created
with idiomatic productions could dominate the LM-�ltered Dcan, “crowding out” other useful
examples with lower LM scores. This likely explains the slightly decreased logical coverage
on Geo (Tab. 7.3), as more than 30% samples in the �ltered Dcan include idiomatic multi-hop
relations directly connecting geographic entities with their countries (e.g., “City in US”, c.f. “City
in state in US”), while such examples only account for ∼ 8% of real data. While the over-
representation issue might not negatively impact accuracy, we leave generating more balanced
synthetic data as important future work.

Finally, we note that the logical coverage drops after paraphrasing (Dcan v.s.Dpar in Tables 7.2
and 7.3). This is because for some samples inDcan, the paraphrase �ltering model rejects all their
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K
Train Data Size

Acc PPL
Logical Coverage In Coverage Out of Coverage

|Dcan| |Dpar| Dcan Dpar Acc PPL Acc PPL
Sc

ho
la

r

500 1,554 45,269 74.0 22.0 79.4 76.0 (14.5) 82.3 23.4 47.6 18.2
1000 3,129 80,481 75.9 21.4 88.0 82.0 (9.4) 81.4 21.3 50.6 21.7
2000 5,486 129,955 77.8 20.9 90.6 86.1 (7.5) 82.2 20.7 50.2 22.7
4000 9,239 202,429 78.4 20.7 91.9 87.4 (4.9) 83.2 20.5 45.3 22.0
8000 17,077 330,548 75.5 21.5 92.0 88.2 (2.9) 79.8 21.4 43.4 22.4

Ge
o

500 1,351 29,835 61.6 8.4 70.3 64.4 (14.2) 79.2 7.6 29.8 9.9
1000 2,586 55,117 68.5 8.2 80.5 74.9 (9.0) 81.4 7.4 28.8 11.3
2000 5,413 112,530 72.8 8.0 84.1 79.4 (5.2) 82.0 7.4 37.6 10.8
4000 11,085 182,469 67.5 8.2 84.9 78.3 (3.1) 75.5 7.6 38.8 11.2
8000 16,312 243,343 67.9 8.2 85.4 78.0 (2.1) 75.5 7.5 41.3 11.2

Table 7.4: Results on Scholar and Geo with varying amount of canonical examples in the seed training
data.

paraphrases. We provide further analysis later in a case study.

Do smaller logical gaps entail better performance? As in §7.3.1, the seed canonical data
Dcan consists of top-K highest-scoring examples under GPT-2 for each program depth. This data
selection method makes it possible to train the model e�ciently in the iterative paraphrasing
stage using a small set of canonical samples that most likely appear in natural data out of the
exponentially large sample space. However, using a smaller cuto� threshold K might sacri�ce
logical coverage, as fewer examples are in Dcan. To investigate this trade-o�, we report results
with varying K in Tab. 7.4. Notably, with K = 1000 and around 3K seed canonical data Dcan

(before iterative paraphrasing), Dcan already covers 88% and 80% natural programs on Scholar
and Geo, resp. This small portion of samples only account for 0.2% (1%) of the full set of 1.7M+

(0.27M ) canonical examples exhaustively generated from the grammar on Scholar (Geo). This
demonstrates our data selection approach is e�ective in maintaining learning e�ciency while
closing the logical gap.

More interestingly, while larger K yields higher logical form coverage, the accuracy might
not improve. This is possibly because while the recall of real programs improves, the percent-
age of such programs in paraphrased canonical data Dpar (numbers in parentheses) actually
drops. Out of the remaining 90%+ samples in Dpar whose programs are not in Dnat, many have
unnatural intents that real users are unlikely to issue (e.g., “Number of titles of papers with the
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smallest citations”, or “Mountain whose elevation is the length of Colorado River”). Such unlikely

samples are potentially harmful to the model, causing worse language mismatch, as suggested
by the increasing perplexity when K = 8000. Similar to HB19, empirically we observe around
one-third of samples in Dcan and Dpar are unlikely. As later in the case study, such unlikely
utterances have noisier paraphrases, which hurts the quality of Dpar.

Next, to investigate whether the model could generalize to utterances with out-of-distribution
program patterns not seen in the training data Dpar, we report accuracies on the splits whose
program templates are covered (In Coverage) and not covered (Out of Coverage) by Dpar. Not
surprisingly, the model performs signi�cantly better on the in-coverage sets with less language
mismatch. An exception isK=500 on Scholar, where the perplexity on out-of-coverage sam-
ples is slightly lower. This is because utterances in Scholar tend to use compound nouns to
specify compositional constraints (e.g., ACL 2021 parsing papers), a language style common for
in-coverage samples but not captured by the grammar. With smallerK and Dcan, it is less likely
for the paraphrased data Dpar to capture similar syntactic patterns. Anther factor that makes
the out-of-coverage PPL smaller when K = 500 is that there are more (simpler) examples in
the set compared to K > 500, and the relatively simple utterances will also bring down the
PPL.

Our results are also in line with recent research in compositional generalization of semantic
parsers [55, 101], which suggests that existing models generalize poorly to utterances with novel
compositional patterns (e.g., conjunctive objects like Most cited paper by X and Y) not seen dur-
ing training. Still surprisingly, our model generalizes reasonably to compositionally novel (out-
of-coverage) splits, registering 30%∼50% accuracies, in contrast to HB19 reporting accuracies
smaller than 10% on similar benchmarks for OverNight. We hypothesize that synthesizing
compositional samples increases the number of unique program templates in training, which
could be helpful for compositional generalization [2]. As an example, the number of unique
program templates in Dpar when K = 2000 on Scholar and Geo is 1.9K and 1.7K , resp, com-
pared to only 125 and 187 in Dnat. This �nding is reminiscent of data augmentation strategies
for supervised parsers using synthetic samples induced from (annotated) parallel data [84, 191].

Impact of Paraphrasers Our system relies on strong paraphrasers to generate diverse ut-
terances in order to close the language gap. Tab. 7.5 compares the performance of the system
trained with our paraphraser and the one used in Xu et al. [205]. Both models are based on
Bart, while our paraphraser is �ne-tuned to encourage lexically and syntactically diverse out-
puts. We measure lexical diversity using token-level F1 between the original and paraphrased

96



Paraphraser
Scholar Geo

Tok. F1↓ τ↓ Acc.↑ Tok. F1↓ τ↓ Acc.↑

Ours 70.3 0.71 77.8 69.2 0.78 72.8
Xu et al. [205] 72.4 0.94 69.9 74.5 0.95 62.3

Table 7.5: Systems with di�erent paraphrasers. We report end-to-end denotation accuracy, as well as F1

and Kendall’s τ rank coe�cient between utterances and their paraphrases.

utterances 〈u,u′〉 [93, 161]. For syntactic divergence, we use Kendall’s τ [104] to compute
the ordinal correlation between u and u′, which intuitively measures the number of times to
swap tokens in u to get u′ using bubble sort. Our paraphraser generates more diverse para-
phrases (e.g., What is the biggest state in US?) from the source (e.g., State in US and that has the

largest area), as indicated by lower token-level overlaps and ordinal coe�cients, comparing to
the existing paraphraser (e.g., The state in US with the largest surface area). Nevertheless, our
paraphraser is still not perfect, as discussed next.

Limitations Our parser still lags behind the fully supervised model (Tab. 7.1). To understand
the remaining bottlenecks, we show representative examples in Tab. 7.6. First, the recall of
the paraphrase �ltering model is low. The �ltering model uses the semantic parser trained
on the paraphrased data generated in previous iterations. Since this model is less accurate, it
can incorrectly reject valid paraphrases u′ ( in Tab. 7.6), especially when u′ uses a di�erent
sentence type (e.g., questions) than the source (e.g., statements). Empirically, we found the recall
of the �ltering model at the �rst iteration of the second-stage training (§7.3.2) is only around
60%. This creates logical gaps, as paraphrases of examples in the seed canonical data Dcan could
be rejected by the conservative �ltering model, leaving no samples with the same programs in
Dpar.

Another issue is the imperfect paraphraser generating semantically incorrect predictions
(e.g.,u′1,1), especially when the source canonical utterance contains uncommon concepts (e.g., venue
in u1), which tend to be ignored or interpreted as other entities (e.g., sites). Additionally, while
we have attempted to close the language gap using more idiomatic utterances, the paraphraser
still fails to generate some language patterns in real utterances. This is especially non-trivial for
relations not covered by our idiomatic productions (e.g., the co-authorship multi-hop relation
in u2). Besides the lack of coverage for idiomatic relations, utterances can also follow special
compositionality patterns. For instance, u∗nat in Example 3 uses compound nouns to denote the
occurrence of a conference, which is di�cult to automatically paraphrase from u3 (that uses
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Example 1 (Uncommon Concept)
u1 Venue of paper by author0 and published in year0
u′1,1 author0’s paper, published in year0
u′1,2 Where the paper was published by author0 in year0?

u′1,3 Where the paper was published in year0 by author0?

u∗nat Where did author0 publish in year0? (Wrong Answer)
Example 2 (Novel Relation)

u2 Author of paper by author0
u′2,1 Author of the paper written by author0
u′2,2 Author of author0’s paper

u′2,3 Who wrote the paper author0 wrote?

u∗nat Co-authors of author0 (Wrong Answer)
Example 3 (Novel Language Pattern)

u3 Author of paper published in venue0 and in year0
u′3,1 Author of papers published in venue0 in year0
u′3,2 Who wrote a paper for venue0 in year0
u′3,3 Who wrote the venue0 paper in year0

u∗nat venue0 year0 authors (Correct)
Example 4 (Unlikely Example)

u4 Paper in year0 and whose author is not the most cited author

u′4,1 A paper published in year0 that isn’t the most cited author

u′4,2 What’s not the most cited author in year0
u′4,3 In year0, he was not the most cited author

Table 7.6: Case Study on Scholar. We show the seed canonical utterance ui, the paraphrases u′i,j ,
and the relevant natural examples u∗nat. and denote the correctness of paraphrases. denotes
false negatives of the �ltering model (correct paraphrases that are �ltered), denotes false positives
(incorrect paraphrases that are accepted). Entities are canonicalized with indexed slots.
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prepositional phrases) without any domain knowledge. While the model could still correctly
answer u∗nat in this case, u∗nat’s perplexity is high, suggesting language mismatch.

Finally, as discussed earlier, Dcan contains around 30% unlikely canonical examples (e.g.,u4).
Since these utterances have convoluted logic or do not resemble natural English sentences, their
paraphrases are much noisier (e.g., u′4,∗). Empirically, we observe the paraphraser’s accuracy
is only around 30% for unlikely utterances, compared to 70% for the likely ones. The �lter-
ing model is also less e�ective on unlikely examples (false positives ). These noisy samples
will eventually hurt performance of the parser. We leave modeling utterance naturalness as
important future work.

7.5 Related Work

We present a systematic review of data e�cient learning approaches for semantic parsers in
§2.2. Our work is closely related to the family of models based on the OverNight frame-
work [§2.2.1; 195], which synthesizes parallel corpora from synchronous context free gram-
mars [37, 204] or neural sequence models [63]. The �eld has attempted to bridge the gaps
between canonical and real utterances via paraphrase detection [73] and generation [171, 179],
or representation learning [129].

7.6 Summary

In this chapter, we propose a cost-e�ective approach to collect parallel training data of ut-
terances labeled with MRs using zero-shot data synthesis and iterative paraphrasing. We put
forward methods to close the language and logical gaps between synthetic and real data. On
Scholar and Geo, our model achieves competitive results compared to other approaches while
using zero labeled data. This work demonstrates data synthesis based on grammar engineering
as a viable paradigm for task adaptation of general-purpose pre-trained language models. On
the one hand, pre-trained LMs, which capture open-domain knowledge of text, provide useful
signals to �lter unnatural synthetic examples. On the other hand, those paraphrased synthetic
samples generated from idiomatic grammars could be used to �ne-tune pre-trained LMs mod-
eled as semantic parsers to quickly adapt to the target domain. This paradigm of task-speci�c
data synthesis for �ne-tuning LMs has shown promising results for natural language under-
standing tasks with structured data [232, 233].
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In Part I we have discussed methods that model program syntax for more accurate parsing.
The approach presented in this chapter can be viewed as a way to leverage natural language
syntax to improve semantic parsing. Instead of building encoders that explicitly follow the
syntax of utterances (e.g., using tree LSTMs), we use SCFGs to model utterance syntax and
train neural semantic parsers to implicitly capture such syntactic knowledge by learning to
parse utterances following the pre-de�ned syntactic patterns, and also generalize to understand
those with more diverse syntactic styles after iterative paraphrasing.

