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Abstract

The automated analysis of video data becomes ever more important as we are inundated

with the ocean of videos generated every day, thus leading to much research in tasks

such as content-based video retrieval, pose estimation and surveillance video analysis.

Current state-of-the-art algorithms in these tasks are mainly supervised, i.e. the algo-

rithms learn models based on manually labeled training data. However, it is difficult

to manually collect large quantities of high quality labeled data. Therefore, in this the-

sis, we propose to circumvent this problem by automatically harvesting and exploiting

useful information from unlabeled video based on 1) out-of-domain external knowledge

sources and 2) internal constraints in video. Two tasks in the surveillance domain were

targeted: multi-object tracking and pose estimation.

Being able to localize and identify each individual at each time instant would be ex-

tremely useful in surveillance video analysis. We tackled this challenge by formulating

the problem as an identity-aware multi-object tracking problem. An existing out-of-

domain knowledge source: face recognition, and an internal constraint: the spatial-

temporal smoothness constraint were used in a joint optimization framework to localize

each person. The spatial-temporal smoothness constraint was further utilized to auto-

matically collect large amounts of multi-view person re-identification training data. This

data was utilized to train deep person re-identification networks which further enhanced

tracking performance on our 23-day 15-camera data set which consists of 4,935 hours of

video. Results show that our tracker has the ability to locate a person 57% of the time

with 73% precision.

Reliable pose estimation in video enables us to understand the actions of a person,

which would be very useful in surveillance video analysis. However, domain differences

between surveillance videos and the pose detector’s training set often cause degradation

in pose estimation performance. Therefore, an unsupervised domain adaptation method

based on constrained self-training was proposed. By utilizing an out-of-domain image-

based pose detector (external knowledge) and spatial-temporal smoothness constraints

(internal constraints), our method can automatically collect in-domain pose estimation

training data from video for domain adaptation. Results show that the pose detector

trained on in-domain data collected with our unsupervised approach is significantly more

effective than models trained on more out-of-domain data.

Finally, based on our improved multi-object tracker and pose detector, long-term anal-

yses of nursing home resident behavior were performed. Results show that the output

of our tracker was accurate enough to generate for each nursing home resident a rea-

sonable “visual diary”, which not only shows the activities performed throughout the



ii

day, but also accumulated long-term statistics which are simply too tedious to compute

manually. Furthermore, pose detectors were utilized to detect eating behavior of nurs-

ing home residents, which would also have the potential to aid the assessment of health

status of nursing home residents.

In conclusion, our results demonstrate the effectiveness of utilizing external knowledge

and internal constraints to enhance multi-object tracking and pose estimation. The

methods proposed all attempt to automatically harvest useful information directly from

unlabeled videos. Based on the promising experimental results, we believe that the

lessons learned could be generalized to other video analysis problems, which could also

benefit from utilizing external knowledge or internal constraints in an unsupervised

manner, thus reducing the need to manually label data. Furthermore, our proposed

methods potentially open the door to automated analysis on the ocean of surveillance

video generated every day.
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Chapter 1

Introduction

Automatic understanding of video content has a wide variety of applications including,

video retrieval [1], surveillance [2] and health care [3]. Furthermore, automated analysis

becomes ever more important as we are inundated by the ocean of user-generated and

surveillance videos created every day. Therefore, much research has focused on designing

effective algorithms to analyze the content of videos.

In general, supervised methods have achieved promising results in image and video

analysis tasks [4–8]. Supervised methods heavily rely on labeled training data to create

models which can better generalize to unseen data. To achieve effective generalization,

the training data set needs to 1) be large enough in quantity and 2) match the distribu-

tion of the testing data. Large enough training data is the key to the success of many

algorithms [9], such as the success of deep neural networks in object recognition [5],

and according to statistical machine learning theory [10], more data can decrease the

difference between testing error and training error. Also, it is required that the training

data has the same distribution as the testing data. If the distributions do not match,

performance will significantly degrade [11]. The two aforementioned points motivate us

to collect more training data from diverse sources such that the training distribution

can better approximate the true testing distribution.

Training data can be collected and labeled manually, which is how many existing image

and video data sets were collected [12–14]. However, manual labeling is a difficult and

very labor intensive process. To alleviate the tediousness of labeling, some researchers

have created data sets such as ImageNet [12] with crowdsourcing based on Amazon

Mechanical Turk. Much research has also gone into how to maximize the utility of

crowdsourcing [15, 16]. Another direction of data collection is through “gamification”

[17, 18], where the data annotation task is transformed into a game so that as humans

play the game, more annotations are collected. Though these methods have shown to

1



Introduction 2

be effective, crowdsourcing requires actual money, and gamification requires designing

an interesting game, which is challenging. Also, the manual annotation process needs to

be repeated whenever one acquires data from a new domain. Furthermore, for privacy

sensitive data, it may not be convenient for the public to annotate the data. Finally,

data evolve over time, thus forming new labels of interest. So what was labeled in

the past may no longer be of interest now, and to stay up-to-date, the labeling process

needs to be run continuously. Therefore, based on the aforementioned shortcomings, one

interesting question becomes whether one could alleviate the process of data annotation

by trying to directly collect useful information from unlabeled data.

In this thesis, we are interested in exploring the idea of automatically extracting useful

information directly from unlabeled data to enhance the task at hand. We believe that

the key to unlocking the useful information hidden in the large amounts of unlabeled

data available is to rely on two main sources of information: 1) existing out-of-domain

knowledge sources and 2) internal constraints in video.

Exploiting External Knowledge

Instead of collecting manual annotations for each specific task, one can try utilizing the

already existing highly related external resources to tackle the task. For example, if

one would like to train a person detector for a specific traffic scene, instead of directly

annotating people in the scene, one can start with an external generic object detector and

adapt it to the scene with the aid of some internal constraints [19, 20]. Another example

is tackling the semantic segmentation task with existing external but related knowledge.

Collecting semantic segmentation training data is very expensive because it requires

delineating the boundaries of each object. Therefore, [21, 22] utilized existing cheap

image/video-level labels and other constraints to learn a classifier to perform semantic

segmentation. [23] utilized detection proposals from an external object detector as a

starting point for their semantic segmentation algorithm. In sum, there are already

many existing resources available to aid us in tackling a new task on a new data set,

thus potentially alleviating the need for manual labeling.

Utilizing Internal Constraints

Internal constraints refer to specific patterns which the data set of interest follows in most

cases. For example, objects in a video should move smoothly is an internal constraint

heavily used in tracking. A very exciting scenario to exploit internal constraints is the

automatic collection of training data from unlabeled data. Many automated systems

have been proposed to acquire knowledge from the vast amount of unstructured and
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unlabeled information readily available on the Internet. These systems heavily rely on

internal constraints of the data to harvest useful information. For text, the Never Ending

Language Learner (NELL) [24] automatically learned facts of different entities from

unstructured web documents. An example constraint which was used in web documents

is: entities enclosed in the same HTML list structure are highly likely to be entities of

similar types [25]. In images, the Never Ending Image Learner (NEIL) [26] learned facts

of different entities from unlabeled images. Constraints utilized were common sense

relationships between categories such as “wheel has round shape” or “pyramid is found

in Egypt”. Learn EVerthing about ANything (LEVAN) [27] is another image based

system which utilized image search engines and text language models to automatically

learn object detectors. Other work has proposed to utilize unlabeled video data to

enhance image analysis tasks. [28] utilized unlabeled videos to collect training examples

to learn improved static image action detectors. [29–31] improved object detection by

harvesting positive examples from unlabeled videos in an unsupervised fashion. Overall,

the aforementioned systems share two core concepts:

• They can operate on unlabeled data in a (nearly)1 automatic way.

• They utilized assumptions or constraints to enable them to extract useful infor-

mation from unlabeled data.

These two points combined together enabled these methods to exploit very large amounts

of unlabeled data readily available on the Internet. A very attractive property of these

systems is that even if the assumptions or constraints utilized are very strict, i.e. a high

precision low recall scenario, the system is still able to collect a lot of useful information

because there is a near infinite amount of unlabeled data. Colloquially speaking, even

if 99.99% of the data was thrown away, the remaining 0.01% will still give us very

large amounts of useful information if the system had access to a very big collection

of unlabeled data. This spirit is what makes these methods very attractive and useful.

The key advantages of these systems are three-fold:

1. Unsupervised methods which can exploit very large amounts of unlabeled data

have the potential to collect large amounts of useful information such as training

data.

2. Training data can be directly extracted from unlabeled test sets, thus decreasing

domain difference between training and testing sets.

3. Training data can be automatically updated as the unlabeled data evolve over

time.

1These systems may face the problem of semantic drift, and in the case of NELL, humans manually
clean the database periodically.
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Motivated by the success of previous systems which utilized external knowledge or in-

ternal constraints, we explored applying these principles to surveillance video analysis,

specifically on multi-object tracking and pose estimation.

Thesis Overview

In this thesis, we tackled two surveillance video analysis tasks: multi-object tracking

and pose estimation, with two information sources: external knowledge and internal

constraints, in an unsupervised manner. In this thesis, the term “unsupervised” is

interpreted in a slightly relaxed manner. Our proposed methods are unsupervised in

that no video-level annotations are required. Our methods still utilize pre-existing out-

of-domain static image resources, which are viewed as external knowledge.

It would be very useful in surveillance video analysis if one was able to locate and identify

each person at each time instant. We tackled this challenge by formulating the problem

as an identity-aware multi-object tracking task. Our multi-object tracker was augmented

with an external resource: face recognition, which provides identity information to per-

son detections with a recognizable face. This can be viewed as label information directly

extracted from unlabeled surveillance video. However, most person detections do not

have a visible or recognizable face. Therefore, face recognition is only sparse label infor-

mation and additional cues including appearance features and motion constraints were

utilized to perform multi-person tracking. The motion constraints correspond to an

internal constraint in video: spatial-temporal smoothness, which assumes that a per-

son should move smoothly in the video and cannot be at two places at the same time.

The tracking problem was formulated as a constrained quadratic optimization problem,

which we solved by two proposed algorithms: nonnegative matrix optimization and the

solution path algorithm. The final tracking output will provide access to the location

of each individual at each time instant. Multi-person tracking experiments were run on

up to 4,935 hours of surveillance video data, which is to the best of our knowledge the

biggest multi-object tracking experiment to date. More details are in Chapter 3.

Another direction to enhance multi-object tracking is by replacing handcrafted appear-

ance features with discriminatively learned deep features which can be used for person

re-identification. Person re-identification is the task of distinguishing whether two per-

son detections belong to the same individual or not. However, learning such deep fea-

tures requires a lot of labeled training data. Therefore, to collect data, we also utilized

the spatial-temporal smoothness constraint. In multi-camera surveillance scenarios, if

two cameras both independently detect there is a person at a specific location, then

it is highly likely that they are viewing the same individual from two different views.
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The same individual viewed from two different angles is exactly the training data used

for person re-identification. Thus, a standard person re-identification network can be

trained to learn a discriminative representation for appearance. Experiments show that

the deep representation learned further improved tracking performance. More details

are in Chapter 4.

Reliable pose estimation enables us to understand the actions of a person, which would

be very useful in surveillance video analysis. One issue is that the domain of the pose

detector’s training data, which is often static images, does not match the surveillance

video domain, thus motivating us to perform unsupervised domain adaptation. We

propose to utilize constrained self-training to directly collect in-domain samples from the

testing set. Self-training [32, 33] is the process of adding testing instances which have

high confidence predictions into the training set to enhance the current model. However,

instances with high confidence predictions may not always be correct. Therefore, the

main idea is to utilize the spatial-temporal smoothness constraints to perform checks on

whether a pose estimation result on the testing set is correct. The assumption is that

pose estimation results in neighboring frames should vary smoothly. If a drastic change

is observed, then at least one of the pose estimation results is incorrect. Based on this

assumption, pose estimations instances which not only have high prediction scores but

also pass the smoothness check are even more likely to be correct. These instances from

the testing set are eligible to be added to the training set to automatically adapt the

pose estimation model to the testing set. Results show that the pose detector trained on

in-domain data collected with our unsupervised approach was significantly more effective

than models trained on more out-of-domain data. More details are in Chapter 5.

Based on the multi-object tracker and pose detector developed, we performed long-term

surveillance video analysis on nursing home surveillance data. Based on the output of

multi-object tracking, our system was able to detect events-of-interest such as room

changes, sit down and stand up (with an aid of a sitting detector), and human-human

interactions. With tracking of each person over 23 days, long-term statistics such as the

distance walked per day and total time spent in interactions were accumulated. With

our pose detector, a “take a bite” detector was created. This detector could facilitate

the analysis of eating behavior of nursing home residents. More details are in Chapter 6.

In summary, the thesis statement is as follows.

Thesis Statement:

Through utilizing 1) existing out-of-domain knowledge sources and 2) internal con-

straints in video, we can design algorithms which enhance the performance of surveillance

video analysis tasks in an unsupervised fashion.
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Thesis Contributions

In this thesis, we present our proposed approaches for unsupervised surveillance video

analysis in multi-person tracking and pose estimation.

1. Multi-person tracking with face recognition: we designed a method which utilizes

an external knowledge source: face recognition to not only identify each person

in the scene, but also enhance tracking performance. The tracking problem was

solved with two different optimization techniques (CVPR ’13 [2], CVPR ’16 [34]).

2. Unsupervised collection of person re-identification training data for tracking: we

present an unsupervised method based on the spatial-temporal smoothness con-

straint to collect person re-identification training data, which enabled us to learn

deep appearance features to further enhance multi-person tracking.

3. Unsupervised domain adaptation for pose estimation with constrained self-training:

we propose to automatically develop effective video pose detectors by adapting

existing image pose detectors to video in a constrained self-training framework

(ECCV ’14 [35]). Spatial-temporal constraints were utilized for effective self-

training. Experiments were performed on a newly annotated Caremedia nursing

home pose data set with 3.2K poses.

4. Long-term surveillance video analysis: we utilized our multi-object tracker and

pose detector to analyze 23 days of nursing home surveillance data. Experiments

on surveillance video summarization, eating detection, and long-term statistics

analysis were performed.

The thesis is organized as follows. Chapter 2 surveys related work which has a similar

unsupervised spirit as our proposed approaches. Chapter 3 presents work on multi-

person tracking with face recognition. Chapter 4 details how we collected person re-

identification training data from multi-camera surveillance environments. Chapter 5

reports work on unsupervised adaptation of image-based pose estimators to video. Chap-

ter 6 presents long-term surveillance video analysis based on our multi-object tracker

and pose detector. Finally, Chapter 7 concludes the thesis.



Chapter 2

Related Work - From Weak

Supervision to No Supervision

This thesis focuses on analyzing surveillance video by utilizing external knowledge and

internal constraints, which have also been widely used in other domains. In this chapter,

we present an overview of existing computer vision work which has a similar spirit as this

thesis. The existing work is categorized into methods which used either weak supervision

or no supervision.

Weakly supervised learning, in contrast to fully supervised learning, means that the

learner is somehow handicapped in terms of the training data. There are many different

ways to be handicapped in terms of training data, thus the terms “weakly supervised”,

“weak supervision” or “distance supervision” have been interpreted in various ways in

the literature. Possible interpretations are as follows:

1. Training data is scarce [36, 37].

2. Training data is noisy [38, 39].

3. Training data is only provided for another related task, which usually have labels

with less granularity than the task of interest [40–43].

Overall, in-domain training data is still provided, but the labeled data is not as com-

prehensive and perfect as the labeled data used during full supervision.

Taking weak supervision one step further are methods that require no supervision. For

these methods, in-domain training data is not provided at all. Note that this does

not necessarily mean that the method did not use any manually labeled training data.

A pre-trained model trained on existing out-of-domain instances can still be used. A

popular example of this class is unsupervised object detector adaptation [29, 30, 44, 45].

Given an object detector trained on labeled training data in the source domain, the goal

7
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is to automatically adapt the detector to the target domain. As the adaptation process

requires no human intervention, these methods require no supervision.

In order to deal with the lack of complete labeled data, methods utilizing either weak

supervision or no supervision often require additional assumptions or constraints. The

assumptions or constraints include real-world physical constraints (i.e. an object cannot

move too quickly in video), assumptions on the structure of the image/video (i.e. the

size of objects), or assumptions on classifier confidence being correlated with accuracy.

These assumptions play a very important role in methods which are weakly supervised or

unsupervised, and often the main novelty of a paper is the formulation and exploitation

of these assumptions. In the following sections, we will review existing computer vision

work which utilized weak supervision or no supervision.

2.1 From Object Recognition to Object Detection or Se-

mantic Segmentation with Weak Supervision

There can be 3 different granularities of object labels when labeling an image/video. An

object label can be on an image/video-level, which indicates the existence of the label but

not the spatial locations. These labels are suitable for the object recognition task, which

only tries to recognize what objects are visible. A more fine-grained labeling is by adding

a bounding box which indicates the location of the object. These labels are suitable for

the object detection task, which further tries to localize each object. The most fine-

grained labeling is by further delineating the pixel-level boundaries of the object. This

is suitable for the semantic segmentation task, which requires not only localizing the

object but also finding the boundaries of each object. Clearly, having the boundaries of

the object provides the richest information, but it is also the most time consuming to

annotate. Therefore, an interesting question becomes whether it is possible to use less

fine-grained but cheaper labels and output results with higher granularity, i.e. utilize

object recognition labels to learn a model which outputs a semantic segmentation. The

main intuition and assumption behind why this may work are that an object recognition

system which works well implies that the system has some idea of the location of the

object. This task is weakly supervised because though labels are provided for in-domain

data, the labels utilized are from a related task which has labels with less granularity

than the target task.

In the following few paragraphs, we will briefly describe the related work in this direction.

For clarity, related work is categorized into methods which operate on either static images

or video. They are discussed separately as video has an extra temporal aspect and
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different methods were used. Also, methods which have different output granularities

are also separated.

Image-level labels to bounding boxes: The main goal is to utilize image-level labels

and localize the objects in the image. One popular method is to treat the bounding box of

the object as a hidden variable, which can then be found with variants of SVMs [43, 46],

probabilistic latent semantic analysis [47], or deep learning [48]. A more thorough survey

is presented in [49].

Image-level labels or bounding boxes to segmentation: Previous work has pro-

posed to utilize image-level labels [21, 50, 51] or object bounding boxes [52] combined

with constraints such as the size of the foreground and background [53] to perform

semantic segmentation. Common learning methods utilized include Multiple Instance

Learning [21] combined with multi-task learning [50] or deep learning [51]. Other meth-

ods took this one step further by jointly learning over weak image-level labels and strong

pixel-level labels in a semi-supervised framework [54, 55].

Video-level labels to bounding boxes: According to [56], there is a clear domain

difference between videos and images, which causes degradation in object detection

performance when an object detector trained on still images are predicted on video

frames. Therefore, [57] proposed to automatically find bounding boxes of objects in

videos based on video-level labels. Assuming that the video only contains objects of

a target class, the algorithm first computed spatio-temporal tubes based on motion

segmentation for each video. Then a joint one-tube-per-video selection was performed

to find the most coherent set of tubes across all videos. These tubes were then used to

train an object detector.

Video-level labels to segmentation: Another popular topic is to perform spatio-

temporal segmentation of objects in video with either very few frame-level labels [58]

or video-level labels [22, 59]. [23] on the other hand utilized a generic object detector

as weak supervision. Regardless of the source of supervision, all these methods utilize

some sort of motion consistency, spatial-temporal smoothness or tracking constraint to

guide their learning process to find the relevant semantic segments in the video.

Some methods took weakly-supervised object detection one step further by utilizing no

training data at all and relying only on large amounts of unlabeled data. The intuition

is that if enough data is provided, then commonly appearing objects can still be grouped

together and “discovered”. There are two tasks under this definition: co-localization and

object discovery. For image and video co-localization, the input is a set of unlabeled im-

ages or video, and the output is bounding boxes which localize objects of the same class.

It is unknown to the algorithm which object is in the data, but it is assumed that the
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object of interest is visible in most of the unlabeled images/video. [60] proposed to solve

image co-localization by jointly utilizing an image similarity/discriminability model and

a bounding box similarity/discriminability model in a constrained quadratic optimiza-

tion framework. [61] further extended this to video by adding the temporal consistency

constraint. Object discovery takes co-localization one step further by operating on large

amounts of videos which include different classes of objects. [62] utilized inter-video

matching and intra-video tracking to find spatio-temporal tubes which localize different

objects.

2.2 Noisy Internet-Retrieved Labels as Weak Supervision

Another weakly supervised learning approach to learn object detectors or even seg-

mentation masks of each object is through utilizing noisy training data crawled from

search engines or photo-sharing sites, thus less or even no manual annotation is required.

[26, 27, 38, 63, 64] can utilize noisy training data crawled from Flickr or top results of an

image search engine to learn multiple object classifiers. [39, 65, 66] takes this one step

further by performing simultaneous object discovery and segmentation. In the advent

of deep learning, [67] demonstrated how to train a CNN-based object detector on search

engine results. [67] first trained an initial CNN on the easy images downloaded from

Google image search. Then, the network was fine-tuned on the more realistic images

from Flickr plus some modifications based on the confusion matrix of the initial CNN.

Similar work has also been done on training video-level event detectors and semantic

concept detectors. [68] augmented manually labeled event video with top-ranked videos

from YouTube search to enhance event recognition. [69] utilized video metadata from

YouTube to collect 1 million sports related videos which belong to 487 classes. [70]

utilized tags provided in the YFCC data set [71], which includes 0.8 million weakly-

annotated videos from Flickr to train semantic concept detectors. These detectors have

shown to be very effective in low-resource event detection [1, 7].

2.3 Domain Adaptation with No Supervision

The goal of domain adaptation with no supervision, which is more commonly known as

unsupervised domain adaptation, is to adapt a model trained on the source domain to an

unlabeled target domain without any supervision. There are many high-level directions

to perform unsupervised domain adaptation. One direction is to somehow “connect” or

“re-align” the source and target domains in an unsupervised fashion. Another direction
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tries to collect training samples from the testing set and perform self-training. In this

section, we will detail existing work in these two directions, especially with a focus on

self-training because it is also utilized in this thesis. For a more comprehensive survey

on domain adaptation, we refer the readers to the following survey papers, which survey

unsupervised domain adaptation for person detection [72], visual domains in general [73]

and natural language processing [33].

Given the source and target distributions, one can design algorithms to try to align

or minimize the difference between the two domains. [74] modeled sampling bias be-

tween the source and target domain with covariate shift. [75, 76] found subspaces in the

geodesic path which connected the source and target domains on a Grassmannian mani-

fold. [77] found latent domains which have the maximum distinctiveness and learnability.

[78] directly learned max-margin non-orthogonal hyperplanes in the target domain. [79]

tried to find a single deep feature representation for both the source and target domain.

The deep feature representation was designed so that it is difficult to distinguish from

the representation alone whether the current instance came from the source or target

domain. [80] learned a transformation such that the source domain samples can be recon-

structed by nearest neighbor samples found in the target domain. Unlike self-training,

none of these methods tried to collect “training data” from the testing set.

A large portion of unsupervised domain adaptation approaches fall into the self-training

(i.e. bootstrapping) paradigm. The first step of self-training is to perform prediction

on the testing set to acquire pseudo-labels for the testing instances. Then, self-training

assumes that high confidence pseudo-labels in the testing data are highly likely to be

correct, and one could add these labels back in the training set and reap additional

gains [81, 82]. However, high confidence pseudo-labels may not necessarily be correct,

thus “checks” which are independent of the classifier itself are utilized to ensure that the

pseudo-labels of the instances added are even more likely to be correct. Taking [32] as

an example, the main idea is to collect potential training data for eye detection from un-

labeled images based on different selection metrics. A classifier confidence based metric

and a classifier independent metric were proposed. The classifier confidence based metric

selected testing instances with high confidence pseudo-labels. The classifier independent

metric computed a classifier independent distance between the testing instances and

all the current training data. Testing instances with smaller distance than other train-

ing data were selected. Experiments showed that the classifier independent metric was

more reliable than the classifier confidence metric, which demonstrates the importance

of independent checks.

A myriad of self-training approaches has been proposed to tackle unsupervised domain

adaptation in multiple vision tasks, especially in the task of adapting object detectors
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to video. As this is highly related to our constrained self-training for pose estimation,

we will describe this in more detail in the following sections.

Self-training for Adapting Object Detectors to Video

Object detectors have achieved impressive results on static images [4], but due to domain

differences between images and video [56], the object detectors only trained on static

images may not work well on video. Therefore, much work has proposed to utilize self-

training to adapt an image-based object detector to video. [83] utilized an Adaboost [84]

framework combined with Co-training [85] to progressively improve object detectors.

