
Sparse Models of Natural Language Text

Dani Yogatama

CMU-LTI-15-005

Language Technologies Institute

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

www.lti.cs.cmu.edu

Thesis Committee:

Noah A. Smith (chair), Carnegie Mellon University

Chris Dyer, Carnegie Mellon University

Alexander J. Smola, Carnegie Mellon University

Francis Bach, INRIA

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

In Language and Information Technologies

© Dani Yogatama, 2015

For G.C.W.

i

Abstract

In statistical text analysis, many learning problems can be formulated as a minimization

of a sum of a loss function and a regularization function for a vector of parameters

(feature coefficients). The loss function drives the model to learn generalizable patterns

from the training data, whereas the regularizer plays two important roles: to prevent

the models from capturing idiosyncrasies of the training data (overfitting) and to encode

prior knowledge about the model parameters.

When learning from high-dimensional data such as text, it has been empirically

observed that relatively few dimensions are relevant to the predictive task (Forman,

2003). How can we capitalize on this insight and choose which dimensions are relevant

in an informed and principled manner? Sparse regularizers provide a way to select

relevant dimensions by means of regularization. However, past work rarely encodes

non-trivial prior knowledge that yields sparse solutions through a regularization func-

tion. This thesis investigates the applications of sparse models—especially structured

sparse models—as a medium to encode linguistically-motivated prior knowledge in tex-

tual models to advance NLP systems. We explore applications of sparse NLP models in

temporal models of text, word embeddings, and text categorization.

Sparse models come with their own challenges, since new instantiations of sparse

models often require a specialized optimization method. This thesis also presents opti-

mization methods for the proposed instantiations of sparse models. Therefore, the goals

of this thesis are twofold: (i) to show how sparsity can be used to encode linguistic in-

formation in statistical text models, and (ii) to develop efficient learning algorithms to

solve the resulting optimization problems.

ii

Acknowledgement

Noah Smith, for being a constant source of inspiration and making graduate school

so much fun. Thank you for believing in me. Wherever I go from here, I am always

indebted to you.

My committee—Chris Dyer, Alex Smola, and Francis Bach—for many valuable tech-

nical discussions and helpful career advice.

My fellow ARK members, past and present: Waleed Ammar, David Bamman, Dal-

las Card, Shay Cohen, Dipanjan Das, Jesse Dodge, Jeff Flanigan, Kevin Gimpel, Michael

Heilman, Lingpeng Kong, Fei Liu, Andre Martins, Brendan O’Connor Rohan Ramanath,

Bryan Routledge, Nathan Schneider, Yanchuan Sim, Swabha Swayamdipta, Sam Thom-

son, and Tae Yano; and other CMU friends—Manaal Faruqui, Anuj Goyal, Meghana

Kshirsagar, Wang Ling, Ming Sun, and Yulia Tsvetkov.

My family—my parents and brothers—for always supporting my choice to go to

graduate school in the U.S. I wish I could come home more often.

Finally, I thank Gina, without you getting a PhD would not mean as much.

iii

Contents

1 Introduction 1

2 Sparsity 5

2.1 Feature Selection . 6

2.1.1 Filter-based Methods . 6

2.1.2 Wrapper-based Methods . 6

2.1.3 Embedded Methods . 7

2.2 `0-“norm” . 7

2.3 `1-norm . 7

2.4 `1,2-norm, `1,∞-norm . 9

3 Structured Sparsity in Temporal Models of Text 12

3.1 Notation . 13

3.2 Time-Series Prior . 13

3.2.1 Generative Model . 15

3.2.2 Scalability . 15

3.3 Learning and Inference . 16

3.3.1 Coefficients w . 17

3.3.2 Variational Parameters for α and λ 18

3.3.3 Implementation details . 19

3.4 Experiments . 19

3.4.1 Baselines . 20

3.4.2 Forecasting Risk from Text . 20

3.4.3 Text Modeling in Context . 22

iv

3.4.4 Discussion . 26

3.5 Conclusion . 28

4 Structured Sparsity in Learning Word Representations 30

4.1 Notation . 31

4.2 Structured Sparse Coding for Learning Word Representations 32

4.3 Learning . 33

4.3.1 Stochastic Proximal Methods . 35

4.3.2 Convergence Analysis . 36

4.4 Experiments . 38

4.4.1 Setup and Baselines . 38

4.4.2 Evaluation . 39

4.4.3 Results . 42

4.4.4 Other Comparisons . 43

4.4.5 Discussion . 44

4.4.6 Additional Results . 45

4.5 Conclusion . 48

5 Structured Sparsity in Text Categorization 49

5.1 Notation . 50

5.2 Linguistic Structured Sparsity . 51

5.2.1 Sentence Regularization . 51

5.2.2 Parse Tree Regularizer . 52

5.2.3 LDA Regularizer . 55

5.2.4 Brown Cluster Regularizer . 56

5.3 Learning . 58

5.3.1 ADMM for Sparse Group Lasso . 59

5.3.2 Space and Time Efficiency . 63

5.3.3 Convergence and Stopping Criteria 63

5.4 Experiments . 64

5.4.1 Datasets . 64

5.4.2 Setup . 65

5.4.3 Results . 71

v

5.5 Conclusion . 75

6 Future Work 76

vi

Chapter 1

Introduction

What is the best way to exploit linguistic information in statistical text processing mod-

els? Much recent work in NLP has focused on error-prone and time-consuming linguis-

tic feature engineering. For example, we can introduce higher-order n-grams (Kogan

et al., 2009), part-of-speech tags, dependency relations (Joshi et al., 2010), Brown clusters,

or LDA topics into a textual model as additional features.

In this thesis, we propose to use sparse models to answer this question. Sparse reg-

ularizers provide a way to define structures in a parameter space by means of regu-

larization. Since the seminal work of Chen and Rosenfeld (2000), the importance of

regularization in models of text—including language modeling, structured prediction,

and classification—has been widely recognized. The emphasis, however, has largely

been on one specific kind of inductive bias: avoiding large weights (i.e., coefficients in

a linear model). Ridge (Hoerl and Kennard, 1970) and lasso (Tibshirani, 1996) regu-

larizations, which penalize weights by their squared `2 and `1 norm respectively, are

examples of such methods.

Recently, structured (or composite) regularization has been introduced. The most

widely explored variant, group lasso (Yuan and Lin, 2006) seeks to avoid large `1,2 or

`1,∞ norms for groups of weights. Group lasso has been shown useful in a range of

applications, including computational biology (Kim and Xing, 2008), signal processing

(Lv et al., 2011), and NLP (Eisenstein et al., 2011a; Martins et al., 2011b; Nelakanti et al.,

2013). Another variant is fused lasso (Tibshirani et al., 2005), which penalizes differ-

ences in weights between successive features, when the features can be organized into a

1

meaningful order (e.g., chain structure, graph structure).

In statistical text analysis, we encode linguistic information by defining linguistically

motivated structures in a parameter space. For example, in categorizing text documents,

oftentimes only some parts of an observation are important to the task. In the “bag of

words” representation, most words can typically be ignored (Forman, 2003). However,

existing methods penalize these words in isolation, ignoring the sentential, syntactic,

and semantic structures of text documents. Structured sparse regularizers provide a

way to incorporate these structures in the form of sparsity patterns into a text model.

What are the benefits of having sparse models? First, as we will show, they can be

used to encode prior knowledge in the sparsity patterns. Second, they are lightweight—

requiring less memory to store and allowing faster inference and easier interpretability.

Nowadays, we often start with models with hundreds of millions to billions of param-

eters. Sparsity provides a way to completely discard some of these parameters in an

informed and principled manner, resulting in smaller model size. For example, mobile

applications (e.g., Google Now, Siri, etc.) stand to benefit from smaller models since mo-

bile phones typically have less storage and computing power than standard computers.

Sparse models come with their own challenges. New varieties of sparse models often

require a specialized optimization method, as we will see throughout this thesis. Last,

some of the state-of-the-art methods for benchmarks tasks in various application areas

such as computational biology (Kim and Xing, 2008) and computer vision are sparse

models (Ranzato et al., 2006; Lin and Kung, 2014), empirically demonstrating that they

can also lead to statistical improvements if the prior knowledge is correct (Stojnic et al.,

2009).

Sparse models come with their own challenges. New varieties of sparse models

often require a specialized optimization method. The goals of this thesis are twofold:

(i) to show how sparsity can be used to encode linguistic information in statistical text

models, and (ii) to develop efficient learning algorithms to solve the resulting optimiza-

tion problems. There are many varieties of statistical text models. In this thesis, we

investigate several text models, including models for text categorization, word embed-

dings, and temporal adaptations. We design different sparse regularizers with varying

motivations depending on the characteristics of each problem. The main contents of this

thesis—Chapters 3, 4, and 5—are ordered based on the complexity of structures defined

2

in the respective parameter space associated with each problem, from lowest to highest.

This thesis consists of five parts.

• In Chapter 2, we discuss relevant background of sparse models, including connec-

tions to feature selection.

• Chapter 3 discusses applications of sparsity in dynamic models of text. Many

datasets evolve rapidly based on events in the real world, but most NLP models

can be categorized as “static” models—they are not aware of natural changes in

the data over time. We introduce a sparse and adaptive Bayesian prior—which

can be used as structured regularizers in any generalized linear model—for time-

dependent model parameters that leverages the intuition that the relationship be-

tween observable features and response variables should evolve smoothly over

time. We show variational inference algorithms to perform learning and inference

efficiently.

• Chapter 4 considers an application of structured regularizers in learning text rep-

resentations. Specifically, we consider the problem of learning word representa-

tions (embeddings). The two predominant approaches in learning word represen-

tations are based on inducing either distributional or distributed representations.

The learned dimensions in both approaches are not easily interpretable, and the

word representations are dense. We propose to use structured sparse coding for

learning sparse word embeddings. Our method promotes sparsity in the embed-

ding space and organizes these lower dimensions into linguistically meaningful

concepts (Collins and Quillian, 1969). We also introduce an efficient optimization

method to perform sparse coding on large datasets.

• In Chapter 5, we introduce a class of structured sparse regularizers for text catego-

rization that allows incorporation of linguistic information in the form of: sentence

boundaries, parse trees, topics, or hierarchical word clusters. Our regularizers im-

pose linguistic bias in feature weights without introducing new features, enabling

us to incorporate prior knowledge into conventional bag-of-words models. Defin-

ing structures based on linguistic cues introduces a new technical challenge, since

a typical corpus may contain billions of words, millions of sentences, and thou-

sands of semantic topics. We also show how to solve the resulting optimization

3

challenge with the alternating directions method of multipliers for solving penal-

ized optimization problems with thousands to millions of (possibly overlapping)

structures (ADMM; Hestenes, 1969; Powell, 1969).

• The last part of this thesis (Chapter 6) outlines future directions of sparse models

of natural language text.

4

Chapter 2

Sparsity

There are several meanings of the word “sparsity” in machine learning and natural

language processing. The two most common definitions are:

• Data sparsity: the number of training examples is too small to get a good estimate

of model parameters. This is sometimes referred as the “curse of dimensionality.”

• Model sparsity: the assumption that given a large set of features, many dimen-

sions of model parameters are not needed for the task at hand. We can set

these parameters to zero, leading to a sparse model. For example, in a linear

model, given an input example x ∈ RD and a parameter vector w ∈ RD, the

prediction rule is f (x, w) = x>w. If we assume model sparsity, we believe that

∑D
d=1 I{wd 6= 0} � D.

Our focus in this thesis is on model sparsity. As described previously, sparse models

are desirable because they have smaller memory requirements, which leads to faster

inference at runtime and easier interpretability. In terms of generalization performance,

forcing a model to use only a few features is a way to discourage overfitting; so for high

dimensional datasets such as text, it is natural to prefer sparse models.

In the context of model sparsity, there are two types of sparsity: unstructured spar-

sity and structured sparsity. Unstructured sparsity promotes sparse models with a very

simple sparsity pattern: it prefers models with small number of features. Structured

sparsity, on the other hand, promotes less trivial sparsity patterns such as grid sparsity,

group sparsity, or graph-guided sparsity. This thesis focuses on how to encode linguistic

5

knowledge in the form of sparsity patterns in the parameter space, primarily through

structured sparsity.

Model sparsity is closely related to feature selection, since setting the weight of a

feature to zero is equivalent to discarding the feature. We discuss how it fits in the

context of feature selection in the following.

2.1 Feature Selection

One of the longstanding goals in machine learning is to automate the feature selection

process in an efficient and principled manner. In general, there are three types of meth-

ods to perform feature selection: filter-based methods, wrapper-based methods, and

embedded methods.

2.1.1 Filter-based Methods

This is the simplest method to perform automatic feature selection. For every feature, we

apply a heuristic to determine if the feature should be included in the model. For exam-

ple, we can use count threshold to remove rare features (i.e., features that do not appear

below a certain count threshold in our training data are removed); or other slightly

more sophisticated thresholds such as mutual information between feature and labels.

The main benefit of this approach is that it is very fast. However, filter-based methods

generally ignore the learning algorithm, since the selection is done as a preprocessing

step. An example of applications of filter-based methods in NLP is by Ratnaparkhi et al.

(1994), which ignores features whose counts are less than 10 when building a part-of-

speech tagger.

2.1.2 Wrapper-based Methods

While filter-based methods consider each feature in isolation, wrapper-based methods

try to take into account possible interactions between features. These methods perform

a search over all possible subsets of the feature set to evaluate the “goodness” of each

subset. Davis et al. (1997) and Amaldi and Kann (1998) show that this is an NP-hard

problem, so greedy methods are used in practice. A popular example of wrapper-based

methods is the field induction algorithm of Della Pietra et al. (1997). The algorithm

6

iteratively adds one feature at a time based on a gain function, and reestimates model

parameters with the new feature subset.

2.1.3 Embedded Methods

This thesis focuses on embedded methods for feature selection. Embedded methods in-

corporate feature selection into the learning problem by formulating the learning prob-

lem as a trade-off between minimizing a loss function to fit the training data and choos-

ing a desirable model with no more features than needed. One common approach is to

transform the model selection step as a penalty (regularization) function on the objective

function:

min
w

L(x, w, y) + λΩ(w),

where x, w, y are the input features, model parameters, and response variables respec-

tively, L(x, w, y) is the loss function, Ω(w) is the regularizer, and λ is a regularization

hyperparameter. From the Bayesian perspective, the regularizer can also be seen as a

log-prior over the weight w. There are many choices for Ω(w) that induce sparsity

(select relevant features). We discuss these choices in the following.

2.2 `0-“norm”

The most natural way to perform feature selection in embedded methods is by setting

the penalty to the `0-“norm”: Ω(w) = limp→0 ‖w‖0
0 = ‖w‖0 = |{i : wi 6= 0}|. In other

words, we let the penalty function be the number of non-zero features selected by the

model. However, `0 is not an actual norm, since it is not a convex function (we refer to

it as `0-“norm” to emphasize its connection with the `1-norm below). As a result, this

makes the optimization problem harder, since the overall objective becomes non convex.

2.3 `1-norm

An alternative is to use the `1-norm as the penalty function: Ω(w) = ‖w‖1 = ∑D
i=1 |wi|,

where D is the total number of features. This technique is widely known as the lasso

7

(least absolute shrinkage and selection operator), first introduced by Tibshirani (1996).

In order to understand why this penalty function yields sparsity, let use consider a very

simple toy example, where we instantiate L(x, w, y) = 1
2 (w− y)2:

ŵ = arg min
w

1
2
(w− y)2 + λ‖w‖1

ŵ =


y− λ if y > λ

0 if |y| ≤ λ

y + λ if y < λ

We can see that the solution here is the soft-thresholding operator, where given a thresh-

old λ, we set the feature weight to 0 if |y| ≤ λ or shrink by λ otherwise. We can view the

`1-norm as a convex surrogate for direct penalization of cardinality (`0). For example,

for the above example, the solution with the `0 penalty is:

ŵ = arg min
w

1
2
(w− y)2 + λ‖w‖0

ŵ =

 y if |y| >
√

2λ

0 if |y| ≤
√

2λ

This is the hard-thresholding operator, where we set the feature weight to 0 if |y| ≤
√

2λ and keep it as y otherwise. Therefore, while `0 performs hard thresholding, `1

approximates this by performing soft thresholding.

We can also get an intuition on why `1 penalty yields sparsity by approaching it from

the geometrical perspective. For this example, let us instantiate L(x, w, y) = 1
2‖Xw−

y‖2
2 for ease of illustration. Our penalized objective function is:

ŵ = arg min
w

1
2
‖Xw− y‖2

2 + λΩ(w).

We can rewrite this as a constrained optimization problem as follows:

ŵ = arg min
w

1
2
‖Xw− y‖2

2 (2.1)

subject to ‖w‖1 ≤ τ,

8

Figure 2.1: Illustrations of the solutions of the optimization problems in Eq. 2.1 and
Eq. 2.2 from Martins et al. (2014).

where there is a one-to-one correspondence between τ and λ when the loss function is

convex (which is true in our case). The solution to this constrained optimization problem

intersects with a corner of the `1 norm. For example, Figure 2.1 gives an illustration in

three-dimensional case. We can see that the minimizer of arg minw ‖Xw − y‖2
2 that

satisfies the constraint is at a corner of the `1 ball. In other words, the optimal solution

discards w1 and w3 (set their weights to 0) and only keeps w2, hence yielding sparsity.

One of the main advantages of using convex surrogates such as `1 is that the resulting

optimization problem is still convex, provided that L is convex. However, since the `1

norm is non differentiable on the axes, the optimization problem is non-smooth, so

specialized optimization methods are often needed. The predominant methods to solve

`1 optimization problems are described by Andrew and Gao (2007); Beck and Teboulle

(2009); Xiao (2010).

From the Bayesian perspective, the `1-norm can be interpreted as zero-mean Lapla-

cian prior on the weights: p(wi) ∝ exp(−λ|wi|).

2.4 `1,2-norm, `1,∞-norm

While `1-norm encourages sparse models, it promotes a very simple sparsity pattern

that prefers models with small cardinality. The group lasso (Yuan and Lin, 2006) is

an extension of the lasso to promote structural patterns. These patterns are defined

by model designer by grouping features based on prior knowledge about the intended

9

patterns. The group lasso discards groups of features instead of individual features.

Feature groups can be disjoint or arbitrarily overlap.

Group lasso is an instance of a bigger class of mixed-norm regularizers, often called

composite absolute penalties (Zhao et al., 2009). Here, we let the penalty be the mixed

`r,q-norm, which is defined as:

Ω(w) =

(
G

∑
g=1

λg‖wg‖r
q

)1/r

,

where g indexes feature group and G is the total number of groups. Group lasso cor-

responds to r = 1. There are two choices for q that can be used to promote group

sparsity: q = 2 and q = ∞. For q = 2, the penalty becomes Ω(w) = ∑G
g=1 λg‖wg‖2,

where ‖w‖2 =
√

∑D
i=1 |wi|2. For q = ∞, the penalty is Ω(w) = ∑G

g=1 λg‖wg‖∞, where

‖w‖∞ = max(|w1|, |w2|, . . . , |wD|). In this thesis, we focus on `1,2-norm, although our

ideas can also be applied with `1,∞-norm. One key property of group lasso is that it

promotes sparsity with respect to the groups, but it is dense inside each group.

