Mitigating Semantic and Distributional Discrepancies

in Natural Language Processing
Chunting Zhou

CMU-LTI-22-006
Spring 2022

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15123

Thesis Committee:
Graham Neubig (Chair) Carnegie Mellon University
Shinji Watanabe Carnegie Mellon University
Zico Kolter Carnegie Mellon University
Luke Zettlemoyer University of Washington &
Facebook AI Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Chunting Zhou

Keywords: robustness, distribution shift, group distributionationally robust optimization, parameter-

efficient transfer learning

Abstract

The advancement of neural network models has led to state-of-the-art performance in
a wide range of NLP tasks, e.g. machine translation and question answering. Despite the
remarkable performance gains, NLP systems deployed in the wild are brittle and fragile as it
always experiences a shift in the data distribution: the training data distribution is different
from the one at test time. For example, a multilingual machine translation model is ex-
pected to perform uniformly well across a set of language pairs while the training resources
can be extremely imbalanced across different language pairs. Such distribution shift is also
ubiquitous in the modern pretrain-then-fine-tune paradigm, where models pre-trained on
a large text corpus are fine-tuned on various downstream tasks. Real-world applications
demand robust adaptation methods such that a pre-trained model is robust to various types
of distribution shift in a dynamically changing test environment.

To counter distribution shift, the goal of this thesis is to identify potential problems
when models are evaluated under distribution shift, and to mitigate such discrepancies by
developing distributionally robust methods and efficient transfer learning methods. This
thesis consists of three parts. In the first part, we focus on the hallucination problem in
conditional sequence generation where a model can generate fluent outputs but not faithful
to the input text, particularly when tested on out-of-domain data. We identify and quan-
tify the unfaithful tokens in the machine outputs and leverage the created tools to improve
training in a low-resource setting by reducing hallucinated content in the noisy training
data. The second part presents our distributionally robust methods for subpopulation shift
where the training data is a mixture of different subpopulations, e.g. different languages,
demographic groups, etc, and the test distribution is a subpopulation of it. Models trained
on a dataset with imbalanced distribution of subpopulations can perform poorly on data
from minority subpopulations. To mitigate this, we develop group-level distributionally ro-
bust methods that perform well over a set of potential test distributions. The last part of
this thesis focuses on robust transfer learning of large-scale pre-trained language models.
As the size of pre-trained language models (PLMs)is increasing every year, how to effec-
tively adapt these models to downstream tasks is becoming increasingly important as mod-
els can catastrophically forget its previously acquired knowledge during transfer learning.
Parameter-efficient fine-tuning provides an effective and robust way for this by only tuning
a small number of additional parameters. To this end, we propose a unified framework to
connect parameter-efficient transfer learning methods and instantiate a new state-of-the-
art method. Furthermore, we developed a method based on parameter-efficient tuning to

improve the performance of a large-scale zero-shot transfer learner.

iv

Acknowledgments

About six years ago, when I first started my academic life in CMU, I only had little
fragmented knowledge about the area of natural language processing and I had no idea how
far I could go along this journey. Looking back now, it’s been an incredible and invaluable
experience for me to spend the past years in CMU where I have grown in every aspect of
a researcher, witnessed the advancement of Artificial Intelligence and made acquaintance
with many brilliant minds. Ph.D. is a long journey that I could not have completed without
the help and support of many people and I want to thank them all here.

First and foremost, I would like to thank my excellent advisor Graham Neubig. His
passion and commitment towards high-quality research, and his enthusiasm and willingness
to learn new knowledge always inspires me to push beyond my best effort. He taught me
how to write, make presentations, execute insightful analysis and explain things clearly to
people who lack background knowledge. I am grateful for everything he taught me and the
time we learnt together throughout my exploration about various topics. More importantly,
Graham is an extremely kind, considerate and supportive mentor. I am very grateful for his
support when I switched the research direction from generative modeling to robustness in
the fourth year of my PhD, which made this dissertation of what it is today.

I also would like to thank the rest of my thesis committee members, Zico Kolter, Shinji
Watanabe and Luke Zettlemoyer, for their insightful feedback. Luke was also my internship
mentor at Facebook AI Research in the summer of 2020. He not only has an insightful,
high-level view about the field but also knows all the details of the problem. I am also very
grateful for his important support after my internship.

Over the past six years, I was fortunate to collaborate and interact with many excellent
researchers. I thank my fellow collaborators who made this dissertation possible: Junxian
He, Paul Michel, Daniel Levy, Marjan Ghazvininejad, Jiatao Gu, Luke Zettlemoyer, Xian
Li, Mona Diab, Paco Guzman and Taylor Berg-Kirkpatrick. In particular, I want to thank
Junxian He, who is a close collaborator and a good friend of mine. We often exchanged
ideas about interesting and promising research directions and I enjoyed all the wonderful
discussions and brainstorm meetings with him. I also appreciate all the great discussions
on distributionally robust optimization I had with Paul and Daniel, and I learned a lot from
them. I want to thank my collaborators in other papers and projects which didn’t make
it into this document: Pengcheng Yin, Junjie Hu, Aditi Chaudhary, Xiang Kong, Di Wang,
Kyunghyun Cho, Eduard Hovy and Jaime Carbonell. Pengcheng is my friend since my MPhil
at The University of Hong Kong. I was always motivated to improve myself further by his
perseverance in doing impactful research.

During my PhD, I had two wonderful internships at Facebook Al Research. I thank my

mentors Jiatao Gu, Marjan Ghazvininejad and Luke Zettlemoyer when I worked at these
places. The work in Chapter 5 on detecting hallucinated content is a collaboration with
Marjan and Luke during my second internship. I have learned a lot from Jiatao since my
MPhil time at The University of Hong Kong through various discussions. He has a real pas-
sion for research and a great problem-solving ability, which opened my mind when thinking
about solutions to research problems.

I am thankful to members of the whole NeuLab group: Shuyan Zhou, Frank Xu, Zecong
Hu, Hao Zhu, Zhengbao Jiang, Mengzhou Xia, Pengfei Liu, Cindy Wang, Shruti Rijhwani,
Aditi Chaudhary, Patrick Fernandes, Danish, Hiroaki Hayashi, Lucio Dery, Uri Alon, John
Wieting, Kayo Yin, Atieno Perez Ogayo, Antonis Anastasopoulos, Emmy Liu, Ziyi Dou,
Junjie Hu, Pengcheng Yin and Junxian He, who gave me support at various times. The time
I spent with them becomes one of my best memories in graduate school. I thank Pengfei
for sharing his vision for future research and his advice on mentorship. I wish I had these
conversations earlier with Pengfei. I will remember those relaxing gatherings and joyful
moments [had with Shuyan, Frank, Pengcheng, Junxian and many others, who helped me
out from the stressful PhD life.

I also would like to thank other friends in LTI who I am lucky to befriend with, make
discussions with or chat with (forgive me for not being able to list all of them): Jingzhou
Liu, Di Wang, Hector Liu, Jiateng Xie, Jiarui Xu, Yulun Du, Qizhe Xie, Guokun Lai, Zichao
Yang, Chenyan Xiong, Zhuyun Dai, Haohan Wang, Zhiting Hu, Zihang Dai, Diyi Yang,
Zhou Yu, Tian Tian, Keyang Xu, Shikun Zhang, Siddarth Dalmia, Shruti Palaskar, Abhilasha
Ravichander, Chirag Nagpal, and all the others. Also many thanks to my dear friends outside
LTT for their companionship, support during those good days or bad days: Xiaojing Zhu, Rui
Zhong, Futeng Wan, Yujie Zhang, Xianyi Cheng, Ziyi Chen, Yi Chen, Xiaoguang Han and
Xiaomeng Li.

I am thankful to my mentor Jinhui Yuan during my very first intership at MSRA in my
college, who enlightened and led me into the research of deep learning. I also want to thank
my advisor Francis C.M. Lau at The University of Hong Kong, who exchanged thoughts and
ideas with me for a couple of times during my PhD. He has a high expectation on me of
being a good researcher that benefits the world and the society. I hope I will not disappoint
him for now and in the future.

I also would like to thank the staff at LTI, especially Stacey Young and Mary Jo Bensasi,
who always patiently answered my questions regarding graduation requirements, part-time
CPT application, etc. I am thankful to their hard work for all the LTI students.

Special thanks to my parents: Hongju Wang and Chuankai Zhou. Their unconditional

love and care made me who I am today. Although they are living 12 hours ahead of me and I

vi

haven’t seen them in person for almost 3 years due to the pandemic, their love and support
for me never changes. I am also thankful to other family members who always remind me
of taking care of myself.

Lastly, I would like to thank Max, who is my partner, my close collaborator, my best
friend and a role model for my life and career for his integrity, intelligence, dedication and
boldness. I thank all his love, support and encouragement especially during the rock bottom
of my PhD life when I had health issues, when I lost my direction. Without him, I would

not go as far as where I am today.

vii

viii

Contents

II

Introduction

1.1 Background and Motivation

1.2 Thesis OVerview o i o e

Background and Literature Review

2.1 Characterization of Robustnessin NLP

2.2 Methods for Improving Robustness 0 0L

On the Faithfulness of Conditional Sequence Generation

Detecting Hallucinated Content in Conditional Neural Sequence Generation

3.1 Introduction
3.2 Task: Token-level Hallucination Prediction
3.3 Token-level Hallucination Detection
3.4 Evaluation Tasksand Data
3.5 Experiments
3.6 Case Study I: Improving Self Training in Machine Translation
3.7 Case Study II: Improving Corpus Filtering for Low-Resource MT

3.8 Conclusion

Group Distributionally Robust Optimization

Examining and Combating Spurious Features under Distribution Shift

4.1 Introduction
4.2 Preliminaries on Robust Representations

4.3 Spurious Features under Covariate Shift

ix

11

15

17
17
19
20
22
24
27
29
31

33

4.5 Proposed Method: Group-conditional DRO
4.6 Experiments

4.7 Conclusion

5 Distributionally Robust Multilingual Machine Translation

5.1 Introduction
5.2 Preliminaries
5.3 Methods for Distributionally Robust Multilingual Learning
54 Experiments e e e e e
55 Analysis
5.6 Conclusion

III Efficient Transfer Learning of Pre-trained Language Models

6 Towards a Unified View of Parameter-Efficient Transfer Learning

6.1 Introduction e
6.2 Preliminaries e
6.3 Bridging the Gap — A Unified View
6.4 Experiments
6.5 DISCUSSION v it e e e e e e

7 Prompt Consistency for Zero-Shot Task Generalization

7.1 Introduction
7.2 Prompt-based Zero-Shot Task Generalization
7.3 Prompt Consistency Training
7.4 Experiments e e e e e
7.5 Discussion

8 Conclusions and Future Directions

Appendix I: Hallucination Detection for Conditional Sequence Generation

.1 Human Evaluations
2 Training of NMTmodels
3 Experimental Details for Token-level Hallucination Prediction
4 AblationStudies
5 Supplymental Results and Analysis

53
53
55
57
61
65
66

67

69
69
71
73
77
82

83
83
85
86
89
95

97

Appendix II: Examining and Combating Spurious Features under Distribution Shift

6 Proofsof Theorem 1. i
.7 Connections between MLE and Learning Minimal Sufficient Statistics

.8 Details of the Online Greedy Algorithm for GroupDRO

.9 Synthetic Experiments: on Investigation Spurious Features under Covariate Shift

.10 Experimental Details

Appendix III: Distributionally Multilingual MT

A1 Bestresponse

.12 Primal-dualmethods

Appendix III: Distributionally Robust Multilingual Machine Translation

.13 Data Statistics L L e

.14 Preprocessing and Training Details

Appendix IV: Towards a Unified View of Parameter-Efficient Transfer Learning

A5 Experiments L. e
.16 Computation of Tunable Parameters

.17 Full Results on Different Bottleneck Dimensions

Appendix V: Prompt Consistency for Zero-Shot Task Generalization

A8 Datasets e
19 Training Details o
.20 Limitations of Our Work

Bibliography

X1

109
109
110
112

. 113

114

117
117
117

121
121
121

125
125
127
127

129
129
129
130

133

xii

List of Figures

1.1

3.1

3.2

3.3
34

35

3.6

4.1

4.2

An overview of the thesis.

An example of token-level hallucination detection from MT. The grey box is an example
of MT output and the labels above indicate if each word is faithful (0) to the input or
hallucinated (1).
Generation of synthetic data with hallucination labels. A hallucinated version of 7" is
generated by feeding the noised sentence to the encoder-decoder model BART. Halluci-
nation labels are assigned to each token by computing the edit distance between 7" and
T'. Labels of 1 refer to hallucinated words.
An example of label assignment. o Lo
Finetuning XLM-Roberta (for cross-lingual generation task, e.g. MT) or Roberta (for
monolingual generation task, e.g. text summarization) on the synthetic training data. . .
Relationship of POS tags and percentage of hallucinations for MT (left) and summariza-
tion (right).« . L
The BLEU scores of the best submission (FB system) in the WMT19 shared task on parallel

noisy corpus filtering and our method (w/ loss trunc) on the Ne-En and Si-En flores test

Consider data points x in R? with two classes y. The vertical axis of z is a spurious
feature that highly correlates with y, and the horizontal axis is the robust feature. There
are two subclasses in each class, where the top-right and lower-left are two minority
subclasses. The robust accuracy is test worst-case accuracy over the four subclasses.
We train a linear classifier with different methods. For models trained with the clean
partitions, each subclass is a group. For the imperfect partitions, dots with the same
shape is a group (best viewed in color). L oL
Under the imperfect partition of the MNLI dataset, the aggregated average training weights
of instance losses in each group divided by attributes and labels (top: group DRO; bottom:
GC-DRO). . . o

18

22

36

4.3

4.4

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8

The heatmap of summarized learning weights for different groups. 49

Ablation studies on & and 5 on the MNLI datasets. 50

Mlustration of different training distributions where the training distribution of the three
languages fr, zh and en is (0.1,0.3,0.6). Contours represent different radii of the

x2-ball around pt@". The blue points are the tempered distributions described in §5.2.1.. 54

ABLEU of low- and high-resource language groups for the three language sets. ABLEU
= difference of BLEU scores of x-IBR and the best ERM model. 62

Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the any—en

direction. L 63

Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the en—any

direction, the dashed line is the true data probability (in log-scale). 64

Ilustration of the transformer architecture and several state-of-the-art parameter-efficient
tuning methods. We use blocks with dashed borderlines to represent the added modules

by thosemethods. 71

Performance of different methods on the XSum (Narayan et al., 2018) summarization
task. The number of fine-tuned parameters is relative to the tuned parameters in full

fine-tuning. L 71

Graphical illustration of existing methods and the proposed variants. “PLM module”
represents a certain sublayer of the PLM (e.g. attention or FFN) that is frozen. “Scaled
PA” denotes scaled parallel adapter. We do not include multi-head parallel adapter here

tosave space. e 73

Performance of previous state-of-the-art parameter-efficient tuning methods on XSum

(left) and en-ro (right). 78

Accuracy on the dev set of MNLI and SST2. MAM Adapter is proposed in §6.4.6. Bitfit

numbers are from Ben Zaken et al. (2021). 78

Comparison of different insertion forms for adapters, i.e. sequential adapter (SA) and

parallel adapter (PA). We include the results of prefix tuning as a reference point. 79

Results on en-ro dataset. 79

Results on XSum (left) and en-ro (right). PA represents parallel adapter. Blue and red
markers apply modifications at attention and FFN sub-layers respectively (best viewed

incolor). 80

Xiv

7.1

7.2

7.3

7.4

An example of the proposed approach in an NLI task. We apply multiple synonymous
prompt templates to the unlabeled example, then we regularize the consistency of the
predictions from different prompts, through our swarm distillation loss. Note that we are
not regularizing the predicted text form ry) (y) to be the same since different prompts
have different target templates as shown above — we are actually regularizing the discrete
labels y underneath to be consistent, as detailedinEq. 7.2. 84
A diagram of LoRA in the FFN sublayer. Only the LoRA parameters, A and B, are updated
during training while other parameters are fixed. 88
Analysis results to compare the model checkpoints selected by the unsupervised criterion
Fleiss’ kappa with the oracle model checkpoints selected by validation accuracy. 93
Ensemble accuracy of swarm distillation on three example datasets, demonstrating the

effect of prompt size and unlabeled data size. The PLM is T0-3B. 95

Performance on the TranS2S outputs from MT and summarization by varying the token
dropout rate of in the reference at training time. L Lo 104
Analysis of part-of-speech tags and within-group percentage of hallucinations for MT
(left) and summarization (right). L oL 104

An illustrative example of the synthetictask. 113

The historical (EMA) training losses on the TED-diverse dataset (left: any—en, right:
ENPANY). « « + o e e e e e e e e e e e e e e 122
The historical (EMA) training losses on the WMT dataset (left: any—en, right: en—any). 122

Best response ¢ (in log-scale) across epochs on the WMT dataset for the any—en direc-

tion, the dashed line is the true data probability (in log-scale). 123
Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the en—any

direction, the dashed line is the true data probability (in log-scale). 123
Number of attention or FFN sub-layers in each layer of the pre-trained models. 127
Number of parameters used at each sub-layer for different methods. 127

XV

XVi

List of Tables

3.1

3.2

3.3

34

4.1
4.2
4.3
4.4

4.5
4.6

5.1

5.2

F1 (x100) of hallucination labels on MT (seeSection 3.4.2) and abstractive summarization
(XSum). The first block are baseline methods and the second block are our results. Bold
indicates best results not using references. L 0oL 23
Annotated (True) and predicted (Pred) percentage of hallucinated tokens on benchmark
testsets. L e 23

F1 scores (x100) on the test set of WMT18 word-level QE. OpenKiwi (Kepler et al., 2019)

1st 3rd

is the state-of-the-art result on this task. and
task (Specia et al,, 2018). 27
BLEU(T), BLEURT(?) and hallucinated tokens (}) on the CWMT2017 test set. We compare

with the noised self-training method (He et al., 2020) in the second block and sequence-

place are results from the shared

level loss truncation method (Kang and Hashimoto, 2020) in the third block. 28
An example of imperfect partition. L L Lo L Lo 42
The imperfect partitions for the CelebA dataset (G1/G2). 45
The imperfect partitions for the MNLI dataset (G1/G2/G3). 45
Statistics of each group in the clean partition of the hate speech dataset. Data of each

dialect attribute (column) corresponds one group in the imperfect partition. 45
Robust and average test accuracy and standard deviation on the three tasks. 46

Average and robust test accuracies of FDCL18 under the partitions via unsupervised clus-

BLEU scores of the best ERM model (among 7=1/5/100, 7 = 5/100 are significantly worse
than 7 = 1, thus we omit these results), MultiDDS and our approach on the test sets of
the TED dataset. Bold (resp. underlined) values indicate the best (resp. second best)
performance for each language pair. Values under the language codes are the proportion
of the language in the training data. o L. 61
BLEU scores of the ERM (7=1/5/100), MultiDDS and our method on the test sets of the
WMT dataset. The ratios of training data of de, fr, ta and tr are (0.499, 0.359, 0.102, 0.039). 62

XVii

5.3

5.4

6.1

6.3

6.2

7.1

7.2

7.3

BLEU scores of different DRO objectives and algorithms—primal-dual (PD) and iterated
best response (IBR)—on the WMT testsets.

Average BLEU on the test sets of en—any direction, BL is short for baseline loss.

Parameter-efficient tuning methods decomposed along the defined design dimensions.
Here, for clarity, we directly write the adapter nonlinear function as ReLU which is com-
monly used. The bottom part of the table exemplifies new variants by transferring design

choices of existing approaches. o o oo

Comparison of various parameter-efficient tuning methods and the proposed variants.
“1” are results copied from Lewis et al. (2020a) and Liu et al. (2020b). We could not
reproduce exactly the same full fine-tuning numbers with the same hyperparameters
or even searching them. The reason may be the different libraries which the training
code is based on - full fine-tuning is very sensitive to training hyperparameters. For the
most performant methods we run with 3 random seeds and report mean and standard

deviation.

Results on XSum when using different composition functions. The modified representa-

tion is FFN. The bottleneck dimension » = 512 for (Scaled) PA and » = 102 for LoRA.

Accuracy results on the validation set of 11 NLP datasets based on the T0-3B model.
Swarm Distillation (train) and Swarm Distillation (test) use the unlabeled training split
and validation split of datasets to train the model respectively, corresponding to training-
time and test-time tuning. The Story Cloze dataset does not have a training split and its
self distillation results are from tuning on the validation split. We report the mean and
std across 3 random runs, and also denote the absolute accuracy change compared to the

To-3Bbaseline.
Accuracy on the validation set based on TO-11B.

Fleiss’ kappa on 11 datasets based on T0-3B. Swarm distillation is trained on training

split of the respective dataset.

Fleiss’s Kappa scores (1): agreements on token-level hallucination labels or sentence-
level (sent) ratings among different annotators. The token-level agreements for XSum

are computed on the released annotations by Maynez et al. (2020).

Performance on the TranS2S benchmark from MT and summarization by using different
data as the input to the noised function N (-). “raw" refers to the original targets in the

training data. L L

10
11

12

13

14

Triplets represent (Precision, Recall, F1 (x100)) of hallucination labels on the outputs of
different systems from a MT task (§3.4.2). The first block are baseline methods and the
second block are our results. We highlight the best results without using reference. . . . 105
Examples of partially hallucinated outputs from the teacher MT model used in self-
training and the hallucinated labels predicted by our system. We only highlight words
with hallucination labels with [1]. 105
Triplets represent (Precision, Recall, F1 (x100)) of hallucination labels on the abstract

summarization task (XSum dataset). The first block are baseline methods and the second

block are our results. We highlight the best results without using reference. 106
Examples of annotations and our hallucination detection model predictions, [0] and [1]

respectively indicate faithful and hallucinated word. 107
Test accuracy of the synthetictask.0 L. 114
Number of training sentences in the TED related and diverse sets respectively. 121
Basic hyper-parameters of Transformer. 122
Dataset Statistics of the four tasks. o o 125

Training hyperparameters of parameter-efficient tuning methods on the four tasks. Ir
and ls represents learning rate and label smoothing respectively. 126

Number of tunable parameters of various parameter-efficient tuning methods with BART/M-

BART models (L = 12)asanexample. 128
Performance on the test sets of abstractive summarization (XSum) and WMT EN-RO

translation. 128
Statistics of the datasets 129

Xix

XX

Chapter 1

Introduction

1.1 Background and Motivation

Language has a fundamental role in facilitating comprehension, communication and creation. As a
unique and effective tool of communication accessible to human beings, language relates to social struc-
ture and contexts such as gender, age, geography, occupation, religion, identity and cultural back-
grounds. These different aspects define the dynamic nature of language and how it exhibits a variety of
properties under different contexts. Thus, when applying a natural language processing (NLP) system to
the real-world text inputs, it requires that the intelligent agent must be able to cope with a changing test
environment, which can be significantly different from the one seen at training time (Lazaridou et al.,
2021; Dhingra et al., 2022).

Modern NLP models powered by neural networks have made remarkable advances in a number of
applications, such as machine translation (Fan et al., 2021), open domain question answering (Izacard and
Grave, 2020) and code generation (Chen et al., 2021b). Training these neural network models requires
a large training corpus consisting of heterogeneous data points with a substantial variation in topics,
domains, and even languages. And it is often the case that data with diverse characteristics and content
are not equally represented in the training set, e.g. the majority users of an online forum Reddit are
male (Statista, 2022). However, we expect a model to perform fairly on different demographics in the
real world. Recently, the NLP community has adopted a pre-train then fine-tune paradigm to perform
downstream tasks (Devlin et al., 2019a; Lewis et al., 2020a). Under this paradigm, a large neural network
is pre-trained as a language model on a massive corpus and then is fine-tuned on downstream tasks
with task-specific annotated examples. With the ever-increasing size of pre-trained languages models
(PLMs), fine-tuning all parameters on a relatively small training set is not only prone to over-fitting
but also results in catastrophic forgetting of previously learned knowledge at pre-training stage. This is
disadvantageous when the pre-trained model is expected to be reused for different tasks and adapt to

new data distributions.

The prevalence of distribution shift in the wild hinders the deployment of real-time machine learning
models(Holtzman et al., 2019; Marcus and Davis, 2020; Metz and Satariano, 2020), as models can fail in

different ways when exposed to a distribution shift from the training environment:

* They perform poorly on under-represented subpopulations: when models are learned by minimiz-
ing the average training loss on all the training data (known as ERM defined in §2), the majority
classes contribute a large part to the training objective. Models can recklessly rely on spurious cor-
relations between the input and the output embedded in the majority classes or underestimate the
tail subpopulation. As a result, using these models can lead to negative consequences on underrep-
resented groups: a multilingual model often performs worse on low-resource languages (Arivazha-
gan et al., 2019); a hiring system can adversely prefer male candidates over female candidates with
similar profiles (Xu et al., 2019); toxicity detection systems predict tweets containing features as-
sociated with African-American English as more offensive than tweets without these features (Sap

et al,, 2019; Davidson et al., 2019).

* They can undergo catastrophic forgetting of previously acquired knowledge when models are
adapted to new domains or new tasks (Kirkpatrick et al., 2017; Veniat et al., 2021). This poses
great challenges especially under the pre-train-then-fine-tune paradigm where a large model (e.g.
with billions of parameters) pre-trained on a large corpus has stored a wealth of factual knowl-
edge (Dai et al., 2021) and textual patterns (Geva et al., 2021). The vanilla fine-tuning method tunes
all the parameters of the pre-trained models when adapting to a downstream task (Devlin et al.,
2019b), which inevitably leads to loss of information previously learned. We hope that the knowl-
edge or patterns acquired during pre-training are preserved after the adaptation stage, as the same
model can be reused for other tasks. In addition, models not overfitting to a specific dataset tend

to generalize better, especially under the low-resource settings.

* They are vulnerable to variations of the inputs carrying synonymous meanings. This phenomenon
is widely studied in the research line of adversarial examples where crafted noise such as word
or character-level perturbations (Ebrahimi et al., 2017; Michel et al., 2019; Wang et al., 2021a) are
injected into the inputs such that they can alter models’ predictions while being imperceptible
to humans. More recently, prompting-based methods have become an effective way of leveraging
pre-trained language models for downstream tasks especially in the zero-shot or few-shot learning
setting. These methods reformulate a variety of NLP tasks to mimic the original pre-trained LM
objective with the help of a textual prompt (Liu et al., 2021b; Brown et al., 2020). It has been found
that the pre-trained models are sensitive to different wordings of prompts (Jiang et al., 2020), which
results in inconsistent predictions given synonymous prompted inputs. The variations of real-
world text inputs are abundant and frequent, thus we need to develop methods that are robust to

these synonymous variations.

To remedy these issues, one important step towards robust machine learning is to identify and assess
potential risks in out-of-domain environments and take into account the demand of dynamic evaluation

at training time. In this thesis, we try to improve the robustness of NLP models from three aspects:

* Diagnosis and mitigation of unfaithful content in conditional neural sequence generation. Neural
sequence generation models have been the driving force of many NLP applications, such as ma-
chine translation (Vaswani et al., 2017), question answering (Izacard and Grave, 2020), abstract text
summarization (Rothe et al., 2020), and code generation (Chen et al., 2021b). Generally speaking,
these tasks generate the target output by conditioning on an input text or a user query, which put
constraints on what is expected in the target. The outputs should faithfully reflect the content in
the source input such that there are no fabricated facts or irrelevant information which mislead
the users. Unfortunately, neural sequence generation systems often hallucinate content that is
not faithful to the source (Maynez et al., 2020). In Part I, we focus on detection and mitigation of

hallucinated content in conditional sequence generation systems.

* Mitigating subpopulation shift with improved learning objectives. As discussed above, the training
distribution often comprises data from a variety of types, e.g. text from different topics, written
by different demographic groups, or in different languages. Under this setting, there are two chal-
lenges of developing a model that performs well on all subpopulations at test time: (1) the real data
is highly imbalanced across data varieties and ERM training can result in a model that performs
poorly on minority groups or learns spurious correlations presented in the majority class (Sagawa
et al., 2020a); (2) the varying intrinsic levels of learning difficulty and the intra-type heterogene-
ity can prevent positive and effective transfer between groups (Pham et al., 2021). To this end,
in Part II we propose group distributionally robust optimization methods (Ben-Tal et al., 2013a;
Duchi et al., 2016; Sagawa et al., 2020a) that encourage uniform good performance across all the

groups.

* Preventing catastrophic forgetting with parameter-efficient transfer learning. A key challenge in the
pre-train-then-fine-tune paradigm is how to efficiently adapt a pre-trained model to any down-
stream tasks through transfer learning. There are several desiderata for this goal: for any down-
stream tasks, fine-tuning should be fast and parameter-efficient; the knowledge stored in the pre-
trained models can be reused across different tasks which can also facilitate the generalization
ability of PLMs. Efficient transfer learning enables flexible adaptation and is widely applicable to
a variety of scenarios, e.g. continual learning of real-world knowledge. To realize these goals, in
Part III we propose a unified framework for parameter-efficient transfer learning that connects
different methods and allows us to instantiate a new state-of-the-art method for such learning
efficiencies. We further explore the use of parameter-efficient fine-tuning in a zero-shot continual

learning setting to improve the consistency of model predictions under different input views.

Faithfulness of Conditional Sequence Generation (Ch. 3) Group DRO to tackle Subpopulation Shift (Part I1)

| had a great chat with Jo(a\n on M(%doy. [[[

tttt t t tt 1

en be en be
Neural Machine Translation
[es] [es J
HEATER ZNBIXREE,
Train (imbalanced) Test (balanced)

Parameter-efficient Transfer Learning of Pre-trained Language Models (Part 111)

medical maybe
multi-task PLM

laws politics domains
Given that {Premise}, does it

Pre-trained Language / subpopulations
Model (PLM)
1 follow that {Hypothesis}? Yes, no
()
A N or maybe?
. '% tasks
= Zero-shot Task

P A unified framework (Ch. 6) Generalization (Ch. 7)

Figure 1.1: An overview of the thesis.

1.2 Thesis Overview

The detailed outline of this thesis is presented below:

* Chapter 2 introduces scenarios where models are fragile and fail to make correct predictions. We

also survey on the approaches that aim to improve the robustness of NLP systems.
+ Part I: On the Faithfulness of Conditional Sequence Generation

- In Chapter 3, we propose a method to detect hallucinated content that is unfaithful to the
input for conditional sequence generation. As there is no readily available labeled data for
this task, we create synthetic labeled data with automatically inserted hallucinations using a
pretrained denoising autoencoder model. We also use this hallucination detection model to
create token-level hallucination labels for the noisy parallel training data and proposed a fine-
grained loss to improve the performance on machine translation with low-quality training

data. This work was published at ACL-IJCNLP Findings 2021 (Zhou et al., 2021c).
* Part II: Group Distributionally Robust Optimization

- In Chapter 4, we study group distributionally robust optimization (group DRO), which is
a popular robust optimization method to achieve high worst-group accuracy. We find that
group DRO can fail when the pre-defined groups are not the “perfect" ones, i.e. groups do
not directly account for various spurious correlations. To address this, we propose a group-
conditional DRO algorithm that minimizes the worst loss over a more flexible set of distribu-

tions that are defined on the joint distribution of groups and their instances. The proposed

4

method outperforms group DRO by a large margin when confronted with imperfect parti-
tions, and it also performs well as regards to perfect partitions. This work was published at
ICML 2021 (Zhou et al., 2021b).

- In Chapter 5, we extend group DRO to a more challenging real-world problem, multilingual
machine translation, where groups correspond to different languages. In multilingual train-
ing, the data across languages can be highly imbalanced and there is also a varying level of
difficulty in learning each language. When model capacity is limited, this results in trade-offs
or decreased performance on some languages, particularly low-resource languages. We pro-
pose a new learning objective based on group DRO for multilingual training which is both
efficient (incurs negligible computational overhead compared to ERM) and effective (strong
empirical results on multilingual machine translation). This work was published at EMNLP

2021 (Zhou et al., 2021a).
* Part III: Efficient Transfer Learning Approaches of Pre-trained Language Models

- In Chapter 6, we propose a unified framework connecting many recently proposed parameter-
efficient transfer learning methods that only tune a small number of additional parameters
when fine-tuning a pre-trained language model. These methods naturally overcome catas-
trophic forgetting at fine-tuning time and have potential for performing efficient continual
learning. Our framework allows us to study different methods along several design dimen-
sions we have defined, identify the critical design choices, and transfer design elements across
approaches. Under this framework, we propose a new state-of-the-art parameter-efficient
tuning approach that matches full fine-tuning by tuning 6.7% of relative number of parame-
ters for complex and high-resource NLP tasks. This work was published at ICLR 2022 (Zhou
et al., 2022).

- In Chapter 7, we propose an unsupervised learning method to improve the zero-shot task
generalization performance of the pre-trained language models. Our method is based on a
recently proposed state-of-the-art zero-shot learner that is pre-trained in a supervised and
massively multi-task fashion. At training time, all of the NLP tasks are represented in a uni-
fied way with natural language prompts. We explore unannotated examples to improve the
consistency of model predictions using different prompts and further improve the zero-shot
performance. We also adopt a parameter-efficient fine-tuning method for model training.
Empirically, we outperform the previous SOTA by a large margin without using any labeled
data, in the mean time, our method also introduces a novel learning paradigm-test-time
tuning—that continues learning and improving the model at test time. This work is in sub-

mission.

Chapter 2
Background and Literature Review

Robustness is increasingly and widely studied across diverse dimensions and modalities. In this chapter,
we first discuss different scenarios where NLP models can fail by categorizing different types of dis-
tribution shift in §2.1, which also motivates our work in this thesis. Next in §2.2, we survey existing

mitigation strategies in the literature.

2.1 Characterization of Robustness in NLP

Machine learning is generally concerned with learning to make predictions given sample data. Consider
predicting a target random variable y €) from input variable z € X, where X represents the input
space (e.g. all valid German sentences in de-en translation) and) represents the space of all possible out-
puts (e.g. all valid English sentences in de-en translation), ideally a machine learning model is capable of
learning correlations between x and y (i.e. the conditional distribution p(y|z)) that can generalize to any
test distribution. Many machine learning models adopt empirical risk minimization (ERM, Equation 2.1)

that minimizes the expected risk:

LErM =]E(ac,y)wpda‘Da [E(:Ea Y; 0)] (2’1)
via minimizing the empirical risk:
1 N
Lerm = z;f(fﬂi, yi; 0) (2.2)
1=

In ERM, models are trained and evaluated on randomly shuffled and split training-test sets based on the
iid. assumption, where the training set is composed of a finite number of samples drawn from the same
distribution (z,y) ~ Piain. However, this training distribution might be divergent from the test distri-
bution P;est- This divergence in distribution shift may prevent the model from learning relationships
between z and y that generalize to the test distribution, resulting in models that achieve high perfor-

mance on data similar to the training set but fail on test distributions that drift away from the training

one. For example, a machine translation system trained on news data may be evaluated on a broader
set of domains and may perform poorly on, for example, twitter data. In this section, while we will not
attempt to formulate a full taxonomy of distribution shift, we will categorize commonly studied robust-
ness issues in the NLP literature. In particular, the challenges introduced in §2.1.1 are closely related to

the problems this thesis aims to tackle.

2.1.1 Distribution Shift

Distribution shift is ubiquitous in the real-world setting. This thesis primarily focuses on distribution
shift that occurs naturally in practice. One categorization of distribution shift (Koh et al., 2020) is based
on if the test domain data has been seen in the training data, where each domain d corresponds to a
distribution P, over data points (x, y) that are similar in some way. It considers two broad categories of

distribution shift: domain generalization and subpopulation shift.

Domain Generalization This type of distribution shift is also known as out-of-domain generaliza-
tion, in which the training and test distributions comprise data from related but disjoint sets of domains,
i.e. Dirain N Dyiest = &, where Dypain and Dyeg are the set of domains of training and test data re-
spectively. Because it is often infeasible to collect data from all the domains of interest, this issue arises
naturally in many applications. For example, a legal document summarization model may be trained on
data from business law, criminal law and health care law, while it is applied to a more diverse set of laws
at test time, e.g. constitutional law. Domain generalization also frequently arises in domains beyond
NLP, for example, a pneumonia detection model trained using chest X-ray data collected from several
hospital could be later applied more broadly to hospitals outside the training set (Zech et al., 2018). In
Chapter 7, we tackle zero-shot task generalization in the context of prompt-based pre-trained models
where all the tasks are reformulated as text-to-text generation tasks, which is essentially a domain gen-

eralization problem.

Subpopulation Shift In this type of distribution shift, the training and test domains overlap, but
their relative proportions differ, i.e. the test distributions are subpopulations of the training distribution
Diest © Dirain- Specifically, the training distribution can be formulated as a mixture of K different
domains Piyain = @1q1 +2¢2+- - - +akqrk, Y, a; = 1, and the mixture weights of the test distribution
are different from the training one. Subpopulation shift also naturally arises in many cases, because the
uneven spread of data across domains prevents us from easily collecting data from every domain we are
interested in. Even if under these constraints, we wish a machine learning model to perform well even
on the worst-case subpopulations. For example, a toxicity detection model that tells whether an online

comment is toxic or not should perform equally well on all demographic subpopulations, e.g. African

American, White American, Asian, etc. However, it is well known that standard models perform poorly

on under-represented demographics (Hashimoto et al., 2018a; Buolamwini and Gebru, 2018; Koenecke
etal., 2020). Our works in Part Il focuses on alleviating subpopulation shift in various scenarios, including
reducing the reliance on spurious correlations (§2.1.2) and improving multilingual machine translation
where the training data is imbalanced across language pairs.

Another categorization of distribution shift distinguishes various shift types by mathematically de-
scribing how the data generation process changes between two distributions. Under this umbrella, Three
commonly studied types of distribution shift are covariate shift (Shimodaira, 2000), label shift (Quifionero-
Candela et al., 2008) and concept shift (Quifionero-Candela et al., 2008). Suppose the data generation
process can be factorized into a joint distribution p(x,y) = p(x)p(y|x) over = and y, covariate shift
refers to the change in the distribution of the input variable, i.e. p(z) and the conditional distribution
p(y|z) stays the same; concept shift on the other hand refers to the change in the conditional distribution
p(y|z) while the marginal distribution p(z) is fixed. It is often assumed that the conditional p(y|x) is in-
variant across in supervised classification problems (Arjovsky et al.,, 2019), which is the setting we study
in Chapter 4. However, in text generation tasks (e.g. the translation tasks in Chapter 5), we often see
a combination of covariate shift and covariate shift as the language variations may be divergent across
domains or languages, which is more realistic and common in a variety of NLP tasks Finally, motivated
by medical diagnosis where diseases (output y) cause symptoms (input x), we can factorize the data dis-
tribution as p(z, y) = p(y)p(x|y), and under which label shift refers to the change in the distribution of
the target variable p(y) while the conditional p(z|y) does not change.

2.1.2 Robustness Failures in NLP

Although there are many instantiations of different types of distribution shift, we provide an overview of
some widely (but incomplete) investigated robustness scenarios where NLP system fail to make accurate

predictions in the face of distribution shift that is artificially produced or naturally arises.

Adversarial Attacks While distribution shift naturally arises in the real world, adversarial attacks
create adversarial examples by inserting artificially crafted perturbations or noise into the input texts «
to deceive the model such that it makes wrong predictions (Goodfellow et al., 2014; Ebrahimi et al., 2017).
This is motivated by the observation that models are sensitive to the variations of inputs such that their
predictions can be altered when the input is transformed with changes imperceptible to humans. Some
popular techniques for creating adversarial examples in NLP design perturbation functions by optimizing
a pre-defined adversarial loss, which is based on the principles of label-preserving, label-changing and
semantics-preserving. These methods include token replacement with gradient-based methods (Michel
et al.,, 2019), token or character swapping (Ebrahimi et al.,, 2017; Alzantot et al., 2018; Ren et al., 2019),
paraphrasing (Gan and Ng, 2019; Iyyer et al., 2018), and adding adversarial distractors (Jia and Liang,

2017). Morris et al. (2020) question the validity of adversarial examples in terms of semantics-preserving,

as they found perturbations often do not preserve semantics and they call for fair and accurate evalua-

tions with different adversarial perturbation methods.

Dataset biases (Goyal et al., 2017; McCoy et al., 2019; Gururangan et al., 2018) are a typical cause of
model failures, where spurious associations between the input and the output variables are presented in
the dataset due to annotation artifacts or biases introduced during data collection phase. For example, in
natural language inference (NLI) tasks, where a model is asked to label if a hypothesis contradicts, entails
or is neutral to a premise, McCoy et al. (2019); Geva et al. (2019) found that current NLI models tend to
rely on the spurious features in the hypothesis to predict labels, e.g. using the strong association between
the high word overlap between premise and hypothesis and the label “entailment". Dataset biases may
come from annotation artifacts (Gururangan et al., 2018) that annotators choose specific words in their
inputs to realize a certain label, for example, one can add a cause (“because") to the premise and create a
contradicting sentence by negating the premise. Standard models relying on these spurious correlations
can achieve high average accuracy on data similar to the training set but fail on test data where the
correlation does not hold. Our work in Chapter 4 tries to prevent the model from relying on spurious
correlations using a DRO approach. Another finding in question answering by Lewis et al. (2021a) show
that there is a significant overlap between the test set answers and the training set one in three popular

open-domain benchmark datasets.