As the base classifiers learned from Adaboost are uncorrelated by design, they can

be used as independent checks for the output of other base classifiers. [86] proposed

that a detected body part is only confident when all other parts also have confident

detections. This criterion was used when adding new training data to enhance a part-

based person detector. [87] utilized objects detected with high confidence combined with

Multiple Kernel Learning to adapt detectors to different lighting condition in video. [88]

proposed to utilize dense patch sampling and sparse binary vector encoding to more

accurately identify low-confidence but correct person detections. [89] improved an object

detector by utilizing superpixels instead of the common Haar-like features. To create

an object detector for video, a bag-of-superpixel-based SVM was trained, and instances

with confidence in the top one-third were added into the positive set. Instances in the

bottom one-third were added into the negative set, and the SVM was retrained and this

process repeated.

Adaptation with the Tracking or Spatial-Temporal Smoothness Check

A crucial independent check in video is the tracking or spatial-temporal smoothness

check, i.e. an object should not move too far in adjacent frames, which is conveniently

available in nearly all unedited videos. This check or variants of it have been heavily

utilized in unsupervised adaptation of object detectors to video.

For person detector adaptation, [19, 20] adapted a generic pedestrian detector to a

specific traffic scene by collecting training data which passed through multiples checks,

including checking the aspect ratio of the detected bounding box, checking whether

the detection belongs to a big cluster (if yes, that means it is static background and

not a person), comparing with the usual walking paths of the pedestrians in the scene,

and making sure the pedestrian does not overlap with a tracked moving vehicle. [90]

utilized boosting combined with network-flow tracking to find confident training data

which is fed back into the boosting classifier. [30, 91] filtered noisy pseudo-labels by only
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selecting person detections which are coherent with tracking results. A multiple instance

learning boosting classifier or a random fern classifier was employed to perform learning

on top of noisy labels. [92] proposed to combine two independent sources: person

detector and background subtraction tracking to collect in-domain person detection

training data. [44] proposed to transform the noisy pseudo-label selection problem to a

classifier selection problem, where multiple classifiers were trained on subsets of pseudo-

labels, and only the classifiers which perform well on the source domain were selected.

These classifiers then become an ensemble of weak detectors for the testing domain.

[45] proposed to utilize online multi-task learning to adapt an object detector. Each

tracked instance had its own set of detector weights, which were updated online yet

regularized by the weights of the other detectors which detect the same class of objects.

The weights for these instances were averaged to form a generic object detector for that

class. Note that most of the aforementioned methods are not limited to person detection

and potentially can be applied to other classes of objects.

For generic object detector adaptation, [29, 93, 94] proposed to utilize self-paced learning,

adaptive SVMs and large-margin embedding classifiers respectively to adapt a static

image detector to video. This is based on the training samples collected by confident

detections and tracking in the video. Tracking is advantageous in that new views of the

object can potentially be harvested. [31] proposed an effective way to bootstrap new

object detectors through a combination of pre-trained CNNs, exemplar learning and

region-based tracking.

2.4 Visual Representation Learning with No Supervision

In the advent of very large image and video collections, much research has been done

to learn discriminative representations on unlabeled data. The main advantage of these

methods is that since no supervision is required, the method can be applied to any

data set, and the representations learned will be in-domain for that data set. [95]

utilized sparse coding on large numbers of unlabeled images to learn a robust set of

bases, which were used to effectively encode other images for image classification. [96]

learned discriminative image patches for object detection by selecting patches which

are both representative and discriminative. The intuition is that a cluster of patches is

discriminative if a reasonably performing SVM could not only be trained based on it

but also find a reasonable number of similar looking patches in the validation set. [97]

utilized an autoencoder learned on auxiliary natural images to learn a representation

which is more robust to variations in single-object tracking. [98] utilized patch tracking

to automatically learn a representation for video. The intuition is that the similarity
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between two tracked patches should be larger than two randomly selected patches. [99]

utilized context to learn an image representation. The intuition is that given a small

image patch, a good set of features should have the ability to predict the content in the

near vicinity of the image. [100] learned a representation based on sequential verification

for video. The intuition is that given three not necessarily consecutive but ordered frames

a, b, and c, a good representation should be able to verify whether frame b follows

a and precedes frame c. Though the aforementioned methods tackle their respective

tasks very differently when compared with weakly supervised learning methods, they all

still utilized some sort of assumption (i.e. sparsity, compactness, tracking, context) to

constrain the learner to learn something useful.

2.5 Other Tasks Utilizing Weak or No Supervision

In this section, we report on other works which also utilized weak or no supervision.

In order to collect person detection training data in a cheaper way, [101] utilized back-

ground subtraction in unlabeled videos to automatically find training samples for person

detection. [42] proposed to decrease annotation cost of person detection by only marking

the approximate center of mass of a person instead of an entire bounding box. Since the

annotations were weaker, background subtraction and an automatically learned person

prior were utilized to train the person detector.

For action recognition related tasks, [40] utilized video-level labels and Multiple Instance

Learning (MIL) to learn a model which localized actions in both spatial and temporal

space in videos. [102] proposed to utilize matrix completion instead of MIL for weakly

supervised action localization. [28] proposed to augment its image-based action recog-

nition training data by looking for samples which were very similar to the training set

in unlabeled videos. [41] utilized image-level action recognition labels to locate which

objects were important for this action. [103] utilized ordering constraints of actions

acquired from a movie script as weak label information to learn action detectors.

To collect more action recognition training examples in a cheaper way, our work [104]

proposed to utilize the inherent speech-action correlation in instructional videos. An

example is shown in Figure 2.1a, where a “cut onion” action is shown. By looking for

action signifiers such as “we will” and utilizing a dependency parser to find verb-noun

pairs, action examples were collected with the pipeline shown in Figure 2.1b. With this

pipeline, we were able to collect a large variety of action training examples as shown in

Figure 2.2. For example, instead of just learning the action “cut”, our method provided

training data which included the objects associated with the action, such as “cut onion”,
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“cut paper” and “cut hair” as shown in Figure 2.2b. Also, in Figure 2.2a, our system was

able to collect diverse positive examples for “drill hole”. Holes could either be drilled in

wood, in a wall or even in ice. In sum, our unsupervised method is advantageous in that

as more instructional videos are uploaded, our system can acquire more diverse action

training examples without manual effort. Related work [105, 106] also utilized visual

and speech cues to better understand cooking or other instructional videos.

2.6 Summary

This chapter presents an overview of methods which utilized weak supervision or no

supervision. As these methods were handicapped in terms of training data, external

knowledge combined with task-specific assumptions or constraints were placed to guide

the learning process to converge to a reasonable result. In many cases, how the external

knowledge or constraints were utilized are the main novelties of the paper. For example,

the same spatial-temporal smoothness constraint can be utilized in object discovery,

adapting object detectors to video, and learning unsupervised representations. In this

thesis, we further extend the same high-level idea of utilizing external knowledge or

internal constraints to multi-object tracking and pose estimation.
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(a) A collected “cut onion” action exam-
ple based on the speech-action correlation

in instructional videos.

(b) Figure of our pipeline for unsupervised har-
vesting of action examples from instructional

videos.

Figure 2.1: Figures depicting the intuition and more detailed pipeline of our method
which utilized instructional videos to collect action examples.

(a) Positive “drill hole” examples harvested
from instructional videos in an unsupervised
fashion. Drilling holes in diverse contexts such
as on wood, in walls and on ice were automat-

ically collected.

(b) Positive examples for verb “cut” collected
from instructional videos. Our method col-
lected the verb “cut” in many different con-
texts; from cutting with scissors, knives to pa-

per cutters.

Figure 2.2: Figures showing the action examples found within instructional video in
an unsupervised manner.



Chapter 3

Multi-Person Tracking with Face

Recognition

Surveillance cameras have been widely deployed to enhance safety in our everyday life.

In addition, surveillance camera video footage can be used to analyze long term trends in

the environment. One first step to analyzing surveillance video is to locate and identify

each person in the video. This could be achieved if one had pre-trained identity-specific

person detectors which uses gait [107] or appearance [108] to recognize a person. To train

these detectors, one needs labeled training data. However, as there will be many unique

individuals in a surveillance scene, it will be very difficult and tedious to collect training

data for each person and train an identity-specific person detector or gait classifier.

Therefore, in order to obtain identity information in an automated way from unlabeled

videos and utilize this information to locate each individual at each time instant, we

propose to combine face recognition with multi-person tracking.

Face recognition, which is an external knowledge source, enables us to extract identity

information from unlabeled videos. However, face recognition is not available for most

frames. Therefore, a multi-person tracking algorithm which can utilize face recognition

information is proposed to perform identity-aware tracking. Face recognition not only

assigns identities to each tracked individual, but also enhances tracking performance

by pinpointing the location of a specific individual at a given time. This additional

information can lower the chance of identity confusions during the tracking process. The

final output is trajectories of different people with identities assigned to each trajectory.

This effectively provides the location of each individual at each time instant. The only

downside to our approach is that a gallery is required to perform face recognition, which

can be created either manually or through face clustering. More details on this issue are

in Section 3.9.7.

17
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Figure 3.1: The Marauder’s Map for a nursing home with the map in the middle.
Dots on the map show the locations of different people. The surrounding images are
the views from each surveillance camera. White lines correspond to the field-of-view
of each camera. Due to space limitations, only 12 out of 15 cameras are shown. For

clarity, not all arrows are drawn.

Our proposed identity-aware tracking algorithm is as follows. Under the tracking-by-

detection framework [109], the tracking task can be viewed as assigning each person

detection result to a specific individual. Label information for each specific person is

acquired from face recognition. However, as face recognition is not available in most

frames, face recognition information is propagated to other frames using a manifold

learning approach, which captures the manifold structure of the appearance and spa-

tial layout of the detected people. The manifold learning approach is formulated as a

constrained quadratic optimization problem. The constraints included are the mutual

exclusion and spatial locality constraints to constrain the final solution to be a reasonable

multi-person tracking output, i.e. a person detection can only belong to one individual

and an individual cannot be at multiple places at the same time. These constraints

make the optimization problem very difficult to solve, so we proposed two optimization

methods to solve this problem: nonnegative matrix optimization and the solution path

algorithm.

Tracking experiments were performed on challenging data sets including an 116.25 hour

and a 4,325 hour complex indoor tracking data set. Our experiments show that our

method is effective in localizing and tracking each individual in long-term surveillance

video. An example output of our algorithm is shown in Figure 3.1, which shows the
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location of each identifed person on a map in the middle of the image. This is analogous

to the Marauder’s Map described in the Harry Potter book series [110].

In sum, the main contributions of this chapter are as follows:

1. We propose an identity-aware multi-object tracking formulation which leverages

identity information as label information in a manifold learning framework. The

algorithm is formulated as a constrained quadratic optimization problem.

2. We propose two methods to optimize a constrained quadratic optimization prob-

lem: nonnegative matrix optimization and the solution path algorithm.

3. Multi-camera multi-object tracking experiments on 4,325 hours of surveillance

video in a complex indoor 15-camera environment were performed. To the best of

our knowledge, this is the longest multi-camera multi-object tracking experiment

to date.

In the following sections, Section 3.1 gives an overview of existing multi-object tracking

methods. Section 3.2 gives a high-level overview of the two trackers developed. Details

of the two trackers are described from Section 3.3 to Section 3.7. Then experimental

results are presented in Section 3.9 and Section 3.10 concludes this chapter.

3.1 Related Work - Multi-Object Tracking

A main line of multi-object tracking work follows the tracking-by-detection paradigm

[109], which has four main components: object localization, appearance modeling, mo-

tion modeling and data association. The object localization component generates a set

of object location hypotheses for each frame. The localization hypotheses are usually

noisy and contain false alarms and misdetections, so the task of the data association

component is to robustly group the location hypotheses which belong to the same phys-

ical object to form many different object trajectories. The suitability of the grouping

can be scored according to the coherence of the object’s appearance and the smoothness

of the object’s motion, which correspond to appearance modeling and motion modeling

respectively. We now describe the four components in more detail.

3.1.1 Object Localization

There are mainly three methods to find location hypotheses: using background subtrac-

tion, using object detectors, and connecting single-frame detection results into tracklets.

The Probabilistic Occupancy Map (POM, [111]) combined background subtraction in-

formation from multiple cameras to jointly locate multiple objects in a single frame. It
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has been shown to be very effective in multi-camera environments [111–114]. However,

POM requires the discretization of the tracking space, and some precision may be lost.

Also, when the placement of cameras is non-ideal, such as on long corridors where cam-

eras only view the principal direction of the corridor [2], the POM localization results

are not as accurate. Lastly, when there are different kinds of moving objects in the

scene, POM cannot distinguish between the different kinds of tracked objects.

Utilizing object detector output is one of the most common ways to localize tracking

targets [2, 109, 115–122]. The main advantages of using object detectors are 1) enables

the automatic initialization and termination of trajectories, and 2) alleviates template

drift as the same detector is used for all frames. The main disadvantage is that a reliable

general-purpose detector is required for the object to be tracked.

Localized objects in each frame could be connected to create tracklets [113, 123–128],

which are short tracks belonging to the same physical object. Tracklets are formed in a

very conservative way to avoid connecting two physically different objects. As tracklets

merge multiple location hypotheses, they can be used to enhance the efficiency of the

tracking process [113].

3.1.2 Appearance Models

Appearance models discriminate between detections belonging to the same physical ob-

ject and other objects. Color histograms [2, 113, 115, 117, 123, 127, 129–131] have been

widely used to represent the appearance of objects and the similarity of the histograms

was often computed with the Bhattacharyya distance [117, 131]. Other features such as

Histogram of Oriented Gradients [132] have also been used [124, 125].

Appearance models can also be learned from tracklets. The main assumption of tracklets

is that all detections in a tracklet belong to the same object, and [124–126, 128, 133, 134]

exploited this assumption to learn more discriminative appearance models. Note that

the “identity” in our work is different from [125], which utilized person re-identification

techniques to improve the appearance model. We, however, focus on the “real-world

identity” of the person, which is acquired from face-recognition.

In this work, we utilized color histograms combined with manifold learning to perform

tracking. Manifold learning has also been utilized in previous work such as [135, 136] to

learn subspaces for appearance features that can better differentiate the tracked target

from other targets or background. However, the multi-object tracking performed in [136]

utilized multiple independent particle filters, which may have the issue of one particle

filter “hijacking” the tracking target of another particle filter [137, 138]. Therefore, to fix
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this issue, our method has the mutual exclusion and spatial locality constraint encoded

in the optimization framework, which jointly optimizes for all trajectories to acquire a

potentially more reasonable set of trajectories.

3.1.3 Motion Models

Objects usually move in a smooth manner, and effective motion models can capture

this assumption to better model the likely movement of objects. [2, 112, 113, 116, 117]

used the bounded velocity model to model motion: given the current location of the

object, the location in the next frame is constrained by the maximum velocity of the

object. [115, 122, 130] improved upon this by modeling motion with the constant velocity

model, which is able to model the smoothness of the object’s velocity change. Higher

order methods such as spline-based methods [119, 121] and the Hankel matrix [139]

can model even more sophisticated motions. [128] assumed that different objects in the

same scene move in similar but potentially non-linear ways, and the motion of highly

confident tracklets can be used to infer the motion of non-confident tracklets.

3.1.4 Data Association

A data association algorithm takes the object location hypotheses, appearance model

and motion model as input to find a disjoint grouping of the object location hypotheses

which best describes the motion of objects in the scene. Intuitively, the data association

algorithm will decide whether to place two object location hypotheses in the same group

based on their affinity, which is computed from the appearance and motion models.

For the association between multiple frames, there are two popular formulations: the

Hungarian algorithm and the network flow, which are both Integer Linear Programs

(ILP) with a special form. Given the pair-wise affinities, the Hungarian algorithm can

find the optimal bipartite matching between two sets of object location hypotheses

in polynomial time [121, 123–125, 127]. In the network flow formulation [112, 114,

116, 117], each path from source to sink corresponds to the trajectory of an object.

The network flow problem can also be solved optimally in polynomial time, but this

formulation and the Hungarian algorithm formulation makes a number of assumptions.

The first assumption is that each physical object can only be associated with one location

hypothesis at each time instant. This is to enforce the constraint that an object cannot

be at multiple places at the same time. However, in multi-camera environments, at a

single time instant, location hypotheses from different cameras can all correspond to the

same physical individual. Therefore, location hypotheses from different cameras need to

be consolidated first with methods such as POM [111] before these methods can be used.
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The second assumption is that the cost function of each trajectory can be decomposed

into a series of products (or additions) of pair-wise terms [121]. Therefore, most network

flow-based methods are limited to the bounded velocity model, i.e. velocity from the

previous time instant is not taken into account. [122, 131, 140] improved on this by

taking into account three location hypotheses at once, so the constant velocity model

can be utilized. However, this comes at the cost of using more complex algorithms

such as Lagrangian Relaxation [122] or using a Linear Program solver to approximately

solve an ILP [131], where finding the global optimum is no longer guaranteed. Another

method to incorporate velocity in such a framework is to utilize tracklets as the basic

unit of location hypotheses [123].

Many trackers have been formulated as a general Integer Linear Programming (ILP)

problem. [113, 129, 131] solved the ILP by relaxing the integral constraints to con-

tinuous constraints and optimizing a Linear Program, where the solution can be com-

puted efficiently. A subsequent branch-and-cut method to find the global optimal to the

ILP [131] or a simple rounding step [113] was used to acquire a final discrete solution.

[141, 142] formulated tracking as clique partitioning, which can also be formulated as an

ILP problem and solved by a heuristic clique merging method. [139] formulated tracking

as a General Linear Assignment ILP problem, which was approximately solved with a

deterministic annealing “softassign” algorithm [143].

More complex data association methods have also been used, including continuous en-

ergy minimization [118], discrete-continuous optimization [119], Block-ICM [121], con-

ditional random fields [120, 126], generalized minimum clique [115] and quadratic pro-

gramming [130, 144].

Even though each data association method has different merits, many of the aforemen-

tioned methods do not utilize actual person identity information such as face recognition.

Unfortunately, in many cases it is non-trivial to incorporate identity information into the

previously proposed data association frameworks. One quick way to incorporate identity

information may be to assign identities to trajectories after the trajectories have been

computed. However, problems occur if two different identities are assigned to the same

trajectory, and the true identity of the trajectory is no longer clear. Another approach

may be to follow [111] and utilize the Viterbi algorithm to find a trajectory which passes

through all the identity observations of each person. However, Viterbi search cannot

be performed simultaneously over all individuals, and [111] proposed to perform Viterbi

search sequentially, i.e. one individual after another. This greedy approach can lead to

“hijacking” of another person’s trajectory [111], which is not ideal. Therefore, to achieve

effective identity-aware tracking, it is more ideal to specially design a data association
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framework which can directly incorporate identity information into the optimization

process.

Identity-Aware Data Association

Previously proposed data association methods [113, 145], [146] and [2] utilize identity

information for tracking. There have been other work which utilizes transcripts from

TV shows to perform face recognition and identity-aware face tracking [147, 148], but

this is not the main focus of our work.

[113, 145] formulated identity-aware tracking as an ILP and utilized person identification

information from numbers written on an athlete’s jersey or from face recognition. Results

show that the method was very effective in tracking basketball and soccer players, even

when there are many occlusions. [113, 145] depended on the global appearance term for

assigning identities to detections. However, the global term assumed a fixed appearance

template for an object, which may not be applicable in surveillance scenes recorded over

many hours as the appearance of the same person may change drastically.

[146] utilized online structured learning to learn a target-specific model, which was used

to compute the edge weights in a network flow framework. Though [146] had a stronger

appearance model to compensate for drawbacks of network flow methods, it utilized

densely-sampled windows instead of person bounding boxes as input, which may be too

time-consuming to compute in hundreds of hours long video sequences.

The work in [2] shows that a semi-supervised tracker which utilized face-recognition as

sparse label information for each class/individual achieves good tracking performance

in a complex indoor environment. However, [2] did not incorporate the spatial locality

constraint during the optimization step. Without the constraint, the solution acquired

from the optimization step might show a person being in multiple places at the same

time, thus this method does not work well for crowded scenes. Also, the method needs

a Viterbi search to compute the final trajectories. The Viterbi search requires the start

and end locations of all trajectories, which is an unrealistically restrictive assumption

for long-term tracking scenarios. We enhance this tracker by adding the spatial-locality

constraint term, which enables tracking in crowded scenes and also removes the need for

the start and end locations of a trajectory.
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(a) Input to tracking algorithm: location and
appearance of person detection and face recog-

nition.

(b) Output of tracking algorithm: partitioning
of the person detections into different trajec-

tories.

Figure 3.2: Illustration of the input and output of our tracking algorithm. Each
person detection is a point in the (x, y, t) space. We assume that people walk on the
ground plane, so the z axis is irrelevant. The figures are drawn based on the person

detections from the terrace1 data set [111].

3.2 Tracker Overview

Tracking-by-detection-based multi-object tracking can be viewed as a constrained clus-

tering problem as shown in Figure 3.2. Each location hypothesis, which is a person

detection result, can be viewed as a point in the spatial-temporal space, and our goal is

to group the points so that the points in the same cluster belong to a single trajectory. A

trajectory should follow the mutual exclusion constraint and spatial-locality constraint,

which are defined as follows.

• Mutual Exclusion Constraint: a person detection result can only belong to at

most one trajectory.

• Spatial-Locality Constraint: two person detection results belonging to a single

trajectory should be reachable with reasonable velocity, i.e. a person cannot be

in two places at the same time. This is an instantiation of the spatial-temporal

smoothness constraint.

Sparse label information acquired from sources such as face recognition are used to assign

real-world identities and also enhance tracking performance.

To compute the trajectories, our tracking algorithm has three main steps.

1. Manifold construction based on appearance and spatial affinity: The appearance

and spatial affinity respectively assumes that 1) similar looking person detections

are likely to be the same individual and 2) person detections which are spatially

and temporally very close to each other are also likely to be the same individual.

2. Spatial locality constraint: This constraint encodes the fact that a person cannot

be at multiple places at the same time. In contrast to the manifold created in the
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previous step which encodes the similarity of two person detections, this constraint

encodes the dissimilarity of two person detections.

3. Data association: Two different optimization approaches: the nonnegative matrix

optimization (NMO) and solution path algorithm (SPA) were proposed to acquire

a solution which simultaneously satisfies the manifold assumption, the mutual

exclusion constraint and the spatial-locality constraint.

In the following sections, we first define our notations, and then the 3 aforementioned

steps are detailed.

3.3 Notations

Given a matrix A, let Aij denote the element on the i-th row and j-th column of A.

Let Ai denote the i-th row of A. Let ai denote the i-th element of vector a. Tr(·)
denotes the trace operator. |·|F is the Frobenius norm of a matrix. Given an integer m,

1m ∈ Rm is a column vector with all ones.

Hereafter, we call a person detection result as an observation. Suppose the person

detector detects n observations. Let c be the number of tracked individuals, which

can be determined by either a pre-defined gallery of faces or the number of unique

individuals identified by the face recognition algorithm. Let F ∈ Rn×c be the label

assignment matrix of all the observations. Without loss of generality, it is assumed that

the observations are reorganized such that the observations from the same class are put

together. The j-th column of F is given by:

F∗j = [ 0, . . . , 0︸ ︷︷ ︸∑j−1
i=1 m(i)

, 1, . . . , 1︸ ︷︷ ︸
m(j)

, 0, . . . , 0︸ ︷︷ ︸∑c
i=j+1 m(i)

]T , (3.1)

where m(j) is the number of observations in the j-th class. If the p-th element in F∗j , i.e.

Fpj is 1, it indicates that the p-th observation corresponds to the j-th person. According

to Equation 3.1, it can be verified that

FTF =


FT
∗1
...

FT
∗c

[F∗1 . . . F∗c

]
= diag



m(1)

...

m(c)


 = J, (3.2)

where J ∈ Rc×c. The i-th observation is described by a d dimensional color histogram

x(i) ∈ Rd, frame number t(i), and 3D location p(i) ∈ R3 which corresponds to the 3D

location of the bottom center of the bounding box. In most cases, people walk on the
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Figure 3.3: Intuition of appearance-based nearest neighbor selection. The nearest
neighbors for the red person detection in frame 50 are shown. No nearest neighbors
are found in frames 75 and 100 as the person is occluded. Nevertheless, once the
person is no longer occluded, the nearest neighbor connections can be made again, thus

overcoming this occlusion.

ground plane, and the z component becomes irrelevant. However, our method is not

constrained to only tracking people on the ground plane.

3.4 Manifold Construction based on Appearance and Spa-

tial Affinity

There are two aspects we would like to capture with manifold learning: 1) appearance

affinity and 2) spatial affinity, which will be detailed in the following sections.