For future work, we plan to simplify the process of constructing SCFG rules and make
this model a general-purpose and easy-to-use framework for developing semantic parsers for
emerging new domains. More directions are discussed in Chapter 10.
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Part III

Data E�cient Approaches
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Chapter 8

Semi-supervised Learning

So far we have discussed modeling techniques for developing generalized neural semantic
parsers. This chapter studies another important procedure in the life-cycle of a semantic parser
— inferring model parameters on training data. Systems introduced in previous chapters mostly
rely on parallel training corpora of utterances and annotated meaning representations for su-
pervised learning. However, these neural models tend to be data-hungry, requiring large amounts
of parallel data for learning, while collecting such corpora requires costly manual annotation
by domain experts (e.g., professional programmers). While Chapter 7 attempts to mitigate this
issue using unsupervised learning, such unsupervised systems still could not rival their super-
vised counterparts. In this chapter, we study a data-e�cient semi-supervised learning approach,
where a parser is trained on both limited amount of annotated data, together with extra unla-
beled natural language utterances. We show systems trained using semi-supervised learning
outperform purely supervised ones. This work �rst appears in:

• Pengcheng Yin, Chunting Zhou, Junxian He, and Graham Neubig. StructVAE: Tree-
structured latent variable models for semi-supervised semantic parsing. In Proceedings of

ACL, 2018

8.1 Overview

Recent advances in semantic parsing research are largely attributed to the success of neural
network models [50, 81, 117, 202, 244]. However, as discussed in Chapter 1 and §2.2.1, these
models are also extremely data hungry: optimization of such models requires large amounts
of training data of parallel NL utterances and manually annotated MRs, the creation of which
can be expensive, cumbersome, and time-consuming. Therefore, the limited availability of par-
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Structured Latent Semantic Space (MRs)

p(z)

Inference Model
q�(z|x)

Reconstruction Model
p✓(x|z)

Sort my_list in descending order

z

Figure 8.1: Graphical Representation of StructVAE

allel data has become the bottleneck of existing, purely supervised-based models. These data
requirements can be alleviated with weakly-supervised learning (§2.2.2), where the denotations
(e.g., answers in question answering) of MRs (e.g., logical form queries) are used as indirect su-
pervision (Berant et al. [18], Clarke et al. [42], Liang et al. [113], inter alia), or data-augmentation

techniques that automatically generate pseudo-parallel corpora using hand-crafted or induced
grammars [84, 195] §2.2.1.

In this work, we focus on semi-supervised learning (§2.2.3), aiming to learn from both lim-
ited amounts of parallel NL-MR corpora, and unlabeled but readily-available NL utterances.
We draw inspiration from recent success in applying variational auto-encoding (VAE) mod-
els in semi-supervised sequence-to-sequence learning [91, 134], and propose StructVAE — a
principled deep generative approach for semi-supervised learning with tree-structured latent
variables (Fig. 8.1). StructVAE is based on a generative story where the surface NL utterances
are generated from tree-structured latent MRs following the standard VAE architecture: (1) an
o�-the-shelf semantic parser functions as the inference model, parsing an observed NL utterance
into latent meaning representations (§8.3.2); (2) a reconstruction model decodes the latent MR
into the original observed utterance (§8.3.1). This formulation enables our model to perform
both standard supervised learning by optimizing the inference model (i.e., the parser) using
parallel corpora, and unsupervised learning by maximizing the variational lower bound of the
likelihood of the unlabeled utterances (§8.3.3).

In addition to these contributions to semi-supervised semantic parsing, StructVAE con-
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tributes to generative model research as a whole, providing a recipe for training VAEs with
structured latent variables. Such a structural latent space is contrast to existing VAE research
using �at representations, such as continuous distributed representations [89], discrete sym-
bols [134], or hybrids of the two [245].

We apply StructVAE to semantic parsing on the Atis domain and Python code generation.
As an auxiliary contribution, we implement a transition-based semantic parser, which uses
Abstract Syntax Trees (ASTs, §8.3.2) as intermediate MRs and achieves strong results on the two
tasks. We then apply this parser as the inference model for semi-supervised learning, and show
that with extra unlabeled data, StructVAE outperforms its supervised counterpart. We also
demonstrate that StructVAE is compatible with di�erent structured latent representations,
applying it to a simple sequence-to-sequence parser which uses λ-calculus logical forms as
MRs.

8.2 Semi-supervised Semantic Parsing

In this section we introduce the objectives for semi-supervised semantic parsing, and present
high-level intuition in applying VAEs for this task.

8.2.1 Supervised and Semi-supervised Training

As noted in §2.1, there are many varieties of MRs that can be represented as either graph struc-
tures (e.g., AMR) or tree structures (e.g., λ-calculus and ASTs for programming languages). In
this work we speci�cally focus on tree-structured MRs (see Fig. 4.1 in Chapter 4 for a run-
ning example Python AST), although application of a similar framework to graph-structured
representations is also feasible.

In this chapter, we consider semi-supervised learning of semantic parsers (§2.2.3), which
jointly maximizes the conditional likelihood pφ(z|u) using utterancesu labled with MRs z, L =

{〈u, z〉}, and the marginal likelihood p(u) over unlabled utterances U (Eq. (2.4)). StructVAE
uses the variational auto-encoding framework to jointly optimize pφ(z|u) and p(u) in Eq. (2.4),
as outlined in §8.2.2 and detailed in §8.3.

8.2.2 VAEs for Semi-supervised Learning

From Eq. (2.4), our semi-supervised model must be able to calculate the probability p(u) of un-
labeled NL utterances. To model p(u), we use VAEs, which provide a principled framework for
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generative models using neural networks [89]. As shown in Fig. 8.1, VAEs de�ne a generative

story (bold arrows in Fig. 8.1, explained in §8.3.1) to model p(u), where a latent MR z is sampled
from a prior, and then passed to the reconstruction model to decode into the surface utterance
u. There is also an inference model qφ(z|u) that allows us to infer the most probable latent MR
z given the input u (dashed arrows in Fig. 8.1, explained in §8.3.2). In our case, the inference
process is equivalent to the task of semantic parsing if we set qφ(·) , pφ(·). VAEs also provide a
framework to compute an approximation of p(u) using the inference and reconstruction mod-
els, allowing us to e�ectively optimize the unsupervised and supervised objectives in Eq. (2.4)
in a joint fashion (Kingma et al. [90], explained in §8.3.3).

8.3 StructVAE:VAEswithTree-structured LatentVariables

8.3.1 Generative Story

StructVAE follows the standard VAE architecture, and de�nes a generative story that explains
how an NL utterance is generated: a latent meaning representation z is sampled from a prior
distribution p(z) over MRs, which encodes the latent semantics of the utterance. A reconstruc-

tion model pθ(u|z) then decodes the sampled MR z into the observed NL utterance u.

Both the prior p(z) and the reconstruction model p(u|z) takes tree-structured MRs as in-
puts. To model such inputs with rich internal structures, we follow Konstas et al. [92], and
model the distribution over a sequential surface representation of z, zs instead. Speci�cally,
we have p(z) , p(zs) and pθ(u|z) , pθ(u|zs)1. For code generation, zs is simply the surface
source code of the AST z. For semantic parsing, zs is the linearized s-expression of the logical
form. Linearization allows us to use standard sequence-to-sequence networks to model p(z)
and pθ(u|z). As we will explain in §8.4.3, we �nd these two components perform well with
linearization.

Speci�cally, the prior is parameterized by a Long Short-Term Memory (LSTM) language
model over zs. The reconstruction model is an attentional sequence-to-sequence network [123],
augmented with a copying mechanism [62], allowing an out-of-vocabulary (OOV) entity in zs

to be copied to u (e.g., the variable name my_list in Fig. 8.1).

1Linearizion is used by the prior and the reconstruction model only, and not by the inference model.

106



8.3.2 Inference Model

StructVAE models the semantic parser pφ(z|u) as the inference model qφ(z|u) in VAE (§8.2.2),
which maps NL utterances u into tree-structured meaning representations z. qφ(z|u) can be
any trainable semantic parser, with the corresponding MRs forming the structured latent se-
mantic space. In this work, we primarily use the semantic parser proposed in Chapter 4 based
on the Abstract Syntax Description Language (ASDL) framework [194] as the inference model.
The parser encodes u into ASTs, which are the native meaning representation scheme of source
code in modern programming languages, and can also be adapted to represent other semantic
structures, like λ-calculus logical forms (see §8.4.2 for details). Interested readers are referred
to Chapter 4 for details of the semantic parser used as the inference model. We remark that
StructVAE works with other semantic parsers with di�erent meaning representations as well
(e.g., using λ-calculus logical forms for semantic parsing on Atis, explained in §8.4.3).

8.3.3 Semi-supervised Learning

In this section we explain how to optimize the semi-supervised learning objective Eq. (2.4) in
StructVAE.

Supervised Learning For the supervised learning objective, we modify Js, and use the la-
beled data to optimize both the inference model (the semantic parser) and the reconstruction
model:

Js ,
∑

(u,z)∈L

(
log qφ(z|u) + log pθ(u|z)

)
(8.1)

Unsupervised Learning To optimize the unsupervised learning objective Ju in Eq. (2.4), we
maximize the variational lower-bound of log p(u):

log p(u) ≥ Ez∼qφ(z|u)
(
log pθ(u|z)

)
− λ ·KL[qφ(z|u)||p(z)] = L (8.2)

where KL[qφ||p] is the Kullback-Leibler (KL) divergence. Following common practice in opti-
mizing VAEs, we introduce λ as a tuning parameter of the KL divergence to control the impact
of the prior [22, 134].

To optimize the parameters of our model in the face of non-di�erentiable discrete latent
variables, we follow Miao and Blunsom [134], and approximate ∂L

∂φ
using the score function
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estimator (a.k.a. REINFORCE, Williams [198]):

∂L
∂φ

=
∂

∂φ
Ez∼qφ(z|u)(

log pθ(u|z)− λ
(
log qφ(z|u)− log p(z)

))︸ ︷︷ ︸
learning signal

=
∂

∂φ
Ez∼qφ(z|u)l

′(u, z)

≈ 1

|S(u)|
∑

zi∈S(u)

l′(u, zi)
∂ log qφ(zi|u)

∂φ

(8.3)

where we approximate the gradient using a set of samples S(u) drawn from qφ(·|u). To ensure
the quality of sampled latent MRs, we follow Guu et al. [66] and use beam search. The term
l′(u, z) is de�ned as the learning signal [134]. The learning signal weights the gradient for
each latent sample z. In REINFORCE, to cope with the high variance of the learning signal, it
is common to use a baseline b(u) to stabilize learning, and re-de�ne the learning signal as

l(u, z) , l′(u, z)− b(u). (8.4)

Speci�cally, in StructVAE, we de�ne

b(u) = a · log p(u) + c, (8.5)

where log p(u) is a pre-trained LSTM language model. This is motivated by the empirical ob-
servation that log p(u) correlates well with the reconstruction score log pθ(u|z), hence with
l′(u, z).

Finally, for the reconstruction model, its gradient can be easily computed:

∂L
∂θ
≈ 1

|S(u)|
∑

zi∈S(u)

∂ log pθ(u|zi)
∂θ

.

Discussion Perhaps the most intriguing question here is why semi-supervised learning could
improve semantic parsing performance. While the underlying theoretical exposition still re-
mains an active research problem [173], in this chapter we try to empirically test some likely
hypotheses. In Eq. (8.3), the gradient received by the inference model from each latent sample
z is weighed by the learning signal l(u, z). l(u, z) can be viewed as the reward function in
REINFORCE learning. It can also be viewed as weights associated with pseudo-training ex-
amples {〈u, z〉 : z ∈ S(u)} sampled from the inference model. Intuitively, a sample z with
higher rewards should: (1) have z adequately encode the input, leading to high reconstruction
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score log pθ(u|z); and (2) have z be succinct and natural, yielding high prior probability. Let
z∗ denote the gold-standard MR of u. Consider the ideal case where z∗ ∈ S(u) and l(u, z∗) is
positive, while l(u, z′) is negative for other imperfect samples z′ ∈ S(u), z′ 6= z∗. In this ideal
case, 〈u, z∗〉 would serve as a positive training example and other samples 〈u, z′〉 would be
treated as negative examples. Therefore, the inference model would receive informative gradi-
ent updates, and learn to discriminate between gold and imperfect MRs. This intuition is similar
in spirit to recent e�orts in interpreting gradient update rules in reinforcement learning [66].
We will present more empirical statistics and observations in §8.4.3.

8.4 Experiments

8.4.1 Datasets

In our semi-supervised semantic parsing experiments, it is of interest how StructVAE could
further improve upon a supervised parser with extra unlabeled data. We evaluate on two
datasets:

Semantic Parsing We use the Atis dataset, a collection of 5,410 telephone inquiries of �ight
booking (e.g., “Showme �ights from ci0 to ci1”). The target MRs are de�ned using λ-calculus log-
ical forms (e.g., “lambda $0 e (and (flight $0) (from $ci0) (to $ci1))”). We use the
pre-processed dataset released by Dong and Lapata [50], where entities (e.g., cities) are canon-
icalized using typed slots (e.g., ci0). To predict λ-calculus logical forms using our transition-
based parser, we use the ASDL grammar de�ned by Rabinovich et al. [157] to convert between
logical forms and ASTs (see Chapter 4 for details).