Neural sequence generation produces an output sentence from an encoder-decoder or a decoder-
only model using some decoding algorithm, and has become the backbone for many NLP applications,
such as machine translation (Vaswani et al., 2017), text summarization (Rothe et al., 2020), and free-form
question answering (Fan et al., 2019). However, they often generate fluent text that fails in a variety of
aspects, which impedes their safe and responsible deployment in the wild. Some commonly discussed
issues include lacking global logical consistency (Marcus and Davis, 2020), toxic outputs with societal
biases regarding gender, race and religion (Brown et al., 2020), hallucinated outputs that are unfaithful
to the source inputs (Maynez et al., 2020), etc. These issues can often be attributed to domain generaliza-
tion where models are evaluated out-of-domain (Wang and Sennrich, 2020), subpopulation shift where
models are evaluation on low-resource domains (Chapter 3) or dataset biases (Maynez et al., 2020; Liu
et al., 2020a). Recent works have made some remarkable progress in responsible and robust sequence
generation (Ouyang et al., 2022; Wang et al., 2022; Sap et al., 2021), but there is still a long way to go. In
Chapter 3, we examine the hallucination problem in neural sequence generation by proposing methods

for detecting hallucinated content in the model output and using it to reduce hallucination.

Transfer learning essentially is dominating the NLP field, as the pretrain-then-fine-tune paradigm,

where pre-trained language models are tuned on a downstream task, has been adopted in most NLP appli-

10

cations (Devlin et al., 2019a). The domain of the downstream task is generally different from the domain
of the pre-training corpus, which involves the adaptation of pre-trained weights to the target task using
task-specific objectives. This is also closely related to subpopulation shift and domain generalization.
While pre-trained models have achieved exceptional progress in various tasks, researchers scale the size
of pre-trained language models every year (Liu et al., 2019; Brown et al., 2020; Chowdhery et al., 2022),
which incurs more computational cost at the adaptation stage and degenerated performance when the
training set is small (Phang et al., 2018). Moreover, fine-tuning all the parameters of a pre-trained model
can result in catastrophic forgetting of previously acquired knowledge, which is not an efficient method
of adaptation as each task requires a new copy of model parameters and it is not extensible for continual
learning. Recently, parameter-efficient fine-tuning and prompting methods provide new opportunities
for effective transfer learning (Li and Liang, 2021a; Zhou et al., 2022), few-shot learning (Brown et al.,
2020; Gao et al., 2021) and zero-shot learning (Sanh et al., 2021)s, which naturally alleviates catastrophic
forgetting and perform well in low-resource settings. Our works in Part III are dedicated to efficient and

robust transfer learning with pre-trained language models using parameter-efficient tuning.

2.2 Methods for Improving Robustness

There are a number of lines of work that aim to improve robustness in NLP systems. While we do
not attempt to provide a complete survey of all existing methods, we survey methods spanning data

intervention/augmentation, transfer learning with pre-trained model, reweighting and causality.
2.2.1 Data-driven approaches

Data augmentation methods increase the diversity of training data without directly collecting more data
with human annotators. It has been shown effective in improving performance in low-resource setting,
few-shot learning and mitigating biases and improving robustness in NLP models (Feng et al., 2021).
Data augmentation techniques typically include (1) heuristic/rule-based techniques, such as word/char-
acter dropout (Wei and Zou, 2019) , Cutoff (Shen et al., 2020), and leveraging predicate-argument struc-
tures (Moosavi et al., 2020), (2) example interpolation techniques that interpolate the text or hidden
representation of existing examples to create synthetic examples, such as MixText (Chen et al., 2020),
Seq2MixUp (Guo et al.,, 2020) and Hiddencut (Chen et al., 2021a), and (3) model-based techniques that
generates synthetic examples from a trained sequence generation model, such as back translation (Sen-
nrich et al., 2016a), self training (He et al., 2020) and paraphrasing (Sun et al., 2021). Our work in Part I

proposes a truncated loss to remove losses of potentially hallucinated tokens, falling into this category.

2.2.2 Adaptation approaches with pre-trained models

As discussed in §2.1.2, transfer learning, also known as adaptation, is essentially extracting knowledge

from a source task/domain and applying it to a different target task/domain. The ability to perform

11

transfer learning is more and more a requirement in various NLP tasks, in particular the AI community
is now at a stage where we aim to enable a single Al system to generalize across thousands or millions
of tasks and to understand different types of data (Chowdhery et al., 2022). One taxonomy (Ruder et al.,
2019) classifies transfer learning into (1) transductive transfer learning where the source and target tasks
are the same and a model trained on the source domain/task is adapted to a target domain or language (He
et al.,, 2019; Neubig and Hu, 2018; Dou et al., 2019), and (2) inductive transfer learning where the source
task/domain the model is trained on is different from the target task/domain. Transfer learning of pre-
trained models to downstream tasks belongs to the latter category as the pre-training tasks (i.e. language
modeling tasks) are usually different from the downstream tasks (Devlin et al., 2019b; Liu et al., 2019;
Brown et al., 2020).

With the advancement of pre-training, it has become the de facto workhorse of almost all the NLP
tasks. However, as pointed out in 2.1.2, transfer learning of large pre-trained language models may result
in catastrophic forgetting of stored knowledge, over-fitting to small training set, inconsistent predictions
across different runs or inputs (Jiang et al., 2020) and large compute overhead of saving model copies
for many tasks. To alleviate these issues, previous work has recently proposed parameter-efficient fine-
tuning methods (Houlsby et al., 2019; Lester et al., 2021; Li and Liang, 2021a; Hu et al., 2021) that freeze the
pre-trained model weights and only fine-tune a small number of additional parameters. These methods
have shown similar performance to full fine-tuning while being able to keep the pre-trained weights
intact. Parameter-efficient transfer learning methods have potential for more effective continual learning
in the real world. In Part III, we explore this potential by connecting existing methods, instantiating a

new state-of-the-art method and examing their utility in the zero-shot task generalization setting.

2.2.3 Generalized Reweighting

To counter distribution shift especially subpopulation shift, one broad class of generalized reweighting
(GRW) (Zhai et al., 2022) algorithms iteratively assign each example a weight during training and itera-

tively minimize the weighted average risk:

N
Laorw = ZQ§t)£($iayi§ 0) (2.3)
i=1

Depending on whether the weights qz(t) are updated every iteration, these methods can be categorized
into (1) Static weighting GRW, which assigns each example with a fixed weight throughout training.
This category includes the classic method importance weighting that commonly reweights the classes
proportionally to the inverse of their frequencies (Wang et al., 2017; Arivazhagan et al., 2019; Conneau
et al., 2020a). (2) Dynamic weighting GRW, which adjusts the weights dynamically during training.
Dynamic GRW is gaining more and more attention recently as it provides a more flexible weighting

strategy based on the training dynamics. One class of dynamic GRW heuristically leverages the training

12

dynamics to perform curriculum learning that reweight examples based on the prediction confidence (Lin
et al,, 2017), upweight examples that are not well classified (Liu et al., 2021a), or focus more on “easy"
examples based on the training loss (Jiang et al., 2015). A second class of dynamic GRW learns a scorer
function to optimize data usage (Zhang et al., 2020b; Lahoti et al., 2020; Wang et al., 2020d,c) using meta
learning or adversarial training to upweight training examples that have a larger similarity to examples
in a validation set of interest. Last, distributionally robust optimization (DRO) refers to a large family
of methods that are based a principled mathematical framework are that minimizes the worst expected

loss over an adversarial distribution g:

Lpro = sup E(z,y)Nq[g("% Y; 9)] (2.4)
qeQ

This worst-case objective upper bounds the test risk for all ges; € Q, which potentially guards the model
against a wide range of test distributions. The uncertainty set Q is usually defined as a neighborhood
around an empirical training distribution P4y, which encodes potential test distributions that we wish
the model to perform well on. The notion of distance is often defined by some divergence, e.g. KL-
divergence ball (Michel et al., 2022). Instances of DRO algorithms include CVaR-, x?-DRO (Hashimoto
et al., 2018a) that considers the a-fraction subpopulations or the x2-divergence ball of the training dis-
tribution, the large-scale method fastDRO (Levy et al., 2020) and group DRO (Oren et al., 2019; Sagawa
et al., 2020a) that optimizes the worst expected loss over a set of groups in the training data. Group DRO
leverages the data structures to construct the uncertainty set, and can prevent an overly pessimistic ob-
jective. Our works in Part II propose optimization methods based on group DRO by identifying some of

its underlying problems and applying our improved version to the real world NLP applications.

2.2.4 Causal Methods

Causal inference (Feder et al., 2021) has also been utilized to examine and improve robustness of NLP
systems especially for preventing the model from learning spurious correlations in the data (§2.1.2).
Some evaluation methods (Ribeiro et al., 2020; Gardner et al., 2020) have been developed to ensure that
predictors are not “right for the wrong reasons”, which generally take two forms: invariance tests that as-
sess whether predictions change by perturbations that are causally unrelated to the label, and sensitivity
tests which apply perturbations that should be the minimal change necessary to flip the label. Besides,
to learn robust predictors that pass tests of sensitivity and invariance, some causal inference motivated
methods have been proposed by incorporating domain knowledge of causal structure of data into the
learning objective. Particularly, data augmentation methods that generate counterfactual examples via
manual pos-editing (Kaushik et al., 2020; Gardner et al., 2020), heuristic keyword replacement (Shekhar
et al., 2017; Garg et al,, 2019) and automatic text rewriting (Zmigrod et al., 2019; Wu et al.,, 2021) have

been shown effective in improving model’s performance against dataset bias or artifacts.

13

2.2.5 An Overview of the Thesis on the Connections with Distribution Shift

In §2.1, we have reviewed various failure cases of NLP systems in the face of distribution shift with
pointers to their connections with later chapters. In this section, we will present a holistic picture of
how the works in this thesis address distribution shift under various situations. We tackle two main
types of distribution shift—subpopulation shift and domain generalization (new task generalization)—
under the settings of either fine-tuning a pre-trained model or learning a supervised model from scratch.
In subpopulation shift, the training data usually comprises imbalanced data across different domains or
groups while at test time we expect the model to perform equally well across these domains or groups.
We tackle two major problems associated with subpopulation shift: inferior performance of underrepre-
sented groups (or worst-case group) and hallucinating new content in the face of domain shift as being
manifested in conditional sequence generation. We take two approaches to handle distribution shift in
a conventional learning setting: (1) In Chapter 3, we first identify erroneous content in the model out-
puts and then filter the training data by removing harmful content that may lead to hallucination. (2)
In Part II, we developed group distributionally robust optimization methods to alleviate subpopulation
shift for classification and generation (machine translation) problems respectively, where the training
distribution is adjusted dynamically based on the model losses across groups.

Transfer learning of pre-trained language models to downstream tasks has become the de facto
method for various NLP tasks. This transfer learning process essentially undergoes the distribution
shift from the pre-training data distribution (generally a large text training corpus) to the downstream
data distribution. Loosely speaking, this can be viewed as a more extreme extension of domain gen-
eralization where the data distributions across tasks can be more divergent compared to those across
domains. However, there is usually a fine-tuning stage for using the pre-trained model on downstream
tasks. In Part III, we explore parameter-efficient transfer learning approaches which not only preserve
the original knowledge stored in PLMs but also enable effective generalization in the low data regime.
Concretely, we unify previous parameter-efficient tuning methods and propose a better version based
on this unified framework. Then, we explore the use of parameter-efficient tuning method in a zero-shot

task generalization setting.

14

Part1

On the Faithfulness of Conditional

Sequence Generation

15

Chapter 3

Detecting Hallucinated Content in

Conditional Neural Sequence Generation

Neural sequence models for tasks such as data-to-text generation (Puduppully et al., 2019), machine
translation (MT; Vaswani et al. (2017); Wu et al. (2016)) and text summarization (Rothe et al., 2020) can
often generate fluent text that is sometimes preferred to human-written content (Laubli et al., 2018; Brown
et al., 2020). However, they also often generate fluent texts that lack global logical consistency (Marcus
and Davis, 2020), are dull and repetitive (Welleck et al.,, 2019), or contain hallucinated content that is
not entailed by the input (Maynez et al., 2020; Martindale et al., 2019). As we have discussed in 1, these
variety of fluent but wrong outputs are particularly problematic, as it will not be possible for users to
tell they are being presented incorrect content. In this chapter, we focus on tackling the latter problem,

aiming to automatically identify and quantify content in the output that is not faithful to the input text.

3.1 Introduction

The risk of generating unfaithful content impedes the safe deployment of neural sequence generation
models. The first step to building models that do not suffer from these failures is the assessment and
identification of such hallucinated outputs. Prior work has shown that standard metrics used for text
evaluation, such as BLEU scores (Papineni et al., 2002a; Post, 2018), ROUGE (Lin and Hovy, 2004) and
BERTScore (Zhang et al., 2019), do not correlate well with the faithfulness of model outputs (Maynez
et al., 2020; Wang and Sennrich, 2020; Tian et al., 2019). They also require reference output text, limiting
their applicability in a deployed system at run-time. Very recent efforts have started to develop auto-
matic metrics to measure the faithfulness of output sequences using external semantic models, e.g. the
question-generation and question-answering systems (Wang et al., 2020a; Durmus et al., 2020) or tex-
tual entailment inference models (Maynez et al., 2020), to score faithfulness tailored for abstractive text

summarization. However, these scores do not directly identify hallucinated tokens and only correlate

17

. = N (Source meaning: Mike goes to
Source InpUt JE?EH@%%EQ the bookstore on Thursday.)

ERNC S S S S S e e ¥

Jerry || happily || goes bookstore|| with friend.

Machine Translation

Figure 3.1: An example of token-level hallucination detection from MT. The grey box is an example of

MT output and the labels above indicate if each word is faithful (0) to the input or hallucinated (1).

weakly with human judgements.

We propose a new task for faithfulness assessment - hallucination detection at the token level, which
aims to predict if each token in the machine output is hallucinated or faithful to the source input. This
task does not use the reference output to assess faithfulness, which offers us the ability to also apply
it at run-time. Similar to the spirit of our proposed task, word-level quality estimation (Specia et al.,
2018; Fonseca et al,, 2019) in the MT community predicts if tokens are correctly translated based on
human post-editing. However, these methods generally do not distinguish errors in terms of fluency
and adequacy (Specia et al., 2011), with the exception of a subset of the WMT 2020 shared task on
quality estimation (Specia et al., 2020), where different types and levels of severity of word-level errors
are defined. Our proposed task specifically focuses on hallucination errors, and we define these errors in
a simpler way with only binary labels, which we argue makes them simpler to use and more conducive to
labeling at large scale. The proposed hallucination detection method (described below) is also applicable

to the word-level quality estimation task as demonstrated in §3.5.4.

We measure hallucination for two conditional sequence generation tasks — abstractive summariza-
tion and MT. For the former, we produce a benchmark dataset from recently released annotations (Maynez
et al,, 2020). For MT, we carefully design human assessment guidelines and create high-quality anno-
tations, which will be released to aid future research. To learn token-level hallucination prediction for
general conditional sequence generations tasks, we propose a novel method that creates synthetic “hal-
lucinated" data and finetunes a pretrained language model (Liu et al., 2019; Conneau et al., 2020a) on it.
Without any human annotated supervised training data, we achieve an average F1 of around 0.6 across
all the benchmark datasets, setting initial performance levels for this new task.

Predicting hallucination labels at the token level provides a tool for diagnosing and interpreting
model outputs, which allows us to flag potential risks when the model is applied to previously un-
seen inputs. Additionally, we show how to use these token-level hallucination labels in two case stud-

ies to improve self-training (Scudder, 1965) and learning from noisy mined bitext (Koehn et al., 2019)

18

in low-resource MT. In both cases, there can be noise in the target text, either produced by the self-
training teacher or errors in the mining process. However, most outputs are only partially erroneous
(see examples in Appendix .5.3) and the rest of the output is still useful for training, as we show by
introducing different token-level loss truncation schemes that use our proposed hallucination detec-
tion methods. Our best methods outperform strong baselines by a large margin, and reduce the num-
ber of hallucinations. Our codes and data available at https://github.com/violet-zct/

fairseq-detect-hallucination.

3.2 Task: Token-level Hallucination Prediction

For source sequence S and generated output sequence G, following Maynez et al. (2020) we define any
span g;, -+, gi+j (j >= 0) in G as being “hallucinated” if it is not supported by the source input S.!

More specifically, we consider two types of hallucination, which are not mutually exclusive:

Extrinsic hallucinations: aspang;, - -, g;1; in G consists of additional content without clear ground-
ing in the input. In Fig. 3.1, the word “happily” in the machine translation belongs to this case, as there

is no word in the input sentence that clearly corresponds to “happy”.

Intrinsic hallucinations: a span of word(s) in G contains incorrect information due to synthesiz-
ing content using information present in S. In Fig. 3.1, “Jerry” in the MT is a hallucinated word and
should be replaced by “Mike". Note that multi-word phrases can also be marked intrinsic hallucinations,
such as “this is a book” being hallucinated from “this is not a book”, where “this is” is a minimal span
corresponding to the hallucination.

The above definitions are for illustrative purposes; we do not explicitly label whether a hallucination
is intrinsic or extrinsic, only whether one exists at all. Given these spans, we aim to identify all the span(s)

satisfying the above conditions in machine generation G.?

Human Assessment of Hallucinations To facilitate the assessment of hallucinations in MT, we con-
duct human annotations on outputs of MT models in the patent and COVID-19 domain. Three bilingual
annotators were presented the source sentence, the reference sentence and the MT output, and they
were asked to label each sentence with one of the three types of labels: incomprehensible, faithful, and
contains hallucinations. If the translation contains hallucinations, we asked the annotators to tag all
the tokens that were not faithful to the source. The final benchmark datasets were created by taking
majority labels among three annotators. We present more details regarding annotation guidelines and

pipelines in Appendix .1.

!Content that is paraphrased or can otherwise be inferred by the source document is not considered hallucinated.
*We do not annotate under-generations e.g. the source input is only partially translated or summarized.

19

https://github.com/violet-zct/fairseq-detect-hallucination
https://github.com/violet-zct/fairseq-detect-hallucination

We compute the Fleiss’s Kappa (Fleiss, 1971) (FK) scores of our annotations for MT and the pro-
cessed annotations from (Maynez et al., 2020) on abstractive summarization (Tab. 1 in Appendix .1). We
achieved moderate agreement (FK~0.56) on the token-level hallucination annotations and substantial
agreement (FK~0.67) on the sentence-level annotations, while Maynez et al. (2020) achieved substantial
or almost perfect agreement (FK~20.8) on the XSum dataset. For MT, we conjecture that it is relatively
hard to achieve consistent agreement among annotators for several reasons. First, although we have
made detailed annotation guidelines following the definition of hallucination in § 3.2, it could still be
difficult for annotators to distinguish between ungrammatical translations and hallucinations. Second,

it was sometimes difficult for annotators to understand the specialized text in the patent domain.

3.3 Token-level Hallucination Detection

We propose a general-purpose method for token-level hallucination detection for conditional sequence
generation tasks. Given the source input S, we first formulate the task of token-level hallucination
detection as a sequence labeling problem where a binary label is predicted at each position G; of the
machine generation GG. One straightforward way of learning this task is to train a model with supervised
data in the form of ((S,G), Lg) where L¢ are the labels at every position of G that indicate if each
word is a hallucinated one or not. However, because such labeled training data is not readily available,

we propose an approach to automatically create synthetic training data.

3.3.1 Synthetic Data Creation

We use bi-text from the training data to create synthetic examples by automatically inserting new, hallu-
cinated target-side tokens. More specifically, we take target sequence 7" and create a hallucinated version
of it denoted 7" with associated hallucination labels for each token in 7”. Then we can train a supervised
model on this synthetic labeled data set of ((S,7”), L1v). The key challenge is that 7" should be a fluent

sentence that does not differ too much from 7.

Generation of hallucinated sentences To control this synthetic hallucination process, we build on
a pre-trained denoising autoencoder, which maps a corrupted sentence back to the original text it was
derived from, learning to reconstruct missing words that have been arbitrarily masked out. Specifically,
we use the BART model (Lewis et al., 2020a), without providing it any access to the source sentence,
thereby encouraging it to insert new content as needed to ensure fluency. As shown in Fig. 3.2, we
first apply a noising function that removes words from the original target sentence 7° and then use a

pretrained BART to generate 7" conditioned on the noised 7' with beam search.

*We also applied other noising functions, please see §3.5.1

20

. 999

Hallucination label
assignment with
edit distance

Generate synthetic| [
hallucinated : A
sentence :

| T

Figure 3.2: Generation of synthetic data with hallucination labels. A hallucinated version of T is gen-
erated by feeding the noised sentence to the encoder-decoder model BART. Hallucination labels are as-
signed to each token by computing the edit distance between 7" and T'. Labels of 1 refer to hallucinated

words.

T » Mike goes the ||bookstore|| on | Thursday.

) 1

derry || happily || goes the ||bookstore| with | his | |friene:
1 1 0 0 O 0 1 1 1

Figure 3.3: An example of label assignment.

Label assignments After obtaining the hallucinated sentence 7" with BART, we need to assign ap-
propriate labels to each token in 7" to mark which words are hallucinated. We compute the edit distance
between T” and T, and back-trace the deletion and substitution operations with dynamic programming.
All the positions in 7" involving these two operations are labeled as hallucinations and everything else is
considered faithful to 7. Fig. 3.3 shows an example of label assignment with edit distance, where words
in red are replaced and words in blue are deleted to convert 7" to T'. Assigning labels with edit-distance
can not always guarantee correct labels, but we find that this simple approach provides sufficiently high

quality training data for effective hallucination detection in practice.

3.3.2 Finetuning on Synthetic Data

Hallucination prediction loss We follow the common practice in natural language understanding
(NLU) tasks and finetune a pretrained language model (LM) on our synthetic data. We finetune a cross-
lingual LM (Conneau et al., 2020a) for MT and a monolingual LM (Liu et al., 2019) for summarization. In
both cases, we concatenate the input, true target and hallucinated target denoted (S, T, T”) as a single
input sequence to the model. Then we minimize the standard classification loss £,,.q over the pseudo
hallucination labels L7+ on top of the final hidden vectors of each token in 7" as shown in Fig. 3.4.
Although using only the source text and hallucinated target (S, 7”) as the input should be sufficient
to learn to predict hallucinations, we can also easily measure the extent to which including the true

target 7" in the input could help the model. At test time, when evaluating the faithfulness of the machine

21

1 1 0 0
L S
XLM-Roberta / Roberta

....... Pt) 6O U N N N O U s O

—> o
>
—>» —
Lyl o
N

pER " Wike goes o the SN S Ty

:J‘:;E:JE_IT‘EIﬁ <SEP Jbool\kllsllt(;g%is.;ﬁl:?:day§<SEP>§Jerry;happlly:goes{ to i the ibookstore; with ; his | friend. ;

o 2 S RN I A S SO
Source S True target T Hallucinated version of target T'

Figure 3.4: Finetuning XLM-Roberta (for cross-lingual generation task, e.g. MT) or Roberta (for mono-

lingual generation task, e.g. text summarization) on the synthetic training data.

outputs GG, we do not use the true target 7" and perhaps surprisingly find our model can generalize well

without references, even when they were present during training.

To prevent the model from overly relying on the true target 7" and learning spurious correlations
(e.g. the edit distance), we explored two techniques: (1) dropout — randomly drop out tokens in 7" to
force the dependence on the source input; (2) paraphrase — recall that at synthetic data generation time,
we generate T from BART conditioned on the noised T Instead, we can apply noise functions to the
paraphrased sentence of 7. We create paraphrased targets via knowledge distillation (Kim and Rush,
2016a) where we use the output from pretrained Seq2Seq model conditioned on the source sentence in
the bi-text corpus as the paraphrased target. Let D denote the paraphrased sentence of 7" and D’ denote
the generation from BART conditioned on the noised D. Then we create pseudo labels of D" denoted
L pr by computing the edit-distance between the D’ and D and use ((S, T, D’), L) as the training data
for finetuning. Since the pseudo labels are created based on D, it can prevent the model from learning

the edit-distance between T and D’ easily. We provide ablation studies in Appendix .4.

Masked LM loss We also add the masked language model loss (MLM) L,,;,,, following (Devlin et al.,
2019a). To learn this loss, we create a different batch from the above by concatenating only the source
S and target T" as the input, since the hallucinated target 7" could provide erroneous information for
predicting masked words in 7. We find that such multi-task learning objective helps learn better repre-
sentations of the input and further improves performance on predicting hallucination labels. The final

loss is £ = Lyreq + o - Lyyim Where o is a hyperparameter.

3.4 Evaluation Tasks and Data

We examine hallucination in abstractive text summarization and machine translation (MT) tasks, using

the models and datasets described below.

22

MT Summarization

Methods
TranS2S MBART | PtGen TConvS2S TranS2S BERTS2S

Alignment 29.47 9.93 38.92 37.94 34.47 35.81
Overlap-based 9.14 3.24 57.22 54.25 53.79 55.13
Synonym-based - - 59.54 63.73 58.66 53.07
Ours (w/o reference) 65.75 41.92 63.66 65.94 61.70 55.45
Ours (w/o reference + synonym) - - 64.72 69.37 63.88 56.49
Ours (w/ reference) 66.08 46.81 63.89 66.28 62.24 55.88

Table 3.1: F1 (x100) of hallucination labels on MT (seeSection 3.4.2) and abstractive summarization
(XSum). The first block are baseline methods and the second block are our results. Bold indicates best

results not using references.

MT Summarization
Methods
TranS2S MBART | PtGen TConvS2S TranS2S BERTS2S
True hal. tokens (%) 18.12 11.10 46.09 52.89 46.74 37.51
Pred hal. tokens (%) 18.56 7.99 57.22 57.68 55.78 48.84

Table 3.2: Annotated (True) and predicted (Pred) percentage of hallucinated tokens on benchmark test

sets.

3.4.1 Abstractive Text Summarization

Maynez et al. (2020) studied hallucination problems in extreme summarization on the XSum dataset
which comprises 226,711 British Broadcasting Corporation (BBC) articles paired with their single-sentence
summaries. They randomly sampled 500 articles from the XSum test set and evaluated summaries from
four abstractive summarization systems: PtGen (See et al., 2017), TConvS2S (Narayan et al., 2018),
TranS2S (Vaswani et al,, 2017) and BERTS2S (Rothe et al., 2020). Maynez et al. (2020) asked human
annotators to label the spans in the machine generated summaries if they were unfaithful to the article.
We post-processed their human annotations by majority voting and created test datasets for each of the

summarization systems.

342 MT

Previous work (Wang and Sennrich, 2020; Miiller et al., 2019; Koehn and Knowles, 2017) has shown that
translation models are particularly prone to hallucination when tested out of domain. We similarly focus
on this regime and additionally consider the low resource case where a modest amount of out of domain

data is available at training time.

23

Data We use a multi-domain Chinese-English (Zh-En) translation dataset (Wang et al., 2020e) which
consists of four balanced domains: law, news, patent and subtitles. We create a new training data Dy,qip,
with law (1.46M sentences), news (1.54M), subtitles (1.77M) train data and randomly sample 870 parallel
sentences from the patent training data. We train two NMT models (described below) on this dataset and
test on 150 examples from the patent test data. In addition, we also test the NMT models on the COVID-
19 domain, sampling 100 examples from the dataset of Anastasopoulos et al. (2020). We denote this

250-sentence dataset as D,,,,; and ask human annotators to evaluate the level of hallucinations thereof.

Models Our data is generated from two models on which we will measure hallucination (see Ap-
pendix .2 for more details): (1) TranS2S (Vaswani et al., 2017) is the standard Transformer Seq2Seq
model with 6 encoder layers and 6 decoder layers. (2) MBART (Liu et al., 2020c) is a Seq2Seq denoising
auto-encoder pretrained on large-scale monolingual corpora in many languages. We finetune the 12

layer model on Dyygin.

3.5 Experiments

3.5.1 Experimental setup

Synthetic Data Generation We use a pretrained 12 layer BART (Lewis et al., 2020a) model in the
fairseq toolkit (Ott et al., 2019) for synthetic labeled data generation. We uniformly sample the percentage
of tokens p;, to mask from [0, h,,] for each sentence. We also uniformly sample the probability of
replacing a token with a random token from [0, h,] denoted p,. p,, and p, are two important factors
that affect the noise level when generating the synthetic data. For MT, we set h,;, and h, to 0.6 and 0.3
respectively. For abstractive summarization, we use 0.4 and 0.2. We use beam search for decoding from
BART with beam size of 4 and length penalty of 3. For MT, we first create paraphrased target sentences
D’ through knowledge distillation (Kim and Rush, 2016a) by using the outputs from the same trained

TranS2S model on the source inputs.

Hallucination Predictor For MT, we finetune XLM-R (Conneau et al., 2020a) on the synthetic dataset
with batch size of 128, and we annotated 50 examples (different from those in D,,,q;) from the patent test
data as the validation dataset. For summarization, we finetune RoBERTa (Liu et al., 2019) with batch size
of 96 and early stop training with 10K update steps. In addition, we dropout tokens from the reference
T in the input with a rate of 0.5 and 0.3 respectively for summarization and MT to learn £,,..q. We set «
to be 0.6 for MT and 0.5 for summarization based on the scales of £, and L,,;,,. For both tasks, we set
the mask probability used for £,,;,, to be 0.5, and the initial learning rate to be 2e — 5 with polynomial
decay. We describe other hyperparameters, including training of MT models, in the Appendix .2 and .3.

24

3.5.2 Evaluation of hallucination prediction

In Tab. 3.1, we present the F1 of token-level hallucination labels across six benchmark datasets for MT
and abstractive summarization (full results of precision, recall and F1 are presented in Tabs. 3 and 5
in the appendix). We compare with three baseline methods that we proposed for this new task: (1)
The alignment-based method uses a word alignment model for hallucination assessment. We employ
SimAlign (Sabet et al., 2020), an unsupervised aligner, that extracts word alignments from similarity
matrices induced from pretrained word embeddings. SimAlign is essentially used for crosslingual tasks,
and we adapt it to summarization by using embeddings from the pretrained BERT-large (Devlin et al.,
2019a). We predict a target token as being hallucinated if it is not aligned to the source tokens. (2) The
overlap-based method is a heuristic one that predicts a target token as being hallucinated if does not
appear in the source. Since it’s not feasible to perform string matching between two languages for MT,
we use a bilingual lexicon induction method (Zhou et al., 2019) to first translate each English word into a
Chinese word and then check its existence in the source text. (3) We go further by exploiting synonyms
to assess hallucination in the summarization task where we use WordNet (Miller, 1998) to find synonyms
of nouns, verbs, adjectives and adverbs of the target summary and the source article; we predict a target

as being hallucinated if its synonym can not be found in the set of the source synonyms.

From Tab. 3.1, we note: (1) The proposed method achieves decent performance on this task and ranks
the best among all baseline methods. However the task is still far from being solved is worthy of study
in the future. (2) We can see that even though our model learns hallucination prediction with reference
T during training (Sec. 3.3.2), by applying token dropout to 7', our model generalizes well without feed-
ing the reference at test time. As a contrast, we report the results of predicting with reference at test
time and observe that the model can achieve a significantly higher recall but worse precision (Tab. 5 in
appendix). (3) The two non-neural baselines we proposed work surprisingly well on the summariza-
tion datasets, especially the synonym-based system. We guess this is because the information of the
summaries should come from the source article and a majority of hallucinated words are nouns (§3.5.3)
which can be easily detected by string matching or synonym matching. Our neural system performs
better than these baseline methods but not significantly, and we hypothesize that this is because the
RoBERTa model we finetune on only allows a maximum input length of 512, which results in an average
cutoff of 158 subwords from the source article and hence loss of source information. By taking the union
of the predictions from the synonym-based and our models, we can further obtain improvements on the
summarization datasets. We believe the advances in long sequence modeling (Beltagy et al., 2020; Kitaev
et al., 2020) could help here, and are important to study in future work. (4) At the same time, the baseline
methods can not obtain reasonable performance for MT since crosslingual semantic matching is more

challenging and our model shows significant improvements.

In Tab. 3.2, we show the percentage of annotated and model predicted hallucinated tokens across the

25

MT XSum

o
o

mmm Gold
B Our predictions

mm Gold
B Our predictions

I
IS

o
N

e ¢ 2 2 &0 o
o B N W » U

o
o

Normalized Hallucination Ratio
Normalized Hallucination Ratio

NN others) VB IN cb RB SYM PRP NN others VB IN 1) CD SYM PRP RB
POS tag POS tag

Figure 3.5: Relationship of POS tags and percentage of hallucinations for MT (left) and summarization
(right).

six benchmark sets. We can see that model predictions correlate well with human assessment and have

a Pearson correlation coeflicient of 0.986.

3.5.3 Analysis

Analysis on Pretrained Models for Conditional Sequence Generation Recent work (Maynez
et al., 2020) has shown that pretrained models are better at generating faithful summaries as evaluated
by humans. In Tab. 3.2, summaries generated from BERTS2S contain significantly fewer hallucinations
than other model outputs. We also confirmed this trend in MT that translations from MBART contain

less hallucinated content than that from TranS2S.

Analysis on Hallucinated Words and their Part-of-Speech Tags In Fig. 3.5, we present the per-
centage of hallucinated tokens categorized by their part-of-speech tags predicted by a POS tagger of
Toutanova et al. (2003). First, we see that for both MT and summarization datasets, nouns are the most
hallucinated words. In abstractive summarization, verbs also account for a certain number of hallu-
cinations. Second, our model predicted hallucinated words match well with gold annotations on the
distributions of POS tags. We also compare the percentage of hallucinations within each POS tag in

Appendix .5.2. In addition, we provide more ablation studies in Appendix .4.

3.5.4 Evaluation on Word-level Quality Estimation

As noted in §3.1, our model is also readily applicable to word-level quality estimation (QE) for MT (Fon-
seca et al., 2019; Specia et al., 2020), which aims to detect word-level errors in MT output. In the WMT
shared task of word-level QE, each token of the target sentence is labeled as OK/BAD based on the post-
edited target sentences. We evaluate our model on the WMT18 en-de word-level QF shared task (Specia
et al., 2018) in both the unsupervised and supervised setting. There are 13,442 labeled parallel sentences
where the tagged target sentences are from an NMT model. In our supervised setting, we finetune the
XLM-R model on these parallel sentences with the objective: Lpcq + 0.5 * Ly, In the unsupervised
setting, we first create the synthetic data (§3.3.1) using the post-edited target sentences from the labeled
parallel set (13,442) and an additional 50K target sentences from the provided unlabeled parallel set.

26

Models BAD-F1 OK-F1 F1-MULT

OpenKiwi - - 44.77
1%¢ place in WMT18 48.00 91.00 44.00
374 place in WMT18 | 36.00 85.00 30.00

Ours (unsupervised) 37.09 92.54 34.32
Ours (supervised) 50.78 91.91 46.68

Table 3.3: F1 scores (x100) on the test set of WMT18 word-level QE. OpenKiwi (Kepler et al., 2019) is the
state-of-the-art result on this task. 15! and 3" place are results from the shared task (Specia et al., 2018).

Then we finetune XLM-R on the created synthetic labeled data. For both settings, we set the weights of
the cross-entropy loss for the bad-token labels to be 2.0 because the labels are imbalanced with fewer
bad-token labels.

Results We present results in Tab. 3.3, where F1-Mult is the multiplication of F1-scores for the OK
and BAD labels. Note that all the baseline models are in the supervised setup and the best baseline
OpenKiwi (Kepler et al., 2019) is a strong ensembled system using predictions from multiple models. In
contrast, our supervised model only leverages the parallel labeled data without using other resources.
Among all the supervised settings, our model outperforms the best system by 2 points in F1-Mult. To
make it clear how our unsupervised model performs, we also show the best performed systems in the
shared task of WMT18. We observe that our unsupervised setting achieves descent performance and
even outperforms the 3"%-ranked system. These results demonstrate that both the full version and the

finetuning part of our method provide strong results for word-level QE.

3.6 Case Study I: Improving Self Training in Machine Translation

Predicting hallucination labels at token-level not only allows us to flag potential risks in generation
models, but also opens up the possibility of providing fine-grained signals which can be used to define
new learning objectives. In this section and the following one, we demonstrate how to leverage the
hallucination labels to reduce adverse effects of noisy training instances. Specifically, we show that the
fine-grained hallucination signals allow for improved semi-supervised learning (§3.6) and training with

noisy parallel data (§3.7).

3.6.1 Rectified Self-Training for Neural MT

Self training (Scudder, 1965) is an important semi-supervised approach that utilizes unlabeled source

data to improve system performance. In a conditional sequence generation task, a teacher model is first

27

Methods BLEU (1) BLEURT (1) Hal words (%, |)

baseline 16.14 -0.166 13.69
ST 19.31 -0.059 10.00
ST + paraphrase noise 19.05 -0.051 13.48
ST + random noise 19.97 -0.041 12.55
ST + seq loss truncation 19.91 -0.048 8.26
ST + random noise + seq loss truncation 19.37 -0.057 10.06
ST + token loss truncation 20.32 0.00244 6.37
ST + decoder HS masking 20.57 -0.0001 6.38
ST + random noise + token loss truncation 21.02 0.043 7.34
ST + random noise + decoder HS masking 20.64 0.0308 8.70

Table 3.4: BLEU(?), BLEURT(?) and hallucinated tokens (].) on the CWMT2017 test set. We compare with
the noised self-training method (He et al., 2020) in the second block and sequence-level loss truncation

method (Kang and Hashimoto, 2020) in the third block.

trained with bitext D; = {s;,t;}?, and used to make predictions on each sequence in a unlabeled
dataset D,, = {s; }jvz—;\fj\il to create pseudo parallel data Dy = {s;,t'; };V:"}V]\{rl The model is then trained

on D;UD,,. He et al. (2020) finds that with self-training the student model can benefit from such pseudo-
parallel data. However, such results require a relatively high-quality teacher, and performance suffers in

low-resource setting where no such teacher is available.

We propose to use our token-level hallucination predictions to define a fine-grained loss during
training in MT, by penalizing errors less on tokens that more likely to be hallucinated. This is in contrast
to previous data filtering methods for MT, which remove entire sentence pairs (Junczys-Dowmunt, 2018;

Kang and Hashimoto, 2020).

First, we predict the token-level hallucination labels on the target side of the pseudo parallel data D,,.
Then we propose two simple methods of using these labels in self-training: (1) We discard the losses of
tokens that are predicted as hallucinations and compute the loss on the remaining tokens for each target
sequence (token loss truncation). (2) Instead of adjusting losses, we mask the decoder hidden states
of those hallucinated positions after the target-to-source cross attention in each decoder layer (decoder

HS masking).!

“We also tried removing hallucinated target words before training. This underperformed, likely because it produces too

many ungrammatical target sentences.

28

3.6.2 Experimental Setup and Results

Experimental Setup To train a teacher model (baseline in Tab. 3.4), we use the same training data
described in §3.4.2 using patent (870) as the low-resource domain. We evaluate on the full patent test
set (1,500) from CWMT2017 (Wang et al., 2020e). For the unlabeled data, we use the withheld Chinese
patent training data (2.9M). Next, we employ our hallucination detection system to predict hallucination

labels on the pseudo target sentences given the source sentences.

Baselines We compare with the state-of-the-art self-training (ST) method of He et al. (2020), which
injects two types of noise into the input sentences: (1) paraphrase noise created by round-trip trans-
lations, and (2) random noise from dropping, masking and shuffling input tokens. We also compare
with the recently proposed loss truncation method (Kang and Hashimoto, 2020) that adaptively removes

entire examples with high log loss, which was shown to reduce hallucinations.

Results and Analysis We present the tokenized BLEU score (Papineni et al., 2002a), BLEURT score (Sel-
lam et al., 2020) and the percentage of hallucinated tokens predicted by our system in Tab. 3.4. We can
see that ST improves over the baseline by around 3 BLEU and our best result further improves ST by
1.7 BLEU. Compared with strong baseline methods, our method not only achieves the best translation
quality measured by BLEU and BLEURT but also the largest hallucination reduction. We also observe
that: (1) Our method with ST alone can outperform other baseline methods, when combined with per-
turbed ST (noise), and using fine-grained control over the target tokens can further improve the results.
(2) ST with paraphrase noise (by round-trip translation) does not perform as well as the random noise,
which further confirms that the noisy outputs from a teacher model may hurt the student model. (3)
The sequence-level loss truncation approach can improve over the vanilla ST and reduce the level of
hallucinations as measured by our system. However, the performance drops when combined with the

noised ST.

3.7 Case Study II: Improving Corpus Filtering for Low-Resource MT

High-quality parallel data is critical for training effective neural MT systems, but acquiring it can be
expensive and time-consuming. Many systems instead use mined and filtered parallel data to train NMT
models (Junczys-Dowmunt, 2018; Zhang et al., 2020a; Koehn et al., 2019). Nonetheless, the selected
parallel data can still be noisy, containing misaligned segments. In this section, we demonstrate that
token-level hallucination labels can allow us to make better use of noisy data to and improve the overall
translation quality. We apply the token loss truncation method proposed in §3.6 to the filtered parallel
data and evaluate it on the WMT2019 low-resource parallel corpus filtering shared task.