3.4.1 Modeling Appearance Affinity

Appearance affinity assumes that if two observations are similar in appearance, then it is

very likely that they correspond to the same person. This assumption can be captured

with manifold learning, which is usually done in a two-step process. First, suitable

nearest neighbors for each observation are found based on similar appearance. Second,

the nearest neighbor information of each observation is used to encode the manifold

structure with the Laplacian matrix.

Given an observation, suitable nearest neighbors are other similar-looking observations

which are spatially and temporally “nearby”. More specifically, for the i-th observation,

let the set of spatio-temporal neighbors be M(i). M(i) contains observations which are

not only less than T frames away, but also reachable from location p(i) with reasonable

velocity. This is another instantiation of the spatial-temporal smoothness constraint.

To avoid edge cases in computing velocity, we define velocity between observations i and

l as follows:

v(il) =
max

(
||p(i) − p(l)||2 − δ, 0

)
|t(i) − t(l)|+ ε

. (3.3)
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ε is a small number to avoid division by zero. δ models the maximum localization error

of the same person between different cameras due to calibration and person detection

errors. So when t(i) = t(l), if the two observations are less than δ apart, these two

observations are still spatio-temporal neighbors. Therefore, M(i) is defined as follows:

M(i) =
{
l | v(il) ≤ V,

∣∣t(i) − t(l)∣∣ ≤ T, 1 ≤ l ≤ n} , (3.4)

where V is the maximum possible velocity of a moving person. If the velocity required

to move between two observations is too large, then the two observations cannot be

the same individual. Given M(i), we look for observations in the set which have color

histograms similar to observation i, as it is likely these observations will belong to the

same physical individual. To compute the similarity between two color histograms Hi

and Hj , the exponential-χ2 metric is used:

χ2(Hi,Hj) = exp

(
−1

2

d∑
l=1

(Hil −Hjl)
2

Hil + Hjl

)
, (3.5)

Based on Equation 3.5, two color histograms are similar only if their similarity is above

a certain threshold γ. Finally, the set of nearest neighbors for observation i is found by

selecting the top k nearest neighbors in M(i) which have a similarity score larger than

γ. We denote this set as N(i) ⊆M(i).

This method of finding neighbors makes our tracker more robust to occlusions. Occlu-

sions may cause the tracking target to be partially or completely occluded. However,

the tracking target usually reappears after a few frames. Therefore, instead of trying to

explicitly model occlusions, our system tries to connect the observations of the tracking

target before and after the occlusion. As shown in Figure 3.3, despite heavy occlusions,

the algorithm can still link the correct detections after the occlusion. The window size

T affects the tracker’s ability to recover from occlusions. If T is too small, the method

will have difficulty recovering from occlusions that last longer than T . However, a large

T may increase chances of linking two different objects.

Once the nearest neighbors for each observation have been computed, the manifold

structure can be encoded with a Laplacian matrix as follows. We first compute the

affinity matrix W, where Wij = χ2 (Hi,Hj) if j ∈ N(i) and 0 otherwise. Then, the

diagonal degree matrix D of W is computed, i.e. Dii =
∑n

l=1 Wil. Finally, the Laplacian

matrix L which captures the manifold structure in the appearance space is L = D−W.
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3.4.2 Modeling Spatial Affinity

Other than modeling person detections of similar appearance, person detections which

are “very close” (e.g. a few centimeters apart) in the same or neighboring frames are

also very likely to belong to the same person. This assumption is reasonable in a multi-

camera scenario because multiple detections will correspond to the same person, and

due to calibration and person detection errors, not all detections will be projected to the

exact same location. In this case, regardless of the appearance difference which may be

resulting from non-color-calibrated cameras, these detections should belong to the same

person. We therefore encode this information with another Laplacian matrix K ∈ Rn×n

defined as follows. Let K(i) be the set of observations which are less than distance D̃

away and less than T̃ frames away, i.e.,

K(i) =
{
l | ||p(i) − p(l)||2 ≤ D̃,

∣∣t(i) − t(l)∣∣ ≤ T̃ , 1 ≤ l ≤ n} . (3.6)

We compute the affinity matrix A ∈ Rn×n from K(i) by setting Aij = 1 if j ∈ K(i)

and Aij = 0 otherwise. Define D̂ ∈ Rn×n as a diagonal matrix where D̂ii is the

sum of A’s i-th row. Following [149], the normalized Laplacian matrix is computed:

K = I − D̂−
1
2 AD̂−

1
2 . In contrast to computing the appearance affinity, the spatial

affinity does not take into account appearance at all, thus the parameters D̃ and T̃

are both set very conservatively to avoid connecting to person detections from different

individuals. For example, in our experiments D̃ = 20 centimeters and T̃ = 6 frames,

while T = 8 seconds.

Then the loss function which combines the appearance and spatial affinity is as follows:

min
F
Tr
(
FT (L + K)F

)
s.t. columns of F satisfy Equation 3.1, ∀i ∈ Y, Fi = Yi.

(3.7)

Minimizing the loss term will result in a labeling which follows the manifold structure

specified by appearance and spatial affinity. The first term in the constraint specifies

that the label assignment matrix F should be binary and have a single 1 per row.

The second term in the constraints is the face recognition constraint. Face recognition

information is recorded in Y ∈ Rn×c, where Yij = 1 if the i-th observation belongs to

class j, i.e. the face of observation i is recognized as person j. Yij = 0 if we do not

have any label information. There should only be at most a single 1 in each row of

Y. Y = {i | ∃j s.t. Yij = 1} are all rows of Y which have a non-zero element (i.e. a

recognized face). As face verification is approaching human-level performance [150], it

is in most cases reasonable to treat it as a hard constraint. Experiments analyzing the

effect of face recognition errors on tracking performance are detailed in Section 3.9.7.
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Figure 3.4: Example of synthetic tracking output with and without the spatial locality
constraint. Without the spatial locality constraint (e.g., [2]), the blue trajectory takes
over the green trajectory at around time 80. The blue trajectory is at two places at the
same time, which is wrong. With the spatial locality constraint, the results are correct.

3.5 Spatial Locality Constraint

A person cannot be in multiple places at the same time. A tracker which cannot model

this constraint, such as [2], might unreasonably state that a person is in multiple places

at the same time. Figure 3.4 shows an example of results acquired with and without

the constraint. The results computed with the spatial locality constraint are much more

realistic. We incorporate the spatial locality constraint into our tracker by modeling

pairwise person detection constraints. Given a pair of person detections (i, j), if the

speed v(ij), which is defined in Equation 3.3, required to move from one person detection

to the other is too large, then it is highly unlikely that the pair of person detections will

belong to the same person. We denote T =
{

(i, j) | v(ij) > V, 1 ≤ i, j ≤ n
}

as all the

person detection pairs which are unlikely to be the same individual. Then the updated

loss function is as follows.

min
F
Tr
(
FT (L + K)F

)
s.t. ∀(i, j) ∈ T ,FilFjl = 0, 1 ≤ l ≤ c

& columns of F satisfy Equation 3.1, ∀i ∈ Y,Fi = Yi,

(3.8)

where the term FilFjl = 0 models the spatial locality constraint.

Note that our spatial-locality constraint is a generalization to what is used in many

single-camera multi-object network flow-based trackers [116, 117], where a person not

being at two places at the same time is enforced by assuming that a trajectory can

only be assigned to a single person detection at one time instant. However, in a multi-

camera scenario, it is often the case that multiple detections from different cameras

will correspond to the same individual, and the assumption used by network flow-based
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trackers may not be applicable here. Therefore, we propose a more general spatial-

locality constraint, which can handle the case where multiple detections from a single

time instant all correspond to the same individual. In the current formulation, we did

not explicitly model the fact that two detections from the same frame cannot belong to

the same person, which could be easily added to our method. Also, experiments show

that our method already achieves competitive results without this additional constraint,

demonstrating the effectiveness of our spatial locality constraint.

The loss function shown in Equation 3.8 strives to find a suitable labeling of observations

along the manifold while not violating both constraints: the mutual exclusion constraint

and the spatial locality constraint. However, Equation 3.8 is a combinatorial problem

as the values of F are limited to zeroes and ones. This is very difficult to solve and

certain relaxation is necessary to efficiently solve the objective function. Therefore, two

different optimization strategies are presented to solve Equation 3.8: nonnegative matrix

optimization (NMO) and the solution path algorithm (SPA).

3.6 Nonnegative Matrix Optimization

The first optimization methodology utilizing nonnegative matrix optimization techniques

is detailed. We relax the form of F such that the values are continuous, but to enforce the

mutual exclusion constraint, certain constraints still need to be enforced. We first ob-

serve that according to Equation 3.2, the columns of F are orthogonal to each other, i.e.

FTF = J is a diagonal matrix. Also, according to the definition of F, F is nonnegative.

Furthermore, according to [151], if both the orthogonal and nonnegative constraints are

satisfied for a matrix, then there will only be at most one non-zero entry in each row of

the matrix, which is still sufficient in discretizing F and identifying the class membership

of each observation, i.e. the mutual exclusion constraint still holds. Therefore, we relax

the form of F, which originally is a binary label-assignment matrix, by only keeping the

column orthogonal and nonnegative constraint. This leads to solving Equation 3.9.

min
F
Tr
(
FT (L + K)F

)
s.t. ∀(i, j) ∈ T ,FilFjl = 0, 1 ≤ l ≤ c,

FTF = J,F ≥ 0, ∀i ∈ Y,Fi = Yi,

(3.9)

where the mutual exclusion constraint is enforced by FTF = J and F ≥ 0. Under these

constraints, the values in F are continuous and no longer binary, but there will still only

be at most one non-zero entry per row. One big advantage of this relaxation is that now

our method can naturally handle false positive detections because F is now also allowed
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to have a row where all elements are zeroes, which corresponds to a person detection

not being assigned to any class.

For convenience, we organize the spatial locality constraint in a more concise form. We

aggregate all the person detection pairs in T and encode it in the matrix S̃, as shown

in Equation 3.10.

S̃ij =

{
0 if v(ij) ≤ V
1 otherwise

, 1 ≤ i, j ≤ n, (3.10)

where V is the maximum possible velocity of a moving person. S̃ is defined so that if

none of the person detection velocity constraints were violated, then FT
∗jS̃F∗j = 0, where

F∗j is the label assignment vector (column vector of F) for the j-th person. We gather

this constraint for all individuals and obtain Tr(FT S̃F) = 0 if none of the constraints

were violated. The scale of S̃ is normalized to facilitate the subsequent optimization step.

Let D′ be a diagonal matrix where D′ii is the sum of row i of S̃, then the normalized

S = D′−
1
2 S̃D′−

1
2 . Finally, we update Equation 3.9 and arrive at Equation 3.11.

min
F
Tr
(
FT (L + K)F

)
s.t. T r(FTSF) = 0, FTF = J,F ≥ 0,∀i ∈ Y,Fi = Yi,

(3.11)

The constraint FTF = J is a difficult constraint to optimize. If J is the identity matrix,

then FTF = I forms the Stiefel manifold [152]. Though a few different methods have

been proposed to perform optimization with the orthogonal constraint [152–155], many

methods require a specific form of the objective function for the optimization process

to converge. Therefore, we instead employ the simple yet effective quadratic penalty

method [151, 156] to optimize the loss function. The quadratic penalty method incor-

porates the equality constraints into the loss function by adding a quadratic constraint

violation error for each equality constraint. The amount of violation is scaled by a weight

τ , which gradually increases as more iterations of the optimization are performed, thus

forcing the optimization process to satisfy the constraints. More details on the con-

vergence properties of the quadratic penalty method can be found in [156]. To solve

Equation 3.11, we move the constraints FTF = J and Tr
(
FTSF

)
= 0 into the loss

function as a penalty term. We rewrite the objective function as follows:

min
F
f (F) = min

F
Tr
(
FT (L + K + τS) F

)
+ τ ||FTF− J||2F

s.t. F ≥ 0, ∀i ∈ Y,Fi = Yi.
(3.12)

For each τ , we minimize Equation 3.12 until convergence. Once converged, τ is multiplied

by 2 and Equation 3.12 is minimized again.
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To solve for Equation 3.12 given a fixed τ , we perform projected nonnegative gradient

descent [157], which iteratively updates the solution at iteration l, i.e. F(l), to F(l+1) as

follows:

F(l+1) = P
[
F(l) − α(l)∇f(F(l))

]
(3.13)

where the projection function P :

P [Fij ] =

{
Fij if Fij > 0

0 otherwise
, (3.14)

is an element-wise function which maps an element back to the feasible region, i.e. in

this case a negative number to zero. The step size α(l) is found in a line search-like

fashion, where we search for an α(l) which provides sufficient decrease in the function

value, i.e.

f(F(l+1))− f(F(l)) ≤ σTr
(
∇f(F(l))T (F(l+1) − F(l))

)
. (3.15)

Following [157], σ = 0.01 in our experiments. The gradient of our loss function f is

∇f(F) = 2 (L + K + τS) F + 4τF
(
FTF− J

)
. (3.16)

Details on convergence guarantees are shown in [157]. To satisfy the face recognition

constraints, the values of F for the rows in Y are set according to Y and never updated

by the gradient.

The main advantage of projected nonnegative gradient descent over the popular multi-

plicative updates for nonnegative matrix factorization [152, 158] is that elements with

zero values will have the opportunity to be non-zero in later iterations. However, for

multiplicative updates, zero values will always stay zero. In our scenario, this means

that if F
(l)
ij shrinks to 0 at iteration l in the optimization process, the decision that “ob-

servation i is not individual j” is final and cannot be changed, which is not ideal. The

projected nonnegative gradient descent method does not have this issue as the updates

are additive and not multiplicative.

J is a diagonal matrix, where each element on the diagonal, Jii, corresponds to the

number of observations belonging to class i, i.e. mi. As mi is unknown beforehand,

mi is estimated by the number of recognized faces belonging to class i plus a constant

β, which is proportional to the number of observations n. In our experiments, we set

β = n
1000 .

To initialize NMO, we temporarily ignore the mutual exclusion and spatial locality

constraint and only use the manifold and face recognition information to find the initial
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Data: Location hypothesis p(i), t(i), and appearance x(i), 1 ≤ i ≤ n. Face recognition
matrix Y ∈ Rn×c.

Result: Final label assignment matrix F

Compute Laplacian matrices L, K ; // Sec. 3.4
Compute spatial locality matrix S ; // Sec. 3.5
Compute diagonal matrix J ; // Sec. 3.6
Compute diagonal matrix U from Y ; // Sec. 3.6

Initialize F(0) with Equation 3.17 ;
l← 0 ; // iteration count
τ ← 10−4 ; // initial penalty
repeat // Solve for Equation 3.12 with penalty method

τ ← τ × 2 ; // gradually increase penalty τ
repeat // projected gradient descent

Compute F(l+1) from F(l) with Equation 3.13;
l← l + 1;

until convergence;

until τ ≥ 1011;

return F(l)

Algorithm 1: Main steps in nonnegative matrix optimization tracking algorithm.

value F(0). F(0) is obtained by minimizing Equation 3.17.

min
F(0)

Tr
(

(F(0))T (L + K)F(0) + (F(0) −Y)TU(F(0) −Y)
)
. (3.17)

U ∈ Rn×n is a diagonal matrix. Uii = ∞ (a large constant) if i ∈ Y, i.e. the i-

th observation has a recognized face. Otherwise Uii = 1. U is used to enforce the

consistency between F(0) and face recognition information. The global optimal solution

for Equation 3.17 is F(0) = (L + K + U)−1UY [159].

Finally, once the optimization is complete, we acquire a F which satisfies the mutual

exclusion and spatial locality constraint. Therefore, trajectories can be computed by

simply connecting neighboring observations belonging to the same class. At one time

instant, if there are multiple detections assigned to a person, which is common in multi-

camera scenarios, then the weighted average location is computed. The weights are

based on the scores in the final solution of F. A simple filtering process is also utilized

to remove sporadic label assignments. In sum, the main steps of our NMO tracker are

shown in Algorithm 1.

3.7 Solution Path Algorithm Optimization

We present a different method to perform optimization of Equation 3.8. The label

matrix F is also relaxed so that the values are continuous, but different constraints are
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utilized to enforce the mutual exclusion and spatial locality constraint. The mutual

exclusion constraint signifies that each row of F can have at most one non-zero value.

The spatial locality constraint specifies that for (i, j) ∈ T , FilFjl = 0, or in other words

there can only be at most one non-zero value in the vector [Fil,Fjl]. These constraints

can be modeled with `0 norm constraints. Given a vector x ∈ Rb, the `p norm of x is

defined as ‖x‖p =
(∑m

l=1 xp
l

) 1
p . Then the mutual exclusion constraint can be modeled as

‖Fi‖0 ≤ 1. Similarly, for the spatial locality constraint, the constraint can be modeled as

‖[Fil,Fjl]‖0 ≤ 1. Therefore, we update Equation 3.8 to acquire the following equation.

min
F
Tr
(
FT (L + K)F

)
s.t. ∀i ∈ Y,Fi = Yi

‖Fr‖0 ≤ 1, 1 ≤ r ≤ n

∀(i, j) ∈ T ,
∥∥∥[Fil Fjl

]∥∥∥
0
≤ 1, 1 ≤ l ≤ c.

(3.18)

The three constraints in the loss function correspond to face recognition, mutual exclu-

sion and spatial locality constraints. Note that this formulation can also handle false

positive detections, because ‖Fr‖0 ≤ 1 allows all elements in row r to be zero, i.e. this

person detection does not belong to any class.

However, due to the `0 norm constraints, Equation 3.18 is still difficult to optimize.

One näıve fix is to relax the `0 norm constraints to `1 norm constraints. This makes

the problem convex and easy to solve. However, the relaxation comes at the price

that the mutual exclusion and spatial locality constraint will no longer hold in the final

solution, which may cause degradation in tracking performance. Therefore, we utilized

the solution path algorithm to bridge the solutions computed under the `1 norm and `0

norm constraints.

Unlike traditional algorithms which only looks for the solution under a single parameter

setting, the solution path algorithm finds the solution under many different parameters.

This is done efficiently by utilizing the solution from the previous parameter setting

as the initial value for the next parameter setting. The solution path algorithm has

been successfully utilized in the machine learning community on problems such as the

Lasso [160]. In the Lasso case1 , the algorithm in [160] can solve for the solution of the

Lasso for all regularization parameters λ ∈ [0, ∞] [161]. The solutions for all the λ’s are

solved sequentially as the algorithm gradually increases the value of λ. The optimization

problem solving for λ(t) from the t-th iteration is initialized with the solution acquired

with λ(t−1) from the (t− 1)-th iteration. In this way, since λ(t−1) and λ(t) have similar

values, the algorithm will converge faster to the new solution compared to random

1The loss function of Lasso can be written as minw
1
2
‖y −Xw‖22 + λ ‖w‖1, where y ∈ Rm is the

label, X ∈ Rm×d is the feature matrix, and w ∈ Rd is the weight vector to be learned.
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(a) Feasible region of 3 dimensional ‖v‖p ≤ 1, v ≥ 0 constraint as p decreases from 1, 0.5 to
0.2.

(b) Under 10-dimensional ‖v‖p ≤ 1 constraints, average distribution of randomly sampled vec-
tors where the values of each vector are sorted in descending order.

Figure 3.5: Images showing that as p decreases, at most 1 non-zero value can remain,
thus enforcing the mutual exclusion and spatial locality constraints.

initialization. In sum, the intuition is that if the previous and current parameter settings

do not differ by too much, the solution from optimizing with the previous parameter

setting can be used as a good initial starting point for the next parameter setting.

In our proposed method, we utilize the solution path algorithm to compute the solution

of Equation 3.18. The solution path algorithm acts as a bridge between the two solutions:

one with p = 1 norm constraints, and the other with p = 0 norm constraints. Starting

from the solution under the convex `1 norm constraints, the algorithm successively

solves the same optimization problem but under different `p norm constraints, where p

gradually decreases from 1 to 0. The solution path ends as p approaches to 0, and a

better solution to our original problem can be obtained. The bridge itself, which consists

of the solutions under different `p norm constraints, is the solution path of the whole

optimization process.

More specifically, we denote p(m) as the p used during the m-th iteration of the path

algorithm. Then p(1) = 1, p(M) → 0, and p(m−1) > p(m) for 2 ≤ m ≤ M . At each

p(m), our system computes the solution F(m) for Equation 3.18 but under `p(m) norm

constraints instead. The solution F(m−1) acquired under `p(m−1) norm constraints is used

to initialize the optimization process under `p(m) norm constraints. The solution F(1) ac-

quired under `1 norm constraints is solved directly because Equation 3.18 under `1 norm

constraints is convex and easy to solve. We denote the set F =
{
F(1),F(2), . . . ,F(M)

}
as the solution path.

The physical meaning of gradually shrinking p is depicted in Figure 3.5. When p is

still large, the tracker is not very strict on the mutual exclusion and spatial locality
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constraint. However, as p decreases, the `0 norm constraints are gradually satisfied as

at most one value stays non-zero.

In each iteration m of the solution path algorithm, we need to optimize Equation 3.18

under a fixed p(m) to acquire F(m), and block coordinate descent is utilized.

3.7.1 Block Coordinate Descent

In each iterationm of the solution path algorithm, we need to solve Equation 3.18 under a

fixed p(m) ∈ [0, 1] to acquire F(m). Initialized with F(m−1), block coordinate descent [162]

is utilized to solve Equation 3.18. Block coordinate descent only updates variables of a

single observation i while keeping variables of all other observations fixed. The updating

of a single observation i is as follows. For notational clarity, we denote G = F(m) and p

refers to p(m) in this section. We denote the i-th row of G as Gi =
[
Gi1, . . . , Gic

]
.

Since all other observations are kept fixed, the loss function for Gi is simplified from

Equation 3.18 to the following quadratic function.

min
Gi

1

2
‖Gi − a‖22 s.t. ‖Gi‖p ≤ 1,

∀(i, j) ∈ T ,
∥∥∥[Gil, Gjl

]∥∥∥
p
≤ 1, 1 ≤ l ≤ c,

(3.19)

where a ∈ Rc. Each element l in a is computed as follows.

al =

∑n
j=1(Wij + Aij)Gjl∑n

j=1(Wij + Aij)
. (3.20)

a encodes the label information of the neighbors of observation i. W and A are the

similarity matrices defined in Section 3.4. If there were no constraints, the optimal value

of Equation 3.19 will be Gi = a, which strives for consistent labeling of an observation

with its neighbors. If Gi contains a recognized face, then row i is not updated. The

advantage of block coordinate descent is that non-neighboring observations can be solved

in parallel, which makes the optimization process efficient.

To solve Equation 3.19, we notice that the spatial locality constraint only consists of two

numbers Gil and Gjl, where Gjl is fixed if only observation i is optimized. Therefore,

the constraint
∥∥∥[Gil, Gjl

]∥∥∥
0
≤ 1 can be converted to the linear constraint Gil ≤(

1−Gp
jl

) 1
p

= ul, where, for convenience, u ∈ Rc represents the upper bound of each

element in Gi. However, with this simplification, Equation 3.19 is still difficult to solve

due to the `p norm constraint from the mutual exclusion constraint. Therefore the

optimization process has two steps. We first clip the values of each element in a to be at

most u and get the clipped vector a′, i.e. a′l = min(al,ul), 1 ≤ l ≤ c. Then the following
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Figure 3.6: Illustration of the first iteration of iterative projection method. G
(2)
i is

derived from G
(1)
i , which is derived from a′.

simplified equation is optimized.

min
Gi

∥∥Gi − a′
∥∥2

2
s.t. ‖Gi‖p ≤ 1. (3.21)

If ‖a′‖p ≤ 1, then the solution of Gi = a′. Otherwise, Equation 3.21 can be solved by

iteratively projecting a′ onto the region ‖Gi‖p ≤ 1.

3.7.2 Iterative Projection Method

We propose an iterative projection method to solve Equation 3.21 when ‖a′‖p > 1. For

convenience, the region which satisfies
{

v | ‖v‖p ≤ 1
}

is referred to as the `p norm ball.

Since, ‖a′‖p > 1, it is clear that all local optimal G∗i are on the boundary of the `p

norm ball. We denote π∗ as the normal of the tangent plane of the `p norm ball at

G∗i . According to the KKT conditions [162], a (local) optimal point G∗i should have

the following property: π∗ is parallel to the gradient direction of the quadratic function

‖Gi − a′‖22 at G∗i . Therefore, we propose the following iterative projection method to

find a local optimal as shown in Figure 3.6.