To understand why group lasso yields group sparsity, we again can look at the

geometrical interpretation of the `1,2-norm. Consider the problem:

ŵ = arg min
w

1
2
‖Xw− y‖2

2 (2.2)

subject to
√
|w1|2 + |w2|2 + |w3| ≤ τ,

a group lasso problem where the group is {w1, w2} and {w3}. Figure 2.1 shows the `1,2

ball constraint on the objective. The solution of this constrained optimization problem

can either be at the tops of each of the two (upward and downward) cones or along the

circumference of the base of the two cones. Solutions at tops corresponds to setting both

w1 and w2 to zero (group sparsity) and setting w3 to nonzero, whereas solutions at the

base of the cone corresponds to setting w3 to zero and setting both w1 and w2 to non

zeros (dense within a group). In this particular example, w3 is set to zero while w1 and

w2 are not.

`1,2 norm is a convex function, so similar to the lasso problem, the group lasso

optimization problem is also convex and non smooth. Efficient optimization methods

10

for group lasso problems typically depend on the group structures (Jacob et al., 2009;

Jenatton et al., 2011b; Chen et al., 2011; Martins et al., 2011a; Qin and Goldfarb, 2012;

Yuan et al., 2013). In this thesis, we propose two optimization methods to solve group

lasso optimization problems efficiently for linguistically-motivated grouping structures.

From the Bayesian perspective, the non-overlapping `1,2-norm can be interpreted

as two-level hierarchical Bayes model. For each group g, we draw a group-specific

variance p(σg) = exp(λ2
g/2), and each feature weight in group g is drawn from p(wg) ∼

N(0, σg I). Overlapping group lasso does not have a probabilistic interpretation as a prior

over weights.

11

Chapter 3

Structured Sparsity in Temporal

Models of Text

When learning from streams of data to make predictions in the future, how should

we handle the timestamp associated with each instance? Ignoring timestamps and as-

suming data are i.i.d. is scalable but risks distracting a model with irrelevant “ancient

history.” On the other hand, using only the most recent portion of the data risks over-

fitting to current trends and missing important time-insensitive effects. Here, we seek a

general approach to learning model parameters that are overall sparse, but that adapt

to variation in how different effects change over time.

Our approach is a prior over parameters of an exponential family (e.g., coefficients

in linear or logistic regression). We assume that parameter values shift at each timestep,

with correlation between adjacent timesteps captured using a multivariate normal dis-

tribution whose precision matrix is restricted to a tridiagonal structure. We (approx-

imately) marginalize the (co)variance parameters of this normal distribution using a

Jeffreys prior, resulting in a model that allows smooth variation over time while encour-

aging overall sparsity in the parameters. (The parameters themselves are not given a

fully Bayesian treatment.)

We demonstrate the usefulness of our model on two natural language processing

tasks, showing gains over alternative approaches. The first is a text regression problem

in which an economic variable (volatility of returns) is forecast from financial reports

(Kogan et al., 2009). The second forecasts text by constructing a language model that

12

conditions on highly time-dependent economic variables. This chapter is based on ma-

terials from Yogatama et al. (2013).

3.1 Notation

We assume data of the form {(xn, yn)}N
n=1, where each xn includes a timestamp denoted

t ∈ {1, . . . , T}.1 The aim is to learn a predictor that maps input xN+1, assumed to be

at timestep T, to output yN+1. In the probabilistic setting we adopt here, the prediction

is MAP inference over random variable Y given X = x and a model parameterized by

w ∈ RI . Learning is parameter estimation to solve:

arg max
w

log p(w) +

L(w)︷ ︸︸ ︷
N

∑
n=1

log p(yn | xn, w)︸ ︷︷ ︸
link−1(f (x)>w)

(3.1)

The focus of the paper is on the prior distribution p(w). Throughout, we will denote

the task-specific log-likelihood (second term) by L(w) and assume a generalized lin-

ear model such that a feature vector function f maps inputs x into RI and f (x)>w is

“linked” to the distribution over Y using, e.g., a logit or identity. We assume T discrete

timesteps.

3.2 Time-Series Prior

Our time-series prior draws inspiration from the probabilistic interpretation of the sparsity-

inducing lasso (Tibshirani, 1996) and group lasso (Yuan and Lin, 2006). In non-overlapping

group lasso, features are divided into groups, and the coefficients within each group m

are drawn according to:

1. Variance σ2
m ∼ an exponential distribution.2

2. wm ∼ Normal(0, σ2
mI).

1In this work we assume timestamps are discretized.
2The exponential distribution can be replaced by the (improper) Jeffreys prior, although then the familiar

Laplace distribution interpretation no longer holds (Figueiredo, 2002).

13

We seek a prior that lets each coefficient vary smoothly over time. A high-level intu-

ition of our prior is that we create copies of w, one at each timestep: 〈w(1), w(2), . . . , w(T)〉.
For each feature i, let the sequence 〈w(1)

i , w(2)
i , . . . , w(T)

i 〉 form a group, denoted wi.

Group lasso does not view coefficients in a group as explicitly correlated; they are

independent given the variance parameter. Given the sequential structure of wi, we

replace the covariance matrix σ2I to capture autocorrelation. Specifically, we assume the

vector wi is drawn from a multivariate normal distribution with mean zero and a T× T

precision matrix Λ with the following tridiagonal form:3

Λ =
1
λ

A =
1
λ



1 α 0 0 . . .

α 1 α 0 . . .

0 α 1 α . . .

0 0 α 1 . . .
...

...
...

...
. . .


(3.2)

λ ≥ 0 is a scalar multiplier whose role is to control sparsity in the coefficients, while α

dictates the degree of correlation between coefficients in adjacent timesteps (autocorre-

lation). Importantly, α and λ (and hence A and Λ) are allowed to be different for each

group i.

We need to ensure that A is positive definite. Fortunately, it is easy to show that for

α ∈ (−0.5, 0.5), the resulting A is positive definite.

Proof sketch. To show this, since A is a symmetric matrix, we verify that each of its

principal minors have strictly positive determinants. The principal minors of A are

uniform tridiagonal symmetric matrices, and the determinant of a uniform tridiagonal

N × N matrix can be written as ∏N
n=1

{
1 + 2α cos

(
(n+1)π

N+1

)}
(see, e.g., Volpi, 2003 for

the proof). Since cos(x) ∈ [−1, 1], if α ∈ (−0.5, 0.5), the determinant is always positive.

Therefore, A is always p.d. for α ∈ (−0.5, 0.5).

In this work, we use a tridiagonal matrix to capture temporal dependencies due to

its simplicity (see §3.2.2 for discussions on scalability). Future work could consider a

more general matrix form that would give longer-term dependencies.

3We suppress the subscript i for this discussion; each feature i has its own Λi.

14

3.2.1 Generative Model

Our generative model for the group of coefficients wi = 〈w(1)
i , w(2)

i , . . . , w(T)
i 〉 is given

by:

1. λi ∼ an improper Jeffreys prior (p(λ) ∝ λ−1).

2. αi ∼ a truncated exponential prior with parameter τ. This distribution forces αi to

fall in (−C, 0], so that Ai is p.d. and autocorrelations are always positive:

p(α | τ) =
τ exp(−τ(α + C))1{−C < α ≤ 0}

(1− exp(−τC))
. (3.3)

We fix C = 1
2 − 10−5.

3. wi ∼ Normal(0, Λ−1
i), with the precision matrix Λi as defined in Eq. 3.2.

During estimation of w, each λi and αi are marginalized, giving a sparse and adaptive

estimate for w.

3.2.2 Scalability

Our design choice of the precision matrix Λi is driven by scalability concerns. Instead

of using, e.g., a random draw from a Wishart distribution, we specify the structure

of the precision matrix as a tridiagonal matrix. Since the precision matrix introduces

dependencies only between coefficients in adjacent timesteps (first-order dependencies),

it allows the prior to scale to fine-grained timesteps more efficiently. Let N denote

the number of training instances, I the number of base features, and T the number of

timesteps. A single pass of our variational algorithm (discussed in §3.3) has runtime

O(I(N + T)) and space requirement O(I(N + T)), instead of O(I(N + T2)) for both

if each Λi is drawn from a Wishart distribution. This can make a big difference for

applications with large numbers of features (I). Additionally, we choose the off-diagonal

entries to be uniform, so we only need one αi for each base feature. This design choice

restricts the expressive power of the prior but still permits flexibility in adapting to

trends for different coefficients, as we will see. The prior encourages sparsity at the

group level, essentially performing feature selection: some feature coefficients wi may

15

be driven to zero across all timesteps, while others will be allowed to vary over time,

with an expectation of smooth changes.

Note that this model introduces only one hyperparameter, τ, since we marginalize

α = 〈α1, . . . , αI〉 and λ = 〈λ1, . . . , λI〉.

3.3 Learning and Inference

We marginalize λ and α and obtain a maximum a posteriori estimate for w, which in-

cludes a coefficient for each base feature i at each timestep t. Specifically, the quantity

that we need to maximize is:

L(w) +
I

∑
i=1

∫
dαi

∫
dλi log p(wi | αi, λi) + log p(αi | τ) + log p(λi)

Exact inference in this model is intractable. We use mean-field variational inference to

derive a lower bound on the above log-likelihood function. We then apply a standard

optimization technique to jointly optimize the variational parameters and the coeffi-

cients w.

We introduce fully factored variational distributions for each λi and αi. For λi, we

use a Gamma distribution with parameters ai, bi as our variational distribution:

qi(λi | ai, bi) =
λai−1

i exp(−λi/bi)

bai
i Γ(ai)

Therefore, we have Eqi [λi] = aibi, Eqi [λ
−1
i] = ((ai − 1)bi)

−1, and Eqi [log λi] = Ψ(ai) +

log bi (Ψ is the digamma function).

For αi, we choose the form of our variational distribution to be the same truncated

exponential distribution as its prior, with parameter κi, denoting this distribution qi(αi |
κi). We have

Eqi [αi] =
∫ 0

−C
αi

κi exp(−κi(αi + C))
1− exp(−κiC)

dαi

=
1
κi
− C

1− exp(−κiC)
(3.4)

We let q denote the set of all variational distributions over λ and α.

16

B(a, b, κ, w) ∝ L(w) +
I

∑
i=1

{
1
2
(−TEq[log λi] −Eq[log det A−1

i])−Eq[λ
−1
i]

1
2

w>i Eq[Ai]wi

}
+

I

∑
i=1

{
−(Eq[αi] + C)τ −Eq[log λi]

}
−

I

∑
i=1

{
(ai − 1)Eq[log λi]−

Eq[λi]

bi
− log Γ(ai)− ai log bi

}
−

I

∑
i=1

{
log κi − κi(Eq[αi] + C)− log(1− exp(−κiC))

}

Figure 3.1: The variational bound on Equation 3.1 that is maximized to learn w. The
boxed expression is further bounded by − log det Eq[Ai] using Jensen’s inequality, giv-
ing a bound we denote by B′.

The variational bound B that we seek to maximize is given in Figure 3.1. Our learn-

ing algorithm involves optimizing with respect to variational parameters a, b, and κ,

and the coefficients w. We employ the L-BFGS quasi-Newton method (Liu and No-

cedal, 1989), for which we need to compute the gradient of B. We turn next to each part

of this gradient.

3.3.1 Coefficients w

For 1 < t < T, the first derivative with respect to time-specific coefficient w(t)
i is:

∂B

∂w(t)
i

=
∂L

∂w(t)
i

− 1
2

E[λ−1
i]
(

E[αi](w
(t−1)
i + w(t+1)

i) + 2w(t)
i

)
(3.5)

We can interpret the first derivative as including a penalty scaled by E[λ−1
i]. We rewrite

this penalty as:

E[λ−1
i]
(
(1−E[αi]) · 2w(t)

i + E[αi] · (w(t)
i − w(t−1)

i) + E[αi] ·(w(t)
i − w(t+1)

i)
)

This form makes it clear that the penalty depends on w(t−1)
i and w(t+1)

i , penalizing the

difference between w(t)
i and these time-adjacent coefficients proportional to E[αi].

The form bears strong similarity to the first derivative of the time-series (log-)prior

introduced in Yogatama et al. (2011), which depends on fixed, global hyperparameters

17

analogous to our α and λ. Specifically, the gradient of the regularizer in Yogatama et al.

(2011) is:

2λw(t)
i + 2λα(w(t)

i − w(t−1)
i) + 2λα(w(t)

i − w(t+1)
i),

for a fixed λ and α. Because our approach does not require us to specify scalars playing

the roles of “E[λ−1
i]” and “E[αi]” in advance, it is possible for each feature to have its

own autocorrelation. Obtaining the same effect in their model would require careful

tuning of O(I) hyperparameters, which is not practical.

It also has some similarities to the fused lasso penalty (Tibshirani et al., 2005), which

is intended to encourage sparsity in the differences between features coefficients across

timesteps. Our prior, on the other hand, encourages smoothness in the differences, with

additional sparsity at the feature level.

3.3.2 Variational Parameters for α and λ

Recall that the variational distribution for λi is a Gamma distribution with parameters

ai and bi.

Precision matrix scalar λ. The first derivative for variational parameters a is easy to

compute:
∂B
∂ai

= (−T
2
− ai)Ψ1(ai) +

w>i E[Ai]wi

2bi(ai − 1)2 + 1 (3.6)

where Ψ1 is the trigamma function. We can solve for b in closed form given the other

free variables:

bi =
w>i E[Ai]wi

(ai − 1)T
(3.7)

We therefore treat b as a function of a, κ, and w in optimization.

Off-diagonal entries α. First, notice that using Jensen’s inequality: E[log det A−1
i] =

E[− log det Ai] ≥ − log det E[Ai] due to the fact that − log det Ai is a convex function.

Furthermore, for a uniform symmetric tridiagonal matrix like Ai, the log determinant

18

can be computed in closed form as follows (Volpi, 2003):

log det E[Ai] = log

(
T

∏
t=1

1 + 2E[αi] cos
(
(t + 1)π

T + 1

))

=
T

∑
t=1

log
(

1 + 2E[αi] cos
(
(t + 1)π

T + 1

))

We therefore maximize a lower bound on B, making use of the above to calculate first

derivatives with respect to κi:

∂B′

∂κi
=− τ

∂E[αi]

∂κi
− 1

κi
+ C + E[αi] +

∂E[αi]

∂κi
κi

+
C exp(−Cκi)

1− exp(−Cκi)
+

1
2

∂ log det E[Ai]

∂κi

− 1
2

E[λ−1
i]

∂w>i E[Ai]wi

∂κi

The partial derivatives ∂E[αi]
∂κi

, ∂ log det E[Ai]
∂κi

, and ∂w>i E[Ai]wi
∂κi

are easy to compute.

3.3.3 Implementation details

A well-known property of numerical optimizers like the one we use (L-BFGS; Liu and

Nocedal, 1989) is the failure to reach optimal values exactly at zero. Although theoret-

ically strongly sparse, our prior only produces weak sparsity in practice. Future work

might consider a more principled proximal-gradient algorithm to obtain strong sparsity

(Bach et al., 2011; Liu and Ye, 2010; Duchi and Singer, 2009).

If we expect feature coefficients at specific timesteps to be sparse as well, it is straight-

forward to incorporate additional terms in the objective function that encode this prior

belief (analogous to an extension from group lasso to sparse group lasso). For the tasks

we consider in our experiments, we found that it does not substantially improve the

overall performance. Therefore, we keep the simpler bound given in Figure 3.1.

3.4 Experiments

We report two sets of experiments, one with a continuous y, the other a language mod-

eling application where y is text. Each timestep in our experiments is one year.

19

3.4.1 Baselines

On both tasks, we compare our approach to a range of baselines. Since this is a forecast-

ing task, at each test year, we only used training examples that come from earlier years.

Our baselines vary in how they use this earlier data and in how they regularize.

• ridge-one: ridge regression (Hoerl and Kennard, 1970), trained on only examples

from the year prior to the test data (e.g., for the 2002 task, train on examples from

2001)

• ridge-all: ridge regression trained on the full set of past examples (e.g., for the

2002 task, train on examples from 1996–2001)

• ridge-ts: the non-adaptive time-series ridge model of Yogatama et al. (2011)

• lasso-one: lasso regression (Tibshirani, 1996), trained on only examples from the

year prior to the test data4

• lasso-all: lasso regression trained on the full set of past examples

In all cases, we tuned hyperparameters on a development data. Note that, of the above

baselines, only ridge-ts replicates the coefficients at different timesteps (i.e., IT parame-

ters); the others have only I time-insensitive coefficients.

The model with our prior always uses all training examples that are available up

to the test year (this is equivalent to a sliding window of size infinity). Like ridge-

ts our model trusts more recent data more, allowing coefficients farther in the past to

drift farther away from those most relevant for prediction at time T + 1. Our model,

however, adapts the “drift” of each coefficient separately rather than setting a global

hyperparameter.

3.4.2 Forecasting Risk from Text

In the first experiment, we apply our prior to a forecasting task. We consider the task

of predicting volatility of stock returns from financial reports of publicly-traded compa-

nies, similar to Kogan et al. (2009).

4Anonymous (personal communication) has established the superiority of the lasso to the support vector
regression method of Kogan et al. (2009) on this dataset; lasso is a strong baseline for this problem.

20

Table 3.1: MSE on the 10-K dataset (various test sets). The first test year (2002) was used
as our development data. Our model uses the sparse adaptive prior described in §3.2.
The overall differences between our model and all competing models are statistically
significant (Wilcoxon signed-rank test, p < 0.01).

year # examples ridge-one ridge-all ridge-ts lasso-one lasso-all our model
2002(dev) 2,845 0.182 0.176 0.171 0.165 0.156 0.158

2003 3,611 0.185 0.173 0.171 0.164 0.176 0.164
2004 3,558 0.125 0.137 0.129 0.116 0.119 0.113
2005 3,474 0.135 0.133 0.136 0.124 0.124 0.122

overall 13,488 0.155 0.154 0.151 0.141 0.143 0.139

In finance, volatility refers to a measure of variation in a quantity over time; for

stock returns, it is measured using the standard deviation during a fixed period (here,

one year). Volatility is used as a measure of financial risk. Consider a linear re-

gression model for predicting the log volatility5 of a stock from a set of features (see

the dataset paragraph below for a complete description of our features). We can in-

terpret a linear regression model probabilistically as drawing y ∈ R from a normal

distribution with w> f (x) as the mean of the normal. Therefore, in this experiment:

L(w) = −∑T
t=1 ∑Nt

i=1(y
(t)
i −w(t)> f (x(t)i))2. We apply the time-series prior to the feature

coefficients w. When making a prediction for the test data, we use w(T), the set of

feature coefficients for the last timestep in the training data.

Dataset We used a collection of Securities Exchange Commission-mandated annual

reports from 10,492 publicly traded companies in the U.S. There are 27,159 reports over

a period of ten years from 1996–2005 in the corpus. These reports are known as “Form

10-K.”6 For the feature set, we downcased and tokenized the texts and selected the

101st–10,101st most frequent words as binary features. The feature set was kept the same

across experiments for all models. It is widely known in the financial community that

the past history of volatility of stock returns is a good indicator of the future volatility.

Therefore, we also included the log volatility of the stocks twelve months prior to the

report as a feature. Our response variable y is the log volatility of stock returns over a

5Similar to Kogan et al. (2009) and as also the standard practice in finance, we perform a log transfor-
mation, since log volatilities are typically close to normally distributed.

6See Kogan et al. (2009) for a complete description of the dataset; it is available at http://www.ark.cs.
cmu.edu/10K.

21

period of twelve months after the report is published.

Results The first test year (i.e., 2002) was used as our development data for hyper-

parameter tuning (τ was selected to be 1.0). We initialized all the feature coefficients

by the coefficients from training a lasso regression on the last year of the training data

(lasso-one). Table 5.3 provides a summary of experimental results. We report the results

in mean squared error on the test set: 1
N ∑N

i=1(yi − ŷi)
2, where yi is the true response for

instance i and ŷi is the predicted response.