Code Generation The Django dataset [146] contains 18,805 lines of Python source code
extracted from the Django web framework. Each line of code is annotated with an NL utterance.
Source code in the Django dataset exhibits a wide variety of real-world use cases of Python,
including IO operation, data structure manipulation, class/function de�nition, etc. We use the
pre-processed version from Chapter 3 and use the astor package to convert ASDL ASTs into
Python source code.

8.4.2 Setup

Labeled and Unlabeled Data StructVAE requires access to extra unlabeled NL utterances
for semi-supervised learning. However, the datasets we use do not accompany with such data.
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We therefore simulate the semi-supervised learning scenario by randomly sub-sampling K ex-
amples from the training split of each dataset as the labeled set L. To make the most use of the
NL utterances in the dataset, we construct the unlabeled set U using all NL utterances in the
training set2,3.

Training Procedure Optimizing the unsupervised learning objective Eq. (8.2) requires sam-
pling structured MRs from the inference model qφ(z|u). Due to the complexity of the seman-
tic parsing problem, we cannot expect any valid samples from randomly initialized qφ(z|u).
We therefore pre-train the inference and reconstruction models using the supervised objec-
tive Eq. (8.1) until convergence, and then optimize using the semi-supervised learning objec-
tive Eq. (2.4). Throughout all experiments we set α (Eq. (2.4)) and λ (Eq. (8.2)) to 0.1. The sample
size |S(u)| is 5. We observe that the variance of the learning signal could still be high when
low-quality samples are drawn from the inference model qφ(z|u). We therefore clip all learning
signals lower than k = −20.0. Early-stopping is used to avoid over-�tting. We also pre-train
the prior p(z) (§8.3.3) and the baseline function Eq. (8.5).

Metric As standard in semantic parsing research, we evaluate by exact-match accuracy.

8.4.3 Main Results

Tab. 8.1 and Tab. 8.2 list the results on Atis and Django, resp, with varying amounts of labeled
data L. We also present results of training the transition-based parser using only the super-
vised objective (Sup., Eq. (8.1)). We also compare StructVAE with self-training (SelfTrain),
a semi-supervised learning baseline which uses the supervised parser to predict MRs for un-
labeled utterances in U − L, and adds the predicted examples to the training set to �ne-tune
the supervised model. Results for StructVAE are averaged over four runs to account for the
additional �uctuation caused by REINFORCE training.

Supervised SystemComparison First, to highlight the e�ectiveness of our transition parser
based on ASDL grammar (hence the reliability of our supervised baseline), we compare the su-
pervised version of our parser with existing parsing models. On Atis, our supervised parser

2We also tried constructing U using the disjoint portion of the NL utterances not presented in the labeled set
L, but found this yields slightly worse performance, probably due to lacking enough unlabeled data. Interpreting
these results would be an interesting avenue for future work.

3While it might be relatively easy to acquire additional unlabeled utterances in practical settings (e.g., through
query logs of a search engine), unfortunately most academic semantic parsing datasets, like the ones used in this
work, do not feature large sets of in-domain unlabeled data. We therefore perform simulated experiments instead.
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|L| Sup. SelfTrain StructVAE
500 63.2 65.3 66.0

1,000 74.6 74.2 75.7

2,000 80.4 83.3 82.4
3,000 82.8 83.6 83.6

4,434 (All) 85.3 – 84.5

Previous Methods Acc.
ZC07 [237] 84.6
WKZ14 [187] 91.3

Seq2Tree [50]† 84.6
ASN [157]† 85.3

+ supervised attention 85.9

Table 8.1: Performance on Atis w.r.t. the size of labeled training data L. †Existing neural network-based
methods

trained on the full data is competitive with existing neural network based models, surpassing
the Seq2Tree model, and on par with the Abstract Syntax Network (ASN) without using extra
supervision. On Django, our model signi�cantly outperforms the system in Chapter 3, prob-
ably because the transition system used by our parser is de�ned natively to construct ASDL
ASTs, reducing the number of actions for generating each example. On Django, the average
number of actions is 14.3, compared with 20.3 reported in Chapter 3.

Semi-supervised Learning Next, we discuss our main comparison between StructVAE
with the supervised version of the parser (recall that the supervised parser is used as the infer-
ence model in StructVAE, §8.3.2). First, comparing our proposed StructVAE with the super-
vised parser when there are extra unlabeled data (i.e., |L| < 4, 434 for Atis and |L| < 16, 000

for Django), semi-supervised learning with StructVAE consistently achieves better perfor-
mance. Notably, on Django, our model registers results as competitive as previous state-of-
the-art method (Chapter 3) using only half the training data (71.5 when |L| = 8000 v.s. 71.6
for the model in Chapter 3). This demonstrates that StructVAE is capable of learning from
unlabeled NL utterances by inferring high quality, structurally rich latent meaning represen-
tations, further improving the performance of its supervised counterpart that is already com-
petitive. Second, comparing StructVAE with self-training, we �nd StructVAE outperforms
SelfTrain in eight out of ten settings, while SelfTrain under-performs the supervised parser
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|L| Sup. SelfTrain StructVAE
1,000 49.9 49.5 52.0

2,000 56.6 55.8 59.0

3,000 61.0 61.4 62.4

5,000 63.2 64.5 65.6

8,000 70.3 69.6 71.5

12,000 71.1 71.6 72.0

16,000 (All) 73.7 – 72.3

Previous Method Acc.
Yin and Neubig [218] (Chapter 3) 71.6

Table 8.2: Performance on Django w.r.t. the size of labeled training data L
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z′(µ̂ = −5.12, σ̂ = 214.62)

(a) Django
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z∗(µ̂ = 0.94, σ̂ = 19.06)

z′(µ̂ = −3.35, σ̂ = 96.66)

(b) Atis

Figure 8.2: Histograms of learning signals on Django (|L| = 5000) and Atis (|L| = 2000). Di�erence in
sample means is statistically signi�cant (p < 0.05).

in four out of ten settings. This shows self-training does not necessarily yield stable gains while
StructVAE does. Intuitively, StructVAE would perform better since it bene�ts from the addi-
tional signal of the quality of MRs from the reconstruction model (§8.3.3), for which we present
more analysis in our next set of experiments.

For the sake of completeness, we also report the results of StructVAE when L is the full
training set. Note that in this scenario there is no extra unlabeled data disjoint with the labeled
set, and not surprisingly, StructVAE does not outperform the supervised parser. In addition
to the supervised objective Eq. (8.1) used by the supervised parser, StructVAE has the extra
unsupervised objective Eq. (8.2), which uses sampled (probably incorrect) MRs to update the
model. When there is no extra unlabeled data, those sampled (incorrect) MRs add noise to the
optimization process, causing StructVAE to under-perform.

Study of Learning Signals As discussed in §8.3.3, in semi-supervised learning, the gradi-
ent received by the inference model from each sampled latent MR is weighted by the learning
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Figure 8.3: Distribution of the rank of l(u, z∗) in sampled set

signal. Empirically, we would expect that on average, the learning signals of gold-standard
samples z∗, l(u, z∗), are positive, larger than those of other (imperfect) samples z′, l(u, z′).
We therefore study the statistics of l(u, z∗) and l(u, z′) for all utterances u ∈ U − L, i.e.,
the set of utterances which are not included in the labeled set.4 The statistics are obtained by
performing inference using trained models. FiguresFig. 8.2a andFig. 8.2b depict the histograms
of learning signals on Django and Atis, resp. We observe that the learning signals for gold
samples concentrate on positive intervals. We also show the mean and variance of the learning
signals. On average, we have l(u, z∗) being positive and l(u, z) negative. Also note that the
distribution of l(u, z∗) has smaller variance and is more concentrated. Therefore the inference
model receives informative gradient updates to discriminate between gold and imperfect sam-
ples. Next, we plot the distribution of the rank of l(u, z∗), among the learning signals of all
samples of u, {l(u, zi) : zi ∈ S(u)}. Results are shown in Fig. 8.3. We observe that the gold
samples z∗ have the largest learning signals in around 80% cases. We also �nd that when z∗ has
the largest learning signal, its average di�erence with the learning signal of the highest-scoring
incorrect sample is 1.27 and 0.96 on Django and Atis, respectively.

Finally, to study the relative contribution of the reconstruction score log p(u|z) and the
prior log p(z) to the learning signal, we present examples of inferred latent MRs during train-
ing (Tab. 8.3). Examples 1&2 show that the reconstruction score serves as an informative qual-
ity measure of the latent MR, assigning the correct samples zs1 with high log p(u|z), leading
to positive learning signals. This is in line with our assumption that a good latent MR should
adequately encode the semantics of the utterance. Example 3 shows that the prior is also ef-
fective in identifying “unnatural” MRs (e.g., it is rare to add a function and a string literal, as
in zs2). These results also suggest that the prior and the reconstruction model perform well
with linearization of MRs. Finally, note that in Examples 2&3 the learning signals for the cor-
rect samples zs1 are positive even if their inference scores q(z|u) are lower than those of zs2.
This result further demonstrates that learning signals provide informative gradient weights for

4We focus on cases where z∗ is in the sample set S(u).
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NL join p and cmd into a �le path, substitute it for f

zs1 f = os.path.join(p, cmd)

log q(z|u) = −1.00 log p(u|z) = −2.00
log p(z) = −24.33 l(u, z) = 9.14

zs2 p = path.join(p, cmd)

log q(z|u) = −8.12 log p(u|z) = −20.96
log p(z) = −27.89 l(u, z) = −9.47

NL append i-th element of existing to child_loggers

zs1 child_loggers.append(existing[i])

log q(z|u) = −2.38 log p(u|z) = −9.66
log p(z) = −13.52 l(u, z) = 1.32

zs2 child_loggers.append(existing[existing])

log q(z|u) = −1.83 log p(u|z) = −16.11
log p(z) = −12.43 l(u, z) = −5.08

NL split string pks by ’,’, substitute the result for primary_keys

zs1 primary_keys = pks.split(’,’)

log q(z|u) = −2.38 log p(u|z) = −11.39
log p(z) = −10.24 l(u, z) = 2.05

zs2 primary_keys = pks.split + ’,’

log q(z|u) = −0.84 log p(u|z) = −14.87
log p(z) = −20.41 l(u, z) = −2.60

Table 8.3: Inferred latent MRs on Django (|L| = 5000). For simplicity we show the surface representa-
tion of MRs (zs, source code) instead.
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|L| Supervised StructVAE-Seq
500 47.3 55.6

1,000 62.5 73.1

2,000 73.9 74.8

3,000 80.6 81.3

4,434 (All) 84.6 84.2

Table 8.4: Performance of the StructVAE-Seq on Atis w.r.t. the size of labeled training data L

optimizing the inference model.

Generalizing to Other LatentMRs Our main results are obtained using a strong AST-based
semantic parser as the inference model, with copy-augmented reconstruction model and an
LSTM language model as the prior. However, there are many other ways to represent and infer
structure in semantic parsing [28, 178], and thus it is of interest whether our basic StructVAE
framework generalizes to other semantic representations. To examine this, we test StructVAE
using λ-calculus logical forms as latent MRs for semantic parsing on the Atis domain. We use
standard sequence-to-sequence networks with attention [123] as inference and reconstruction
models. The inference model is trained to construct a tree-structured logical form using the
transition actions de�ned in Cheng et al. [36]. We use a classical tri-gram Kneser-Ney language
model as the prior. Tab. 8.4 lists the results for this StructVAE-Seq model.

We can see that even with this very di�erent model structure StructVAE still provides
signi�cant gains, demonstrating its compatibility with di�erent inference/reconstruction net-
works and priors. Interestingly, compared with the results in Tab. 8.1, we found that the gains
are especially larger with few labeled examples — StructVAE-Seq achieves improvements of
8-10 points when |L| < 1000. These results suggest that semi-supervision is especially useful
in improving a mediocre parser in low resource settings.

Impact of Baseline Functions In §8.3.3 we discussed our design of the baseline function
b(u) incorporated in the learning signal (Eq. (8.3)) to stabilize learning, which is based on a
language model (LM) over utterances (Eq. (8.5)). We compare this baseline with a commonly
used one in REINFORCE training: the multi-layer perceptron (MLP). The MLP takes as input
the last hidden state of the utterance given by the encoding LSTM of the inference model.
Tab. 8.5 lists the results over sampled settings. We found that although StructVAE with the
MLP baseline sometimes registers better performance on Atis, in most settings it is worse than
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Atis Django
|L| Sup. mlp lm |L| Sup. mlp lm
500 63.2 61.5† 66.0 1,000 49.9 47.0† 52.0

1,000 74.6 76.3 75.7 5,000 63.2 62.5† 65.6

2,000 80.4 82.9 82.4 8,000 70.3 67.6† 71.5

3,000 82.8 81.4† 83.6 12,000 71.1 71.6 72.0

Table 8.5: Comparison of StructVAE with di�erent baseline functions b(u), italic†: semi-supervised
learning with the MLP baseline is worse than supervised results.
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Figure 8.5: Performance on Django (|L| = 5000) w.r.t. the size of unlabeled data U

our LM baseline, and could be even worse than the supervised parser. On the other hand,
our LM baseline correlates well with the learning signal, yielding stable improvements over
the supervised parser. This suggests the importance of using carefully designed baselines in
REINFORCE learning, especially when the reward signal has large range (e.g., log-likelihoods).