To initialize the algorithm, given a′ which ‖a′‖p > 1, we first draw a line between a′

and the origin. Let G
(1)
i ∈ Rc be the place where the line intersects the boundary of

the `p norm ball, i.e.
∥∥∥G(1)

i

∥∥∥
p

= 1. G
(1)
i serves as the initialization. This intersection

can be found efficiently with binary search. Now, given a G
(l−1)
i from iteration l− 1, we

compute G
(l)
i for iteration l as follows. We first compute the tangent plane π(l−1) of the

`p norm ball at G
(l−1)
i . Next a′ is projected onto π(l−1) and the projection is denoted as

x(l−1). We then draw a line between a′ and x(l−1) and find the intersection of the line

with the boundary of the `p norm ball. The intersection is denoted as G
(l)
i , which is the

value of Gi for iteration l. These steps are repeated till convergence. The loss function

(Equation 3.21) monotonically decreases with such an update rule, which is proved in

Appendix A.
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Data: Location hypothesis p(i), t(i), and appearance x(i), 1 ≤ i ≤ n. Face recognition

matrix Y ∈ Rn×c, p(1), . . . , p(M)

Result: solution path F
Compute Laplacian matrices L, K ; // Sec. 3.4

// Sol. of convex `1 norm constraint as initialization

F ← {F(1)} ; // Solution path set
m← 2 ; // path algorithm iteration count
repeat // Solution path algorithm, Sec. 3.7

G← F(m−1) // Initialize with F(m−1)

// Solve Equation 3.18 under `p(m) norm constraint

repeat // Block coordinate descent, Sec. 3.7.1
for ∀ observations i do

Update Gi by solving Equation 3.19
end

until convergence;

F(m) ← G;

Add F(m) to F ;
m← m+ 1;

until m ≤M ;
return F

Algorithm 2: Solution path tracking algorithm.

Finally, once the solution from Equation 3.18 is acquired, we can compute the trajectories

from the solution the same way it was computed for the nonnegative matrix optimization

method.

The steps of solution path tracking algorithm are summarized in Algorithm 2, and

the time complexity is as follows. We optimize Equation 3.18 by updating Gi with

Equation 3.19 for each of the n observations. As proved in Appendix A, the iterative

projection algorithm requires O (c(k + q + log(c))) per iteration, where q is the average

number of constraints per observation, and k is the number of nearest neighbors of each

observation. Thus, solving Equation 3.18 is O (nc(k + q + log(c)) ∗MaxIter), which is

efficient as it is approximately linear in the number of observations (n), classes (c),

nearest neighbors (k), and constraints (q).

The solution path algorithm has two key benefits. First, it can optimize loss functions

with `0 norm constraints, which is a common but difficult-to-optimize constraint in

sparsity and relaxed combinatorial problems. Second, the solution path can be viewed

as the “decision-making process” of the tracker, which can be utilized to automatically

pinpoint uncertainty in tracking for manual correction in an active learning scenario

[163]. More details are in Section 3.9.8.
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3.8 Comparing Nonnegative Matrix Optimization and So-

lution Path Algorithm

The two proposed methods: NMO and SPA, all solve the same general loss function:

Equation 3.8. The main difference is in how the mutual exclusion constraints were

enforced to solve the loss function. For SPA, the mutual exclusion is modeled by ‖Fi‖0 ≤
1, 1 ≤ i ≤ n, which is precisely the mutual exclusion constraint: each row can have

at most one non-zero value. For NMO, mutual exclusion is achieved by the constraints

FTF = J and F ≥ 0, which is more complex than the constraints of SPA. For SPA,

elements on different rows of F are decoupled. However, for NMO, FTF = J means that

elements on column i have to sum to Jii, thus coupling all elements of F in the same

column. In general, having more complex constraints such as the constraints for NMO

often lead to more complex optimization landscapes, thus causing the algorithm to more

likely enter a non-ideal local minimum. So we would expect that SPA to perform better

than NMO in the tracking task as SPA models the constraints in a simpler and more

precise form than NMO.

3.9 Experiments and Results

3.9.1 Data Sets

As our goal is identity-aware tracking, we only focused on tracking sequences in which

identity information such as face recognition was available. Therefore, many popular

tracking sequences such as the PETS 2009 sequences [164], Virat [165], TRECVID 2008

[166] and Town Centre [167] were not applicable as the faces in these sequences were too

small to be recognized. The following four data sets were utilized in our experiments.

terrace1 : The 4 camera terrace1 [111] data set has 9 people walking around in a 7.5m

by 11m area for 5000 frames under 25fps, which corresponds to a total of around 13 min-

utes of video. The scene is very crowded, thus putting the spatial locality constraint to

test. The POM grid computed had width and height of 25 centimeters per cell. Person

detections were extracted for every frame. As the resolution of the video is low, one per-

son did not have a recognizable face. For the sake of performing identity-aware tracking

on this dataset, we manually added two identity annotations for each individual at the

start and end of the person’s trajectory to guarantee that each individual had identity

labels. None of the trackers utilized the fact that these two additional annotations were

the start and end of a trajectory. In total, there were 794 identity labels out of 57,202

person detections.
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Figure 3.7: The approximate location and direction of the cameras in the nursing
home. The colored regions are public areas.

Caremedia 6m : The 15 camera Caremedia 6m [2, 3] data set has 13 individuals

performing daily activities in a 15 camera nursing home scene for 6 minutes 17 seconds,

which corresponds to a total of around 94 minutes of video. The data set was first used in

[2]. Manual annotations of people standing or walking in the scene were provided every

second and further interpolated to every frame. Sitting people were not annotated.

The 15 surveillance cameras were set up on the ceilings of the public areas in a nursing

home as shown in Figure 3.7. There are many occlusions caused by walls which are

typical in indoor scenes. There are also many challenging scenes such as long corridors

with sparse camera setups, where heavy occlusions are common. There is also no single

camera which has a global view of the whole environment, which is typical in many

surveillance camera setups, but atypical in the data sets that have been used to perform

multi-camera tracking. The data set records activities in a nursing home where staff

maintains the nursing home and assist residents throughout the day. As the data set

covers a larger area and is also longer than terrace1, we ran into memory issues for

trackers which take POM as input when our cell size was 25 centimeters. Therefore,

the POM grid computed in our experiments had width and height of 40 centimeters

per cell. Person detections were extracted from every sixth frame. In total, there were

2,808 recognized faces out of 12,129 person detections. Though on average there was a

recognized face for every 4 person detections, but recognized faces were usually found

in clusters and not evenly spread out over time. So there were still long periods of time

when no faces were recognized.

Caremedia 8h : The 15 camera Caremedia 8h data set [168] has 49 individuals per-

forming daily activities in the same nursing home as Caremedia 6m. There is a total of

116.25 hours of video, which corresponds to 7 hours 45 minutes wall time. The videos

were recorded on 2005/10/06 from 13:15 to 21:00. Ground truth of standing or walking
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people was annotated every minute. Sitting people were not annotated. Person detec-

tions were extracted from every sixth frame. In total, there were 70,994 recognized faces

out of 402,833 person detections.

Caremedia 23d : The 15 camera Caremedia 23d data set consists of nursing home

recordings spanning over a 26 day window: 2005/10/06 to 2005/10/31, with 3 days

missing (10/13, 10/14, 10/22) due to hardware issues. For 2005/10/06, the recordings

are the same as Caremedia 8h. For 2005/10/31, the recordings started at 6am and ended

at 12pm. For the remaining 21 days, the recordings were from 6am to 9pm. This leads

to a total of 4,935 hours of video. To the best of our knowledge, this is the longest

sequence to date to be utilized for multi-object tracking experiments, thus enabling us

to evaluate tracking algorithms in realistic long-term tracking scenarios. Caremedia 23d

has 65 individuals performing daily activities in the same nursing home as Caremedia

6m. To make the annotation process feasible, ground truth of standing or walking people

was annotated every 30 minutes, and annotations were only performed on individuals

who have been identified in the first 7 days of the data set. Sitting people were not

annotated. Person detections were extracted at every sixth frame. In total, there were

3.1 million recognized faces out of 17.8 million person detections.

3.9.2 Baselines

We compared our method with three identity-aware tracking baselines. As discussed in

Section 3.1, it is non-trivial to modify a non-identity-aware tracker to incorporate iden-

tity information. Therefore, other trackers which do not have the ability to incorporate

identity information were not compared.

Multi-Commodity Network Flow (MCNF): The MCNF tracker [113] can be viewed

as an extension of the K-Shortest-Path tracker (KSP, [112]) with identity aware capa-

bilities. The KSP is a network flow-based method that utilizes localization information

based on POM. Given the POM localizations, a network flow graph is formed. The

algorithm will then find the K shortest paths to the graph, which correspond to the K

most likely trajectories in the scene. MCNF further duplicates the graph in KSP for

every identity group in the scene. The problem is solved with linear programming plus

an additional step of rounding non-integral values.

Following [113], we re-implemented the MCNF tracker. In our experiments, the graph

is duplicated c times, because for our setup each individual belongs to its own identity

group. Gurobi [169] was used as our linear program solver. The global appearance

template of each person was computed from the appearance of person detections which

had recognized faces. Occlusions were computed from a raw probability occupancy
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map, and occluded observations were not used to generate templates nor compare color

histograms. Following [113], the input of MCNF was taken from the output of POM

and KSP to save computation time. The source code of POM and KSP were from the

authors [111, 112]. For trajectories which came closer to three grid cells, the cells in

between the two trajectories were also activated so that the MCNF had the freedom to

switch trajectories if necessary. This setting is referred to as MCNF w/ POM. The base

cost of generating a trajectory, which is a parameter that controls the minimum length

of the generated tracks, was set to -185 for all MCNF w/ POM experiments.

For the two Caremedia data sets, we also took the person detection (PD) output and

generated POM-like localization results which were also provided to MCNF. The POM-

like localization results were generated by first creating a grid for the nursing home scene,

and then aggregating all person detections falling into each grid at each time instant.

This setting is referred to as MCNF w/ PD. For all MCNF w/ PD experiments, the

grid size is 40 centimeters, the base cost of generating a trajectory is -60, and detections

were aggregated over a time span of 6 frames to prevent broken trajectories. For the

Caremedia 8h and Caremedia 23d set, the Gurobi solver was run in 12,000 frame batches

to avoid memory issues.

Lagrangian Relaxation (LR): [146] utilized LR to impose mutual exclusion con-

straints for identity-aware tracking in a network flow framework very similar to MCNF,

where each identity has their own identity specific edges. Lagrange multipliers enforce

the mutual exclusion constraint over mutual-exclusive edges in the graph. To optimize

with LR, dynamic programming first finds trajectories for each identity given the cur-

rent network weights. Then, the Lagrange multipliers, which are a part of the network

weights, are updated to penalize observations that violate the mutual exclusion con-

straint. This process is repeated again on the updated network weights till convergence.

To fairly compare different data association methods, our LR-based tracker utilized the

same appearance information used by all our other trackers, thus the structured learning

and densely sampled windows proposed in [146] were not used. Specifically, LR used

the same POM-like input and network as MCNF.

Non-Negative Discretization (NND): The Non-Negative Discretization tracker [2]

is a primitive version of our proposed tracker. The two main differences are: 1) NND

does not have the spatial locality constraint, thus requiring an extra Viterbi trajectory

formulation step which needs the start and end of trajectories, and 2) a multiplicative

update was used to perform non-negative matrix factorization. NND requires the start

and end locations of trajectories, which are usually not available in real world scenarios.

In our experiments, therefore, no start and end locations were provided to NND, and

the final trajectories of NND were formed with the same method used by our proposed
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tracker. NND utilized [159] to build the manifold, but internal experiments have shown

that utilizing the method in [159] to build the Laplacian matrix achieved similar tracking

performance compared to the standard method [149, 170] of subtracting the degree

matrix with the affinity matrix. Therefore, to fairly compare the two data association

methods, we utilized the same Laplacian matrix computation method for NND and our

method. Also, the spatial affinity term K was not used in the originally proposed NND,

but for fairness, the K term was added to NND.

3.9.3 Implementation Details

For person detection, we utilized the person detection model from [4, 171]. The person

detection results from different camera views were mapped to a common 3D coordinate

system using the camera calibration and ground plane parameters provided. Color

histograms for the person detection were computed the same way as in [2]. HSV color

histograms were used [109, 172]. We split the bounding box horizontally into regions and

computed the color histogram for each region similar to the spatial pyramid matching

technique [173]. Given L layers, there are 2L − 1 partitions for each template. L was

3 in our experiments. Since the person detector only detects upright people, tracking

was not performed on sitting people or residents in wheelchairs. For POM, background

subtraction was performed with [174].

For our proposed methods: nonnegative matrix optimization (NMO) and solution path

algorithm (SPA), the parameters for all four data sets were as follows. The number of

nearest neighbors used for appearance-based manifold construction was k = 25. The

window to search for appearance-based nearest neighbors was T = 8 seconds. The

fastest velocity one could walk was V = 3 m/s. The similarity threshold for looking

for nearest neighbors was γ = 0.85. The maximum localization error was δ = 125

to take into account camera calibration errors. For modeling spatial affinity, D̃ was

20 centimeters and T̃ was 6 frames. When computing the spatial locality constraint,

we found that computing the velocity between all pairs of data points will generate too

many constraints, thus only conflicting pairs of data points which were less than 6 frames

apart were used. The above parameters were also used for NND. For NMO, the initial

value of τ = 2 × 10−4, and the final value was τ = 1011. For SPA, the step size for p

was 1.05, i.e. p(m+1) ← p(m)/1.05, and there were a total of M = 94 different p values.

p(M) = 0.01.

For Caremedia 6m, Caremedia 8h, and Caremedia 23d, a preprocessing step to remove

incorrect person detections was performed. Person detections with a width/height ratio
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less than 0.4 (i.e. a “fatter” person detection, which could be only the upper half of a

person) were removed.

Face Recognition

Face information was acquired from the PittPatt software2, which can recognize a face

when a person is close enough to the camera. We assumed that the gallery for the

persons-of-interest is provided. There are two options to collect this gallery: 1) manually

collect faces of the person or 2) perform face clustering over all detected faces and

select clusters which consist of faces corresponding to the person-of-interest. Though

the selection requires some manual effort, it does not consume a lot of time as the

majority of faces have already been clustered. The latter option was utilized to create

the Caremedia 6m and Caremedia 8h tracking sequences. As the PittPatt clusters are

already very clean, and also the clusters were manually mapped, the face recognition

was very accurate. Manual verification on Caremedia 6m showed 98% accuracy on face

recognition.

For the Caremedia 23d set, it is too tedious for humans to map clusters into each in-

dividual. Therefore, we first manually mapped clusters for 7 days (10/06 to 10/12) of

video. Then, based on these mapped clusters, the PittPatt tool was again utilized to

perform face recognition on the remaining 16 days of video (10/15 to 10/31, excluding

10/22). Manual verification of the recordings on 2005/10/31 showed that purely auto-

matic face recognition achieves 75% accuracy, which is still reasonable. More details

on face recognition performance and its effect on tracking performance are detailed in

Section 4.3.3.

For Caremedia 6m, Caremedia 8h, and Caremedia 23d, a preprocessing step to remove

face recognitions that are highly likely to be incorrect was performed. First, for each

individual, all its person detections with recognized faces were aggregated. Then, for

each person detection, the distance between all other aggregated person detections was

computed, and the median distance was extracted. Finally, the person detections with

median distances in the top 10% were filtered out, i.e. the person detections which looked

most dis-similar with the other person detections belonging to the same individual were

filtered out.

2Pittsburgh Pattern Recognition (http://www.pittpatt.com)
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3.9.4 Evaluation Metrics

Identity-aware tracking can be evaluated from a multi-object tracking point of view and

a classification point of view. From the tracking point of view, the most commonly used

multi-object tracking metric is Multiple Object Tracking Accuracy (MOTA3) [175, 176].

Following the evaluation method used in [2, 119], the association between the tracking

results and the ground truth is computed in 3D with a hit/miss threshold of 1 meter.

MOTA takes into account the number of true positives (TP), false positives (FP), missed

detections (false negatives, FN) and identity switches (ID-S). Following the setting in

[113]4 MOTA is computed as follows:

MOTA = 1− # FP + # FN + log10(# ID-S)

# ground truth
. (3.22)

However, the TP count in MOTA does not take into account the identity of a person,

which is unreasonable for identity-aware tracking. Therefore, we compute identity-aware

true positives (I-TP), which means that a detection is only a true positive if 1) it is less

than 1 meter from the ground-truth and 2) the identities match. Similarly, we can

compute I-FP and I-MD, which enables us to compute classification-based metrics such

as micro-precision (MP = # I-TP
# I-TP + # I-FP), micro-recall (MR = # I-TP

# I-TP + # I-FN) and a

comprehensive micro-F1 (2 × MP × MR
MP+MR ) for each tracker. The micro-based performance

evaluation takes into account the length (in terms of time) of each person’s trajectory,

so a person who appears more often has a larger influence to the final scores.

3.9.5 Tracking Results

Tracking results for the four data sets are shown in Table 3.1. As we are more interested

in identity-aware tracking, we pay more attention to the F1-score from the classification-

based metrics, which will only be high if both precision and recall are high. Our proposed

methods: NMO and SPA may not always be the best in terms of MOTA scores, but we

achieved the best performance in F1-scores across all four data sets. This means that

our tracker can not only track a person well but also accurately identify the individual.

Figure 3.9 and Figure 3.10 show some qualitative examples of our tracking result. As

there is randomness in SPA, we ran the experiment 5 times and showed the results of the

run with median performance. For micro-F1, the 95% confidence intervals for terrace1,

Caremedia 6m and Caremedia 8h runs were less than 0.006, thus demonstrating the

3Code modified from http://www.micc.unifi.it/lisanti/source-code/.
4There are two common transformation functions (denoted as cs() in [176]) for the identity-switch

term, either log10 [113, 176] or the identity function [175]. We have selected the former as this is what
was used in MCNF, which is one of our baselines.
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Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.493 0.018 0.035 646 24708 284 5 0.014

KSP w/ POM N/A N/A N/A 22182 2990 767 187 0.852

MCNF w/ POM 0.593 0.532 0.561 21864 3298 644 197 0.844

LR w/ POM 0.609 0.478 0.535 19216 5996 521 147 0.743

NND 0.613 0.238 0.343 8035 17267 1771 57 0.249

NMO w/o SLC 0.704 0.346 0.464 10642 14655 1745 62 0.353

NMO 0.692 0.635 0.663 21370 3873 1783 116 0.777

SPA 0.752 0.705 0.727 22263 2996 1407 100 0.826

(a) Tracking performance on terrace1 sequence.

Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.942 0.362 0.523 12369 21641 727 9 0.342

KSP w/ POM N/A N/A N/A 21286 11794 36035 939 -0.406

MCNF w/ POM 0.117 0.238 0.157 23493 9769 44452 757 -0.594

MCNF w/ PD 0.746 0.578 0.652 19941 13749 5927 329 0.422

LR w/ PD 0.802 0.565 0.663 19415 14408 4203 196 0.453

NND 0.861 0.726 0.787 25628 8364 3100 27 0.663

NMO w/o SLC 0.869 0.726 0.791 25578 8408 3080 33 0.662

NMO 0.865 0.755 0.807 26384 7576 3537 59 0.673

SPA 0.871 0.755 0.809 26531 7458 3004 30 0.692

(b) Tracking performance on Caremedia 6m sequence.

Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.858 0.256 0.394 164 471 19 2 0.230

MCNF with PD 0.743 0.418 0.535 265 347 71 25 0.342

LR with PD 0.787 0.405 0.535 261 360 52 16 0.351

NND 0.588 0.505 0.543 314 281 174 42 0.283

NMO w/o SLC 0.638 0.549 0.590 349 257 151 31 0.357

NMO 0.648 0.571 0.607 370 241 149 26 0.386

SPA 0.650 0.581 0.614 375 236 152 26 0.389

(c) Tracking performance on Caremedia 8h sequence.

Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.819 0.199 0.154 125 512 28 2 0.154
MCNF w/ PD 0.712 0.355 0.474 205 412 92 22 0.209

LR w/ PD 0.663 0.357 0.464 215 411 116 13 0.174

NMO 0.698 0.532 0.604 326 299 147 14 0.300

SPA 0.663 0.556 0.605 341 284 180 14 0.326

(d) Tracking performance on Caremedia 23d sequence.

Table 3.1: Tracking performance of each method on 4 data sets. POM: Probabilistic
Occupancy Map proposed in [111] as input. PD: Person detection as input. SLC:
Spatial locality constraint. “w/” and “w/o” are shorthand for “with” and “without”
respectively. We did not perform the MCNF w/ POM on the Caremedia 8h and
Caremedia 23h sequences as it was already performing poorly on the shorter sequence.
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stability of our method. NMO and SPA achieved very similar performance, and SPA

was only statistically significantly better than NMO for the terrace1 data set.

The importance of the spatial locality constraint (SLC) is also shown in Table 3.1a.

Without the spatial locality constraint in the optimization step (NND and NMO w/o

SLC ), performance degraded significantly for terrace1, where the tracking scene is ex-

tremely crowded and the appearance feature is not very discriminative as most people

wear dark clothing. On the other hand, the performance drop on the Caremedia se-

quences was minimal, which could be because of 1) the Caremedia sequence is not as

crowded as terrace1, and 2) people in Caremedia sequences have less similar appear-

ance, thus purely relying on color histograms already provide very good performance.

We believe both explanations are valid, and more analysis of the second explanation is

in Section 4.3.

The MCNF tracker was also a very strong baseline. For terrace1, KSP and consequently

MCNF achieved very good MOTA results with POM person localization. MCNF was

slightly worse than KSP on MOTA scores because though MCNF is initialized by KSP,

MCNF is no longer solving a problem with a globally optimal solution. However, for

the Caremedia 6m sequence, results were poor. Through manual analysis, we found

that POM, which is used for person localization in KSP and MCNF, had difficulty

in localizing on long corridors where cameras only view the principal direction of the

corridor. For example, when there are multiple people on the corridor, their foreground

masks tend to merge together into a single blob. Thus there will be many different ways

the generative POM model can synthesize the foreground image for each camera view.

This leads to ambiguities in person localization, which will significantly hurt tracking

performance. Cameras with a side-view on the corridor will significantly alleviate this

issue, but this is usually not available in a corridor setting. Also, the indoor scene of

Caremedia 6m is more complex than terrace1. Therefore, even though there are 15

cameras in Caremedia 6m, occlusions caused by walls mean that the camera coverage is

not as perfect as terrace1, thus causing more ambiguities in POM localization. Lastly,

there were other non-person moving objects such as carts and rolling closets in the

scene, which would also be detected by POM. These ambiguities caused false positives

which lead to poor KSP performance. As MCNF input was based on KSP output,

MCNF w/ POM also performed poorly. However, this is unfair, as MCNF performed

poorly due to inaccurate localization, which is unrelated to its data association method.

Therefore, to fairly compare MCNF, we provided MCNF with the same localization

information used by our method and ran the MCNF w/ PD experiment. With the new

localization based on person detections, MCNF was able to achieve competitive results.

This experiment shows that even if a tracker performs poorly, it may simply be due

to a single malfunctioning component, and if the component is switched with another
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Figure 3.8: Tracking performance on terrace1 data set under different step sizes and
`p norm constraints.

effective component, the tracker can still achieve good results. We believe this is a fairer

way of comparing different trackers. Nevertheless, with the same person detection as

input, our method still outperformed MCNF in all sequences in terms of F1-score.

The performance of Face only clearly shows the contribution of face recognition and

tracking. For the Caremedia related sequences, face recognition could already achieve

certain performance, but our tracker further improved this performance by roughly 15%

absolute, which is still very significant. Furthermore, for terrace1, there are very limited

faces, thus face recognition plays a minor role in tracking performance. However, we were

still able to achieve reasonable performance, which shows that our tracker is effective as

most of the heavy-lifting was performed by the tracking algorithm.

For SPA, we also tested the performance under different step sizes s, i.e. p(m+1) ←
p(m)/s, for varying values of p on the terrace1 sequence as shown in Figure 3.8. We

can see that smaller step size leads to better MOTA scores, which shows that directly

optimizing under `0 norm constraints (very large step size) may converge to bad local

minimum. Also, there is a big performance drop if one only solved the tracking problem

under `1 norm constraints, which only achieves MOTA 0.378. However, by using the

solution path algorithm to compute the solution under `0 norm constraints, SPA was

able to improve MOTA to 0.83.

3.9.6 Discussion - Advantages of Tracker

The key advantages of our tracker are as follows:

Face recognition information is integrated into the framework: Face recognition

serves as a natural way to automatically assign identities to trajectories in long-term

tracking scenarios, where manual intervention is prohibitively costly. When the tracker

loses track of a person, face recognition can also aid in automatic re-initialization. Also,

in long-term scenarios, it is common that people will change clothes, thus drastically
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Figure 3.9: Snapshots of tracking results from the 4 camera terrace1 sequence using
SPA.

changing their appearance. Face recognition will still be able to recognize this person,

making our method robust to large appearance changes of a single person.