Our model consistently outperformed ridge variants, including the one with a time-

series penalty (Yogatama et al., 2011). It also outperformed the lasso variants without

any time-series penalty, on average and in three out of four test sets apiece.

One of the major challenges in working with time-series data is to choose the right

window size, in which the data is still relevant to current predictions. Our model auto-

mates this process with a Bayesian treatment of the strength of each feature coefficient’s

autocorrelation. The results indicate that our model was able to learn when to trust

a longer history of training data, and when to trust a shorter history of training data,

demonstrating the adaptiveness of our prior. Figure 3.2 shows the distribution of the

expected values of the autocorrelation paramaters under the variational distributions

Eqi [αi] for 10,002 features, learned by our model from the last run (test year 2005).

In future work, an empirical Bayesian treatment of the hyperprior τ, fitting it to

improve the variational bound, might lead to further improvements.

3.4.3 Text Modeling in Context

In the second experiment, we consider a hard task of modeling a collection of texts over

time conditioned on economic measurements. The goal is to predict the probability

of words appearing in a document, based on the “state of the world” at the time the

document was authored. Given a set of macroeconomic variables in the U.S. (e.g., un-

employment rate, inflation rate, average housing prices, etc.), we want to predict what

kind of texts will be produced at a specific timestep. These documents can be written

by either the government or publicly-traded companies directly or indirectly affected by

the current economic situation.

22

Eq[α]

F
re

qu
en

cy

−0.29 −0.28 −0.27 −0.26

0
50

0
10

00
20

00

Figure 3.2: The distribution of expected values of the autocorrelation paramaters under
the variational distributions Eqi [αi] for 10,002 features used in our experiments (10,000
unigram features, the previous year log volatility feature, and a bias feature).

Model Our text model is a sparse additive generative model (SAGE; Eisenstein et al.,

2011b). In SAGE, there is a background lexical distribution that is perturbed additively

in the log-space. When the effects are due to a (sole) feature f (x), the probability of a

word is:

p(w | θ, w, x) =
exp(θw + ww f (x))

∑w′∈V exp(θw′ + ww′ f (x))

where V is the vocabulary, θ (always observed) is the vector of background log-frequencies

of words in the corpus, f (x) (observed) is the feature derived from the context x, and w

is the feature-specific deviation.

Notice that the formulation above is easily extended to multiple effects with coeffi-

cients w. In our experiment, we have 117 effects (features), each with its own wi. The

first 50 correspond to U.S. states, plus an additional feature for the entire U.S., and they

are observed for each text since each text is associated with a known set of states (dis-

cussed below). We assume that texts that are generated in different states have distinct

characteristics; for each state, we have a binary indicator feature. The other 66 features

depend on observed macroeconomics variables at each timestep (e.g., unemployment

23

rate, inflation rate, house price index, etc.). Given an economic state of the world, we

hypothesize that there are certain words that are more likely to be used, and each eco-

nomic variable has its own (sparse) deviation from the background word frequencies.

The generative story for a word at timestep t associated with (observed) features f (x(t))

is:

• Given observed real-world observed variables x(t), draw word w from a multino-

mial distribution p(w | θ(t), w(t), x(t)) ∝ exp(θ(t)w + w(t)>
w f (x(t))).

Our L(w) is simply the negative log-loss function commonly used in multiclass

logistic regression:

L(w) =
T

∑
t=1

Nt

∑
i=1

log p(w(t)
i | θ(t), w(t), x(t)i).

We apply our time-series prior from §3.2 to w. θ(t) is fixed to be the log frequencies

of words at timestep t. For a single feature, coefficients over time for different classes

(words) are assumed to be generated from the same prior.

Dataset There is a great deal of text that is produced to describe current macroeco-

nomic events. We conjecture that the connection between the economy and the text

will have temporal dependencies (e.g., the amount of discussion about housing or oil

prices might vary over time). We use three sources of text commentary on the econ-

omy. The first is a subset of the 10-K reports we used in §3.4.2. We selected the 10-K

reports of 200 companies chosen randomly from the top quintile of size (measured by

beginning-of-sample market capitalization). This gives us a sample of the largest U.S.

companies. Each report is associated with the state in which the company’s head of-

fice is located. Our next two data sources come from the Federal Reserve System, the

primary body responsible for monetary policy in the U.S.7 The Federal Open Market

Committee (FOMC) meets roughly eight times per year to discuss economic conditions

and set monetary policy. Prior to each meeting, each of the twelve regional banks writes

an informal “anecdotal” description of economic activity in their region as well as a

national summary. This “Beige Book” is akin to a blog of economic activity released

7For an overview of the Federal Reserve System, see the Federal Reserve’s “Purpose and Functions”
document at http://www.federalreserve.gov/pf/pf.htm.

24

prior to each meeting. Each FOMC meeting also produces a transcript of the discus-

sion. For our experiments here, we focus on text from 1996–2006.8 As a result, we have

2,075 documents in the final corpus, consisting of 842 documents of the 10-K reports, 89

documents of the FOMC meeting transcripts, and 1,144 documents of the Beige Book

summaries.

We use the 501st–5,501st most frequent words in the dataset. We associated the

FOMC meeting transcripts with all states. The “Beige Book” texts were produced by

the Federal Reserve Banks. There are twelve Federal Reserve Banks in the United States,

each serving a collection of states. We associated texts from a Federal Reserve Bank with

the states that it serves.

Table 3.2: Negative log-likelihood of the documents on various test sets (lower is better).
The first test year (2003) was used as our development data. Our model uses the sparse
adaptive prior in §3.2.

tokens ridge-one ridge-all ridge-ts lasso-one lasso-all our model
year (×106) (×103) (×103) (×103) (×103) (×103) (×103)

2003(dev) 1.1 2,736 2,765 2,735 2,736 2,765 2,735
2004 1.5 2,975 3,004 2,975 2,975 3,004 2,974
2005 1.9 2,999 3,027 2,997 2,998 3,027 2,997
2006 2.3 2,916 2,922 2,913 2,912 2,922 2,912

overall 6.8 11,626 11,718 11,619 11,620 11,718 11,618

Quantitative U.S. macroeconomic data was obtained from the Federal Reserve Bank

of St. Louis data repository (“FRED”). We used standard measures of economic activity

focusing on output (GDP), employment, and specific markets (e.g., housing).9 We use

equity market returns for the U.S. market as a whole and various industry and charac-

teristic portfolios.10 They are used as f (x) in our model; in addition to state indicator

variables, there are 66 macroeconomic variables in total.

We compare our model to the baselines in §3.4.1. The lasso variants are analogous to

the original formulation of SAGE (Eisenstein et al., 2011b), except that our model directly

conditions on macroeconomic variables instead of a Dirichlet-multinomial compound.

8All the text is freely available at http://www.federalreserve.gov. The Beige Book is released to the
public prior to each meeting. The transcripts are released five years after the meetings.

9For growing output series, like GDP, we calculate growth rates as log differences.
10Returns are monthly, excess of the risk-free rate, and continuously compounded. The data are from

CRSP and are available for these portfolios at http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html.

25

Results We score models by computing the negative log-likelihood on the test dataset:11

−
N

∑
i=1

log p(w(T+1)
i | θ(T), w(T), x(T+1)

i).

We initialized all the feature coefficients by the coefficients by training a lasso regression

on the last year of the training data (lasso-one). The first test year (i.e., 2003) was

used as our development data for hyperparameter tuning (τ was selected to be .001).

Table 3.2 shows the results for the six models we compared. Similar to the forecasting

experiments, at each test year, we trained only on documents from earlier years. When

we collapsed all the training data and ignored the temporal dimension (ridge-all and

lasso-all), the background log-frequencies θ(t) are computed using the entire training

data, which is different compared to the background log-frequencies for only the last

timestep of the training data. Our model outperformed all ridge and lasso variants,

including the one with a time-series penalty (Yogatama et al., 2011), in terms of negative

log-likelihood on unseen dataset.

In addition to improving predictive accuracy, the prior also allows us to discover

trends in the feature coefficients and gain insight. We manually examined the model

from the last run (test year 2006). Examples of temporal trends learned by our model

are shown in Figure 3.3. The plot illustrates feature coefficients for words that contain

the string employ. For comparison, we also included the percentage of unemployment

rate in the U.S. (which was used as one of the features f (x)), scaled by 10−16 to fit into

the plot. We can see that there is a correlation between feature coefficients for the word

unemployment and the actual unemployment rate. On the other hand, the correlations

are less evident for other words.

3.4.4 Discussion

Our model is related to autoregressive integrated moving average approaches to time-

series data (Box et al., 2008), but we never have access to direct observations of the

time-series. Instead, we observe data (x and y) assumed to have been sampled using

time-series-generated variables as coefficients (w). During learning, we therefore use

probabilistic inference to reason about the variables at all timesteps together. In §3.3,

11Out-of-vocabulary items are ignored.

26

Time series coef. (*employ*)

1996 1998 2000 2002 20040e
+

00
2e

−
16

4e
−

16
6e

−
16

employ

employee

unemployment

employers
employeremployed

10−16x %rate

Figure 3.3: Temporal trends learned by our model for the words that contains employ in
our dataset, as well as the actual unemployment rate (scaled by 10−16 for ease of read-
ing). The y-axis denotes coefficients and the x-axis is years. See the text for explanation.

we describe a scalable variational inference algorithm for inferring coefficients at all

timesteps, enabling prediction of future data and inspection of trends.

We follow Yogatama et al. (2011) in creating time-specific copies of the base coeffi-

cients, so that w = 〈w(1), w(2), . . . , w(T)〉. As a prior over w, they used a multivariate

Gaussian imposing non-zero covariance between each w(t)
i and its time-adjacent copies

w(t−1)
i and w(t+1)

i . The strength of that covariance was set for each base feature by a

global hyperparameter, which was tuned on held-out development data along with the

global variance hyperparameter. Yogatama et al.’s model can be obtained from ours by

fixing the same α and λ for all features i. Our approach differs in that (i) we marginalize

the hyperparameters, (ii) we allow each coefficient its own autocorrelation, and (iii) we

encourage sparsity.

There are many related Bayesian approaches for time-varying model parameters

(Belmonte et al., 2012; Nakajima and West, 2012; Caron et al., 2012), as well as work

on time-varying signal estimation (Angelosante and Giannakis, 2009; Angelosante et al.,

2009; Charles and Rozell, 2012). Each provides a different probabilistic interpretation

of parameter generation. Our model has a distinctive generative story in that corre-

lations between parameters of successive timesteps are encoded in a precision matrix.

27

Additionally, unlike these fully Bayesian approaches that infer full posterior distribu-

tions, we only obtain posterior mode estimates of coefficients, which has computational

advantages at prediction time (e.g., straightforward MAP inference and sparsity) and

interpretability of w.

As noted, our grouping together of each feature’s instantiations at all timesteps,

〈w(1)
i , w(2)

i , . . . , w(T)
i 〉 and seeking sparsity, bears clear similarity to group lasso (Yuan

and Lin, 2006) and our work in Chapter 4 and Chapter 5, which encourages whole

groups of coefficients to collectively go to zero. A probabilistic interpretation for lasso

as a two level exponential-normal distribution that generalizes to (non-overlapping)

group lasso was introduced by Figueiredo (2002). He also showed that the exponential

distribution prior can be replaced with an improper Jeffreys prior for a parameter-free

model, a step we follow as well. Our model is also related to the fused lasso (Tibshirani

et al., 2005), which penalizes a loss function by the `1-norm of the coefficients and their

differences. Our prior has a more clear probabilistic interpretation and adapts the degree

autocorrelation for each coefficient, based on the data. Future work could try to evaluate

how much adaptiveness and sparsity help in isolation in order to seek ways to improve

each component independently.

Zhang and Yeung (2010) proposed a regularization method using a matrix-variate

normal distribution prior to model task relationships in multitask learning. If we con-

sider timesteps as tasks, the technique resembles our regularizer. Their method jointly

optimizes the covariance matrix with the feature coefficients; we choose a Bayesian treat-

ment and encode our prior belief to the (inverse) covariance matrix, while still allowing

the learned feature coefficients to modify the matrix by posterior inference. As a result,

our method allows different base features to have different matrices.

3.5 Conclusion

We presented a time-series prior for the parameters of probabilistic models; it produces

sparse models and adapts the strength of temporal effects on each coefficient separately,

based on the data, without an explosion in the number of hyperparameters. We showed

how to do inference under this prior using variational approximations. We evaluated

the prior for the task of forecasting volatility of stock returns from financial reports, and

28

demonstrated that it outperforms other competing models. We also evaluated the prior

for the task of modeling a collection of texts over time, i.e., predicting the probability

of words given some observed real-world variables. We showed that the prior achieved

state-of-the-art results as well.

29

Chapter 4

Structured Sparsity in Learning

Word Representations

When applying machine learning to text, the classic categorical representation of words

as indices of a vocabulary fails to capture syntactic and semantic similarities that are eas-

ily discoverable in data (e.g., pretty, beautiful, and lovely have similar meanings, opposite

to unattractive, ugly, and repulsive). In contrast, recent approaches to word representation

learning apply neural networks to obtain dense, low-dimensional, continuous embed-

dings of words (Bengio et al., 2003; Mnih and Teh, 2012; Collobert et al., 2011; Huang

et al., 2012; Mikolov et al., 2010, 2013b; Pennington et al., 2014).

In this work, we propose an alternative approach based on decomposition of a high-

dimensional matrix capturing surface statistics of association between a word and its

“contexts” with sparse coding. As in past work, contexts are words that occur nearby

in running text (Turney and Pantel, 2010). Learning is performed by minimizing a

reconstruction loss function to find the best factorization of the input matrix.

The key novelty in our method is to govern the relationships among dimensions of

the learned word vectors, introducing a hierarchical organization imposed through a

structured penalty known as the group lasso (Yuan and Lin, 2006). The idea of regulat-

ing the order in which variables enter a model was first proposed by Zhao et al. (2009),

and it has since been shown useful for other applications (Jenatton et al., 2011a). Our

approach is motivated by coarse-to-fine organization of words’ meanings often found in

the field of lexical semantics (see §4.2 for a detailed description), which mirrors evidence

30

for distributed nature of hierarchical concepts in the brain (Raposo et al., 2012). Related

ideas have also been explored in syntax (Petrov and Klein, 2008). It also has a foun-

dation in cognitive science, where hierarchical structures have been proposed as repre-

sentations of semantic cognition (Collins and Quillian, 1969). We propose a stochastic

proximal algorithm for hierarchical sparse coding that is suitable for problems where

the input matrix is very large and sparse. Our algorithm enables application of hier-

archical sparse coding to learn word representations from a corpus of billions of word

tokens and 400,000 word types.

On standard evaluation tasks—word similarity ranking, analogies, sentence comple-

tion, and sentiment analysis—we find that our method outperforms or is competitive

with the best published representations. This chapter is based on materials from Yo-

gatama et al. (2015).

4.1 Notation

The observable representation of word v is taken to be a vector xv ∈ RC of cooccur-

rence statistics with C different contexts. Most commonly, each context is a possible

neighboring word within a fixed window.1 Following many others, we let xv,c be the

pointwise mutual information (PMI) between the occurrence of context word c within a

five-word window of an occurrence of word v (Turney and Pantel, 2010; Murphy et al.,

2012; Faruqui and Dyer, 2014; Levy and Goldberg, 2014).

In sparse coding, the goal is to represent each input vector x ∈ RC as a sparse linear

combination of basis vectors. Given a stacked input matrix X ∈ RC×V , where V is the

number of words, we seek to minimize:

arg min
D∈D,A

‖X − DA‖2
F + λΩ(A), (4.1)

where D ∈ RC×M is the dictionary of basis vectors, D is the set of matrices whose

columns have small (e.g., less than or equal to one) `2 norm, A ∈ RM×V is the code

matrix (each column of A represents a word), λ is a regularization hyperparameter, and

1Others include: global context (Huang et al., 2012), multilingual context (Faruqui and Dyer, 2014),
geographic context (Bamman et al., 2014), brain activation (Fyshe et al., 2014), and second-order context
(Schutze, 1998).

31

Ω is the regularizer. Here, we use the squared loss for the reconstruction error, but

other loss functions could also be used (Lee et al., 2009). Note that it is not necessary,

although typical, for M to be less than C (when M > C, it is often called an overcomplete

representation). The most common regularizer is the `1 penalty, which results in sparse

codes. While structured regularizers are associated with sparsity as well (e.g., the group

lasso encourages group sparsity), our motivation is to use Ω to encourage a coarse-to-

fine organization of latent dimensions of the learned representations of words.

4.2 Structured Sparse Coding for Learning Word Representa-

tions

For Ω(A), we design a forest-structured regularizer that encourages the model to use

some dimensions in the code space before using other dimensions. Consider the trees in

Figure 4.1. In this example, there are 13 variables in each tree, and 26 variables in total

(i.e., M = 26), each corresponding to a latent dimension for one particular word. These

trees describe the order in which variables “enter the model” (i.e., take nonzero values).

In general, a node may take a nonzero value only if its ancestors also do. For example,

nodes 3 and 4 may only be nonzero if nodes 1 and 2 are also nonzero. Our regularizer

for column v of A, denoted by av (in this example, av ∈ R26), for the trees in Figure 4.1

is:2

Ω(av) =
26

∑
i=1
‖[av,i, av,Descendants(i)]‖2

where Descendants(i) returns the (possibly empty) set of descendants of node i, and [.]

returns the subvector of av by considering only av,i and av,Descendants(i).3 Jenatton et al.

(2011a) proposed a related penalty with only one tree for learning image and document

representations.

Let us analyze why organizing the code space this way is helpful in learning better

2Ω(A) is computed by adding components of Ω(av) for all columns of A.
3Note that if ‖[av,i, av,Descendants(i)]‖2 is below a regularization threshold (av,i is a zero node),

‖[av,Descendants(i)]‖2 is also below the threshold (all its descendants are zero nodes as well). Conversely, if
‖[av,i, av,Descendants(i)]‖2 is above the threshold (av,i is a nonzero node), ‖[av,Parent(i), av,i, av,Descendants(i)]‖2
is also above the threshold (av,Parent(i) is also a nonzero node).

32

word representations. Recall that the goal is to have a good dictionary D and code

matrix A. We apply the structured penalty to each column of A. When we use the same

structured penalty in these columns, we encode an additional shared constraint that the

dimensions of av that correspond to top level nodes should focus on “general” contexts

that are present in most words. In our case, this corresponds to contexts with extreme

PMI values for many words, since they are the ones that incur the largest losses. As we

go down the trees, more word-specific contexts can then be captured. As a result, we

have better organization across words when learning their representations, which also

translates to a more structured dictionary D. Contrast this with the case when we use

unstructured regularizers that penalize each dimension of A independently (e.g., lasso).

In this case, each dimension of av has more flexibility to pay attention to any contexts

(the only constraint that we encode is that the cardinality of the model should be small).

We hypothesize that this is less appropriate for learning word representations, since the

model has excessive freedom when learning A on noisy PMI values, which translates to

poor D.

The intuitive motivation for our regularizer comes from the field of lexical semantics,

which often seeks to capture the relationships between words’ meanings in hierarchically-

organized lexicons. The best-known example is WordNet (Miller, 1995). Words with the

same (or close) meanings are grouped together (e.g., professor and prof are synonyms),

and fine-grained meaning groups (“synsets”) are nested under coarse-grained ones (e.g.,

professor is a hyponym of academic). Our hierarchical sparse coding approach is still sev-

eral steps away from inducing such a lexicon, but it seeks to employ the dimensions of

a distributed word representation scheme in a similar coarse-to-fine way. In cognitive

science, such hierarchical organization of semantic representations was first proposed

by Collins and Quillian (1969).