29

Ne-En Si-En

8,
7,
7,
6,
6,
51 5 |
> >
3 31
2 27
1 —e— FB system 11 —— FB system
—e— w/ loss trunc 0.51\0{62 0 —e— w/ loss trunc 14
IM 2M 3M 4M 5M 10M IM 2M 3M 4M 5M 10M
training data size training data size

Figure 3.6: The BLEU scores of the best submission (FB system) in the WMT19 shared task on parallel

noisy corpus filtering and our method (w/ loss trunc) on the Ne-En and Si-En flores test sets.

Experimental Setup The WMT19 shared task focuses on two low-resource languages — Nepali and
Sinhala. It released a very noisy 40.6 million-word (English token count) Nepali-English and a 59.6
million-word Sinhala-English corpus crawled from the web. Participants were asked to score each sen-
tence pair in the noisy parallel set. Scores were used to subsample sentence pairs amounting to 1 million
and 5 million English words, which were used to train an MT system that was evaluated on the test set
using SacreBLEU (Post, 2018). In addition, the shared task also provides additional clean parallel data
for Nepali-English (564K), Sinhala-English (646K) and Hindi-English (1.6M), but they can not be used for
training the final NMT system.

First, we train a token-level hallucination prediction system with the combined parallel data from
all the three language pairs (as Hindi is related to Nepali). Second, we use the scores (Chaudhary et al.,
2019) that achieve the best overall performance for both language pairs among all the submissions to
select the top-scored 1M, 2M, 3M, 4M, 5M, and 10M data (in English tokens) and predict the token-
level hallucination labels on the target side. We follow the same setup and use the script provided by
the shared task to train the NMT model with the selected subsets. During training, we discard losses of
tokens that are predicted as hallucinations and only compute the losses for the remaining tokens. We use

the validation and test data from the flores dataset (Guzman et al., 2019) during training and evaluation.

Results and Analysis In Fig. 3.6, we present the BLEU of the best submission (FB system) and our
method on the Ne-En and Si-En test sets of the flores dataset. First, with token-level loss truncation, our
model achieves the new best results on the flores test set in this shared task for both Ne-En (7.4) and
Si-En (8.11). Second, for both language pairs our method further improves the state-of-the-art system
when varying the training data sizes. Notably, in the extreme case of 10M training data, which is very

noisy, the baseline can not obtain decent BLEU scores for Si-En while our method still achieves reason-

30

able performance (0.14 vs. 5.18). However, for Ne-En data sizes after 2M causes performance of both
the baseline and our method to drop significantly, possibly because the dataset contains many pairs of

misaligned sentences (the source is not Nepali and the target is not English).

3.8 Conclusion

This work proposed a new task of token-level hallucination detection, created human-annotated bench-
mark datasets, proposed a method for unsupervised learning of hallucination detectors, and showed
that the models can be used to define fine grained losses that improve MT training. We demonstrate
the remark performance of the proposed hallucination detection method in several downstream tasks,
including word-level quality estimation and noisy neural machine translation. In the future, we hope to
create a large-scale pretrained hallucination detector for any dataset or model, and also would extend
our method to data-to-text generation scenarios. We are also interested in investigating how to leverage

our detection methods to mitigate hallucination problems in conditional sequence generation.

31

32

Part II

Group Distributionally Robust

Optimization

33

Chapter 4

Examining and Combating Spurious

Features under Distribution Shift

A central goal of machine learning is to learn robust representations that capture the causal relationship
between inputs features and output labels. However, as discussed in 1, the prevalent distribution shift
in the real world can significantly degrade the accuracy of standard machine learning models, resulting
in poor performance on test distributions that differ from the training one. In Part II, we aim to mit-
igate this problem by proposing group distributionally robust optimization (group DRO) methods that
improve worst group performance at training time. First, in §4, we define and analyze robust and spuri-
ous representations using the information-theoretic concept of minimal sufficient statistics. Further, we
demonstrate that group DRO can fail when groups do not directly account for various spurious correla-
tions that occur in the data and we propose to minimize the worst-case losses over a more flexible set of
distributions to alleviate this. Next, in §5, we propose efficient group DRO algorithms for multilingual
machine translation to promote uniform performance across high-resource and low-resource languages,

which is a large-scale and real-world problem in NLP.

4.1 Introduction

Many machine learning models that minimize the average training loss via empirical risk minimization
(ERM) are trained and evaluated on randomly shuffled and split training and test sets. However, such in-
distribution learning setups can hide critical issues: models that achieve high accuracy on average often
underperform when the test distribution drifts away from the training one (Hashimoto et al., 2018a;
Koenecke et al., 2020; Koh et al.,, 2020). Such models are often “right for the wrong reasons" due to
reliance on spurious correlations (or “dataset biases") (Torralba and Efros, 2011; Goyal et al., 2017; McCoy
et al., 2019; Gururangan et al., 2018), heuristics that hold for most training examples but are not inherent

to the task of interest, such as strong associations between the presence of green pastures background

35

(a) ERM (b) Group DRO [clean]
(average=93.3% robust=83.4%) (average=96.5% robust=95.8%)

(c) Group DRO [imperfect] (d) Our Method [imperfect]
(average=93.3%, robust=83.1%) (average=94.0%, robust=93.8%)

Figure 4.1: Consider data points = in R? with two classes y. The vertical axis of z is a spurious feature
that highly correlates with y, and the horizontal axis is the robust feature. There are two subclasses in
each class, where the top-right and lower-left are two minority subclasses. The robust accuracy is test
worst-case accuracy over the four subclasses. We train a linear classifier with different methods. For
models trained with the clean partitions, each subclass is a group. For the imperfect partitions, dots with

the same shape is a group (best viewed in color).

with the label “cows” in image classification. Naturally, models that use such features will fail when

tested on data where the correlation does not hold.

Recent work has investigated how models trained with ERM learn spurious features that do not
generalize, from the points of view of causality Arjovsky et al. (2019), understanding model overparam-
eterization (Sagawa et al., 2020b) and information theory (Lovering et al., 2021). However, these works
have not characterized the idea of spurious features mathematically. In this chapter, we characterize
spurious features from an information-theoretic perspective. We consider prediction of target random
variable Y €) from input variable X € & and characterize spurious features learned under changes

to the input distribution p(X) (i.e. covariate shift).

A central goal of machine learning is to learn true causal relationships between X and Y in a manner

36

robust to spurious factors concerning the variables. We assume that there exists an “ideal” data distribu-
tion Pigear (short for pigea (X, Y') below) which contains data from all possible experimental conditions
concerning the confounders that cause spurious correlations, both observable and hypothetical (Lewis,
2013; Arjovsky et al., 2019; Bellot and van der Schaar, 2020). For example, consider the problem of classi-
fying images of cows and camels (Beery et al., 2018). Under the ideal conditions, we assume that pictures
of cows and camels on any background can be collected, including cows in deserts and camels in green
pastures. Therefore, under pjgea the background of the image X is no longer a spurious factor of the
label Y. However, such an “ideal" distribution pjgeq1 is not accessible in practice (Bahng et al., 2020;
Koh et al., 2020; McCoy et al., 2019), and our training distribution py.in (often, in practice, an associ-
ated empirical distribution) does not match pjges;. ERM-based learning algorithms indiscriminately fit
all correlations found in pPiyain, including spurious correlations based on confounders (Tenenbaum, 2018;
Lopez-Paz, 2016).

To investigate the spurious features learned under the distribution shift from pjgeal t0 Pirain, We first
characterize those features of X which most efficiently capture all possible information needed to predict
Y. We define these robust features using the notion of minimal sufficient statistic (MSS) (Dynkin, 2000;
Cvitkovic and Koliander, 2019) under pigea;. We then examine whether the features learned under pipgin
contain spurious features compared to the MSS learned under p;geq. Through our analysis, we find that
even only with covariate shift, the features learned on pi,j, can contain spurious features or miss robust
features of pjgeal.

Models that fit spurious correlations in pi,i, can be vulnerable to groups (subpopulations of Pigeal/Prest)
where the correlation does not hold. A common approach to avoid learning a model that suffers high
worst group errors is group distributionally robust optimization (group DRO), a training procedure that
efficiently minimizes the worst expected loss over a set of groups in the training data (Oren et al., 2019;
Sagawa et al.,, 2020a). The partition of groups can be defined in several ways, such as by presence of
manually identified potentially spurious features (Sagawa et al., 2020a), data domains (Koh et al., 2020),
or topics of text (Oren et al., 2019). In a typical setup, the groups of interest in the test set align with those
used to partition the training data. Under such setups, group DRO usually outperforms ERM with respect
to the worst-group accuracy. We contend that this is because it promotes learning robust features that
perform uniformly well across all groups. However, in many tasks, we can not collect clean group mem-
bership of training examples due to expensive annotation cost or privacy concerns, e.g. demographic
identities of users or other sensitive information.

Inspired by our analysis of spurious features, we demonstrate that group DRO can fail under “im-
perfect” partitions of training data that are not consistent with the test set, especially when reduc-
ing spurious correlation in one group could exacerbate the spurious correlations in another (§4.4.2),
as shown in Fig. 4.1. This is because group DRO treats each training group as a unit, preventing it

from adjusting learning weights differently for subgroups within each group. Recent work has pro-

37

posed to use sophisticated unsupervised clustering algorithm to search for meaningful subclasses (So-
honi et al., 2020) and execute group DRO on the found subclasses. To learn robust models under noisy
protected groups, Wang et al. (2020b) designs robust approaches that is based on an estimate of a
noise model between the clean and noisy groups. Instead of relying on good partitions of groups or
a not readily available noise model, we propose group-conditional DRO (GC-DRO) that defines the
uncertainty set over the joint distribution of groups and their instances (i.e. ¢(G)q(X,Y|G)). Ev-
ery training example is reweighted by both its group weight and the instance-level weight, which of-
fers a more flexible uncertainty set compared to group DRO. Through extensive experiments on three
tasks — facial attribute classification, natural language inference, and toxicity detection, we show that
GC-DRO significantly outperforms both ERM and group DRO in various partitions of training data
and demonstrate the robustness of GC-DRO against various group partitions. Our code is available

athttps://github.com/violet-zct/group-conditional-DRO.

4.2 Preliminaries on Robust Representations

To study spurious features, we need to formally define which features or properties of the data describe
spurious correlations, and which features are robust features relevant to the task at hand. In supervised
learning we are interested in finding a good representation 7'(X) of the input X that is useful to predict
a target label Y. What characterizes the optimal representations of X w.r.t. Y is much debated, but a
common assertion is that 7'(X) should be a minimal sufficient statistic (MSS) of X for Y (Adragni and
Cook, 2009; Schwartz-Ziv and Tishby, 2017; Achille and Soatto, 2018; Cvitkovic and Koliander, 2019),
which is:

(i) T'(X) should be sufficient for Y,ie. Vo € X,t € T,y € Y, p(z|t,y) = p(x|t), which is equivalent
to p(y|t, z) = p(y|t). This means given the value of T'(X), the distribution of X does not depend on the
value of Y.

(ii) Given that T'(X) is sufficient, it should be minimal w.r.t. X, i.e. for any sufficient statistic S, there
exists a deterministic function f such that 7' = f(.S) almost everywhere w.r.t. X. This means for any
measurable, non-invertible function g, g(7") is no longer sufficient for Y.

In other words, the minimal sufficient statistics most efficiently capture all information useful for
predicting Y. The notion of MSS has been connected to Shannon’s information theory (Kullback and
Leibler, 1951; Cover, 1999) and extended to any joint distribution P(X,Y’) of X and Y in the informa-
tion bottleneck (IB) framework (Tishby et al., 2000; Shamir et al., 2010; Kolchinsky et al., 2019), which
provides a principled way to characterize the extraction of relevant information from X for predict-
ing Y. Loosely speaking, learning a MSS T is equivalent to maximizing I(7(X);Y") (sufficiency) and
minimizing I(X;7(X)) (minimality).

"We assume that 7'(X) is a deterministic mapping of X given neural network parameters.

38

https://github.com/violet-zct/group-conditional-DRO

Robust Features. Suppose A contains all possible combinations of spurious variables, both observable
and hypothetical, and we consider datasets D, ,) = {:Irl}fvzaly collected under each condition of (a €
A,y € V), where each D(, ,) contains examples that are i.i.d. according to some probability distribution
p(X |y, a). We define pjgea as the mixture distribution of p(X |y, a) with uniform weights over (a,y) €
Ax Y. Thus, MSS learned on pjge,1 provide a good candidate for robust features T'(X) (sometimes denoted
Tideal(X) for clarity), which most efficiently capture the information from X necessary for predicting

Y on a distribution that is free of spurious factors.

Spurious Features. In contrast, we define representations 7" (X) that contain spurious features. Specif-

ically, the entropy of 77(X) conditioned on T'(X) under pigea is positive.
Hideal(Tl(X)lT(X)) >0 (4.1)

Because these learned features are not deterministic given 7'(X') then they contain additional informa-
tion that is not useful for predicting Y.? For example, in image classification, knowing that the image
contains a horse, we cannot predict the background with certainty (a horse could be on a race track or
a beach). Another example in natural language inference (NLI) task is that model learned on a biased
data set often associates negation with the label “contradiction”, which is another spurious feature under
our definition. Because given the meaning of a sentence (robust features), whether it contains negation
or not is not deterministic, e.g. “Don’t worry” and “Be calm.” are synonymous but only one contains
negation. A classifier that uses these spurious features can suffer from the risk of learning the spurious

correlations between T"(X) and the labels Y.

4.3 Spurious Features under Covariate Shift

The training data is often marred by various abnormalities, such as selection biases (Buolamwini and
Gebru, 2018) and confounding factors (Gururangan et al., 2018). We ask if the MSS learned under p;pqin
are robust features under pigeq;. Note that we do not study how to learn MSS via ERM in this chapter, on
the other hand, considering that MSS provides a good candidate for robust representations, we want to
study if the MSS learned under pyy,in contains spurious features with respect to the MSS learned under
Pideal, Which are universal robust features against various spurious factors.

We consider the distribution shift in p(X),3 also known as covariate shift (David et al., 2010), and we
show that the entropy of MSS learned under p,j, conditioned on the robust features is zero in Theorem 1
with proofs in §.6.

Theorem 1. Suppose that there is only covariate shift in pyqgin, i.e. 3x € Xipain S-t. Dirain(T) # Didear(T)
but prain(Y|X =) = pigeat(Y | X = z), Y& € Xipain. Let Tyrain(X) be the MSS representation learned

*Note that it is not just the case of 7" (X) containing redundant features, in which case H (7" (X)|T(X)) = 0.
*It is often assumed that p(Y | X) is invariant in supervised learning problems (Arjovsky et al., 2019).

39

under Pyrain, then we have:

Htrain (Ttrain(x)lndeal(ZE)) =0. (42)

Theorem 1 tells us that T}, (X) is deterministic given Tjgeq(X) under piain (shown in blue to
distinguish from Eq. 4.1). However, this does not imply H;geqr(Tirain(X)|Tidear (X)) = 0 under pigeal.
Thus, we cannot conclude that T};.4;,(X) contains no spurious features. We further discuss the impli-
cations with two cases based on the relationship between the support of input &3,4n and that of X;geq;:
(1) Xirain = Xidear and (2) Xirain C Xidea- When the input support of piain is equal to that of pigea, we

have the following corollary:
Corollary 1. Suppose Xirqin = Xigeai in Theorem 1, then Tiyqin(X) is also the MSS under pigeq;.

Corollary 1 corroborates the findings in Wen et al. (2014) that the (unweighted) solution learned
by ERM is also the robust solution when only covariate shift exists and Xirqin = Xjgeqr- In practice,
however, this assumption does not hold (because we only have datasets with limited support) and thus
the representation T};.4;,, (X) learned by ERM is not necessarily equivalent to Tj4eq; (X). By Theorem 1,
Tirain(X) is deterministic given Tjgeq;(X) under pirain, which implies that the information contained
in Typqin(X) is equal to or less than that contained in Tjgeq;(X). In the former case, T}yqin(X) can be
equivalent in representation to Tj4eq;(X) but can also contain spurious features that co-occur with the
robust features in the training data. In the latter case, T}yqin (X) can miss robust features in Tjgeq;(X).

We demonstrate these two cases with synthetic experiments in Appendix .9 due to space limit.

Discussion. We have discussed the cases of learning spurious features when the model learns MSS
under Pirain. However, we normally adopt maximum likelihood estimation (MLE) as an instantiation of
ERM for classification problems. We provide the connection of MLE with learning MSS via the informa-
tion bottleneck method (Tishby et al., 2000; Shamir et al., 2010) in the Appendix .7, where under certain

assumptions, we can view MLE as an objective that approximately learns MSS.

4.4 Does Group DRO Learn Robust Features?

The discussions in §4.3 suggest that under covariate shift, directly learning from the empirical data
distribution could result in learning the spurious correlations satisfied by the majority of the training
data. When the spurious factors are known, we can apply group distributionally robust optimization
(group DRO), which reweights the losses of different groups associated with spurious factors to alleviate
covariate shift and learn robust features that generalize to both minority and majority groups. In this

section, we first review group DRO and discuss under which cases it can fail.

40

4.4.1 Group Distributionally Robust Optimization

Group DRO is an instance of distributionally robust optimization (Ben-Tal et al., 2013a; Duchi et al., 2016)

that minimizes the worst expected loss over a set of potential test distributions Q (the uncertainty set):

Lpro(0) = sup By y)mq [((z, y;0)] (43)
q€eQ

This worst-case objective upper bounds the test risk for all g5t € Q, which is useful for learn-
ing under train-test distribution shift. However, its success crucially depends on choosing an adequate
uncertainty set that encodes the possible test distributions of interest. Choosing a general family of dis-
tribution as the uncertainty set, such as a divergence ball around the training distribution (Ben-Tal et al.,
2013a; Hu and Hong, 2013; Gao and Kleywegt, 2016), encompasses a wide set of distribution shifts, but
can also lead to a conservative objective emphasizing implausible worst-case distributions (Duchi et al.,

2019; Oren et al., 2019).

To construct a viable uncertainty set, one can optimize models over all meaningful subpopulations
or groups g depending on the available source information regarding the data, such as domains, de-
mographics, topics, etc. Group DRO (Hu et al., 2018; Oren et al., 2019) leverages such structural in-
formation and constructs the uncertainty set as any mixture of these groups. Following Oren et al.
(2019), we adopt the conditional value at risk (CVaR) which is a type of distributionally robust risk to
achieve low losses on all a-fraction subpopulations (Rockafellar et al., 2000) of the training distribution
(ie. {p : ap(x) < Pirain(z), Vx}). As we assume that each data point comes from some group p(z, y|g)
and Pirain is @ mixture of m groups Pirain(g), we can extend the definition of CVaR to groups and construct
the uncertainty set Q as all group distributions that are a-covered by pirain(g) (or topic CVaR (Oren et al.,
2019)):

Q= {q : q(g) < Peain8) Vg} (4.4)

«

This upper bounds the group distribution within the uncertainty set by its corresponding training dis-
tribution. The group DRO objective then minimizes the expected loss under the worst-case group dis-

tribution:

Lcpro = Sug ngq]E(m,y)Np(ac,y\g) M(Iv Y; 0)] (4.5)
S

Intuitively, this objective encourages uniform losses across different groups, which allows us to learn a
model that is robust to group shifts. We adopt the efficient online greedy algorithm developed in Oren
et al. (2019) to update the model parameters § and the worst-case distribution ¢ in an interleaved manner.
The greedy algorithm roughly amounts to upweighting the sample losses by é which belong to the a-
fraction of groups that have the worst losses. We present the detailed algorithm in Appendix .8.

41

P(Y =0|S) | 05 0 1 0.5
P(Y =1|S) | 05 1 0 0.5

Table 4.1: An example of imperfect partition.

4.4.2 Group DRO Can Fail with Imperfect Partitions

As discussed earlier, we aim to learn a model that is robust to spurious factors. For example, in toxicity
detection, a robust model should perform equally well on data from different demographic groups. Group
DRO mitigates covariate shift by minimizing the worst-case loss under the uncertainty set Q, consisting
of mixtures of sub-group distributions. Intuitively, given that optimizing pjgea allows for learning of
robust, non-spurious features, defining a Q that covers pjges is highly advantageous from a learning
perspective.

If we know all the spurious attributes of the training data .A, we can adopt the setup in Sagawa et al.
(2020a) that divides the data into |A| x |)| groups, where each example belongs to one of the groups
g = (a,y). We define such grouping strategy as “clean partitions” in which each group is uniquely
associated with one value of (a, y).* If A contains all the spurious factors of interest, it can be seen that
there exists some mixture of groups Z;n:1 q(9)Prrain (- | g) that can recover pige,, where ¢ € A, and
A, is the (m — 1)-dimensional probability simplex. Thus, pjdeal is contained in Q. Such clean partitions
provide a plausible environment for group DRO to learn well in the presence of covariate shift that causes
spurious correlations in the training data.

In contrast, we define “imperfect partitions” where each group contains samples from multiple values
of (a, y) such that there does not exist a ¢ € A,,, that recovers pigea, in other words, Q does not include
Pideal- In this case, group DRO can not eliminate covariate shift effectively.

To illustrate, consider a binary random variable S € {0, 1} following a uniform distribution, and the
target label Y € {0, 1} also follows a uniform distribution and is independent of S. Due to covariate
shift, there are spurious correlations between S = 0, Y = 0 and between S = 1, Y = 1 in the training
data. We partition the training data into two groups with an equal number of samples and the conditional
distribution of P(Y'|S) is shown in Tab. 4.1. To prevent the model from learning the spurious correlations
between S = 1 and Y = 1, one can upweight losses of its “negative" samples for which the spurious
correlation does not hold, i.e. samples of (S = 1,Y = 0) in Gg; however, group DRO upweights the
group as a whole, which inevitably also upweights the (S = 0,Y = 0) and causes the model to latch on

the spurious attribute S = 0 to predict Y = 0. Therefore, there does not exist a mixture distribution of

*Our discussions also apply to multiple spurious attributes for which the clean partition corresponds to |V| x [], |44

groups.

42

Algorithm 1: Online greedy algorithm for GC-DRO.
Input: o; 5; m: #groups; n;: #samples of group ¢

Initialize historical average group losses ﬁ(o), historical estimate of group probabilities ﬁt’"(o),
historical average instance losses ﬁgo) and ¢(© (,ylg) =1T forg € {1,--- ,m}

fort=1,---,7T do
Sample a mini-batch (x,y, g) from Piqip

Perform online greedy updates for ¢(*) (Alg.3)
> Update model parameters 0

n:q (g:)q") (z,y|g; .p(t—
d; = 1 ﬁtii)nq(t)((gi)ylg)vg(xi’yiv o 1))

_ B
00 =gt-1) — 2 U5l g,

if reached inner update criterion then

> Update ¢*) (z, y|g)

forg=1,--- ,mdo

Sort instances in group g in the decreasing order of ¢(z, y; Qt); denote the sorted
index w9

cutoff = [W-‘

4O (2, ¥)mo()l9) = 3,V1 < j < cutoff

q((2,y)rs()|9) = 5. Vj > cutoff

end

end

end

these two groups, under which S L Y (pidea)- Such underlying conflicts prevent the group DRO from
formulating a worst-case distribution that can eliminate covariate shift, resulting in a passive reliance
on certain spurious correlations.

Imperfect partitions of training data are common in practice, as it can be expensive or infeasible
to acquire the labels of spurious attributes for each training instance. For example, we may only have
rough partitions based on the data sources or the outputs from (unsupervised) clustering algorithms.
Our analysis shows that under these practical settings, the group DRO algorithm can not effectively

alleviate covariate shift due to the rigid treatment of group losses.

4.5 Proposed Method: Group-conditional DRO

Since group DRO can be problematic with imperfect partitions, we propose a more flexible uncertainty
set over the joint distribution of (x,y, g), i.e. ¢(g9)q(z,y|g), using fine-grained weights over instances

within each group instead of treating the entire group as a whole. We extend the a-covered distribution

43

to both the group-level (¢(g)) and conditional instance-level (¢(x,y|g)) distributions to define the un-
certainty set Q. At training time, a sample is weighted by both its group weight induced from ¢(g) as

well as the instance-level weight induced from ¢(z, y|g). Specifically, the new uncertainty set is

Q= {q(g)q(z,ylg) 1q(g) < p"%“@

< q(z,ylg) < l)tr“"(;’yg),w,y,g},

=2~

where N is the number of training examples and «, 5 € (0, 1]. Denote n; the number of samples in group

x,ylg=1) = n% The second constraint of Eq. 4.6 can be rewrittenas 3, < g(z,ylg) < Biu'

Compared with the -covered distribution, we add a lower bound ¢(z,y|g) > % to compensate for

i,thenp

train(

imbalanced group sizes. With a plain -covered distribution for ¢(z, y|g), the DRO objective roughly
upweights a S-fraction of instance losses of each group. However, we only want to emphasize a small
subset of examples that perform badly in the majority groups. Thus, we add this lower bound to ¢(x, y|g)
in Eq. 4.6 to directly “punish” larger groups. To see this, the percentage of examples that are upweighted

by % in group 4 is roughly]\],V__n"fg B, which is monotonically decreasing function w.r.t. n;. Therefore, the

larger the group size n; is, the smaller fraction of instances in group ¢ are upweighted.

Online Optimization Algorithm. Similarly to the online greedy algorithm for group DRO (Oren
et al,, 2019) (details in Appendix .8), we interleave the updates between model parameters 6 and the
worst-case distribution ¢(g)q(x,y|g). The greedy algorithm involves sorting losses of all the variables
when updating the worst-case distribution defined by the a-covered distribution. However, frequently
updating ¢(x,y|g) over large-scale training data (e.g millions of samples) can be costly and unstable.
Therefore, we only update ¢(g) at every iteration, while performing updates on ¢(z,y|g) lazily once
every epoch or when the robust accuracy on the validation set drops (inner update criterion). We present

the pseudo code for the training process in Alg. 1.

Discussions. Another potential approach to circumventing the purely group-level loss is constructing
an instance-level uncertainty set (Ben-Tal et al., 2013a; Husain, 2020; Michel et al., 2021), however, the
resulting Q can be too pessimistic (Hu et al., 2018; Duchi et al., 2019) or difficult to optimize (Michel
et al., 2021). Instead, we leverage the structural information of data partitions and expand the flexibility
of uncertainty set by incorporating the conditional probabilities of instances. Furthermore, this allows

us to execute the min-max optimization in an efficient manner.

44

male female

dark 65,487 / 1,387 22,880 / 48,749
blonde 0/1,387 22,880/ 0

Table 4.2: The imperfect partitions for the CelebA dataset (G1/G2).

no neg neg 1 neg 2

contradiction | 57,605/0/0 0/1,406/0 0/0/9897
entailment 67,335/0/0 0/0/215 0/1,318/0
neutral 66,401/0/0 0/0/251 0/1,747/0

Table 4.3: The imperfect partitions for the MNLI dataset (G1/G2/G3).

4.6 Experiments

In this section, we evaluate the proposed group-conditional DRO on one image classification task and two
language tasks — natural language inference and toxicity detection. To demonstrate the effectiveness of
our method under various partitions of data, we first introduce the clean (group number m = |A| x |)|)
and imperfect data partitions of each task. As we discussed at the end of §4.4.2, there are various cases
where the partitions of training data are imperfect such that each group is not purely associated with
examples from one pair of (a,y). In this section, we inspect several cases reflecting diverse properties
of partitions to evaluate our method. First, on the image and NLI tasks, we manually design adversarial
partitions of data such that there are explicit conflicts between groups and purely reweighing over groups
cannot eliminate covariate shift (§4.6.1). Second, we use the attributes provided by a supervised classifier
to create the imperfect partitions of the toxicity data set (§4.6.1). Third, we also perform unsupervised

clustering on the toxicity data set to obtain imperfect partitions in §4.6.4.

White-aligned AAE Hispanic Others

abusive 11,281 7,392 6,707 1,770
spam 8,147 1,041 541 4,301
normal 41,756 2,562 2,638 6,895
hateful 2,696 1,420 509 340

Table 4.4: Statistics of each group in the clean partition of the hate speech dataset. Data of each dialect

attribute (column) corresponds one group in the imperfect partition.

45

Clean Partition

Imperfect Partition

Datasets Methods
Robust Acc Average Acc Robust Acc Average Acc
ERM 40.14 £0.99 95.92 +0.05 | 40.14 £0.99 95.92 + 0.05
resampling 86.81 £ 1.26 92.72 £ 0.28 44.17 £ 1.15 95.58 £+ 0.03
Celeb-A | group DRO (EG) 86.11 £ 1.96 92.33 £ 0.65 42.92 £+ 0.91 95.82 £ 0.07
group DRO (greedy) | 88.19 £ 2.31 92.65 £+ 0.20 45.97 + 1.73 95.81 £+ 0.09
GC-DRO 88.751+0.82 9292+ 0.16 | 82.85 + 1.54 89.32 + 2.21
ERM 70.84 +2.47 86.18 = 0.18 | 70.84 £2.47 86.18 £+ 0.18
resampling 67.02 £ 243 85.72 £+ 0.37 67.26 £ 1.63 85.22 £+ 0.58
MNLI group DRO (EG) 77.88 & 1.36 85.16 - 0.44 69.66 + 1.98 84.96 £+ 0.56
group DRO (greedy) | 75.14 + 3.96 85.82 +0.24 70.34 £ 2.19 86.02 £ 0.25
GC-DRO 77.82 £ 1.45 85.04 £ 0.67 | 75.32 +£0.93 84.82+0.74
ERM 3430 £1.83 79.70 = 1.05 | 34.30 £ 1.83 79.70 + 1.05
resampling 55.44 + 4.69 72.04 £ 1.99 26.10 £4.11 80.66 + 0.52
FDCL18 | group DRO (EG) 55.98 + 1.67 70.06 + 3.06 35.20 + 2.24 79.58 + 0.95
group DRO (greedy) | 56.83 £ 2.94 70.52 £+ 1.99 36.24 £+ 3.80 79.40 £ 1.12
GC-DRO 57.28 +=2.71 70.26 = 0.94 | 48.42 +6.72 72.02 &+ 2.96

Table 4.5: Robust and average test accuracy and standard deviation on the three tasks.

4.6.1 Data and Tasks

Object Recognition. We use the CelebA dataset (Liu et al., 2015) which has 162,770 training examples
of celebrity faces. We classify the hair color from) = {blond, dark} following the set up in Sagawa
et al. (2020a). In this task, labels are spuriously correlated with the demographic information — gender
of the input A = {female, male}, which together with) results in 4 clean groups. The statistics of
groups in the imperfect partition are presented in Tab. 4.2 (separated by “/”), each of which consists of
data from multiple values of (a,y). Concretely, we create an imperfect partition of 2 groups with two
explicit spurious correlations: i) in group (1 (dark, male) are spuriously correlated since we put all their
counterparts (blonde, male) in group Gb; ii) similarly, (dark, female) in G5 are spuriously correlated.

Natural Language Inference (NLI). NLI is the task of determining whether a hypothesis is true
(entailment), false (contradiction) or undetermined (neutral) given a premise. We use the MultiNLI
dataset (Williams et al., 2018a) and follow the train/dev/test split in Sagawa et al. (2020a), which results
in 206,175 training examples. Gururangan et al. (2018) have shown that there is spurious correlation
between the label of contradiction and the presence of negation words (nobody, nothing, no, never) due

to annotation artifacts. We further split the negation words into two groups: set 1 (nobody, nothing) and

46

- Attribute=no neg Attribute=neg 1 Attribute=neg 2
110 2.5 2

—— contradict
—— entailment

~— neutral
15 15

1.00 L0

average weight (group DRO;

25 30 35 0 5 10 15 20 25 30 35

—— contradict
—— entailment
—— neutral

average weight (Ours)
- e W e

0 5 10 15 20 25 30 35 0

10 15 20 25 30 35 0 5 10 15 20 25
train epochs

train epochs train epochs

Figure 4.2: Under the imperfect partition of the MNLI dataset, the aggregated average training weights

30 35

of instance losses in each group divided by attributes and labels (top: group DRO; bottom: GC-DRO).

set 2 (no, never) to have more variety in the attributes, i.e. A = {no negation, negation 1, negation 2},
which together with labels forms 9 groups in the clean partition. We create 3 groups in the imperfect
partition as shown in Tab. 4.3, where (G1 only contains examples from a =no negation, while G5 and

G3 contain data from both @ =negation 1 and a =negation 2. This causes a dilemma when upweighting
either of the groups.

Toxicity Detection. This task aims to identity various forms of toxic languages (e.g. abusive speech,
hate speech), an application with practical and important real-world consequences. Sap et al. (2019)
have shown that there is a strong correlation between certain surface markers of English spoken by
minority groups and the labels of toxicity. And such biases can be acquired and propagated by models
trained on these corpora. We perform experiments on the FDCL18 (Fortuna and Nunes, 2018) dataset, a
corpus of 100k tweets annotated with four labels:) = {hateful, spam, abusive and normal}. Since the
dataset does not contain the dialect information, we follow Sap et al. (2019) and use annotations predicted
by the dialect classifier in Blodgett et al. (2016) to label each example as one of four English varieties:
A = {White-aligned, African American (AAE), Hispanic, and Other}. As noted in Sap et al. (2019),
these automatically obtained labels correlate highly with self-reported race and provide an accurate
proxy for the dialect labels. These dialect attributes and toxicity labels together divide the dataset into
16 groups in the clean partition. To construct the imperfect partitions, we investigate a natural setting
where data is divided by the dialect attributes, therefore we have 4 groups in the imperfect partition.
The test set of FDCL18 contains some groups that are severely under-represented. In order to make the
robust accuracy reliable yet still representative of the under-represented groups, we follow Michel et al.

(2021) and combine groups that contain less than 100 samples into a single group to compute robust test

accuracies.

47

4.6.2 Experimental Setup

We fine-tune pretrained models for object recognition and NLP tasks that achieve high average test ac-
curacies, specifically ResNet18 (He et al., 2016) on CelebA and RoBERTa (Liu et al., 2019) on the MultiNLI
and FDCL18 datasets. We select hyperparameters by the robust validation accuracy. For the clean par-
titions, we set & = 0.2, 8 = 0.5 for all the three tasks. For the imperfect partitions, we set a relatively
lower value of 3 to highlight badly performed instances within groups. Specifically, for NLP tasks we
set & = 0.5, § = 0.2 and 0.25 for NLI and toxicity detection respectively, and for the image task, we set
a = 0.2, = 0.1. For more training details, see Appendix .10. We measure both the average accuracy
over all the test data as well as the robust accuracy (worst accuracy across all groups). Even though
different partitions (clean/imperfect) are used at training time, we always evaluate the model’s robust
accuracy across groups of the clean partitions of the test data.
We compare with ERM, which minimizes the average training loss on the empirical training distri-
bution, formally
LerMm(0) = E(z) n Py 62,93 0)] (4.7)

We also compare with two variants of group DRO with different objective and optimization procedures: a
greedy (Oren et al., 2019) algorithm for CVaR-group DRO and a exponentiated-gradient (EG) (Sagawa
et al., 2020a) procedure with full simplex . Note that while previous work (Sagawa et al., 2020a) has
found the greedy algorithm is unstable and underperforms EG, we did not observe this issue with our
implementation where we took a slight different approach to compute the worst expected loss and we
detail this difference in Appendix .10.2. In addition, we compare with the resampling method, which
optimizes on minibatches sampled from uniform group frequencies, which is often used for imbalanced

datasets.

4.6.3 Main Results

We present the robust and average test accuracies of all three tasks under different partitions in Tab. 4.5.
Models are selected based on the worst-performing accuracy of group (of the clean partition) in the
validation set. All the results are averaged over 5 runs with different random seeds. Except for ERM,
all the models leverage the group information at training time. First, as expected, ERM models attain
high average test accuracies across all the datasets but perform poorly on the worst-case group. Second,
we observe that under the clean partition, group DRO models always significantly outperform ERM on
the worst-group test accuracy with modest drop in the average test accuracy. And we also note that
group DRO optimized with the greedy algorithm performs on par with that optimized by the EG based
algorithm. By contrast, the resampling method can not consistently perform well on the worst test
groups on all datasets. Furthermore, our method performs similarly to or slightly better than group

DRO on all three datasets under the clean partition. Third, under the imperfect partition, neither group

48

weights (group DRO) weights (GC-DRO)

%, s, %, g,
N &9 Ne, 7y U g,
Sy @y p
Ve oy “ryy 1.0 ey ey Yy 20
1.8
0.9
no neg - no neg -
g 9 16
0.8
14
. 0.7 .
neg 1 neg 1 19
F0.6 10
neg 2- r0.5 neg2- 0.8
r0.4 r0.6
Llos L r04

Figure 4.3: The heatmap of summarized learning weights for different groups.

DRO nor resampling can perform well in the worst test groups and achieves similar performance to that
of ERM models. On the other hand, our method performs significantly better in terms of the robust
accuracy on all three datasets, with 5-37 points in improvement over group DRO models. Although the
results are worse compared to those under the clean partition, we demonstrate that our method is much

more agnostic to the underlying data partitions.

4.6.4 Analysis

Why does GC-DRO perform well on robust accuracy? In this section, we investigate why group-

conditional DRO works well under imperfect partitions. To do this, we first compute the actual weight

(niq(“(gi')q(t)(ft,ylgi)
ﬁt'razn(t) (gl)
method respectively. The groups in imperfect partitions contain instances from different values of (a, y)

in Alg. 1) applied to each instance (z;,y;) at every step ¢ for group DRO and our

and to study the effects of learning weights on the test groups, we aggregate the weights of instances
on each group (a,y) (i.e. the clean partition) by taking average over all steps in each epoch. In Fig. 4.2,
we plot the dynamic aggregated weights over the training course learned with the imperfect partition
(3 groups, see Tab. 4.3) of the MNLI dataset. We observe that GC-DRO can assign higher weights to
instances that belong to groups of (a =negation, y # contradiction), which helps prevent the model
from learning the spurious correlations between a = negation and y =contradiction. On the contrary,
group DRO can not accomplish this goal because it can not handle these subgroups inside groups in a

fine-grained way.

To make this trend more clear, we summarize the weights across all the epochs for each group of
(a,y) and present the heat map in Fig. 4.3. We can see that group DRO focuses on learning from the
large group that does not contain negation words but pays less attention to those minority groups. On
the contrary, our method encourages the model to learn from minority groups that can help combat

spurious features.

49

Robust Acc Average Acc

ERM 3430 +1.83 79.7 £ 1.05
resampling 3420 £236 794+ 1.24
group DRO (EG) 32.84 £2.72 80.5 £ 0.59

group DRO (greedy) 34.48 +4.69 79.62 £ 0.59

GC-DRO (ours) 45.06 = 6.77 70.7 = 4.81

Table 4.6: Average and robust test accuracies of FDCL18 under the partitions via unsupervised clustering.

On groups produced by unsupervised clustering. We study a more realistic setting where no group
information is available and we use an unsupervised clustering algorithm to produce the partitions.
Specifically, we first embed the training sentences of the FDCL18 dataset with Sentence-BERT (Reimers
et al.,, 2019), a well-performing semantic sentence embedder, then we use K-means to obtain 8 clusters.
In Tab. 4.6, we show the robust and average accuracy on the test set of the toxicity detection task. Our
method once again significantly outperforms other baseline methods on the robust test accuracy, which

demonstrates the robustness of GC-DRO under different partitions.

80 79
—— (=0.5, clean partition

754 784 77.82 —— [=0.2, imperfect partition
& 771
5 704 5
Q Q
o O
< < 76
3 651 3
g 8751
o [

60 /

a=0.2, clean partition 4
554 /54.92 —— a=0.5, imperfect partition 73]

01 02 03 04 05 06 07
8 a

Figure 4.4: Ablation studies on o and 3 on the MNLI datasets.

Ablation studies on o and 5. We perform ablation studies on the two important hyperparameters
« and 3 used in our method. In Fig 4.4, we fix one value and vary the other and plot the robust test
accuracies over 5 random runs (the variance of average test accuracies is very small) on the NLI task.
We observe that GC-DRO is less sensitive to different combinations of o and 8 under the imperfect
partitions. However, for the clean partitions, a larger and a smaller « tends to yield better performance,

as GC-DRO behaves more close to the plain group DRO.

4.7 Conclusion

Through a mathematical characterization of features used in prediction, we have demonstrated that un-

der covariate shift ERM models can pick up spurious features or miss robust features. The GC-DRO

50

algorithm resulting from this analysis allows for a more flexible uncertainty set that performs consis-
tently well in the worst test group under different partitions. This new understanding of features opens
up new avenues in both redesigning our distributionally robust algorithms, and further characterizing

possible spurious factors that may influence model robustness, for example through unsupervised learn-

ing.

51

52

Chapter 5

Distributionally Robust Multilingual

Machine Translation

While the previous chapter revisits group DRO to improve the worst-case group performance when
confronted with biased training data that contains spurious correlations, in this chapter we propose
a group DRO algorithm for a more natural and realistic NLP problem — multilingual neural machine
translation (MNMT), which learns to translate multiple language pairs with a single model. In MNMT, the
heavy data imbalance between languages is common and hinders the model from performing uniformly
across language pairs. In this chapter, we propose a new learning objective for MNMT based on group
DRO, which automatically adjusts the training distribution by minimizing the worst-case expected loss

over the set of language pairs.