Impact of the Prior p(z) Fig. 8.4 depicts the performance of StructVAE as a function of
the KL term weight λ in Eq. (8.2). When StructVAE degenerates to a vanilla auto-encoder
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without the prior distribution (i.e., λ = 0), it under-performs the supervised baseline. This is in
line with our observation in Tab. 8.3 showing that the prior helps identify unnatural samples.
The performance of the model also drops when λ > 0.1, suggesting that empirically controlling
the in�uence of the prior to the inference model is important.

Impact of Unlabeled Data Size Fig. 8.5 illustrates the accuracies w.r.t. the size of unlabeled
data. StructVAE yields consistent gains as the size of the unlabeled data increases.

8.5 Related Works

Semi-supervised Learning forNLP Semi-supervised learning comes with a long history [246],
with applications in NLP from early work of self-training [214], and graph-based methods [44],
to recent advances in auto-encoders [39, 174, 239] and deep generative methods [206]. Our
work follows the line of neural variational inference for text processing [135], and resem-
bles Miao and Blunsom [134], which uses VAEs to model summaries as discrete latent variables
for semi-supervised summarization, while we extend the VAE architecture for more complex,
tree-structured latent variables. k

Data E�cient Semantic Parsing We present a review of data e�cient learning approaches
in §2.2. Our work shares similar spirits with Kociský et al. [91], which employ VAEs for seman-
tic parsing, but in contrast to StructVAE’s structured representation of MRs, they model NL
utterances as �at latent variables, and learn from unlabeled MR data.

8.6 Summary

In this chapter, we propose StructVAE, a deep generative model with tree-structured latent
variables for semi-supervised semantic parsing. Under StructVAE, semantic parsers are mod-
eled as inference networks to compute the posterior over latent meaning representations. We
apply StructVAE to semantic parsing and code generation tasks, and show it outperforms a
strong supervised parser using extra unlabeled data. For future work, an interesting direction
is to generalize StructVAE to semi-supervised learning with graph-structured MRs as latent
variables, such as AMR parsing [12]. Another important direction would be theoretical explana-
tions of semi-supervised learning with VAEs, such as asymptotic analysis of their convergence
rate and sample e�ciency.
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Chapter 9

Speeding Up Data Acquisition

Chapter 8 highlights the research issue of labor-intensive data annotation. Data acquisition
is particularly costly for applications where the target meaning representations have complex
grammars, such as Python code generation, as annotating such MRs requires professionally
trained experts like programmers. In this chapter, we seek to speed-up this process using a
machine-assisted approach, where a probabilistic model �rst collects high-quality candidate
parallel examples, which are further screened and edited by domain experts. We focus on the
scenario of collecting NL intents of programmers and their code implementation in Python, and
resort to the curated resource on Stack Overflow to bootstrap the data collection process. This
work �rst appears in:

• Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learn-
ing to mine aligned code and natural language pairs from stack over�ow. In Proceedings

of MSR, 2018

9.1 Overview

In order to be e�ective, statistical semantic parsers, like the code generation model presented
in Chapter 3, require access to high volume, high quality, parallel data between natural lan-
guage and code. While one can hope to mine such data from Big Code repositories like Stack
Overflow (SO), straightforward mining approaches may also extract quite a bit of noise. We
illustrate the challenges associated with mining aligned (parallel) pairs of NL and code from SO
with the example of a Python question in Figure 9.1. Given a NL query (or intent), e.g., “remov-
ing duplicates in lists”, and the goal of �nding its matching source code snippets among the
di�erent answers, prior work used either a straightforward mining approach that simply picks

119



all code blocks that appear in the answers [4], or one that picks all code blocks from answers
that are highly ranked or accepted [80, 199].1 However, it is not necessarily the case that every
code block accurately re�ects the intent. Nor is it that the entire code block is answering the
question; some parts may simply describe the context, such as variable de�nitions (Context 1)
or import statements (Context 2), while other parts might be entirely irrelevant (e.g., the latter
part of the �rst code block).

Intent

Context 1

Snippet 1

Q
ue

sti o
n

A
n

sw
e

rs

Context 2
Snippet 2

Figure 9.1: Excerpt from a SO post showing two answers, and the corresponding NL intent and code
pairs.

There is an inherent trade-o� here between scale and data quality. On the one hand, when
mining pairs of NL and code from SO, one could devise �lters using features of the SO questions,
answers, and the speci�c programming language (e.g., only consider accepted answers with a
single code block or with high vote counts, or �ltering out print statements in Python, much

1There is at most one accepted answer per question; see green check symbol in Fig 9.1.
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like one thrust of prior work [80, 199]); �ne-tuning heuristics may achieve high pair quality,
but this inherently reduces the size of the mined data set and it may also be very language-
speci�c. On the other hand, extracting all available code blocks, much like the other thrust of
prior work [4], scales better but adds noise (and still cannot handle cases where the “best” code
snippets are smaller than a full code block). Ideally, a mining approach to extract parallel pairs
would handle these tricky cases and would operate at scale, extracting many high-quality pairs.
To date, none of the prior work approaches satis�es both requirements of high quality and large
quantity.

In this chapter, we propose a novel technique that �lls this gap (see Figure 9.2 for an
overview). Our key idea is to treat the problem as a classi�cation problem: given an NL in-
tent (e.g., the SO question title) and all contiguous code fragments extracted from all answers of
that question as candidate matches (for each answer code block, we consider all line-contiguous
fragments as candidates, e.g., for a 3-line code block 1-2-3, we consider fragments consisting of
lines 1, 2, 3, 1-2, 2-3, and 1-2-3), we use a data-driven classi�er to decide if a candidate aligns well
with the NL intent. Our model uses two kinds of information to evaluate candidates: (1) struc-
tural features, which are hand-crafted but largely language-independent, and try to estimate
whether a candidate code fragment is valid syntactically, and (2) correspondence features, au-
tomatically learned, which try to estimate whether the NL and code correspond to each other
semantically. Speci�cally, for the latter we use a model inspired by recent developments in
neural network models for machine translation [10], which can calculate bidirectional condi-
tional probabilities of the code given the NL and vice-versa. We evaluate our method on two
small labeled data sets of Python and Java code that we created from SO. We show that our
approach can extract signi�cantly more, and signi�cantly more accurate code snippets in both
languages than previous baseline approaches. We also demonstrate that the classi�er is still
e�ective even when trained on Python then used to extract snippets for Java, and vice-versa,
which demonstrates potential for generalizability to other programming languages without la-
borious annotation of correct NL-code pairs.

Our approach strikes a good balance between training e�ort, scale, and accuracy: the corre-
spondence features can be trained without human intervention on readily available data from
SO; the structural features are simple and easy to apply to new programming languages; and
the classi�er requires minimal amounts of manually labeled data (we only used 152 Python and
102 Java manually-annotated SO question threads in total). Even so, compared to the heuristic
techniques from prior work [4, 80, 199], our approach is able to extract up to an order of mag-
nitude more aligned pairs with no loss in accuracy, or reduce errors by more than half while
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holding the number of extracted pairs constant.
Speci�cally, we make the following contributions:
• We propose a novel technique for extracting aligned NL-code pairs from SO posts, based

on a classi�er that combines snippet structural features, readily extractable, with bidirec-
tional conditional probabilities, estimated using a state-of-the-art neural network model
for machine translation.

• We propose a protocol and tooling infrastructure for generating labeled training data.

• We evaluate our technique on two data sets for Python and Java and discuss performance,
potential for generalizability to other languages, and lessons learned.

• All annotated data, the code for the annotation interface and the mining algorithm are
available at http://conala-corpus.github.io.

9.2 Problem Setting

Stack Overflow (SO) is the most popular Q&A site for programming related questions, home
to millions of users. An example of the SO interface is shown in Figure 9.1, with a question (in
the upper half) and a number of answers by di�erent SO users. Questions can be about any-
thing programming-related, including features of the programming language or best practices.
Notably, many questions are of the “how to” variety, i.e., questions that ask how to achieve a
particular goal such as “sorting a list”, “merging two dictionaries”, or “removing duplicates in lists”

(as shown in the example); for example, around 36% of the Python-tagged questions are in this
category, as discussed later in §9.3.2. These how-to questions are the type that we focus on in
this work, since they are likely to have corresponding snippets and they mimic NL-to-code (or
vice versa) queries that users might naturally make in the applications we seek to enable, e.g.,
code retrieval and synthesis.

Speci�cally, we focus on extracting triples of three speci�c elements of the content included
in SO posts:

• Intent: A description in English of what the questioner wants to do; usually corresponds
to some portion of the post title.

• Context: A piece of code that does not implement the intent, but is necessary setup, e.g.,
import statements, variable de�nitions.

• Snippet: A piece of code that actually implements the intent.
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An example of these three elements is shown in Figure 9.1. Several interesting points can
be gleamed from this example. First, and most important, we can see that not all snippets in
the post are implementing the original poster’s intent: only two of four highlighted are actual
examples of how to remove duplicates in lists, the other two highlighted are context, and others
still are examples of interpreter output. If one is to train, e.g., a data-driven system for code
synthesis from NL, or code retrieval using NL, only the snippets, or portions of snippets, that
actually implement the user intent should be used. Thus, we need a mining approach that
can distinguish which segments of code are actually legitimate implementations, and which
can be ignored. Second, we can see that there are often several alternative implementations
with di�erent trade-o�s (e.g., the �rst example is simpler in that it doesn’t require additional
modules to be imported �rst). One would like to be able to extract all of these alternatives, e.g.,
to present them to users in the case of code retrieval2 or, in the case of code summarization, see
if any occur in the code one is attempting to summarize.

These aspects are challenging even for human annotators, as we illustrate next.

9.3 Manual Annotation

To better understand the challenges with automatically mining aligned NL-code snippet pairs
from SO posts, we manually annotated a set of labeled NL-code pairs. These also serve as the
gold-standard data set for training and evaluation. Here we describe our annotation method
and criteria, salient statistics about the data collected, and challenges faced during annotation.

For each target programming language, we �rst obtained all questions from the o�cial
SO data dump3 dated March 2017 by �ltering questions tagged with that language. We then
generated the set of questions to annotate by: (1) including all top-100 questions ranked by
view count; and (2) sampling 1,000 questions from the probability distribution generated by
their view counts on SO; we choose this method assuming that more highly-viewed questions
are more important to consider as we are more likely to come across them in actual applications.
While each question may have any number of answers, we choose to only annotate the top-
3 highest-scoring answers to prevent annotators from potentially spending a long time on a
single question.

2Ideally one would also like to present a description of the trade-o�s, but mining this information is a challenge
beyond the scope of this work.

3Available online at https://archive.org/details/stackexchange
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9.3.1 Annotation Protocol and Interface

Consistently annotating the intent, context,
and snippet for a variety of posts is not an easy
task, and in order to do so we developed and
iteratively re�ned a web annotation interface
and a protocol with detailed annotation crite-
ria and instructions.

The annotation interface allows users to
select and label parts of SO posts as (I)intent,
(C)ontext, and (S)nippet using shortcut keys,
as well as rewrite the intent to better match
the code (e.g., adding variable names from the
snippet into the original intent), in considera-
tion of potential future applications that may
require more precisely aligned NL-code data;
in the following experiments we solely con-
sider the intent and snippet, and reserve ex-
amination of the context and re-written intent
for future work. Multiple NL-code pairs that
are part of the same post can be annotated this way. There is also a “not applicable” button that
allows users to skip posts that are not of the “how to” variety, and a “not sure” button, which
can be used when the annotator is uncertain.

The annotation criteria were developed by having all authors attempt to perform anno-
tations of sample data, gradually adding notes of the di�cult-to-annotate cases to a shared
document. We completed several pilot annotations for a sample of Python questions, itera-
tively discussing among the research team the annotation criteria and the di�cult-to-annotate
cases after each, before �nalizing the annotation protocol. We repeated the process for Java
posts. Once we converged on the �nal annotation standards in both languages, we discarded
all pilot annotations, and one of the authors (a graduate-level NLP researcher and experienced
programmer) re-annotated the entire data set according to this protocol.

While we cannot re�ect all di�cult cases here for lack of space, below is a representative
sample from the Python instructions:

• Intents: Annotate the command form when possible (e.g., “how do I merge dictionaries”
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Table 9.1: Details of the labeled data set.