4.3 Learning

Learning is accomplished by minimizing the function in Eq. 4.1, with the group lasso

regularization function described in §4.2. The function is not convex with respect to

D and A, but it is convex with respect to each when the other is fixed. Alternating

minimization routines have been shown to work reasonably well in practice for such

33

1

2 5 8 11

3 4 6 7 9 10 12 13

14

24211815

2625232220191716

Figure 4.1: An example of a regularization forest that governs the order in which vari-
ables enter the model. In this example, 1 needs to be selected (nonzero) for 2, 3, . . . , 13
to be selected. However, 1, 2, . . . , 13 have nothing to do with the variables in the second
tree: 14, 15, . . . , 26. See text for details.

problems (Lee et al., 2007), but they are too expensive here due to:

• The size of X ∈ RC×V (C and V are each on the order of 105).

• The many overlapping groups in the structured regularizer Ω(A).

One possible solution is based on the online dictionary learning method of Mairal

et al. (2010). For T iterations, we:

• Sample a mini-batch of words and (in parallel) solve for each one’s a using proxi-

mal methods or alternating directions method of multipliers, shown to work well

for overlapping group lasso problems (Jenatton et al., 2011a; Qin and Goldfarb,

2012; Yogatama and Smith, 2014b).

• Update D using the block coordinate descent algorithm of Mairal et al. (2010).

Finally, we parallelize solving for all columns of A, which are separable once D is fixed.

In our experiments, we use this algorithm for a medium-sized corpus.

The main difficulty of learning word representations with hierarchical sparse coding

is, again, that the size of the input matrix can be very large. When we use neighboring

words as the contexts, the numbers of rows and columns are the size of the vocabulary.

For a medium-sized corpus with hundreds of millions of word tokens, we typically have

one or two hundred thousand unique words, so the above algorithm is still applicable.

For a large corpus with billions of word tokens, this number can easily double or triple,

34

making learning very expensive. We propose an alternative learning algorithm for such

cases.

4.3.1 Stochastic Proximal Methods

We rewrite Eq. 4.1 as:

arg min
D,A

∑
c,v
(xc,v − dc · av)

2 + λΩ(A) + τ ∑
m
‖dm‖2

2

where (abusing notation) dc denotes the c-th row vector of D and dm denotes the m-th

column vector of D (recall that D ∈ RC×M). At each iteration, we sample an entry xc,v

and perform gradient updates to the corresponding row dc and column av. Instead of

considering all elements of the input matrix, our algorithm allows approximating the

solution by using only some (e.g., nonzero) entries of the input matrix X if necessary.

We directly penalize columns of D by their squared `2 norm as an alternative to

constraining columns of D to have unit `2 norm. The advantage of this transformation is

that we have eliminated a projection step for columns of D. Instead, we can include the

gradient of the penalty term in the stochastic gradient update. We apply the proximal

operator associated with Ω(av) as a composition of elementary proximal operators with

no group overlaps, similar to Jenatton et al. (2011a). This can be done by recursively

visiting each node of a tree and applying the proximal operator for the group lasso

penalty associated with that node (i.e., the group lasso penalty where the node is the

topmost node and the group consists of the node and all of its descendants). The

proximal operator associated with node m, denoted by proxΩm,λ, is simply the block-

thresholding operator for node m and all its descendants.

Since each entry xc,v only depends on dc and av, we can sample multiple entries

and perform the updates in parallel as long as they do not share c and v. In our case,

where C and V are on the order of hundreds of thousands and we only have tens or

hundreds of processors, finding elements that do not violate this constraint is easy. For

example, there are typically a huge number of nonzero entries (on the order of billions).

Using a sampling procedure that favors entries with higher (absolute) PMI values can

lead to reasonably good word representations faster, so we can sample an entry with

35

Algorithm 1 Fast algorithm for learning word representations with the forest regular-
izer.
Require: matrix X, regularization constant λ and τ, learning rate sequences η0, . . . , ηT,

number of iterations T
Initialize D0 and A0 randomly
for t = 1, . . . , T {can be parallelized, see text for details} do

Sample xc,v with probability proportional to its (absolute) value
dc = dc + 2ηt(av(xc,v − dc · av)− τdc)
av = av + 2ηt(dc(xc,v − dc · av))
for m = 1, . . . , M do

proxΩm,λ(av), where Ωm = ‖〈av,m, av,Descendants(m)〉‖2
end for

end for

probability proportional to its absolute value.4 Algorithm 1 summarizes our method.

4.3.2 Convergence Analysis

We analyze the convergence of Algorithm 1 for the basic setting where we uniformly

sample elements of the input matrix X. Similar to Mairal et al. (2010), we can rewrite our

optimization problem as: arg minA ∑T
t=1 L

t(A) + λΩ(A), where Lt(A) = ‖X −Dt A‖2
F +

τ ∑m ‖dt
m‖2

2, and Dt = Dt−1 + 2ηt((X − Dt−1At−1)At−1> − τDt−1). Note that Lt(A) is

a nonconvex (with respect to A) continuously differentiable function, which is the loss

at timestep t after performing the dictionary update step. For ease of exposition, in the

following, we assume A is a vector formed by stacking together columns of the matrix

A.

Let us denote L(A) = 1
T ∑T

t=1 L
t(A). We show convergence of Algorithm 1 to a

stationary point under the assumption that we have an unbiased estimate of the gradient

with respect to A: E[5Lt(A)] = 5L(A). This can also be stated as E[‖εt‖2] = 0, where

‖εt‖2 = ‖ 5L(A)−5Lt(A)‖2.

Our convergence proof uses the following definition of a stationary point and relies

on a lemma from Sra (2012).

Definition 1. A point A∗ is a stationary point if and only if: A∗ = proxΩ,λ(A∗− η5 L(A∗)).

4In practice, we can use an even faster approximation of this sampling procedure by uniformly sampling
a nonzero entry and multiplying its gradient by a scaling constant proportional to its absolute PMI value.

36

Lemma 2. (Sra, 2012) Let F be a function with a (locally) Lipschitz continuous gradient with

constant L > 0.

F(At)− F(At+1) ≥ (4.2)

2− Lηt

2ηt
‖At+1 − At‖2

2 − ‖εt‖2‖At+1 − At‖2.

Theorem 3. Let the assumption of an unbiased estimate of the gradient be satisfied and the

learning rate satisfies 0 < ηt <
2
L . Algorithm 1 converges to a stationary point in expectation.

Proof. We first show that L(At) − L(At+1) is bounded below in expectation. Since L

has a Lipschitz continuous gradient, Lemma 2 already bounds L(At)−L(At+1). Let us

denote the Lipschitz constant of L by L. Given our assumption about the error of the

stochastic gradient (vanishing error), we have:

E[L(At)−L(At+1)] ≥ 2− Lηt

2ηt
E[‖At+1 − At‖2

2]

=
2− Lηt

2ηt
E[‖proxΩ,λ(At − ηt5Lt(At))− At‖2

2]

Since our learning rate satisfies 0 < ηt <
2
L , it is easy to show that the above is never

negative. In order to show convergence, we then bound this quantity:

T

∑
t=1

2− Lηt

2ηt
E[‖proxΩ,λ(At − ηt5Lt(At))− At‖2

2]

≤
T

∑
t=1

E[L(At)−L(At+1)] = E[L(A1)−L(AT+1)]

≤ E[L(A1)−L(A∗)]

The right hand side (third line) is a positive constant and the left hand side (first line)

is never negative, so E[‖proxΩ,λ(At − ηt 5 Lt(At))− At‖2
2] → 0, which means that At

converges to a stationary point in expectation based on the definition of a stationary

point in Definition 1.

37

4.4 Experiments

We present a controlled comparison of the forest regularizer against several strong base-

line word representations learned on a fixed dataset, across several tasks. In §4.4.4 we

compare to publicly available word vectors trained on different data.

4.4.1 Setup and Baselines

We use the WMT-2011 English news corpus as our training data.5 The corpus contains

about 15 million sentences and 370 million words. The size of our vocabulary is 180,834.6

In our experiments, we use forests similar to those in Figure 4.1 to organize the latent

word space. Note that the example has 26 nodes (2 trees). We choose to evaluate per-

formance with M = 52 (4 trees) and M = 520 (40 trees).7 We denote the sparse coding

method with regular `1 penalty by SC, and our method with structured regularization

(§4.2) by forest. We set λ = 0.1. In this first set of experiments with a medium-sized

corpus, we use the online learning algorithm of Mairal et al. (2010).

We compare with the following baseline methods:

• Turney and Pantel (2010): principal component analysis (PCA) by truncated sin-

gular value decomposition on X>. Note that this is also the same as minimizing

the squared reconstruction loss in Eq. 4.1 without any penalty on A.

• Mikolov et al. (2010): a recursive neural network (RNN) language model. We

obtain an implementation from http://rnnlm.org/.

• Mnih and Teh (2012): a log bilinear model that predicts a word given its context,

trained using noise-contrastive estimation (NCE, Gutmann and Hyvarinen, 2010).

We use our own implementation for this model.

• Mikolov et al. (2013b): a log bilinear model that predicts a word given its con-

text (continuous bag of words, CBOW), trained using negative sampling (Mikolov

5http://www.statmt.org/wmt11/
6We replace words with frequency less than 10 with #rare# and numbers with #number#.
7In preliminary experiments we explored binary tree structures and found they did not work as well.

We hypothesized that better organizations of word meanings are flatter, as opposed to deeper. We leave a
more extensive exploration of tree structures to future work.

38

et al., 2013a). We obtain an implementation from https://code.google.com/p/

word2vec/.

• Mikolov et al. (2013b): a log bilinear model that predicts context words given a tar-

get word (skip gram, SG), trained using negative sampling (Mikolov et al., 2013a).

We obtain an implementation from https://code.google.com/p/word2vec/.

• Pennington et al. (2014): a log bilinear model that is trained using AdaGrad

(Duchi et al., 2011) to minimize a weighted square error on global (log) cooc-

currence counts (global vectors, GV). We obtain an implementation from http:

//nlp.stanford.edu/projects/glove/.

Our focus here is on comparisons of model architectures. For a fair comparison, we

train all competing methods on the same corpus using a context window of five words

(left and right). For the baseline methods, we use default settings in the provided im-

plementations (or papers, when implementations are not available and we reimplement

the methods). We also trained the two baseline methods introduced by Mikolov et al.

(2013b) with hierarchical softmax using a binary Huffman tree instead of negative sam-

pling; consistent with Mikolov et al. (2013a), we found that negative sampling performs

better and show hierarchical softmax results in §4.4.6.

4.4.2 Evaluation

We evaluate on the following benchmark tasks.

Word similarity The first task evaluates how well the representations capture word

similarity. For example beautiful and lovely should be closer in distance than beautiful

and science. We evaluate on a suite of word similarity datasets, subsets of which have

been considered in past work: WordSim 353 (Finkelstein et al., 2002), rare words (Luong

et al., 2013), and many others. We use the following word similarity datasets in our

experiments:

• Finkelstein et al. (2002): WordSimilarity dataset (353 pairs).

• Agirre et al. (2009): a subset of WordSimilarity dataset for evaluating similarity

(203 pairs).

39

• Agirre et al. (2009): a subset of WordSimilarity dataset for evaluating relatedness

(252 pairs).

• Miller and Charles (1991): semantic similarity dataset (30 pairs)

• Rubenstein and Goodenough (1965): contains only nouns (65 pairs)

• Luong et al. (2013): rare words (2,034 pairs)

• Bruni et al. (2012): frequent words (3,000 pairs)

• Radinsky et al. (2011): MTurk-287 dataset (287 pairs)

• Halawi and Dror (2014): MTurk-771 dataset (771 pairs)

• Yang and Powers (2006): contains only verbs (130 pairs)

Following standard practice, for each competing model, we compute cosine distances

between word pairs in word similarity datasets, then rank and report Spearman’s rank

correlation coefficient (Spearman, 1904) between the model’s rankings and human rank-

ings.

Syntactic and semantic analogies The second evaluation dataset is two analogy tasks

proposed by Mikolov et al. (2013b). These questions evaluate syntactic and semantic

relations between words. There are 10,675 syntactic questions (e.g., walking : walked ::

swimming : swam) and 8,869 semantic questions (e.g., Athens : Greece :: Oslo :: Norway).

In each question, one word is missing, and the task is to correctly predict the missing

word. We use the vector offset method (Mikolov et al., 2013b) that computes the vector

b = aAthens − aGreece + aOslo. We only consider a question to be answered correctly if

the returned vector (b) has the highest cosine similarity to the correct answer (in this

example, aNorway).

Sentence completion The third evaluation task is the Microsoft Research sentence

completion challenge (Zweig and Burges, 2011). In this task, the goal it to choose from a

set of five candidate words which one best completes a sentence. For example: Was she

his {client, musings, discomfiture, choice, opportunity}, his friend, or his mistress? (client is the

40

Table 4.1: Summary of results. We report Spearman’s correlation coefficient for the
word similarity task and accuracies (%) for other tasks. Higher values are better (higher
correlation coefficient or higher accuracy). The last two methods (columns) are new to
this paper, and our proposed method is in the last column.

M Task PCA RNN NCE CBOW SG GV SC forest

52

Word similarity 0.39 0.26 0.48 0.43 0.49 0.43 0.49 0.52
Syntactic analogies 18.88 10.77 24.83 23.80 26.69 27.40 11.84 24.38
Semantic analogies 8.39 2.84 25.29 8.45 19.49 26.23 4.50 9.86
Sentence completion 27.69 21.31 30.18 25.60 26.89 25.10 25.10 28.88
Sentiment analysis 74.46 64.85 70.84 68.48 71.99 72.60 75.51 75.83

520

Word similarity 0.50 0.31 0.59 0.53 0.58 0.51 0.58 0.66
Syntactic analogies 40.67 22.39 33.49 52.20 54.64 44.96 22.02 48.00
Semantic analogies 28.82 5.37 62.76 12.58 39.15 55.22 15.46 41.33
Sentence completion 30.58 23.11 33.07 26.69 26.00 33.76 28.59 35.86
Sentiment analysis 81.70 72.97 78.60 77.38 79.46 79.40 78.20 81.90

Table 4.2: Results on the syntactic and semantic analogies tasks with a bigger corpus
(M = 260).

Task CBOW SG GV forest

Syntactic 61.37 63.61 65.56 65.63
Semantic 23.13 54.41 74.35 52.88

correct answer). We choose the candidate with the highest average similarity to every

other word in the sentence.8

Sentiment analysis The last evaluation task is sentence-level sentiment analysis. We

use the movie reviews dataset from Socher et al. (2013). The dataset consists of 6,920

sentences for training, 872 sentences for development, and 1,821 sentences for testing.

We train `2-regularized logistic regression to predict binary sentiment, tuning the reg-

ularization strength on development data. We represent each example (sentence) as

an M-dimensional vector constructed by taking the average of word representations of

words appearing in that sentence.

The analogy, sentence completion, and sentiment analysis tasks are evaluated on

prediction accuracy.

8We note that unlike matrix decomposition based approaches, some of the neural network based models
can directly compute the scores of context words given a possible answer (Mikolov et al., 2013b). We choose
to use average similarities for a fair comparison of the representations.

41

Table 4.3: Comparison to previously published word representations. The five right-
most columns correspond to the tasks described above; parenthesized values are the
number of in-vocabulary items that could be evaluated.

Models M V W. Sim. Syntactic Semantic Sentence Sentiment
CW

50

130,000 (6,225) 0.51 (10,427) 12.34 (8,656) 9.33 (976) 24.59 69.36
RNN-DC 100,232 (6,137) 0.32 (10,349) 10.94 (7,853) 2.60 (964) 19.81 67.76
HLBL 246,122 (6,178) 0.11 (10,477) 8.98 (8,446) 1.74 (990) 19.90 62.33
NNSE 34,107 (3,878) 0.23 (5,114) 1.47 (1,461) 2.46 (833) 0.04 64.80
HPCA 178,080 (6,405) 0.29 (10,553) 10.42 (8,869) 3.36 (993) 20.14 67.49
forest 52 180,834 (6,525) 0.52 (10,675) 24.38 (8,733) 9.86 (1,004) 28.88 75.83

4.4.3 Results

Table 4.1 shows results on all evaluation tasks for M = 52 and M = 520. Runtime

will be discussed in §4.4.5. In the similarity ranking and sentiment analysis tasks, our

method performed the best in both low and high dimensional embeddings. In the

sentence completion challenge, our method performed best in the high-dimensional

case and second-best in the low-dimensional case. Importantly, forest outperforms

PCA and unstructured sparse coding (SC) on every task. We take this collection of

results as support for the idea that coarse-to-fine organization of latent dimensions of

word representations captures the relationships between words’ meanings better than

unstructured organization.

Analogies Our results on the syntactic and semantic analogies tasks for all models

are below state-of-the-art performance from previous work. We hypothesize that this is

because performing well on these tasks requires training on a bigger corpus (in general,

the bigger the training corpus is, the better the models will be for all tasks). We combine

our WMT-2011 corpus with other news corpora and Wikipedia to obtain a corpus of 6.8

billion words. The size of the vocabulary of this corpus is 401,150. We retrain four

models that are scalable to a corpus of this size: CBOW, SG, GV, and forest.9 We select

M = 260 to balance the trade-off between training time and performance (M = 52 does

not perform as well, and M = 520 is computationally expensive). For forest, we use

the fast learning algorithm in §4.3, since the online learning algorithm of Mairal et al.

(2010) does not scale to a problem of this size. We report accuracies on the syntactic

9Our NCE implementation is not optimized and therefore not scalable.

42

and semantic analogies tasks in Table 4.2. All models benefit significantly from a bigger

corpus, and the performance levels are now comparable with previous work. On the

syntactic analogies task, forest is competitive with GV and both models outperformed

SG and CBOW. On the semantic analogies task, GV outperformed SG, forest, and

CBOW.

4.4.4 Other Comparisons

In Table 4.3, we compare with five other baseline methods for which we do not train on

our training data but pre-trained 50-dimensional word representations are available:

• Collobert et al. (2011): a neural network language model trained on Wikipedia data

for 2 months (CW).10

• Huang et al. (2012): a neural network model that uses additional global document

context (RNN-DC).11

• Mnih and Hinton (2008): a log bilinear model that predicts a word given its con-

text, trained using hierarchical softmax (HLBL).12

• Murphy et al. (2012): a word representation trained using non-negative sparse em-

bedding (NNSE) on dependency relations and document cooccurrence counts.13

These vectors were learned using sparse coding, but using different contexts (de-

pendency and document cooccurrences), a different training method, and with a

nonnegativity constraint. Importantly, there is no hierarchy in the code space, as

in forest.14

• Lebret and Collobert (2014): a word representation trained using Hellinger PCA

(HPCA).15

These methods were all trained on different corpora, so they have different vocabularies

that do not always include all of the words found in the tasks. We estimate performance

10http://ronan.collobert.com/senna/
11http://goo.gl/Wujc5G
12http://metaoptimize.com/projects/wordreprs/ (Turian et al., 2010)
13http://www.cs.cmu.edu/~bmurphy/NNSE/.
14We found that NNSE trained using our contexts performed very poorly; see additional results in §4.4.6.
15http://lebret.ch/words/

43

Table 4.4: Training time comparisons for skip gram (SG), glove (GV), and forest. For
the medium corpus (370 million words), we learn forest with Mairal et al. (2010). This
algorithm consists of two major steps: online learning of D and parallel learning of A
with fixed D (see §4.3). “∗” indicates that we only use 640 cores for the second step,
since the first step only takes less than 2 hours even for M = 520. We can also see from
this table that it becomes too expensive to use this algorithm for a bigger corpus. For
the bigger corpus (6.8 billion words), we use Algorithm 1.