5.1 Introduction

Multilingual methods that process multiple languages with one single model have gained favor across a
variety of NLP tasks (Firat et al., 2016; Ha et al., 2016; Johnson et al., 2017; Devlin et al., 2019¢; Aharoni
et al., 2019; Conneau et al., 2020b) because (1) training and deployment of one multilingual model is
more computationally efficient compared to maintaining one model for each language (Arivazhagan
et al,, 2019), (2) training multilingually can improve accuracy, particularly for low-resource languages
(LRLSs) (Zoph et al., 2016; Neubig and Hu, 2018; Pires et al., 2019).

However, in multilingual training, the amount and type of training data available varies greatly
across languages. Because most models are trained using empirical risk minimization (ERM), which min-
imizes the average training loss on the training set, high-resource languages (HRLs) with large amounts
of data contribute to the majority of the training objective. When model capacity is limited, this results
in trade-offs or decreased performance on some languages, particularly LRLs (Arivazhagan et al., 2019;

Wang et al., 2020f, 2021c). To better control this trade-off, a common practice is to balance the training

53

distribution by heuristic oversampling of LRLs (Johnson et al., 2017; Neubig and Hu, 2018; Arivazhagan
et al., 2019).

Although simple data balancing can improve en
the performance on LRLs significantly, it is far ® puTE[L100]
from optimal. First, the sampling hyperparame-
ters need to be adjusted for different datasets. Sec-
ond, the use of simple heuristics does not con-
sider the inherent level of difficulty in learning
each language, the similarity or distance of lan-
guages in the multilingual dataset, and other fac-

tors that affect cross-lingual transfer. Because of

this, previous work has indicated the importance

zh fr
of learning strategies that are explicitly tailored
for each multilingual learning scenario (Wang
et al., 2020d). Figure 5.1: Ilustration of different training distri-

In this chapter, we propose a new learning butions where the training distribution of the three
procedure for multilingual translation that auto- languages fr, zh and en is (0.1,0.3,0.6). Con-
matically adjusts the training distribution of dif- tours represent different radii of the y2-ball around
ferent languages using distributionally robust op- p@". The blue points are the tempered distributions
timization (DRO) (Ben-Tal et al., 2013a; Duchi described in §5.2.1.
etal., 2016). In constrast to ERM, DRO casts learn-
ing as a game between the learner and an adversary, where the learner picks a model while the adversary
picks the hardest data distribution for that model within an uncertainty set Q of potential distributions
we wish to perform well on (which typically contains the training distribution F).

We first demonstrate how to apply DRO to multilingual training by letting the adversary choose the
relative weights of individual language pairs in the training objective. However, we empirically find that
naively applying existing results to multilingual learning yields inferior results to ERM, mostly because
(1) standard DRO objectives tend to be overly conservative and only take into account language pairs
with very large losses and (2) existing optimization algorithms for DRO essentially reweigh the gradients
of examples in a mini-batch, which implicitly changes the scale of the learning rates. This hurts modern
NLP models like Transformers (Vaswani et al., 2017) that are highly sensitive to learning rate schedules.

To remedy this, we propose both a novel training objective and a corresponding optimization algo-
rithm amenable to the multilingual setting. Our objective is a variation on Group DRO of Sagawa et al.
with a less conservative uncertainty set, parameterized by the y2-divergence. To efficiently solve the

min-max game, we propose an iterated best response scheme that re-samples the training data at each

54

epoch according to the worst weighting for the current model parameters, and then runs ERM train-
ing on the re-sampled dataset. Our method—which we refer to as x-IBR —incurs negligible additional
computational cost compared to ERM.

While this method applies to essentially any multilingual task, we specifically demonstrate its benefit
on three sets of language pairs from two multilingual machine translation datasets. We experimentally
test these choices by comparing several objectives and optimization algorithms, and results show that

our method consistently outperforms existing DRO procedures and various strong baselines.

5.2 Preliminaries

Notation. Throughout this chapter, n denotes the training set size and d the number of parame-
ters of the model. For m € N, A™ denotes the m-dimensional simplex, i.e. A™ = {q € R™,¢q; >
Oand), ¢; = 1}. The data lies in X x) where (x,y) € X x) consists of a source and target sen-
tence pair with ¢ = (x1,...,zr,) andy = (y1,...,yz,). £ : (X x V) x R?% — R refers to the loss
function. We consider maximum-likelihood estimation, i.e. for a target sentence y with L, tokens, we

define Ly

1
U, y30) = =7 > _logp(yilz, y<i;0)
Yi=1

5.2.1 Multilingual Machine Translation

In contrast to bilingual machine translation, which translates from a single source language S to a target
language 7', multilingual neural MT (MNMT) learns a single model to translate between IV language
pairs {(S1,T1), ... (Sn,Tn)}. The training data Dy,,iy, is the concatenation of the N parallel datasets,

i.e. Digain = [D1; D2, - -+ ; Dy]. We can then define the probability over each language pair ptrain ¢ AN
as p;”a'” = ZIDﬁ)‘,'. We now describe two common training objectives for MNMT.
15

Empirical Risk Minimization (ERM). The simplest and most common approach for MNMT is to
minimize the empirical loss over data points, which we will refer to as ERM. More precisely, we define
the average loss on a parallel dataset D; as

L(6; D;) E U, y;0)

y)eD;
ERM for multilingual models then corresponds to (smzﬁ)ly minimizing the loss over D, i.e. over all the

aggregated parallel sentence pairs. This yields
gERM € arg min £(0; D) Zp”a'”ﬁ (0; D;)

i<N

Classical results in learning theory guarantee that, under mild assumptions, as n goes to infinity, 0 ERM

will show good performance on test sets with the same distribution as D. However, this does not guaran-

tee that our model will perform adequately on individual parallel datasets. To remedy this issue, several

55

works propose varying the sampling distribution—or equivalently the weighting of the parallel datasets

in ERM—in order to encourage more uniform performance across language pairs.

Weighted Risk Minimization and Sampling Strategies. The amount of training data can vary sig-
nificantly across language pairs. As a result, in ERM training—i.e. optimizing for the average loss across
sentence pairs—HRLs contribute most of the objective, resulting in poor performance on LRLs. Bal-
ancing the objective—or equivalently, the usage of training data—between HRLs and LRLs is important
to maintain good performance across all languages (Devlin et al.,, 2019¢; Arivazhagan et al., 2019). A
commonly adopted approach in multilingual training is temperature-based sampling (Arivazhagan et al.,
2019; Conneau et al., 2020b) where the probability of sampling data from D; is proportional to its data
| D[/

size exponentiated by a temperature term 7, i.e. pr; = S DI (referred to as ERM with 7 in §5.4).
G135

This is equivalent to optimizing the re-weighted objective

L:(6;D) = priL(6; Dy).

<N

As a result, 7 = 1 corresponds to ERM where most of the contribution comes from the HRLs and
T = oo corresponds to sampling language pairs uniformly at random, i.e. with data from LRLs being
over-sampled. This approach comes with three major drawbacks (1) 7 is an extra hyper-parameter that
requires tuning for each MNMT instance to balance the performance across both HRLs and LRLs, (2)
this heuristic sampling method does not consider the training dynamics of each language and how the
optimal sampling distribution might evolve during the training process and (3) the parameterization
of p; is not only very constrained (essentially one degree of freedom), it is also only a function of the
quantity of training data, which is too rigid to achieve the desired performance.

To resolve some of the above issues, the recently proposed MultiDDS (Wang et al., 2020d) uses a
gradient-based meta-learning approach to learn the sampling distribution over language pairs to maxi-
mize gradient similarity with a multilingual development set. However, due to the necessity to calculate
and store extra gradients, their approach comes at an increased computational and memory cost. In
contrast, x-IBR enjoys the same computational complexity as ERM, and as we show in experiments it

also largely outperforms MultiDDS.

5.2.2 Distributionally Robust Optimization

In contrast to ERM and related sampling strategies which optimize for a fixed training distribution, DRO
aims to find a model 6 that performs well on an entire collection of potential test distributions Q (the

uncertainty set). Formally, we wish to
minimize sup E ,)~q[l(x, y;0)]. (5.1)
0 0co (z,y)~Q

56

Originating from operations research Delage and Ye (2010); Ben-Tal et al. (2013a,b); Bertsimas et al.
(2018), DRO has proven a promising way to tackle robustness in a variety of machine learning and NLP
problems Hashimoto et al. (2018b); Oren et al. (2019); Levy et al. (2020).

We present here a recent variant, Group DRO, developed by Sagawa et al. (2020a). As introduced
in §4.4.1, group DRO incorporates additional information about the data distribution to define more
meaningful uncertainty sets. Abstractly, this method assumes a collection of distributions over subpop-
ulations { P } s such that the training distribution is a mixture of these subpopulations. Importantly, it
assumes that this group structure is observed. The Group DRO objective then minimizes the worst-case
loss over these groups, which is equivalent to equation 5.1 with @ = {}_ 5 ¢y Py : ¢ € Al91}, in other
words, all possible mixtures of the distributions over subpopulations. In MNMT, the /N language pairs
at our disposal naturally correspond to groups; thus the Group DRO objective can be defined as

LCPRO (9. D) = max L(0; D;). (5.2)
1€[N]

In other words, Group DRO wishes to find a model 6§ that performs well for the worst language pair.
Oren et al. (2019) propose a related but less conservative objective, CVaR-Group DRO at level a € [0, 1]

which, considers instead the average of the [a/N'| largest group losses.

5.3 Methods for Distributionally Robust Multilingual Learning

As we previewed in §5.2, Group DRO is a natural objective for the multilingual setting. However, in
experiments we found that naively applying existing DRO objectives fails to achieve performance on
par with strong baselines, often improving results on language pairs with high losses but sacrificing
too much performance overall. Our main contribution is showing how to successfully apply DRO to
the MNMT setting, and to the best of our knowledge, our work is the first to do so. To that end, our
methodological contributions are two-fold: (i) we first describe the shortcomings of the Group DRO ob-
jective equation 5.2, then propose a related training criterion that addresses these issues, (ii) we describe
an optimization algorithm to solve the min-max optimization problem that is amenable to the MNMT

setting.

5.3.1 x2-Group DRO

Shortcomings of Group DRO. A weakness of the objective equation 5.2 is that apart from the lan-
guage pair with largest loss, the objective does not take into account the value of the loss on the other
language pairs. To illustrate this, consider this example with N = 3 language pairs and suppose that

there exists two parameters 6 and 62 with the following loss:

£(91;D1) = 0.1, £(91;D2) = 0.1, £(91;D3) =1.1
ﬁ(eg; Dl) = 1.0, E(GQ;DQ) = 1.07 £(92,D3) -].0

57

We have that £L6PRO(9;: D) = 1.1 but LEPRO(g,; D) = 1.0. Consequently, the Group DRO objective
will prefer 65 to 6; while clearly one would pick #; over 6> in most practical cases. The aforementioned
CVaR-Group DRO also exhibits this behavior and ignores the values of the language pairs not in the
largest a-fraction.

To address this issue, let us rewrite the objective

LCPRO(9: D) = max Z q;L(0; D;),
€A N

where the equality holds because the optimal weighting just puts all the mass on the language with
largest loss. A natural way to make the objective less conservative is to instead take the maximum over

a subset of the simplex 2/ C AN, This leads to the following objective
£Y(0; D) =sup Y q;L(0; D). (5.3)

qeU i<N
Different choices of ¢/ will yield different objectives with different robustness properties. Note
that this is a general formulation as & = {p‘™"} reduces to the ERM objective, while U, = {q :
¢/ " || < 1/a} corresponds to the CVaR-Group DRO of Oren et al. (2019). We would like to choose
U such that optimizing this objective results in models with better performance on language pairs with
large losses (typically LRLs) without significant degradation of average performance.

To this end, we turn to a common and flexible choice for U: f-divergence balls Csiszar (1967) of

train

radius p > 0 around p*"™'", namely

Uy == {q: Ds(q,p"™") < p}, (5.4)

where Dy(q,p) =),y pif(¢i/p:). In particular, we propose using the x2-divergence which corre-
sponds to f(t) = $(t — 1)? and define x?(¢,p) = 5 >, pi(¢;/pi — 1)? with its corresponding uncer-
tainty set Z/IZCQ. The x2-divergence has a long history Ben-Tal et al. (2013b) and previous work shows
that minimizing the robust loss with the y2-uncertainty set enjoys favorable statistical properties such
as optimally trading-off bias and variance Duchi and Namkoong (2019) or guaranteeing robustness and
fairness Hashimoto et al. (2018b); Duchi and Namkoong (2020). We refer to the objective LU : as the
x2-Group DRO. Going back to the toy example, setting p = 0.1, yields that Uy i (01; D) = 0.64 while
£ ’ (62; D) = 1.0. With the x?-uncertainty set, the objective rightly prefers #; to f2 and takes into
account all the losses and not only the largest. We further confirm these intuitions and show in §5.4 and

§5.5 that this is a suitable choice of uncertainty set for MNMT.

5.3.2 Optimization algorithm

Desiderata of the optimization algorithm. Minimizing the objective equation 5.3 effectively corre-

sponds to a min-max optimization problem. Even in the relatively simple convex-concave setting, these

58

are generally harder to solve than convex minimization problems. Recall that we want to

minimize sup E @ L(0; D;) (5.5)
0 a:x2(g,ptran)<p
i<N

Due to the architectures we consider in MNMT, we wish for an algorithm that effectively changes the
sampling distribution over mini-batches of data instead of importance-weighting the gradients. Indeed,
standard MT architectures such as the Transformer (Vaswani et al., 2017) are extremely sensitive to
learning rate schedules and we empirically observe that importance-weighting the gradients result in
poor performance.

The canonical way to solve min-max problem is via primal-dual methods (PD) Nemirovski et al.
(2009) (see background in Appendix .12), where at each step ¢, one keeps two vectors (6, ¢;) and alter-
nates between a gradient descent step on 6, and a gradient ascent step on ¢;. One can perform these
updates efficiently as they only require unbiased stochastic gradient estimate of the loss w.r.t. 6; and ¢;.
To obtain unbiased gradient estimate of the loss w.r.t. §;, one either has to, at each step, sample a mini-
batch of examples from Multinomial(g;) and return the gradient of the loss or sample a mini-batch from
Multinomial(p*@") and importance-weight the gradient.

As previously mentioned, the latter is not suitable for Transformer-type architectures. The former
option is not ideal as it is more convenient for an algorithm to decide the sequence of mini-batches every
epoch rather than every optimizer step as this integrates much more smoothly with data loaders in deep
learning frameworks, especially when doing distributed training. As a result, we posit that primal-dual
algorithms are not an adequate choice for optimizing DRO-type objectives in our setting. We further
discuss this point in §5.5.

To circumvent this issue, we consider a different optimization algorithm which we refer to as iterated
best response (IBR), where, instead of doing a single gradient descent and ascent step, we iterate between
(approximately) solving the maximization (resp. minimization) on ¢ (resp. 6), while keeping 6; (resp.
q¢) fixed. This is similar in spirit to algorithms in the game theory literature where individuals play the
optimal strategy (best response) assuming everyone else’s strategies remain constant. Under some mild
assumptions, this procedure converges to the equilibrium of the game Roughgarden (2016). Formally,

we alternate between

6!« arg min tL(0; D; 5.6
g1 Zi:q (65 Di) (5.6)

1 argmax Zqiﬁ(GtH;Di). (5.7)
q:x2(g,ptraim)<p

q

Practical implementation. As we show in Appendix .11, given the values of the loss, the g-update
(equation 5.7) is computed to accuracy € in O(N log(1/¢)) steps. Indeed, by taking dual Boyd and Van-

denberghe (2004) of equation 5.7, we transform the /N-dimensional problem into a one-dimensional

59

Algorithm 2: Iterated Best Response
Input: N parallel datasets D1, ..., Dy, radius of the uncertainty set p, number of epochs T,

learning rate schedule {7, ;};<7 j<n, baseline loss {b; };<n, EMA parameter A € [0, 1].

Set pi'" < | Dy| /(3,1 Dj).
Set ¢° < p™n and L; < 0 for i € [N].
Initialize 6°.
fort=0,...,T—1do
> Construction of D(q")
Set n(q"); + [N - ¢].
Sample n(q"); data points from D; and add them to D(q?) for i € [N].
D(q') < Shuffle(D(q")).
> 0- and E—update
for (z;,y;) € D(¢") do

Let k be the language pair of (x;,y;).

R A R AAC TR T)

Lip < X-U(xj,yj; 051 + (1= N) - Lg.
end
> q-update
¢t « arg MaxX,, 2 (q ptrainy Zz‘gz\f q; (EZ — bi>
gi+1.0 gtID(@h)|
end

Return 70,

root-finding procedure over the dual variable which we efficiently solve with a bisection. We provide
the details in Appendix .11. Note that computation cost is negligible compared to computing the gradient
of the loss. We implement the f-update of equation 5.6 by running a training epoch on a re-sampling of

the training set D according to ¢‘*!.

To compute the loss values { L(6;; D;) }i< N, necessary to perform the g-update, one needs to compute
the loss ¢(x, y; 0;) for every single example (x,y) € D. This is prohibitively expensive to compute at
every epoch. To avoid this, we keep track of the (approximate) historical values of the token-level loss
L}, on each language pair k£ with an exponential moving average (EMA) (see line 14 in Algorithm 2).
We precisely describe our implementation in Algorithm 2. We see that it respects our desiderata and
comes at no computational cost. In §5.5, we compare primal-dual and iterated best response for various

uncertainty sets.

60

aze bel glg slk tur rus por ces
Method Avg
0.004 0.006 0.013 0.081 0.240 0.274 0.243 0.136

ERM (7=1) | 13.76 19.26 31.56 3237 26.83 25.65 45.12 29.81 28.05
any—en | MultiDDS 13.95 19.52 31.82 3229 2582 25.09 4390 29.58 27.75
x-IBR 14.68 19.98 31.89 33.16 27.76 26.08 45.33 30.76 28.71

ERM (7=1) | 6.85 11.83 24.26 2456 16.13 20.44 4033 22.24 20.83
en—any | MultiDDS 7.16 12.98 2437 2372 1513 19.54 3892 2142 2041
x-IBR 8.50 14.61 25.94 2598 16.87 21.57 40.20 23.63 22.16

bos mar hin mkd ell bul fra kor
Method Avg
0.007 0.017 0.0330 0.045 0.237 0.308 0.340 0.363

ERM (7=1) | 24.58 12.10 2396 33,59 38385 39.89 40.83 19.65 29.18
any—en | MultiDDS | 25.19 11.65 23.66 34.04 3890 39.14 40.13 1936 29.01
x-IBR 25.12 12.52 2442 34.47 39.42 40.24 4098 20.72 29.74

ERM (7=1) | 14.41 5.34 16.34 2544 32.61 35.17 39.04 8.67 22.13
en—any | MultiDDS 16.58 5.36 1599 2543 31.66 33.03 36.33 8.29 21.58
x-IBR 17.33 5.59 16.90 28.02 33.82 36.37 4035 9.13 2344

Table 5.1: BLEU scores of the best ERM model (among 7=1/5/100, 7 = 5/100 are significantly worse
than 7 = 1, thus we omit these results), MultiDDS and our approach on the test sets of the TED dataset.
Bold (resp. underlined) values indicate the best (resp. second best) performance for each language pair.

Values under the language codes are the proportion of the language in the training data.

Subtracting the baseline. To account for different hardness amongst groups, Oren et al. propose
subtracting a per-group scalar—which we refer to as a baseline—to each group loss before taking the
maximum over q. They learn this baseline using a generative bi-gram model on each group. Recall that
OERM s the parameter we obtain when we minimize the average loss and define 07 when optimizing
L. In this work, we propose using b; = E(@ERM; D;) or b; = £(1/9\T; D;). Intuitively, the baseline
corresponds to the minimum performance we wish for our model on the given group and as such the
loss obtained with ERM and its temperature variants are natural candidates. We show in §5.5 that these

yield significant improvement and conveniently make our method more robust to the choice of p. We

leave different (potentially learned) choices of baseline to future work.

5.4 Experiments

5.4.1 Datasets

We evaluate the proposed method on two datasets: the 58-languages TED talk corpus (Qi et al., 2018)

and WMT datasets. For the TED corpus, we evaluate on two sets of languages with varying levels of

61

any - en en-any

e low
EE high

e low
m high

WMT

TED-related TED-diverse WMT TED-related

TED-diverse

Figure 5.2: ABLEU of low- and high-resource language groups for the three language sets. ABLEU =
difference of BLEU scores of y-IBR and the best ERM model.

any—en en—any
Method
deu fra tam tur Avg deu fra tam tur Avg

ERM (7=1) 2998 3032 1581 19.85 2399 | 23.82 33.09 9.28 13.29 19.87
ERM (7=5) 29.25 31.60 16.31 21.89 24.76 | 22.67 3236 10.04 16.09 20.29
ERM (7=100) | 28.75 30.71 15.80 22.44 2443 | 22.02 31.65 1041 16.44 20.13
MultiDDS 29.31 3141 16.12 2143 2457 | 2299 3155 10.09 1451 19.79
x-IBR 29.67 3175 16.48 2233 25.06 | 2345 33.16 10.73 1553 20.72

Table 5.2: BLEU scores of the ERM (7=1/5/100), MultiDDS and our method on the test sets of the WMT
dataset. The ratios of training data of de, fr, ta and tr are (0.499, 0.359, 0.102, 0.039).

language diversity following Wang et al. (2020d): (1) related includes 4 LRLs (aze, bel, glg, s1k)
and their corresponding related HRL (tur, rus, pos, ces). (2) diverse includes 8 languages with
varying amount of data without considering linguistic similarities (bos, mar, hin, mkd, ell, bul,
fra, kor)!. Both of the related and diverse sets have around 760K sentences of training data.

For WMT, we consider 2 HRLs (German:deu and French:fra) and 2 LRLs (Tamil:tam and Turk-
ish:tur). We subsample around 5M training sentences from the parallel corpus provided by the WMT
shared task. Specifically, the training data of deu-eng, fra-eng is from WMT14, tam-eng is from
WMT20 and tur-eng is from WMT18. We use the corresponding test and dev sets from each shared
task for evaluation and validation.

We evaluate both en-to-any (translate English to a target language) and any-to-en (translate a source

language into English) directions for all language sets. We provide dataset statistics in Appendix .13.

5.4.2 Experimental setup

For the translation models, we adopt the encoder-decoder Transformer (Vaswani et al., 2017) architecture
with the implementation provided in fairseq (Ott et al., 2019). For the relatively smaller TED dataset, we
follow (Wang et al., 2020d) and use a small-size Transformer that has 6 encoder and decoder layers and

4 attention heads.? For the WMT dataset, we use a Transformer-base architectures that also has 6 layers

!See Wang et al. (2020d) for the interpretation of the language codes.
*We train for more steps with larger batch size, which yields better better results than reported in Wang et al. (2020d).

62

any—en en—any

Method

deu fra tam tur Avg deu fra tam tur Avg
FastDRO 25.14 27.58 12.71 15.54 20.24 | 2139 28.21 8.88 12.74 17.81
GDRO with PD 26.72 2913 1578 21.89 2338 | 20.81 2943 10.29 1552 19.01

CVaR-GDRO withPD | 28.62 30.70 1594 20.61 2397 | 22.81 32.44 9.68 1433 19.82
CVaR-GDRO with IBR | 29.14 31.65 16.31 2098 2452 | 2234 3197 10.15 14.82 19.82

x2-GDRO with PD 29.49 3147 16.07 21.24 24.57 | 23.10 3230 9.87 14.70 19.99
ERM (7=5) 29.25 31.60 1631 21.89 24.76 | 22.67 3236 10.04 16.09 20.29
x-IBR 29.67 31.75 16.48 22.33 25.06 | 23.45 33.16 10.73 15.53 20.72

Table 5.3: BLEU scores of different DRO objectives and algorithms—primal-dual (PD) and iterated best
response (IBR)—on the WMT test sets.

bos=0.007 mar=0.013 hin=0.025 mkd=0.033

best response

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
ell=0.175 bul=0.228 fra=0.251 kor=0.268

best response
|
o
L
>

0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 [100 200 300 400 500 600
epochs epochs epochs epochs

Figure 5.3: Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the any—en

direction.

but with larger hidden dimension size and 8 attention heads. The model is trained for 200K and 300K
steps for TED and WMT respectively with the batch size of 65,536 tokens. For both datasets, we learn the
sentencepiece (Kudo and Richardson, 2018) vocabulary for the English and the combined corpus of other
languages respectively. We use beam search with beam size 5 for decoding and report the SacreBLEU
score (Post, 2018; Papineni et al., 2002a) on test sets for evaluation. For the TED and WMT datasets
respectively, the constraint size p for the chi-square ball is set to be 0.05 and 0.3, and for the baseline
losses we use the average token-level loss on each D; computed from the ERM model with 7 = 1 and
7 = 100—see §5.5 for more analyses of these choices. We provide additional pre-processing and training

details in Appendix .14.

Baselines. We compare with (1) temperature-based sampling method described in §5.2.1 in three
standard settings (7 = 1/5/100), where 7 = 100 approximates uniform sampling over language pairs,
and (2) MultiDDS described in §5.2.1. In addition, we also perform extensive empirical studies over

different DRO uncertainty sets and optimization procedures in §5.5.

63

bos=0.007 mar=0.013 hin=0.025 mkd=0.033
) -315

-32 -3.20

|-32s

o f 4] . : ARG a0

best response

-3.35
-3.40
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

ell=0.175 bul=0.228 fra=0.251 kor=0.268

-16
-1.50 4 o~
-1.04 /

-17 -1.55

-1.60

best response

-165 Vi ' -12

-19 -1.70

-2.0 .
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
epochs epochs epochs epochs

Figure 5.4: Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the en—any

direction, the dashed line is the true data probability (in log-scale).

5.4.3 Main Results

We present the BLEU scores of en—any and any—en translation directions on TED and WMT data in
Tab. 5.1 and 5.2 respectively. First, for both TED and WMT datasets, x-IBR outperforms all the other
baseline methods in terms of average BLEU score over all language pairs. Particularly, x-IBR performs
significantly better on the TED dataset, with up to 1.33 average BLEU score improvement over the best
baseline method. By taking a closer look at the BLEU scores for each individual language pairs, x-
IBR improves over almost all the language pairs for both translation directions. Secondly, as expected
from temperature-based sampling methods, different values of 7 achieve different trade-offs between the
performances on HRLs and LRLs. As we explained in §5.2.1, large values of 7 favor LRLs as this results
in data being sampled with equal probability from each language pair while small values of 7 approach
ERM and will benefit HRLs. As a result, 7 needs to be carefully tuned to achieve adequate performance
on both HRLs and LRLs.

Importantly, x-IBR achieves a significantly better trade-off than the sampling method for any value
of 7. We show in Fig. 5.2 the quantitative improvements of x-IBR over the best 7 for various datasets and
in both translation directions. Surprisingly, while the improvements are larger on LRLs, we consistently
observe improvements on HRLs. This indicates that finding the right sampling distribution over lan-
guage pairs facilitates cross-lingual transfer.> We further observe that x-IBR achieves more significant
improvements in the en—any direction than in the any—en direction. This further supports our hy-
pothesis. Indeed, it is attested in previous work on MNMT (Arivazhagan et al., 2019) that it is harder to
decode to multiple languages than encode from multiple languages and as such, the en—any direction is
a significantly harder multi-task learning problem. As such, this is where optimal cross-lingual transfer
would yield the larger gains, which is what we observe in practice. We also note that our method incurs

negligible computational overhead compared to ERM.

>The model we used for TED has a high capacity relative to its data size, this is probably why we observe more improve-

ments on the TED data as it has more space for improvement.

64

5.5 Analysis

The importance of the sampling distribution. An advantage of our method over temperature-
based sampling methods is that it dynamically adjusts the training distribution as the model evolves
and does not compute it solely as a function of amount of training data. Our hypothesis is that this is
important to achieve good performance across language pairs and that different sampling distributions
will be adequate at different stages of training. We empirically check our hypothesis by studying how
the training distribution ¢ (the so-called best response) changes across training epochs. In Fig. 5.3 and
5.4, we plot the best response of y-IBR across epochs on the TED-diverse dataset for both translation
directions. In addition, we also plot the historical losses in Fig. 4. Our first observation is that the optimal
q noticeably evolves across epochs which further showcases the need for dynamically adjusting the
sampling distribution. We make the following observations (i) x-IBR demonstrates the desired behavior
and, at the early stages of training, always down-weights HRLs and up-weights LRLs; (ii) somewhat

counter-intuitively, there is no direct correlation between |D;

, the amount of data in language 7 and
the final value £(0®); D;). The latter further evidences the limitations of sampling distributions only
based on the amounts of training data | D;|. Indeed, while kor is a HRL, it is typologically much farther
from English so there is more inherent uncertainty in the task. Consequently, it has larger losses and
is consistently up-weighted throughout training. On the other hand, while hin is a LRL, it achieves
low loss after being up-weighted during the early stages of training and is consequently down-weighted

after that.

Comparisons with other DRO objectives and optimization procedures. We demonstrate the
benefits of x-IBR over other DRO objectives by extensively evaluating a range of robust objectives and
associated optimization algorithms. In terms of objective, we compare against (1) Group DRO Sagawa
et al. (2020a), (2) CVaR-Group DRO Oren et al. (2019) and (3) FastDRO Levy et al. (2020). In terms of
algorithms, we experiment with primal-dual methods and our proposed iterated best response procedure
which we both described in §5.3.2. Note that in the case of Group DRO (i.e. i = AY), iterated best re-
sponse is not a sensible choice as it would result in each training epoch being spent on a single language
pair. In the case of CVaR Group DRO, we follow the implementation of Oren et al. (2019), which is a
hybrid of the two optimization algorithms with a primal update on 8 and a best response update on gq.
We compare the performance of these methods on the WMT dataset. For fairness, we baseline losses in
the same way for all the DRO objectives. We first observe that, outside of x-IBR, none of the DRO objec-
tives are competitive with temperature-weighted ERM. We also observe that for both uncertainty sets,
iterated best response convincingly outperforms the same objective trained with primal-dual. We finally
note that, for a fixed optimization algorithm, x?-Group DRO outperforms the CVaR objective on all but

one language pairs. This validates both our choice of uncertainty set and of optimization procedure.

65

Dataset Setting Avg BLEU

(@ ERM, 7 = 1 20.83
(b) ERM, 7 = 100 19.78
(c) Ours, p = 0.05, w/o BL 22.21
é (d) Ours, p = 0.1, w/o BL 21.09
(e) Ours, p = 0.05,BL: 7 =1 22.16
(f) Ours,p=0.1,BL: 7 =1 22.13
(g) Ours, p = 0.05, BL: 7 = 100 20.87
E (h) Ours, p =0.1,BL: 7 =1 20.34
= (i) Ours, p = 0.1, BL: 7 = 100 20.62

Table 5.4: Average BLEU on the test sets of en—any direction, BL is short for baseline loss.

The effects of baselined losses. We study the effect of the choice of baseline on the performance
across languages. In Tab. 5.4, we empirically evaluate different baseline choices and uncertainty sizes p.
We observe that in the TED dataset, baseline-ing with E(@\ERM; D;) performs significantly better than
baseline-ing with E(gTzloo; D;) while it is reversed for WMT. We explain this by observing that the
LRLs in TED consist of very small amounts of data (on the order of a few thousands) and using 7 = 100
results in a severe oversampling of LRLs, which the model then fits perfectly. As a result, recall the
intuition that the baseline sets a lower bound on the performance we wish to achieve but because of
the small training data and overfitting, the model disproportionately up-weighs the LRLs, which harms
overall performance. This does not occur in WMT and uniform sampling across language pairs sets a
good target performance for DRO methods. Finally, we see that with the right baseline loss, our method
is more robust to different choices of p (e.g., comparing (c) and (d) versus (e) and (f)). We consistently

observe this for other translation directions and datasets.

5.6 Conclusion

We showed how to successfully apply DRO to the MNMT setting and automatically adjust the sam-
pling distribution over language pairs resulting in sizeable improvements in performance. We posit that
this approach would also be successful in other multilingual scenarios, e.g. multilingual pre-training or
fine-tuning a pre-trained multilingual model. Under these settings, we usually have models with larger
capacity, e.g. Mixture-of-Experts models or using adapters for each task and each language in a multi-
task multilingual setting, thus we hope the proposed framework can better balance the capacity based
on the task difficulty or the resources. It is necessary to increase the strength of regularization to prevent
the model from overfitting to small datasets, which can lead to more meaningful absolute loss values.
Our work also raises a few questions: (i) what are the right baseline losses? (ii) surprisingly, x-IBR
also improves performance on HRLs; under what circumstances does cross-lingual transfer happen and

which languages does it benefit most?

66

Part 111

Efficient Transfer Learning of

Pre-trained Language Models

67

Chapter 6

Towards a Unified View of

Parameter-Efficient Transfer Learning

Fine-tuning large pretrained language models on downstream tasks has become the de-facto learning
paradigm in NLP. Under this paradigm, distribution shift naturally arises which is the shift from the data
distribution in the pre-training stage to the data distribution of the downstream task. Conventional ap-
proaches fine-tune all the parameters of the pretrained model for a downstream task, which is not only
prohibitive as the model size and the number of tasks grow but also leads to catastrophic forgetting of
previously acquired knowledge during pre-training. Recent work has proposed a variety of parameter-
efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain
strong performance. In this part, we explore paremeter-efficient fine-tuning methods for transfer learn-
ing of pre-trained language models, which naturally alleviate catastrophic forgetting. First, in §6, we
break down the design of state-of-the-art parameter-efficient transfer learning methods and present a
unified framework that establishes connections between them. Moreover, we instantiate new state-of-
the-art parameter-efficient transfer learning method based on our unified framework. Next, in §7, we
use parameter-efficient transfer learning to continually adapt a pre-trained model to improve zero-shot

task generalization performance.

6.1 Introduction

Transfer learning from pre-trained language models (PLMs) is now the prevalent paradigm in natural
language processing, yielding strong performance on many tasks (Peters et al., 2018; Devlin et al., 2019a;
Qiu et al., 2020). The most common way to adapt general-purpose PLMs to downstream tasks is to fine-
tune all the model parameters (full fine-tuning). However, this results in a separate copy of fine-tuned
model parameters for each task, which is prohibitively expensive when serving models that perform a

large number of tasks. This issue is particularly salient with the ever-increasing size of PLMs, which now

69

range from hundreds of millions (Radford et al., 2019; Lewis et al., 2020a) to hundreds of billions (Brown

et al., 2020) or even trillions of parameters (Fedus et al., 2021).

To mitigate this issue, a few lightweight alternatives have been proposed to update only a small
number of extra parameters while keeping most pretrained parameters frozen. For example, adapter
tuning (Houlsby et al., 2019) inserts small neural modules called adapters to each layer of the pretrained
network and only the adapters are trained at fine-tuning time. Inspired by the success of prompting
methods that control PLMs through textual prompts (Brown et al., 2020; Liu et al.,, 2021b), prefix tun-
ing (Li and Liang, 2021b) and prompt tuning (Lester et al., 2021) prepend an additional / tunable prefix
tokens to the input or hidden layers and only train these soft prompts when fine-tuning on downstream
tasks. More recently, Hu et al. (2021) learn low-rank matrices to approximate parameter updates. We
illustrate these methods in Figure 6.1. These approaches have all been reported to demonstrate compa-
rable performance to full fine-tuning on different sets of tasks, often through updating less than 1% of
the original model parameters. Besides parameter savings, parameter-efficient tuning makes it possible
to quickly adapt to new tasks without catastrophic forgetting (Pfeiffer et al., 2021) and often exhibits

superior robustness in out-of-distribution evaluation (Li and Liang, 2021b).

However, we contend that the important ingredients that contribute to the success of these parameter-
efficient tuning methods are poorly understood, and the connections between them are still unclear. In
this chapter, we aim to answer three questions: (1) How are these methods connected? (2) Do these
methods share design elements that are essential for their effectiveness, and what are they? (3) Can the

effective ingredients of each method be transferred to others to yield more effective variants?

In order to answer these questions, we first derive an alternative form of prefix tuning that reveals
prefix tuning’s close connections with adapters (§6.3.1). Based on this we then devise a unified frame-
work that frames the aforementioned methods as different ways to modify the hidden representations
of frozen PLMs (§6.3.2). Our unified framework decomposes previous methods along a shared set of de-
sign dimensions, such as the function used to perform the modification, the position in which to impose
this modification, and how to integrate the modification. This framework allows us to transfer design
choices across approaches to propose new variants such as adapters with multiple heads (§6.3.3). In
experiments, we first show that existing parameter-efficient tuning methods still lag behind full fine-
tuning on higher-resource and challenging tasks (§6.4.2), as exemplified in Figure 6.2. Then we utilize
the unified framework to identify critical design choices and validate the proposed variants empirically
(§6.4.3-6.4.6). Our experiments on four NLP benchmarks covering text summarization, machine transla-
tion (MT), text classification, and general language understanding, demonstrate that the proposed variant
uses less parameters than existing methods while being more effective, matching full fine-tuning results

on all four tasks. Our code is available at https://github.com/jxhe/unify-parameter-efficient-tuning.

70

https://github.com/jxhe/unify-parameter-efficient-tuning

4 Adapter

(L) : ppl SRS —— & -———--—--m-
X Full ine-tuning 21.94 &
P e Ours 21.90
Adapter

..... 1o
(Feed Forward J

Add & Layer Norm

.............

o
L
O
Adapter :)
o
o

21+ &)
Adapter 20.98 O

| Prefix Tuning 20.46 LoRA 20.50

..... [Prefix Tuning

(e)) 191

LoRA BitFit 17.32

Hidden States T T T
MuIti-HeaL X I 0) 5 10 15
- J Fine-tuned Parameters (%)

Figure 6.2: Performance of different methods

Figure 6.1: Illustration of the transformer ar-

chitecture and several state-of-the-art parameter- on the XSum (Narayan et al., 2018) summariza-

efficient tuning methods. We use blocks with tion task. The number of fine-tuned parameters

dashed borderlines to represent the added modules is relative to the tuned parameters in full fine-

by those methods. tuning.

6.2 Preliminaries

6.2.1 Recap of the transformer Architecture

The transformer model (Vaswani et al., 2017) is now the workhorse architecture behind most state-
of-the-art PLMs. In this section we recap the equations of this model for completeness. Transformer
models are composed of L stacked blocks, where each block (Figure 6.1) contains two types of sub-
layers: multi-head self-attention and a fully connected feed-forward network (FFN).! The conventional

attention function maps queries @ € R™*% and key-value pairs K € R"™*% V ¢ R™*d.

QK"
Vi

Attn(Q, K, V') = softmax()V, (6.1)
where n and m are the number of queries and key-value pairs respectively. Multi-head attention per-
forms the attention function in parallel over NV}, heads, where each head is separately parameterized by
Wq(i), Wk(i), W@(i) € R¥¥9r to project inputs to queries, keys, and values. Given a sequence of m vec-

tors C' € R™*? over which we would like to perform attention and a query vector € R%, multi-head

'In an encoder-decoder architecture, the transformer decoder usually has another multi-head cross-attention module be-

tween the self-attention and FFN, which we omit here for simplicity.

71

attention (MHA) computes the output on each head and concatenates them:?
MHA(C, x) = Concat(heady, - - - , heady)W,, head; = Attn(qu(i), CWkEi), CW), (6.2)

where W, € R4, d is the model dimension, and in MHA d}, is typically set to d/NN}, to save parameters,
which indicates that each attention head is operating on a lower-dimensional space. The other important
sublayer is the fully connected feed-forward network (FFN) which consists of two linear transformations

with a ReLU activation function in between:
FEN(x) = ReLU(xWj + b)) W5 + bo, (6.3)

where W, € R¥4m W, ¢ R%*4 Transformers typically use a large d,,, e.g. d,, = 4d. Finally, a

residual connection is used followed by layer normalization (Ba et al., 2016).

6.2.2 Overview of Previous Parameter-efficient Tuning Methods

Below and in Figure 6.1, we introduce several state-of-the-art parameter-efficient tuning methods. Unless

otherwise specified, they only tune the added parameters while the PLM’s are frozen.

Adapters (Houlsby et al., 2019): The adapter approach inserts small modules (adapters) between
transformer layers. The adapter layer generally uses a down-projection with Wyoun € R4*" to project
the input h to a lower-dimensional space specified by bottleneck dimension r, followed by a nonlinear
activation function f(-), and a up-projection with Wy, € R4, These adapters are surrounded by a

residual connection, leading to a final form:
h<+ h+ f(thown)Wup. (6.4)

Houlsby et al. (2019) places two adapters sequentially within one layer of the transformer, one after the
multi-head attention and one after the FFN sub-layer. Pfeiffer et al. (2021) have proposed a more efficient
adapter variant that is inserted only after the FFN “add & layer norm" sub-layer.

Prefix Tuning (Li and Liang, 2021b): Inspired by the success of textual prompting methods (Liu
et al., 2021b), prefix tuning prepends [tunable prefix vectors to the keys and values of the multi-head
attention at every layer. Specifically, two sets of prefix vectors Py, P, € R'*? are concatenated with
the original key K and value V. Then multi-head attention is performed on the new prefixed keys and

values. The computation of head; in Eq. 6.2 becomes:

head; = Attn(qu(i) , concat(Pk(i) , C’Wk(i)), concat(PW, CW, ")), (6.5)

Py, and P, are split into N, head vectors respectively and Pkgi), Py) € RX4/Nu denote the i-th head
vector. Prompt-tuning (Lester et al., 2021) simplifies prefix-tuning by only prepending to the input word

embeddings in the first layer; similar work also includes P-tuning (Liu et al., 2021c).