Lang. #Annot. #Ques. #Answer Posts #Code Blocks Avg. Code Length %Full Blocks %Annot. with Context
Python 527 142 412 736 13.2 30.7% 36.8%
Java 330 100 297 434 30.6 53.6% 42.4%

will be annotated as “merge dictionaries”). Extraneous words such as “in Python” can
be ignored. Intents will almost always be in the title of the post, but intents expressed
elsewhere that are di�erent from the title can also be annotated.

• Context: Contexts are a set of statements that do not directly re�ect the annotated intent,
but may be necessary in order to get the code to run, and include import statements, vari-
able de�nitions, and anything else that is necessary to make sure that the code executes.
When no context exists in the post this �eld can be left blank.

• Snippet: Try to annotate full lines when possible. Some special tokens such as “»>”,
“print”, and “In[...]” that appear at the beginning of lines due to copy-pasting can be
included. When the required code is encapsulated in a function, the function de�nition
can be skipped.

• Re-written intent: Try to be accurate, but try to make the minimal number of changes to
the original intent. Try to re�ect all of the free variables in the snippet to be conducive to
future automatic matching of these free variables to the corresponding position in code.
When referencing string literals or numbers, try to write exactly as written in the code,
and surround variables with a grave accent “‘”.

9.3.2 Annotation Outcome

We annotated a total of 418 Python questions and 200 Java questions. Of those, 152 in Python
and 102 in Java were judged as annotatable (i.e., the “how-to” style questions described in §9.2),
resulting in 577 Python and 354 Java annotations. We then removed the annotations marked as
“not sure” and all unparsable code snippets.4 In the end we generated 527 Python and 330 Java
annotations, respectively. Table 9.1 lists basic statistics of the annotations. Notably, compared
to Python, Java code snippets are longer (13.2 vs. 30.6 tokens per snippet), and more likely to be
full code blocks (30.7% vs. 53.6%). That is, in close to 70% of cases for Python, the code snippet
best-aligned with the NL intent expressed in the question title was not a full code block (SO

4We use the built-in ast parser module for Python, and JavaParser for Java.
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uses special HTML tags to highlight code blocks, recall the example in Figure 9.1) from one of
the answers, but rather a subset of it; similarly, the best-aligned Java snippets were not full code
blocks in almost half the cases. This con�rms the importance of mining code snippets beyond
the level of entire code blocks, a limitation of prior approaches.

Overall, we found the annotation process to be non-trivial, which raises several noteworthy
threats to validity: (1) it can be di�cult for annotators to distinguish between incorrect solu-
tions and unusual or bad solutions that are nonetheless correct; (2) in cases where a single SO
question elicits many correct answers with many implementations and code blocks, annotators
may not always label all of them; (3) long and complex solutions may be mis-annotated; and
(4) inline code blocks are harder to recognize than stand-alone code blocks, increasing the risk
of annotators missing some. We made a best e�ort to minimize the impact of these threats by
carefully designing and iteratively re�ning our annotation protocol.

9.4 Mining Method

In this section, we describe our mining method (see Figure 9.2 for an overview). As mentioned
in §9.2, we frame the problem as a classi�cation problem. First, for every “how to” SO question
we consider its title as the intent and extract all contiguous lines from across all code blocks
in the question’s answers (including those we might manually annotate as context; inline code
snippets are excluded) as candidate implementations of the intent, as long as we could parse the
candidate snippets.4 There are some cases where the title is not strictly equal to the intent, which
go beyond the scope of this chapter; for the purpose of learning the model we assume the title
is representative. This step generates, for every SO question considered, a set of pairs (intent
I , candidate snippet S). For example, the second answer in Figure 9.1, containing a three-line-
long code block, would generate six line-contiguous candidate snippets, corresponding to lines
1, 2, 3, 1-2, 2-3, and 1-2-3. Our candidate snippet generation approach, though clearly not the
only possible approach (1) is simple and language-independent, (2) is informed by our manual
annotations, and (3) it gives good coverage of all possible candidate snippets.

Then, our task is, given a candidate pair (I , S), to assign a label y representing whether or
not the snippet S re�ects the intent I ; we de�ne y to equal 1 if the pair matches and -1 other-
wise. Our general approach to making this binary decision is to use machine learning to train a
classi�er that predicts, for every pair (I , S), the probability that S accurately implements I , i.e.,
P (y = 1|I, S), based on a number of features (Sections §9.4.1 and §9.4.2). As is usual in super-
vised learning, our system �rst requires an o�ine training phase that learns the parameters (i.e.,
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Figure 9.2: Overview of our approach.

feature weights) of the classi�er, for which we use the annotated data described above ( §9.3).
This way, we can apply our system to an SO page of interest, and compute P (y = 1|I, S)
for each possible intent/candidate snippet pair mined from the SO page. We choose logistic
regression as our classi�er, as implemented in the scikit-learn Python package.

As human annotation to generate training data is costly, our goal is to keep the amount of
manually labeled training data to a minimum, such that scaling our approach to other program-
ming languages in the future can be feasible. Therefore, to ease the burden on the classi�er in
the face of limited training data, we combined two types of features: hand-crafted structural

features of the code snippets ( §9.4.1) and machine learned correspondence features that pre-
dict whether intents and code snippets correspond to each-other semantically ( §9.4.2). Our
intuition, again informed by the manual annotation, was that “good” and “bad” pairs can of-
ten be distinguished based on simple hand-crafted features; these features could eventually be
learned (as opposed to hand-crafted), but this would require more labeled training data, which
is relatively expensive to create.
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9.4.1 Hand-crafted Code Structure Features

The structural features are intended to distinguish whether we can reasonably expect that a
particular piece of code implements an intent. We aimed for these features to be both infor-
mative and generally applicable to a wide range of programming languages. These features
include the following:

• FullBlock, StartOfBlock, EndOfBlock: A code block may represent a single co-
hesive solution. By taking only a piece of a code block, we may risk acquiring only a
partial solution, and thus we use a binary feature to inform the classi�er of whether it is
looking at a whole code block or not. On the other hand, as shown in Figure 9.1, many
code blocks contain some amount of context before the snippet, or other extraneous in-
formation, e.g., print statements. To consider these, we also add binary features indicating
that a snippet is at the start or end of its code block.

• ContainsImport, StartsWithAssignment, IsValue: Additionally, some state-
ments are highly indicative of a statement being context or extraneous. For example,
import statements are highly indicative of a particular line being context instead of the
snippet itself, and thus we add a binary feature indicating whether an import statement
is included. Similarly, variable assignments are often context, not the implementation it-
self, and thus we add another feature indicating whether the snippet starts with a variable
assignment. Finally, we observed that in SO (particularly for Python), it was common to
have single lines in the code block that consisted of only a variable or value, often as an
attempt to print these values to the interactive terminal.

• AcceptedAns, PostRank1, PostRank2, PostRank3: The quality of the post itself
is also indicative of whether the answer is likely to be valid or not. Thus, we add several
features indicating whether the snippet appeared in a post that was the accepted answer
or not, and also the rank of the post within the various answers for a particular question.

• OnlyBlock: Posts with only a single code block are more likely to have that snippet be
a complete implementation of the intent, so we added another feature indicating when
the extracted snippet is the only one in the post.

• NumLinesX: Snippets implementing the intent also tend to be concise, so we added
features indicating the number of lines in the snippet, bucketed into X = 1, 2, 3, 4-5,
6-10, 11-15, >15.

• Combination Features: Some features can be logically combined to express more com-
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plex concepts. E.g., AcceptedAns + OnlyBlock + WholeBlock can express the strategy
of selecting whole blocks from accepted answers with only one block, as used in previ-
ous work [80, 199]. We use this feature and two other combination features: speci�cally
¬StartWithAssign + EndOfBlock and ¬StartWithAssign + NumLines1.

9.4.2 Unsupervised Correspondence Features

While all of the features in the previous section help us determine which code snippets are
likely to implement some intent, they say nothing about whether the code snippet actually im-
plements the particular intent I that is currently under consideration. Of course considering
this correspondence is crucial to accurately mining intent-snippet pairs, but how to evaluate
this correspondence computationally is non-trivial, as there are very few hard and fast rules that
indicate whether an intent and snippet are expressing similar meaning. Thus, in an attempt to
capture this correspondence, we take an indirect approach that uses a potentially-noisy (i.e.,
not manually validated) but easy-to-construct data set to train a probabilistic model to approx-
imately capture these correspondences, then incorporate the predictions of this noisily trained
model as features into our classi�er.

Training data of correspondence features: Apart from our manually-annotated data set, we
collected a relatively large set of intent-snippet pairs using simple heuristic rules for learning
the correspondence features. The data set is created by pairing the question titles and code
blocks from all SO posts, where (1) the code block comes from an SO answer that was accepted
by the original poster, and (2) there is only one code block in this answer. Of course, many of
these code blocks will be noisy in the sense that they contain extraneous information (such as
extra import statements or variable de�nitions, etc.), or not directly implement the intent at all,
but they will still be of use for learning which NL expressions in the intent tend to occur with
which types of source code.

Learning a model of correspondence: Given the training data above, we need to create a
model of the correspondence between the intent I and snippet S. To this end, we build a
statistical model of the bi-directional probability of the intent given the snippet P (I | S), and
the probability of the snippet given the intent P (S | I). Speci�cally, we estimate P (I | S)
and P (S | I) using attentional neural machine translation models [10] trained one the corpus
described above.

Incorporating correspondence probabilities as features: For each intent I and candidate
snippet S, we calculate the probabilities P (S | I) and P (I | S), and add them as features to
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our classi�er, as we did with the hand-crafted structural features in §9.4.1.
• SGivenI, IGivenS: Our �rst set of features are the logarithm of the probabilities men-

tioned above: logP (S | I) and logP (I | S).5 Intuitively, these probabilities will be
indicative of S and I being a good match because if they are not, the probabilities will
be low. If the snippet and the intent are not a match at all, both features will have a low
value. If the snippet and intent are partial matches, but either the snippet S or intent
I contain extraneous information that cannot be predicted from the counterpart, then
SGivenI and IGivenS will have low values respectively.

• ProbMax, ProbMin: We also represent the max and min of logP (S | I) and logP (I |
S). In particular, the ProbMin feature is intuitively helpful because pairs where the
probability in either direction is low are likely not good pairs, and this feature will be low
in the case where either probability is low.

• NormalizedSGivenI, NormalizedIGivenS: In addition, intuitively we might want
the best matching NL-code pairs within a particular SO page. In order to capture this
intuition, we also normalize the scores over all posts within a particular page so that
their mean is zero and standard deviation is one (often called the z-score). In this way,
the pairs with the best scores within a page will get a score that is signi�cantly higher
than zero, while the less good scores will get a score close to or below zero.

9.5 Evaluation

In this section we evaluate our proposed mining approach. We �rst describe the experimental
setting in §9.5.1 before addressing the following research questions:

1. How does our mining method compare with existing approaches across di�erent pro-
gramming languages? ( §9.5.2)

2. How do the structural and correspondence features impact the system’s performance?
( §9.5.2)

3. Given that annotation of data for each language is laborious, is it possible to use a classi�er
learned on one programming language to perform mining on other languages? ( §9.5.3)

5We take the logarithm of the probabilities because the actual probability values tend to become very small
for very long sequences (e.g., 10−50 to 10−100), while the logarithm is in a more manageable range (e.g., −50 to
−100).
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Table 9.2: Details of the NL-code data used for learning unsupervised correspondence features.

Lang.
Training Data

(NL/Code Pairs)
Validation Data Intents Code

Avg. Length Vocabulary Size Avg. Length Vocabulary Size
Python 33,946 3,773 11.9 12,746 65.4 30,286

Java 37,882 4,208 11.6 13,775 65.7 29,526

4. What are the qualitative features of the NL-code pairs that our method succeeds or fails
at extracting? ( §9.5.4)

We show that our method clearly outperforms existing approaches and shows potential for
reuse without retraining, we uncover trade-o�s between performance and training complexity,
and we discuss limitations, which can inform future work.

9.5.1 Experimental Settings

We conduct experimental evaluation on two programming languages: Python and Java. These
languages were chosen due to their large di�erences in syntax and verbosity, which have been
shown to e�ect characteristics of code snippets on SO [208].

Learning unsupervised features: We start by �ltering the SO questions in the Stack Exchange
data dump3 by tag (Python and Java), and we use an existing classi�er [80] to identify the how-
to style questions. The classi�er is a support vector machine trained by bootstrapping from
100 labeled questions, and achieves over 75% accuracy as reported in [80]. We then extract
intent/snippet pairs from all these questions as described in §9.4.2, collecting 33,946 pairs for
Python and 37,882 for Java. Next we split the data set into training and validation sets with a
ratio of 9:1, keeping the 90% for training. Statistics of the data set are listed in Table 9.2.6

We implement our neural correspondence model using the DyNet neural network toolkit [141].
The dimensionality of word embedding and RNN hidden states is 256 and 512. We use dropout [176],
a standard method to prevent over�tting, on the input of the last softmax layer over target
words (p = 0.5), and recurrent dropout [57] on RNNs (p = 0.2). We train the network using
the widely used optimization method Adam [88]. To evaluate the neural network, we use the
remaining 10% of pairs left aside for testing, retaining the model with the highest likelihood on
the validation set.