Models Corpus M Cores Time
SG 370M 52 16 1.5 hours
GV 370M 52 16 0.4 hours
forest 370M 52 640∗ 2.5 hours
SG 370M 520 16 5 hours
GV 370M 520 16 2.5 hours
forest 370M 520 640∗ 20 hours
SG 6.8B 260 16 6.5 hours
GV 6.8B 260 16 4 hours
forest 6.8B 260 16 4 hours

on the items for which prediction is possible, and show the count for each method in

Table 4.3. This comparison should be interpreted cautiously since many experimental

variables are conflated; nonetheless, forest performs strongly.

4.4.5 Discussion

In terms of running time, forest is reasonably fast to learn. See Table 4.4 for compar-

isons with other state-of-the-art methods.

Our method produces sparse word representations with exact zeros. We observe

that the sparse coding method without a structured regularizer produces sparser repre-

sentations, but it performs worse on our evaluation tasks, indicating that it zeroes out

meaningful dimensions. For forest with M = 52 and M = 520, the average numbers

of nonzero entries are 91% and 85% respectively. While our word representations are

not extremely sparse, this makes intuitive sense since we try to represent about 180,000

contexts in only 52 (520) dimensions. We also did not tune λ. As we increase M, we get

sparser representations.

We visualize our M = 52 word representations (forest) related to animals (10

words) and countries (10 words). We show the coefficient patterns for these words

44

in Figure 4.2. We can see that in both cases, there are dimensions where the coefficient

signs (positive or negative) agree for all 10 words (they are mostly on the right and left

sides of the plots). Note that the dimensions where all the coefficients agree are not the

same in animals and countries. The larger magnitude of the vectors for more abstract

concepts (animal, animals, country, countries) is reminiscent of neural imaging studies

that have found evidence of more global activation patterns for processing superordi-

nate terms (Raposo et al., 2012). In Figure 4.3, we show tree visualizations of coefficients

of word representations for animal, horse, and elephant. We show one tree for M = 52

(there are four trees in total, but other trees exhibit similar patterns). Coefficients that

differ in sign mostly correspond to leaf nodes, validating our motivation that top level

nodes should focus more on “general” contexts (for which they should be roughly sim-

ilar for animal, horse, and elephant) and leaf nodes focus on word-specific contexts. One

of the leaf nodes for animal is driven to zero, suggesting that more abstract concepts

require fewer dimensions to explain.

For forest, SG, and NCE with M = 520, we project the learned word representations

into two dimensions using the t-SNE tool (van der Maaten and Hinton, 2008).16 We show

projections of words related to the concept “good” vs. “bad” and “man” vs. “woman”

in Figure 4.4.17

4.4.6 Additional Results

In Table 4.5, we compare forest with three additional baselines:

• Murphy et al. (2012): a word representation trained using non-negative sparse

embedding (NNSE) on our corpus. Similar to the authors, we use an NNSE im-

plementation from http://spams-devel.gforge.inria.fr/ (Mairal et al., 2010).

• Mikolov et al. (2013b): a log bilinear model that predicts a word given its context,

trained using hierarchical softmax with a binary Huffman tree (continuous bag of

words, CBOW-HS). We use an implementation from https://code.google.com/

p/word2vec/.

16http://homepage.tudelft.nl/19j49/t-SNE.html
17Since t-SNE is a non-convex method, we run it 10 times and choose the plots with the lowest t-SNE

error.

45

15 8 25 34 45 35 42 3 27 28 11 23 40 49 2 52 16 44 26 9 38 6 51 41 18 31 19 33 17 21 4 20 46 13 43 32 29 10 7 37 39 14 30 24 50 48 36 22 12 5 47 1

horse
bull
fish
snake
pig
bird
elephant
lion
cat
dog
animals
animal

3 36 17 52 14 44 10 33 31 11 39 21 46 30 2 22 29 27 43 28 50 35 4 48 41 42 6 12 5 7 16 19 37 26 49 45 9 23 38 15 13 32 40 18 25 34 20 47 51 8 24 1

egypt
brazil
iraq
india
china
russia
germany
italy
france
spain
countries
country

Figure 4.2: Heatmaps of word representations for 10 animals (top) and 10 countries
(bottom) for M = 52 from forest. Red indicates negative values, blue indicates positive
values (darker colors correspond to more extreme values); white denotes exact zero.
The x-axis shows the original dimension index, we show the dimensions from the most
negative (left) to the most positive (right), within each block, for readability.

(a) animal (b) horse (c) elephant

Figure 4.3: Tree visualizations of word representations for animal (left), horse (center),
elephant (right) for M = 52. We use the same color coding scheme as in Figure 4.2. Here,
we only show one tree (out of four), but other trees exhibit similar patterns.

46

Figure 4.4: Two dimensional projections of the forest (top), NCE (middle), and NCE
(bottom) word representations using the t-SNE tool (van der Maaten and Hinton, 2008).
Words associated with “good” (left) and “man” (right) are colored in blue, words asso-
ciated with “bad” (left) and “woman” (right) are colored in red. The two plots on the
top left are the same plots shown in the paper.

• Mikolov et al. (2013b): a log bilinear model that predicts context words given

a target word, trained using hierarchical softmax with a binary Huffman tree

47

Table 4.5: Summary of results for non-negative sparse embedding (NNSE), continuous
bag-of-words and skip gram models trained with hierarchical softmax (CBOW-HS and
SG-HS). Higher number is better (higher correlation coefficient or higher accuracy).

M Task NNSE CBOW-HS SG-HS forest

52

Word similarity 0.04 0.38 0.47 0.52
Syntactic analogies 0.10 19.50 24.87 24.38
Semantic analogies 0.01 5.31 14.77 9.86
Sentence completion 0.01 22.51 28.78 28.88
Sentiment analysis 61.12 68.92 71.72 75.83

520

Word similarity 0.05 0.50 0.57 0.66
Syntactic analogies 0.81 46.00 50.40 48.00
Semantic analogies 0.57 8.00 31.05 41.33
Sentence completion 22.81 25.80 27.79 35.86
Sentiment analysis 67.05 78.50 79.57 81.90

(skip gram, SG-HS). We use an implementation from https://code.google.com/

p/word2vec/.

4.5 Conclusion

In this chapter, we introduced a new method for learning word representations based

on hierarchical sparse coding. The regularizer encourages hierarchical organization of

the latent dimensions of vector-space word embeddings. We showed that our method

outperforms state-of-the-art methods on word similarity ranking, sentence completion,

syntactic analogies, and sentiment analysis tasks.

48

Chapter 5

Structured Sparsity in Text

Categorization

In many high-dimensional learning problems, only some parts of an observation are

important to the prediction task; for example, the cues to correctly categorizing a doc-

ument (sentence) may lie in a handful of its sentences (phrases). In the case of text

analysis, this idea was exploited by Yessenalina et al. (2010) and Tackstrom and Mc-

Donald (2011) using latent variable models that explicitly encode which sentences in

a document are relevant to a polarity judgment (e.g., is the author’s sentiment toward

a film positive or negative?). Such models require sacrifices: convexity during param-

eter estimation and simplicity of prediction algorithms (compared to linear models).

In this chapter, we introduce a class of linguistically-motivated sparse regularizers for

text categorization that exploits this intuition by encoding it in a penalty function. This

framework enables efficient incorporation of linguistic biases (e.g., syntactic parse trees,

thematic topics, hierarchical word clusterings, sentence boundaries) into conventional

bag-of-words models without sacrificing convexity. We show how to efficiently solve

the resulting optimization challenge using the alternating directions method of multi-

pliers. We demonstrate that our approach consistently achieves more accurate models

than lasso, ridge, and elastic net regularized baselines. More generally, our method is

applicable to many high-dimensional learning problems where only some parts of an

49

observation are relevant to the prediction task.1 This chapter is based on materials from

Yogatama and Smith (2014b) and Yogatama and Smith (2014a).

5.1 Notation

We denote the feature vector to represent a document by x ∈ RV , where V is the

vocabulary size, and we represent documents as vectors of word frequencies (i.e., “bags

of words”). Each document is associated with a response (output) variable y. For

simplicity and without loss of generality, we assume y ∈ {−1, 1}. The parameter vector

that we want to learn is denoted by w. We use feature coefficients and feature weights

interchangeably to describe w. We denote the loss function by L(x, w, y); in this section

it is the log loss:

L(x, w, y) = log(1 + exp(−yw>x))

The general framework can be extended to continuous responses (i.e., linear regression)

and to other loss functions (e.g., SVMs’ hinge loss).

The goal of the learning procedure is to estimate w for a given set of training docu-

ments {xd, yd}D
d=1 by minimizing the penalized training data loss:

ŵ = arg minw Ω(w) + ∑D
d=1 L(xd, w, yd)

where Ω is a regularization penalty to encourage models with small weight vectors.

We defer explanations on how to efficiently learn models with linguistically motivated

structured regularizers to §5.3.

1For example, in computer vision, we might be interested in classifying an image. We know that an
image is composed of multiple entities. If we can detect these entities and we assume that not all of these
entities are relevant to predicting the label of the image, we can apply our regularizer to this problem.

50

5.2 Linguistic Structured Sparsity

5.2.1 Sentence Regularization

Considerable study has been devoted to structure in text, both for purposes of theoreti-

cal linguistics and for practical applications. All this work builds on the idea that more

accurate interpretation can be obtained by explicitly representing rhetorical, semantic,

or syntactic structures that relate word tokens to each other. Here we consider one very

simple kind of structure that can easily be recovered with high accuracy in documents:

sentences.

Our basic idea is to define, for every sentence in the training data, a group of the fea-

tures that are present (i.e., nonzero) in that sentence. (In our models, these features are

all word frequencies.) These groups, in turn, serve to define a group lasso regularization

term, which we call the “sentence regularizer”:

Ωsen(w) =
D

∑
d=1

Sd

∑
s=1

λd,s‖wd,s‖2,

where d ranges over documents (as before) and s over sentences within a document. Sd

is the number of sentences in document d. wd,s corresponds to the subvector of w such

that the corresponding features are present in sentence s of document d. The regularizer

can take into account the length of the sentence by encoding it in λd,s. In the following,

for simplicity and without loss of generality, we assume ∀d, ∀s, λd,s = λsen.

To gain an intuition for this regularizer, consider the case where we apply the penalty

only for a single document, d0, which happens (unrealistically) never to use the same

word more than once (i.e., ‖xd0‖∞ = 1). Because it instantiates group lasso, the sentence

regularizer will encourage some groups to go to zero (especially groups whose sentences

contain no words strongly associated with a label in the rest of the corpus). The effect

is that only some sentences in d0 will be selected as relevant (i.e., {s : wd0,s 6= 0}), and

the rest will have wd0,s = 0 and therefore will have no effect on the prediction for d0.

Further, the words deemed not relevant in d0 will have no effect on the prediction for

other documents.

Of course, in typical documents, many words will occur in more than one sentence,

and we create a group for every sentence in the training corpus. This means that our

51

groups are heavily overlapping; a word that occurs in k sentences in the corpus will force

its corresponding weight to associate with k groups. As a result, the regularizer mainly

acts as a proxy to encourage group behavior of words appearing in the same sentences.

Comparison to latent variable models. Seen this way, we can draw connections be-

tween our model and latent variable models for sentiment analysis that explicitly “se-

lect” relevant sentences (Yessenalina et al., 2010; Tackstrom and McDonald, 2011). Latent

variables complicate inference, because prediction algorithms must reason about the ad-

ditional variables. This sometimes leads to mixed inference problems (i.e., maximizing

over y while marginalizing latent variables). Our method, by contrast, does not change

the linear model bag-of-words family, so the prediction algorithm is unchanged. At

inference time, there is no notion of “relevant” sentences.

More importantly, latent variable models lead to non-convex objective functions,

so that learning methods’ performance hinges on clever (or lucky) initialization (e.g.,

Yessenalina et al., 2010). Our approach maintains convexity of the objective function,

allowing for familiar guarantees about the parameter estimate.

5.2.2 Parse Tree Regularizer

Sentence boundaries are a rather superficial kind of linguistic structure; syntactic parse

trees provide more fine-grained information. We introduce the parse tree regularizer, in

which groups are defined for every constituent in every parse of a training data sentence.

Nowadays, constitutent-level annotations are easy and fast to obtain. For example,

we can use the mehod in Kong et al. (2015) to get them accurately from dependeny

annotations.

Figure 5.1 illustrates the group structures derived from an example sentence from

the Stanford sentiment treebank (Socher et al., 2013). This regularizer captures the idea

that phrases might be selected as relevant or (in most cases) irrelevant to a task, and is

expected to be especially useful in sentence-level prediction tasks.

The parse-tree regularizer (omitting the group coefficients and λ) for one sentence

52

c0,++

c1 c4,+

c2 c3

The actors

c5,++ c8

c6 c7,+

are fantastic

.

Figure 5.1: An example of a parse tree from the Stanford sentiment treebank, which
annotates sentiment at the level of every constituent (indicated here by + and ++;
no marking indicates neutral sentiment). The sentence is The actors are fantastic. Our
regularizer constructs nine groups for this sentence, corresponding to c0, c1, . . . , c8. gc0

consists of 5 weights—〈wthe, wactors, ware, wfantastic, w.〉, exactly the same as the group in
the sentence regularizer—gc1 consists of 2 words, gc4 of 3 words, etc. Notice that c2,
c3, c6, c7, and c8 each consist of only 1 word. The Stanford sentiment treebank has an
annotation of sentiments at the constituent level. As in this example, most constituents
are annotated as neutral.

with the parse tree shown in Figure 5.1 is:

Ωtree(w) =
√
|wthe|2 + |wactors|2 + |ware|2 + |wfantastic|2 + |w.|2 +

√
|ware|2 + |wfantastic|2 + |w2

. |

+
√
|wthe|2 + |wactors|2 +

√
|ware|2 + |wfantastic|2 + |wthe|+ |wactors|+ |ware|+ |wfantastic|+ |w.|

The groups have a tree structure, in that assigning zero values to the weights in a group

corresponding to a higher-level constituent implies the same for those constituents that

are dominated by it. This resembles the tree-guided group lasso in Kim and Xing (2008),

although the leaf nodes in their tree represent tasks in multi-task regression.

Of course, in a corpus there are many parse trees (one per sentence, so the number

53

of parse trees is the number of sentences). Formally, the parse-tree regularizer:

Ωtree(w) =
D

∑
d=1

Sd

∑
s=1

Cd,s

∑
c=1

λd,s,c‖wd,s,c‖2,

where λd,s,c = λglas ×
√

size(gd,s,c), d ranges over (training) documents and c ranges

over constituents in the parse of sentence s in document d. Similar to the sentence

regularizer, the parse-tree regularizer operates on word tokens. Note that, since each

word token is itself a constituent, the parse tree regularizer includes terms just like the

lasso naturally, penalizing the absolute value of each word’s weight in isolation. For

the lasso-like penalty on each word, instead of defining the group weights to be 1×
the number of tokens for each word type, we tune one group weight for all word types

on a development data. As a result, besides λglas, we have an additional hyperparameter,

denoted by λlas.

To gain an intuition for this regularizer, consider the case where we apply the penalty

only for a single tree (sentence), which for ease of exposition is assumed to never to

use the same word more than once (i.e., ‖x‖∞ = 1). Because it instantiates the tree-

structured group lasso, the regularizer will require bigger constituents to be “included”

(i.e., their words given nonzero weight) before smaller constituents can be included.

The result is that some words may not be included. Of course, in some sentences, some

words will occur more than once, and the parse tree regularizer instantiates groups for

constituents in every sentence in the training corpus, and these groups may work against

each other. The parse tree regularizer should therefore be understood as encouraging

group behavior of syntactically grouped words, or sharing of information by syntactic

neighbors.

In sentence level prediction tasks, such as sentence-level sentiment analysis, it is

known that most constituents (especially those that correspond to shorter phrases) in a

parse tree are uninformative (neutral sentiment). This was verified by Socher et al. (2013)

when annotating phrases in a sentence for building the Stanford sentiment treebank.

Our regularizer incorporates our prior expectation that most constituents should have

no effect on prediction.

54

5.2.3 LDA Regularizer

Another type of structure to consider is topics. For example, if we want to predict

whether a paper will be cited or not (Yogatama et al., 2011), the model can perform

better if it knows beforehand the collections of words that represent certain themes

(e.g., in ACL papers, these might include machine translation, parsing, etc.). As a result,

the model can focus on which topics will increase the probability of getting citations,

and penalize weights for words in the same topic together, instead of treating each word

separately.

We do this by inferring topics in the training corpus by estimating the latent Dirich-

let allocation (LDA) model (Blei et al., 2003). Note that LDA is an unsupervised method,

so we can infer topical structures from any collection of documents that are considered

related to the target corpus (e.g., training documents, text from the web, etc.). This con-

trasts with typical semi-supervised learning methods for text categorization that com-

bine unlabeled and labeled data within a generative model, such as multinomial naïve

Bayes, via expectation-maximization (Nigam et al., 2000) or semi-supervised frequency

estimate (Su et al., 2011). Our method does not use unlabeled data to obtain more train-

ing documents or estimate the joint distributions of words better, but it allows the use

of unlabeled data to induce topics. We leave comparison with other semi-supervised

methods for future work.

There are many ways to associate inferred topics with group structure. In our ex-

periments, we choose the R most probable words given a topic and create a group for

them.2 The LDA regularizer can be written as:

Ωlda(w) =
K

∑
k=1

λk‖wk‖2,

where k ranges over the K topics. Similar to our earlier notation, wk corresponds to the

subvector of w such that the corresponding features are present in topic k. Note that in

this case we can also have overlapping groups, since words can appear in the top R in

many topics.

To gain an intuition for this regularizer, consider the toy example in Table 5.1. the

2Another possibility is to group the smallest set of words whose total probability given a topic amounts
to P (e.g., 0.99). mass of a topic. Preliminary experiments found this not to work well.

55

Table 5.1: A toy example of K = 4 topics. The top R = 5 words in each top-
ics are displayed. The LDA regularizer will construct four groups from these top-
ics. The first group is 〈wsoccer, wstriker, wmidfielder, wgoal, wdefender〉, the second group is
〈winjury, wknee, wligament, wshoulder, wcruciate〉, etc. The third and fourth groups are constructed
similarly. In this example, there are no words occurring in the top R of more than one
topic, but that need not be the case in general.

k = 1 k = 2 k = 3 k = 4
soccer injury physics monday
striker knee gravity tuesday

midfielder ligament moon april
goal shoulder sun june

defender cruciate relativity sunday

case where we have K = 4 topics and we select R = 5 top words from each topic.

Supposed that we want to classify whether an article is a sports article or a science

article. The regularizer might encourage the weights for the fourth topic’s words toward

zero, since they are less useful for the task. Additionally, the regularizer will penalize

words in each of the other three groups collectively. Therefore, if (for example) ligament

is deemed a useful feature for classifying an article to be about sports, then the other

words in that topic will have a smaller effective penalty for getting nonzero weights—

even weights of the opposite sign as wligament. It is important to distinguish this from

unstructured regularizers such as the lasso, which penalize each word’s weight on its

own without regard for related word types.

Unlike the parse tree regularizer, the LDA regularizer is not tree structured. Since

the lasso like penalty does not occur naturally in a non tree-structured regularizer, we

add an additional lasso penalty for each word type (with hyperparameter λlas) to also

encourage weights of irrelevant words to go to zero. Our LDA regularizer is an instance

of sparse group lasso (Friedman et al., 2010).

5.2.4 Brown Cluster Regularizer

Brown clustering is a commonly used unsupervised method for grouping words into a

hierarchy of hard clusters (Brown et al., 1992). Because it uses local information, it tends

to discover words that behave similar syntactically, though semantic groupings are often

56

evident, especially at the more fine-grained end of the hierarchy (see Figure 5.2 for an

example).