*Below, we sometimes ignore the head index 4 to simplify notation when there is no confusion.

72

Gating & Add

[zOO0O00l

[EleYoXe)el!

00 0O

(a) Adapter (b) Prefix Tuning (d) Parallel Adapter (e) Scaled PA

Figure 6.3: Graphical illustration of existing methods and the proposed variants. “PLM module” repre-
sents a certain sublayer of the PLM (e.g. attention or FFN) that is frozen. “Scaled PA” denotes scaled

parallel adapter. We do not include multi-head parallel adapter here to save space.

LoRA (Hu et al., 2021): LoRA injects trainable low-rank matrices into transformer layers to approx-
imate the weight updates. For a pre-trained weight matrix W € R?*¥ LoRA represents its update with
a low-rank decomposition W + AW = W + WygunWyp, where Wygyn € RIxT Wy € R"*k are
tunable parameters. LoRA applies this update to the query and value projection matrices (W,, W,) in
the multi-head attention sub-layer, as shown in Figure 6.1. For a specific input & to the linear projection

in multi-head attention, LoRA modifies the projection output h as:
h < h+ s - 2WiounmWyp, (6.6)

where s > 1 is a tunable scalar hyperparameter.?

Others: Other parameter-efficient tuning methods include BitFit (Ben Zaken et al., 2021), which only
fine-tunes bias vectors in the pre-trained model, and diff-pruning (Guo et al., 2021), which learns a sparse

parameter update vector.

6.3 Bridging the Gap — A Unified View

We first derive an equivalent form of prefix tuning to establish its connection with adapters. We then
propose a unified framework for parameter-efficient tuning that includes several state-of-the-art meth-

ods as instantiations.

6.3.1 A Closer Look at Prefix Tuning

Eq. 6.5 describes the mechanism of prefix tuning which changes the attention module through prepend-

ing [learnable vectors to the original attention keys and values. Here, we derive an equivalent form of

3The public code of LoRA at https://github.com/microsoft/LoRA uses different s in different datasets, and we have verified

the value of s could have a significant effect on the results.

73

https://github.com/microsoft/LoRA

Eq. 6.5 and provide an alternative view of prefix tuning:*

head = Attn(x W, concat(Pj,, CW},), concat(P,, CW,))

P,
= softmax(a:choncat(Pk, CWk)T) []

cw,
(6.7)
= (1 — A\(z))softmax(zW,W,] CT)CW, + \(z)softmax(zW, P,) P,
= (1 = AMx)) Attn(xW,, CW},, CW,)) +\(x) Attn(x W, Py, P,),
standard‘;ttention independent of C
where \(x) is a scalar that represents the sum of normalized attention weights on the prefixes:
: W, P);
)\(:L') — Zz exp(:c " k) (6.8)

Soiexp(@Wy P/)i + 3 exp(zW,W,[CT);

Note that the first term in Eq. 6.7, Attn(x W, CW),, CW,,), is the original attention without prefixes,
whereas the second term is a position-wise modification independent of C'. Eq. 6.7 gives an alternative
view of prefix tuning that essentially applies a position-wise modification to the original head attention

output h through linear interpolation:

h < (1= Xx))h+ A(x)Ah, Ah = softmax(xW, P,)P,. (6.9)

The Connection with Adapters: We define W1=WquT , Wy=P,, f=softmax, and rewrite Eq. 6.9:
h <+ (1 —=Xx))h + \z)f(xW;)W,, (6.10)

which reaches a very similar form to the adapter function in Eq. 6.4, except that prefix tuning is perform-
ing weighted addition while the adapter one is unweighted.> Figure 6.3b demonstrates the computation
graph of prefix tuning from this view, which allows for abstraction of prefix tuning as a plug-in module
like adapters. Further, we note that W; € Rl and Wy € RIX9h are low-rank matrices when [is small,
and thus they function similarly to the Wy, and Wy, matrices in adapters. This view also suggests
that the number of prefix vectors, [, plays a similar role to the bottleneck dimension r in adapters: they
both represent the rank limitation of computing the modification vector Ah. Thus we also refer [as
the bottleneck dimension. Intuitively, the rank limitation implies that Ah is a linear combination of the

same [l (or < [) basis vectors for any .

The Difference from Adapters: In addition to the gating variable)\, we emphasize three differences

between prefix tuning and adapters. (1) As demonstrated in Figure 6.3, prefix tuning uses , the input

“Without loss of generalization, we ignore the softmax scaling factor v/d for ease of notation.
°h in adapters and prefix tuning are usually different, as described more below. However, here we mainly discuss the

functional form as adapters can, in principle, be inserted at any position.

74

Table 6.1: Parameter-efficient tuning methods decomposed along the defined design dimensions. Here,
for clarity, we directly write the adapter nonlinear function as ReLU which is commonly used. The

bottom part of the table exemplifies new variants by transferring design choices of existing approaches.

Method Ah functional form insertion form modified representation composition function
Existing Methods

Prefix Tuning softmax(z W, P/)P, parallel head attn h <+ (1-Xh+ \Ah

Adapter ReLU(hWyown) W sequential fin/attn h <+ h+ Ah

LoRA TWaounWap parallel attn key/val h<+ h+s-Ah
Proposed Variants

Parallel adapter ReLU(hWyoum) Wyp parallel fin/attn h <+ h+ Ah

Muti-head parallel adapter =~ ReLU(hWyqyn) Wy parallel head attn h < h+ Ah

Scaled parallel adapter ReLU(hWyown) Wy parallel ffn/attn h <+ h+s-Ah

of the PLM layer, to compute Ah, while adapters use h, the output of the PLM layer. Thus, prefix
tuning can be thought of as a “parallel” computation to the PLM layer, whereas the typical adapter is
“sequential” computation. (2) Adapters are more flexible with respect to where they are inserted than
prefix tuning: adapters typically modify attention or FFN outputs, while prefix tuning only modifies the
attention output of each head. Empirically, this makes a large difference as we will show in §6.4.4. (3)
Eq. 6.10 applies to each attention head, while adapters are always single-headed, which makes prefix
tuning more expressive: head attention is of dimension d/N}, — basically we have full rank updates to
each attention head if [> d/Nj, but we only get full-rank updates to the whole attention output with
adapters if r > d. Notably, prefix tuning is not adding more parameters than adapters when [= r.° We

empirically validate such multi-head influence in §6.4.4.

6.3.2 The Unified Framework

Inspired by the connections between prefix tuning and adapters, we propose a general framework that
aims to unify several state-of-the-art parameter-efficient tuning methods. Specifically, we cast them as
learning a modification vector Ah, which is applied to various hidden representations. Formally, we
denote the hidden representation to be directly modified as h, and the direct input to the PLM sub-
module that computes h as x (e.g. h and x can be the attention output and input respectively). To
characterize this modification process, we define a set of design dimensions, and different methods can
be instantiated by varying values along these dimensions. We detail the design dimensions below, and
illustrate how adapters, prefix tuning, and LoRA fall along them in Table 6.1:

Functional Form is the specific function that computes Ah. We have detailed the functional form

for adapters, prefix tuning, and LoRA in Eq. 6.4, 6.6, and 6.10 respectively. The functional forms of all

SWe will detail in §6.4.1 the number of parameters added of different methods.

75

these methods are similar with a proj_down — nonlinear — proj_up architecture, while

“nonlinear” degenerates to the identity function in LoRA.
Modified Representation indicates which hidden representation is directly modified.’

Insertion Form is how the added module is inserted into the network. As mentioned in the previous
section and shown in Figure 6.3, traditionally adapters are inserted at a position in a sequential manner,
where both the input and output are h. Prefix tuning and LoRA - although not originally described in

this way — turn out to be equivalent to a parallel insertion where « is the input.

Composition Function is how the modified vector Ah is composed with the original hidden rep-
resentation h to form the new hidden representation. For example, adapters perform simple additive
composition, prefix tuning uses a gated additive composition as shown in Eq. 6.10, and LoRA scales Ah

by a constant factor and adds it to the original hidden representation as in Eq. 6.6.

We note that many other methods not present in Table 6.1 fit into this framework as well. For
example, prompt tuning modifies the head attention in the first layer in a way similar to prefix tuning, and
various adapter variants (Pfeiffer et al., 2021; Mahabadi et al., 2021) can be represented in a similar way as
adapters. Critically, the unified framework allows us to study parameter-efficient tuning methods along
these design dimensions, identify the critical design choices, and potentially transfer design elements

across approaches, as in the following section.

6.3.3 Transferring Design Elements

Here, and in Figure 6.3, we describe just a few novel methods that can be derived through our unified view
above by transferring design elements across methods: (1) Parallel Adapter is the variant by transferring
the parallel insertion of prefix tuning into adapters. Interestingly, while we motivate the parallel adapter
due to its similarity to prefix tuning, concurrent work (Zhu et al., 2021) independently proposed this
variant and studied it empirically; (2) Multi-head Parallel Adapter is a further step to make adapters
more similar to prefix tuning: we apply parallel adapters to modify head attention outputs as prefix
tuning. This way the variant improves the capacity for free by utilizing the multi-head projections as we
discuss in §6.3.1. (3) Scaled Parallel Adapter is the variant by transferring the composition and insertion

form of LoRA into adapters, as shown in Figure 6.3e.

Our discussion and formulation so far raise a few questions: Do methods varying the design elements
above exhibit distinct properties? Which design dimensions are particularly important? Do the novel

methods described above yield better performance? We answer these questions next.

"Strictly speaking, all the hidden representations would be indirectly influenced by modifying the ones before them. Here

we refer to the position being directly modified by the added module.

76

6.4 Experiments

6.4.1 General Setup

Datasets: We study four downstream tasks: (1) XSum (Narayan et al., 2018) is an English summariza-
tion dataset where models predict a summary given a news article; (2) English to Romanian translation
using the WMT 2016 en-ro dataset (Bojar et al., 2016); (3) MNLI (Williams et al., 2018b) is an English
natural language inference dataset where models predict whether one sentence entails, contradicts, or is
neutral to another. (4) SST2 (Socher et al., 2013) is an English sentiment classification benchmark where

models predict whether a sentence’s sentiment is positive or negative.

Setup: We use BART arge (Lewis et al., 2020a) and a multilingual version of it, NBART arge (Liu
et al., 2020d), as the underlying pretrained models for XSum and en-ro translation respectively, and we
use ROBERTagasg (Liu et al., 2019) for MNLI and SST2. We vary the bottleneck dimension within
{1, 30,200,512, 1024} if needed.® We mainly study adapters, prefix tuning (prefix), and LoRA which
greatly outperform bitfit and prompt tuning in our experiments. In the analysis sections (§6.4.3-6.4.5) we
insert adapters either at the attention or FFN layers for easier analysis, but include the results of inserting
at both places in the final comparison (§6.4.6). We re-implement these methods based on their respective
public code.” We use the huggingface transformers library (Wolf et al., 2020) for our implementation.

Complete setup details can be found in Appendix .15.

Evaluation: We report ROUGE 1/2/L scores (R-1/2/L, Lin (2004)) on the XSum test set, BLEU scores (Pa-
pineni et al., 2002b) on the en-ro test set, and accuracy on the MNLI and SST2 dev set. For MNLI and
SST2, we take the median of five random runs. We also report the number of tuned parameters relative

to that in full fine-tuning (#params).

Number of Tunable Parameters: BART and mBART have an encoder-decoder structure that has
three types of attention: encoder self-attention, decoder self-attention, and decoder cross-attention.
RoBERTa only has encoder self-attention. For each attention sub-layer, the number of parameters used
of each method is: (1) prefix tuning prepends [vectors to the keys and values and uses 2 x [X d parame-
ters; (2) adapter has Wyow, and Wy, thus uses 2 X r x d parameters; (3) LoRA employs a pair of Wyown
and W, for query and value projections, hence uses 4 X r x d parameters. For the adapter modification
at ffn, it uses 2 x r X d parameters which is the same as adapter at attention. Therefore, for a specific

value of 7 or [, prefix tuning uses the same number of parameters as adapters, while LoRA uses more

¥In some settings we use other values to match the number of added parameters of different methods.
*We verify that our re-implementation can reproduce adapter and prefix tuning on XSum, and LoRA on MNLI, by com-

paring with the results of running the original released code.

77

S Pyl ieieiniii elnininlt Figure 6.5: Accuracy on the dev set
21 2678 of MNLI and SST2. MAM Adapter is
i " > proposed in §6.4.6. Bitfit numbers are
ol 1 =
% - —e— LoRA from Ben Zaken et al. (2021).
Q’ 191 = 301 —%¥— Adapter
28 —#— PrefixTuning Method (# params) MNLI SST2
18] BitFit
2614 -==- Full Fine-tuning Full-FT (100%) 87.644 94.64 4
0 5 10 15 0 5 10 15 _
Fine-tuned Parameters (%) Fine-tuned Parameters (%) Bitfit (Ol %) 84.7 93.7
Prefix (0.5%) 86.344 94.04,
Figure 6.4: Performance of previous state-of-the-art LoRA (0.5%) 87.244 94.24 5
parameter-efficient tuning methods on XSum (left) and Adapter (0.5%) 87.2+5 9421,
en-ro (right). MAM Adapter (0.5%) 87.413 94.24 3

parameters. More details can be found in Appendix .16.

6.4.2 The Results of Existing Methods

We first overview the results of existing methods on the four tasks. As shown in Figure 6.4 and Table 6.5,
while existing methods can achieve competitive performance on MNLI and SST2 by tuning fewer than
1% parameters, a large gap is still present if we add 5% parameters in XSum and en-ro. The gap remains
significant even though we increase the relative parameter size to >10%. Even larger gaps have been
observed in Raffel et al. (2020) on high-resource MT tasks. This shows that many methods that claimed
comparable results to full fine-tuning on the GLUE benchmark with an encoder-only model (Guo et al.,
2021; Ben Zaken et al., 2021; Mahabadi et al., 2021), or on relatively simple generation benchmarks such
as E2E (Novikova et al., 2017) with an encoder-decoder model (Li and Liang, 2021b), may not generalize
well to other standard benchmarks. The influencing factors could be complicated including the number
of training samples, task complexity, or model architecture. We thus advocate for future research on this
line to report results on more diverse benchmarks to exhibit a more complete picture of their performance
profile. Below, our analysis will mainly focus on the XSum and en-ro datasets to better distinguish
different design choices. We note that these two benchmarks are relatively high-resource performed
with an encoder-decoder model (BART), while we will discuss the results on MNLI and SST2 with an
encoder-only model (RoBERTa) in §6.4.6.

6.4.3 Which Insertion Form - Sequential or Parallel?

We first study the insertion form design dimension, comparing the proposed parallel adapter (PA) vari-
ant to the conventional sequential adapter (SA) over both the attention (att) and FFN modification. We

also include prefix tuning as a reference point. As shown in Table 6.6, prefix tuning, which uses parallel

78

Figure 6.6: Comparison of different insertion forms for .
Figure 6.7: Results on en-ro dataset.

adapters, i.e. sequential adapter (SA) and parallel adapter

(PA). We include the results of prefix tuning as a reference Method # params MT (BLEU)
point. PA (attn), r=200 3.6% 35.6
Prefix, [=200 3.6% 35.6
Method # params XSum (R-1/2/L) MT (BLEU) MH PA (attn), =200 3.6% 35.8
Prefix, [=200 3.6% 43.40/20.46/35.51 35.6 Prefix, (=30 0.1% 359
SA (attn), r=200 3.6% 42.01/19.30/34.40 35.3 -gating, [=30 0.1% 34.9
SA (fin), r=200 2.4% 43.21/19.98/35.08 35.6 PA (ffn), =30 0.1% 33.0
PA (attn), =200 3.6% 43.58/20.31/35.34 35.6 PA (attn), r=30 0-1% 33.7
MH PA (attn), r=30 0.1% 35.3

PA (ffn), 7=200 2.4% 43.93/20.66/35.63 36.4 (att), 7

insertion, outperforms attention sequential adapters. Further, the parallel adapter is able to beat sequen-
tial adapters in all cases,'® with PA (ffn) outperforming SA (ffn) by 1.7 R-2 points on XSum and 0.8 BLEU
points on en-ro respectively. Given the superior results of parallel adapters over sequential adapters, we

focus on parallel adapter results in following sections.

6.4.4 Which Modified Representation — Attention or FFN?

Setup: We now study the effect of modifying different representations. We mainly compare attention
and FFN modification. For easier analysis we categorize methods that modifies any hidden represen-
tations in the attention sub-layer (e.g. the head output, query, etc) as modifying the attention module.
We compare parallel adapters at attention and FFN and prefix tuning. We also transfer the FFN modi-
fication to LoRA to have a LoRA (ffn) variant for a complete comparison. Specifically, we use LoRA to
approximate the parameter updates for the FEN weights W € R%*%m and Wy € R%*? _ In this case
Wyp in LoRA for W (similar for Wy,wy, of Ws) would have dimensions of r X d,,,, where d,;, = 4d as
described in §6.2.1. Thus we typically use smaller r for LoRA (ffn) than other methods to match their

overall parameter size in later experiments.

Results: As shown in Figure 6.8, any method with FFN modification outperforms all the methods
with attention modification in all cases (the red markers are generally above all the blue ones, the only
exception is fin-PA with 2.4% params), often with fewer parameters. Second, the same method applied
at FFN always improves over its attention counterpart. For example, LoRA (ffn) improves LoRA (attn) by
1 R-2 points on XSum. We also highlight that prefix tuning does not keep improving when we further
increase the capacity, which is also observed in Li and Liang (2021b). These results suggest that FFN

modification can utilize the added parameters more effectively than attention, no matter what the functional

“More results with different 7 can be found in Appendix .17, which exhibits similar observations.

79

S I B U popupre v
N 21.25 - i =
§ 21.001 2 3651 ¢ n
(@] C_Ol v ™ —@— Prefix (attn)
& 20.751 ~ 36.01 =¥~ PA (attn)
g = =l LoRA (attn)
2 20.50 1 35.5 -¥- PA (ffn)
-l - LoRA (ffn)
20.25 += : T : : 35.0+— : : ' -
2.5 5.0 7.5 10.0 12.5 2.5 5.0 7.5 10.0 12.5
Fine-tuned Parameters (%) Fine-tuned Parameters (%)

Figure 6.8: Results on XSum (left) and en-ro (right). PA represents parallel adapter. Blue and red markers

apply modifications at attention and FFN sub-layers respectively (best viewed in color).

form or composition function is. We hypothesize that this is because the FFN learns task-specific textual
patterns (Geva et al., 2021), while attention learns pairwise positional interactions which do not require

large capacity for adapting to new tasks.

Is the story different when we use 0.1% parameters? In §6.3.1 we reason that prefix tuning is
more expressive than adapters (attn), which, however, is not reflected in Figure 6.8. We conjecture that
this is because multi-head attention is only superior when the parameter budget is small. To validate
this hypothesis, we compare prefix tuning to parallel adapters when they add 0.1% of the pretrained
parameters. To ablate the impact of the composition function, we also report the results of removing the
gating in prefix tuning as h + Ah. We include the results of the multi-head parallel adapter variant (MH
PA) described in §6.3.3. As shown in Table 6.7, the multi-head methods — prefix tuning and MH PA (attn)
— outperform all others by at least 1.6 BLEU points when using 0.1% of the parameters. Surprisingly,
reducing [from 200 to 30 only causes 0.4 BLEU loss for prefix tuning while PA (attn) loses 1.9 points.
The gating composition function in prefix tuning slightly helps the results by 0.3 points. We highlight
that the MH parallel adapter improves the single-headed version by 1.6 points, which again verifies the
effectiveness of the multi-head formulation.

Combining the results in Figure 6.8 and Table 6.7, we conclude that modifying head attention shows
the best results when the parameter budget is very small, while the FEN can better utilize modifications
at larger capacities. This suggests that it may be effective to allocate a larger parameter budget to FFN

modification instead of treating attention and FFN equally as in Houlsby et al. (2019).

6.4.5 Which Composition Function?

We have presented three composition functions in §6.3.2: simple addition (adapter), gated addition (pre-
fix tuning) and scaled addition (LoRA). As it is unnatural to incorporate the exact gated addition into
methods whose functional form does not use softmax, we examine the other two by ablating on LoRA and
comparing with the proposed scaled parallel adapter (Scaled PA), we constrain modified representation to

be FFN since it is generally more effective as shown in §6.4.4.

80

Table 6.3: Comparison of various parameter-efficient tuning methods and the proposed variants. “t” are
results copied from Lewis et al. (2020a) and Liu et al. (2020b). We could not reproduce exactly the same
full fine-tuning numbers with the same hyperparameters or even searching them. The reason may be
the different libraries which the training code is based on - full fine-tuning is very sensitive to training
hyperparameters. For the most performant methods we run with 3 random seeds and report mean and

standard deviation.

Method # params XSum (R-1/2/L) MT (BLEU)
Full ﬁne—tuningJr 100% 45.14/22.27/37.25 37.7
Full fine-tuning (our run) 100% 44.81/21.94/36.83 37.3
Bitfit (Ben Zaken et al., 2021) 0.1% 40.64/17.32/32.19 26.4
Prompt tuning (Lester et al., 2021) 0.1% 38.91/15.98/30.83 21.0
Prefix tuning (Li and Liang, 2021b), [=200 3.6% 43.40/20.46/35.51 35.6
Pfeiffer adapter (Pfeiffer et al., 2021), 7=600 7.2% 44.03/20.89/35.894 13/.10/.08 36.94 4
LoRA (ffn), r=102 7.2% 44.53/21.29/36.28 1 14/07/10 36.8. 5
Parallel adapter (PA, ffn), r=1024 12.3% 44.71/21.41/36.41+ 16/17/.16 37.24 4
PA (attn, r=30) + PA (ffn, r=512) 6.7% 44.29/21.06/36.124 3110115 37.24 1
Prefix tuning (attn, [=30) + LoRA (ffn, r=102) 6.7% 44.84/21.71/36.77 +7/.05/.03 37.04
MAM Adapter (our variant, =30, r=512) 6.7% 45.06/21.90/36.87 1 0s/.01/.04 37.54 1

Table 6.2 reports the results on XSum. We set r as 512
for adapters and 102 for LoRA so that their tuned pa-
rameter sizes are the same. We select s based on the
R-2 score on the dev set. We observe that LoRA (s = 4)
performs better than parallel adapter. However, the ad-
vantage disappears if we remove the scaling by setting
s = 1. Through plugging the composition function
of LoRA into parallel adapter, the resulted Scaled PA
improves the vanilla parallel adapter by 0.56 ROUGE-2

points. We also experiment with a learned scalar which

does not give better results. Therefore, we conclude

Table 6.2: Results on XSum when using differ-
ent composition functions. The modified rep-
resentation is FEN. The bottleneck dimension
r = 512 for (Scaled) PA and » = 102 for LoRA.

Method (# params) XSum (R-1/2/LSum)

LoRA (6.1%), s=4
LoRA (6.1%), s=1
PA (6.1%)

44.59/21.31/36.25
44.17/20.83/35.74
44.35/20.98/35.98

Scaled PA (6.1%), s=4
Scaled PA (6.1%), trainable s

44.85/21.54/36.58
44.56/21.31/36.29

that the scaling composition function is better than the vanilla additive one while being easily applicable.

6.4.6 An Effective Integration by Transferring Favorable Design Elements

We first highlight three findings in previous sections: (1) Scaled parallel adapter is the best variant to
modify FFN; (2) FFN can better utilize modification at larger capacities; and (3) modifying head attentions

81

like prefix tuning can achieve strong performance with only 0.1% parameters. Inspired by them, we mix
and match the favorable designs behind these findings: specifically, we use prefix tuning with a small
bottleneck dimension (I = 30) at the attention sub-layers and allocate more parameter budgets to modify
FFN representation using the scaled parallel adapter (r = 512). Since prefix tuning can be viewed as
a form of adapter in our unified framework, we name this variant as Mix-And-Match adapter (MAM
Adapter). In Table 6.3, we compare MAM adapter with various parameter-efficient tuning methods. For
completeness, we also present results of other combination versions in Table 6.3: using parallel adapters
at both attention and FFN layers and combining prefix tuning (attn) with LoRA (ffn) — both of these
combined versions can improve over their respective prototypes. However, MAM Adapter achieves the
best performance on both tasks and is able to match the results of our full fine-tuning by only updating
6.7% of the pre-trained parameters. In Table 6.5, we present the results of MAM Adapter on MNLI and
SST2 as well, where MAM Adapter achieves comparable results to full fine-tuning by adding only 0.5%

of pretrained parameters.

6.5 Discussion

We provide a unified framework for several performant parameter-tuning methods, which enables us
to instantiate a more effective model that matches the performance of full fine-tuning method through
transferring techniques across approaches. We hope our work can provide insights and guidance for
future research on parameter-efficient tuning, and we also suggest these methods to perform experiments

on tasks of varying resources and properties to exhibit a more complete view.

82

Chapter 7

Prompt Consistency for Zero-Shot Task

Generalization

While the previous chapter focuses on the supervised transfer learning setting of pre-trained language
models, one of the most impressive results of recent NLP history is the ability of pre-trained language
models to solve new tasks in a zero-shot setting. To achieve this, NLP tasks are framed as natural lan-
guage prompts, generating a response indicating the predicted output. Nonetheless, the performance
in such settings often lags far behind its supervised counterpart, suggesting a large space for poten-
tial improvement. In this chapter, we explore methods to utilize unlabeled data to improve zero-shot

performance with parameter-efficient fine-tuning.

7.1 Introduction

While the past decade has demonstrated that pretrained language models (PLMs) are powerful tools for
improving generalization from training datasets to test datasets (Devlin et al., 2019b; Liu et al., 2019;
Raffel et al., 2020), more recent work has shown that they can even perform zero-shot generalization to
new tasks without any annotated examples (Brown et al., 2020; Wei et al., 2021; Sanh et al., 2021). These
systems leverage natural language prompts that specify the task for the model and represent different
tasks in a unified format (Liu et al., 2021b). Zero-shot task generalization suggests a path towards generic
systems that perform a wide variety of NLP tasks with no annotated examples. However, while enticing
conceptually, zero-shot performance often remains relatively low compared to systems trained using
even a small amount of task-specific labeled data.

In this chapter, we examine methods to make PLMs better zero-shot learners using unlabeled text.
Our work is motivated by consistency training methods that regularize model predictions to be invariant
to perturbation (e.g. noise or paraphrasing) of the input examples. Consistency training is widely used

in semi-supervised learning literature as an effective technique to utilize unannotated examples (Bach-

83

s =)
{Premise}
Question: {Hypothesis}. True, True | .
(False, or Neither? NN 1. Sample pairs of prompts
ol —
;o (@) ()
, o ro,T ~ p\r
s N SR ;o
Premise: World leaders expressed Given that {Premise}, does it / [
concern that North Korea will quit follow that {Hypothesis}? Yes, Maybe ’ I 2. Pseudo soft target from
six-party nuclear disarmament talks kno' or maybe? [~ ~ 7 ! 7
n 3 J - U VAN / T
and will bolster its nuclear) , (Z)
1 ’ il
oo e D —— — A PLM R ¥~ q(ylx,)
Assume it is true that {Premise}. 1 /
. . Therefore, “{Hypothesis}” is . (4
Hypothgsm North Korea says it has a TRy, e rHey, G Impossible [L/: o)
st:?ckl.nle of nuclear weapons and is \impossible?) 2 3. Distillto T
building more. 2 ,
/ (i)/~ 1
N 4 J) (4)
r{Premise) —\ - 10gp0(ry Yy Tm X
Keeping in mind the above text, Never
consider: {Hypothesis}. Is this @i
always, sometimes, or never
—
\correct? J
Unlabeled Input Apply Multiple Task Prompts Predict Prompt-Formatted Target Swarm Distillation

Figure 7.1: An example of the proposed approach in an NLI task. We apply multiple synonymous prompt
templates to the unlabeled example, then we regularize the consistency of the predictions from different
prompts, through our swarm distillation loss. Note that we are not regularizing the predicted text form
rz(,i) (y) to be the same since different prompts have different target templates as shown above — we are

actually regularizing the discrete labels y underneath to be consistent, as detailed in Eq. 7.2.

man et al., 2014; Sajjadi et al., 2016; Beyer et al., 2019; Xie et al., 2020a). It is often understood as a type
of smoothness regularization or data augmentation (Xie et al., 2020a) and attains strong performance in
semi-supervised learning. Instead of example-level consistency, we propose to regularize prompt con-
sistency, where a model is regularized to make the same prediction across a diverse set of synonymous
task prompts. Prompt consistency regularization makes sense intuitively since PLMs should be robust
across synonymous prompts, whereas it is known that model predictions are empirically very sensitive

to the wording of the task prompts (Jiang et al., 2020).

Specifically, we design a pairwise distillation loss that encourages consistency between every pair of
prompts (Figure 6.1). We refer to our method as swarm distillation, and it has the advantage of being fully
unsupervised, only requiring unannotated inputs. Notably, unannotated examples are often relatively
easy to collect. Drafting several prompts for a task is also far cheaper than annotating labels for each
example — in fact, there are already well-designed prompts available for a wide range of NLP tasks (Bach

et al, 2022).

Previous work on example-level consistency regularization typically minimizes a consistency loss
along with a supervised loss in a semi-supervised setting (Miyato et al., 2018; Xie et al., 2020a). Re-
cently, Elazar et al. (2021) performed experiments optimizing a prompt consistency loss in the context
of a relation prediction task, also incorporating a supervised version of the masked language model
pretraining objective. In contrast, we (1) optimize a novel prompt consistency loss alone, making our
approach completely unsupervised and agnostic to the model’s pretraining objective, and (2) experiment

on and demonstrate the practicality of such an approach for a broad variety of NLP tasks. Notably, this

84

unsupervised setting poses additional learning challenges: without explicit supervision, the model may
suffer from catastrophic forgetting and even exhibit a form of collapse where the model always makes
the same predictions for any input. To address this issue, we adopt two simple strategies: (1) we utilize
parameter-efficient tuning techniques (Houlsby et al., 2019; Zhou et al., 2022) to only update a small
number of extra parameters, naturally mitigating catastrophic forgetting by fixing the original PLM pa-
rameters; (2) we propose an unsupervised criterion to select the model checkpoint before it falls into a
collapsed local optimum.

In experiments, we build our method on top of a state-of-the-art zero-shot task learner, T0 (Sanh
et al., 2021), and validate its performance on 11 datasets from 4 NLP tasks: natural language inference,
coreference resolution, word sense disambiguation, and sentence completion. We perform experiments
under two scenarios: (1) training the model with unlabeled training data; or (2) tuning the model with
unlabeled test inputs directly. In both settings, we show that our swarm distillation method improves
the accuracy of the 3B-parameter TO model on 9 out of 11 datasets by up to 10.6 absolute points. We
further scale model size up to 11B parameters, and demonstrate that our approach outperforms the 11B-
parameter TO model on 4 out of 4 datasets. Remarkably, analysis implies that these gains are often
possible with only tens of examples, suggesting a small computation overhead. Our code is available at

https://github.com/violet-zct/swarm-distillation-zero-shot.

7.2 Prompt-based Zero-Shot Task Generalization

Given a task where the input is denoted as x € X and the goal is to predict y €), we focus on
the zero-shot task generalization setting: we aim to feed a PLM with x to predict y, where the PLM is
never trained on the specific task to be performed. Zero-shot task generalization goes beyond traditional
dataset generalization, as the model must generalize to new functions f : X —) as opposed to new
input examples, x. Recently, the development of prompting methods has advanced zero-shot task gener-
alization by representing different tasks in a unified format (Liu et al., 2021b), and several prompt-based
approaches have attained reasonable zero-shot performance (Brown et al.,, 2020; Sanh et al., 2021; Wei
et al, 2021).

A prompt r consists of an input template r,, an output template r,, and metadata to re-format
the original x and y into new prompt-formatted input and target, r,(x) and r,(y). For example, as
shown in Figure 6.1, in a natural language inference task to predict “entailment”, “neutral”, or “con-
tradiction” between two texts, the input includes the field Premise and Hypothesis and the tar-
get consists of the field Label. An input template could be Given that {Premise}, does
it follow that {Hypothesis}? Yes, no, or maybe?, and the target template is
Choices[{label}]. Here Choices is the metadata that is a list containing [Yes, Maybe, NO]
to correspond to the digit labels. We note that such metadata is prompt-specific and can differ with differ-

85

https://github.com/violet-zct/swarm-distillation-zero-shot

ent prompts for the same task - for instance, in Figure 6.1 each prompt actually has a different Choices
list from others; the Choices list of the first prompt on the top is [True, False, Neither]]. In
prompt-based approaches the PLM models the conditional probability ¢(y|x,) through py (7 (y)|72(x))
where 0 denotes the model parameters. In classification tasks where) is a finite label set, ¢(y|x,) is

normalized over the possible labels at inference time to predict y:

Po(ry(y)lre(x))
yrey Po(ry(y")lrz(x))’

(7.1)

Q(Y|X’ T) = Z

In generation tasks where) is an infinite sequence space, the target template is typically instantiated
as the target itself, i.e. py(7y(y)|rz(x)) = po(y|rz(x)), then the output can be directly decoded through
sequence decoding approaches. Through designing such prompts for each task, all NLP tasks share the

same data format, and models trained on one task may generalize to others.

7.3 Prompt Consistency Training

7.3.1 Problem Definition

In this chapter, we aim to explore unannotated examples to improve prompt-based zero-shot task gen-
eralization. Formally, we are given an unlabeled dataset in the task of interest {x1,x2, -+ , Xy}, and we
assume the dataset has K different prompts, {(rg(gl), rl(,l)), e (r&K), ré,K))}. Our goal is to utilize these
resources and adapt a PLM to predict 7,(y) conditioned on 7,(x). We note that unlabeled input and
a diverse set of prompts are not difficult to collect practically — the inputs to most NLP tasks are plain
text such as reviews, documents, or questions, and empirically our method is effective even with tens to
hundreds of unlabeled examples as we will show in §7.4.4; drafting prompts for each task is much easier
than annotating labels for each example, in fact, the community efforts have pushed out a Public Pool
of Prompts (P3)! that contains thousands of prompts for hundreds of NLP datasets already (Sanh et al,,

2021). In this chapter, we are going to focus our experiments on a subset of datasets supported by P3.

7.3.2 The Prompt Consistency Loss

Consistency regularization is a method that creates different views (e.g. paraphrases of text) of the in-
put and regularizes the outputs to be close to each other, and has achieved significant success in semi-
supervised learning (Clark et al., 2018; Xie et al., 2020a,b). While previous methods use an additional
module to perturb each example and then optimize example-level consistency, we propose to optimize
prompt-level consistency which (1) is conceptually simple, and (2) can mitigate the fact that the predic-
tions of PLMs are typically inconsistent with different prompts for the same task (Jiang et al., 2020; Elazar

etal., 2021). Intuitively, we propose to regularize the predictions of different prompts for a given input to

'https://github.com/bigscience-workshop/promptsource

86

https://github.com/bigscience-workshop/promptsource

be close to each other, using a pairwise distillation loss to draw the predictions from one prompt closer
to those from the other. Concretely, we randomly sample a few pairs of prompts and distill the pseudo
target § from one prompt () to the other prompt (), as illustrated in Figure 6.1. The loss function is
defined as:

L= B0 0 mp(r) Eg ity s 108 0o (r) (3)) (x)), (7.2)

where p4(x) is the empirical data distribution, p(r) is a uniform distribution over possible prompts in the
prompt set, and §(y|x, 7) is the conditional target distribution defined as in Eq. 7.1 but with a stopping
gradient operator. We do not propagate gradients to ¢(y|x, (@) following Miyato et al. (2018) and Xie
et al. (2020a).? Stopping the gradient of one side in a pairwise consistency loss is also shown to help
mitigate the collapse issue where all inputs lead to the same predictions (Chen and He, 2021). Different
from traditional distillation that distills from a teacher model to a student model (Hinton et al., 2015),
or previous consistency training that a single teacher distills to several students (Clark et al., 2018; Xie
et al., 2020a), we perform distillation among a swarm of prompts where each prompt is a teacher and
student at the same time, thus we term our method as swarm distillation. In our implementation, we
approximate the expectation over the paired prompts (r(?), (9)) with k randomly sampled pairs instead
of enumerating all pairs for training efficiency.

Prompt consistency is related to example-level consistency when viewing different prompt-formatted
inputs) (x) as separated views of the same example, thus our swarm distillation approach shares spirit
with previous work on example-level consistency training and can be understood similarly from the per-
spective of unsupervised data augmentation, smoothness regularization, or label propagation (Xie et al.,
2020a). In this chapter, we focus on classification tasks where) is a finite label set, while Eq. 7.2 can be
directly applied to sequence generation tasks as well with sequence distillation (Kim and Rush, 2016b).

Our approach differs from previous consistency training methods which often combine an unsu-
pervised consistency loss with a supervised loss in a semi-supervised setting (Miyato et al., 2018; Clark
et al., 2018; Xie et al.,, 2020a). Elazar et al. (2021) try to improve prompt consistency for a relation filling
task with a pairwise two-sided KL divergence loss, while they also optimize a supervised version of the
original PLM objective that turns out to be important. In contrast, our approach minimizes the swarm
distillation loss in Eq. 7.2 alone, and therefore is completely unsupervised and agnostic to the pretraining

objective. However, this setting also poses challenges in learning, which we discuss next.

7.3.3 Training

Being trained without explicit supervision, the PLM may forget what it learns during pretraining since

the unsupervised consistency loss is different from the pretraining objective. Also, we note that prompt

*Note that §(y|x,r) still changes as we train the model.

87

ho |

pretrained weight A e REXm

W e Rdxm

[hy |

Figure 7.2: A diagram of LoRA in the FFN sublayer. Only the LoRA parameters, A and B, are updated

during training while other parameters are fixed.

consistency may be achieved with a trivial solution — if the predictions from each example and each
prompt collapse to the same label then maximal consistency among prompts can be reached. To mitigate

such catastrophic forgetting and collapse issues, we propose two techniques:

Parameter-efficient tuning: Parameter-efficient tuning methods naturally mitigate catastrophic for-
getting and collapse through fixing the original PLM parameters. Our unsupervised setting only provides
weak learning signals with a relatively small data set, thus we expect that a high-capacity parameter-
efficient tuning method, e.g. MAM Adapters in §6, will be less useful. Specifically, we use LoRA (Hu
et al,, 2021), a low-rank adaptation method for PLMs, which is introduced in §6.2.2. We briefly recap
LoRA here. As shown in Figure 7.2, LoRA learns a low-rank approximation of the pretrained matrix
updates: given a pretrained weight matrix W € R?*™, LoRA learns to update it as W < W + aBA,
where B € R%*%, A € R®™ are low-rank matrices and « is a hyperparameter, and only B and A are up-
dated during training. b < d is referred to as the bottleneck dimension. Following Zhou et al. (2022), we
apply LoRA to the feed-forward weight matrices of every layer in the pretrained transformer (Vaswani
et al., 2017) model. We emphasize that B (or A) needs to be initialized as a zero matrix to ensure the
output distribution after adding LoRA layers is the same as the original PLM before training, otherwise,
the zero-shot ability of PLMs would be broken upon initialization and there is no supervision to learn it
back. In our preliminary experiments, we found that LoRA is less likely to suffer from collapse, while we
still observe collapse sometimes. This motivates us to develop a criterion to select the model checkpoint

before the model falls into a collapsed local optimum, which we describe next.

Unsupervised model selection criterion: In supervised learning, model selection is typically per-
formed on a held-out validation set using supervised metrics. However, our zero-shot setting requires
to develop an unsupervised selection criterion. Intuitively, it is straightforward to use a consistency
metric as the criterion since we are optimizing towards prompt consistency, but a naive consistency
metric would reach its maximum when the model is collapsed. Therefore, we would like to have a met-
ric that encourages consistency but simultaneously penalizes collapse. With that in mind, we focus on

Fleiss’ kappa (Fleiss, 1971), a commonly used metric to assess the reliability of agreement between a fixed

88

number of raters. In our setting, Fleiss’ kappa expresses the extent to which the amount of agreement
among prompts exceeds what would be expected if all prompts made their predictions according to the
marginalized distribution of labels. This design naturally penalizes collapse and is computing a notion
of “relative consistency”. Formally, let n;; be the number of prompts that predict the j-th label for the
i-th example. There are a total of N K predictions where N is the number of examples and K is the
number of prompts. Given an example x;, the agreement probability p; is to compute how many prompt

pairs are in agreement, divided by the number of all possible pairs:

1
bi = m Zj nij(nij - 1)7 (7.3)

then p; is averaged across examples to obtain the “absolute consistency”:

_ 1 N
P=— Zizl Di. (7.4)

It can be seen that P is maximized in the case of collapse. However, Fleiss’ kappa considers the marginal-
ized distribution of labels: how likely are two prompts consistent if they make predictions randomly

according to the marginalized label distribution? This chance probability P, is:

= 1 N
— 2 J— .