Naturally handle appearance changes: Handling appearance changes is crucial

because the appearance of the tracking target can change gradually in different parts of

the scene. In our tracker, the appearance templates of the tracked target are implicitly

encoded in the manifold structure we learn. Therefore, if the appearance of a tracked

object changes smoothly along a manifold, our algorithm can model the change. No fixed

global appearance model is required to track each individual, and no threshold is required

to decide when to adaptively update the appearance model. If there is a drastic change

in appearance for a tracked object, then the appearance manifold will highly likely be

broken as the nearest neighbor search will not select the detections where the object’s

appearance changed drastically. However, the spatial affinity Laplacian matrix K still

can potentially connect the correct observations.

Take into account appearance from multiple neighbors: Our tracker models

appearance by taking into account the appearance information from multiple neighboring

points, which enables us to have a more stable model of appearance. Linear programming

and network flow-based methods can only either model appearance globally and assume

the appearance of a target will not change, or model appearance similarity only over the

previous and next detection in the track.

Handle multiple detections per frame for one individual: In multi-camera scenes,

it is common that at one time instant, multiple detections from different cameras cor-

respond to the same physical person. This phenomenon may be difficult to deal with
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Figure 3.10: Snapshots of tracking results from Caremedia 8h data set using NMO.
To increase readability, not all arrows are drawn and only 12 out of 15 cameras are

shown.
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for single-camera multi-object trackers based on network flow [116, 117], because the

spatial locality constraint for these methods are enforced based on the assumption that

each individual can only be assigned a single person detection per frame. Therefore,

multi-camera network flow-based methods such as [112, 113] utilize a two-step process

where the POM is first used to aggregate evidences from multiple cameras to perform

localization. Then the data association step is used to compute trajectories. The two

steps are necessary so that the spatial locality constraint can be enforced for network

flow methods. In our case, our formulation of the spatial locality constraint, which is

based on the velocity to travel between two detections being under a certain threshold,

can be viewed as a generalization of the aforementioned assumption, and this enables

us to incorporate the localization and data association steps into a single optimization

framework.

No discretization of the space required in multi-camera scenarios: Previous

multi-camera network flow methods [112, 113] require discretization of the tracking

space in multi-camera scenarios to make the computation feasible. Finer grids run into

memory issues when the tracking sequence is long and covers a wide area, and coarser

grids run the risk of losing precision. However, our tracker works directly on person

detections, and discretization is not necessary.

3.9.7 Discussion - Limitations of Tracker

There are also limitations to our tracker.

Assumes at least one face recognition per trajectory: If there is a trajectory

where no faces were observed and recognized, then our tracker will completely ignore

this trajectory, which is acceptable if we are only interested in identity-aware tracking.

Otherwise, one potential solution is to find clusters of unassigned person detections and

assign pseudo-identities to them to recover the trajectories.

Only bounded velocity model employed: To employ the more sophisticated con-

stant velocity model, we could use pairs of points as the unit of location hypotheses, but

this may generate significantly more location hypotheses than the current approach.

Assumes all cameras are calibrated: To perform multi-camera tracking, we first

map all person detections into a global coordinate system. In order to do so, the intrinsic

and extrinsic parameters of the cameras need to be provided. If a camera moves, the

updated extrinsic parameters also need to be provided.

Face recognition gallery required beforehand: In order to track persons-of-interest,

the gallery is required beforehand. This is the only manual step in our whole system,
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(a) Stable solution path: easy observation. It is clearly ID 2.

(b) Turbulent solution path: more confusing observation. Could be ID 2 or ID 3 as they are
close together.

Figure 3.11: Visualization of the decision-making process of our tracker. Easy and
confusing examples can be identified.

which could be alleviated when the detected faces are clustered thus making it very

efficient for humans to map the face clusters to persons-of-interest. Also, in a nursing

home setting, the people we are interested in tracking and observing are fixed, thus this

is a one-time effort which could be used for days, weeks or even months of recordings.

Assumes perfect face recognition: The current framework assumes perfect face

recognition, which may not be applicable in all scenarios. Therefore, we also analyzed

the effect of face recognition errors on tracking performance in Section 4.3.3.

3.9.8 Analyzing the Solution Path

An advantage of the solution path is that it can be utilized to locate uncertainty in the

tracker’s prediction, which is not addressed in most multi-object trackers. We emphasize

that this uncertainty is different from the confidence of detected people or tracklets used

by many trackers [117, 177], which focuses on the confidence of the input data. In our

case we are interested in estimating the confidence of the output tracking results. [178]

mentioned that the non-integer results acquired from their linear-programming-based

multi-object tracker can also be interpreted as the uncertainty of tracking output, but

no experiments were performed in this direction.

In this section, we demonstrate how to utilize the solution path to locate potential

tracking errors. The solution path records the class membership values in the label

matrix F for all values of p. If the solution path for an observation shows high scores

for multiple individuals as shown in Figure 3.11b, this may indicate that the tracker

is uncertain, which can be captured with the entropy measure [179]. Specifically, for
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Figure 3.12: Entropy histogram of correctly and incorrectly labeled observations for
terrace1.

iteration m, we denote Gi = F
(m)
i as the score distribution for the i-th observation.

According to the mutual exclusion constraint, ‖Gi‖p(m) ≤ 1, i.e.
∑c

j=1 Gp(m)

ij ≤ 1. Then,

Gp(m)

ij for all 1 ≤ j ≤ c can be viewed as a probability distribution5 and the entropy

is computed as follows: e
(m)
i = −

∑c
j=1 Gp(m)

ij log
(
Gp(m)

ij

)
. e

(m)
i captures the spread of

the score distribution for observation i at iteration m. We compute the uncertainty

of an observation by summing the entropy of the observation for iterations where p ∈
[0.01, 0.1], as most fluctuations were observed in this range, i.e. ēi =

∑
p(m)∈[0.01,0.1] e

(m)
i .

There are other methods to compute uncertainty, such as computing the residual error

for each observation. However, the residual error for a sample is only a single number,

but our method provides richer information as the decision process for the whole solution

path is taken into account. One may argue that we can also utilize the intermediate

results of other optimization methods and treat them as the decision-making process.

However, these unconverged intermediate results do not have an obvious physical mean-

ing. For our case, the solution path consists of converged solutions from multiple unique

optimization problems. Each solution has clear physical meanings: the class member-

ship hypothesis given the current strictness (value of p) of the mutual exclusion and

spatial locality constraint. In sum, our entropy measure provides deeper insights into

the tracking process.

To validate our entropy metric, Figure 3.12 shows the histogram of ēi for both correctly

and incorrectly assigned observations. Figure 3.12 shows that incorrect observations

tend to have larger entropy, thus supporting our claims. In the next section, we demon-

strate the usage of the entropy measure for improving multi-object tracking in an active

learning scenario.

5The sum of
∑c

j=1 G
p(m)

ij may not always be 1 if the constraint is not tight, but it is usually 1 in
most cases.
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3.9.9 Active Learning based on the Solution Path Algorithm

In challenging scenarios, it is inevitable for trackers to make mistakes, and it would

be very useful if the tracker can pinpoint potential errors for human verification and

labeling. However, human verification is very expensive, thus one should first present to

the human annotators the instances which will improve the tracker the most if the labels

of the instances were acquired. The task of automatically pinpointing such instances is

called active learning [163]. Active learning for efficient manual refinement of tracking

results has been explored in [180, 181], which utilizes a single object tracker to track

multiple objects. In our case our tracker is a multi -object tracker which can aid active

learning.

A widely used heuristic in active learning is uncertainty sampling, i.e. selecting the

instances of which the classifier is least certain. Uncertainty sampling is a good fit to our

entropy measure, which reflects the uncertainty of our tracker’s output. To evaluate our

entropy-based sampling method, we performed active learning experiments as follows.

The tracker is run iteratively, and after each iteration, the tracker automatically identifies

the 5 most confusing observations and requests for their labels. The additional labels are

added into Y and the tracker is rerun. This iteration is repeated 10 times. To select the

confusing observations, three methods were utilized: sampling based on entropy values,

sampling based on time difference from closest labeled instance (baseline), and sampling

based on the residual error (baseline). The sampling based on entropy values favors

the observations with higher entropy, i.e., the probability of the i-th observation being

selected is 1
Rank(ēi)

, where the rank instead of the absolute entropy values was used to

favor higher ranked observations. Time difference sampling favors observations which are

furthest away in terms of time from any labeled instance, thus having a higher likelihood

of having an identity switch. Residual error sampling favors observations which have a

high residual error in the final optimization result. A high residual error may indicate

that this observation is incorrect. During sampling, we also add a simple filter to avoid

sampling all 5 observations from the same region (within 1 meter) and time (within 2

seconds). The results shown in Figure 3.13 demonstrate that our entropy-based sampling

beat the baselines by a large margin. Time difference sampling also shows some gains,

but residual sampling performs poorly because high residual error mostly occurs near

observations with recognized faces. Recognized faces have a fixed score of 1, but scores

of neighboring observations will be significantly smaller (e.g. 0.3 or less), thus causing

a large residual error, but labeling observations near recognized faces is not helpful in

improving tracking. In sum, our entropy measure for uncertainty sampling is effective

in active learning.
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Figure 3.13: Performance of tracker in each iteration of active learning on the terrace1
data set. Experiments for the three sampling methods were performed 20 times each,

and the 95% confidence intervals are drawn.

3.10 Summary

In this chapter, we proposed a multi-object tracker which can localize and identify each

person at each time instant. The tracker utilizes identity information acquired from

external knowledge such as face recognition to not only enhance multi-person tracking

performance but also assign a real-world identity to each tracked target. The spatial-

temporal smoothness constraint was utilized for modeling appearance/spatial affinity

and formulating the spatial locality constraint. We proposed two optimization methods:

Nonnegative Matrix Optimization (NMO) and the Solution Path Algorithm (SPA) to

solve our tracker’s loss function. Experiments showed that our two methods outperform

the state-of-the-art, and in general SPA performed slightly better than NMO as it more

concisely models the mutual exclusion constraint and the spatial locality constraint.

Our tracker is fully automatic except for the acquisition of the face recognition gallery,

which does not require too much effort assuming the people we are observing (in the

nursing home) do not change often. We further demonstrated the scalability of our

method by applying our tracker on 4,935 hours of surveillance video, where our tracker

is able to locate a person-of-interest around 56% of the time with 66% precision. How-

ever, in this chapter, we have only explored different optimization methods to enhance

tracking. The appearance features utilized are still handcrafted color histograms. In the

next chapter, we explore the possibility of utilizing deep appearance features to replace

color histograms and further enhance tracking.



Chapter 4

Deep Person Re-Identification for

Multi-Person Tracking

Deep learning has not only shown to be very effective in multiple vision tasks such as

object recognition [5], pose estimation [182] and single object tracking [97], but it has

also been shown to be effective in person re-identification (ReID) [183–185]. The task of

person ReID is to classify whether a pair of person detections are the same individual

or not. This becomes very challenging when the pair of person detections is detected by

different cameras, which leads to a difference in viewpoints of the person and a potential

mismatch in color distributions.

On the other hand, previous work has leveraged person ReID techniques to enhance

multi-person tracking [125]. Handcrafted features such as HOG [132] and color his-

tograms were utilized to compute the affinity of the appearance of person detections.

However, recent work [183–185] have shown that deep features perform significantly

better than handcrafted features in person ReID, which motivates us to revisit the task

of utilizing person ReID techniques to enhance multi-person tracking. Therefore, in

this chapter, we explore the fusion of deep person ReID methods with our proposed

multi-object tracker to enhance tracking performance.

A crucial prerequisite for deep learning is to acquire enough training data. To train

person ReID networks, one needs a large number of positive (same-person) and negative

(different-person) detection pairs. Though there are public person ReID data sets [184]

available, these data sets tend to 1) be limited in size and 2) have domain differences

with the current data set of interest. Therefore, we propose an unsupervised method to

collect large amounts of ReID training data directly from the current data set.

56
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To overcome domain difference and lack of training data, we propose to utilize the

spatial-temporal smoothness constraint, which is an internal constraint in video, to

automatically collect person ReID training data directly from unlabeled multi-camera

surveillance environment footage. The intuition is that a person cannot be at two places

at the same time, thus if two separate person detections were detected in a single frame,

then they cannot be the same person and is a negative training example. To collect

positive examples, the multi-camera setup is utilized. In a small time window, if two

cameras both detect a person at the same 3D location, then it is highly likely that

the two detections correspond to the same individual and the pair of detections can be

treated as a positive sample. Based on the two aforementioned rules which could be

utilized in an unsupervised fashion, we were able to utilize thousands of hours of multi-

camera surveillance environment footage and automatically collect millions of diverse yet

accurate cross-view in-domain person ReID training data to train our networks, which

is the key novelty of our method. Experiments show that deep person ReID combined

with multi-object tracking further improves tracking performance.

In sum, the contributions of this chapter are as follows.

1. We propose an unsupervised method to collect large amounts of same-view and

cross-view person ReID training data. As the method is unsupervised and can

be applied directly to the scene of interest, our method is able to overcome issues

such as lack of training data and domain mismatch.

2. We present experiments testing multiple deep ReID network architectures on both

the person ReID task and the multi-person tracking task. Results show that

the deep ReID networks learned based on our collected training examples can

significantly improve tracking performance.

In the following sections, Section 4.1 gives an overview of existing deep ReID networks.

Section 4.2 describes our proposed training data collection method. Section 4.3 presents

experimental results on multi-person tracking and Section 4.4 concludes this chapter.

4.1 Review of Deep Person Re-Identification Networks

To utilize deep ReID for multi-person tracking, we first survey and explore existing deep

ReID architectures. There are two popular deep person ReID architectures: the siamese

network [183] and the “mixed network” [184, 185] as shown in Figure 4.1. Both network

architectures take a pair of person detections as input and learn a model to differentiate

whether these two person detections are the same individual or not.
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(a) Diagram of the siamese network. (b) Diagram of the mixed network.

Figure 4.1: Diagrams of common deep person ReID architectures during training.

For the siamese network [183], the pair of images goes through the same network (Net-

work A), which generates a vector representation of each image. The loss used is the

contrastive loss [186], which tries to learn parameters such that positive samples have

vector representations which are very close in Euclidean distance, and negative sam-

ples are far in Euclidean distance. Negative samples further than a threshold are not

penalized.

For the mixed network, the first half of the network is also siamese, where both images

go through Network B. However, the mixed network will then merge the output of the

two Network B ’s and pass through another Network C to get the final output. The final

output is a two-class classification prediction which predicts whether the current pair is

a positive or negative pair. Therefore, the softmax loss is used to optimize the mixed

network. The main novelty of the mixed network is in Network C, where previous work

has designed specialized layers to compare the similarity of the two person detections.

In [184], multiple layers such as the “patch matching” and “maxout-grouping” layers

were proposed to handle geometric and photometric differences between the person de-

tections. In [185], the “cross input neighborhood difference”, “patch summary features”

and “across patch features” layers were proposed to enhance person ReID.

The biggest difference between the two architectures is that siamese networks learn a

vector representation for each input image, whereas mixed networks do not. Therefore,

the siamese network is ultimately limited to using the Euclidean distance to measure the

similarity of two images’ vector representation. On the other hand, the mixed network

can learn more sophisticated distance metrics than the siamese network because the

output of Network B goes through Network C, which can be viewed as a highly non-

linear distance metric to compare the output of the two Network Bs’. This enables

mixed networks to learn more sophisticated relations between person detection pairs.

However, the siamese network is advantageous because learning a vector representation

which is optimized under the Euclidean distance enables approximate nearest neighbor

techniques to be used for k nearest neighbors search. This is very useful in our tracker,

because when constructing the manifold, we need to find the k nearest neighbors of each

person detection. In order to find nearest neighbors for the mixed network, one can no
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Figure 4.2: Visualization of pose estimation results on a person. As the pose esti-
mation output can loosely locate the location of each body part, this could potentially

help improve person ReID.

longer utilize approximate nearest neighbor search and is forced to compute all pair-wise

person detection comparisons, which is in the order of O(n2) and very time consuming.

Experiments on CUHK03

To evaluate the effectiveness of different network architectures, experiments were run on

the current largest person ReID data set CUHK03 [184]. CUHK03 has 13,164 images

from 1360 pedestrians. For each pedestrian, images from two camera views are provided.

For each camera view, there are up to 5 images for the pedestrian. Following [184, 185],

person ReID was evaluated as a retrieval task. CUHK03 has defined 20 standardized

test sets with 100 people each. For a test set, each of the 100 people was used as queries.

For each person/query, the model was given a single image of the person from one view

and asked to retrieve the same person in the 100 images of people from the second view.

A model performed better if the queried person was found higher up in the ranked list.

We aggregated the retrieval results from each of the 100 queries over 20 test sets and

drew the standard Cumulative Matching Characteristic (CMC) curve, which plotted the

following: for a given rank, the percentage of queries who had their answers found above

this rank.

The network architectures and features tested were as follows:

1. HSV Color histograms: the features used for our tracker in Chapter 3.

2. Ahmed et. al. CVPR15: A reimplementation of [185]. There were two differences:

1) hard negative mining was performed by [185] but not in this experiment, and

2) data augmentation by random translation was performed by [185] but not in

this experiment. These may have caused a slight drop in performance. The meta-

parameters used all follow [185], where the stochastic gradient descent with initial

learning rate η(0) = 0.01 was used. The inverse policy: η(i) = η(0)(1 + γ × i)−p

with γ = 10−4 and p = 0.75 was used to update the learning rate. i denotes the
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current mini-batch iteration. The momentum was µ = 0.9 and weight decay was

λ = 5× 10−4. The maximum number of iterations was 210K.

3. Ahmed et. al. CVPR15 with pose: An experiment testing whether pose detection

[8] results will help in person ReID. An example is shown in Figure 4.2. The

hypothesis is that if pose estimation can locate the body parts of the person, this

could potentially help match body parts of different person detections and improve

person ReID.

4. Alexnet siamese: Our self-implemented siamese network, which is based on a sim-

plified Alexnet [5]. The network has three 5x5 convolutional layers with 96, 256

and 256 filters respectively. Each convolution layer is followed by a ReLU and a

max pooling to reduce the input size by a factor of 2. This is followed by two

fully connected layers with size 512. The last layer is a contrastive loss layer. For

training, stochastic gradient descent with initial learning rate 0.002 was used for

the first 12K iterations. Then the learning rate was dropped to 0.0004 and the

network was trained for another 12K iterations. The momentum was µ = 0.9 and

weight decay was λ = 5× 10−4.

5. Alexnet 6 channels: This network has the exact same network architecture as the

“Alexnet siamese” network, but instead of a siamese network, this network is a

mixed network without a Network B. The two 3 channel RGB input images were

directly concatenated to create a 6 channel output, which is fed into our simplified

Alexnet. The meta-parameters used to train the model were the same as “Alexnet

siamese”.

All the models were implemented with Caffe [187]. To train each network, we gener-

ated around 30K positives and 600K negatives. The 30K positives included horizontal

reflection as data augmentation. The positive-negative ratio during the actual training

process was 1:3.

Results are shown in Figure 4.3. Clearly, deep models performed significantly than

handcrafted HSV color histograms used by our tracking in Chapter 3. Deep models also

performed more or less in the same space. “Alexnet 6 channels” is the best performer,

which shows that a network with no specialized layers for person ReID could also perform

very well. However, “Alexnet 6 channels” had 8 times more parameters than “Ahmed

et. al. CVPR15”, which may also be a reason for its good performance. “Ahmed et. al.

CVPR15 Reproduce” performed slightly worse than “Ahmed et. al. CVPR15 Original”.

This may be because we did not do hard negative mining in our implementation, which

was shown to be very useful in [185]. Interestingly, adding pose information did not

really improve person ReID. Finally, “Alexnet siamese” performed slightly worse than

“Alexnet 6 channels”, which shows that more complex distance metrics are useful in

comparing person detections.
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Figure 4.3: CMC curve on CUHK03 for different features and network architectures.
The runs “Ahmed et. al. CVPR 15 Original” and “Li et. al. CVPR 14 Original” were
copied from the respective papers [185] and [184]. The run “Ahmed et. al. CVPR 15

Reproduce” is based on our own implementation of [185].

In sum, our experiments showed that the models we trained are on par with the state-of-

the-art [185]. Also, we find that a generic network with more parameters can still perform

well or sometimes even better than networks with specialized layers for person ReID.

Our next step is to apply these models to multi-person tracking, but before training

models, one needs to first collect in-domain person ReID training data for each data set.

Therefore, in the next section, we will detail our unsupervised method to collect person

ReID training data.

4.2 Unsupervised Collection of Person Re-Identification

Training Data

Though person ReID data sets already exist, domain discrepancies between different

data sets may cause person ReID performance to drop when an out-of-domain model

is utilized. Thus it would be ideal to train person ReID networks on in-domain data.

However, it would be very tedious if manual annotation of training data is required for

all new data sets. Therefore, we propose an unsupervised method to collect in-domain

person ReID training data from multi-camera surveillance scenarios.
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(a) Illustration of a positive example. (b) Illustration of a negative sample.

Figure 4.4: Illustration and intuition of how person ReID samples can be collected
in an unsupervised manner.

Based on the spatial-temporal smoothness constraint, the fundamental assumption made

is that a person cannot be at multiple places at the same time. If two person detec-

tions are very close in space and time, then it is highly likely they correspond to the

same person. This criterion is used when building the spatial affinity Laplacian matrix

(Section 3.4.2) for our tracker, but in this chapter, we instead utilize the criterion to

collect positive person ReID training samples. All person detection pairs which qualify

the constraints of Equation 3.6 were selected as positive samples. On the other hand,

if moving between two person detections exceeds the maximum speed a person can rea-

sonably walk, then it is highly likely they are not the same individual. As this criterion

is also used in our tracker, we reused the velocity equation from Equation 3.3 and the

velocity constraints from Equation 3.10 to find negative samples. Intuitive examples are

shown in Figure 4.4.

The key novelty of our method is extending these two assumptions to the multi-camera

setting. The idea of utilizing these two assumptions is not new and has been utilized in

other single-view multi-object tracking papers [124, 188]. However, to the best of our

knowledge, we are the first work to apply this idea to very large amounts of multi-camera

data. The multi-camera scenario enables us to automatically collect large amounts of

training pairs with very large viewpoint changes, thus providing abundant data for

deep networks to learn an effective cross-camera representation. Examples of collected

training data are shown in Figure 4.5.

There are two limitations to our method of unsupervised collection of training data.

First, our assumption: a person cannot be at multiple places at the same time, can

actually fail when the surveillance cameras are not perfectly time-synchronized. In this

case, incorrect negative training data, i.e. person detections of the same person but

treated as negative data, could be collected. The second limitation is that we assume

the surveillance cameras have significant view overlap. If this view overlap does not exist

or is too small, then the system will not be able to harvest large amounts of cross-view

positive examples.
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4.3 Multi-Person Tracking with Appearance Features from

Deep Person Re-Identification Models

In this section, we detail the tracking experiments performed to evaluate the effectiveness

of the networks trained on the data collected in an unsupervised manner.

4.3.1 Experiment Setup

Collecting positive and negative samples: We ran the unsupervised data collection

process over 4 video sets: 1) terrace1, 2) Caremedia 8h, 3) a subset of Caremedia 23d,

which included data sampled from 12 days (10/07 - 10/18) of videos, and 4) the whole

Caremedia 23d data set. Networks were trained on the collected data and applied to the

respective data sets. An exception is Caremedia 6m, which utilized the model trained

from Caremedia 8h.

For each data set, at least 500K positives and 1M negatives were used to train the net-

work. Specifically, we were able to collect 474K (same view) and 109K (different view)

positives pairs from Caremedia 8h, which has 116.25 hours of video. Note that these

numbers are before data augmentation. On the other hand, CUHK03 only has 30K pos-

itives after data augmentation such as horizontal reflection. This clearly demonstrates

the power of unsupervised collection of training examples, and when we ran our algo-

rithm over the 5000 hours of Caremedia 23-day videos, tens of millions of positive pairs

were collected.

Examples of collected training data from Caremedia 8h are shown in Figure 4.5, which

shows that intra-camera positives look very similar and not very informative. However,

inter-camera positives can look very different, yet they all clearly belong to the same

person. Therefore, the diverse training data potentially enables the person ReID model

to really learn to perform cross-view person ReID.

Network training: During training, 3 different network architectures were utilized:

“Ahmed et. al. CVPR15”, “Alexnet siamese”, and “Alexnet 6 channels”. The same

training parameters as Section 4.1 were used to train the networks. The only minor

change was that for the tracking experiments, the final layer for “Alexnet siamese” only

had 252 dimensions instead of 512. This was to match the number of dimensions in the

HSV color histogram so that the comparison was fair.