Evaluating the mining model: For the logistic regression classi�er, which uses the struc-
6Note that this data may contain some of the posts included in the cross-validation test set with which we

evaluate our model later. However, even if it does, we are not using the annotations themselves in the training of
the correspondence features, so this does not pose a problem with our experimental setting.
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tural and correspondence features described above, the latter computed by the previous neural
network, we use our annotated intent/snippet data ( §9.3.2)7 during 5-fold cross validation.
Recall, our code mining model takes as input a SO question (i.e., intent re�ected by the question
title) with its answers, and outputs a ranked list of candidate intent/snippet pairs (with proba-
bility scores). For evaluation, we �rst rank all candidate intent/snippet pairs for all questions,
and then compare the ranked list with gold-standard annotations. We present the results using
standard precision-recall (PR) and Receiver Operating Characteristic (ROC) curves. In short,
a PR curve shows the precision w.r.t. recall for the top-k predictions in the ranked list, with
k from 1 to the number of candidates. A ROC curve plots the true positive rates w.r.t. false
positive rates in similar fashion. We also compute the Area Under the Curve (AUC) scores for
all ROC curves.

Baselines: As baselines for our model (denoted as Full), we implement three approaches
re�ecting prior work and sensible heuristics:
AcceptOnly is the state-of-the art from prior work [80, 199]; it selects the whole code snippet

in the accepted answers containing exactly one code snippet.

All denotes the baseline method that exhaustively selects all full code blocks in the top-3
answers in a post.

Random is the baseline that randomly selects from all consecutive code segment candidates.
Similarly to our model, we enforce the constraint that all mined code snippets given by the
baseline approaches should be parseable.

Additionally, to study the impact of hand-crafted Structural versus learned Corre-

spondence features, we also trained versions of our model with either of the two types of
features only.

9.5.2 Results and Discussion

Our main results are depicted in Figure 9.3. First, we can see that the precision of the random
baseline is only 0.10 for Python and 0.06 for Java. This indicates that only one in 10-17 candidate
code snippets is judged to validly correspond to the intent, re�ecting the di�culty of the task.
The AcceptOnly and All baselines perform signi�cantly better, with precision of 0.5 or 0.6
at recall 0.05-0.1 and 0.3-0.4 respectively, indicating that previous heuristic methods using full

7Recall that our annotated data contains only how-to style questions, and therefore question �ltering is not
required. When applying our mining method to the full SO data, we could use the how-to question classi�er
in [80].
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Figure 9.3: Evaluation Results on Mining Python (a)(b) and Java (c)(d)

code blocks are signi�cantly better than random, but still have a long way to go to extract
broad-coverage and accurate NL-code pairs (particularly in the case of Python).8

Next, turning to the full system, we can see that the method with the full feature set signif-
icantly outperforms all baselines (Figures 9.3b and 9.3d): much better recall (precision) at the
same level of precision (recall) as the heuristic approaches. The increase in precision suggests
the importance of intelligently selecting NL-code pairs using informative features, and the in-
crease in recall suggests the importance of considering segments of code within code blocks,
instead of simply selecting the full code block as in prior work.

Comparing di�erent types of features (Structural v.s. Correspondence), we �nd that
with structural features alone our model already signi�cantly outperforms baseline approaches;
and these features are particularly e�ective for Java. On the other hand, interestingly the cor-
respondence features alone provide less competitive results. Still, the structural and correspon-
dence features seem to be complementary, with the combination of the two feature sets further
signi�cantly improving performance, particularly on Python. A closer examination of the re-

8Interestingly, AcceptOnly and All have similar precision, which might be due to two facts. First, we enforce
all candidate snippets to be syntactically correct, which rules out erroneous candidates like input/output examples.
Second, we use the top 3 answers for each question, which usually have relatively high quality.
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sults generated the following insights.
Why do correspondence features underperform? While these features e�ectively �lter totally

unrelated snippets, they still have a di�cult time excluding related contextual statements, e.g.,
imports, assignments. This is because (1) the snippets used for training correspondence features
are full code blocks (as in §§9.4.2), usually starting with import statements; and (2) the library
names in import statements often have strong correspondence with the intents (e.g., “How to get

current time in Python?” and import datetime ), yielding high correspondence probabilities.
What are the trends and error cases for structural features? Like the baseline methods, Struc-

tural tends to give priority to full code blocks; out of the top-100 ranked candidates for Struc-
tural, all were full code blocks (in contrast to only 21 for Correspondence). Because selecting
code blocks is a reasonably strong baseline, and because the model has access to other strongly-
indicative binary features that can be used to further prioritize its choices, it is able to achieve
reasonable precision-recall scores only utilizing these features. However, unsurprisingly, it
lacks �ne granularity in terms of pinpointing exact code segments that correspond to the in-
tents; when it tries to select partial code segments, the results are likely to be irrelevant to the
intent. As an example, we �nd that Structural tends to select the last line of code at each
code block, since the learned weights for LineNum=1 and EndsCodeBlock features are high,
even though these often consist of auxiliary print statement or even simply pass (for Python).

What is the e�ect of the combination? When combining Structural and Correspondence
features together, the full model has the ability to use the knowledge of the Structural model
extract full code blocks or ignore imports, leading to high performance in the beginning stages.
Then, in the latter and more di�cult cases, it is able to more e�ectively cherry-pick smaller
snippets based on their correspondence properties, which is re�ected in the increased accuracy
on the right side of the ROC and precision-recall curves.

How do the trends di�er between programming languages? Compared with the baseline ap-
proaches AcceptOnly and All, our full model performs signi�cantly better on Python. We hy-
pothesize that this is because learning correspondences between intent/snippet pairs for Java is
more challenging. Empirically, Python code snippets are much shorter, and the average num-
ber of tokens for predicted code snippets on Python and Java is 11.6 and 42.4, respectively.
Meanwhile, since Java code snippets are more verbose and contain signi�cantly more boil-
erplate (e.g., class/function de�nitions, type declaration, exception handling, etc.), estimating
correspondence scores using neural networks is more challenging.

Also note that the Structural model performs much better on Java than on Python. This
is due to the fact that Java annotations are more likely to be full code blocks (see Table 9.1),

134



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Full

Structural

Full-Java

Structural-Java

(a) Java 7→ Python

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Full

Structural

Full-Python

Structural-Python

(b) Python 7→ Java

Figure 9.4: Precision-Recall Curves for Transfer Learning on Java 7→ Python (a) and Python 7→ Java (b)

which can be easily captured by our designed features like FullBlock. Nevertheless, adding
correspondence features is clearly helpful for the harder cases for both programming languages.
For instance, from the ROC curve in Figure 9.3c, our full model achieves higher true positive
rates compared with Structural, registering higher AUC scores.

9.5.3 Must We Annotate Each Language?

As discussed in §§9.3, collecting high-quality intent/snippet annotations to train the code min-
ing model for a programming language can be costly and time-consuming. An intriguing re-
search question is how we could transfer the learned code mining model from one programming
language and use it for mining intent/snippet data for another language. To test this, we train a
code mining model using the annotated intent/snippet data on language A, and evaluate using
the annotated data on language B.9 This is feasible since almost all of the features used in our
system is language-agnostic.10 Also note values of a speci�c feature might have di�erent ranges
for di�erent languages. As an example, the average value of SGivenI feature for Python and
Java is -23.43 and -47.64, respectively. To mitigate this issue, we normalize all feature values to
zero mean and unit variance before training the logistic regression classi�er.

Figures 9.4a and 9.4b show the precision-recall curves for applying Java (Python) mining
model on Python (Java) data. We report results for both the Structural model and our full
model, and compare with the original models trained on the target programming language.
Unsurprisingly, the original full model tuned on the target language still performs the best.
Nevertheless, we observe that the performance gap between the original full model and the

9We still train the correspondence model using the target language unlabeled data.
10The only one that was not applicable to both languages was the SingleValue feature for Python, which helps

rule out code that contains only a single value. We omit this feature in the cross-lingual experiments.
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transferred one is surprisingly small. Notably, we �nd that overall the transferred full model
(Full-Java) performs second best on Python, even outperforming the original Structural
model. These results are encouraging, in that they suggest that it is likely feasible to train a
single code mining classi�er and then apply it to di�erent programming languages, even those
for which we do not have any annotated intent/snippet data.

9.5.4 Successful and Failed Examples

As illustration, we showcase successful and failed examples of our proposed approach, for
Python in Table 9.3 and for Java in Table 9.4. Given a SO question (intent), we show the top-
3 most probable code snippets. First, we �nd our model can correctly identify code snippets
for various types of intents, even when the target snippets are not full code blocks. I1 and I6
demonstrate that our model can leave contextual information like variable de�nitions in the
original SO posts and only retain the actual implementation of the intent.11 I2, I3 and I7 are
more interesting: in the original SO post, there could be multiple possible solutions in the same
code block (I2 and I7), or the gold-standard snippets are located inside larger code structures
like a for loop (S2 for I3). Our model learns to “break down” the solutions in single code block
into multiple snippets, and extract the actual implementation from large code chunks.

We also identify four sources of errors:
• Incomplete code: Some code snippets are incomplete, and the model fails to include in-

termediate statements (e.g., de�nitions of custom variables or functions) that are part of
the implementation. For instance, S3 for I3 misses the de�nition of the keys_to_keep,
which is the set of keys excluding the key to remove.

• Including auxiliary info: Sometimes the model fails to exclude auxiliary code segments
like the extra context de�nition (e.g., S1 for I8) and print function. This is especially true
for Java, where full code blocks are likely to be correct snippets, and the model tends to
bias towards larger code chunks.

• Spurious cases: We identify two “spurious” cases where our correspondence feature often
do not su�ce. (1) Counter examples: the S1 for I4 is mentioned in the original post as a
counter example, but the values of correspondence features are still high since append()
is highly related to “append it to another list” in the intent. (2) Related implementation:
I5 shows an example where the model has di�culty distinguishing between the actual

11We refer readers to the original SO page for reference.
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Table 9.3: Examples of Mined Python Code

I1: Remove speci�c characters from a string in python

URL: https://stackoverflow.com/q/3939361/
Top Predictions:

S1 string.replace(’1’, ’’)

S2 line = line.translate(None, ’!@#$’)

S3 line = re.sub(’[!@#$]’, ’’, line)

I2: Get Last Day of the Month in Python

URL: https://stackoverflow.com/q/42950/
Top Predictions:

S1 calendar.monthrange(year, month)[1]

S2 calendar.monthrange(2100, 2)

S3 (datetime.date(2000, 2, 1) - datetime.

timedelta(days=1))

I3: Delete a dictionary item if the key exists

URL: https://stackoverflow.com/q/15411107/
Top Predictions:

S1 mydict.pop(’key’, None)

S2 del mydict[key]

S3 new_dict = {k: mydict[k] for k in

keys_to_keep}

I4: Python: take the content of a list and append it

to another list
URL: https://stackoverflow.com/q/8177079/
Top Predictions:

S1 list2.append(list1)

S2 list2.extend(list1)

S3 list1.extend(mylog)

I5: Converting integer to string in Python?

URL: https://stackoverflow.com/q/961632/
Top Predictions:

S1 int(’10’)

S2 str(10); int(’10’)

S3 a.__str__()

Table 9.4: Examples of Mined Java Code

I6: How to convert List<Integer> to int[] in Java?

URL: https://stackoverflow.com/q/960431/
Top Predictions:

S1 int[] array = list.stream().mapToInt(i ->

i).toArray();

S2 int[] intArray2 = ArrayUtils.toPrimitive(

myList.toArray(NO_INTS));

S3 int[] intArray = ArrayUtils.toPrimitive(

myList.toArray(new Integer[myList.

size()]));

I7: How do I compare strings in Java?

URL: https://stackoverflow.com/q/513832/
Top Predictions:

S1 new String("test").equals("test");

S2 Objects.equals(null, "test");

S3 nullString1.equals(nullString2);

I8: How do I set the colour of a label (coloured text) in Java?

URL: https://stackoverflow.com/q/2966334/
Top Predictions:

S1 JLabel title = new JLabel("I love

stackoverflow!", JLabel.CENTER);

title.setForeground(Color.white);

S2 frame.add(new JLabel("<html>Text color: <

font color=’red’>red</font></html>"))

;

S3 label.setForeground(Color.red);

I9: Generating a Random Number between 1 and 10 Java

URL: https://stackoverflow.com/q/20389890/
Top Prediction: (only show one for space reason)
S1 public static int randInt(int min, int

max) {

Random rand = new Random();

int randomNum = rand.nextInt((max -

min) + 1) + min;

return randomNum; } (annotation

error)
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snippets and related implementations.