Pe - ijja p] - NK Zi:l nl_]’ (7‘5)
where p; represents the marginalized distribution of labels, i.e. p(y = j). P. is large when collapse
happens and one label dominates in the entire corpus. Finally, Fleiss’ kappa is computed as:

PP,
-1 5

— 7.6
A= 7.6

where 1 — P, gives the degree of consistency that is attainable above chance, P — P, gives the degree of
consistency actually achieved above chance. x ranges from -1 to 1. Eq. 7.6 naturally penalizes collapse,
and in our experiments, we always observe a monotonic decrease of x when collapse happens. Therefore,
we select the model checkpoint after which x monotonically decreases.” We emphasize that we perform

validation on the data that the model is trained on and do not require an additional development dataset.

7.4 Experiments

Our experiments below are designed to (1) measure whether swarm distillation is able to improve zero-
shot task generalization; and (2) analyze how much resource (number of prompts and unlabeled exam-

ples) our method demands.

’In most of the settings, this criterion is equivalent to using maximal & as the criterion, except for few cases where the

beginning of training exhibits large fluctuations in k.

89

T0-3B Self Dist. (train) Swarm Dist. (train) Swarm Dist. (test)
Task Dataset Ens. Med. Ens. Med. Ens. Med. Ens. Med.
RTE 64.6 64.1 64.9+02 63.8401 75.2408110.6 73.9+08719.8 75.2402710.6 73.5+0.1 19.4
CB 464 50.0 47.0+10 49.4+27 47.6+1071.2 48.2400 1.8 46.4+007T0.0 48.8+10 1.2
NLI ANLI R1 346 337 36.1+01 34.7+01 38.4405713.8 35.7+0472.0 38.5+03713.9 35.7+0512.0
ANLIR2 33.7 334 353+01 33.2+02 37.940814.2 36.6+0573.2 37.7+02714.0 35.4+0412.0
ANLI R3 347 333 33.1+00 33.8402 34.0+03)0.7 34.6+0171.3 34.1+02 /0.6 33.54+0.010.2
COPA 780 79.0 823406 78.2403 82.740614.7 79.0+0570.0 83.0+1.075.0 79.740.6 10.7
Compl. HellaSwag 27.8 27.5 32.5+02 32.7+03 34.2+02764 33.4+02715.9 33.7+06 159 33.2+0315.7
Story Cloze 86.5 85.1 89.6+00 88.7+0.0 - - 87.3+0110.8 86.9+0.2 11.8
Coref Wino. 509 50.5 51.1+01 50.7401 52.04+03 T1.1 51.4+0070.9 52.1+03711.2 51.2+0.210.7
oref.
WSC 69.2 644 69.2+00 64.6+03 58.3+11/10.9 59.3+20 /51 57.7400]11.5 58.8+06 /5.6
WSD WIC 50.3 50.4 50.3+00 50.3+00 55.4+11751 54.4+07714.0 55.5+0815.2 54.84+05 4.4

Table 7.1: Accuracy results on the validation set of 11 NLP datasets based on the T0-3B model. Swarm
Distillation (train) and Swarm Distillation (test) use the unlabeled training split and validation split of
datasets to train the model respectively, corresponding to training-time and test-time tuning. The Story
Cloze dataset does not have a training split and its self distillation results are from tuning on the vali-
dation split. We report the mean and std across 3 random runs, and also denote the absolute accuracy

change compared to the T0-3B baseline.

7.4.1 General Setup

Datasets: Following Sanh et al. (2021), we evaluate our method on 11 NLP datasets across 4 unseen
tasks. They are (1) natural language inference: ANLI (Nie et al., 2020) (there are three versions of ANLI
with different levels of difficulty, which we denote as ANLI R1/R2/R3), CB (De Marneffe et al., 2019),
RTE (Wang et al., 2019); (2) sentence completion: COPA (Roemmele et al., 2011), HellaSwag (Zellers et al.,
2019), Story Cloze (Mostafazadeh et al., 2016); (3) coreference resolution: WSC, Winogrande (Levesque
et al.,, 2012); and (4) word sense disambiguation: WIC (Pilehvar and Camacho-Collados, 2019). We ac-
cess them using Hugging Face Datasets (Lhoest et al., 2021) and most of them are from the SuperGLUE
benchmark (Wang et al., 2019). All of these datasets are classification-based, predicting a discrete label
from a finite set. Each of these datasets has a diverse set of prompts provided by the Public Pool of
Prompts (Sanh et al., 2021) The number of prompts ranges from 4 to 15. Please refer to Appendix .18 for

detailed statistics of these datasets.

Setup: We build our method on top of the PLM TO0 (Sanh et al., 2021). T0 is an adapted version of the
pretrained T5 model (Raffel et al., 2020) that is continually trained on multiple tasks with supervised,
prompt-formatted examples. TO outperforms GPT3 (Brown et al., 2020) and demonstrates state-of-the-

90

art performance in zero-shot task generalization. All the tasks that we are studying are not included
in T0’s training data. We focus our major study on the T0O model version with 3 billion parameters
(T0-3B), while we also include results using the largest T0O model with 11 billion parameters (T0-11B)
on some datasets, due to the high computational cost of training T0-11B. We tune the hyperparameters
(e.g. the optimization hyperparameters) on the RTE dataset with its validation set and fix them for all
other datasets. During optimization of Eq. 7.2, we randomly sample a batch of k pairs of prompts where
k is the largest number that our GPU memory can fit and accumulate gradients for one update. We use

a bottleneck dimension of 1 for LoRA. Complete setup details can be found in Appendix .19.

7.4.2 Evaluation

Metrics: We use accuracy as the metric for all datasets. We report two different types of accuracy
given that we have multiple prompts. The ensemble accuracy (Ens.) averages the output distributions of
multiple prompts and makes predictions according to it. Ensembling multiple prompts has been explored
before and found superior to using a single prompt (Jiang et al., 2020; Qin and Eisner, 2021). The median
accuracy (Med.) within the set of prompts serves as a proxy for the expected performance when users
specify a single prompt and input a prompt-formatted example. As our approach assumes availability of
a set of prompts for the downstream task, and it is relatively cheap to craft several prompts for a task,
ensemble prediction is the better option given input x, and it does empirically yield higher accuracy
overall than the median for both the baseline and our method. Therefore, we will report both numbers
but mainly discuss ensemble accuracy. We compute these metrics on the validation split of each dataset.

We run the experiments with 3 random seeds and report the mean and standard deviation.

Evaluation scenarios: We provide our methods with different unlabeled sources which lead to two
practical scenarios during evaluation: (1) training-time tuning: we use the unlabeled training split from
the corresponding dataset to train the model. This is similar to traditional settings where training and
test data are different; and (2) fest-time tuning (Sun et al., 2020; Wang et al., 2021b): we directly adapt the
PLM on the test data. This setting is reasonable, as we will always have access to the test inputs at test
time. Intuitively, the unlabeled test sample x often provides hints about the distribution it was drawn,
suggesting that we may update the model before making the prediction. This scenario is attractive since
it alleviates the common distribution mismatch issue when there is a distribution shift between the
training and test data. Compared to training-time tuning, test-time tuning typically uses less unlabeled
data in our experiments since it uses the validation split itself. In the major experiments, we focus on
the offline test-time tuning where we assume access to the entire test data* and train our approach on
all test examples, while in §7.4.4 we will discuss the potential for online adaptation where data arrives

in a stream.

*To clarify, test data is not the test split of the dataset, but the data that we evaluate on, i.e. the validation split.

91

T0-11B Swarm Dist.

Dataset Ens. Med. Ens. Med.

WSC 635 625 654119 62.0105
RTE 83.8 82.0 86.6 172.8 85.0 13.0
HellaSWag 344 336 45.0710.6 43.019.4
WIC 57.2 56.8 62.1 7149 60.7 13.9

Table 7.2: Accuracy on the validation set based on T0-11B.

RTE CB ANLIR1 ANLIR2 ANLIR3 COPA HS Story. Wino. WSC WIC Avg.

To-3B 0.644 0.440 0.221 0.189 0.170 0.586 0.164 0.765 0.396 0.255 0.398 0.384
Swarm Dist. 0.662 0.254 0.145 0.156 0.177 0.699 0.402 0.862 0.509 0.462 0.517 0.440

Table 7.3: Fleiss’ kappa on 11 datasets based on T0-3B. Swarm distillation is trained on training split of

the respective dataset.

Baselines: As far as we know, there is no prior work studying unsupervised approaches for this
prompt-based task generalization setting, thus T0 is the main baseline that we compare our approach
against. However, we still implement an ablation baseline, self distillation, to separate the improvement
brought by optimizing prompt consistency and the improvement brought by pseudo-label distillation.
Specifically, self distillation minimizes the same loss as in Eq. 7.2 but with r(?) = () — instead of pair-
wise distillation, the prompt always distills its own prediction to itself. This baseline can be viewed as
a prompt version of self-training, which has proven to effectively utilize unlabeled data and achieved
success in various applications (He et al., 2020; Xie et al., 2020b; Zhang et al., 2020c). For simplicity, we

report self distillation results in the training-time tuning setting only.

7.4.3 Results

How well does swarm distillation work? We first compare swarm distillation against the T0-3B
baseline. We run our own evaluation using the released T0O weights to obtain the T0 baseline accuracy.’
As shown in Table 7.1, the ensemble accuracy of swarm distillation exceeds the T0-3B baseline on 9 out
of 11 datasets in both training- and test-time tuning settings. Particularly, our approach improves the
zero-shot performance on RTE by around 10 absolute points in all cases. Our approach slightly hurts en-
semble accuracy of ANLI R3 and median accuracy of CB, but is overall comparable on these two datasets.
Compared to self distillation, swarm distilltion outperforms it on 9 out of 11 datasets in terms of ensemble

accuracy, by up to 10.3 absolute points. These results further confirm the effectiveness of encouraging

*We are able to reproduce the numbers reported in Sanh et al. (2021), except for COPA where our T0 median number is

higher than the originally reported one.

92

91

. T0-3B a0 86.567.387.4
Swarm Distillation (Fleiss' kappa) 82.3
752758 Swarm Distillation (oracle) 78.0

75

58

50.952.052.4
46.447.647.6
42 37.438.5 37.938.3
346 337 347340 342342
27 8

25

ANL‘ R\ ANU R2 ANL‘ R?> CcOoPA HNESWES (o ClOZE Wino-

Ensemble Accuracy

Figure 7.3: Analysis results to compare the model checkpoints selected by the unsupervised criterion

Fleiss’ kappa with the oracle model checkpoints selected by validation accuracy.

prompt consistency. We note that swarm distillation severely fails on WSC with a 10-point accuracy
decrease compared to both T0 and self distillation, this is because Fleiss’ kappa selects a bad model
checkpoint, while our approach actually improves the performance on WSC in the middle of training as
we will discuss more in §7.4.4. Although it may be argued that swarm distillation only works when the
base PLM can attain reasonable performance in the first place, notably, our approach improves T0-3B
greatly on several datasets where T0-3B only shows nearly chance accuracy, such as ANLI R1/R2/R3 (3
labels), HellaSwag (4 labels), Winogrande (2 labels), and WIC (2 labels). In addition, we observe that
swarm distillation in the test-time tuning setting performs comparably well to the training-time one
despite using much less training data, as shown in Appendix .18. It is worth noting that prompt-based
zero-shot task generalization is challenging, for example, T0O with even 11 billion parameters reports a
median accuracy of only ~ 40 on ANLIR1/R2/R3, 33.7 on HellaSwag, and 57.2 on WIC (Sanh et al., 2021).
These numbers are surely still far from satisfactory, yet we hope to inspire future research to explore

prompt-formatted, unlabeled data to build better zero-shot learners.

Scaling to 11B parameters: We now evaluate our method based on the largest version of T0 model,
TO0-11B. T0-11B is a very powerful zero-shot baseline that greatly outperforms GPT3 with 175 billion
parameters. Due to the expensive computation to train T0-11B, we use one dataset per task, a total of 4
datasets as our benchmark, and only run with one random seed in the test-time tuning setting. Results
are shown in Table 7.2. Swarm distillation outperforms T0-11B on all 4 datasets in terms of ensemble
accuracy, and notably, improves the ensemble accuracy on HellaSwag from 34.4 to 45.0 without any
annotation. Table 7.1 and Table 7.2 demonstrate the effectiveness of swarm distillation across different

model sizes.

93

7.4.4 Analysis

Are predictions more consistent across different prompts after swarm distillation? We are
interested to know whether the gains of swarm distillation are attained together with more consistent
predictions across different prompts. To this end, we report Fleiss’ kappa, a commonly used metric for
group agreement as detailed in §7.3.3. Results are shown in Table 7.3. Fleiss’ kappa on 8 out of 11
datasets increases after swarm distillation, which boosts the averaged Fleiss’ kappa of T0-3B by 14.6%
relatively. This implies that swarm distillation facilitates prompt consistency, and potentially improves

the robustness of PLMs to different wording of prompts.

Does the unsupervised criterion select the best model checkpoint? In §7.3.3, we discussed using
Fleiss’ kappa to select the best model checkpoint for evaluation, here we report the oracle accuracy
numbers obtained by selecting the model checkpoint with the best validation accuracy, and compare it
to the one selected by Fleiss’ kappa. We compare the ensemble accuracy using T0-3B in the training-
time tuning setting, with results in Figure 7.3. On most of the datasets, Fleiss’ kappa is able to achieve
numbers close to the best ones. On all 11 datasets, our oracle number outperforms the T0-3B baseline.
In Table 7.1 we show that swarm distillation hurts the performance on WSC a lot, while in Figure 7.3
swarm distillation (oracle) in fact outperforms T0-3B, implying that the issue lies on model selection.
Therefore, swarm distillation could potentially work better if an annotated dev set is available or when
it is combined with other techniques in few-shot learning settings, where good checkpoints may be

selected out more easily.

How many prompts do we need? Our approach requires a diverse set of prompts to regularize
prompt consistency. Here we perform ablation experiments to understand the effect of the number of
prompts on the performance. We take COPA and ANLI R2 as example datasets which have 8 and 15
prompts, respectively. We then vary the number of available prompts by randomly sampling a subset of
prompts before training. We report the ensemble accuracy of swarm distillation (train) in Figure 7.4a.
On both COPA and ANLI R2, we observe gains as we increase the number of prompts from 0 (0 means
the baseline), yet the performance saturates very quickly and relatively stabilizes when we provide 4
prompts. This implies that swarm distillation is not prompt-hungry and could work well with a small
number of prompts. We note the with one prompt here Eq. 7.2 degenerates to a weaker version of self
distillation compared to the one in Table 7.1 — self distillation in Table 7.1 utilizes all prompts during

training while we assume access to only one prompt here.

How many unlabeled examples do we need? We measure the effect of unlabeled data size. Specif-
ically, we randomly sample a subset of examples from the train split for training and report results on

the entire validation dataset. Results on WIC and ANLI R2 are shown in Figure 7.4b. Notably, swarm

94

60

W\c
8ope: 55

—— ANLI R2
50 40
40 3 8.5 3513%8.7 —e— WIC
33.7 33 —— ANLI R2
30 30
0 1 2 4 6 8 10 0 10 30 50 70 100 300 500
(a) Accuracy v.s. #prompts (b) Accuracy v.s. #examples

Figure 7.4: Ensemble accuracy of swarm distillation on three example datasets, demonstrating the effect

of prompt size and unlabeled data size. The PLM is T0-3B.

distillation is able to outperform the baselines (#examples=0) by a large margin on both datasets with
only 10 unlabeled examples, and the performance starts to saturate quickly afterward. These results
suggest that swarm distillation is not data-hungry and works reasonably well with few unlabeled ex-
amples, allowing swarm distillation to remain as a relatively light approach while typical unsupervised
training (e.g. pretraining) often requires a large amount of data and computation. Also, we argue that
the phenomenon demonstrated in the results implies that swarm distillation may be applied to the online
setting of test-time tuning, where the batches of test data arrive in a stream. Online test-time tuning is

a practical setting in real life, and we leave the study of swarm distillation in this setting as future work.

7.5 Discussion

In this chaper, we explore prompt consistency regularization to make PLMs better zero-shot learners.
Our approach utilizes unlabeled examples to attain zero-shot gains. While we use it in a post-adaptation
way to adapt PLMs with the proposed swarm distillation loss alone, our regularization loss could be
potentially combined with the pretraining objectives in the pretraining stage, with the multi-prompt
training loss (Sanh et al., 2021; Wei et al., 2021), or even with annotated data in few-shot learning settings.
Combining the swarm distillation loss with these other losses may easily bypass the model collapse issue
since the other loss typically discourages the collapsed local optimum. The potential applications of

unsupervised swarm distillation on sequence generation tasks are also worth studying in the future.

95

96

Chapter 8

Conclusions and Future Directions

This thesis has tried to tackle distribution shift in NLP from different perspectives, focusing on the
detection of hallucination errors made in neural sequence generation systems, and the central problem
of learning models that are robust to distribution shift in the real world. We summarize the contributions

of this thesis below:

* We made the first step towards detecting hallucinated content at a fine-grained level (token-level)
in the outputs of conditional neural generation (Chapter 3). This hallucination detection tool
also serves as a filter for noisy parallel training data, which can be broadly used in many data
augmentation settings where the collected data is not clean (e.g. model generated or crawled
from web). We empirically show that using our proposed truncated loss that exclude hallucinated

tokens can bring significant gains on low-resource machine translation tasks.

* We developed and improved group distributionally robust optimization methods to deal with sub-
population shift. In particular, we found that group DRO fails if there are no clean group partitions
of training data and we proposed a more flexible uncertainty set to overcome this issue (Chap-
ter 4). Furthermore, we developed an efficient learning objective based on group DRO to alleviate
the data balance across language pairs in multilingual neural machine translation (Chapter 5). It
is also worth noting that we were among the first to use group DRO algorithms in large-scale

real-world problems.

* We proposed methods that can more effectively adapt existing large-scale pre-trained language
models to downstream tasks. Specifically, we connected several best-performing parameter-efficient
transfer learning approaches of PLMs and proposed a new state-of-the-art method under our uni-
fied framework (Chapter 6). This framework provides insights for better understanding and de-
veloping parameter-efficient fine-tuning methods. Furthermore, we proposed a novel learning
paradigm of continually adapting PLMs on unannotated examples for better zero-shot task gen-

eralization (Chapter 7). We obtain the state-of-the-art zero-shot task generalization performance

97

across 11 NLP datasets and show that our model is more robust to the variations of inputs in terms

of producing consistent predictions.

As NLP systems are increasingly becoming parts of many real-world applications, their reliability and
robustness are keys to building and deploying systems that users can trust. Towards this goal, we still

face many challenges and open research questions are worth further investigation along this line.

* First, interpretability matters especially in this era of increasingly larger models. Inter-
pretability includes knowing why a model makes certain predictions given a specific input and
how it relates to the changes of model internal states. Only when we can interpret the model’s
behavior, can we know when it will fail and how we can fix it. To identify the salient input tokens
that are responsible for some prediction, one class of prominent approach is exploiting gradient-
based metrics (Li et al., 2016; Shrikumar et al., 2016) or attention weights-based metrics (Vashishth
et al., 2019). Some recently works in causality attempt to interpret the predictions using counter-
factual examples or manipulating the representation of the text (Feder et al., 2021; Karimi et al.,
2021). Beyond the efforts to explain models’ predictions, we also should call for more research
work on “knows when the model does not know" in the future, which allows the deployment of a

self-conscious system that knows when to “step back" at test time.

* Second, we should embrace a dynamic evaluation setup in more and more NLP tasks.
It is great to see that recently there are researchers working on temporal generalization of pre-
trained models in language modeling (Lazaridou et al., 2021) and knowledge probing (Dhingra
et al., 2022). It is necessary to expand and develop such dynamic evaluation setups for other tasks
such that we can evaluate or even learn a model in a dynamically changing environment. Such
learning environment can be multimodal and experience-grounded, which is a combination of

reinforcement learning, unsupervised learning and supervised learning.

* Third, itis critical to design models and new learning paradigms that adapts to constantly
changing world knowledge and environments. First, knowledge representation is important,
which has been explored in several previous works (Hitzler and Sarker, 2022; de Jong et al., 2021;
Lewis et al., 2021b). This further affects how efficient it is for the model to interact with the
knowledge base in terms of the efficiency in knowledge storage, retrieval and updates. The recent
trends of combining parametric model with non-parametric knowledge base (Guu et al., 2020;
Khandelwal et al., 2019, 2020; Borgeaud et al., 2021; Lewis et al., 2020b) not only alleviates the
demand of large model parameters but also provides the possibility of utilizing future knowledge.
We expect to see more powerful and efficient semi-parametric model in the future. Finally, We
would like to design models with the ability of continual learning such that it can constantly
update itself every time new examples are observed. We hope our work (Chapter 7) for zero-

shot task generalization can pioneer this line of research. It is also worth noting that the sparse

98

models (e.g. Mixture-of-Experts) (Fedus et al., 2021; Zoph et al., 2022) and parameter-efficient
tuning methods provide natural modular designs and could potentially be used in the future for
efficient continual learning. We hope our works in Part III can provide some insights on using

parameter-efficient tuning methods for this direction.

99

100

Appendix I: Hallucination Detection for

Conditional Sequence Generation

.1 Human Evaluations

Setup We asked three bilingual speakers to annotate the Chinese-to-English evaluation set D,yq,
which is composed of 150 sentences from the test set of Zh-En multi-domain dataset (Wang et al., 2020e),
and 100 sentences from the COVID-19 translation benchmark dataset (Anastasopoulos et al., 2020) —
TICO. TICO contains 6 finegrained domains including Wikisource, Wikivoyage, Wikinews, CMU, PubMed
and Wikipedia. we randomly sample 25 examples from each of the four domains — Wikisource, Wikinews,
CMU and PubMed, use these 100 samples for evaluation. We train two varieties of models: a standard
base Transformer Seq2Seq model and a model that finetunes the MBART (Liu et al.,, 2020c) model on
the training data from Dy;4p,. In the human evaluation, three bilingual annotators were presented the

Chinese source sentence, the English reference sentence and the MT model generation.

Annotation Guidelines and Process We conducted the pilot study and practice sessions with an-
notators before annotating the final blind test set D,,4;. The pilot study was performed on a different
evaluation set and we performed analysis on them. Then we conducted an education session with evalu-
ators to make sure that they can fully understand and follow the guidelines. We find that it is important
to define a clear workflow for annotators to execute. In the final evaluation, we ask each annotator to
read the tokens in the sentence carefully and check if they can be supported by the source sentence in
the following order:

(1) If there are tokens (or the entire sentence) that cannot be supported by the source, label all the
span(s) with color and mark the sentence as a hallucinated one;

(2) If the annotator can not understand the entire translation, mark the sentence as incomprehensible;

(3) If all the tokens in the translation can be entailed from the source, mark the sentence as a faithful
one.

We shuffled the order of sentences so that annotators did not know which translation model was

used (TranS2S or MBART). Besides, we made out the following guidelines to help annotators identify

101

hallucinated spans and distinguish bad translations from hallucinated ones: (1) If a machine generation
contains hallucinations, we ask annotators to minimally mask spans of words as hallucinations such that
deleting these spans or replacing these spans with other words can dehallucinate the generation (make
the generation a faithful one to the source input). For example, if 7" =“John likes Mary, but Mary does
not like John” and G ="“John likes Mary, and Mary likes John”, “and" and “likes" in the latter part of
G should be marked as hallucinations. (2) We ask annotators not to consider the domain of sentences
when marking hallucinations. For examples, if S=“% KA MIFEH T - " (Chinese), T="My chest
hurts badly today." and G=“My breast hurt badly today, in this case, both the reference 7" and the MT
G are valid translations of the source sentence because the word “Mf§#" in the source is a polysemy.
Without considering the domain that sentences come from, the generation is a faithful one. (3) We ask
annotators not to be “harsh", e.g. if a capitalized word in the reference is lowercased in the translation,
we ask them not to mark it as hallucination under the rule that hallucinations should only be considered
by the meaning of words and whether they are faithful to the source, instead of the surface form.

Note that annotations are performed on the raw sentences, i.e. punctuation marks can also be labeled
as hallucinations along with the span and we did not apply special treatments to them. At test time, the
model outputs are compared against the raw form of sentences, and model predictions on subwords
are converted to labels on the raw sentences. Besides, based on our guidelines, the annotated span of

hallucination words may also contain prepositions and other stop words.

Post-processing: We dropped all the translations that were labeled as incomprehensible (15 for TranS2S
and 3 for MBART). To aggregate annotations from the three annotators, we assign the label to each token
by majority voting, i.e. the label that two or more annotators agree on. We also aggregate the evalu-
ation data from Maynez et al. (2020) in the same manner to produce our own test set for abstract text

summarization.

.2 Training of NMT models

Tokenization For TranS2S, we first segment the Chinese corpus with a Chinese word segmentation
tool (Luo et al., 2019), then we learn separate BPE vocabularies with 32k merge operations (Sennrich et al.,
2016b) over the source (Zh) and the tokenized target (En) corpus respectively. For MBART, we directly
apply the contained sentence-piece dictionary in the finetuned model to the raw data of Chinese and

English corpus.

Model We use the implementation of Transformer from fairseq (Ott et al., 2019). Following the nota-
tions used in fairseq, we use a base transformer model for TranS2S and a large tranasformer model for

MBART.

102

Fleiss’ Kappa

Models
Token Sent
MT
TranS2S 0.58 0.72
MBART 0.54 0.62
XSum
PtGen 0.81 -
TConvS2S 0.83 -
TranS2S 0.79 -

BERTS2S 0.79 -

Table 1: Fleiss’s Kappa scores (1): agreements on token-level hallucination labels or sentence-level
(sent) ratings among different annotators. The token-level agreements for XSum are computed on the
released annotations by Maynez et al. (2020).

Training and Decoding For TranS2S, we apply the standard hyperparameters reported in the exam-
ple of fairseq. We use the Adam optimizer (Kingma and Ba, 2014) using 5; = 0.9, 2 = 0.98,¢ = le — 8.
The learning rate is scheduled using inverse_sqrt with a maximum learning rate 0.0005 and 4000
warmup steps. We set the label smoothing as 0.1. We apply dropout of 0.1 and select the best model
with validation BLEU scores. We run the model on 8 GPUs for 300,000 updates with an effective
batch size of around 64,000 tokens. When finetuning MBART, we use learning rate of 3e-5, and use
polynomial_decay forlearning rate scheduling with warmup updates of 3,000. The effective batch
size is 16,384. Dropout is set to be 0.3 and the attention dropout rate is 0.1. The label smoothing is set to
be 0.2. We finetune MBart for 60,000 updates. We decode outputs with beam-search and beam size of 5.

.3 Experimental Details for Token-level Hallucination Prediction

Subword Tokenization Depending on the pretrained model (Roberta / XLM-Roberta) we finetune
on, we apply corresponding subword segmentation to the synthetic data set (S, T, T’) and calculate the
edit-distance between the 7" and 7" at the subword level. At evaluation time, the model predicts the
hallucination labels for each subword in the sentence, thus we predict a word to be a hallucination word

if any subword of it is predicted as a hallucinated one.

Synthetic data generation There are a couple of hyperparameters of noised functions in the BART
implementation (Ott et al., 2019). The main noised functions include (1) random masking, (2) random
replacement, (3) random insertion of masks. We found that random masking and random replacement
are the two key factors affecting the generated sentences and we have provided their settings in the main

paper. We apply a random insertion masks rate of 0.2 for all settings. In addition, the noise functions are

103

Input to N (+) Precision Recall F1

MT
raw 58.35 70.12 63.70
TranS2S distill 64.27 67.30 65.75
Summarization
raw 57.02 67.23 61.70
Extractive distill 54.10 36.45 43.55
Abstractive distill ~ 57.33 28.59 38.16

Table 2: Performance on the TranS2S benchmark from MT and summarization by using different data

as the input to the noised function N (-). “raw" refers to the original targets in the training data.

applied to words instead of spans in our setting.

Finetuning For MT, we finetune a large XLM-Roberta (Conneau et al., 2020a) released in fairseq (Ott

etal., 2019). For summarization, we finetune a large Roberta (Ott et al., 2019) on the synthetic data where

we truncate articles that exceed 512 tokens (allowed by the Roberta) to be 512. For both models, we use

the Adam optimizer (Kingma and Ba, 2014) with 81 = 0.9, 82 = 0.98,¢ = le — 6 and weight decay

of 0.1. We set the masking probability to be 0.35 for the £,,;,, loss. The dropout and attention dropout

rates are set to be 0.1. We adopt polynomial_decay for learning rate scheduling with learning rate

of 2e-5.

—— MT
—¥— SUM

0.0 0.2 0.4 0.6

0.8

Dropout Rate of Reference Tokens

1.0

Figure 1: Performance on the TranS2S outputs from MT and summarization by varying the token dropout

rate of in the reference at training time.

MT

mm Gold
503 B Our predictions

In-group Hallucination Ratio
S B o
N
In-group Hallucination Ratio

e o 0o 0 o~
o N B o ®» O

NN cD J) VB RB IN
POS tag

XSum

CDh

J)

Figure 2: Analysis of part-of-speech tags and within-group percentage

and summarization (right).

104

mm Gold
s Our predictions
@ Overlap Baseline

RB NN IN VB
POS tag

of hallucinations for MT (left)

Methods TranS2S MBART

Alignment (18.90, 66.82, 29.47) (5.63, 42.09, 9.93)
Overlap-based (7.02, 13.10, 9.14) (1.98, 8.97, 3.24)
Synonym-based - -

Ours (w/o ref) (64.27, 67.30, 65.75) (49.56, 36.32, 41.92)
Ours (w/ ref) (59.92, 74.27, 66.08) (43.13, 53.63, 46.81)

Table 3: Triplets represent (Precision, Recall, F1 (x100)) of hallucination labels on the outputs of different
systems from a MT task (§3.4.2). The first block are baseline methods and the second block are our
results. We highlight the best results without using reference.

Source {5 BRI 50 -
Reference the set of information is called page data.

the foreign[1] mix[1] is called the page data.

Source BB N T —HHEE -
Reference the metal lines correspond to first resistors.

the wire corresponds with the first capital[1].

Source IR BAE A o Y 3

Reference driving samples to flow through a flow channel;

driving samples pass the flow of people[1];

Table 4: Examples of partially hallucinated outputs from the teacher MT model used in self-training and
the hallucinated labels predicted by our system. We only highlight words with hallucination labels with

[1].
.4 Ablation Studies

Effects of including reference at training time Recall that we concatenate the source, reference
and machine generation together as the input when learning hallucination predictions (Sec. 3.3.2). In
Fig.1, we vary the dropout rate of tokens in the reference at training time and evaluate the models on
the outputs from the TranS2S model for both tasks, where dropout rate of 1.0 indicates that we do not
include the reference at all. First, different dropout rates do not signficinatly affect performance for
MT, this is likely because we use the paraphrased target when creating the synthetic data instead of the
reference sentences. Thus, the “hallucinated" sentences D’ from BART do not resemble the reference T
as closely as 7", and the model will not learn spurious correlations between the 7" and D’. Second, for
summarization we see that applying word dropout is crucial since we have used the reference more di-
rectly for generating synthetic data. On the other hand, if reference is removed at learning time (dropout

= 1.0), the resulted model performs poorly, which shows that including reference at training time also

105

Methods

PtGen

TConvS2S

TranS2S

BERTS2S

Alignment
Overlap-based
Synonym-based

(60.66, 28.65, 38.92)
(67.72, 49.54, 57.22)
(50.52, 72.50, 59.55)

(66.14, 26.60, 37.94)
(60.39, 49.24, 54.25)
(57.06, 72.16, 63.73)

(56.24, 24.85, 34.47)
(53.22, 54.37, 53.79)
(50.29, 70.37, 58.66)

(50.68, 27.69, 35.81)
(62.57, 49.26, 55.13)
(41.80, 72.67, 53.07)

Ours (w/o ref)

(57.47, 71.35, 63.66)

(63.21, 68.93, 65.94)

(57.02, 67.23, 61.70)

(49.83, 62.50, 55.45)

Ours (w/o ref + syn) (50.33, 90.27, 64.72) (56.86, 88.93, 69.37 (50.21, 87.78, 63.88) (41.70, 87.52, 56.49)

Ours (w/ ref)

(56.51, 73.48, 63.89)

(61.68, 71.63, 66.28)

(55.88, 70.19, 62.24)

(48.39, 66.11, 55.88)

Table 5: Triplets represent (Precision, Recall, F1 (x100)) of hallucination labels on the abstract summa-
rization task (XSum dataset). The first block are baseline methods and the second block are our results.

We highlight the best results without using reference.
has positive effects.

Effects of paraphrased data We investigate the effects of using paraphrased data in Tab. 2, where
we apply the noise functions to different forms of targets when generating synthetic data. For MT, we
create paraphrased targets via knowledge distillation (Kim and Rush, 2016a) where we use the output
from TranS2S conditioned on the source sentence in the bi-text corpus as the paraphrased target. We can
see that with distillation data for synthetic data generation, the model achieves better results compared
to using the references. However, note that we need to choose a proper word dropout rate when using the
reference-based synthetic data as discussed above. For abstractive summarization, we create paraphrased
data out of an abstractive and an extractive summarization systems respectively. We finetune BART on
the bi-text of XSuM and create distillation data from this finetuned abstractive model. For the extractive
system, we use the recent proposed MatchSum (Zhong et al., 2020) as the distillation model. We see a
significant drop in the performance for both of the variants. This likely due to the fact that: (1) it has been
shown that abstractive summarization systems are prone to hallucinate contents themselves (Maynez
et al., 2020), thus we are not able to create reliable pseudo labels based on the generated summaries,
and (2) the extractive system generates summaries out of the input article which diverge from the actual

abstractive summaries we evaluate on, and the model cannot generalize well under such data shift.

.5 Supplymental Results and Analysis
.5.1 Full Results of Token-level Hallucination Predictions

We found the synonym and string-matching based methods are strong and effective baselines on the
monolingual (summarization) token-level hallucination prediction task as an alternative to neural meth-
ods. However, previous work (Maynez et al., 2020; Wang et al., 2020a; Durmus et al., 2020) on hallucina-

tion assess did not study synonym-based non-neural baselines when measuring the faithfulness of the

106

Reference the arrangement pattern of the projections 2 will now be explained

with reference to figs. 5-7.

Annotation next,[0] we[0] use[0] fig.[0] 5[0] -[0] 7[0] to[0] explain[0] the[0] dis-
position[0] pattern[0] with[0] pm-2.[1]

Prediction next,[0] we[0] use[0] fig.[0] 5[0] -[0] 7[0] to[0] explain[0] the[0] dis-
position[0] pattern[0] with[1] pm-2.[1]

Reference a swivel joint 557 is provided in a radially outer region, on an end

surface of the drive plate 556.

Annotation a[0] rotation[0] hinged[1] 557[0] is[0] provided[0] to[0] the[0] exter-
nal[0] area[0] on[0] a[0] trail[1] that[0] has[0] a[0] preface[1] state.[1]

Prediction a[0] rotation[0] hinged[0] 557[0] is[0] provided[1] to[0] the[0] exter-
nal[0] area[0] on[0] a[0] trail[1] that[1] has[1] a[0] preface[1] state.[1]

Reference if you have a fever of a hundred and two or higher.

Annotation if[0] your[0] heat[0] reaches[0] 102.d[0] egree.[0] f.[0] or[0] above,[0]

Prediction if[0] your[0] heat[0] reaches[0] 102.d[1] egree.[1] f.[1] or[0] above,[0]

Table 6: Examples of annotations and our hallucination detection model predictions, [0] and [1] respec-

tively indicate faithful and hallucinated word.

summarization model outputs.

.5.2 Analysis on Part-of-speech tags and with-in Group Hallucination Percentage

We have shown that the macro Part-of-Speech tag distribution of hallucinated tokens in §3.5.3. In this
section, we analyze the micro-percentage of hallucination labels within each POS tags. We show the
gold annotations as well as our model predictions of hallucination words within each POS tags. For
summarization, we also show the results from the string-matching baseline. From Fig. 2, we can see that
for MT nouns are most likely hallucinated words while for summarization cardinal numbers (e.g. one,
two) are most likely hallucinated words. And we can see that our model predictions align well with the

gold annotations on the percentage of hallucinated words within each POS tags.

.5.3 Examples of Partially Hallucinated Outputs from Teacher MT Model

In Tab. 4, we randomly select some examples for which we present the source sentences from the patent
monolingual Chinese dataset, the corresponding reference English sentences and the generations from
a teacher model trained on the training data described in §3.4.2 where patent is a low-resource domain.
We can see that in these examples, only parts of the model outputs are hallucinated and the rest of the
outputs are good translations that are faithful to the source. Through our approach in §3.6, we can still

make use of these good parts of translation during training.

107

.5.4 Examples of Hallucination Predictions on the MT test set

As shown Tab. 6, our model performs well in general but can be inaccurate in case of spelling errors of

the translations. Besides, we also find some annotation errors while our model predicts correctly.

108

Appendix II: Examining and Combating

Spurious Features under Distribution
Shift

.6 Proofs of Theorem 1

Lemma 1. IfT is sufficient statistics, we have p(Y, X |T) = p(Y|T) - p(X|T).
Lemma 2. IfT is sufficient statistics, we have p(Y |T'(X)) = p(Y|X).

Proof. FindT"(X),s.t. S(x) = (T'(X),T'(X)) is an invertible mapping of X, thus p(Y'|X) = p(Y|S(X)) =
p(Y|T(X),T'(X)). We have,

p(Y,T(X), T(X)|T(X)) = p(Y|T'(X), T(X))p(T"(X)|T(X)) (1)
From Lemma 1, we have
p(Y,T(X), T"(X)|T(X)) = p(Y|T(X))p(T"(X)|T (X)) (2)

By (1) and (2), we obtain p(Y|T"(X), T(X)) = p(Y|T(X)) = p(Y|X). O

Theorem 1. Suppose that there is only covariate shift in piin, i.e. 32 € Xipain S-t. Pirain(T) 7 Didear()
but prain(Y|X =) = pigeat(Y | X =), Y& € Xipain. Let Tirain(X) be the MSS representation learned

under Dyrain, then we have:

Htrain (Ttrain(m)lndeal(ZE)) =0. (42)

Proof. Since there is covariate shift between pjgea and Pirain, we have pyain (Y] X) = pigea(YX), V€
Xirain- Since Tipqin(X) is MSS of pyain and by Lemma 2, we have pirain (Y| Tirain (X)) = Purain(Y]X) =

109

pideal(Y|X) = pideal(Y’T’ideal (X))u Vo € Xirain.: Then Vx € Xtrainy (/S YV,

ptrain(yu—;ﬁdeal (l’)) = Z ptrain(y‘x/)ptrain(x,|T(x))

x':Tideal (x/):Tideal (Z‘)

= Z pideal(y‘x,)ptrain(x/‘T(x»

" Tideat (ﬁ/):Tideal (CE)

= Z pideal(y|T(x))ptrain (aj/|T($))

" Tideal (x/):Tideal (m)

= pideal(y|ndeal($)) (3)

Then we have

Htrain (Y|Ttrain (X)) = Z ptrain(m’ y) [_ log ptrain(y|Ttrain (l'))]

z,y
= Z ptrain(-T, y) [_ log pideal(yu—:ideal (:E))]
x’y
= Z ptrain(x7 y) [_ 10g ptrain(yu—‘ideal (%))]
x7y
= Htrain (Y ’T’ideal (X)) (4)

From equation 4 and the definition of sufficient statistics, we have
Itram(Y; Tirain (X)) = Itrain(Y; X) = Itrain(y§ T‘ideal (X)) (5)
Thus, T}geq;(X) is the sufficient statistics of X about Y under piin. By definition, we have

Hirain (Ttrain(X) |T’ideal (X)) =0. (6)

Corollary 1. Suppose Xirqin = Xigear in Theorem 1, then Tiyqin(X) is also the MSS under pigeq;.
Proof. Since Xirqin = Xideal = X, with the similar derivation of equation 3, we have Vx € X',y € J

pideal(yu_‘ideal (l’)) = pideal(y|Ttrain(-T)) (7)

Together with Theorem 1, we have T},qin () is also the MSS under pjgeal-]

.7 Connections between MLE and Learning Minimal Sufficient Statis-

tics

.7.1 Information Bottleneck (IB) Method

The information bottleneck (IB) method (Tishby et al., 2000) is an information theoretic principle intro-

duced to extract relevant information that an input X € X" contains about an output random variable

110

Y € Y. Defined on a joint distribution of X and Y, IB learns a mapping function 7'(.X') by optimizing the
trade-off between the mutual information I(X;7) and I(Y'; T') such that 7'(X) is a compressed repre-
sentation of X (quantified by I(X; T')) that is most informative about Y (quantified by I(Y’; T)). Let T be
parameterized by 6, the objective of IB optimizes the trade-off between I(Y;Ty(X)) and I(X;Tp(X)):

min —I(Y, Ty(X)) + BI(X; Tp(X)) (8)

where (is a positive Lagrange multiplier.
Schwartz-Ziv and Tishby (2017) casts finding of minimal sufficient statistics (MSS) 7'(X) as a con-
strained optimization problem using data-processing inequality (Cover, 1999):
in [(T(X); X
min I(T(X); X)

st I(T(X);Y) =I(X;Y) (9)

This corresponds to the IB method (Eq. 8) which extends the notion of relevance between functions
of samples and parameters in conventional MSS to any joint distribution of X and Y. The IB method
provides a computational framework for finding approximate MSS in a soft manner by trading off the
sufficiency for Y (I(Y; T(X))) and the minimality of the statistic (I (X, 7'(X))) with the Lagrange multi-
plier 8 (Schwartz-Ziv and Tishby, 2017; Shamir et al., 2010).