We incorporate Brown clusters into a regularizer in a similar way to the topical word

groups inferred using LDA in §5.2.3, but here we make use of the hierarchy. Specifically,

we construct tree-structured groups, one per cluster (i.e., one per node in the hierarchy).

Formally, the Brown cluster regularizer is:

Ωbrown(w) =
N

∑
v=1

λv‖wv‖2,

where v ranges over the N nodes in the Brown cluster tree. As a tree structured regular-

izer, this regularizer enforces constraints that a node v’s group is given nonzero weights

only if those nodes that dominate v (i.e., are on a path from v to the root) have their

groups selected.

Consider a similar toy example to the LDA regularizer (sports vs. science) and the

hierarchical clustering of words in Figure 5.2. In this case, the Brown cluster regularizer

will create 17 groups, one for every node in the clustering tree. The regularizer for this

tree (omitting the group coefficients and λ) is:

Ωbrown(w) =
7

∑
i=0
‖wvi‖2 + |wgoal|+ |wstriker|+ |wmidfielder|+ |wknee|+ |winjury|

+ |wgravity|+ |wmoon|+ |wsun|

The regularizer penalizes words in a cluster together, exploiting discovered syntactic

relatedness, since Brown clustering tends to find syntactically similar words. Addition-

ally, the regularizer can zero out weights of words corresponding to any of the internal

nodes, such as v7 if the words monday and sunday are deemed irrelevant to prediction.

Note that the regularizer already includes terms like the lasso naturally. Similar to

the parse tree regularizer, for the lasso like penalty on each word, we tune one group

weight for all word types on a development data with a hyperparameter λlas.

A key difference between the Brown cluster regularizer and the parse tree regularizer

is that there is only one tree for the Brown cluster regularizer, whereas the parse tree

regularizer can have millions (one per sentence in the training data). The LDA and

Brown cluster regularizers offer ways to incorporate unlabeled data, if we believe that

57

v0

v1 v5

v2 v4

v3 v10

v8 v9

goal striker

midfielder

v11 v12

knee injury

v6 v7

v13 v14

moon sun

v15 v16

monday sunday

Figure 5.2: An toy example of Brown clusters for N = 9. The Brown cluster regularizer
constructs 17 groups, one per node in for this tree, v0, v1, . . . , v16. v0 contains 8 words,
v1 contains 5, etc. Note that the leaves, v8, v9, . . . , v16, each contain one word.

the unlabeled data can help us infer better topics or clusters. Note that the processes of

learning topics or clusters, or parsing training data sentences, are a separate stage that

precedes learning our predictive model.

5.3 Learning

Our approach to encoding lingustic knowledge in the form of structured regularizers

introduces a new technical challenge. The nature of linguistic knowledge that we con-

sider (e.g., sentences, constituents in parse trees, semantic concepts, etc.) can translate

to thousands to millions of massively overlapping groups. As a result, learning can

become very slow. In this section, we describe optimization methods that are suitable

for general problems in this category.

58

5.3.1 ADMM for Sparse Group Lasso

There has been much work on optimization with overlapping group lasso penalty (Jacob

et al., 2009; Jenatton et al., 2011b; Chen et al., 2011; Qin and Goldfarb, 2012; Yuan et al.,

2013). Proximal methods (Beck and Teboulle, 2009; Duchi and Singer, 2009; Xiao, 2010;

Bach et al., 2011) offer one potential solution. For example, Martins et al. (2011a) intro-

duced a proximal gradient algorithm for handling overlapping group lasso. We propose

another optimization method that is more suitable for the case when we have massive

numbers of overlapping groups (hundreds of thousands to millions of groups) based

on the alternating directions method of multipliers (ADMM; Hestenes, 1969; Powell,

1969). Goldstein and Osher (2009) first proposed ADMM for sparse modeling. For a full

review of ADMM, see Boyd et al. (2010).

We consider the following convex minimization problem:

min
w

Ω(w) +L(w),

where Ω is a regularization function or a combination of them and L is a convex loss

function. We denote the dimensionality of w by V. Note that the loss function can

depend on other variables such as features x and response variable y. We hide these

dependencies for brevity.

The central idea in ADMM is to break the optimization problem down into subprob-

lems, each depending on a subset of the dimensions of w. Each subproblem g receives

a “copy” of the subvector of w it depends on, denoted vg. We then encode constraints

forcing each vg to “agree” with the global solution w.

ADMM for overlapping group lasso only produces weakly sparse solutions,3 for

reasons we explain below. To achieve strong sparsity in the solution, which is desirable

for high-dimensional data such as text, we couple the group lasso regularizer with a

classic lasso regularizer. Therefore, the objective function to be minimized is:

min
w

Ωglas(w) + Ωlas(w) +L(w)

Note that Ωglas can be instantiated as Ωsen, Ωtree, Ωlda, or Ωbrown, depending on the kind

3Weakly sparse methods (e.g., ridge) do not drive the feature weights exactly to zero, whereas strongly
sparse methods (e.g., lasso) result in exact zeroes.

59

of linguistic structures we want to incorporate into the model.

In ADMM, we rewrite this as a constrained optimization problem:

min
w,v

Ωglas(v) + Ωlas(w) +
D

∑
d=1

L(xd, w, yd) (5.1)

s.t. v = Mw,

where v consists of copies of the elements of w. We have v of size N = ∑G
g=1 size(g).

M ∈ {0, 1}N×V is a matrix whose 1s link elements of w to their copies, where w is

a V-dimensional vector. Notice that we work directly on w instead of the copies for

the lasso like penalty, since it does not have overlaps and has its own hyperparameter,

which we denote by λlas. We also have overloaded notation somewhat; the group lasso

regularizer applied to v is given by:

Ωglas(v) = λglas

G

∑
g=1

λg‖vg‖2.

Let u be the Lagrange variables. The augmented Lagrangian of Equation 5.1 is:

min
w,v

Ωlas(w) + Ωglas(v) +L(w) + u>(v−Mw) +
ρ

2
‖v−Mw‖2

2

Note the introduction of a quadratic penalty.

ADMM proceeds by updating each of w, v, and u by solving, in turn, the following

problems:

min
w

Ωlas(w) +L(w)− u>Mw +
ρ

2
‖v−Mw‖2

2 (5.2)

∼= min
w

Ωlas(w) +L(w) +
ρ

2

∥∥∥∥Mw−
(

v +
u
ρ

)∥∥∥∥2

2

min
v

Ωglas(v) + u>v +
ρ

2
‖v−Mw‖2

2 (5.3)

∼= min
v

Ωsen(v) +
ρ

2

∥∥∥∥v−
(

Mw− u
ρ

)∥∥∥∥2

2

u = u + ρ(v−Mw) (5.4)

We consider each in turn.

60

Update for w. In Equation 5.2, we fix v and u and update w. We denote the element

of v corresponding to the nth copy by vn, for n ∈ {1, . . . , N}. We denote the number of

copies of feature i in the corpus by Ni. Let vi,n denote the element of v corresponding

to the nth copy of feature i for n ∈ {1, . . . , Ni}. We index u similarly.

Note that the quadratic term in Equation 5.2 can be rewritten as

N

∑
n=1

(
wvn − (vn +

un
ρ)
)2

=
N

∑
n=1

w2
vn
− 2wvn(vn +

un
ρ) + (vn +

un
ρ)2

=
V

∑
i=1

(
Niw2

i − 2wi

Ni

∑
n=1

(vi,n +
ui,n
ρ) +

Ni

∑
n=1

(vi,n +
ui,n
ρ)2

)

=
V

∑
i=1

Ni

(
wi − 1

Ni

Ni

∑
n=1

(vi,n +
ui,n
ρ)

)2

+ constant(w)

=
V

∑
i=1

Ni (wi − µi)
2

where µi =
1
Ni

Ni

∑
n=1

(vi,n +
ui,n
ρ).

Intuitively, each variable is regularized towards a value near the mean of its correspond-

ing copy variables. This is similar to some extent to ridge regularization. It now becomes

clear why w will only be sparse in the limit (weakly sparse in practice) unless we add

Ωlas(w) to the penalty, since the effective penalty is quadratic, as in ridge regression.

This is the main reason to use sparse group lasso, if strong sparsity is required. (The

reader may notice that when µ = 0 and Ni = C, this update is essentially equivalent to

elastic net regression; Zou and Hastie, 2005, which penalizes w with a linear combina-

tion of Ωridge and Ωlas.) For this update, we apply a proximal gradient method (Bach

et al., 2011), since L(w) + ρ
2 ∑V

i=1 Ni(wi − µi)
2 is convex and continuously differentiable,

and Ωlas(w) is a convex function whose proximal operator (Moreau, 1963) can be eval-

uated efficiently. The proximal operator for Ωlas(w) is the soft-thresholding operator

61

Algorithm 2 ADMM for overlapping group lasso
Input: augmented Lagrangian variable ρ, regularization strengths λglas and λlas
while stopping criterion not met do

w = arg min
w

Ωlas(w) +L(w) +
ρ

2

V

∑
i=1

Ni(wi − µi)
2

for g = 1 to G do
vg = prox

Ωglas,
λg
ρ

(zg)

end for
u = u + ρ(v−Mw)

end while

(Donoho et al., 2006):

[proxΩlas,λlas
(w)]j =


wj − λlas if wj > λlas

0 if |wj| ≤ λlas

wj + λlas if wj < −λlas

Update for v. Eq. 5.3 is the proximal operator of 1
ρ Ωglas applied to Mw− u

ρ . As such,

it depends on the form of M. Note that when applied to the collection of “copies” of

the parameters, v, Ωglas no longer has overlapping groups. Define Mg as the rows of

M corresponding to weight copies assigned to group g. Let zg , Mgw − ug
ρ . Denote

λg = λglas
√

size(g). The problem can be solved by applying the proximal operator used

in non-overlapping group lasso to each subvector:

vg = prox
Ωglas,

λg
ρ

(zg)

=


0 if ‖zg‖2 ≤

λg
ρ

‖zg‖2 −
λg
ρ

‖zg‖2
zg otherwise.

For a tree structured regularizer, we can get speedups by working from the root node

towards the leaf nodes when applying the proximal operator in the second step. If g is

a node in a tree which is driven to zero, all of its children h that has λh ≤ λg will also

be driven to zero.

Update for u. Equation 5.4 is a simple update of the dual variable u.

Algorithm 2 shows our ADMM algorithm for sparse overlapping group lasso.

62

5.3.2 Space and Time Efficiency

The learning algorithm is effective for large numbers of groups because each group

operation and the u update (the second and third ADMM steps) can be done in parallel.

The most expensive step is the minimization of w. This is roughly as expensive as

lasso or ridge methods since we can precompute µ, although we need to do the w

minimization for every ADMM iteration.4 Our model requires storing of two parameter

vectors during learning: w and v. Although the size of v is N, v is a sparse vector since

most of the elements of v are driven to zero in the second ADMM step. Furthermore,

w is also a sparse vector due to the Ωlas regularizer. The actual number of nonzero

elements requiring storage will, of course, depend on λglas, λlas, ρ, and the dataset.

5.3.3 Convergence and Stopping Criteria

We can show that Algorithm 2 is guaranteed to converge by simply noting that both

L(w) + Ωlas(w) and Ωglas(v) are closed, proper, and convex functions of w and v re-

spectively;5 and the function Ωglas(v) + Ωlas(w) + L(w) + u>(v − Mw) has a saddle

point. As a result, our problem satisfies the two assumptions required for ADMM con-

vergence (Boyd et al., 2010). We can use the proof in Boyd et al. (2010) to show that

Algorithm 2 has residual, objective, and dual variable convergence.

As noted there, ADMM is often slow to converge in practice, although tens of iter-

ations are usually enough to obtain reasonably good solutions. In our experiments, we

use relative changes in the `2 norm of the parameter vector w as our convergence cri-

terion, and set the maximum number of iterations to 100. Other criteria such as primal

and dual residual convergence and performance on development data can also be used

to determine convergence of Algorithm 2 in practice.

4We minimize w to a relative convergence tolerance of 10−5. The w minimization step need not be
carried out to convergence at every iteration. Inexact ADMM (Boyd et al., 2010), as this method is known,
might provide speedups.

5Notice that λsen and λlas translate into bounds on the norms of v and w since there is a one-to-one
correspondence between a regularization constant and the parameter-vector norm due to the primal and
dual representation of the objective function.

63

5.4 Experiments

5.4.1 Datasets

We use publicly available datasets to evaluate our model described in more detail below.

Topic classification. We consider four binary categorization tasks from the 20 News-

groups dataset.6 Each task involves categorizing a document according to two re-

lated categories: comp.sys: ibm.pc.hardware vs. mac.hardware and rec.sport: baseball

vs. hockey and sci: med vs. space and alt.atheism vs. soc.religion.christian.

Sentiment analysis. One task in sentiment analysis is predicting the polarity of a piece

of text, i.e., whether the author is favorably inclined toward a (usually known) subject of

discussion or proposition (Pang and Lee, 2008). Sentiment analysis, even at the coarse

level of polarity we consider here, can be confused by negation, stylistic use of irony,

and other linguistic phenomena. Our sentiment analysis datasets consist of movie re-

views from the Stanford sentiment treebank (Socher et al., 2013),7 and floor speeches by

U.S. Congressmen alongside “yea”/“nay” votes on the bill under discussion (Thomas

et al., 2006).8 For the Stanford sentiment treebank, we only predict binary classifications

(positive or negative) and exclude neutral reviews.

Text-driven forecasting. Forecasting from text requires identifying textual correlates

of a response variable revealed in the future, most of which will be weak and many

of which will be spurious (Kogan et al., 2009). We consider two such problems. The

first one is predicting whether a scientific paper will be cited or not within three years

of its publication (Yogatama et al., 2011); the dataset comes from the ACL Anthology

and consists of research papers from the Association for Computational Linguistics and

citation data (Radev et al., 2009). The second task is predicting whether a legislative bill

will be recommended by a Congressional committee (Yano et al., 2012).9

Table 5.2 summarizes statistics about the datasets used in our experiments. In total,

we evaluate our method on eight binary classification tasks.
6http://qwone.com/~jason/20Newsgroups
7urlhttp://nlp.stanford.edu/sentiment/
8http://www.cs.cornell.edu/~ainur/data.html
9http://www.ark.cs.cmu.edu/bills

64

Table 5.2: Descriptive statistics about the datasets (number of documents and vocabulary
size).

Dataset D # Dev. # Test V

20Newsgroups

science 952 235 790 30,154
sports 958 239 796 20,832

religion 870 209 717 24,528
computer 929 239 777 20,868

Sentiment analysis
movie 6,920 872 1,821 17,576

vote 1,175 257 860 24,508

Forecasting
science 3,207 280 539 42,702

bill 37,850 7,341 6,571 10,001

5.4.2 Setup

In all our experiments, we use counts of unigrams as our features, plus an additional

bias term which is not regularized. We compare our new regularizers with state-of-the-

art methods for document classification: lasso, ridge, and elastic net regularization.

Hyperparameters are tuned on a separate development dataset, using accuracy as

the evaluation criterion. For lasso and ridge models, we choose λ from {10−2, 10−1, 1, 10, 102, 103}.
For elastic net, we perform grid search on the same set of values as ridge and lasso ex-

periments for λrid and λlas. For the sentence, Brown cluster, and LDA regularizers,

we perform grid search on the same set of values as ridge and lasso experiments for

ρ, λglas, λlas. For the parse tree regularizer, because there are many more groups than

other regularizers, we choose λglas from {10−4, 10−3, 10−2, 10−1, 10}, ρ and λlas from the

same set of values as ridge and lasso experiments. If there is a tie on development data

we choose the model with the smallest number of nonzero weights.

When explicit sentence boundaries are not given, we use MxTerminator (Reynar

and Ratnaparkhi, 1997)10 to segment documents into sentences. We parsed all corpora

using the Berkeley parser (Petrov and Klein, 2007).11 For the LDA regularizers, we ran

LDA12 on training documents with K = 1, 000 and R = 10. For the Brown cluster

regularizers, we ran Brown clustering13 on training documents with 5, 000 clusters for

10ftp://ftp.cis.upenn.edu/pub/adwait/jmx
11https://code.google.com/p/berkeleyparser/
12http://www.cs.princeton.edu/~blei/lda-c/
13https://github.com/percyliang/brown-cluster

65

the topic classification and sentiment analysis datasets, and 1, 000 for the larger text

forecasting datasets (since they are bigger datasets that took more time).

66

Ta
bl

e
5.

3:
C

la
ss

ifi
ca

ti
on

ac
cu

ra
ci

es
on

va
ri

ou
s

da
ta

se
ts

.
“m

.f.
c.

”
is

th
e

m
os

t
fr

eq
ue

nt
cl

as
s

ba
se

lin
e.

Bo
ld

fa
ce

in
di

ca
te

s
be

tt
er

ac
cu

ra
cy

th
an

th
e

be
st

un
st

ru
ct

ur
ed

re
gu

la
ri

ze
r

m
od

el
.

Ta
sk

D
at

as
et

A
cc

ur
ac

y
(%

)
m

.f
.c

.
la

ss
o

ri
dg

e
el

as
ti

c
se

nt
en

ce
pa

rs
e

tr
ee

B
ro

w
n

LD
A

20
N

sc
ie

nc
e

50
.1

3
90

.6
3

91
.9

0
91

.6
5

96
.2

0
92

.6
6

93
.0

4
93

.6
7

sp
or

ts
50

.1
3

91
.0

8
93

.3
4

93
.7

1
95

.1
0

93
.0

9
93

.7
1

94
.9

7
re

lig
io

n
55

.5
1

90
.5

2
92

.4
7

92
.4

7
92

.7
5

94
.9

8
92

.8
9

93
.0

3
co

m
pu

te
r

50
.4

5
85

.8
4

86
.7

4
87

.1
3

90
.8

6
88

.9
3

86
.3

6
89

.4
5

Se
nt

im
en

t
m

ov
ie

50
.0

8
78

.0
3

80
.4

5
80

.4
0

80
.7

2
81

.5
5

80
.3

4
78

.3
6

vo
te

58
.3

7
73

.1
4

72
.7

9
72

.7
9

73
.9

5
73

.7
2

66
.8

6
73

.1
4

Fo
re

ca
st

in
g

sc
ie

nc
e

50
.2

8
64

.0
0

66
.7

9
66

.2
3

67
.7

1
66

.4
2

69
.0

2
69

.3
9

bi
ll

87
.4

0
88

.3
6

87
.7

0
88

.4
8

88
.1

1
87

.9
8

88
.2

0
88

.2
7

Ta
bl

e
5.

4:
M

od
el

si
ze

s
(p

er
ce

nt
ag

es
of

no
nz

er
o

fe
at

ur
es

in
th

e
re

su
lt

in
g

m
od

el
s)

on
va

ri
ou

s
da

ta
se

ts
.

Ta
sk

D
at

as
et

M
od

el
si

ze
(%

)
m

.f
.c

.
la

ss
o

ri
dg

e
el

as
ti

c
se

nt
en

ce
pa

rs
e

tr
ee

B
ro

w
n

LD
A

20
N

sc
ie

nc
e

-
1

10
0

34
12

2
42

9
sp

or
ts

-
2

10
0

15
3

3
16

9
re

lig
io

n
-

.3
10

0
48

94
72

41
15

co
m

pu
te

r
-

2
10

0
24

10
5

24
8

Se
nt

im
en

t
m

ov
ie

-
10

10
0

54
83

87
59

12
vo

te
-

2
10

0
44

6
2

30
4

Fo
re

ca
st

in
g

sc
ie

nc
e

-
31

10
0

43
99

9
50

90
bi

ll
-

7
10

0
7

8
37

7
7

67

Ta
bl

e
5.