Baseline runs: We had two baselines. The first baseline was the HSV color histogram

run, which was based on a handcrafted feature and does not require any training data.
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(a) Positive samples.

(b) Negative samples.

Figure 4.5: Example of positive and negative samples collected by our method on
Caremedia 8h.
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The second baseline was the tracking run based on the deep ReID network trained on

CUHK03, which is an out-of-domain data set with respect to Caremedia.

Tracking parameters: As our deep network features already utilized spatial affinity

information, we further shrunk the spatial affinity parameters to D̃ = 5 centimeters,

and T̃ = 3 frames. Also, the appearance similarity threshold was adjusted to γ = 0.99

to reflect the different scale of confidence output of our network. All other parameters

were the same.

4.3.2 Tracking Results and Discussion

Tracking results are shown in Table 4.1. Overall, for Caremedia-based sequences, deep

features provided a slight boost in performance. However, on terrace1, tracking based

on deep features was able to achieve near perfect performance. This demonstrates the

effectiveness of our collected training data and deep networks. More detailed discussion

is provided in the next few paragraphs.

Why was there a big improvement on terrace1 but not on Caremedia 6m?

The huge improvement on terrace1 based on deep features was mainly due to the lack

of discriminative power of the HSV color histogram features for this data set. From

Figure 3.9, we can see that most people in the tracking sequence wear dark clothing,

which was very challenging for HSV color histogram features. However, there were still

enough discriminative cues available to distinguish each person, and the deep networks

were able to latch onto these cues based on the training data collected. Note that both

HSV color histograms and the “Alexnet siamese” network output were 252-dimensional

vector representations, but the “Alexnet siamese” network was able to enhance track-

ing to near perfect performance. This demonstrates that these deep features are both

discriminative and compact. A further qualitative analysis of nearest neighbors found

by different features is shown in Figure 4.6. We can see that deep features had the

ability to generalize across cameras whereas the color histograms only found nearest

neighbors from the same camera. Though cross-camera color differences could be alle-

viated through the spatial affinity Laplacian matrix, an appearance feature which has

the ability to generalize across cameras is still significantly more powerful.

On the other hand, for the Caremedia sequences the improvement based on deep features

were not as substantial. One key reason is because people in Caremedia sequences, as

shown in Figure 3.10, were easily distinguished based on their color, thus deep features

were not able to significantly surpass HSV color histogram features on this data set.
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Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.493 0.018 0.035 646 24708 284 5 0.014

SPA w/ HSV 0.752 0.705 0.727 22263 2996 1407 100 0.826

SPA w/ siamese
trained on CUHK03

0.263 0.271 0.267 16910 7902 8678 547 0.346

SPA w/ Ahmed et.
al. CVPR15

0.977 0.962 0.969 24477 852 462 30 0.948

SPA w/ Alexnet 6
channels

0.967 0.947 0.957 24250 1085 575 24 0.934

SPA w/ siamese 0.982 0.972 0.977 24644 697 440 18 0.955

(a) Tracking performance on terrace1 sequence.

Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.942 0.362 0.523 12369 21641 727 9 0.342

SPA w/ HSV 0.871 0.755 0.809 26531 7458 3004 30 0.692

SPA w/ siamese
trained on CUHK03

0.876 0.646 0.744 22429 11566 2611 24 0.583

SPA w/ Ahmed et.
al. CVPR15

0.866 0.788 0.825 27040 6952 4508 27 0.663

SPA w/ Alexnet 6
channels

0.862 0.789 0.824 27120 6880 4044 19 0.679

SPA w/ siamese 0.914 0.745 0.821 25363 8637 2455 19 0.674

(b) Tracking performance on Caremedia 6m sequence.

Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.858 0.256 0.394 164 471 19 2 0.230

SPA w/ HSV 0.650 0.581 0.614 375 236 152 26 0.389

SPA w/ siamese
trained on CUHK03

0.648 0.513 0.573 334 287 143 16 0.323

SPA w/ Ahmed et.
al. CVPR15

0.694 0.606 0.647 391 237 135 9 0.415

SPA w/ Alexnet 6
channels

0.695 0.606 0.648 389 239 131 9 0.418

SPA w/ siamese 0.713 0.589 0.645 382 251 122 4 0.414

(c) Tracking performance on Caremedia 8h sequence.

Method
Micro-

Precision
Micro-
Recall

Micro-
F1

TP FN FP ID-S MOTA

Face only 0.819 0.199 0.154 125 512 28 2 0.154

SPA w/ HSV 0.650 0.581 0.614 341 284 180 14 0.326

SPA w/ siamese
trained on

Caremedia 8h
0.675 0.523 0.589 317 305 161 17 0.269

SPA w/ siamese
trained on 12 out of

23 days of
Caremedia 23d

0.698 0.573 0.629 348 273 158 18 0.324

SPA w/ siamese
trained on

Caremedia 23d
0.725 0.574 0.641 355 272 139 12 0.355

(d) Tracking performance on Caremedia 23d sequence.

Table 4.1: Tracking performance with handcrafted HSV color histograms versus deep
models. For brevity, only the Solution Path Algorithm tracker (SPA) from Table 3.1 are
shown here. Also, unless otherwise specified, all deep feature-based runs were trained

on in-domain data collected from their respective data set.
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(a) Nearest neighbors found by color histogram features.

(b) Nearest neighbors found by deep features.

Figure 4.6: Visualization of nearest neighbors found by color histograms and deep
features.

Feature terrace1 NN Error Rate Caremedia 6m NN Error Rate

Color Histograms 0.075 0.064

Deep Features 0.014 0.049

Table 4.2: Nearest neighbor (NN) error rate of color histograms and deep features on
terrace1 and Caremedia 6m.

We further calculated the error rate of the nearest neighbors (NN) found in the appear-

ance affinity computation step. Results in Table 4.2 show that color histograms make

significantly more error on the terrace1 sequence compared to deep features, thus the

large improvement in tracking performance. The similar error rates on Caremedia 6m

also support the minimal tracking improvement of deep features over color histograms on

Caremedia 6m. Nevertheless, these results show that the deep network still has learned

discriminative features to disambiguate each person in the scene based on the training

data collected in an unsupervised manner.

Why is the NN error rate of deep features on Caremedia 6m higher than

terrace1? Table 4.2 shows that the error rate of deep features is similar to color

histograms for Caremedia 6m, and the hypothesis is that the deep network did not

receive enough training data for 1) each individual person and 2) each region / camera

view of the nursing home.

To validate the first hypothesis, we first computed the number of ReID training pairs har-

vested for each individual in Caremedia 6m and terrace1. Then the number of training
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pairs and the tracking F1-score of each individual were plotted as shown in Figure 4.7a.

We can clearly see that 1) individuals with many training pairs tend to perform better

and 2) individuals in terrace1 have more pairs than Caremedia 6m. These observations

support our first hypothesis.

To validate the second hypothesis, we first discretized the nursing home into many re-

gions and then computed the tracking error rate per region. The error was computed by

dividing the number of incorrectly classified person detections with the total number of

ground-truth in the region. The number of training pairs per region was also computed,

and the statistics of each region is shown on a nursing home map in Figure 4.8. Fig-

ure 4.8 indicates that regions with higher tracking errors tend to have less training pairs.

Therefore, we further correlated the number of training pairs per region with the error

rate per region as shown in Figure 4.7b. Results show that regions with more training

pairs tend to have lower tracking error rates. The correlation is -0.56.

A qualitative analysis to analyze the cross-camera generalization ability of the feature

was further performed. The appearance features corresponding to the same individual

were extracted from different camera views, and the pair-wise similarity matrices of the

features are shown in Figure 4.9. We can clearly see that cross-camera generalization

was successful for Figure 4.9a, which was a region (intersection of the corridor and living

room) with many training pairs. However, cross-camera generalization failed completely

for Figure 4.9b, which was a region (end of the corridor) with less training pairs. The

above observations support our second hypothesis.

In sum, deep features were not as effective on Caremedia sequences because the scene

had significantly more variability than terrace1. There were more people walking around

in a larger area which was covered by more cameras. Therefore, the amount of data

required to learn all the variations in the scene for all camera pairs was significantly

larger. To make matters worse, the amount of training data per person is less than

terrace1. Therefore, if one is to tackle these challenges, two key points are 1) make

sure all regions have enough training pairs and 2) collect training pairs from as many

different individuals as possible.

Cross-data set generalization capability of deep networks is limited. As shown

in Table 4.1, when we applied an out-of-domain deep network trained on CUHK03 to

Caremedia and terrace1, performance dropped significantly. Performance on terrace1

dropped to near random. These results act as a warning that deep networks can eas-

ily overfit to the training data, and if the testing data is not in domain, then features

acquired from deep networks can hurt performance. Therefore, this makes our unsu-

pervised training data collection method an even more ideal candidate in providing

in-domain samples for training deep networks.



Deep Person Re-Identification for Multi-Person Tracking 69

(a) Scatter plot of number of training pairs
versus final tracking F1-score for each person.

(b) Scatter plot of number of training pairs
versus tracking error rate for each region.

Figure 4.7: Figures demonstrating that the number of training pairs used for deep
learning is highly correlated with tracking performance.

Figure 4.8: Statistics including the number of training pairs and error rates at each
region in the nursing home. Dark red corresponds to higher values, and dark blue

corresponds to lower values.

No clear winner in deep network architectures for tracking. If we compared

the performance of different deep network architectures, there is no clear winner. De-

spite the fact that siamese networks were inferior to other network architectures in the

person ReID task, siamese networks performed as well as other networks on all tracking

data sets. These results are very encouraging in that siamese networks have the nice

property of generating a vector representation for each person detection, thus enabling

the utilization of approximate nearest neighbor techniques for efficient nearest neighbor

search. This property is crucial because finding nearest neighbors is a fundamental com-

ponent of our tracker (Section 3.4.1), and if we want to apply our tracker to large-scale

or time critical scenarios, one needs to perform nearest neighbor search efficiently. For

mixed networks such as “Ahmed et. al. CVPR15” and “Alexnet 6 channels”, com-

paring two person detections requires a feedforward pass through the network, which is
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(a) The pair-wise similarity of deep features
for 80 detections of the same person. The de-
tections were from four cameras. The cam-
era start/end IDs are 1-33, 34-57, 58-72, 73-
80, but as cross-camera generalization was
very successful, the “squares” which mark
the “boundary” of each camera are no longer

obvious. ID 35 is an outlier.

(b) The pair-wise similarity of deep features
for 90 detections of the same person. The de-
tections were from five cameras. The camera
start/end IDs are 1-45, 46-74, 75-82, 83-85
and 86-90. Cross-camera generalization was
not as successful, especially for IDs 75-82,
as they are not similar with detections from

any other camera.

Figure 4.9: Pair-wise similarity of deep features across multiple cameras. Detec-
tions from different cameras have been grouped into consecutive IDs, and if there are
clear “squares” along the diagonal, then this means that the intra-camera similarity is
significantly larger than inter-camera similarity, which implies that cross-camera gen-

eralization was not successful.

extremely time consuming and significantly slower than computing the pairwise distance

between two vectors. Therefore, this is the main reason why the other two architectures:

“Ahmed et. al. CVPR15” and “Alexnet 6 channels” were not run on the Caremedia

23d sequence.

Distribution of person appearance varies over different days in Caremedia

23d. As shown in Table 4.1d, tracking performance was the best when the deep net-

work was trained on person ReID training data collected over all 23 days. Performance

degraded when only 12 days of footage was used to collect training data, and perfor-

mance further dropped when only the footage from Caremedia 8h was used to gather

training data. This shows that the distribution of the training data for Caremedia 8h is

still different compared to Caremedia 23d, which means that the distribution of person

appearance varies over time even in the same nursing home environment. This demon-

strates the importance of being able to automatically collect in-domain training data,

which enables our model to automatically adapt to the distribution of a new day.

Already achieves reasonable long-term tracking performance. Examining the

performance on the Caremedia 23d sequence, our best performing tracker is able to

localize a person with 73% precision and 57% recall over 23 days of video. In other

words, for a given person, our tracker is able to find him/her 57% of the time, and if
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Figure 4.10: Challenging scenarios for person detection.

our tracker predicts that a person detection is a given person, then our tracker is correct

73% of the time. Though the performance is not high, but achieving such performance

over the 4,935 hours of surveillance video in the Caremedia 23d sequence opens the door

to automatic surveillance video analysis, which we will demonstrate in Chapter 6.

4.3.3 Analysis of Tracking Errors

Though our tracker was able to achieve near perfect tracking performance on terrace1,

there is still large room for improvement on the Caremedia sequences. In this section,

we analyze the failure cases of our tracker, which may account for the remaining gap

between the current performance and perfect performance.

Detection errors/misses: This is one of the main causes of tracking errors. As our

tracking algorithm is based on tracking-by-detection, a person which was not detected

by the detection algorithm will not be tracked. We performed an analysis on the false

negatives of Caremedia 6m, which showed that 72.5% were caused by the person de-

tector not being able to detect the person. If the ground-truth instances that have no

corresponding detection were removed, the tracking F1-score on Caremedia 6m increases

from 0.821 to 0.899, which is getting close to near perfect performance. Qualitatively,

Figure 4.10 shows some examples of difficult person detection scenarios. These scenarios

include difficult poses and occlusion. A possible solution to increase recall is to utilize

deep models such as the Faster RCNN [189], which has shown to significantly outperform

the Deformable Part-based Models we used.

Face Recognition: As described in Section 3.9.3, manual verification on Caremedia

6m shows that 98% of the face recognitions were correct. The high accuracy shows

that face recognition errors were not the main cause of the remaining performance gap

for Caremedia 6m. However, as our purely automatic face recognition performance on

Caremedia 23d achieves only around 75% accuracy (Section 3.9.3), we analyzed the

effect of incorrect face recognition on tracking performance. Face recognition errors at

different error rates were randomly generated on the Caremedia 6m set. Errors were

generated by randomly changing an already recognized face to another person’s face.

Results are shown in Figure 4.11, which show that performance drops steadily as face
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Figure 4.11: Analyzing the effect of face recognition errors on tracking performance
on Caremedia 6m. At each error rate, the experiment was repeated 3 times and the

95% confidence interval is shown.

recognition errors increase, and a 25% error (75% accuracy) lead to around 10% drop in

F1, which coincides with the results on Caremedia 23d. For the first 7 days in Caremedia

23 where the face clusters were manually mapped into each person, the average F1 score

was 0.699. For the remaining 16 days, where face recognition was computed completely

automatically, the F1 score dropped to 0.591, which is a 10% drop. Another potential

source of performance drop is when no faces were recognized for a trajectory. In this

case, our tracker will completely ignore this trajectory.

Camera Synchronization: This is the other main cause of tracking errors. Due to

hardware issues, the Caremedia videos were not time synchronized. To make matters

worse, the video encoding process was not completely error free, and many recordings

have “holes” which last up to a few seconds. Though the location of the encoding errors

could be automatically found, and synchronization with audio was sometimes effective,

there were many cases when the videos were still not synchronized. In the worst case,

synchronization errors were up to 20 seconds, which will confuse the tracker as the same

person could be at more than one place at the same time. Figure 4.12 shows an example.

Camera Calibration: Camera calibration errors were also a source of error. As the

nursing home scene no longer exists, the calibration of Caremedia cameras was performed

directly on the video footage, and only rough estimates of the intrinsic and extrinsic

camera parameters could be acquired. This caused issues in the localization of people.

An example is shown in Figure 4.13, where the localization of the yellow bounding box

in the lower right camera view was accurate, but the yellow bounding box in the upper

right camera view was not accurate. However, as camera calibration errors were only

severe at some locations, we believe it does not cause as much error as missed detections,

face recognition errors and synchronization issues.
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Figure 4.12: Example of synchronization error in the Caremedia data set where two
sets of cameras provide contradicting information on the location of a person.

Figure 4.13: Example of calibration error in the Caremedia data set. The localization
of the yellow bounding box in the upper right camera view was not accurate.

4.4 Summary

In this chapter, we demonstrated the effectiveness of utilizing an internal constraint:

spatial-temporal smoothness, to automatically collect large amounts of person ReID

training data for training deep ReID models. As the collected samples were accurate,

diverse and in-domain, the features acquired from the deep models trained on the col-

lected samples were able to further improve tracking performance. On the terrace1

sequence, our tracker was able to achieve near perfect performance thanks to the very

effective training data collected and the ability of deep networks to learn powerful fea-

tures to distinguish each person.

Combined with the advances from the current chapter and Chapter 3, our tracker was

able to locate a person with 73% precision and 57% recall in 4,935 hours of surveillance

video. These promising results motivate and enable us to perform surveillance video

summarization, which is detailed in Chapter 6.



Chapter 5

Unsupervised Adaptation of

Image-based Pose Detectors to

Video

Pose detection focuses on finding the location of each joint of a person, which would

be very useful information when trying to understanding the action of a person. For

example, in the nursing home environment, through pose estimation of elderly people

sitting in a dining room, we can automatically compute the eating speed (frequency

of food to mouth) of each elderly person, which would be very useful in assessing the

person’s state of health.

Pose estimation algorithms have been developed for analyzing static images [8, 190–192]

and video [6, 35, 193–195]. The standard procedure for evaluating these methods is to

train and test a pose detector on different splits of the same data set, which implies

that both sets are from the same domain. The pose detectors trained based on this

standard procedure face one big problem. If the detectors were to be applied to a new

(surveillance) video data set, there is highly likely to be domain difference between the

training set and the new video data set, thus leading to degradation in pose detection

performance. An example is shown in Figure 5.1, which shows that the appearance,

configuration and viewing angle of poses are different for each data set.

A straightforward method to overcome this domain difference is to manually label train-

ing data for each new domain. However, manually labeling each new domain may be

too tedious to perform. Therefore, we propose to utilize constrained self-training to au-

tomatically harvest in-domain training data directly from unlabeled surveillance videos.

The collected in-domain training data is then combined with the existing out-of-domain

training data to build a more effective pose estimator for the new domain.

74
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(a) Snapshot of training data from PARSE
(top row) and LEEDS sports (bottom row).

(b) Snapshots of people from Caremedia data
set.

Figure 5.1: Snapshots of pose detection targets from different data sets.

Starting from a static image-based pose detector, we propose to perform constrained

self-training to gradually adapt the pose detector to video data. Self-training [32, 33] is

the iterative process of adding testing instances with highly confident predictions into

the training set to enhance the current model. However, as highly confident instances

may not always be correct, we constrain the self-training process by only selecting highly

confident poses which follow the internal spatial-temporal smoothness constraints. The

assumption is that pose estimation results in neighboring frames should not vary too

much. If the estimated poses for two neighboring frames vary greatly, then it is highly

likely that one of the detected poses is incorrect despite the fact that they both may

have high confidence scores. In this case, we will ignore these two pairs of frames. The

advantage of our method is that since it is fully unsupervised, it has the ability to harvest

training examples from large amounts of unlabeled in-domain testing videos. Therefore,

we can afford to be very conservative and only select instances in which we are very

confident, i.e. it is acceptable if we throw away 99.99% of the data as long as if we still

have a 0.01% harvest rate on a very large unlabeled set.

We emphasize that our main goal is not to utilize the spatial-temporal smoothness con-

straint to enhance pose estimation in video, but to utilize this constraint as a consistency

check for better self-training of pose estimation models, which leads to better domain

adaptation from images to video. Our method has a different motivation and method

of utilizing the spatial-temporal smoothness constraints for video pose estimation com-

pared to [6, 194], which directly learns a video-based pose detector. Video-based pose

detectors utilize spatial-temporal smoothness constraints themselves to acquire a pose

detection result, so utilizing the same constraint to verify whether a pose detection is

correct or not is unreasonable.
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The advantage of our algorithm is two folds. First, our method is not constrained to

a specific pose estimation model. Any method which outputs a confidence score corre-

sponding to the detected pose can be used. Second, our method is fully automatic, thus

it has the potential to adapt to large varieties of video domains without any supervision.

In sum, our contributions are as follows:

1. We propose to automatically adapt image pose detectors to video based on con-

strained self-training, which utilizes the spatial-temporal smoothness constraint.

2. Experiments performed on the Caremedia video data set with two pose detectors:

[8, 190] demonstrates the effectiveness of our method.

5.1 Related Work - Pose Estimation

Pose estimation in images [190–192] and video [6, 35, 193–195] has been intensively

studied but still remains to be a challenging topic.

One main challenge of pose estimation is developing effective and efficient models to

parse human joints. As human limbs form a tree structure, tree-structured models (also

called pictorial structures) [6, 190, 196] have been widely used for pose estimation as they

are computationally efficient and effective. However, as these models do not take into

account the relation between the two hands and legs, double counting is a big problem,

e.g. the pose estimation prediction associates both the left and right hand to the same

physical hand. Self-occlusion is also a big problem, as different parts may articulate and

occlude other parts. To model the interacting joints, many loopy graph-based models

have been introduced [193, 197, 198], but these models are usually harder to optimize

and significantly more time consuming to run. [192] replaced the loops in the graph

by introducing multiple layers of simple classifiers, i.e. a sequential prediction model,

which leads to the efficient and effective pose machine algorithm. Many video-based

pose estimation algorithms have also been proposed [6, 193–195], but they also face

the same trade-off of faster but coarser tree-models versus slower but more fine-grained

graph models. Furthermore, video-based methods are more difficult to train because the

annotation of video training data is required, which is significantly more tedious than

annotating a single image.

In the advent of deep learning, multiple deep convolutional pose estimators were pro-

posed. In terms of how the output and loss of the deep network were formulated, there

are roughly two families. One kind of network directly outputs the (x, y) Cartesian

coordinates of each body joint [182, 199], i.e. the network directly regresses over the

coordinates and the network is optimized with the Euclidean loss between the predicted
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and ground-truth locations. The second kind of network outputs a heat-map to the lo-

cations of each joint [8, 200], and the network is optimized by minimizing the Euclidean

loss between the predicted and ground-truth heat-maps. The main advantage of uti-

lizing the heat-map is that uncertainties in joint locations are preserved, whereas only

outputting the (x, y) locations provide no information in terms of confidence. Therefore,

when the entire heat-map is fed into the next model in a sequential prediction frame-

work, the next model can utilize the uncertainties to generate better pose estimation

predictions [8].

On the other hand, regardless of how the loss of a deep pose estimator was formulated,

both [199] and [8] were formulated under the sequential prediction model. [199] itera-

tively predicted the necessary offset required to move the current joint prediction to the

correct pose location. [8] had multiple stages where each stage outputs a heat-map for

each joint. The heat-map from the previous stage was taken as input and refined by the

next stage. More details of [8] are in Section 5.3.

Another main challenge of pose estimation comes from the large configuration of pos-

sible human poses, which is difficult enumerate even with the large data sets currently

available. Current popular pose estimation data sets include PARSE [201] with 305

annotated full-body poses, BUFFY [202] with 748 upper body poses, VideoPose2.0 [6]

with 1286 upper body frames, FLIC [191] with 5K upper body frames, extended LEEDS

Sports [203] with 12K poses, and MPII human pose dataset [204] with 40K poses. Even

though coverage increases as the data sets become larger, but as the coverage of these

data sets are still not perfect, in-domain data will still be very useful in enhancing pose

estimation. This motivates us to utilize constraint self-training to automatically adapt

an image-based pose detector to any video data set.

Finally, our work can be viewed as an extension to the classic pose detector [196]. [196]

proposed to track each limb of a person by first finding highly confident pose detections

of the person using a pre-trained lateral person pose detector and then directly learning

an appearance model for each limb of the person, thus involving two models. In our

work, we merge these two models by updating the pose detector directly based on the

highly confident pose detections. Also, our work utilizes spatial-temporal constraints to

select highly confident poses, which was not used in [196].
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Figure 5.2: Illustration of constrained self-training.

5.2 Constrained Self-Training for Unsupervised Domain

Adaptation

We propose to automatically adapt image-based detectors to video based on constrained

self-training (CST). As shown in Figure 5.2, the inputs to our algorithm are out-of-

domain training images and videos on which we would like to perform pose estimation.

The output will be a pose estimator adapted to the video domain at hand. The main

steps of our method are as follows:

1. Train a pose detector on out-of-domain labeled images, which can be viewed as

external knowledge.

2. Perform pose estimation on unlabeled input videos with the current model.

3. Harvest pseudo-training data by selecting predicted poses that not only have high

confidence but also violate the continuity and tracking constraints the least.

4. Update/retrain pose estimation model based on newly selected data. Go to step

2 till maximum iterations reached.

The continuity and tracking constraints, which both stem from the spatial-temporal

smoothness constraints, are the key to preventing the self-training procedure from uti-

lizing incorrect pose estimation examples for training. In the following sections, we will

describe the two constraints in detail.