• Annotation error: We �nd cases where our annotation is incomplete. For instance, S1

for I9 should be correct. As discussed in §9.3, guaranteeing coverage in the annotation
process is non-trivial, and we leave this as a challenge for future work.

9.6 Related Work

A number of previous works have proposed methods for mining intent-snippet pairs for pur-
poses of code summarization, search, or synthesis. We can view these methods from several
perspectives:

Data Sources: First, what data sources do they use to mine their data? Our work falls in
the line of mining intent-snippet pairs from SO (e.g., [80, 199, 210, 234]), while there has been
research on mining from other data sources such as API documentation [14, 29, 138], code
comments [200], specialized sites [156], parameter/method/class names [3, 175], and developer
mailing lists [148]. It is likely that it could be adapted to work with other sources, requiring
only changes in the de�nition of our structural features to incorporate insights into the data
source at hand.

Methodologies: Second, what is the methodology used therein, and can it scale to our task
of gathering large-scale data across a number of languages and domains? Several prior work
approaches used heuristics to extract aligned intent-snippet pairs [29, 199, 234]). Our approach
also contains an heuristic component. However, as evidenced by our experiments here, our
method is more e�ective at extracting accurate intent-snippet pairs.

Some work on code search has been performed by retrieving candidate code snippets given
an intent based on weighted keyword matches and other features [143, 197]. These methods
similarly aim to learn correspondences between natural language queries and returned code,
but they are tailored speci�cally for performing code search, apply a more rudimentary feature
set (e.g., they do not employ neural network-based correspondence features) than we do, and
will generally not handle sub-code-block sized contexts, which proved important in our work.

We note that concurrent to this work, [210] also explored the problem of mining intent/code
pairs from SO, identifying candidate code blocks of an intent using information from both the
contextual texts and the code in an SO answer. Our approach, however, considers more �ne-
grained, sub-code-block sized candidates, aiming to recover code solutions that exactly answer
the intent.

138



Finally, some work has asked programmers to manually write NL descriptions for code
[115, 146], or vice-versa [195]. This allows for the generation of high-quality data, but is time
consuming and does not scale beyond limited domains.

9.7 Threats to Validity

Besides threats related to the manual labeling ( §9.3.2), we note the following overall threats to
the validity of our approach:

Annotation Error: Our code mining approach is based on learning from a small amount
of annotated data, and errors in annotation may impact the performance of the system (see
Sections §9.3 and §9.5.4).

Data Set Volume: Our annotated data set contains mainly high-ranked SO questions, and is
relatively small (with a few hundreds of examples for each language), which could penitentially
hinder the generalization ability of the system on lower-ranked questions. Meanwhile, we used
cross-validation for evaluation, while evaluating our mining method on full-scale SO data would
be ideal but challenging.

9.8 Summary

In this chapter, we describe a novel method for extracting aligned code/natural language pairs
from the Q&A website Stack Overflow. The method is based on learning from a small number
of annotated examples, using highly informative features that capture structural aspects of
the code snippet and the correspondence between it and the original natural language query.
Experiments on Python and Java demonstrate that this approach allows for more accurate and
more exhaustive extraction of NL-code pairs than prior work. We foresee the main impact of
this chapter lying in the resources it would provide when applied to the full Stack Overflow
data: the NL-code pairs extracted would likely be of higher quality and larger scale. Given that
high-quality parallel NL-code data sets are currently a signi�cant bottleneck in the development
of new data-driven software engineering tools, we hope that such a resource will move the �eld
forward. In addition, while our method is relatively e�ective compared to previous work, there
is still signi�cant work to be done on improving mining algorithms to deal with current failure
cases, such as those described in §9.5.4. Our annotated data set and evaluation tools, publicly
available, may provide an impetus towards further research in this area.
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In addition, we note several intriguing future research directions emerging from our study.
scienti�c questions in this general realm that came to light in the process of this study (and
were mentioned brie�y earlier in the paper). First, there is still a disconnect between the SO
question title and a strict description of the functionality of the code, such as the modi�ed in-
tent described in §9.3.1. How to quantify and close this gap computationally is an interesting
problem that could be a direction of future research. Second, given that multiple code snippets
can be extracted for any particular intent, these snippets will each have their own trade-o�s and
compromises. Understanding these compromises, either by processing the textual descriptions
on SO or through other means, is another challenging research problem; solving it holds great
potential to software engineering applications such as code suggestion, automatic refactoring,
and others. Third, Stack Overflow is not the only promising “Big Code” archive with potential
for large-scale natural instances of aligned NL-code pairs. Open-source software forges host
billions of lines of source code, often accompanied by natural language comments, documenta-
tion, or even discussion, for example around pull requests on GitHub. The relative generality
of our approach and the relatively little labeled training data needed to make it work hold great
promise for future expansion into these other data sources.
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Chapter 10

Conclusions and Future Directions

This thesis put forward a series of approaches for neural semantic parsing. Our methods enables
e�ective modeling of structures in domain knowledge schemas (Chapters 5 to 7) and meaning
representations (Chapters 3 and 4), while presenting strategies to collect data (Chapter 9) and
train semantic parsers in a data e�cient manner (Chapters 7 and 8). Speci�cally, we propose
a general-purpose decoding model for constructing MRs using domain grammar as syntactic
prior, and demonstrate it could handle a variety of domain-speci�c MRs, while capable of scal-
ing to complex open-domain programs (Chapters 3 and 4). Next, to capture structured domain
knowledge like database schemas and API speci�cations, we explore pre-training over massive
corpora of Web tables as a universal recipe for learning representations of tabular schemas and
utterances (Chapter 5), followed by more explicit modeling of utterance-schema alignments
to improve data e�ciency and generalization ability (Chapter 6). To mitigate the paucity of
limited training data, we present a data-e�cient semi-supervised learning method that out-
performs purely supervised systems with additional unlabeled utterances (Chapter 8), and an
unsupervised model that learns alignments between utterances and database schemas without
labeled data (Chapter 7). Finally, to speed-up data annotation, we also propose a machine-in-
the-loop data acquisition pipeline for tasks with complex meaning representations (Chapter 9).

In this chapter, we �rst brie�y summarize the contributions made in this thesis, while en-
visioning future avenues in this line of research.

10.1 Summary of Contributions

In this section we present a systematic summary of key contributions made in this thesis:
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Structured Program Generation Models Natural language is highly �exible, while mean-
ing representations derived from the NL utterances are conformed by their underlying syntac-
tic structures. Given the gaps between the free-form natural language data and the structured
symbolic semantic formalisms, the �eld is ripe with semantic parsing algorithms that capture
structures in meaning representations [113, 236, 237]. On the other hand, the burgeoning devel-
opment of neural sequence-to-sequence models has alleviated the need of explicit modeling of
syntactic structures in MRs, as programs are treated as tokenized sequences, similar to natural
language [50, 84, 117]. However, it is noted that such a simple solution is sub-optimal — a neu-
ral model without prior syntactic knowledge could yield grammatically incorrect outputs, and
could also be data hungry, requiring more data to learn the underlying structures of MRs [84].
Therefore, in Part I of this thesis, we develop syntactic driven neural semantic parsing models
that leverage the grammar of meaning representations as prior knowledge. Instead of directly
generating program tokens as in vanilla neural sequence transduction models, this approach
models the rich structures in meaning representations using abstract syntax trees, and employs
a structured decoder to predict ASTs following the production rules in the grammar, which
constrains the generation space to be MRs that are syntactically valid, hence e�ectively reduces
the output space and improves data e�ciency. In Chapter 3, we demonstrate this structured
decoding model scales well to generating code in open-domain programming languages with
complex grammars. Later in Chapter 4, we extend this model and develop a general-purpose
syntax-driven semantic parsing framework with a con�gurable interface to encode grammars
of MRs in various down-stream applications. From predicting λ-calculus to Prolog formulas,
from generating sql queries to Python code, we show this framework is highly extendable,
achieving competitive results on benchmarks featuring a variety of grammar formalisms. This
work also inspires a large body of literature along this line, and forms the foundation of many
in�uential neural semantic parsers later developed.

Methods to Understand Domain Knowledge Schema Domain knowledge (e.g., database
schemas) is essential to interpret the semantics of utterances and infer their representations.
Such task-speci�c knowledge schema also exhibit rich structures. For example, a database table
holds structured factual information about the domain, which need to be �rst processed by a
semantic parser in order to understand utterances and predict sql queries related to the table.
In Part II, we explore schema understanding models that could better encode such structured
knowledge. To this end, in Chapter 5 we present a pre-trained encoder, TaBert, which jointly
learns representations of NL utterances and (semi-)structured database tables. TaBert is the
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�rst pre-trained language model for natural language understanding tasks with structured data,
which is trained on a massive collection of 35 million Web tables and associated textual contexts.
Through pre-training on large corpora, this model implicitly learns general-purpose, domain-
agnostic representations of structured tabular data from its linearized form, while implicitly
capturing the alignments between relevant NL phrases (e.g., �ights from Pittsburgh) and their
grounded table cells and columns (e.g., Departure_City). TaBert can be used as a drop-in
replacement of any neural semantic parser’s original encoder to produce representations of
utterances and tables, improving their performance on down-stream tasks.

An issue with TaBert is that it only implicitly captures the alignments between NL phrases
and related schema elements via free-form self-attention, which might not be data e�cient. To
more explicitly model NL-schema alignments, we propose a supervised attention mechanism
(Chapter 6) that encourages the semantic parser to predict semantically coherent segments of
MRs (e.g., FindManager(Jean)) using the aligned localized spans in NL utterances (e.g., Sched-
ule meeting with Jean’s manager). Here, we generalize the notion of domain knowledge schema
from structured database tables to such alignment information between prede�ned functions in
the domain and their natural language descriptions. Such schematic information can be viewed
as a variant of API speci�cation de�ning domain functions and their exemplar NL realizations
in utterances, which is widely adopted by dialogue systems. We show supervised attention
improves data e�ciency, generalizing well to utterances with novel compositional contexts
(e.g., Add meeting with Jean’s manager and Peter) with only a handful of labeled examples.

To further reduce the amount of labeled data required to understand domain schemas, we
propose an unsupervised learning approach in Chapter 7, which trains a semantic parser only
using utterances and MRs automatically synthesized from a speci�cation of the domain schema
de�ning canonical NL phrases and their MR implementations. We also present measures to im-
prove the coverage of synthetic examples in terms of their language styles and logical patterns
to better resemble the real-world user-issued utterances. Our data synthesis approach uses zero
annotated data, and outperforms other e�cient annotation approaches like OverNight (§2.2.1)
and its variants [73].

Cost-e�ective Data Acquisition Paradigms Neural semantic parsers are data hungry, re-
quiring relatively large amount of parallel data for learning. This thesis also explores cost-
e�ective approaches to e�ciently collect annotated data to train semantic parsers. Speci�cally,
in Chapter 9, we present a semi-automatic mining pipeline to collect examples of utterances
and Python implementations from community question answering websites (StackOver�ow)
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for code generation tasks. We propose a machine-in-the-loop method where human anno-
tators modify proposal examples generated by a mining model, whose quality is iteratively
improved using newly annotated examples from domain experts. Additionally, our zero-shot
data synthesis model in Chapter 7 further lifts the tedious work of having annotators labeling
individual examples — they just need to de�ne a grammar specifying alignments of canon-
ical NL phrases to MR implementations (e.g., Schedule a meeting↔CreateEvent( ? )), from
which compositional examples are automatically synthesized and paraphrased. We demon-
strate this cost-e�ective data acquisition method outperforms other more laborious data anno-
tation frameworks [73, 195]

Data E�cient Learning Approaches Keeping the cost of acquiring parallel data in mind,
we also made contributions in proposing more data e�cient learning methods that require
fewer amount of annotated data. In Chapter 8, we propose a semi-supervised learning frame-
work StructVAE, which models the ASTs of MRs as tree-structured latent variables, and uses
extra unlabeled utterances to train semantic parsers. Compared to purely supervised learning,
StructVAE achieves similar performance using less labeled data. Meanwhile, our zero-shot
data synthesis approach in Chapter 7 can also be viewed as a data e�cient learning model,
as it bootstraps a semantic parser through iterative rounds of synthetic data paraphrasing and
self-training of parsers, without using any labeled data. Finally, our span-based supervised
attention method in Chapter 6 also improves data e�ciency, as it e�ectively captures the align-
ments between NL phrases and their logical representations in domain schemas, generalizing
to compositionally novel samples with only a handful of training examples.

10.2 Open Problems and Future Directions

Although the proposed methods in this thesis have helped the �eld a bit, we are still faced by
several open research questions that this thesis barely unveils, or has not touched so far. We
hope the following summary of future avenues would help researchers get a grasp of challeng-
ing (yet promising) directions in the �eld.