5:
A

n
ar

ti
cl

e
fr

om
N

ew
s

20
da

ta
se

t
ca

te
go

ri
ze

d
un

de
r
co

mp
.s

ys
.m

ac
.h

ar
dw

ar
e.

Ea
ch

lin
e

is
a

se
nt

en
ce

id
en

ti
fie

d
by

th
e

se
nt

en
ce

se
gm

en
te

r.
Th

er
e

ar
e

tw
el

ve
se

nt
en

ce
s

in
th

is
ar

ti
cl

e.
Se

le
ct

ed
se

nt
en

ce
s

in
th

e
le

ar
ne

r’
s

co
py

va
ri

ab
le

s
ar

e
hi

gh
lig

ht
ed

in
bl

ue
an

d
bo

ld
.W

e
al

so
di

sp
la

y
th

e
co

lo
r-

co
de

d
lo

g-
od

ds
sc

or
es

,a
s

di
sc

us
se

d
in

th
e

te
xt

(s
en

te
nc

e,
el

as
ti

c,
ri

dg
e,

la
ss

o)
ba

se
d

on
re

m
ov

in
g

ea
ch

se
nt

en
ce

fo
r

ea
ch

co
m

pe
ti

ng
m

od
el

.
W

e
on

ly
di

sp
la

y
sc

or
es

th
at

ar
e

gr
ea

te
r

th
an

10
−

3
in

ab
so

lu
te

va
lu

es
.

Se
nt

en
ce

N
eg

at
iv

e
Po

si
ti

ve

fr
om

:a
no

ny
m

iz
ed

su
bj

ec
t

:a
cc

el
er

at
in

g
th

e
m

ac
pl

us
...

;)
(0

.0
5)

li
ne

s
:1

5
w

e
’r

e
ab

ou
t

re
ad

y
to

ta
ke

a
bo

ld
st

ep
in

to
th

e
90

s
ar

ou
nd

he
re

by
(0

.0
7)

(0
.0

3)

ac
ce

le
ra

ti
ng

ou
r

ra
th

er
la

rg
e

co
ll

ec
ti

on
of

st
oc

k
m

ac
pl

us
co

m
pu

te
rs

.
(0

.0
2)

(0
.0

2)

ye
s

in
de

ed
,d

if
fic

ul
t

to
co

m
pr

eh
en

d
w

hy
an

yo
ne

w
ou

ld
w

an
t

to
ac

ce
le

ra
te

a
(0

.0
6)

(0
.0

2)

m
ac

pl
us

,b
ut

th
at

’s
an

ot
he

r
st

or
y

.
(0

.0
2) (0

.0
4)

su
ff

uc
e

it
to

sa
y

,w
e

ca
n

ge
t

ac
ce

le
ra

to
rs

ea
si

er
th

an
ne

w
m

ac
hi

ne
s

.
(0

.0
1)

he
y

,i
do

n
’t

m
ak

e
th

e
ru

le
s

...
(0

.0
1)

an
yw

ay
,o

n
to

th
e

pu
rp

os
e

of
th

is
po

st
:i

’m
lo

ok
in

g
fo

r
in

fo
on

(0
.0

4)
m

ac
pl

us
ac

el
er

at
or

s
.

(0
.0

1)

so
fa

r
,i

’v
e

fo
un

d
so

m
e

lit
on

th
e

no
vy

ac
ce

le
ra

to
r

an
d

th
e

m
ic

rm
ac

(0
.0

2)
(0

.0
2)

m
ul

ti
sp

ee
d

ac
ce

la
rt

or
.

(0
.0

2) (0
.0

4)
bo

th
lo

ok
ac

ce
pt

ab
le

,b
ut

iw
ou

ld
lik

e
to

he
ar

fr
om

an
yo

ne
w

ho
ha

s
tr

ie
d

th
es

e
.

(–
0.

01
)

al
so

,i
f

so
m

eo
ne

w
ou

ld
re

co
m

m
en

d
an

ot
he

r
ac

ce
le

ra
to

r
fo

r
th

e
m

ac
pl

us
,

(0
.0

6)
(0

.0
3)

i
’d

li
ke

to
he

ar
ab

ou
t

it
.

(0
.0

2)
(0

.0
6)

th
an

ks
fo

r
an

y
ti

m
e

an
d

ef
fo

rt
yo

u
ex

pe
nd

on
th

is
!

(–
0.

01
)

(–
0.

01
)

(–
0.

01
)

ka
rl

68

S

NP VP .

NP , NP ,

NN NN

ozzy osbourne

, NP PP

JJ CC JJ NN

ex-singer and main character

IN NP

of NP PP

DT JJ NN

the black sabbath

IN NP

of NP ADJP

JJ JJ NNS

good ole days

JJ

past

,

VP CC VP

VBZ

is

and ADVP VBD NP

RB

always

was DT JJ NN

a devout catholic

.

Figure 5.3: An example sentence from the 20N:religion dataset and its parse tree output.
The NP node corresponding to the ozzy osbourne phrase was driven to zero in our
model.

69

=
0

“a
ck

no
w

le
dg

m
en

t”
:w

or
ks

ho
p

ar
pa

pr
og

ra
m

se
ss

io
n

da
rp

a
re

se
ar

ch
pa

pe
rs

sp
ok

en
te

ch
no

lo
gy

sy
st

em
s

“d
oc

um
en

t
m

et
ad

at
a”

:u
ni

ve
rs

it
y

re
fe

re
nc

es
pr

oc
ee

di
ng

s
ab

st
ra

ct
w

or
k

in
tr

od
uc

ti
on

ne
w

be
en

re
se

ar
ch

bo
th

“e
qu

at
io

n”
:p

r
w

h
pr

ob
ab

ili
ty

w
ig

ra
m

co
nt

ex
t

z
pr

ob
ab

ili
ti

es
co

m
pl

et
e

“t
ra

ns
la

ti
on

”:
tr

an
sl

at
io

n
ta

rg
et

so
ur

ce
ge

rm
an

en
gl

is
h

le
ng

th
al

ig
nm

en
t

hy
po

th
es

is
tr

an
sl

at
io

ns
po

si
ti

on

6=
0

“t
ra

ns
la

ti
on

”:
ko

re
an

tr
an

sl
at

io
n

en
gl

is
h

ru
le

s
se

nt
en

ce
s

pa
rs

in
g

in
pu

t
ev

al
ua

ti
on

m
ac

hi
ne

ve
rb

“s
pe

ec
h

pr
oc

es
si

ng
”:

sp
ea

ke
r

id
en

ti
fic

at
io

n
to

pi
c

re
co

gn
it

io
n

re
co

gn
iz

er
m

od
el

s
ac

ou
st

ic
te

st
vo

ca
bu

la
ry

in
de

pe
nd

en
t

“p
ar

si
ng

”:
pa

rs
er

pa
rs

in
g

pr
ob

ab
il

is
ti

c
pr

ed
ic

ti
on

pa
rs

e
pe

ar
l

ed
ge

s
ch

ar
t

ph
as

e
th

eo
ry

“c
la

ss
ifi

ca
ti

on
”:

do
cu

m
en

ts
le

ar
ni

ng
ac

cu
ra

cy
ba

ye
s

cl
as

si
fic

at
io

n
w

t
do

cu
m

en
t

na
iv

e
m

et
ho

d
se

le
ct

io
n

Ta
bl

e
5.

6:
Ex

am
pl

es
of

LD
A

re
gu

la
ri

ze
r-

re
m

ov
ed

an
d

-s
el

ec
te

d
gr

ou
ps

(i
n

v)
in

th
e

fo
re

ca
st

in
g

sc
ie

nt
ifi

c
ar

ti
cl

es
da

ta
se

t.
W

or
ds

w
it

h
w

ei
gh

ts
(i

n
w

)
of

m
ag

ni
tu

de
gr

ea
te

r
th

an
10
−

3
ar

e
hi

gh
lig

ht
ed

in
re

d
(n

ot
ci

te
d)

an
d

bl
ue

(c
it

ed
).

=
0

un
de

rw
at

er
in

du
st

ri
al

sp
ot

te
d

hi
t

re
ap

ed
re

ju
ve

na
te

d
de

st
ro

ye
d

st
re

tc
he

d
un

de
rt

ak
e

sh
ak

e
ru

n
se

ei
ng

de
ve

lo
pi

ng
ti

ng
le

s
di

m
in

is
hi

ng
la

un
ch

in
g

fin
di

ng
in

ve
st

ig
at

in
g

re
ce

iv
in

g
m

ai
nt

ai
ni

ng
ad

ds
en

ga
ge

ex
pl

ai
ns

bu
ild

s

6=
0

fa
ilu

re
re

pr
od

uc
ti

ve
ig

ni
ti

on
re

pr
od

uc
ti

on
cy

an
am

id
pl

an
et

ar
y

ni
ko

la
fe

rt
ili

ty
as

tr
on

om
ic

al
ge

op
hy

si
ca

l#
lu

na
r

co
m

et
ar

y
su

pp
ly

in
g

as
tr

on
au

ti
ca

l
m

ag
ne

ti
c

at
m

os
ph

er
ic

st
d

un
de

rw
at

er
hp

r
w

or
ds

ca
n

ex
cl

us
iv

el
y

an
eu

tr
on

ic
in

du
st

ri
al

pe
op

le
s

ob
se

ss
iv

e
co

ng
en

it
al

ra
re

si
m

pl
e

bo
w

el
he

re
di

ta
ry

br
ea

st

Ta
bl

e
5.

7:
Ex

am
pl

es
of

Br
ow

n
re

gu
la

ri
ze

r-
re

m
ov

ed
an

d
-s

el
ec

te
d

gr
ou

ps
(i

n
v)

in
th

e
20

N
:s

ci
en

ce
ta

sk
.

#
de

no
te

s
an

y
nu

m
er

al
.W

or
ds

w
it

h
w

ei
gh

ts
(i

n
w

)
of

m
ag

ni
tu

de
gr

ea
te

r
th

an
10
−

3
ar

e
hi

gh
lig

ht
ed

in
re

d
(s

pa
ce

)
an

d
bl

ue
(m

ed
ic

al
).

70

5.4.3 Results

Table 5.3 shows the results of our experiments on the eight datasets. The results demon-

strate the superiority of structured regularizers. One of them achieved the best result

on all but one dataset.14 It is also worth noting that in most cases all variants of the

structured regularizers outperformed lasso, ridge, and elastic net.

Recall that, during learning, we make a copy in v of each weight in w for each

corresponding word token. w is used to make predictions; it seeks to be a consensus

among all of the vg. In practice, with many overlapping groups, the constraint v = Mw

is rarely satisfied exactly. Inspecting which vg are nonzero can give some insight into

what is learned, by showing which groups are treated as “relevant” by the algorithm

(i.e., “selected” vs. “removed”). For each of the proposed regularizers, we inspect the

model for tasks in which it performed reasonably well.

Sentence regularizer We can see that the sentence regularizer performed well on the

topic categorization tasks. Table 5.5 shows an example of selected sentences in a training

instance from the 20N:computer task. We can see that in this particular case, the learner

selected informative sentences and removed uninformative ones. We also show the

log-odds scores for removing each sentence. The log-odds score is defined here as

the log of the model probability of the class label for an instance (document) using all

sentences minus the log of the probability of the class label using all sentences except

one. Intuitively, the scores indicate how much the sentence affects the model’s decision.

From the log-odds scores, we can see our model tends to make its decision mostly based

on the sentences it “selects.” We observed that in some cases (e.g., religion, vote, etc.)

the model selected most sentences, whereas in other cases (e.g., dvd, electronics, etc.)

the model excluded many sentences. We believe that the flexibility of our model to

include or exclude sentences through validation on development data contributes to the

performance improvements.

Parse tree regularizer The parse tree regularizer performed the best for the movie

review dataset. The task is to predict sentence-level sentiment, so each training example

14This “bill” dataset, where they offered no improvement, is the largest by far (37,850 documents), and
therefore the one where regularizers should matter the least. Note that the differences are small across
regularizers for this dataset.

71

is a sentence. Since constituent-level annotations are available for this dataset, we only

constructed groups for neutral constituents (i.e., we drive neutral constituents to zero

during training).It has been shown that syntactic information is helpful for sentence-

level predictions (Socher et al., 2013), so the parse tree regularizer is naturally suitable

for this task. For the parse tree regularizer, we inspect the model for the 20N:religion

task, in which it also performed well. We observed that the model included most of the

sentences (root node groups), but in some cases removed phrases from the parse trees.

For example, Fig. 5.3 shows an example sentence and parts that are driven to zero by

our regularizer. For this sentence, the model decided the verb phrase ozzy osbourne is

not helpful for the atheist vs. christian prediction, hence driven to zero.

LDA regularizer For the LDA regularizer, we inspect zero and nonzero groups (top-

ics) in the forecasting scientific articles task. The task is to predict whether an article

will be cited or not within three years after publication. Regularizers that exploit the

knowledge of semantic relations (e.g., topical categories), such as the LDA regularizer,

are therefore suitable for this type of prediction. In this task, we observed that 642 out

of 1,000 topics are driven to zero by our model. Table 5.6 shows examples of zero and

nonzero topics for the dev.-tuned hyperparameter values. We can see that in this par-

ticular case, the model kept meaningful topics such as machine translation and speech

recognition, and discarded general topics that are not correlated with the content of the

papers (e.g., acknowledgement, document metadata, equation, etc.). Interestingly, we

also observed that there are translation topics that were driven to zero. Since the task is

to predict whether an article will be cited or not, perhaps words in this translation topics

are more general of machine translation papers, so they are not indicative of citations.

Treating topics as groups contributes to the performance improvements since it informs

the model about semantic relations among the words in the corpus. Note that when

there are two words that are equally predictive, the lasso tends to pick one and exclude

the other. Grouping features can help the model choose the “right” word that is better

for generalization.

Brown regularizer For the Brown cluster regularizer, we inspect the model from the

20N:science task. 771 out of 5,775 groups were driven to zero for the best model tuned

72

on the development set. Examples of zero and nonzero groups are shown in Table 5.7.

Similar to the LDA example, the groups that were driven to zero tend to contain generic

words that are not relevant to the predictions. We can also see the tree structure effect in

the regularizer. The group { underwater, industrial } was driven to zero, but not once it

combined with other words such as hpr, std, peoples. We also observed that the groups

often contain words that are not intuitive that they should belong to the same groups

(the group structures are not as good as the LDA regularizer). This explains why the

LDA regularizer tends to perform better on our collection of datasets. Note that we

ran Brown clustering on the training documents; running it on a larger collection of

(unlabeled) documents relevant to the prediction task is worth exploring in future work

(i.e., semi-supervised learning).

Topic and cluster features. Another way to incorporate LDA topics and Brown clusters

into a linear model is by adding them as additional features. For the 20N datasets,

we also ran lasso, ridge, and elastic net with additional LDA topic and Brown cluster

features.15 Note that these new baselines use more features than our model. We can

also add these additional features to our model and treat them as regular features (i.e.,

they do not belong to any groups and are regularized with standard regularizer such

as the lasso penalty). The results in Table 5.8 show that for these datasets, models that

incorporate this information through structured regularizers outperformed models that

encode this information as additional features in 4 out 4 of cases (LDA) and 2 out of 4

cases (Brown). Sparse models with Brown clusters appear to overfit badly; recall that the

clusters were learned on only the training data—clusters from a larger dataset would

likely give stronger results. Of course, better performance might also be achieved by

incorporating new features as well as using structured regularizers.

These results demonstrate that linguistic structure in the data can be used to improve

bag-of-words models, through structured regularization. State-of-the-art approaches to

some of these problems have used additional features and representations (Yessenalina

et al., 2010; Socher et al., 2013). For example, for the vote sentiment analysis datasets,

latent variable models of Yessenalina et al. (2010) achieved a superior result of 77.67%.

To do so, they sacrificed convexity and had to rely on side information for initialization.

15For LDA, we took the top 10 words in a topic as a feature. For Brown clusters, we add a cluster as an
additional feature if its size is less than 50.

73

Table 5.8: Classification accuracies on the 20N datasets for lasso, ridge, and elastic net
models with additional LDA features (top) and Brown cluster features (bottom). The
last column shows structured regularized models from Table 5.3.

Dataset
+ LDA features LDA

lasso ridge elastic reg.
science 90.63 91.90 91.90 93.67
sports 91.33 93.47 93.84 94.97

religion 91.35 92.47 91.35 93.03
computer 85.20 86.87 86.35 88.42

Dataset
+ Brown features Brown

lasso ridge elastic reg.
science 86.96 90.51 91.14 93.04
sports 82.66 88.94 85.43 93.71

religion 94.98 96.93 96.93 92.89
computer 55.72 96.65 67.57 86.36

Our experimental focus is on a controlled comparison between regularizers for a fixed

model family (the simplest available, linear with bag-of-words features). However, the

improvements offered by our regularization methods can be applied in future work to

other model families with more carefully engineered features, metadata features (espe-

cially important in forecasting), latent variables, etc. In particular, note that the penalties

for other kinds of weights (e.g., metadata) can be penalized conventionally, or incorpo-

rated into the structured regularization where it makes sense to do so (e.g., n-grams, as

in Nelakanti et al., 2013).

Runtime In terms of running time (wall clock), our model is slightly slower than stan-

dard regularizers. For example, for the sports dataset, learning models with the best

hyperparameter value(s) for lasso, ridge, and elastic net took 27, 18, and 10 seconds,

respectively, on an Intel Xeon CPU E5645 2.40 GHz machine with 8 processors and 24

GB RAM. Our sentence regularizer model with the best hyperparameter values took 33

seconds to reach convergence. As mentioned previously, the major drawback is the need

to do grid search for each of the hyperparameters: λsen, λlas, and ρ, whereas lasso and

ridge only have one hyperparameter and elastic net has two hyperparameters. How-

ever, note that this grid search can also be done in parallel, since they are not dependent

on each other, so given enough processors our method is only marginally slower than

74

standard regularizers.

In future work, smaller or larger structures—as well as combinations of them (e.g.,

sentence+Brown+LDA)—might be used. One particularly interesting direction is defin-

ing each document as a group. It has an intuitive connection with support vectors in

support vector machines (Cortes and Vapnik, 1995), although further investigation is

required to determine its effectiveness.

5.5 Conclusion

In this chapter, we introduced a new sparse overlapping group lasso regularizer for text

modeling inspired by the structure inherent in linguistic data. We also showed how to

efficiently perform learning for sparse group lasso with thousands to millions of over-

lapping groups using the alternating direction method of multipliers. We empirically

demonstrated that our model consistently outperformed competing models on various

datasets for various real-world document categorization tasks.

75

Chapter 6

Future Work

In this thesis, we presented instantiations of sparse models for text categorization, word

embeddings, and temporal models of text and empirically demonstrated benefits of

sparse models in these problems. We also showed efficient optimization methods for

the proposed instantiations of sparse models. There are many interesting directions

that can be explored further in the future. We discuss four of them in the following.

Structured Sparse Coding with Overcomplete Representation In Chapter 4, we pro-

pose to use sparse coding to learn word representations and obtain promising results.

However, our approach is still limited to low-dimensional embeddings of words due

to computational complexity of the learning procedure. Sparse, overcomplete repre-

sentations have been shown to increase separability and be more stable to noise in

many applications (Olshausen and Field, 1997; Lewicki and Sejnowski, 2000; Donoho

et al., 2006), including in learning word representations in NLP (Faruqui et al., 2015).