5.2.1 Continuity Constraint

The continuity constraint captures the fact that limbs should not move too far in a short

period of time. Therefore, based on the body part location predictions of each frame,

we compute the smoothed trajectories for each body part. Let P be the number of body

parts, and F be the total number of frames in a video. Let pfi , 1 ≤ i ≤ P, 1 ≤ f ≤ F be

the location of part i detected by the pose detector in frame f . Let p̃fi be the location

of the body parts for the smoothed trajectories. We find the smoothed trajectories by
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minimizing the following equation.

min
p̃fi |Pi=1|Ff=1

F∑
f=1

P∑
i=1

(∥∥∥p̃fi − pfi ∥∥∥2

2
+ α

∥∥∥p̃f+1
i − p̃fi

∥∥∥2

2

)
. (5.1)

The first term makes sure the smoothed trajectory is consistent with the detections.

The second term minimizes the distance between detections in adjacent frames, which

forces the trajectory to be smooth. α controls the relative weight between these two

terms.

5.2.2 Tracking Constraint

The tracking constraint assumes that the body parts in different frames should be consis-

tent with local optical flow based tracking results. The tracking procedure is performed

as follows. For each pose estimation in each frame, we track each body part for 1 sec-

ond. Each body part is tracked with dense trajectories [205] based on the KLT tracker

[206]. Dense trajectory keypoints are extracted from the bounding box of the body part

and tracked. As the body parts are tracked for 1 second, we can compute a location

hypothesis for the tracked body part for each frame in the 1-second window. The body

part location hypothesis for a frame is the average location of the tracked keypoints in

that frame.

For a body part in a single frame, it will have multiple location hypotheses from neigh-

boring frames. We merge these location hypotheses to compute the most likely location

of the body part by performing a weighted sum over all the location hypotheses. The

weight of each location hypothesis corresponds to the detection confidence of the de-

tected pose which provided the specific hypothesis. Let the results of the weighted sum

be T f
i . We update Equation 5.1 such that the smoothed trajectories also need to be

close to the tracking hypotheses.

min
p̃fi |Pi=1|Ff=1

F∑
f=1

P∑
i=1

(∥∥∥p̃fi − pfi ∥∥∥2

2
+ α

∥∥∥p̃f+1
i − p̃fi

∥∥∥2

2
+ β

∥∥∥p̃fi − T f
i

∥∥∥2

2

)
. (5.2)

β controls the relative weighting of the tracking constraint.

5.2.3 Selecting Positive Examples

We now utilize the continuity and tracking constraint to add pose detections which are

highly likely to be correct into the self-training process. Once we have computed p̃fi by

solving Equation 5.2, we can compute the pose detections which are not only confidently
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detected by the pose detector, but also violate the constraints the least. Let cf be the

confidence of the pose detection in frame f . Let sf denote the negated error of the two

constraints:

sf = −
P∑
i=1

(∥∥∥p̃fi − pfi ∥∥∥2

2
+ α

∥∥∥p̃f+1
i − p̃fi

∥∥∥2

2
+ β

∥∥∥p̃fi − T f
i

∥∥∥2

2

)
. (5.3)

Then we select potential training data by looking for pose estimations which have cf

and sf higher than a threshold. Once we have selected a few positive testing instances,

we add the testing data into the training data and reiterate through this process.

The CST training data collection process does not guarantee that the collected instances

are correct. Through the constraints, we are only able to collect training instances which

were very “stable” in the adjacent frames. However, the stability of the labeling is not

equivalent to the correct labeling, and in our experiments, we show how the labeling

errors actually affect CST performance.

5.3 Experiments

We evaluated our constrained self-training pose estimation approach with the following

setup.

Pose Estimators: To demonstrate that our method is agnostic to the pose estimator

used, we performed pose estimation experiments with the Flexible Mixture-of-Parts

(FMP, [190]) and Convolutional Pose Machines (CPM, [8]).

FMP utilizes a tree structure to model a person, and each body part is represented by

a mixture of configurations. HOG [132] was used as the low-level feature. The code was

acquired directly from the authors [190], and the optimal parameters: 26 joints and 6

clusters were used to train FMP. There is no clear way to fine-tune FMP with the newly

harvested in-domain pseudo-training samples, so a new model was retrained whenever

a new set of training instances were provided.

CPM is a deep pose estimator with multiple stages as shown in Figure 5.3. There

are two main parts: the low-level network and the high-level network. The low-level

network consists of 4 convolutional layers with filter size 5 × 5 × 128 for all layers and

max-pooling in the first three layers which reduce the size of the original image by a

factor of 8. This captures the lower level details of the image. Then the high-level

network will take as input the output of the low-level network and the output of the

previous high-level network. For the first high-level network, there are 3 convolutional

layers with filter size 9 × 9 × 512, 1 × 1 × 512 and 1 × 1 × 15. For the other high-level
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Figure 5.3: Illustration of the CPM pose estimator with 3 high-level network stages.

networks, there are 5 convolutional layers with filter size 9×9×64, 9×9×64, 9×9×128,

1 × 1 × 128 and 1 × 1 × 15. All outputs of the high-level network are connected to a

Euclidean loss of the ground-truth heat-map. The advantage of the multi-layer design

is that double counting can be alleviated. For example, if the left and right wrists were

all predicted on the same physical wrist at stage s − 1, then stage s has the ability

to learn to change the location of one of the wrists to the other physical wrist. In our

experiments, there were 3 high-level networks. The CPM implementation1 was based on

Caffe [187]. If a CPM was trained from scratch, the base learning rate was 2×10−5, and

the learning rate was divided by 3 every 66,000 iterations. Batch size was set to 12. For

fine-tuning, the base learning rate was 5 × 10−6, and the number of iterations utilized

was 2.5 × number of fine-tuning instances. In the prediction phase, the locations with

the highest scores were selected as the locations of each body part, and the confidence

of the pose was computed by averaging the highest scores of each body part.

Data Sets: The FMP pose estimators were trained on PARSE [201], which had 305

full-body poses, and the negative set was from the INRIA Person database. Data aug-

mentation was performed by mirroring and rotating the images by -15, -7.5, 7, 7.5

degrees. One limitation of FMP is that the method assumes all joints are visible, thus

when training over the Caremedia pose data set, only the poses where all joints were

visible were used.

The CPM pose estimators were trained on LEEDS Sports [203, 207]. There were 11K

training images, and each image was resized to 304-by-304. Data augmentation was

performed by mirroring and rotating the images from -150 to 180 degrees in 30-degree

intervals. 213,000 iterations were run to train the CPM network on LEEDS Sports.

The target domain for domain adaptation was the Caremedia data set, where 3,193

poses were annotated. 14 joints were annotated if the joints were visible. Some examples

are shown in Figure 5.4. To compare the effectiveness of our self-training method, we

also evaluated the performance of models which used in-domain ground-truth instances

for fine-tuning. To perform fine-tuning experiments, the Caremedia data set was split

1Code modified from Shih-En Wei’s implementation of CPM.
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Figure 5.4: Annotated poses from the Caremedia data set.

into two folds, where one fold was used for fine-tuning and the other fold was used for

testing. The prediction results from the two folds were combined and an overall score

was computed. The folds were split so that ground-truth instances of a single individual

would all be in the same fold. This was to prevent the pose estimator from “memorizing”

a single individual. Data augmentation was performed by mirroring and rotating the

images by -15, -7.5, 7.5 and 15 degrees. Also, to understand the effect of training data

size versus pose estimation performance, we randomly sampled from the training fold

50, 200, 584 and 800 instances 5 times each and utilized each sampled training set to

fine-tuning the CPM. For FMP, we sampled 50 and 227 instances per fold.

Parameters: The self-training methods were presented 10-second video clips which

encompassed each of the 3,193 annotated poses. For each video clip, at most one pose

estimation which had a score larger than the threshold was selected. For FMP, the min-

imum confidence thresholds used for self-training was cf ∈ {0.9, 1.0} and CST was cf ∈
{0.4, 0.5} , sf ∈ {−600,−1000}. For CPM, the minimum confidence thresholds used for

self-training was cf ∈ {0.5, 0.6, 0.7} and CST was cf ∈ {0.5, 0.6, 0.7} , sf = −350. We

ran the self-training for one iteration. Internal tests have shown that running on one

iteration already saturates performance, which we believe was due to our unlabeled set

not being big enough. We set α = 5 and β = 0 in our experiments. β = 0 because

we found in our preliminary experiments that KLT keypoint tracking cannot find many

keypoints to track in low-resolution Caremedia video, which leads to severe body-part

tracking error. Therefore, the tracking continuity term was not utilized in our exper-

iments. This issue could be alleviated by utilizing a patch-based tracker instead of a
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Figure 5.5: Performance of LEEDS and Caremedia with joint fine-tuning and Care-
media only fine-tuning.

keypoint-based tracker.

Evaluation Metrics: We utilized the widely used Percent of Correct Keypoints (PCK,

specifically PCK@0.2) [191] as our evaluation metric. For PCK@0.2, a keypoint is

counted as correct if the distance between the keypoint and the ground-truth is less

than 0.2 × d, where d is the diameter of the torso, i.e. distance between the left hip

and the right shoulder. In this way, the accuracy for each of the 14 keypoints can be

computed.

Results and Discussion

Before performing large numbers of fine-tuning experiments, we first tested two different

fine-tuning methods for CPMs: fine-tuning only with Caremedia training data, and joint

fine-tuning with both Caremedia and LEEDS training data. One hypothesis is that joint

fine-tuning with both Caremedia and LEEDS training data can improve Caremedia

performance. Joint fine-tuning is performed by providing 12 (which is the batch size)

training instances from both data sets to the network per iteration. We ran fine-tuning

with both fine-tuning methods on the training samples collected by CST when cf = 0.6

and sf = −350. Then, for different iterations, we predicted the fine-tuned model on

both LEEDS and Caremedia. Results are shown in Figure 5.5, which show that when

fine-tuning only with Caremedia samples, performance on LEEDS drops. With joint

fine-tuning, performance of LEEDS stays the same. However, there is no clear difference

in performance between the two methods for the Caremedia data set. This shows that

both fine-tuning methods are effective, and for simplicity, we utilized Caremedia only

fine-tuning for our remaining experiments.
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Method PCK
In-domain (psuedo-)training

instances

PARSE 64.6 0

CST, cf = 0.5, sf = −600 67.6 196

CST, cf = 0.4, sf = −1000 69.1 347

Self-training, cf = 1.2 66.6 208

Self-training, cf = 1.0 67.5 340

Self-training, cf = 0.9 67.5 435

50 fine-tuning instances 68.5 50

227 fine-tuning instances 70.6 227

Table 5.1: PCK performance for self-training, CST and fine-tuning based on the FMP
model trained on PARSE.

The performance of CST to adapt an image-based detector trained on PARSE or LEEDS

Sports to Caremedia is summarized in Table 5.1 and Table 5.2 respectively. As the CPM

is the state-of-the-art pose detector, a more detailed analysis of the CPM trained with

different numbers of LEEDS Sports training examples are shown in Figure 5.6a.

From Figure 5.6a we can see that a LEEDS Sports model trained with 2,000 instances

and enhanced with CST performed as well as a LEEDS Sports model with 11,000 in-

stances. This shows that CST was equivalent to 9,000 out-of-domain instances, thus

demonstrating the importance of acquiring in-domain data.

We can see that both self-training and CST were effective in enhancing both FMP

and CPM pose estimators. For FMP, CST performed slightly better than self-training.

However, there is no clear difference between the performance of self-training and CST

for CPMs. This may be because a very conservative self-training cf threshold collects

around the same quality of training examples as CST. Though CST can afford a lower

cf threshold, it would end up only harvesting the same number of training examples

because many examples were filtered out by the smoothness threshold sf . This shows

that the spatial-temporal smoothness constraint was not very cost-effective, and it was

the external knowledge acquired from out-of-domain training data which provided most

of the performance gain.

Compared with the fine-tuning scenario, CST was equivalent to around 50 manually

collected in-domain training examples, which takes around 1 hour of manual human

effort to acquire. Also, in general, the margin of improvement of both CST and fine-

tuning decreased as more out-of-domain training samples were used for training.

Digging deeper into the figures, we can see clearly from Figure 5.6b that the quality of

training instances collected manually versus through CST was different. For example,

with 584 manually collected training instances, the PCK was 88.5, whereas for CST it

was only 84.2. There are 3 possible reasons for this gap: 1) the automatically collected
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Method PCK
In-domain (psuedo-)training

instances

LEEDS Sports 11K 79.5 0

CST, cf = 0.7, sf = −350 82.8 189

CST, cf = 0.6, sf = −350 84.2 584

CST, cf = 0.5, sf = −350 84.2 1220

CST, cf = 0.4, sf = −350 81.7 1708

Self-training, cf = 0.7 84.5 675

Self-training, cf = 0.6 83.9 1695

Self-training, cf = 0.5 84.5 2592

50 fine-tuning instances 85.8 50

200 fine-tuning instances 87.4 200

584 fine-tuning instances 88.5 584

800 fine-tuning instances 89.8 800

1600 fine-tuning instances 90.5 1600

Table 5.2: PCK performance for self-training, CST and fine-tuning based on the CPM
model trained on LEEDS Sports 11K.

training instances were inaccurate, 2) the collected instances were biased to a specific

set and lacked variety, and 3) the collected instances were too easy thus not informative

to the classifier. In order to understand the reason for this gap in performance, we

manually corrected all the 584 pose estimation results collected by CST when cf = 0.6

and sf = −350. Then we utilized these manually corrected instances to fine-tune the

CPM, and results are shown in Figure 5.7a. Results show that our CST actually achieved

the same level of performance as “manually corrected CST” and “584 randomly sampled

fine-tuning instances” for the upper body, which includes the head, shoulder, elbow and

wrist. However, CST performed significantly worse on the hip, knee and ankles. Digging

deeper into why CST was not as helpful on the hip, knee and ankle, we found that the

labeling accuracy of these joints by CST was significantly lower than the other joints as

shown in Figure 5.7b. There is a very clear positive correlation between the body joint

labeling accuracy of CST versus the relative PCK performance of CST when compared to

the “manually corrected CST” run. We believe this can largely explain the performance

gap between CST and fine-tuning with manually labeled samples. This leads us to

conclude that: 1) the collected instance were not too easy for the classifier because we see

as much gain in performance on the upper body joints, 2) the collected instances have just

as much variety as the randomly sampled manual instances, because the average PCK of

the “manually corrected CST” and “584 randomly sampled fine-tuning instances” runs

have similar performance, and 3) the accuracy of the automatically labeled instances

played a key role in affecting CST performance.
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(a) PCK performance of self-training and
“fine-tuning with manually labeled instances”
when utilizing different numbers of out-of-

domain LEEDS Sports training examples.

(b) Results of self-training and fine-tuning
with 11,000 out-of-domain training examples.
The 95% confidence interval is shown for the
“fine-tuning with manually labeled instances”.

Figure 5.6: Results of self-training compared to “fine-tuning on manually labeled
instances” with the CPM model.

(a) PCK performance for different body parts under different conditions.

(b) The relation between CST labeling accuracy and PCK performance relative to the manually
corrected CST run with the CPM model.

Figure 5.7: Analysis of CST performance drop.
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(a) (b)

(c) (d)

Figure 5.8: Examples of pose estimation errors which were fixed through CST. Green
and red lines correspond to the correct and incorrect limbs respectively. The image

connected by a dotted line are training examples harvested from CST.

Figure 5.9: Pose estimation failure cases. Green and red lines correspond to the
correct and incorrect limbs respectively.

Qualitative analysis of CST pose estimation was also performed. As CST directly har-

vests training examples from the testing data, CST can potentially “memorize” a per-

son, thus enhancing the pose estimation performance for that specific person. Figure 5.8

shows the poses which were incorrectly predicted by the out-of-domain model but cor-

rectly predicted by the CST model. A CST collected instance which could have likely

helped in correcting this pose is also shown. Examples of pose estimation failure cases

are shown in Figure 5.9. Failure cases include double counting for the first three im-

ages, confusing hairstyles for the second image, and challenging upper-body poses with

occlusions and another person.

5.4 Summary

We present constrained self-training, which utilizes the spatial-temporal smoothness con-

straint to adapt a static image-trained pose detectors to video data. The key advantage

of our method is that the whole process is unsupervised, thus enabling us to potentially

generalize to a large variety of video. Experiments showed that CST was effective in

adapting two image pose detectors: FMP and CPM to the Caremedia video domain in
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an unsupervised fashion, thus supporting that CST is agnostic to the pose detector used.

For CPM, a pose estimator trained on 2,000 out-of-domain training examples combined

with CST achieved equivalent performance to a model trained with 9,000 more (total

of 11,000) out-of-domain training examples. Also, the effect of CST was equivalent to

around 50 manually labeled in-domain instances, thus saving around 1 hour of manual

effort. Detailed analysis of the training samples collected by CST showed that the sam-

ples collected were actually diverse and not simply focused on the easy instances. Also,

for the upper body joints, the performance of models fine-tuned with CST collected

instances achieved as good a performance compared to models fine-tuned on manually

collected instances. However, CST labeling errors on the lower body heavily affected

the pose estimation performance on the corresponding joints, which was the main cause

of CST not performing as well as fine-tuning on manually collected instances. Another

negative outcome is that self-training and CST performed very similarly, thus show-

ing that the spatial-temporal smoothness constraint may not be very cost-effective in

collecting accurate training examples. This shows that not all external knowledge or

internal constraints are useful.

A future work is to apply CST to very large amounts and large varieties of video to

automatically collect training data to improve a generic pose estimator. This process

could be run iteratively to potentially perform never-ending pose estimation learning.

However, the biggest bottleneck in our experiments was the speed of pose estimation

on videos, which was the limiting factor for the number of videos used in our CST

experiments. Therefore, developing efficient pose estimators for video will potentially

enable us to unleash the full power of CST.



Chapter 6

Long-Term Surveillance Video

Analysis

According to reports1, there were 245 million surveillance cameras operating in 2014.

This means that every hour, 245 million hours of surveillance video are generated.

Though many surveillance cameras have lower frame-rates which will slightly allevi-

ate the amount of data to be analyzed, the amount of data generated is still too much

to analyze manually. Therefore, we demonstrate in this chapter two applications of au-

tomated long-term surveillance video analysis based on the identity-aware multi-object

tracker and pose detector we developed. The first use case is video summarization and

long-term statistics computation based on tracking output. The second use case is eating

detection based on pose estimation.

6.1 Visual Diary Generation with Multi-Person Tracking

To demonstrate the usefulness of our tracking output, video summarization experiments

were performed. We propose to summarize surveillance video using visual diaries, specif-

ically in the context of monitoring elderly residents in a nursing home. Automatic visual

diary generation for elderly nursing home residents enables doctors and staff to quickly

understand the activities of a senior person throughout a day to facilitate the diagnosis

of the elderly person’s state of health. The visual diary for a specific person consists of

two parts: 1) snippets which contain snapshots and textual descriptions of activities-

of-interest performed by the person, and 2) activity-related statistics accumulated over

time. The textual descriptions of the detected events enable efficient indexing of what a

1https://technology.ihs.com/532501/245-million-video-surveillance-cameras-installed-globally-in-
2014
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Figure 6.1: The visual diary for elderly resident 6 in a nursing home. The auto-
matically generated textual description and 3 snapshots are shown for the two events.

Long-term statistics are also shown.

person did at different times. The statistics for the activities detected can be accumu-

lated over many days to discover long-term patterns. An example is shown in Figure 6.1,

where the visual diary of a nursing home resident is shown.

We propose to generate visual diaries with a summarization-by-tracking framework.

Using the trajectories acquired from our tracking algorithm, we extract motion patterns

from the trajectories to detect certain activities performed by each person in the scene.

The motion patterns are defined in a simple rule-based manner. Even though more

complex methods such as variants of Hidden Markov Models [208] to detect interactions

could also be used, this is not the main focus of our work. Also, our experiments show

that with the rules we have defined, reasonable interaction detection performance was

achieved. The activities we detect are as follows:

• Room change: Given the tracking output, we can detect when someone enters or

leaves a room.

• Sit down / stand up: We trained a sitting detector [171] which detects whether

someone is sitting. Our algorithm looks for tracks which end/begin near a seat

and check if someone sat down/stood up at around the same time.

• Static interaction: if two people stand closer than distance D′ for duration T ′,

then it is likely that they are interacting.

• Dynamic interaction: if two people are moving with distance less than D′ apart

for a duration longer than T ′, and if they are moving faster than 20 cm/s, then it

is highly likely that they are walking together.
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According to [209], if people are travelling in a group, then they should be at most 7

feet apart. Therefore, we set the maximum distance D′ between two people for there to

be interaction to 7 feet. The minimum duration of interaction T ′ was set to 8 seconds

in our experiments.

Given the time and location of all the detected activities, we can sort the activities

according to time and generate the visual diary. The visual diary for a given individual

consists of the following:

• Snippets: snapshots and textual descriptions of the activity. Snapshots are ex-

tracted from video frames during the interaction and textual descriptions are gen-

erated using natural language templates.

• Room/state timing estimates: time spent sitting or standing/walking in each room.

• Total interaction time: time spent in social interactions.

• Interacted targets: people with whom the person interacted.

Our proposed method of using tracking output for activity detection can be easily com-

bined with traditional activity recognition techniques using low-level features such as

Improved Dense Trajectories [210] with Fisher Vectors [211] to achieve better activity

detection performance and detect more complex actions, but extending activity recog-

nition to activity detection is out of the scope of this work.

6.1.1 Visual Diary Generation Results

We performed long-term surveillance video summarization experiments by generating

visual diaries for the Caremedia 8h sequence based on trajectories acquired with our

Solution Path Algorithm tracker and deep appearance features. To acquire ground

truth for activity detection experiments, we manually labeled the activities of 3 residents

throughout the sequence. The 3 nursing home residents were selected because they are

the people who we would like to focus on for the automatic analysis of health status.

We evaluated the different aspects of the visual diary, including “room/state timing

estimates”, “interaction timing estimates”, “interacted target prediction” and “snippet

generation”.

The evaluation of “room/state timing estimates”, i.e. predicted room location and state

(sitting or upright), of a person was done on the video frame level. A frame was counted

as true positive if the predicted state for a given video frame agreed with the ground

truth. False positives and false negatives were computed similarly.

To evaluate “interaction timing estimates”, i.e. how much time a person spent in in-

teractions, a frame was only counted as true positive if both the predicted results and
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Visual diary components Micro-Precision Micro-Recall Micro-F1

Snippet generation 0.382 0.522 0.441

Room/state timing estimates 0.809 0.511 0.626

Interaction timing estimates 0.285 0.341 0.311

Interacting target prediction 0.533 0.762 0.627

Table 6.1: Evaluation of the generated visual diary.

Patient
Time spent in ...

# interacted
peoplesit in living

room
stand/walk in
living room

stand/walk in
corridor

stand/walk in
dining room

social
interaction

Patient 3 00:26:28 00:19:05 01:09:45 00:00:36 00:15:40 11

Patient 6 01:18:14 00:09:02 00:38:50 00:02:06 00:14:35 10

Patient 11 00:20:10 00:01:25 00:23:17 00:00:39 00:07:33 9

Table 6.2: Summary of important statistics for 3 nursing home residents in video with
7 hours 45 minutes wall time. Timing is formatted as hh:mm:ss. For example, patient

6 spent 1 hours 18 minutes and 14 seconds sitting in the living room.

ground truth results agreed that there was interaction and also the ID of the interacted

targets matched. False positives and false negatives were computed similarly. For “in-

teracted target prediction”, i.e. who interacted with whom, a true positive was counted

when the predicted and ground truth output both agreed that the resident interacted

with a given person. False positives and false negatives were computed similarly.

The evaluation of “snippet generation” accuracy was done as follows. For snippet re-

lated to sit down, stand up and room change activities, a snippet was correct if the

predicted result and ground truth result had less than 5 second time difference. For

social interaction related snippets, a snippet was correct if 50% of the predicted snippet

contained a matching ground-truth interaction. Also, if a ground-truth interaction was

predicted as three separate interactions, then only one interaction would be counted as

true positive while the other two would be counted as false positives. This prevented

double counting of a single ground-truth interaction.

Based on the tracking output, we performed activity detection and visual diary gen-

eration on the three residents. 184 ground-truth snippets were annotated. The per-

formance of visual diary generation is summarized in Table 6.1. From the table, 38%

of the generated snippets were correct, and we have successfully retrieved 52% of the

activities-of-interest. For “room/state timing estimates”, a 51.1% recall shows that we

know the state and room location of a person more than 50% of the time. The lower

performance for “interaction timing estimates” is mainly caused by tracking failures, as

both persons need to be tracked correctly for interactions to be correctly detected and

timings to be accurate. However, if we only want to know the interaction targets, we

still can achieve 63% F1-score. These numbers are not high, but given that our method
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is fully automatic other than the collection of the face gallery, this is already a good first

cut at generating visual diaries for the elderly.