.7.2 Connections between MLE and IB

Given that the IB objective is approximately learning MSS in a soft manner, we next build the connections
between the popularly adopted maximum likelihood estimation (MLE) in supervised learning and the IB
objective. We show that under certain assumptions, MLE is approximating the IB objective defined on
the joint distribution of Pirain (X, Y).

To facilitate the discussions, we decompose the model parameters into 6 and ¢ that denote the pa-
rameters of the feature extractor Ty(x) and the classifier respectively. MLE minimizes the expected

negative log probability under piin (X, Y):

Igi(ﬁn Exvy"’ptrain(X7Y) [_ log p97¢ ($7 y)] (10)
— r%n B ypian(x,7) [108 o (4| To () — log po ()] (1)

Usually, we only model the conditional distribution p, (Y| X') and assume that py(X) = Pirain (X)) which
is independent from 6. With the assumption that py(z) oc p?(Ty(x))), 3 > 0, (11) can be rewritten as:

Igigén By ympian (X,7) [108 D6 (Y| Ty (2))] + BEgpyain(x) [— l0g (Ty(2))] (12)

111

Assume that the neural network parameterized by ¢ is a universal function approximator, then we

can replace miny 4 with ming and (12) can be written as:

min H(Y|Ty(X)) + BH (Ty(X))
by (1) I(Y: Ty(X)) = H(Y) — H(Y|Ty(X))
(2) H(Ty(X)) = I(X; Ty(X)) + H(Ty(X)|X) = I(X: Ty(X))
= min—I(V; Ty(X)) + BI(X; Ty(X))

(13)

(14)

We can see that under the assumption of pg(z) o< p?(Tp(x))), the MLE objective can be converted into

the same form as the IB objective. In practice, we usually do not model pi.in (X) and only optimize the

first term I(Y'; Ty(X)) in (14). However, previous work (Schwartz-Ziv and Tishby, 2017; Geiger, 2020)

has shown that deep neural networks (DNNs) are implicitly minimizing (X ; Tp(X)) with a wide range

of activation functions and architectures, which are manifested as a second compression phase during

learning with SGD. Thus, we can presumably consider MLE as approximating the IB objective, which is

equivalent to learning the MSS on the train distribution p,in (X, Y).

.8 Details of the Online Greedy Algorithm for Group DRO

Algorithm 3: Online greedy algorithm for group DRO (Oren et al., 2019)

Input : «o; m: total number of groups

Initialize historical average group losses L), historical estimate of group probabilities p

learning rate n

fort=1,---,7T do
Sample a mini-batch batch B = (x,y, g) uniformly from piain

LW(g) « EMA({{(x;,y:;0%" 1) : g = g}, LUD(g))
ptrain(®) « EMA (#samples of each group in B, ptrein(t=1)

> Update the worst-case distribution ¢(*

Sort ptrazn()
strain(t)
i—1 P (g«

0 (gn,) = min{ P 1 T By
> Update model parameters 6

e(t) = 0 \B| Z‘Bl trqa(zt:L ())ve<xzvy“9(til))

end

t'rm,n(t) (

> Update the historical vectors of L® and ptron®) for each groupg € {1,---,m

in the order of decreasing L® and denote the sorted group indexes 7

strain(0).

5

EMA refers to exponential weighted moving average such that EMA (v1,v2) = yv1 + (1 — 7)ve,

where v € (0,1).

112

.9 Synthetic Experiments: on Investigation Spurious Features under

Covariate Shift

| y=2%10=2 \
; - J

o - :
1 1 1
O O Bl
5 3| efidl 6 2 | tesla |9

-
8 abcd

Figure 3: An illustrative example of the synthetic task.

Synthetic Experiments We design synthetic experiments where data is generated based on the ground-
truth rules and different biases are injected. We show that even in the presence of necessary information
to learn the rules, the ERM model (specifically, we examine MLE) can still learn spurious features or
miss robust features under covariate shift. The synthetic task aims to predict an integer y € {0,--- ,9}

conditioned on a sequence = as shown in Fig. 3. Concretely, x is composed of m chunks, where each
1

chunk ¢; has |¢;| characters that are randomly sampled from an alphabet V. We prepend an integer c,
and append an integer c? to each chunk ¢;, and both ¢} and ¢? are uniformly sampled from [1, 10]. The
target integer y is predicted following the rules: each triple of (¢}, ¢;, ¢?) produces an indicator value d;;
d; = C?—c} ifcz2 > c}, otherwise d; = O;theny = (3_;%, d;) mod 10. Weset3 <m < 6,3 < |¢;| <5
and |V| = 26,. We use a one-layer bidirectional LSTM (Hochreiter and Schmidhuber, 1997) to model
the input sequence and use the final hidden states of the LSTM to predict the target value. We create
training data following the the above description and design two settings that introduce covariate shift
to examine if the model can learn the rules with ERM.

(a) Setting 1 — ERM-trained models can miss robust features under covariate shift: We create
the training data by imposing c2, > ¢, on the last chunk c,, of all the training samples. When we create
the training data, the rules applied to each chunk are the same as described above, which means that
the model does not need to learn additional rules for the last chunk. We are interested in examining
whether the model trained with ERM will apply the rules learned from other chunks to the last one or
it will miss the robust features of the last chunk. At test time, we evaluate on two groups of test sets:
Dout Where c%l < c}n, different from the training data, and D;,, where cfn > c}n, consistent with the
training data. From Tab. 7, we see that the test accuracy on Dy, is much lower that that on D;,,. This
demonstrates that the model only learns robust features from chunks "~ but misses the robust features
of the last chunk c¢,,,. We conjecture that the model trained with ERM learns in a lazy way where it tries
to minimize the entropy of learned features by memorizing patterns and taking shortcuts as discussed
further in Appendix .7.2.

(b) Setting 2 — ERM-trained models can learn spurious features under covariate shift: In

the second setting, we inject spurious patterns into the training data that co-occur with the rules we

113

Din Dout

Setting 1 | 99.93 £0.02 14.68 & 2.60
Setting 2 | 100.00 = 0.00 10.26 £ 0.25

Table 7: Test accuracy of the synthetic task.

aim to learn. As both robust rules and spurious patterns co-exist in the training data, we would like
to see whether the model picks up the spurious ones or the robust ones. Specifically, each training
input sequence has a chunk c; that includes a special segment of characters, e.g. a b. The remainder of
d; = c? — cjl- and the sum of all indicators > ; d; mod by 10 are the same such that the target label
y is always the same as the indicator d;. Similarly, we test on two cases: i) D;,, where every sequence
includes a special chunk as in the training set; ii) D,,; where characters in each chunk are uniformly

sampled. We can see from Tab. 7 that the model learns to use the spurious patterns to predict the target

label instead of the general rules.

.10 Experimental Details

.10.1 Models and Training Details

Model Specific Settings In our method, we adopt two criterions in GC-DRO to determine when to
update ¢(x,y|g) for each groups: (1) update when the robust validation accuracy drops (2) update at
every epoch. With (2), ¢(z, y|g) is updated more frequently. For MNLI and Celeb-A, we use the second
criterion. For FDCL18, we use the first criterion, because this is a relatively smaller dataset and updat-
ing q(x,y|g) less frequently makes training more stable. Every time ¢(z,y|g) is updates, we clear the
historical losses in EMA that is used for updating ¢(g). We use exponentially weighted moving average
(EMA) to compute the historical losses for both ¢(g) and ¢(z, y|g), for which we denote EM A and and
EMA ¢ respectively. As shown above, we use 7y to denote the coefficient for current value in EMA, thus
1 — ~ is used to the historical value. We found that the value of 7 is an important hyperparameter in
some cases to achieve better performance, since the final ¢ distribution is computed through sorting the
losses accumulated via EMA. Basically, a higher ~ pays more attention to the current value. We search
over {0.1,0.5} for both y used in EMAg and EMAcg respectively. Through the robust accuracy on
the validation set, we set both 7’s to be 0.5 for the NLP tasks except that for the imperfect partition of
toxicity detection we set v used in EMAg to be 0.1. For the image task, we set both +’s to be 0.1. For the

~ used in accumulating the historical fractions of groups, we always use a small value 0.01.

Training Details For the NLP tasks, we finetune a base Roberta model (Liu et al., 2019; Ott et al., 2019)
and we segment the input text into the sub-word tokens using the tokenization described in (Liu et al.,

2019). During training, we sample minibatches that contain at most 4400 tokens. We train MNLI using

114

Adam (Kingma and Ba, 2014) with an intitial learnig rate of 1le — 5 for 35 epochs and FDCL18 for 45
epochs, and we linearly decay the learning rate at every step until the end of training. For the image
task, we fine-tune a ResNet-18 (He et al., 2016) for 50 epochs with batch size of 256. We use SGD with
learning rate of 1e — 4. At the end of every epoch, we evaluate the robust accuracy on the validation set.
We train on one Volta-16G GPU and it takes around 2 - 5 hours to finish one experiments for different

datasets.

.10.2 Implementation of the Group DRO Loss

We referred to the implementation of greedy group DRO in Sagawa et al. (2020a), where they use the
exact formulation in Eq. 4.5 to compute the expected loss, which leads to inferior performance compared
to the exponentiated-gradient based optimization as reported in Sagawa et al. (2020a). The implemen-
tation computed the final loss by first computing the average loss over instances for each group (MC
for the inner expectation), then compute the full expected value over the averaged group loss, as shown
below:

(x,y,&:0) = alg)llg) = Zq(g)ci > lxi,yis0), (15)

g g I {ivgi=g}

where (x,y,g) is a mini-batch and Cj is the number of samples that belong to group ¢ in the mini-
batch. We can see that instances that belong to different groups are weighted correspondingly by the
number of group size in a mini-batch. This causes that instances in large group get unfairly lower
weights, especially when its probability in the ¢ distribution is low. We fix this by directly computing
the expected loss over the joint distribution of ¢(z, y, g), i.e.
(i, yi,91)

— AT, Y, i)
ptrain(xiayi’gi) (e Z)

E(mungz)NQ(fE,%g)E(wZ’ Yi> i 9) = E(w’b7y27g7«)~ptmm(x’y7g)

Specifically, we do this by summing over all the importance weighted instance losses using correspond-

ing group weights and taking average. This allows us to obtain unbiased gradient estimates of 6.

1 q(8i)
I L€ Ry 16
N i ptrain(gi) (Y) ()

115

116

Appendix III: Distributionally
Multilingual MT

.11 Best response

In this section, we describe the bisection procedure we use to solve the best response and update ¢
shown in equation 5.7. This derivation generically exists in the literature (e.g. Appendix A.1.2 in Levy

train

et al. (2020)) but we specialize it to the y2-ball centered at p and include it here for completeness.

For v € R™, the optimization problem we wish to solve is
maximize qTU
aca (17)
subject to (g, p™") < p,

Let us consider the Lagrangian of this problem

Mgv,n) =q v—n1"qg—1) = A(x*(g,p"™") — p)

Maximizing over ¢ yields that the solution as a function of 7 is ¢*(1); o pf™" (v; —)4, where (u)4 =

max{0,u}. Since the objective is linear, it holds that the maximum is attained on the extreme points
of the constraint sets. Consequently, we need to find n* such that x?(¢*(n*),p'™") = p. This is a
simple root finding procedure that we solve to accuracy € in (1/€) steps with a bisection. Given that

each evaluation of ¢*(n) requires O(m) operations, the runtime of the algorithm is O(m log(1/¢)).

.12 Primal-dual methods

Primal-dual algorithms Nemirovski (2004); Nemirovski et al. (2009) are the methods of choice to effi-
ciently solve min-max problems.
.12.1 The primal-dual algorithm

Let us assume that X € R? and) C RP are closed, bounded convex sets and let F' : X x) — R be a
function such that F'(x, -) is concave for all x € X’ and F'(-, y) is convex for all y €)). We wish to solve

117

the following min-max problem

géi)r(n;lea)}}(F(m,y). (18)

This is a well-studied problem of optimization and there the literature provides optimal algorithms

for many choices of F', X and). A standard approach are the so-called primal-dual methods, where one
keeps a pair of iterates (x¢,y;) performs a gradient descent (resp. ascent) step on x; (resp. ;). In all
generality, these updates are often mirror descent updates to properly exploit the geometric structures
of X,V and F. Let h* : RY — R (resp. hY : R? — R) be a 1-strongly-convex function w.r.t. a given
norm ||-||x (resp. ||-||y). We denote Djx and Dyy their associated Bregman divergences. The primal-dual

algorithms initialize x¢g € X', yg €) and for a stepsize > 0, iterates

. 1
T4l = arg mln{ngtﬂf + Dh*(%ﬂﬁt)}
TEX ’ n

1
Yt41 = arg maX{gyT,ty — =Dy (y, yt), },
yey n

where gy ¢ € 0. F(x¢,y:) and gy s € Oy F (x4, y;). After T steps, return (Z7, yr) with Zp == 1/T ZtST 2.
Assuming F'is appropriately Lipschitz and that X and) are bounded, one finds an e-approximate saddle
point in O(e~2) steps. Importantly, these guarantee still holds even when only having stochastic unbiased

estimates of g, and g, Nemirovski et al. (2009) which is essential in large-scale settings.

.12.2 Primal-dual algorithms for Group DRO

The problem equation 5.3 can be cast as an instance of equation 18 by setting J = U and F(0,q) =
> i<n GL(0; D;). Note that the problem is unconstrained in 6 but it is generally not an issue in practice.

The gradient in § and q are

VoF(0,9) = Y VoL (6; D;)

i<N

[VoF (0, a)]; = L£(6; Dy).

Obtaining stochastic gradients

To run primal-dual, we require stochastic gradient estimates gy and g,. First of all, note that an unbiased
estimate of VyL(0; D;) is just Vgl(x,y;0) where (x,y) is sampled at random from D;. To obtain
stochastic gradient estimates, we have two choices: sampling from ¢ or sampling from an arbitrary

po € AN and importance-weighting.

118

Sampling from ¢ Let B be the mini-batch size and (I1,...,Ip) be B indices sampled from ¢ and
(x1;,y1,) be randomly sampled examples from D;.. In this case,
- 1
9 =7 > Vel(wr,,y1,;0)
Jj<B
- 1 1
[gq}z = E Z TK(ij)yIj;0)7
j<B 1

are clearly unbiased stochastic gradient estimates for (Vg F(6,q), V,F(0,q)).

Sampling from an arbitrary py € AY Assume py is in A" and that py; > 0 for i € [N]. As previ-
ously, assume we sample a mini-batch of indices (J1, . .., Jp) from po and that (z,, ;) is a randomly
sampled example from D ;,. We can obtain stochastic gradient estimates by importance-weighting (IW)
_ 1 q4J;
g’ == =LVl y,:0)

B 5 Po.;

1 1
[glqw]’b = 5 E 76(331';1/]'?9)7
B B Por e
In terms of implementation, it is often impractical to change the distribution of batches at each

iteration of the optimizer.

Choice of Bregman divergence

f-update. The update in § is unconstrained and it is standard to optimize the objective with Stochastic

Gradient Descent so as a result, we pick 2?(¢) = 3||0||3. This results in the standard SGD update
Or41 = 0 — 13,

where gy is an unbiased stochastic gradient estimate that we compute following the previous section.

q-update for / = AY. In the case where I is the full simplex, it is standard to choose h9(q) =
i< i log g; (the negative Shannon entropy). This choice yields the familiar Exponentiated Gradient
update

Q1,0 X Gt exp(n[gqli)

q-update for U = {q € AV : x?(q,p™"™") < p}. As the x?-uncertainty set is essentially the inter-
section between a (weighted)-norm-2 ball and the simplex, it is a natural choice to pick %(q) = 3||q|3.
This leads to the following update
g = argmin ||(q +13q) — qll5,
q€AN x2q,ptrain<p
or in other words, the projection of the gradient ascent step (g + 73,) onto the y?-ball. We explain in
Appendix .12.3 how to efficiently compute this projection for arbitrary p*a.

119

g-update for i/ = U,. We follow the implementation of Oren et al. (2019) which runs a hybrid between
primal-dual methods and best response and thus we do not need to explicit include the projection onto
the CVaR uncertainty set. We discuss the option here for completeness. For the CVaR uncertainty set,
it is standard to also use the negative Shannon entropy h% =), ¢;log g;. We refer to Appendix F.6.2

of Levy et al. (2020) and their provided code for more details on this projection.

.12.3 Projecting on the x?-ball

To run the primal-dual algorithm, the gradient update on ¢ requires projecting on the x?-ball centered
at pr¥" For v € R™, we wish to solve the following
... 2
minimize lqg — 3
aca (19)
subject to (g, p™") < p,

where A™ is the m-dimensional simplex and x?(g, p™") == 1 3", <m Pi(qi/Pi — 1), the f-divergence
corresponding to ¢ + (¢ — 1)? (Csiszar, 1967).

While this projection is standard in the literature, it is often derived in the case of pt™@" = 1/m
(see e.g. Namkoong and Duchi (2016)). We show here how to efficiently do the projection for arbitrary
pirain ¢ A

First, for A > 0,7 € R, the Lagrangian of equation 19 is

1 rain
Alg, A m) =5lla — V|13 + A0 (g, p™™") — p) + (g1 - 1).

Taking the partial dual g(\,) == infy-0 A(g, A, n) yields

1 Di A
=— inf > - S(1+2
gAm) == b 52 @it 520+

i<m

train — 1 /m), one cannot derive the optimal dual variable * in

In contrast to the uniform case (i.e. p
closed-form and we have to solve for both dual variables. Finding an e-accurate solution takes order
mlog(1/e) time using cutting plane-type methods when the dimension is O(1) Bubeck (2015). In the
large-scale applications we consider, this is negligible in comparison to computing the gradient of the loss
with respect to the network parameters and thus the primal-dual algorithm incurs (almost) no additional
computational overhead.

In practice, we implement this with two nested bisections; while this adds an extraneous log(1/¢)

factor, this is significantly more convenient to implement.

120

Appendix III: Distributionally Robust

Multilingual Machine Translation

.13 Data Statistics

related #sents | diverse #sents

bel 4,509 bos 5,664

aze 5,946 mar 9,840

glg 10,017 | hin 18,798
slk 61,470 | mkd 25,335
cse 103,093 | ell 134,327
tur 182,470 | fra 192,304
por 184,755 | bul 174,444
rus 208,458 | kor 205,640

Table 8: Number of training sentences in the TED related and diverse sets respectively.

We present the number of training sentences in the TED datasets in Tab. 8. The number of training

sentences in the WMT dataset is 2.5M (deu), 1.8M (fra), 512,608 (tam) and 195,762 (tur).

.14 Preprocessing and Training Details

We describe the preprocessing and training details in this section.

Preprocessing We download WMT datasets from the WMT official websites'. The TED data is down-
loaded from the link? provided by Wang et al. (2020d). We learn sentencepiece (Kudo and Richardson,

'eg. http://www.statmt.org/wmt18/
*https://github.com/cindyxinyiwang/multiDDS

121

http://www.statmt.org/wmt18/
https://github.com/cindyxinyiwang/multiDDS

7 10
—— bos=0.007 —— bos=0.007
mar=0.013 9 —— mar=0.013
W hin=0.025 w 8 hin=0.025
4 mkd=0.033 g mkd=0.033
n
85 ell=0.175 g7 ell=0.175
3 bul=0.228 T 6 bul=0.228
9 S
54 fra=0.251 5 fra=0.251
@ —— kor=0.268 & 5 —— kor=0.268
I I
3 4
A
) 3
0 100 200 300 400 500 600 0 100 200 300 400 500 600
epochs epochs

Figure 4: The historical (EMA) training losses on the TED-diverse dataset (left: any—en, right: en—any).

—— de=0.499
2.5 3 fr=0.359
" ta=0.102
820 & —— tr=0.039
3 S,
- 1.5 ©
.g g
o o
+ 1.0 2
I 1
0.5
0
0.0
0 20 40 60 80 100 0 20 40 60 80
epochs epochs

Figure 5: The historical (EMA) training losses on the WMT dataset (left: any—en, right: en—any).

2018) for English and other languages respectively. Specifically, we combine all the English sentences
from individual parallel datasets. Following Arivazhagan et al. (2019), we also resample the sentences
of other languages based on the temperature-based distribution (7 = 5) to learn the vocabulary. For
TED, the vocabulary sizes for English and other languages are set to be 10K and 30K respectively. For
WMT, the vocabulary sizes for English and other languages are set to be 24K and 34K respectively. We
also remove sentences in the training data that are longer than 250 tokens after bpe. For validation set,
to ensure the validation loss are fairly comparable across different languages, we cap the number of the

sentences in the validation set to be the same for each language (800 for TED and 1,500 for WMT).

Models small base

dmodel 512 512
dpidden 1024 2048
Nlayers 6 6
Nheads 4 8
Ddropout 0.3 0.3

Table 9: Basic hyper-parameters of Transformer.

Training details The hyperparameters of Transformer models are described in Tab. 9. For all exper-

iments, we adopt the Adam optimizer (Kingma and Ba, 2014) using 51 = 0.9, 82 = 0.98,¢ = le — 8.

122

de=0.499 fr=0.359 ta=0.102
' i —2.01 - :

g —0.8 S 10 l1.50 S
C
o B
2 -1.01 Toob1254 - .. 175 -25
B -1.2 1.50 © 12.00
8 -3.0

-1.49 . " k175 . F2.25

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
epochs epochs epochs epochs

Figure 6: Best response ¢ (in log-scale) across epochs on the WMT dataset for the any—en direction, the

dashed line is the true data probability (in log-scale).

de=0.499 fr=0.359 ta=0.102 tr=0.039
-0.75 N L el .. -2.0 DAV

o e T 0.75 150 ’
& -1.00{ " 0
@ 175 -25
2 125 25
§ R : .. F2.00
Q2 59 - . - -3.0

- L1.75 . 2.25

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
epochs epochs epochs epochs

Figure 7: Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the en—any direc-

tion, the dashed line is the true data probability (in log-scale).

We set the label smoothing as 0.1°. For ERM models, we use the default learning rate scheduling. The

learning rate is scheduled using inverse_sqrt with a maximum learning rate of 5e — 4 and 2e — 4

(following (Wang et al., 2020d)) for WMT and TED respectively. The warmup steps is set to be 4000

for both datasets. For x-IBR , because the training distribution is dynamically changing across epochs,

we use step learning rate decay to retain a higher learning rate during training. Specifically, we use the

same maximum learning rate and warm up steps as ERM, but decay the learning rate by half every 100K

training steps for both datasets. Recall that we use exponential moving average to compute the historical

loss values, and we set the hyperparameter A to be 0.1 throughout. We train on 4 and 8 V100 GPUs for

TED and WMT experiments respectively. The training time for one experiment takes around 1 - 2 days.

*Note that we also use the label smoothing loss as the baseline loss from trained ERM models

123

124

Appendix IV: Towards a Unified View of

Parameter-Efficient Transfer Learning

.15 Experiments

.15.1 Setups

Table 10: Dataset Statistics of the four tasks.

Dataset #train #dev #test
XSum 204,045 113,332 113,334
WMT16 en-ro 610,320 1,999 1,999
MNLI 392,702 9815 9832
SST-2 67,349 872 1,821

We implement all the parameter-efficient tuning methods using the huggingface transformers li-
brary (Wolf et al., 2020). We use BART arge(Lewis et al., 2020a) and mBARTy arge (Liu et al., 2020b)
(mBART-cc25) for the summarization and machine translation tasks respectively, and we use ROBERTagasg (Liu
et al., 2019) for MNLI and SST2. BARTarGge and MBART arge have the same encoder-decoder archi-
tectures. mMBART arGE is pre-trained on 25 languages. We use their public checkpoints from the trans-
formers library in experiments. For MT and classifications tasks, the max token lengths of training data
are set to be 150 and 512 respectively. For XSum, we set the max length of source articles to be 512 and
the max length of the target summary to be 128. The detailed dataset statistics is present in Table 10. In
our summarization experiments, we only use 1600 examples for validation to save time.

While we vary the bottleneck dimension within {1, 30,512,1024} as mentioned in §6.4.1, we test
bottleneck dimension 1024 only when the modified representation is FFN, because the training of prefix
tuning does not fit into 48GB GPU memory when [= 1024. While other methods do not have memory

issues, we keep the bottleneck dimension of attention modification at most 512 to have a relatively fair

125

Table 11: Training hyperparameters of parameter-efficient tuning methods on the four tasks. Ir and Is

represents learning rate and label smoothing respectively.

Tasks Ir batch size Is max grad norm weight decay train steps
XSum 5e-5 64 sents 0.1 0.1 0.01 100K
enro MT 5e-5 16384 tokens 0.1 1.0 0.01 50K
MNLI/SST2 1le-4 32 sents 0 1.0 0.1 10 epochs

comparison with prefix tuning. For LoRA we always tune its scaling hyperparameters s on the dev set.

.15.2 Training and Evaluation

We present some training hyperparameters of parameter-efficient tuning methods in Table 11. For all
the tasks, we train with the Adam optimizer (Kingma and Ba, 2014), and use a polynomial learning
rate scheduler that linearly decays the learning rate throughout training. We set the warm up steps of
learning rate to be 0 for both MT and summarization tasks, and for the classification tasks, learning rate
is linearly warmed up from 0 for the first 6% of the total training steps before decay. For full fine-tuning
we set these training hyperparameters following Lewis et al. (2020a) (XSum), Liu et al. (2020b) (en-ro),
and (Liu et al., 2019) (MNLI and SST2). We also did hyperparameter search in the full fine-tuning case
to try to reproduce their results. We set dropout rate to be 0.1 for all the tasks. We use ROUGE-2 and
perplexity as the validation metrics for summarization and MT respectively.

For MT and text summarization, we use beam search for decoding and set the number of beams to
be 6 and 5 following previous work (Li and Liang, 2021b; Liu et al., 2020b). The min and max generation
lengths for summarization and MT are set to be (10, 60) and (1, 200) respectively.

.15.3 Other Experimental Details

Prefix Tuning: Following Li and Liang (2021b), we reparameterize the prefix vectors by a MLP net-
work which is composed of a small embedding matrix and a large feedforward neural network. This is

conducive for learning due to the shared parameters across all layers.

LoRA: LoRA and adapter employ different parameter initialization methods: LoRA uses a random
Kaiming uniform (He et al., 2015) initialization for Wy and zero for Wy, (LoRA init), while adapters
use the same initialization as BERT (Devlin et al., 2019a). We found it beneficial to use the same initial-

ization method as LoRA in scaled PA.

126

.16 Computation of Tunable Parameters

Figure 8: Number of attention or FFN Figure 9: Number of parameters used at each sub-layer for

sub-layers in each layer of the pre-trained different methods.

models.
i N
BART/mBART ArRGE RoBERTapasEk Prefix Tuning 2ld -
Nagtn 3 1 Adapter variants 2rd 2rd
Niy 2 1 LoRA 2% 2rd =4rd 2 x (rd+4dr) = 10rd

We compute the number of tunable parameters based on where the tunable module is inserted into
and how it is parameterized. The pretrained-models for summarization or MT have an encoder-decoder
structure and each has L layers, whereas ROBERTagasg for classification tasks only has L encoder
layers. To simplify the computation of tunable parameters, we compute the sum of parameter used
in one encoder layer and one decoder layer as the parameter overhead of one single layer of the pre-
trained encoder-decoder model. Each layer has N,t, sub-layers and N, sub-layers. For the encoder-
decoder models, N,i:, = 3: the encoder self-attention, the decoder self-attention and the decoder cross-
attention. For the classification tasks, ROBERTagusg only has the encoder self-attention, thus Nygtn =
1. We present the number of attention and ffn sub-layers for different pre-trained models in Table 9.
For modifications applied at the attention sub-layers, the number of tunable parameters is computed by
|O|attn = N{}&tn X Nattn X L, where N{}&tn denotes the number of parameters (Wqown or Wy,,) used for
one attention sub-layer. Similarly, the number of tunable parameters for the FEN sub-layers is computed
by [Og, = \f{}l X Ngy X L. In Table 9, we show the number of parameters for one sub-layer. As we
have explained in §6.4.4, LoRA approximates the update of each weight matrix with a pair of Wyoun
and Wy, thus LoRA typically uses more parameters with the same 7 as other methods. Finally, the total
number of tunable parameters for prefix tuning, adapter variants and LoRA is |O| = |O|attn + |O|tm
as applicable. Prompt tuning prepends [tunable vectors at the input layer and uses [x d number of
parameters. Using MBART/BART as an example, we present the number of parameters used by several
representative methods throughout our paper in Table 12, where adapter variants include sequential

adapter, parallel adapter, scaled adapter and multi-head adapter.

.17 Full Results on Different Bottleneck Dimensions

127

Table 12: Number of tunable parameters of various parameter-efficient tuning methods with BART/M-

BART models (L = 12) as an example.

Method number of parameters
Prompt Tuning Ixd

Prefix Tuning (attn) 2ld x 3 x 12
Adapter variants (attn) 2rd x 3 x 12
Adapter variants (ffn) 2rd x 2 x 12
LoRA (attn) drd x 3 x 12
LoRA (ffn) 10rd x 2 x 12

MAM Adapter (our proposed model) 2ld x 3 x 12 4 2rd x 2 x 12

Table 13: Performance on the test sets of abstractive summarization (XSum) and WMT EN-RO transla-

tion.

Method # params (%) XSum (R-1/2/L) MT BLEU

Modified Representation: attention

Prefix Tuning, r» = 200 3.6 43.40/20.46/35.51 35.6
Prefix Tuning, r = 512 9.2 43.29/20.40/35.37 35.1
LoRA, r = 200 7.2 43.09/20.29/35.37 36.2
Sequential Adapter, r = 200 3.6 42.01/19.30/34.40 35.3
Sequential Adapter, r = 512 9.2 41.05/18.87/33.71 34.7
Parallel Adapter, = 200 3.6 43.58/20.31/35.34 35.6
Parallel Adapter, r = 512 9.2 43.99/20.83/35.77 36.2

Modified Representation: FFN

LoRA, r = 102 6.1 44.59/21.31/36.25 36.5
Sequential Adapter, r = 200 2.4 43.21/19.98/35.08 35.6
Sequential Adapter, r = 512 6.1 43.72/20.75/35.64 36.3
Sequential Adapter, r = 1024 12.3 43.95/21.00/35.90 36.7
Parallel Adapter, = 200 2.4 43.93/20.66/35.63 36.4
Parallel Adapter, r = 512 6.1 44.35/20.98/35.98 37.1
Parallel Adapter, r = 1024 12.3 44.53/21.24/36.23 37.3

128

Appendix V: Prompt Consistency for

Zero-Shot Task Generalization

.18 Datasets

Task Dataset #train set #validation set #labels #prompts
RTE 2,490 277 2 10
CB 250 57 3 15
NLI ANLIR1 16,946 1000 3 15
ANLI R2 45,460 1000 3 15
ANLIR3 100,459 1200 3 15
COPA 400 100 2 8
Compl. HellaSwag 39,905 10,042 4 4
Story Cloze - 1,871 2 5
Winogrande 40,398 1,267 2 5
Coref.
WSC 554 104 2 10
WSD WIC 5,428 637 2 10

Table 14: Statistics of the datasets

We present the statistics of the 11 datasets in Table 14. For the training-time tuning scenario, we use
up to 10,000 data points from the training set for training if the train set contains more than 10,000 data

points.

.19 Training Details

We use LoRA (Hu et al., 2021) as our parameter-efficient tuning model and set the bottleneck dimension
of LoRA weight matrices to be 1 for both 3B and 11B models. For both models, we set the dropout
probability for the the LoRA intermediate representations to be 0.3. Let o denote the scaling factor
of LoRA that is used to scale the output of the LoRA layer before adding to the hidden states of the
pre-trained model. We set « to be 4 and 2 respectively for the 3B and 11B model. The peak learning
rates of the 3B and 11B models are set to be 3e-5 and 5e-5 respectively with a warm-up stage of 100

129

steps and polynomial learning rate scheduler. We train for a maximum of 1,500 steps. Note that the
hyperparameters for the 3B model is tuned on the RTE dataset and used for other datasets. We did not
tune the hyperparameters of the 11B model.

With respect to implementation details, at each update we first sample one input example x and
apply multiple prompts to reformat it as r.(x), - -- , 75 (x), then we perform inference for them and
randomly shuffle the predictions. Next we iterate over them with a batch size of 5/10 (3B/11B)* and use
the shuffled predictions to supervise them to compute the distillation loss, this implements the swarm
distillation mechanism in Eq. 7.2 and in fact approximates the expectation over paired prompts with K
random pairs. We accumulate the gradients for 16 steps for one update so that each gradient descent
is computed from 16 data examples. And we use 1 A40 GPU (45GB memory) to train the 3B model
and 4 A40 GPUs with DeepSpeed Zero-2 (Ren et al.,, 2021) to train the 11B model. In general, training
converges pretty fast and takes around 1 - 3 GPU hours for the 3B model and 2 - 6 hours for the 11B
model depending on early stop points of different datasets. We use Adam (Kingma and Ba, 2014) as the
optimizer with 51 = 0.9, f2 = 0.98 and € = le — 6.

For the Transformer (Vaswani et al., 2017) models with model dimension d, the feed-forward inter-
mediate dimension m and number of layers [, the additional parameters used in LoRA with bottleneck
dimension b is calculated as b* (m +d) x 2 x [« 2. As we set b to be 1 for both the 3B and 11B models, the
additional number of LoRA parameters is 1,671,168 for the T0-3B model (d = 1024, m = 16384, = 24)
and 6,389,760 for the T0-11b model (d = 1024, m = 65536, = 24).

.20 Limitations of Our Work

We propose an unsupervised method for better zero-shot learner. There are two limitations of our work:
(1) Because our method is operated in a fully unsupervised manner, there is no supervised development
data for us to either select the best model or tune hyperparameters. Thus, we propose to use Fleiss’
Kappa as our unsupervised development metric for model selection, which attains decent performance
in most cases. However, we also see on very few datasets that the proposed metric fails to select the
best checkpoints and hurt the model’s performance. As discussed in §7.4.4, our method can be combined
with few-shot learning where a few labeled data are provided and we believe this can largely alleviate
the issues of model selection in the unsupervised setting. (2) The other limitation and at the same time
an advantage of our method is that the proposed method can work well even with 10 unlabeled data
points. This certainly makes our method a good candidate for the online setting where batches of test
data come in a stream. However, as we discussed in §7.4.4, the performance of our model saturates
quickly as we increase the number of unlabeled data, which means the performance of our method cannot

scale well with tons of unlabeled data like self-supervised pretraining. As discussed in §7.5, we expect

*Because the GPU memory sometimes cannot handle all the prompts within one batch.

130

combining our method with few-shot learning setting / pre-training can lead to further improvements

as the supervised signals may guide the model to a better local optimum.

131

132

Bibliography

Alessandro Achille and Stefano Soatto. 2018. Emergence of invariance and disentanglement in deep

representations. The Journal of Machine Learning Research, 19(1):1947-1980. 4.2

Kofi P Adragni and R Dennis Cook. 2009. Sufficient dimension reduction and prediction in regression.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
367(1906):4385-4405. 4.2

Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019. Massively multilingual neural machine trans-
lation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
3874-3884. 5.1

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial examples. arXiv preprint arXiv:1804.07998. 2.1.2

Antonios Anastasopoulos, Alessandro Cattelan, Zi-Yi Dou, Marcello Federico, Christian Federman,
Dmitriy Genzel, Francisco Guzman, Junjie Hu, Macduff Hughes, Philipp Koehn, et al. 2020. Tico-19:
the translation initiative for covid-19. arXiv preprint arXiv:2007.01788. 3.4.2, .1

Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and challenges. arXiv preprint arXiv:1907.05019. 1.1, 2.2.3,
5.1,5.2.1,5.4.3, .14

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019. Invariant risk minimization.

arXiv preprint arXiv:1907.02893. 2.1.1, 4.1, 3
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450. 6.2.1

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan Chhablani, Han Wang, Jason Alan Fries, Maged S.
Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Xiangru Tang, Mike

133

Tian-Jian Jiang, and Alexander M. Rush. 2022. Promptsource: An integrated development environ-

ment and repository for natural language prompts. 7.1

Philip Bachman, Ouais Alsharif, and Doina Precup. 2014. Learning with pseudo-ensembles. In Advances
in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Sys-

tems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3365-3373. 7.1

Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. 2020. Learning de-biased
representations with biased representations. In International Conference on Machine Learning, pages
528-539. PMLR. 4.1

Sara Beery, Grant Van Horn, and Pietro Perona. 2018. Recognition in terra incognita. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 456—473. 4.1

Alexis Bellot and Mihaela van der Schaar. 2020. Generalization and invariances in the presence of un-

observed confounding. arXiv preprint arXiv:2007.10653. 4.1

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150. 3.5.2

Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013a.
Robust solutions of optimization problems affected by uncertain probabilities. Management Science,
59(2):341-357. 1.1, 4.4.1,4.4.1, 4.5, 5.1, 5.2.2

Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013b.
Robust solutions of optimization problems affected by uncertain probabilities. Management Science,

59(2):341-357. 5.2.2, 5.3.1

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv e-prints, pages arXiv—-2106. (document), 6.2.2,

6.5,6.4.2,6.3

Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. 2018. Data-driven robust optimization. Mathemat-

ical Programming, Series A, 167(2):235-292. 5.2.2

Lucas Beyer, Xiaohua Zhai, Avital Oliver, and Alexander Kolesnikov. 2019. S4L: self-supervised semi-
supervised learning. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pages 1476-1485. IEEE. 7.1

Su Lin Blodgett, Lisa Green, and Brendan O’Connor. 2016. Demographic dialectal variation in social
media: A case study of african-american english. In Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, pages 1119-1130. 4.6.1

Ondfej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, et al. 2016. Findings of the

134

http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
https://proceedings.neurips.cc/paper/2014/hash/66be31e4c40d676991f2405aaecc6934-Abstract.html
https://doi.org/10.1109/ICCV.2019.00156
https://doi.org/10.1109/ICCV.2019.00156

2016 conference on machine translation. In Proceedings of the First Conference on Machine Translation:

Volume 2, Shared Task Papers. 6.4.1

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. 2021. Improving

language models by retrieving from trillions of tokens. arXiv preprint arXiv:2112.04426. 8
Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press. 5.3.2

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165. 1.1, 2.1.2,2.1.2,2.2.2,3,6.1,7.1,7.2,7.4.1

Sébastien Bubeck. 2015. Convex optimization: Algorithms and complexity. Foundations and Trends in

Machine Learning, 8(3-4):231-357. .12.3

Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accuracy disparities in com-

mercial gender classification. In Conference on fairness, accountability and transparency, pages 77-91.
2.1.1,4.3

Vishrav Chaudhary, Yuqing Tang, Francisco Guzman, Holger Schwenk, and Philipp Koehn. 2019. Low-
resource corpus filtering using multilingual sentence embeddings. In Proceedings of the Fourth Con-

ference on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 261-266. 3.7

Jiaao Chen, Dinghan Shen, Weizhu Chen, and Diyi Yang. 2021a. Hiddencut: Simple data augmentation
for natural language understanding with better generalizability. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), pages 4380-4390. 2.2.1

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. MixText: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 2147-2157, Online. Association for Computational

Linguistics. 2.2.1

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021b. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374. 1.1

Xinlei Chen and Kaiming He. 2021. Exploring simple siamese representation learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750-15758. 7.3.2

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, and et al. 2022. Palm: Scaling language modeling
with pathways. 2.1.2, 2.2.2

Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and Quoc Le. 2018. Semi-supervised se-

135

https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://storage.googleapis.com/pathways-language-model/PaLM-paper.pdf
https://storage.googleapis.com/pathways-language-model/PaLM-paper.pdf
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217

quence modeling with cross-view training. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1914-1925, Brussels, Belgium. Association for Computational

Linguistics. 7.3.2, 7.3.2

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-
cisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020a. Unsuper-
vised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, Online. 2.2.3, 3.1, 3.3.2, 3.5.1, .3

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-
cisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020b. Unsuper-
vised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 8440-8451. 5.1, 5.2.1
Thomas M Cover. 1999. Elements of information theory. John Wiley & Sons. 4.2, .7.1

Imre Csiszar. 1967. Information-type measures of difference of probability distributions and indirect

observation. Studia Scientifica Mathematica Hungary, 2:299-318. 5.3.1, .12.3

Milan Cvitkovic and Gunther Koliander. 2019. Minimal achievable sufficient statistic learning. volume 97,

pages 1465-1474. PMLR. 4.1, 4.2

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. 2021. Knowledge neurons in pretrained

transformers. arXiv preprint arXiv:2104.08696. 1.1

Shai Ben David, Tyler Lu, Teresa Luu, and David Pal. 2010. Impossibility theorems for domain adaptation.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages

129-136. JMLR Workshop and Conference Proceedings. 4.3

Thomas Davidson, Debasmita Bhattacharya, and Ingmar Weber. 2019. Racial bias in hate speech and
abusive language detection datasets. In Proceedings of the Third Workshop on Abusive Language Online,
pages 25-35. 1.1

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Fei Sha, and William Cohen. 2021. Mention
memory: incorporating textual knowledge into transformers through entity mention attention. arXiv

preprint arXiv:2110.06176. 8

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung, volume 23,

pages 107-124. 7.4.1

Erick Delage and Yinyu Ye. 2010. Distributionally robust optimization under moment uncertainty with

application to data-driven problems. Operations Research, 58(3):595-612. 5.2.2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019a. Bert: Pre-training of deep

136

https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
https://www.aclweb.org/anthology/2020.acl-main.747
https://www.aclweb.org/anthology/2020.acl-main.747

bidirectional transformers for language understanding. In NAACL-HLT (1). 1.1, 2.1.2,3.3.2, 3.5.2, 6.1,
.15.3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019b. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics. 1.1, 2.2.2, 7.1

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019c. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages 4171—
4186. 5.1, 5.2.1

Bhuwan Dhingra, Jeremy R Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. 2022. Time-aware language models as temporal knowledge bases. Transactions of

the Association for Computational Linguistics, 10:257-273. 1.1, 8

Zi-Yi Dou, Junjie Hu, Antonios Anastasopoulos, and Graham Neubig. 2019. Unsupervised domain adap-
tation for neural machine translation with domain-aware feature embeddings. In Conference on Em-

pirical Methods in Natural Language Processing (EMNLP), Hong Kong. 2.2.2

John Duchi, Peter Glynn, and Hongseok Namkoong. 2016. Statistics of robust optimization: A general-
ized empirical likelihood approach. arXiv preprint arXiv:1610.03425. 1.1, 4.4.1, 5.1

John C Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. 2019. Distributionally robust losses

against mixture covariate shifts. 4.4.1, 4.5

John C. Duchi and Hongseok Namkoong. 2019. Variance-based regularization with convex objectives.