However, due the high-dimensional nature of text data, overcomplete representations of

word embeddings are created by first inducing low-dimensional embeddings of words

in a two-step process. Future work can explore overcomplete representations for word

embeddings directly from high-dimensional word representations. In order to do this,

we need to develop a very efficient optimization method for structured sparse coding

that can handle hundreds of thousands of words, hundreds of thousands of contexts,

and hundreds of thousands (or possibly millions) of code space.

76

Structured Sparsity in the Output Space Another interesting direction of future work

is the case when we can define structures over the output (label) space. For example,

Kim and Xing (2008) consider the case when the output space can be represented as a

tree in the multi-task setting. In statistical text analysis, there are many problems where

we can define structures over the output space. For example, in named entity classifi-

cation, the output space might form a tree structure. Consider the sentence President

Obama presented Dr. Maha Al-Muneef with an International Women of Courage award.

We assume that the named entities have been tagged, and there are three named entities

in this sentence: President Obama, Dr. Maha Al-Muneef, and International Women of

Courage. We want to classifty President Obama into our entity classes. For example, it

can belong to three classes: human, president, Barack Obama. However, we know that

an entity in class Barack Obama and president has to also be of class human, so human

can be the root of this label tree. Note that in our case, the labels for a named entity

do not necessarily correspond to a non-branching part of the label tree. For example, if

there are classes professor, male, and female, we know that a president can be either

male or female, but so does a professor. Designing a sparse model that can make use

of this type of structure in the output space is useful to create a better named entity

classifier. An important challenge is that the number of classes can be huge, so we also

need a very efficient learning algorithm.

Automatic Learning of Group Structures In this thesis, we show how we can define

linguistically-motivated group structures for the group lasso to encode linguistic knowl-

edge into statistical NLP models. One promising direction is to let a machine learning

model discover what kind of grouping structure is useful for a given task. Bayesian op-

timization (Brochu et al., 2010; Hutter et al., 2011; Bergstra et al., 2011; Snoek et al., 2012;

Yogatama and Smith, 2015) is one promising approach to automatically learn group

structures. We can treat the problem of finding the best partition of the feature space as

a hyperparameter optimization problem and apply Bayesian optimization techniques to

efficiently search this space. Treating the problem of finding the best grouping structures

as a hyperparameter problem opens up many possibilities, including transfer learning

and multitask learning of grouping strucrures from many related text datasets or NLP

tasks (Bardenet et al., 2013; Swersky et al., 2013; Yogatama and Mann, 2014).

77

Structured Sparse Regularization of Deep Models Deep learning methods have en-

joyed considerable success in natural language processing (Li et al., 2014; Kalchbrenner

et al., 2014; Johnson and Zhang, 2015; Dyer et al., 2015). Deep models typically have a

large number of parameters, owing to their hierarchical architectures, so regularization

becomes a crucial component in succesfully training deep models. Dropout (Srivastava

et al., 2014) is a popular regularization technique in deep models. It operates by ran-

domly dropping hidden units along with their connections from the neural networks

during training. Recently, there has been an attempt to induce more structures in the

hidden units using nested dropout (Rippel et al., 2014), where the hidden units are

grouped into nested sets before performing dropout. This technique produces repre-

sentations similar to the structured penalty we introduced in Chapter 4. One drawback

of dropout is that it slows down training procedure considerably, since we ignore some

hidden units at each iteration. It is interesting to see empirical and theoretical compar-

isons between structured sparse penalties and nested dropout for learning deep models.

Since the resulting representations exhibit similar sparsity patterns, it is possible that ap-

plying structured sparse regularizers provides a more efficient way to regularize hidden

units of deep networks.

78

Bibliography

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., and Soroa, A. (2009). A study

on similarity and relatedness using distributional and wordnet-based approaches. In

Proc. of NAACL-HLT.

Amaldi, E. and Kann, V. (1998). On the approximation of minimizing non zero variables

or unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237–260.

Andrew, G. and Gao, J. (2007). Scalable training of l1-regularized log-linear models. In

Proc. of ICML.

Angelosante, D. and Giannakis, G. B. (2009). RLS-weighted lasso for adaptive estimation

of sparse signals. In Proc. of ICASSP.

Angelosante, D., Giannakis, G. B., and Grossi, E. (2009). Compressed sensing of time-

varying signals. In Proc. of ICDSP.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2011). Convex Optimization with

Sparsity-Inducing Norms. The MIT Press.

Bamman, D., Dyer, C., and Smith, N. A. (2014). Distributed representations of situated

language. In Proc. of ACL.

Bardenet, R., Brendel, M., Kegl, B., and Sebag, M. (2013). Collaborative hyperparameter

tuning. In Proc. of ICML.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

Belmonte, M. A. G., Koop, G., and Korobilis, D. (2012). Hierarchical shrinkage in time-

varying parameter models. Working paper.

79

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic

language model. Journal of Machine Learning Research, 3, 1137–1155.

Bergstra, J., Bardenet, R., Bengio, Y., and Kegl, B. (2011). Algorithms for hyper-parameter

optimization. In Proc. of NIPS.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of

Machine Learning Research, 3, 993–1022.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2008). Time Series Analysis: Forecasting

and Control. Wiley Series in Probability and Statistics.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations

and Trends in Machine Learning, 3(1), 1–122.

Brochu, E., Brochu, T., and de Freitas, N. (2010). A Bayesian interactive optimization

approach to procedural animation design. In Proc. of ACM SIGGRAPH/Eurographics

Symposium on Computer Animation.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based

n-gram models of natural language. Computational Linguistics, 18, 467–479.

Bruni, E., Boleda, G., Baroni, M., and Tran, N.-K. (2012). Distributional semantics in

technicolor. In Proc. of ACL.

Caron, F., Bornn, L., and Doucet, A. (2012). Sparsity-promoting bayesian dynamic linear

models. arXiv 1203.0106.

Charles, A. S. and Rozell, C. J. (2012). Re-weighted `1 dynamic filtering for time-varying

sparse signal estimation. arXiv 1208.0325.

Chen, S. F. and Rosenfeld, R. (2000). A survey of smoothing techniques for me models.

IEEE Transactions on Speech and Audio Processing, 8(1), 37–50.

Chen, X., Lin, Q., Kim, S., Carbonell, J. G., and Xing, E. P. (2011). Smoothing proximal

gradient method for general structured sparse learning. In Proc. of UAI.

80

Collins, A. M. and Quillian, M. R. (1969). Retrieval time from semantic memory. Journal

of Verbal Learning and Verbal Behaviour, 8, 240–247.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuska, P. (2011).

Natural language processing (almost) from scratch. Journal of Machine Learning Re-

search, 12, 2461–2505.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),

273–297.

Davis, G., Mallat, S., and Avellaneda, M. (1997). Greedy adaptive approximation. Journal

of Constructive Approximation, 13, 57–98.

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features of random

fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 380–393.

Donoho, D. L., Elad, M., and Temlyakov, V. N. (2006). Stable recovery of sparse over-

complete representations in the presence of noise. IEEE Transactions on Information

Theory, 52(1).

Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward back-

ward splitting. Journal of Machine Learning Research, 10, 2899–2934.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12, 2121–

2159.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015). Transition-

based dependency parsing with stack long short-term memory. In Proc. of ACL.

Eisenstein, J., Smith, N. A., and Xing, E. P. (2011a). Discovering sociolinguistic associa-

tions with structured sparsity. In Proc. of ACL.

Eisenstein, J., Ahmed, A., and Xing, E. P. (2011b). Sparse additive generative models of

text. In Proc. of ICML.

Faruqui, M. and Dyer, C. (2014). Improving vector space word representations using

multilingual correlation. In Proc. of EACL.

81

Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C., and Smith, N. A. (2015). Sparse binary

word vector representations. In Proc. of ACL.

Figueiredo, M. A. T. (2002). Adaptive sparseness using jeffreys’ prior. In Proc. of NIPS.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., and Ruppin,

E. (2002). Placing search in context: The concept revisited. ACM Transactions on

Information Systems, 20(1), 116–131.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text

classification. Journal of Machine Learning Research, 3, 1289–1305.

Friedman, J., Hastie, T., and Tibshiran, R. (2010). A note on the group lasso and a sparse

group lasso. Technical report, Stanford University.

Fyshe, A., Talukdar, P. P., Murphy, B., and Mitchell, T. M. (2014). Interpretable semantic

vectors from a joint model of brain- and text- based meaning. In Proc. of ACL.

Goldstein, T. and Osher, S. (2009). The split bregman method for l1-regularized prob-

lems. SIAM Journal on Imaging Sciences, 2(2), 323–343.

Gutmann, M. and Hyvarinen, A. (2010). Noise-contrastive estimation: A new estimation

principle for unnormalized statistical models. In Proc. of AISTATS.

Halawi, G. and Dror, G. (2014). The word relatedness mturk-771 test collection.

Hestenes, M. R. (1969). Multiplier and gradient methods. Journal of Optimization Theory

and Applications, 4, 303–320.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1), 55–67.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word repre-

sentations via global context and multiple word prototypes. In Proc. of ACL.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based optimiza-

tion for general algorithm configuration. In Proc. of LION-5.

Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Group lasso with overlap and graph lasso.

In Proc. of ICML.

82

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2011a). Proximal methods for hier-

archical sparse coding. Journal of Machine Learning Research, 12, 2297–2334.

Jenatton, R., Audibert, J.-Y., and Bach, F. (2011b). Structured variable selection with

sparsity-inducing norms. Journal of Machine Learning Research, 12, 2777–2824.

Johnson, R. and Zhang, T. (2015). Effective use of word order for text categorization

with convolutional neural networks. In Proc. of NAACL.

Joshi, M., Das, D., Gimpel, K., and Smith, N. A. (2010). Movie reviews and revenues:

An experiment in text regression. In Proc. of NAACL.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural net-

work for modelling sentences. In Proc. of ACL.

Kim, S. and Xing, E. P. (2008). Feature selection via block-regularized regression. In

Proc. of UAI.

Kogan, S., Levin, D., Routledge, B. R., Sagi, J. S., and Smith, N. A. (2009). Predicting risk

from financial reports with regression. In Proc. of HLT-NAACL.

Kong, L., Rush, A. M., and Smith, N. A. (2015). Transforming dependencies into phrase

structures. In Proc. of NAACL-HLT.

Lebret, R. and Collobert, R. (2014). Word embeddings through hellinger PCA. In Proc.

of EACL.

Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2007). Efficient sparse coding algorithms.

In Proc. of NIPS.

Lee, H., Raina, R., Teichman, A., and Ng, A. Y. (2009). Exponential family sparse coding

with application to self-taught learning. In Proc. of IJCAI.

Levy, O. and Goldberg, Y. (2014). Neural word embeddings as implicit matrix factoriza-

tion. In Proc. of NIPS.

Lewicki, M. and Sejnowski, T. (2000). Learning overcomplete representations. Neural

computation, 12(2), 337–365.

83

Li, J., Li, R., and Hovy, E. (2014). Recursive deep models for discourse parsing. In Proc.

of EMNLP.

Lin, T.-H. and Kung, H. (2014). Stable and efficient representation learning with non-

negativity constraints. In Proc. of ICML.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale

optimization. Mathematical Programming B, 45(3), 503–528.

Liu, J. and Ye, J. (2010). Moreau-yosida regularization for grouped tree structure learn-

ing. In Proc. of NIPS.

Luong, M.-T., Socher, R., and Manning, C. D. (2013). Better word representations with

recursive neural networks for morphology. In Proc. of CONLL.

Lv, X., Bi, G., and Wan, C. (2011). The group lasso for stable recovery of block-sparse

signal representations. IEEE Transactions on Signal Processing, 59(4), 1371–1382.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). Online learning for matrix factoriza-

tion and sparse coding. Journal of Machine Learning Research, 11, 19–60.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011a). Online

learning of structured predictors with multiple kernels. In Proc. of AISTATS.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011b).

Structured sparsity in structured prediction. In Proc. of EMNLP.

Martins, A. F. T., Yogatama, D., Smith, N. A., and Figueiredo, M. A. T. (2014). Structured

sparsity in natural language processing: Models, algorithms, and applications. In

Tutorial at EACL.

Mikolov, T., Martin, K., Burget, L., Cernocky, J., and Khudanpur, S. (2010). Recurrent

neural network based language model. In Proc. of Interspeech.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013a). Distributed

representations of words and phrases and their compositionality. In Proc. of NIPS.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013b). Efficient estimation of word

representations in vector space. In Proc. of ICLR Workshop.

84

Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of the ACM,

38(11), 39–41.

Miller, G. A. and Charles, W. G. (1991). Contextual correlates of semantic similarity.

Language and Cognitive Processes, 6(1), 1–28.

Mnih, A. and Hinton, G. (2008). A scalable hierarchical distributed language model. In

Proc. of NIPS.

Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm for training neural proba-

bilistic language models. In Proc. of ICML.

Moreau, J. J. (1963). Fonctions convexes duales et points proximaux dans un espace

hilbertien. CR Acad. Sci. Paris Sńer. A Math, 255, 2897–2899.

Murphy, B., Talukdar, P., and Mitchell, T. (2012). Learning effective and interpretable

semantic models using non-negative sparse embedding. In Proc. of COLING.

Nakajima, J. and West, M. (2012). Bayesian analysis of latent threshold dynamic models.

Journal of Business and Economic Statistics.

Nelakanti, A., Archambeau, C., Mairal, J., Bach, F., and Bouchard, G. (2013). Structured

penalties for log-linear language models. In Proc. of EMNLP.

Nigam, K., McCallum, A., Thrun, S., and Mitchell, T. (2000). Text classification from

labeled and unlabeled documents using em. Machine Learning, 39(2-3), 103–134.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set:

A strategy employed by v1? Vision Research, 37(23), 3311 – 3325.

Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and

Trends in Information Retrieval, 2(1–2), 1–135.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word

representation. In Proc. of EMNLP.

Petrov, S. and Klein, D. (2007). Improved inference for unlexicalized parsing. In Proc. of

HLT-NAACL.

85

Petrov, S. and Klein, D. (2008). Sparse multi-scale grammars for discriminative latent

variable parsing. In Proc. of EMNLP.

Powell, M. J. D. (1969). A method for nonlinear constraints in minimization problems.

In R. Fletcher, editor, Optimization, pages 283–298. Academic Press.

Qin, Z. T. and Goldfarb, D. (2012). Structured sparsity via alternating direction methods.

Journal of Machine Learning Research, 13, 1435–1468.

Radev, D. R., Muthukrishnan, P., and Qazvinian, V. (2009). The ACL anthology net-

work corpus. In Proc. of ACL Workshop on Natural Language Processing and Information

Retrieval for Digital Libraries.

Radinsky, K., Agichtein, E., Gabrilovich, E., and Markovitch, S. (2011). A word at a time:

Computing word relatedness using temporal semantic analysis. In Proc. of WWW.

Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2006). Efficient learning of sparse

representations with an energy-based model. In Proc. of NIPS.

Raposo, A., Mendes, M., and Marques, J. F. (2012). The hierarchical organization of

semantic memory: Executive function in the processing of superordinate concepts.

NeuroImage, 59, 1870–1878.

Ratnaparkhi, A., Roukos, S., and Ward, R. T. (1994). A maximum entropy model for

parsing. In Proc. of ICSLP.

Reynar, J. C. and Ratnaparkhi, A. (1997). A maximum entropy approach to identify-

ing sentence boundaries. In Proc. of the Fifth Conference on Applied Natural Language

Processing.

Rippel, O., Gilbert, M. A., and Adams, R. P. (2014). Learning ordered representations

with nested dropout. In Proc. of ICML.

Rubenstein, H. and Goodenough, J. B. (1965). Contextual correlates of synonymy. Com-

munications of the ACM, 8(10), 627–633.

Schutze, H. (1998). Automatic word sense discrimination. Computational Linguistics -

Special issue on word sense disambiguation, 24(1), 97–123.

86

Snoek, J., Larrochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of

machine learning algorithms. In Proc. of NIPS.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C., Ng, A., and Potts, C. (2013).

Recursive deep models for semantic compositionality over a sentiment treebank. In

Proc. of EMNLP.

Spearman, C. (1904). The proof and measurement of association between two things.

The American Journal of Psychology, 15, 72–101.

Sra, S. (2012). Scalable nonconvex inexact proximal splitting. In Proc. of NIPS.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

(2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15, 1929–1958.

Stojnic, M., Parvaresh, F., and Hassibi, B. (2009). On the reconstruction of block-sparse

signals with an optimal number of measurements. Signal Processing, IEEE Transactions

on, 57(8), 3075–3085.

Su, J., Sayyad-Shirabad, J., and Matwin, S. (2011). Large scale text classiøcation using

semi-supervised multinomial naive bayes. In Proc. of ICML.

Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task bayesian optimization. In

Proc. of NIPS.

Tackstrom, O. and McDonald, R. (2011). Discovering fine-grained sentiment with latent

variable structured prediction models. In Proc. of ECIR.

Thomas, M., Pang, B., and Lee, L. (2006). Get out the vote: Determining support or

opposition from congressional floor-debate transcripts. In Proc. of EMNLP.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal

Statistical Society B, 58(1), 267–288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and

smoothness via the fused lasso. Journal of the Royal Statistical Society B, 67(1), 91–108.

87

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: A simple and general

method for semi-supervised learning. In Proc. of ACL.

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space models of

semantics. Journal of Artificial Intelligence Research, 37, 141–188.

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine

Learning Research, 9, 2579–2605.

Volpi, L. (2003). Eigenvalues and eigenvectors of tridiagonal uniform matrices.

Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online

optimization. Journal of Machine Learning Research, 11, 2543–2596.

Yang, D. and Powers, D. M. W. (2006). Verb similarity on the taxonomy of wordnet. In

Proc. of GWC.

Yano, T., Smith, N. A., and Wilkerson, J. D. (2012). Textual predictors of bill survival in

congressional committees. In Proc. of NAACL.

Yessenalina, A., Yue, Y., and Cardie, C. (2010). Multi-level structured models for docu-

ment sentiment classification. In Proc. of EMNLP.

Yogatama, D. and Mann, G. (2014). Efficient transfer learning method for automatic

hyperparameter tuning. In Proc. of AISTATS.

Yogatama, D. and Smith, N. A. (2014a). Linguistic structured sparsity in text categoriza-

tion. In Proc. of ACL.

Yogatama, D. and Smith, N. A. (2014b). Making the most of bag of words: Sentence

regularization with alternating direction method of multipliers. In Proc. of ICML.

Yogatama, D. and Smith, N. A. (2015). Bayesian optimization of text representations. In

Proc. of EMNLP.

Yogatama, D., Heilman, M., O’Connor, B., Dyer, C., Routledge, B. R., and Smith, N. A.

(2011). Predicting a scientific community’s response to an article. In Proc. of EMNLP.

Yogatama, D., Routledge, B. R., and Smith, N. A. (2013). A sparse and adaptive prior

for time-dependent model parameters. arXiv 1310.2627.

88

Yogatama, D., Faruqui, M., Dyer, C., and Smith, N. A. (2015). Learning word represen-

tations with hierarchical sparse coding. In Proc. of ICML.

Yuan, L., Liu, J., and Ye, J. (2013). Efficient methods for overlapping group lasso. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2104–2116.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society, Series B, 68(1), 49–67.

Zhang, Y. and Yeung, D.-Y. (2010). A convex formulation for learning task relationships

in multi-task learning. In Proc. of UAI.

Zhao, P., Rocha, G., and Yu, B. (2009). The composite and absolute penalties for grouped

and hierarchical variable selection. The Annals of Statistics, 37(6A), 3468–3497.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society, Series B, 67, 301–320.

Zweig, G. and Burges, C. J. C. (2011). The microsoft research sentence completion chal-

lenge. Technical report, Microsoft Research Technical Report MSR-TR-2011-129.

89