As our visual diary generation is heavily based on tracking, we analyzed the effect

of tracking performance on visual diary generation accuracy. We computed the snippet

generation F1-score for multiple tracking runs with varying tracking performance. These

runs include our baseline runs and also runs where we randomly corrupted face recog-

nition labels to decrease tracking performance. Results are shown in Figure 6.3, which

shows that as tracking performance increases, snippet generation F1 also increases with

a trend which could be fitted by a second-order polynomial.

Figure 6.1 and Figure 6.2 show example visual diary snippets for the three residents.

From the generated snippets, we can clearly see what each resident was doing at each

time of the day. Long term statistics were also compiled as shown in Table 6.2, which

clearly shows the amount of time spent by each person in each room and in social

interactions.

6.1.2 Long-term (23 Day) Statistics

We also showed how the visual diary could be extended to utilize statistics over 23

days. The amount of time interacting with each person, the amount of time spent in

interactions each day and the distanced walked every day were automatically computed

and aggregated into a single report as shown in Figure 6.4. Based on our manual

observation, ID 34 is resident 11’s partner, which is reflected in our pie chart as ID 34

is ranked second in all the people with whom resident 11 interacts. These long-term

statistics, which are too tedious to collect manually, have the potential to aid doctors

and staff in assessing the health status of nursing home residents. Though there is not a

very clear trend in Figure 6.4 for interaction timing and walking distance, we believe this

is mainly due to our observation being limited to 23 days. If our analysis was performed

over a period of half a year or a whole year, then it is likely some hidden trends will be

visible from the automatically computed statistics.

6.2 Eating Detection with Pose Estimation

We explore the usefulness of our pose estimator for eating detection. As a proof-of-

concept, our main goal is to automatically detect when a person “takes a bite”, which

could be useful in the analysis of eating speed and eating behavior. We propose to utilize

the distance between the resident’s wrist and his/her head to detect whether the person

took a bite.
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(a) Selected snippets for resident 3.

(b) Selected snippets for resident 11.

Figure 6.2: Selected visual diary snippets for each resident.
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Figure 6.3: Performance of snippet generation under varying tracking performance.

Figure 6.4: Long-term statistics report for resident 11. The total amount of time
spent interacting with each person, the amount of time spent interacting each day
and the total distance walked are shown. Visual diary snippets corresponding to the

interaction targets are also shown.

3 residents were selected and for each resident, we annotated 15 minutes of eating footage

for 7 out of the 23 days, thus leading to 105 minutes of footage per person. We manually

selected the 15 minutes of video which contains footage of the resident of interest eating.

The annotation protocol was that whenever a person touches his/her head with a spoon,

fork, cup, hand or napkin, then it is a true positive.

The pose estimator was applied on all frames of the video. To make our computation

faster, we manually cropped the bounding box to indicate the region of interest. This

step could still be automatically performed by utilizing face recognition to locate the

resident of interest. As wrist joints were often occluded or hard to distinguish, we only

retained wrist joint detections which had a prediction score larger than 0.5. Then we

smoothed the wrist joint detections over time to create a trajectory of the wrist. Finally,
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the distance between the wrist and the head was computed, and if the distance was less

than a certain threshold, a “taking a bite” action had taken place.

We evaluated our performance with frame-based precision, recall and F1. A video frame

was true positive if both the prediction and ground-truth indicate that there was an eat-

ing action in that frame. False positives and false negatives were computed accordingly.

The statistics from different people were aggregated to compute the final micro-F1 score,

which takes into account the number of positive instances per person. Computing the

distance threshold for eating was difficult because the threshold was greatly affected by

the size of the person in the video and the angle of how the camera viewed the person.

Therefore, to circumvent this issue, we report the F1 score at the break-even point,

which is the threshold where precision equals recall. In this way, our performance was

not affected by the quality of the selected threshold.

Pose detectors which used different training data were tested. 5 pose detectors used

50, 200, 800, 1600, and 3193 manually labeled in-domain instances respectively for

fine-tuning. These in-domain instances included samples of the same individual eating,

so it is expected that the performance will be higher. Our constrained self-training

(CST) based pose estimator was also used. Results are shown in Table 6.3. We can see

an improvement of CST and other fine-tuned pose detectors over the detector trained

only on LEEDS Sports 11K, thus showing that there is significant domain difference.

However, performance of our CST-based pose detector was significantly lower than the

detector which was fine-tuned over 50 manually labeled instances. This is different from

our observation in Chapter 5. One main reason is that CST collected more full-body

poses and had less eating related poses, thus leading to poor performance on eating

poses.

On the other hand, the performance on resident 3 was significantly better for all de-

tectors. Our observation was that performing pose estimation for eating activities from

a slight profile view was easier than the frontal view. For the frontal case, the elbow

was often occluded by the table and not visible, and this may make the pose estimation

for the wrist joint less accurate. However, for the side view case, all joints were clearly

visible, thus leading to significantly better pose estimation. Figure 6.5 shows snapshots

of pose estimation for the 3 eating residents.

In sum, we show that we were able to detect a “taking a bite” activity with 26% F1 if

we used our CST pose estimator. However, a detector fine-tuned with manually labeled

samples still achieved around 50% F1. This shows that there is still a big domain

difference between LEEDS Sports and Caremedia, and the pose estimator enhanced

with CST could not fully overcome this difference. Nevertheless, the detector fine-tuned

with manually labeled samples is already useful in automatically aggregating the eating
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Res. 1 F1 Res. 2 F1 Res. 3 F1 Micro-F1

LEEDS Sports 11K 0.234 0.106 0.292 0.218

CST, cf = 0.6, sf = −350 0.232 0.179 0.359 0.262

50 fine-tuning instances 0.219 0.171 0.683 0.369

200 fine-tuning instances 0.348 0.274 0.601 0.416

800 fine-tuning instances 0.383 0.288 0.733 0.478

1600 fine-tuning instances 0.395 0.327 0.744 0.497

3193 fine-tuning instances 0.386 0.327 0.710 0.480

Table 6.3: Performance of “taking a bite” activity detection based on pose estimation
for resident 1, 2, 3. A joint micro-F1 score is also reported.

Figure 6.5: Snapshots of pose estimation for eating residents. Success and failure
cases are both shown.

footage of a resident of interest over long periods of time. The footage can potentially aid

doctors and staff in discovering subtle changes of the person’s eating behavior, such as

slower movement or shakier hands, thus providing more information in better diagnosing

the nursing home resident.

6.3 Summary

In this chapter, we have demonstrated how our developed multi-object tracker and pose

estimator could be utilized to analyze very large amounts of surveillance video and detect

certain events of interest with reasonable accuracy. Visual diary summarization achieved

a precision of 38% and recall of 52%. Individual-specific interaction timing analysis also

showed trends which were in line with manual observations. Also, our “taking a bite”

activity detector based on CST achieves 26% F1. Though our numbers are not high,

compared to tedious manual analysis of thousands of hours of surveillance video, our
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methods are a strong alternative, and it potentially opens the door to automatic analysis

of the ocean of surveillance video recorded every day.



Chapter 7

Conclusions and Future Work

In this thesis, we proposed to utilize external knowledge and internal constraints in video

to perform large-scale surveillance video analysis in an unsupervised fashion. We have

presented improvements in identity-aware multi-object tracking and pose estimation.

For multi-object tracking, we first demonstrated how to utilize external knowledge: face

recognition combined with an internal constraint: spatial-temporal smoothness to lo-

calize and identify each person at each time instant. Then the same spatial-temporal

smoothness constraint was further utilized to automatically collect large amounts of per-

son re-identification training data, which was used to learn deep appearance features and

further enhance tracking. For pose estimation, out-of-domain pose estimation training

samples and spatial-temporal smoothness constraints were jointly utilized to perform

constrained self-training for unsupervised domain adaptation. Results show that the

in-domain training samples collected through constrained self-training significantly im-

proved pose estimation performance, but the spatial-temporal smoothness constraints

were not cost-effective in this scenario. Finally, our methods were applied to analyze 23

days of multi-camera surveillance footage. Tracking results show that our system was

able to localize a person 57% of the time with 73% precision. Summarization results

show that we were able to compute long-term statistics which were coherent with manual

observations. Overall, these results demonstrate the effectiveness of our methods, which

potentially opens the door to the automatic analysis of thousands or tens-of-thousands

of hours of surveillance video.

7.1 The Do’s and Don’ts of Surveillance Video Analysis

Based on the experience gained during the process of analyzing Caremedia nursing home

videos, this section attempts to provide a guideline for future endeavors in analyzing

99
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large-scale surveillance video.

Prevent unnecessary post-processing through careful setup of the recording

environment. Setting up surveillance cameras “correctly” in a new environment before

starting the recording is one of the most important factors in successful surveillance video

analysis. By “correct”, we mean the following.

1. Stationary cameras: Make sure the cameras are stationary and will not move due

to shaking of walls or the building. If the camera moves, the camera calibration

will need to be dynamically updated, which is very difficult, unnecessary and also

time consuming to do.

2. Camera calibration: Make sure the intrinsic and extrinsic parameters of each cam-

era are computed beforehand. Make sure not to adjust the focal length or viewing

angle of the camera after calibration.

3. Camera synchronization: Make sure that all the cameras in the same scene are

time synchronized. Synchronizing videos after they were recorded is very difficult

and also leads to unnecessary work.

4. Deal with frame drops: It is inevitable for surveillance recordings to sometimes

drop frames due to issues such as network connectivity. Therefore, the system

should be designed such that it can automatically detect which frames have been

dropped and ensure that the frames that are recorded after the frame drop are

still time synchronized.

5. Record with as high resolution as possible: Higher resolution images can increase

the recall of person detection and face recognition, which will highly affect tracking

performance. Though processing and storage may be an issue, but acquiring more

hardware for processing is often easier than improving tracking performance on

low-resolution video.

6. Cameras with overlapping views are very helpful: As shown in Chapter 4, we have

successfully learned deep appearance features based on person ReID training data

which were collected by exploiting overlapping views between cameras. Without

view overlaps, multi-view person ReID training data can no longer be acquired,

which may lead to deep appearance features with less generalization ability.

7. Set up cameras such that they view the same scene from different angles: Not only

should camera views overlap, it would be even more helpful if the cameras view

the scene from different angles. This enables more accurate localization of objects

and also provides more 3D information than a stereo camera. Also, if one would

like to focus on very detailed behavior analysis such as eating analysis, a profile

and frontal view of the person can potentially significantly improve pose detection

performance.
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8. Crowded corridors require more cameras: It may be tempting to only set up one or

two cameras at the start/end of a very long corridor, because when the corridor is

relatively empty, the cameras have a very clear view of the scene. However, there

can easily be a lot of occlusions in corridors, thus it is still important to set up

cameras along the corridor.

9. Do a dry run: Before the actual recording, it is crucial to run a dry run of the

whole recording and analysis pipeline to confirm that the whole system, including

the camera calibration, time synchronization and subsequent analysis is running

as expected.

In sum, the spirit is to set up the surveillance camera environment such that one could

collect as much accurate information as possible and avoid spending unnecessary time

post-processing the recorded data. Also, the more cameras the better, and it is better

to set up too many cameras and ignore the output of a few cameras than regret not

setting up enough cameras. One may argue that hardware also costs money, but it

may still be worthwhile when compared to spending extra human effort developing new

algorithms which may still not perform as well as simply setting up more cameras. This

actually also leads to an interesting research question: how many cameras is “enough”

for a scene? How should they be placed?

Focus on very large data sets, and do not be disappointed by low perfor-

mance. Given that the sheer volume of surveillance videos generated every day is

impossible for humans to manually handle, the value of a surveillance video analysis

system is that it can automatically analyze large amounts of video. Therefore, if we

are to evaluate a system, we should focus on very large surveillance video data sets.

Analyzing very large data sets not only ensures the scalability of the system but also

enable the system to be tested in a more realistic environment. In surveillance video

analysis, the events-of-interest rarely occur, and if only a few videos are used, then it

may be highly likely that one will over-fit. A system is only valuable when it can locate

rare events in a very large data set. However, this is a very difficult task, and in many

cases performance will be low. Nevertheless, one should not be discouraged. Given that

the other option for surveillance video analysis is manual analysis, an automatic system

which can perform significantly better than random is already a very good first cut at

analyzing the ocean of surveillance videos generated every day.

7.2 Future Work

Future work in terms of long-term nursing home analysis and also surveillance video

analysis in general would be as follows:
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1. Automatically training a robust detector for a specific object or person pose: In

specific surveillance scenes, there will be different objects that one would like to

detect and track. However, it is often the case that a robust detector is not

available for those objects. Therefore, in order to be able to utilize tracking-by-

detection, being able to automatically train an in-domain object detector would

be crucial. In the nursing home case, it would be very useful if a general purpose

sitting person detector and wheelchair detector could be trained, so that we are not

only limited to tracking pedestrian-like people. One direction could be to utilize

unsupervised co-localization [61] or object discovery [62] mentioned in Chapter 2.

The high-level idea is that given the large amount of unlabeled videos, objects

that are of interest for tracking should form a large enough cluster which could be

automatically discovered. Another direction for automatically collecting training

data of sitting people could be to jointly utilize face recognition, pose detection

and a chair detector, which are all external resources we already have. With face

recognition, we would know there is a person there. With pose estimation and

a chair detector, we can predict whether the person is sitting. If we have multi-

camera information, we could take this one step further and collect images/video

of the same sitting person viewed from multiple angles.

2. Adapting pose detectors to deal with heavy occlusions: In indoor surveillance

scenes, joints are easily occluded by static objects such as tables and chairs. There-

fore, to perform robust pose estimation it is crucial that the pose estimator has

the ability to deal with occlusions. Automatically collecting such training data is

hard, and clever assumption/constraints are required. One potential assumption

that could be utilized is: a person’s face and their hands have similar color. Based

on this assumption, one would have a very strong prior for the location of a wrist,

which could potentially be useful for collecting pose estimation training data.

3. Activity detection in surveillance videos: Being able to detect arbitrary activities

of interest is also a crucial step for analyzing surveillance videos. The classic way

of training activity detectors is also based on supervised learning, which requires

manual annotation of training data. Motivated by our work on automatically

collecting action examples from instructional videos [104], one could potentially

collect activity training data from a surveillance scene based on cues from the

audio channel and automatic speech recognition. These cues provide us indirect

information on the activities currently occurring in the scene.

The above enhancements, if successful, will enable us to acquire more information for

each surveillance scene with less manual effort. In the nursing home case, we will be

able to track significantly more elderly residents and harvest even more information from

nursing home surveillance videos.



Conclusions and Future Work 103

Taking a step back, the two information sources we used: external knowledge and in-

ternal constraints are not just useful in surveillance video analysis. In general, high-

precision external knowledge sources can provide the initial labels for an otherwise com-

pletely unlabeled testing set, thus giving us a starting point to tackle the task. For

example, in order to localize and identify each person in the scene, we leveraged face

recognition to give us an initial set of labels, on which we performed constrained op-

timization. On the other hand, internal constraints have the ability to constrain an

unlabeled data set such that useful information can still be found. The internal con-

straints can be very strict, but since the constraint can be operated on the near infinite

amount of unlabeled video data available, we can still collect a significant amount of

useful information. For example, the spatial-temporal smoothness constraint enabled

us to collect person re-identification data for any calibrated multi-camera network sce-

nario. The exploitation of the massive amount and variety of unlabeled videos available

potentially enables a machine learning algorithm to learn more generalizable models

than models trained on manually labeled data sets. Therefore, when facing a new task

on a new (unlabeled) data set, one could first try to look for suitable external knowl-

edge or available internal constraints to acquire useful information and alleviate manual

annotation.

Taking a step further back, we believe an even higher-level principle which encompasses

the formulation of the two information sources we have proposed is: how can one be

smart with the labeled and unlabeled data we have? In the era of big data, data is our

best friend, and the people who have the creativity and ability to harness the infinite

power locked in big data will be the ones who have the potential to make a large impact

on society.



Appendix A

Details of Iterative Projection

Algorithm for Tracking with

Solution Path Algorithm

In Section 3.7.2, we wanted to solve the following optimization problem:

min
G
f(a′) =

∥∥G− a′
∥∥2

2
s.t. ‖G‖p ≤ 1, (A.1)

where a′,G ∈ Rc, a′ = (a1, a2, · · · , ac)T is the known reference point and G is the

queried projection point on `p ball ‖G‖p ≤ 1.

The details of our iterative projection algorithm for solving (A.1) are as follows:

1: If ‖a′‖p ≤ 1, then output G = a′, and terminate the entire procedure. Otherwise,

record s =sign(a′) and reformulate a′ ← s � a′ to make all its elements non-negative

(i.e. to let a′ be located in the first quadrant). Initialize G(1) = (g
(1)
1 , g

(1)
2 , · · · , g(1)

c )T as

the intersection of the line segment, which connects a′ and the origin, with the boundary

of the `p ball ‖G‖p = 1. This intersection can be found efficiently with binary search.

Let l = 1 and ε be a small threshold value.

2: Repeat:

3: Compute the tangent plane of the `p ball boundary curve ‖G‖p = 1 at G(l) as:

π(l) = {v|w(l)T (v −G(l)) = 0},
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where

w(l) =
(
∇‖G‖p

)
G(l)

= (p(g
(l)
1 )p−1, p(g

(l)
2 )p−1, · · · , p(g(l)

c )p−1)T ,

where g
(l)
i is the ith element of G(l). Calculate the projection point of a′ on π(l) as

x(l) = a′ − w(l)Ta′ −w(l)TG(l)∥∥w(l)
∥∥2

2

w(l).

4. If x(l) is located in the first quadrant (i.e., x(l) � 0), then draw a line segment z(t)

between a′ and x(l) as

z(t) = (x(l) − a′)t+ a′, 0 ≤ t ≤ 1,

and compute its intersection point G(l+1) with the `p ball boundary curve ‖G‖p = 1

using binary search. Then let l = l + 1, and go to the next iteration.

5. If x(l) is located outside the first quadrant, then calculate

t∗ = min
i

(t∗i ), t
∗
i =

ai
ai − xi

,

where ai and xi are the ith elements of a′ and x(l), respectively. If z(t∗) = (x(l)−a′)t∗+a′

satisfies that ‖z(t∗)‖p ≤ 1, then use the similar binary search strategy as step 4 to

calculate the projection point G(l+1). Then let l = l + 1, and go to the next iteration.

6. If ‖z(t∗)‖p > 1, this means that the line segment z(t) (0 ≤ t ≤ 1) does not intersect

with the `p ball boundary curve ‖G‖p = 1. Calculate the critical point y(s∗) where

y(s) = (x(l) −G(l))s+ G(l), 0 ≤ s ≤ 1,

and

s∗ = min
i

(s∗i ), s
∗
i =

g
(l)
i

g
(l)
i − xi

.

Then draw a line segment z(t) between a′ and y(s∗) and compute its intersection point

G(l+1) with the `p ball boundary curve ‖G‖p = 1 using binary search. Then let l = l+1,

and go to the next iteration.

7. End Repeat when
∥∥G(l) −G(l−1)

∥∥ < ε

8. Output the projection point G = s�G(l).
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A.1 Theoretical Principle

We use step-by-step remarks to explain the theoretical principle underlying our algorithm

in detail.

A.1.1 Remarks for steps 1 and 8

Remark 1: When ‖a′‖p > 1, it is easy to prove that its projection on the `p ball

‖G‖p ≤ 1 (the solution of (A.1)) is located on its boundary ‖G‖p = 1. Furthermore, its

projection lies in the same quadrant as a′ [212].

Remark 2: Due to the symmetry property of the `2 objective and the `p constraint

of (A.1), we can equivalently solve this optimization problem by getting the solution G

for f(|a′|), where |a′| = s� a′ and s = sign(a′) (step 1), and then transfer G (with all

positive elements according to Remark 1) back to G = s�G (step 8). Here � is the

Hadamard product which is the element-wise multiplication between two vectors.

Remark 3: When ‖a′‖p > 1 , since ‖0‖p < 1, the intersection of the line segment, which

connects a′ and the origin 0, with the unit `p ball boundary ‖G‖p = 1 can definitely be

found.

A.1.2 Remark for step 3

Remark 4: In the first quadrant, it is evident that the unit `p ball boundary curve

‖G‖p = 1 is convex. This means that the tangent plane of this curve at G(l) is below

it. See Figure A.1 for a better understanding.

Figure A.1: Principle illustration for Remark 4.
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A.1.3 Remark for step 4

Remark 5: Since ‖a′‖p > 1 and
∥∥x(l)

∥∥
p
≤ 1 (based on Remark 4), the intersection

G(l+1) of the line segment z(t) (0 ≤ t ≤ 1) and ‖G‖p = 1 definitely exists. Since x(l) is

the projection of a′ on π(l) and G(l) is located on π(l), we have
∥∥x(l)−a′

∥∥2

2
≤
∥∥G(l)−a′

∥∥2

2
.

Besides, since G(l+1) is obtained at z(t′) for certain 0 ≤ t′ ≤ 1 and x(l) and a′ are

the two end points of z(t), we have
∥∥G(l+1)−a′

∥∥2

2
≤
∥∥x(l)−a′

∥∥2

2
. It thus holds that∥∥G(l+1)−a′

∥∥2

2
≤
∥∥G(l)−a′

∥∥2

2
. See Figure A.2 for a better understanding.

Figure A.2: Principle illustration for Remark 5.

A.1.4 Remark for steps 5 and 6:

Remark 6: Along the line segment z(t) (0 ≤ t ≤ 1) connecting a′ and x(l), the critical

point where the ith element changes signs can be calculated by:

(xi − ai)t∗i + ai = 0 =⇒ t∗i =
ai

ai − xi
.

Then it is evident that the critical point of z(t) (location where it leaves the first quad-

rant) is at

t∗ = min
i

(t∗i ).

We then have:

(i) When ‖z(t∗)‖p ≤ 1, since ‖a′‖p > 1, the intersection of z(t) (0 ≤ t ≤ 1) and ‖G‖p = 1

exists in the first quadrant. Thus we can use binary search to find this intersection point.

Based on the similar proof as Remark 5, we have
∥∥G(l+1)−a′

∥∥2

2
≤
∥∥G(l)−a′

∥∥2

2
.

(ii) When ‖z(t∗)‖p > 1, we know that z(t∗) is not inside the `p ball Ω = {G| ‖G‖p ≤ 1}.
Since Ω in the first quadrant is convex (equivalent to that its boundary curve ‖G‖p = 1

in the first quadrant is convex) and a′ ∈ Ω, it holds that the entire line segment z(t)
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(0 ≤ t ≤ 1) is in Ω and has no intersection with the curve ‖G‖p = 1 in the first quadrant.

We thus utilize the following strategy to find the next iteration point.

By connecting the last iteration point G(l) and the projection point x(l), we can formulate

a line segment y(t) (0 ≤ t ≤ 1). Using the similar strategy like (i), we can find the critical

point y(s∗) at which y(t) goes out of the first quadrant, where

s∗ = min
i

(s∗i ), s
∗
i =

g
(l)
i

g
(l)
i − xi

,

where g
(l)
i and xi are the ith element of G(l) and x(l), respectively. Since both y(s∗) and

G(l) are on the tangent plane π(l), and y(s∗) is closer to the projection point x(l) of a′

than G(l), we have that ‖y(s∗)−a′‖22 ≤
∥∥G(l)−a′

∥∥2

2
.

Since π(l) is below the curve ‖G‖p = 1 based on Remark 4, we know that ‖y(s∗)‖p ≤ 1.

Then together with ‖a′‖p > 1, it holds that the intersection G(l+1) of the line segment,

which connects a′ and y(s∗), with ‖G‖p = 1 definitely exists in the first quadrant,

and
∥∥G(l+1)−a′

∥∥2

2
≤ ‖y(s∗)−a′‖22. We thus have

∥∥G(l+1)−a′
∥∥2

2
≤
∥∥G(l)−a′

∥∥2

2
. The

aforementioned procedure is illustrated in Figure A.3.

Figure A.3: Principle illustration for Remark 6(ii).

Based on the aforementioned Remarks 4, 5 and 6, we know that during the iterative

process of our algorithm, the objective
∥∥G(l)−a′

∥∥2

2
is monotonically decreasing with

respect to the iteration number l under the constraint
∥∥G(l)

∥∥
p
≤ 1. Our algorithm is

thus convergent and expected to arrive at a reasonable local minimum of the original

problem.
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