Journal of Machine Learning Research, 20(68):1-55. 5.3.1

John C. Duchi and Hongseok Namkoong. 2020. Learning models with uniform performance via distri-

butionally robust optimization. Annals of Statistics, to appear. 5.3.1

Esin Durmus, He He, and Mona Diab. 2020. FEQA: A question answering evaluation framework for
faithfulness assessment in abstractive summarization. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, Online. 3.1, .5.1

Evgeniui Borisovich Dynkin. 2000. Necessary and sufficient statistics for a family of probability distri-

butions. Selected Papers of EB Dynkin with Commentary, 14:393. 4.1

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2017. Hotflip: White-box adversarial examples
for text classification. arXiv preprint arXiv:1712.06751. 1.1, 2.1.2

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schiitze, and

Yoav Goldberg. 2021. Measuring and improving consistency in pretrained language models. Transac-

137

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1908.10430
http://arxiv.org/abs/1908.10430
https://arXiv.org/abs/1810.08750
https://arXiv.org/abs/1810.08750
https://www.aclweb.org/anthology/2020.acl-main.454
https://www.aclweb.org/anthology/2020.acl-main.454
https://doi.org/10.1162/tacl_a_00410

tions of the Association for Computational Linguistics, 9:1012-1031. 7.1, 7.3.2, 7.3.2

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, et al. 2021. Beyond english-centric

multilingual machine translation. Journal of Machine Learning Research, 22(107):1-48. 1.1

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. 2019. Eli5:
Long form question answering. In Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics, pages 3558-3567. 2.1.2

Amir Feder, Katherine A Keith, Emaad Manzoor, Reid Pryzant, Dhanya Sridhar, Zach Wood-Doughty,
Jacob Eisenstein, Justin Grimmer, Roi Reichart, Margaret E Roberts, et al. 2021. Causal inference
in natural language processing: Estimation, prediction, interpretation and beyond. arXiv preprint

arXiv:2109.00725. 2.2.4, 8

William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers: Scaling to trillion parameter

models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961. 6.1, 8

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
Eduard Hovy. 2021. A survey of data augmentation approaches for nlp. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pages 968-988. 2.2.1

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 866—
875. 5.1

Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin,

76(5):378. 3.2,7.3.3

Erick Fonseca, Lisa Yankovskaya, André F. T. Martins, Mark Fishel, and Christian Federmann. 2019.
Findings of the WMT 2019 shared tasks on quality estimation. In Proceedings of the Fourth Conference
on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 1-10, Florence, Italy. Association
for Computational Linguistics. 3.1, 3.5.4

Paula Fortuna and Sérgio Nunes. 2018. A survey on automatic detection of hate speech in text. ACM

Computing Surveys (CSUR), 51(4):1-30. 4.6.1

Wee Chung Gan and Hwee Tou Ng. 2019. Improving the robustness of question answering systems to
question paraphrasing. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 6065-6075. 2.1.2

Rui Gao and Anton J Kleywegt. 2016. Distributionally robust stochastic optimization with wasserstein

distance. arXiv preprint arXiv:1604.02199. 4.4.1

138

https://doi.org/10.18653/v1/W19-5401

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
3816-3830. 2.1.2

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al. 2020. Evaluating models’ local decision bound-
aries via contrast sets. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages
1307-1323. 2.2.4

Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly, Ed H Chi, and Alex Beutel. 2019. Counterfactual
fairness in text classification through robustness. In Proceedings of the 2019 AAAI/ACM Conference on
AL Ethics, and Society, pages 219-226. 2.2.4

Bernhard C Geiger. 2020. On information plane analyses of neural network classifiers—a review. arXiv

preprint arXiv:2003.09671. .7.2

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019. Are we modeling the task or the annotator?
an investigation of annotator bias in natural language understanding datasets. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1161-1166. 2.1.2

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer feed-forward layers are

key-value memories. In Proceedings of EMNLP. 1.1, 6.4.4

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572. 2.1.2

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. 2017. Making the v in
vqa matter: Elevating the role of image understanding in visual question answering. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 6904-6913. 2.1.2, 4.1

Demi Guo, Yoon Kim, and Alexander Rush. 2020. Sequence-level mixed sample data augmentation.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 5547-5552, Online. Association for Computational Linguistics. 2.2.1

Demi Guo, Alexander M Rush, and Yoon Kim. 2021. Parameter-efficient transfer learning with diff prun-

ing. In Proceedings of ACL. 6.2.2, 6.4.2

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and Noah A
Smith. 2018. Annotation artifacts in natural language inference data. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 107-112. 2.1.2, 4.1, 4.3, 4.6.1

139

https://doi.org/10.18653/v1/2020.emnlp-main.447

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv preprint arXiv:2002.08909. 8

Francisco Guzman, Peng-Jen Chen, Myle Ott, Juan Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’Aurelio Ranzato. 2019. The flores evaluation datasets for low-resource machine
translation: Nepali-english and sinhala—english. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 6100-6113. 3.7

Thanh-Le Ha, Jan Niehues, and Alexander Waibel. 2016. Toward multilingual neural machine translation

with universal encoder and decoder. arXiv preprint arXiv:1611.04798. 5.1

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. 2018a. Fairness without
demographics in repeated loss minimization. In International Conference on Machine Learning, pages

1929-1938. 2.1.1, 2.2.3, 4.1

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. 2018b. Fairness with-
out demographics in repeated loss minimization. In Proceedings of the 35th International Conference

on Machine Learning. 5.2.2, 5.3.1

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. 2020. Revisiting self-training for neural
sequence generation. In 8th International Conference on Learning Representations, ICLR 2020, Addis

Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. (document), 2.2.1, 3.4, 3.6.1, 3.6.2, 7.4.2

Junxian He, Zhisong Zhang, Taylor Berg-Kirkpatrick, and Graham Neubig. 2019. Cross-lingual syntactic
transfer through unsupervised adaptation of invertible projections. In The 57th Annual Meeting of the
Association for Computational Linguistics (ACL), Florence, Italy. 2.2.2

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of ICCV. .15.3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778.

4.6.2,.10.1

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. ArXiv
preprint, abs/1503.02531. 7.3.2

P Hitzler and MK Sarker. 2022. Answering natural-language questions with neuro-symbolic knowledge

bases. Neuro-Symbolic Artificial Intelligence: The State of the Art, 342:126. 8

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural computation,

9(8):1735-1780. .9

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural text

140

https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
http://arxiv.org/abs/1906.02656
http://arxiv.org/abs/1906.02656
https://arxiv.org/abs/1503.02531

degeneration. arXiv preprint arXiv:1904.09751. 1.1

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp. In

Proceedings of ICML. 2.2.2,6.1,6.2.2, 6.2.2,6.4.4, 7.1

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. 10th International Conference
on Learning Representations, ICLR 2022, abs/2106.09685. 2.2.2, 6.1, 6.2.2, 7.3.3, .19

Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. 2018. Does distributionally robust supervised
learning give robust classifiers? In International Conference on Machine Learning, pages 2029-2037.

PMLR. 44.1,4.5

Zhaolin Hu and L Jeff Hong. 2013. Kullback-leibler divergence constrained distributionally robust opti-

mization. Available at Optimization Online. 4.4.1

Hisham Husain. 2020. Distributional robustness with ipms and links to regularization and gans. In

Proceedings of the 34th Annual Conference on Neural Information Processing Systems (NIPS). 4.5

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In Proceedings of NAACL-HLT, pages 1875-1885.
2.1.2

Gautier Izacard and Edouard Grave. 2020. Leveraging passage retrieval with generative models for open

domain question answering. arXiv preprint arXiv:2007.01282. 1.1

Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021-
2031. 2.1.2

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. 2015. Self-paced cur-
riculum learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence. 2.2.3

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423-438. 1.1, 2.2.2, 7.1,
7.3.2,7.4.2

Melvin Johnson, Mike Schuster, Quoc Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. 2017. Google’s multilingual neural machine
translation system: Enabling zero-shot translation. Transactions of the Association for Computational
Linguistics, 5:339-351. 5.1

Marcin Junczys-Dowmunt. 2018. Dual conditional cross-entropy filtering of noisy parallel corpora. In

Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 888-895. 3.6.1,

141

https://arxiv.org/abs/2106.09685
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324

3.7

Daniel Kang and Tatsunori Hashimoto. 2020. Improved natural language generation via loss truncation.

In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online.
(document), 3.4, 3.6.1, 3.6.2

Amir-Hossein Karimi, Bernhard Schélkopf, and Isabel Valera. 2021. Algorithmic recourse: from coun-
terfactual explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness, Ac-

countability, and Transparency, pages 353-362. 8

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. 2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In International Conference on Learning Representations.

224

Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel Vera, and André FT Martins. 2019. Openkiwi:
An open source framework for quality estimation. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pages 117-122. (document), 3.3,

354

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2020. Nearest neigh-

bor machine translation. In International Conference on Learning Representations. 8

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language models. In International Conference on Learning

Representations. 8

Yoon Kim and Alexander M Rush. 2016a. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1317-1327. 3.3.2,3.5.1, 4

Yoon Kim and Alexander M. Rush. 2016b. Sequence-level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1317-1327, Austin, Texas.

Association for Computational Linguistics. 7.3.2

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980. .2, .3, .10.1, .14, .15.2, .19

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,

114(13):3521-3526. 1.1

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient transformer. arXiv

preprint arXiv:2001.04451. 3.5.2

Philipp Koehn, Francisco Guzman, Vishrav Chaudhary, and Juan Pino. 2019. Findings of the wmt 2019

142

https://www.aclweb.org/anthology/2020.acl-main.66
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://doi.org/10.18653/v1/D16-1139

shared task on parallel corpus filtering for low-resource conditions. In Proceedings of the Fourth Con-

ference on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 54-72. 3.1, 3.7

Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine translation. In Proceedings

of the First Workshop on Neural Machine Translation, pages 28-39. 3.4.2

Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor
Toups, John R Rickford, Dan Jurafsky, and Sharad Goel. 2020. Racial disparities in automated speech
recognition. Proceedings of the National Academy of Sciences, 117(14):7684-7689. 2.1.1, 4.1

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Sara Beery, et al. 2020. Wilds: A
benchmark of in-the-wild distribution shifts. arXiv preprint arXiv:2012.07421. 2.1.1, 4.1, 4.1

Artemy Kolchinsky, Brendan D Tracey, and Steven Van Kuyk. 2019. Caveats for information bottleneck

in deterministic scenarios. In International Conference on Learning Representations. 4.2

Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations, pages 66-71. 5.4.2, .14

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79-86. 4.2

Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, and Ed Chi.
2020. Fairness without demographics through adversarially reweighted learning. Advances in neural

information processing systems, 33:728-740. 2.2.3

Samuel Laubli, Rico Sennrich, and Martin Volk. 2018. Has machine translation achieved human parity?
a case for document-level evaluation. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4791-4796, Brussels, Belgium. Association for Computational
Linguistics. 3

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun Terzi,
Mai Gimenez, Cyprien de Masson d’Autume, Tomas Kocisky, Sebastian Ruder, et al. 2021. Mind the
gap: Assessing temporal generalization in neural language models. Advances in Neural Information

Processing Systems, 34. 1.1, 8

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt

tuning. In Proceedings of EMNLP. 2.2.2, 6.1, 6.2.2, 6.3

Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd schema challenge. In

Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning. 7.4.1

Daniel Levy, Yair Carmon, John C. Duchi, and Aaron Sidford. 2020. Large-scale methods for distribu-

143

https://doi.org/10.18653/v1/D18-1512
https://doi.org/10.18653/v1/D18-1512
https://arxiv.org/abs/2010.05893
https://arxiv.org/abs/2010.05893
https://arxiv.org/abs/2010.05893

tionally robust optimization. In Advances in Neural Information Processing Systems 33. 2.2.3,5.2.2, 5.5,

A1, .12.2
David Lewis. 2013. Counterfactuals. John Wiley & Sons. 4.1

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a. BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online. (document), 1.1, 3.3.1, 3.5.1, 6.1, 6.4.1,
6.3,.15.1,.15.2

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéaschel, et al. 2020b. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459-9474.
8

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. 2021a. Question and answer test-train overlap
in open-domain question answering datasets. In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: Main Volume, pages 1000-1008. 2.1.2

Patrick Lewis, Yuxiang Wu, Linging Liu, Pasquale Minervini, Heinrich Kiittler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021b. Paq: 65 million probably-asked questions and what you can
do with them. Transactions of the Association for Computational Linguistics, 9:1098-1115. 8

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Sasko, Gunjan
Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Pa-
try, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussiere,
Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, Francois Lagunas,
Alexander Rush, and Thomas Wolf. 2021. Datasets: A community library for natural language pro-
cessing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 175-184, Online and Punta Cana, Dominican Republic. Association for

Computational Linguistics. 7.4.1

Jiwei Li, Xinlei Chen, Eduard H Hovy, and Dan Jurafsky. 2016. Visualizing and understanding neural
models in nlp. In HLT-NAACL. 8

Xiang Lisa Li and Percy Liang. 2021a. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Linguistics. 2.1.2, 2.2.2

Xiang Lisa Li and Percy Liang. 2021b. Prefix-tuning: Optimizing continuous prompts for generation. In

144

https://arxiv.org/abs/2010.05893
https://arxiv.org/abs/2010.05893
https://arxiv.org/abs/2010.05893
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.acl-long.353

Proceedings of ACL. 6.1, 6.2.2, 6.4.2, 6.4.4, 6.3, .15.2, .15.3

Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization

Branches Out. 6.4.1

Chin-Yew Lin and Eduard Hovy. 2004. Rouge: A package for automatic evaluation of summaries. In Text
Summarization Branches Out: Proceedings of the ACL-04 Workshop, pages 74-81, Barcelona, Spain.

Association for Computational Linguistics. 3.1

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017. Focal loss for dense object

detection. In Proceedings of the IEEE international conference on computer vision, pages 2980-2988. 2.2.3

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy
Liang, and Chelsea Finn. 2021a. Just train twice: Improving group robustness without training group

information. In International Conference on Machine Learning, pages 6781-6792. PMLR. 2.2.3

Haochen Liu, Wentao Wang, Yiqi Wang, Hui Liu, Zitao Liu, and Jiliang Tang. 2020a. Mitigating gender
bias for neural dialogue generation with adversarial learning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 893-903, Online. Association for

Computational Linguistics. 2.1.2

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021b. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language processing.

arXiv preprint arXiv:2107.13586. 1.1, 6.1, 6.2.2, 7.1, 7.2

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021c. GPT
understands, too. arXiv:2103.10385. 6.2.2
Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and

Luke Zettlemoyer. 2020b. Multilingual denoising pre-training for neural machine translation. Trans-

actions of the Association for Computational Linguistics, 8:726-742. (document), 6.3, .15.1, .15.2

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and

Luke Zettlemoyer. 2020c. Multilingual denoising pre-training for neural machine translation. 3.4.2, .1

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020d. Multilingual denoising pre-training for neural machine translation. Trans-

actions of the Association for Computational Linguistics. 6.4.1

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692. 2.1.2,2.2.2,3.1,3.3.2,3.5.1,4.6.2, 6.4.1, 7.1, .10.1, .15.1, .15.2

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pages 3730-3738. 4.6.1

145

https://doi.org/10.18653/v1/2020.emnlp-main.64
https://doi.org/10.18653/v1/2020.emnlp-main.64
https://doi.org/10.1162/tacl_a_00343
http://arxiv.org/abs/2001.08210

David Lopez-Paz. 2016. From dependence to causation. Ph.D. thesis, University of Cambridge. 4.1

Charles Lovering, Rohan Jha, Tal Linzen, and Ellie Pavlick. 2021. Predicting inductive biases of pre-

trained models. In International Conference on Learning Representations (ICLR). 4.1

Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuancheng Ren, and Xu Sun. 2019. Pkuseg: A toolkit for multi-
domain chinese word segmentation. CoRR, abs/1906.11455. .2

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. 2021. Compacter: Efficient low-rank

hypercomplex adapter layers. In Proceedings of NeurIPS. 6.3.2, 6.4.2

Gary Marcus and Ernest Davis. 2020. Gpt-3, bloviator: Openai’s language generator has no idea what

it’s talking about. MIT Technology Review. 1.1, 2.1.2, 3

Marianna Martindale, Marine Carpuat, Kevin Duh, and Paul McNamee. 2019. Identifying fluently in-
adequate output in neural and statistical machine translation. In Proceedings of Machine Translation

Summit XVII Volume 1: Research Track, pages 233-243. 3

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan Thomas Mcdonald. 2020. On faithfulness and
factuality in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, Online. (document), 1.1, 2.1.2, 3, 3.1, 3.2, 3.2, 3.4.1,3.5.3, .1, 1, 4, .5.1

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 3428-3448. 2.1.2, 4.1, 4.1

Cade Metz and Adam Satariano. 2020. An algorithm that grants freedom, or takes it away. The New York
Times. 1.1

Paul Michel, Tatsunori Hashimoto, and Graham Neubig. 2021. Modeling the second player in distri-
butionally robust optimization. In International Conference on Learning Representations (ICLR). 4.5,

4.6.1

Paul Michel, Tatsunori Hashimoto, and Graham Neubig. 2022. Distributionally robust models with para-

metric likelihood ratios. In International Conference on Learning Representations (ICLR), Virtual. 2.2.3

Paul Michel, Xian Li, Graham Neubig, and Juan Pino. 2019. On evaluation of adversarial perturbations
for sequence-to-sequence models. In Meeting of the North American Chapter of the Association for

Computational Linguistics (NAACL), Minneapolis, USA. 1.1, 2.1.2
George A Miller. 1998. WordNet: An electronic lexical database. MIT press. 3.5.2

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE transactions on pattern

analysis and machine intelligence, 41(8):1979-1993. 7.1, 7.3.2

Nafise Sadat Moosavi, Marcel de Boer, Prasetya Ajie Utama, and Iryna Gurevych. 2020. Improving

146

https://arxiv.org/abs/1906.11455
https://arxiv.org/abs/1906.11455
https://openreview.net/forum?id=a34GrNaYEcS
https://openreview.net/forum?id=a34GrNaYEcS
https://arxiv.org/abs/1903.06620
https://arxiv.org/abs/1903.06620

robustness by augmenting training sentences with predicate-argument structures. arXiv preprint

arXiv:2010.12510. 2.2.1

John Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji, and Yanjun Qi. 2020. Reevaluating adversarial
examples in natural language. In Findings of the Association for Computational Linguistics: EMNLP

2020, pages 3829-3839. 2.1.2

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James Allen. 2016. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 839-849, San

Diego, California. Association for Computational Linguistics. 7.4.1

Mathias Muller, Annette Rios, and Rico Sennrich. 2019. Domain robustness in neural machine translation.

arXiv preprint arXiv:1911.03109. 3.4.2

Hongseok Namkoong and John C. Duchi. 2016. Stochastic gradient methods for distributionally robust

optimization with f-divergences. In Advances in Neural Information Processing Systems 29. .12.3

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for extreme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. (document), 3.4.1,

6.2,6.4.1

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. 2009. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609. 5.3.2, .12, .12.1

Arkadi Nemirovski. 2004. Prox-method with rate of convergence O(1/t) for variational inequalities with
Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM

Journal on Optimization, 15(1):229-251. .12

Graham Neubig and Junjie Hu. 2018. Rapid adaptation of neural machine translation to new languages.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 875—
880. 2.2.2, 5.1

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020. Adver-
sarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 4885-4901, Online. Association for

Computational Linguistics. 7.4.1

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser. 2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pages
201-206, Saarbriicken, Germany. 6.4.2

147

https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525

Yonatan Oren, Shiori Sagawa, Tatsunori Hashimoto, and Percy Liang. 2019. Distributionally robust
language modeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 4218-4228. 2.2.3,4.1,4.4.1,4.4.1, 45, 4.6.2,5.2.2,5.2.2,5.3.1,5.3.2, 5.5, 3, .12.2

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-
HLT 2019: Demonstrations. 3.5.1,5.4.2, .2, .3, .3, .10.1

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instruc-

tions with human feedback. 2.1.2

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002a. Bleu: a method for automatic
evaluation of machine translation. In ACL 2002. 3.1, 3.6.2, 5.4.2

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002b. Bleu: a method for automatic

evaluation of machine translation. In Proceedings of ACL. 6.4.1

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of NAACL. 6.1

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. 2021. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of EACL. 6.1, 6.2.2, 6.3.2,

6.3

Minh Quang Pham, Josep-Maria Crego, and Frangois Yvon. 2021. Revisiting multi-domain machine

translation. Transactions of the Association for Computational Linguistics, 9:17-35. 1.1

Jason Phang, Thibault Févry, and Samuel R Bowman. 2018. Sentence encoders on stilts: Supplementary

training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088. 2.1.2

Mohammad Taher Pilehvar and Jose Camacho-Collados. 2019. WiC: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 1267-1273, Minneapolis, Minnesota. Association for

Computational Linguistics. 7.4.1

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual bert? In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4996-5001. 5.1

Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Ma-
chine Translation: Research Papers, pages 186—-191, Belgium, Brussels. Association for Computational

Linguistics. 3.1, 3.7, 5.4.2

148

https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://www.aclweb.org/anthology/W18-6319

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6908—6915.
3

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Padmanabhan, and Graham Neubig. 2018. When and
why are pre-trained word embeddings useful for neural machine translation? In Meeting of the North

American Chapter of the Association for Computational Linguistics (NAACL), New Orleans, USA. 5.4.1

Guanghui Qin and Jason Eisner. 2021. Learning how to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 5203-5212, Online. Association for Computational

Linguistics. 7.4.2

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. 2020. Pre-trained

models for natural language processing: A survey. Science China Technological Sciences. 6.1

Joaquin Quifionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. 2008.

Dataset shift in machine learning. Mit Press. 2.1.1

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language

models are unsupervised multitask learners. technical report. 6.1

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1-67. 6.4.2,7.1, 7.4.1

Nils Reimers, Iryna Gurevych, Nils Reimers, Iryna Gurevych, Nandan Thakur, Nils Reimers, Johannes
Daxenberger, and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.

Association for Computational Linguistics. 4.6.4

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021. Zero-offload: Democratizing billion-scale model training.

arXiv preprint arXiv:2101.06840. .19

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating natural language adversarial
examples through probability weighted word saliency. In Proceedings of the 57th annual meeting of the

association for computational linguistics, pages 1085-1097. 2.1.2

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond accuracy:
Behavioral testing of nlp models with checklist. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 4902-4912. 2.2.4

R Tyrrell Rockafellar, Stanislav Uryasev, et al. 2000. Optimization of conditional value-at-risk. Journal

149

https://arxiv.org/pdf/1804.06323.pdf
https://arxiv.org/pdf/1804.06323.pdf
https://doi.org/10.18653/v1/2021.naacl-main.410

of risk, 2:21-42. 4.4.1

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. 2011. Choice of plausible alternatives:

An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series. 7.4.1

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. 2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Association for Computational Linguistics, 8:264-280. 1.1,

2.1.2,3,3.4.1

Tim Roughgarden. 2016. Twenty Lectures on Algorithmic Game Theory. Cambridge University Press.
5.3.2

Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf. 2019. Transfer learning in
natural language processing. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Tutorials, pages 15-18. 2.2.2

Masoud Jalili Sabet, Philipp Dufter, and Hinrich Schiitze. 2020. Simalign: High quality word align-
ments without parallel training data using static and contextualized embeddings. arXiv preprint

arXiv:2004.08728. 3.5.2

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2020a. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
In International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia. 1.1, 2.2.3, 4.1,
44.2,46.1,4.6.1,4.6.2,5.1,5.2.2,5.5, .10.2

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. 2020b. An investigation of why over-
parameterization exacerbates spurious correlations. In International Conference on Machine Learning
(ICML). 4.1

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. 2016. Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December

5-10, 2016, Barcelona, Spain, pages 1163-1171. 7.1

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. 2021. Multitask prompted training enables
zero-shot task generalization. ArXiv preprint, abs/2110.08207. 2.1.2, 7.1, 7.1, 7.2, 7.3.1, 7.4.1, 7.4.1, 5,
7.4.3,7.5

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A Smith. 2019. The risk of racial bias in
hate speech detection. In Proceedings of the 57th annual meeting of the association for computational

linguistics, pages 1668-1678. 1.1, 4.6.1

Maarten Sap, Swabha Swayamdipta, Laura Vianna, Xuhui Zhou, Yejin Choi, and Noah A Smith. 2021.

150

https://proceedings.neurips.cc/paper/2016/hash/30ef30b64204a3088a26bc2e6ecf7602-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/30ef30b64204a3088a26bc2e6ecf7602-Abstract.html
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207

Annotators with attitudes: How annotator beliefs and identities bias toxic language detection. arXiv

preprint arXiv:2111.07997. 2.1.2

Ravid Schwartz-Ziv and Naftali Tishby. 2017. Opening the black box of deep neural networks via infor-
mation. arXiv preprint arXiv:1703.00810. 4.2, .7.1, .7.1, .7.2

H Scudder. 1965. Probability of error of some adaptive pattern-recognition machines. IEEE Transactions

on Information Theory, 11(3):363-371. 3.1, 3.6.1

Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073-1083. 3.4.1

Thibault Sellam, Dipanjan Das, and Ankur P Parikh. 2020. Bleurt: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
Online. 3.6.2

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86—96. 2.2.1

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715-1725, Berlin, Germany. Association for Computational

Linguistics. .2

Ohad Shamir, Sivan Sabato, and Naftali Tishby. 2010. Learning and generalization with the information
bottleneck. volume 411, pages 2696-2711. Elsevier. 4.2, 4.3,.7.1

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurélie Herbelot, Moin Nabi, Enver Sangineto, and
Raffaella Bernardi. 2017. Foil it! find one mismatch between image and language caption. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 255-265. 2.2.4

Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. 2020. A simple but tough-to-
beat data augmentation approach for natural language understanding and generation. arXiv preprint

arXiv:2009.13818. 2.2.1

Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate shift by weighting the log-

likelihood function. Journal of statistical planning and inference, 90(2):227-244. 2.1.1

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. 2016. Not just a
black box: Learning important features through propagating activation differences. arXiv preprint

arXiv:1605.01713. 8

151

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment tree-
bank. In Proceedings of EMNLP. 6.4.1

Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. 2020. No subclass left
behind: Fine-grained robustness in coarse-grained classification problems. 34th Conference on Neural

Information Processing Systems (NeurIPS), 33. 4.1

Lucia Specia, Frédéric Blain, Varvara Logacheva, Ramon Astudillo, and André Martins. 2018. Findings
of the wmt 2018 shared task on quality estimation. Association for Computational Linguistics. (doc-

ument), 3.1, 3.5.4, 3.3

Lucia Specia, FrA©dA©ric Blain, Marina Fomicheva, Erick Fonseca, Vishrav Chaudhary, Francisco
GuzmAjn, and AndrA© F. T. Martins. 2020. Findings of the wmt 2020 shared task on quality estima-
tion. In Proceedings of the Fifth Conference on Machine Translation, pages 743-764, Online. Association
for Computational Linguistics. 3.1, 3.5.4

Lucia Specia, Najeh Hajlaoui, Catalina Hallett, and Wilker Aziz. 2011. Predicting machine translation

adequacy. In Machine Translation Summit, volume 13, pages 19-23. 3.1
Statista. 2022. Distribution of reddit users worldwide as of january 2022, by gender. 1.1

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AESOP: Paraphrase generation with adaptive syntactic
control. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 5176-5189, Online and Punta Cana, Dominican Republic. Association for Computational Lin-

guistics. 2.2.1

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. 2020. Test-time
training with self-supervision for generalization under distribution shifts. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 9229-9248. PMLR. 7.4.2

Josh Tenenbaum. 2018. Building machines that learn and think like people. In Proceedings of the 17th

International Conference on Autonomous Agents and MultiAgent Systems, pages 5-5. 4.1

Ran Tian, Shashi Narayan, Thibault Sellam, and Ankur P Parikh. 2019. Sticking to the facts: Confident
decoding for faithful data-to-text generation. arXiv preprint arXiv:1910.08684. 3.1

Naftali Tishby, Fernando C Pereira, and William Bialek. 2000. The information bottleneck method. arXiv
preprint physics/0004057. 4.2, 4.3, .7.1

Antonio Torralba and Alexei A Efros. 2011. Unbiased look at dataset bias. In CVPR 2011, pages 1521-1528.
IEEE. 4.1

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003. Feature-rich part-of-

152

https://www.aclweb.org/anthology/2020.wmt-1.79
https://www.aclweb.org/anthology/2020.wmt-1.79
https://www.statista.com/statistics/1255182/distribution-of-users-on-reddit-worldwide-gender/#:~:text=As%20of%20January%202022%2C%20the,based%20in%20the%20United%20States.
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://doi.org/10.18653/v1/2021.emnlp-main.420
http://proceedings.mlr.press/v119/sun20b.html
http://proceedings.mlr.press/v119/sun20b.html

speech tagging with a cyclic dependency network. In Proceedings of the 2003 conference of the North
American chapter of the association for computational linguistics on human language technology-volume

1, pages 173-180. Association for Computational Linguistics. 3.5.3

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, and Manaal Faruqui. 2019. Attention inter-
pretability across nlp tasks. arXiv preprint arXiv:1909.11218. 8

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information pro-

cessing systems, pages 5998-6008. 1.1, 2.1.2, 3, 3.4.1,3.4.2, 5.1, 5.3.2, 5.4.2, 6.2.1, 7.3.3, .19

Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato. 2021. Efficient continual learning with modular

networks and task-driven priors. In International Conference on Learning Representations. 1.1

Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020a. Asking and answering questions to evaluate the
factual consistency of summaries. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, Online. 3.1, .5.1

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261-3275. 7.4.1

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah,
and Bo Li. 2021a. Adversarial glue: A multi-task benchmark for robustness evaluation of language

models. arXiv preprint arXiv:2111.02840. 1.1

Chaojun Wang and Rico Sennrich. 2020. On exposure bias, hallucination and domain shift in neural
machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, Online. 2.1.2, 3.1, 3.4.2

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. 2021b. Tent:
Fully test-time adaptation by entropy minimization. In 9th International Conference on Learning Rep-

resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net. 7.4.2

Rose E Wang, Esin Durmus, Noah Goodman, and Tatsunori Hashimoto. 2022. Language modeling via

stochastic processes. In International Conference on Learning Representations. 2.1.2

Serena Wang, Wenshuo Guo, Harikrishna Narasimhan, Andrew Cotter, Maya R Gupta, and Michael I
Jordan. 2020b. Robust optimization for fairness with noisy protected groups. 34th Conference on

Neural Information Processing Systems (NeurIPS). 4.1

Xinyi Wang, Hieu Pham, Paul Michel, Antonios Anastasopoulos, Jaime Carbonell, and Graham Neu-

153

https://openreview.net/forum?id=EKV158tSfwv
https://openreview.net/forum?id=EKV158tSfwv
https://www.aclweb.org/anthology/2020.acl-main.450
https://www.aclweb.org/anthology/2020.acl-main.450
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://www.aclweb.org/anthology/2020.acl-main.326
https://www.aclweb.org/anthology/2020.acl-main.326
https://openreview.net/forum?id=uXl3bZLkr3c
https://openreview.net/forum?id=uXl3bZLkr3c

big. 2020c. Optimizing data usage via differentiable rewards. In International Conference on Machine

Learning, pages 9983-9995. PMLR. 2.2.3

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. 2020d. Balancing training for multilingual neural
machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 8526—-8537. 2.2.3,5.1,5.2.1, 5.4.1,5.4.2, 1, 2, .14, .14

Yong Wang, Longyue Wang, Shuming Shi, Victor OK Li, and Zhaopeng Tu. 2020e. Go from the general
to the particular: Multi-domain translation with domain transformation networks. In Thirty-Fourth

AAAI Conference on Artificial Intelligence (AAAI), New York, USA. 3.4.2,3.6.2, .1

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. 2017. Learning to model the tail. Advances in
Neural Information Processing Systems, 30. 2.2.3

Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov. 2020f. On negative interference in multilingual
language models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4438—4450. 5.1

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. 2021c. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. In International Conference on

Learning Representations. 5.1

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot learners. ArXiv preprint,

abs/2109.01652. 7.1, 7.2, 7.5

Jason Wei and Kai Zou. 2019. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 6382-6388. 2.2.1

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training. In International Conference on Learning Representations.

3

Junfeng Wen, Chun-Nam Yu, and Russell Greiner. 2014. Robust learning under uncertain test distribu-

tions: Relating covariate shift to model misspecification. In ICML, pages 631-639. 4.3

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018a. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 1112-1122. 4.6.1

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018b. A broad-coverage challenge corpus for

154

https://openreview.net/forum?id=F1vEjWK-lH_
https://openreview.net/forum?id=F1vEjWK-lH_
https://arxiv.org/abs/2109.01652

sentence understanding through inference. In Proceedings of NAACL. 6.4.1

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In

Proceedings of EMNLP: System Demonstrations. 6.4.1, .15.1

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S. Weld. 2021. Polyjuice: Generating
counterfactuals for explaining, evaluating, and improving models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 6707-6723. Association for Computational Linguistics. 2.2.4

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine translation system:

Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. 3

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. 2020a. Unsupervised data augmen-
tation for consistency training. Advances in Neural Information Processing Systems, 33. 7.1, 7.1, 7.3.2,

7.3.2

Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and Quoc V. Le. 2020b. Self-training with noisy stu-
dent improves imagenet classification. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 10684-10695. IEEE. 7.3.2, 7.4.2

Depeng Xu, Shuhan Yuan, and Xintao Wu. 2019. Achieving differential privacy and fairness in logistic
regression. In Companion Proceedings of The 2019 World Wide Web Conference, pages 594-599. 1.1

John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph] Titano, and Eric Karl Oermann.
2018. Variable generalization performance of a deep learning model to detect pneumonia in chest

radiographs: a cross-sectional study. PLoS medicine, 15(11):e1002683. 2.1.1

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791-4800, Florence, Italy. Association for Computational Linguis-

tics. 7.4.1

Runtian Zhai, Chen Dan, Zico Kolter, and Pradeep Ravikumar. 2022. Understanding why generalized
reweighting does not improve over erm. arXiv preprint arXiv:2201.12293. 2.2.3

Boliang Zhang, Ajay Nagesh, and Kevin Knight. 2020a. Parallel corpus filtering via pre-trained language
models. arXiv preprint arXiv:2005.06166. 3.7

155

https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

Marvin Mengxin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea
Finn. 2020b. Adaptive risk minimization: A meta-learning approach for tackling group shift. 2.2.3

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Evalu-

ating text generation with bert. In International Conference on Learning Representations. 3.1

Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V Le, and
Yonghui Wu. 2020c. Pushing the limits of semi-supervised learning for automatic speech recognition.

ArXiv preprint, abs/2010.10504. 7.4.2

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, Online. .4

Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. 2022. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning Repre-

sentations (ICLR), Virtual. 1.2, 2.1.2, 7.1, 7.3.3

Chunting Zhou, Daniel Levy, Xian Li, Marjan Ghazvininejad, and Graham Neubig. 2021a. Distribution-
ally robust multilingual machine translation. In Conference on Empirical Methods in Natural Language

Processing (EMNLP), Punta Cana, Dominican Republic. 1.2

Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham Neubig. 2021b. Examining and combating spuri-
ous features under distribution shift. In International Conference on Machine Learning (ICML), Virtual.

1.2

Chunting Zhou, Xuezhe Ma, Di Wang, and Graham Neubig. 2019. Density matching for bilingual word
embedding. In Meeting of the North American Chapter of the Association for Computational Linguistics
(NAACL), Minneapolis, USA. 3.5.2

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab, Francisco Guzman, Luke Zettlemoyer, and Mar-
jan Ghazvininejad. 2021c. Detecting hallucinated content in conditional neural sequence generation.
In Findings of the Joint Conference of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP
Findings), Virtual. 1.2

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li. 2021. Serial or parallel? plug-
able adapter for multilingual machine translation. arXiv preprint arXiv:2104.08154. 6.3.3

Ran Zmigrod, Sabrina] Mielke, Hanna Wallach, and Ryan Cotterell. 2019. Counterfactual data augmen-
tation for mitigating gender stereotypes in languages with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 1651-1661. 2.2.4

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William

156

https://arxiv.org/abs/2010.10504
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2109.04020
https://arxiv.org/abs/2109.04020
http://arxiv.org/abs/2106.07171
http://arxiv.org/abs/2106.07171
https://arxiv.org/abs/1904.02343
https://arxiv.org/abs/1904.02343
https://arxiv.org/abs/2011.02593

Fedus. 2022. Designing effective sparse expert models. arXiv preprint arXiv:2202.08906. 8

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, pages 1568-1575. 5.1

157

	1 Introduction
	1.1 Background and Motivation
	1.2 Thesis Overview

	2 Background and Literature Review
	2.1 Characterization of Robustness in NLP
	2.2 Methods for Improving Robustness

	I On the Faithfulness of Conditional Sequence Generation
	3 Detecting Hallucinated Content in Conditional Neural Sequence Generation
	3.1 Introduction
	3.2 Task: Token-level Hallucination Prediction
	3.3 Token-level Hallucination Detection
	3.4 Evaluation Tasks and Data
	3.5 Experiments
	3.6 Case Study I: Improving Self Training in Machine Translation
	3.7 Case Study II: Improving Corpus Filtering for Low-Resource MT
	3.8 Conclusion

	II Group Distributionally Robust Optimization
	4 Examining and Combating Spurious Features under Distribution Shift
	4.1 Introduction
	4.2 Preliminaries on Robust Representations
	4.3 Spurious Features under Covariate Shift
	4.4 Does Group DRO Learn Robust Features?
	4.5 Proposed Method: Group-conditional DRO
	4.6 Experiments
	4.7 Conclusion

	5 Distributionally Robust Multilingual Machine Translation
	5.1 Introduction
	5.2 Preliminaries
	5.3 Methods for Distributionally Robust Multilingual Learning
	5.4 Experiments
	5.5 Analysis
	5.6 Conclusion

	III Efficient Transfer Learning of Pre-trained Language Models
	6 Towards a Unified View of Parameter-Efficient Transfer Learning
	6.1 Introduction
	6.2 Preliminaries
	6.3 Bridging the Gap – A Unified View
	6.4 Experiments
	6.5 Discussion

	7 Prompt Consistency for Zero-Shot Task Generalization
	7.1 Introduction
	7.2 Prompt-based Zero-Shot Task Generalization
	7.3 Prompt Consistency Training
	7.4 Experiments
	7.5 Discussion

	8 Conclusions and Future Directions
	Appendix I: Hallucination Detection for Conditional Sequence Generation
	.1 Human Evaluations
	.2 Training of NMT models
	.3 Experimental Details for Token-level Hallucination Prediction
	.4 Ablation Studies
	.5 Supplymental Results and Analysis

	Appendix II: Examining and Combating Spurious Features under Distribution Shift
	.6 Proofs of Theorem 1
	.7 Connections between MLE and Learning Minimal Sufficient Statistics
	.8 Details of the Online Greedy Algorithm for Group DRO
	.9 Synthetic Experiments: on Investigation Spurious Features under Covariate Shift
	.10 Experimental Details

	Appendix III: Distributionally Multilingual MT
	.11 Best response
	.12 Primal-dual methods

	Appendix III: Distributionally Robust Multilingual Machine Translation
	.13 Data Statistics
	.14 Preprocessing and Training Details

	Appendix IV: Towards a Unified View of Parameter-Efficient Transfer Learning
	.15 Experiments
	.16 Computation of Tunable Parameters
	.17 Full Results on Different Bottleneck Dimensions

	Appendix V: Prompt Consistency for Zero-Shot Task Generalization
	.18 Datasets
	.19 Training Details
	.20 Limitations of Our Work

	Bibliography