Pre-training Methods for Semantic Parsing Nowadays, sequence-processing neural net-
works, especially those generative language models pre-trained on massive textual corpora,
have become the new de-facto approach for a variety of natural language understanding tasks [26,
158, 159], and have also registered promising results on semantic parsing [Chapter 5; 75, 232,
233]. Still, there are several open challenges in this line:
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• Pre-training Data Collection Pre-training for semantic parsing has been limited by
the lack of high-quality, large-scale corpora of NL utterances and structured knowledge
schemas (tables). Existing work uses tabular data with noisy contexts from the Web
[Chapter 5; 75] or small-scale parallel data from other tabular understanding tasks [48].
Notably, recent works have demonstrated the potential of pre-training using large-scale
Web tables paired with synthetically generated NL utterances [232, 233], where utter-
ances are synthesized using prede�ned templates with sampled information from Web
tables. It is promising to scale this approach to (1) generate large-scale pre-training data
of utterances and complex DB schemas with multiple tables, and (2) leverage our data
synthesis approach in Chapter 7 to generate more realistic pre-training corpora using
carefully designed domain-speci�c grammars and paraphrasing.

• Pre-training Encoders v.s. End-to-End Models Most existing work on pre-training
for semantic parsing has been only focused on improving the encoder of utterances and
tables [75, 232, 233]. Recent advance of pre-training for NLP has considered jointly learn-
ing of encoder-decoder architectures [26, 108, 159]. Therefore, a promising direction is
to developing semantic parsers with pre-trained encoder and decoder modules. How-
ever, as discussed in Part I and in Chapter 5, semantic parsing is a highly domain-speci�c
task, and the architecture of decoding modules is heavily dependent on the application.
It still remains an open research question to jointly pre-train the encoding and decoding
networks for neural semantic parsing.

• LeverageKnowledge inPre-trainedGenerative LMs Large-scale generative pre-trained
LMs on text, like BART [108] and GPT-3 [26], have revolutionized NLP, as many NLP
tasks can be formulated as text-to-text generation problems, and could be attacked by
those generative LMs equipped with open-domain knowledge of natural language text.
An important research question is to leverage the knowledge captured by the pre-trained
generative LMs for semantic parsing. However, unlike many other NLP tasks where the
prediction targets are NL sentences (i.e., text generation), semantic parsing aims to gener-
ate task-speci�c MRs with rich structures, and also requires understanding of additional
domain knowledge (Part II), which is not captured by those pre-trained LMs. Recent
e�orts attempt to “naturalize” MRs as canonical NL sentences (c.f., Chapter 7) and cast
semantic parsing as a text normalization problem, where NL utterances are normalized
to their canonical versions, which can be trivially converted to MRs [171]. However, this
approach still requires supervision with labeled data to teach LMs about domain knowl-
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edge (i.e., how to generate canonical utterances). Applying our zero-shot data synthesis
model in Chapter 7 to this task would be an interesting future work.

Is Modeling Syntactic Structures still Necessary? In Part I, we have showed the impor-
tance of modeling syntactic information of MRs in semantic parsing. However, recent advance
of pre-trained generative LMs on text and source code has demonstrated impressive abilities
in generating complex, syntactically well-formed programs without any prior syntactic knowl-
edge [Open AI Codex; 30]. Given this result, we have to ask the question: is it still neces-
sary to model syntactic structures? First, modeling program syntax could still be useful in low
data regime where pre-training is not possible. Additionally, we remark that the techniques
we present in Part I could be generalized as a way to control neural auto-regressive decoding,
where the prediction of a hypothesis (e.g., ASTs) is controlled by a prede�ned grammar. There-
fore, such methods provide a systematic approach for controllable generation of any targets
other than ASTs that follow prede�ned syntax (e.g., programs). In this sense, our grammar-
constrained decoding approach could be used to control the generation process of existing pre-
trained LMs that directly predict free-form source code (e.g., constrain the model to generate
code only using a speci�ed library and its APIs), as long as the output space could be captured
by a grammar of certain form. In the following paragraph, we consider generalizing this idea
for more neural structured prediction tasks.

Generalized Constraint-based Neural Structured Prediction As discussed in the above
paragraph, our syntax-driven program generation model could be potentially extended as a
general-purpose approach for constraint-based neural structured prediction. Intuitively, most
structured prediction tasks require that the outputs should follow certain pre-de�ned structure.
For example, in dependency parsing, labels of an edge are dependent on the part-of-speech of
its connected tokens. For dialogue systems, the dialogue state of a conversation could follow
a pre-de�ned schema (e.g., a state that keeps track of a user’s �ight booking request might
maintain a key-value store with �xed slots for the requested date and destination). Our model
presented in Part I could potentially be generalized to handle generation of structure in those
applications if their domain-speci�c constraints can be speci�ed in context-free grammars.

Interactive Semantic ParsingwithComplexMRs Natural interactions between users and
computational systems involve multiple turns of dialogues. Therefore the literature is ripe
with methods for building such interactive dialogue agents. An important future work is to
scale our syntax-based semantic parsing models (Part I) to such interactive scenarios. Existing
work in interactive semantic parsing has focused on simpler domain-speci�c languages like
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sql [230, 231] or other task-oriented ones [166]. Generalizing interactive semantic parsing to
applications with complex MRs, like Python code generation, would be a promising direction
with signi�cant impact. Such models need to understand the context of previous turns of ut-
terances and generated MRs, predict new programs modify existing ones as response, and be
able to leverage feedback from users to revise their predictions.

Uni�ed Frameworks of Data Acquisition and Learning The paucity of annotated train-
ing data hurdles deploying semantic parsers to emerging new domains. This thesis explores
a variety of e�cient approaches for acquiring training data (Chapters 7 and 9) and learning
semantic parsers (Chapter 8). An interesting future direction is to jointly model the process of
data annotation and model training, using uni�ed models to capture the life cycle of semantic
parsing [34]. This is an important step towards developing general-purpose semantic parsing
services that could be easily used by end users.
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Appendix A

Appendix for Chapter 7

A.1 Synchronous Grammar

Our synchronous grammar is adapted from Herzig and Berant [73] and Wang et al. [195], which
speci�es alignments between NL expressions and logical form constituents in λ-calculus s-
expressions.1 The grammar consists of a set of domain-general production rules, plus domain-
speci�c rules specifying lexicons and idiomatic productions. Speci�cally, domain-general pro-
ductions de�ne (1) generic logical operations like count and superlative (e.g., r3, Fig. 7.1),
and (2) compositional rules to construct utterances following English syntax (e.g., r1, Fig. 7.1).
Domain-speci�c rules, on the other hand, are typically used to de�ne task-dependent lexicons
like types (e.g., author), entities (e.g., allen_turing), and relations (e.g., citations) in the
database. This work also introduces idiomatic productions to speci�c common NL expression
catered to a domain, as detailed later.

Tab. A.1 lists example domain-general productions in our SCFG. Fig. A.1 shows the deriva-
tion that applies those productions to generate an example utterance and program. Each pro-
duction has a syntactic body, specifying how lower-level syntactic constructs are composed to
form more compositional utterances, as well as a semantic function, which de�nes how pro-
grams of child nodes are composed to generate a new program. For instance, the production
r3 in Tab. A.1 generates a noun phrase from a unary noun phrase UnaryNP (e.g., paper) and
a complementary phrase CP (e.g., in deep learning) by concatenating the child nodes UnaryNP
and CP (e.g., paper in deep learning). On the program side, the programs of two child nodes on
Fig. A.1 are:

1We use the implementation in Sempre, https://github.com/percyliang/sempre

149



in

$SuperlativeAdj

$NP

$NP

most recent $NP+CP

$UnaryNP $CP

$TypeNP $FilterCP

$NP

deep learning

$Prep

$Entity

paper

Most recent paper in deep learning

(

call listValue (

call superlative

(

call filter

(

call getProperty

(call singleton fb:en.paper)

(string ! type)

)

(string paper.keyphrase)

(string =)

fb:en.keyphrase.deep_learning

)

(string max)

(string paper.publication_year)

)

)

Figure A.1: (a) The derivation tree (production rule applications) to generate the example utterance and
its program. (b) The program de�ned in s-expression.

# Get all entities whose type is paper

$UnaryNP: call getProperty (call singleton fb:en.paper) (string !type)

# A lambda function that returns entities in x whose relation paper.keyphrase

# is deep_learning

$CP: lambda x (call

filter (x)

(string paper.keyphrase)

(string =)

(fb:en.keyphrase.deep_learning)

)
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Id Productions (Syntactic Body and Semantic Function) Description

r1 NP 7→SuperlativeAdj NP e.g. most recent ?

lambda rel, sub (

call superlative (var sub) (string max) (var rel))
lambda function to get the subject
sub with the largest relation rel

r2 NP 7→NP+CP A noun phrase head NP and a
complementary phrase body CP

(e.g. paper in deep learning)

IdentityFn An identity function returning
child program

r3 NP+CP 7→UnaryNP CP e.g. paper in deep learning

Lambda Beta Reduction: f(var x) Perform beta reduction, applying
the function from CP (e.g. in deep

learning) to the value of UnaryNP
(e.g. paper)

r4 UnaryNP 7→TypeNP CP
Entity types, e.g., paper

IdentityFn

r5 CP 7→FilterCP
—

IdentityFn

r6 FilterCP 7→Prep NP e.g. in deep learning

lambda rel, obj, sub (

call filter (var sub) (var rel) (string =) (var obj))
Create a lambda function, which
�lters entities in a list sub such that
its relation rel (e.g. topic) equals
obj (e.g. deep learning)

r5 NP 7→Entity Entity noun phrases e.g. deep
learningIdentityFn

Table A.1: Example domain-general productions rules in the SCFG
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Where the program of UnaryNP is an entity set of papers, and the program of NP is a lambda
function with a variable x, which �lters the entity set. The semantic function of r3 speci�es
how these two programs should be composed to form the program of their parent node NP+CP,
which performs β reduction, assigning the entity set returned by UnaryNP to the variable x:

# Get all papers whose keyphrase is deep learning

$NP+CP: (call

filter (

call getProperty (call singleton fb:en.paper) (string !type)

)

(string paper.keyphrase)

(string =)

(fb:en.keyphrase.deep_learning)

)

A.1.1 Idiomatic Productions

Multi-hop Relations We create idiomatic productions for non-compositional NL phrases of
multi-hop relations (e.g.,Author that writes paper in ACL). We augment the database with entries
for those multi-hop relations (e.g., 〈X, author.publish_in, acl〉), and then create productions
in the grammar aligning those relations with their NL phrases (e.g., r1 in Tab. A.2).

Comparatives and Superlatives We also create productions for idiomatic comparatives and
superlative expressions. Those productions specify the NL expressions for the comparative/su-
perlative form of some relations. For example, for the relation paper.publication_year with
objects of date time, its superlative form would bemost recent (r2 in Tab. A.2) and �rst (r3), while
its comparative form could be prepositional phrases like published before (r4) and published af-

ter. Those productions de�ne the lexicons for comparative/superlative expressions, and could
be used by the domain-general rules like r1 in Tab. A.1 to compose utterances (e.g., Fig. A.1).

Besides superlative expressions for relations whose objects are measurable, we also create
idiomatic expressions for relations with countable subjects or objects. As an example, the ut-
terance “The most popular topic for papers in ACL” involves grouping ACL papers by topic and
return the most frequent one. Such computation is captured by the CountSuperlative opera-
tion in our SCFG based on Wang et al. [195], and we create productions aligning those relations
with the idiomatic noun phrases describing their superlative form (e.g., r5 in Tab. A.2).

Perhaps the most interesting form of superlative relations are those involving reasoning
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Id Production Body (Child Nodes and Semantic Function) Description
r1 RelVP 7→publish in Verb phrase for multi-hop relation

author that writes paper in ACLConstantFn (string author.publish_in)

r2 SuperlativeAdj7→most recent Superlative adjectives to describe
publication datesConstantFn (string paper.publication_year)

r3 SuperlativeMinAdj7→�rst Superlative adjectives to describe the
earliest publication datesConstantFn (string paper.publication_year)

r4 SuperlativeAdj7→published before Comparative prepositions to describe
publication datesConstantFn (string paper.publication_year)

r5 CountSuperlativeNP7→the most popular topic for Superlative form to refer to the most
frequent keyphrase for papersConstantFn (string keyphrase.paper)

r6 MacroVP 7→publish mostly in Superlative form of verb relational
phrases with complex computation.
countSuperlative returns the
entity x in venue for which the
papers in x (via relation
venue.paper) has the largest
intersection with papers by author

(via realtion author.paper)

lambda author, venue (

call countSuperlative

(var venue)

(string max)

(string venue.paper)

(call getProperty (var author) (string author.paper))

)

Table A.2: Example idiomatic productions used in Scholar

with additional entities. For instance, the relation in “venue that X publish mostly in” between
the entity author and venue implicitly involves counting the papers that the author X pub-
lishes. For those relations, we create “macro” productions (e.g., r6 in Tab. A.2), which de�nes the
lambda function that computes the answer (e.g., return the publication venue whereX publishes
the most number of papers) given the arguments (e.g., an author X ).
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