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Abstract

The primary obstacle to enabling wide spread adoption of composite tissue
transplantation, as well as to improving long-term solid organ transplant outcomes,
is establishing a personalized medication regimen optimizing the balance between
immunosuppression and immune function - the individual minimum effective level
of immunosuppression. Presently, the clinical gold standard for monitoring immune
function is histologic inspection of biopsy for tissue damage, or monitoring blood
chemistry for signs of organ failure. These trailing indicators reflect damage that has
already accumulated, and are of little use in proactively determining the
immunologic state of a patient.

Samples collected from small animal surgical models were used to quantify the
amount of immune signaling protein present (cytokines and chemokines) under
various experimental conditions. Patterns in protein expression that reliably
discriminate amongst the groups were then investigated with statistical inference
methods such as the logistic classifier, decision tree, and random forest, operating in
both the original feature space and in transformed feature spaces.

This work demonstrates computational methods are effective in elucidating and
classifying cytokine profiles, allowing the detection of rejection in composite tissue
allografts well in advance of the current clinical gold standard, and shows that the
methods can be effective in solid organ contexts as well. This work further
determines that cytokine patterns of inflammation associated with rejection are
specific to the structure and composition of the tissue in which they occur, and can
be distinguished from immune signaling patterns associated with unspecific
inflammation, wound-healing, or immunosuppressed tissue.

Clinical translation of these findings may provide novel computational tools that
enable physicians to design personalized immunosuppression strategies for
patients. The methods described in this work also provide information that can be
used to investigate the biological basis for the observed immune signaling patterns.
Further development may provide a computational framework for identifying novel
therapeutic strategies in other pathologies.
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Chapter 1 Introduction

Rejection is the name given to the powerful and destructive inflammatory
response of the body to transplanted organs that have different histocompatibility
features from the host. Rejection is characterized by a powerful cell-mediated
cytotoxic response that inexorably destroys the allograft, unless it is moderated or
suppressed by therapeutic intervention. It is the bane of clinical transplantation and
it is the underlying reason why toxic immunosuppression therapy is required.

Simply maximizing immunosuppression dosage is not a viable option.
Instead, it is necessary to minimize both rejection and immunosuppression to
achieve an optimal outcome. Achieving this goal requires the ability to assess
whether rejection is developing in advance of gross histological damage.

Dendritic cells migrate to lymph

. . = Effector cells migrate Graft destroyed by
Organ graft with dendritic cells node and spleen via blood, where .
they activate effector cells to graft via blood effector cells
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Figure 1.1 from (Murphy 2011) p. 656

While the detection of a wide range of markers is now technically possible at
a reasonable price with excellent accuracy, clinicians have not yet found a way to
make use of these newly accessible informational features to detect rejection in
advance of gross histological damage.

Sample collection, marker quantification, and immunosuppressive treatment
are all areas with sophisticated solutions, but they cannot currently be integrated to
full effect. Timely information about the current state and likely course of rejection,
or the balance between rejection and immunosuppression, is not available. In part
this is because no method of analysis using these markers has emerged with
sufficient sensitivity, specificity, and cost efficiency to be clinically relevant.

This thesis lays the foundations for a system to provide such information by
demonstrating that rejection can be detected in advance of gross histological
damage, with high specificity and sensitivity, through the computational modeling of
currently quantifiable proteomic immune signaling factors.

Current State of the Art

The current gold standard method for detecting rejection in allografts is the
pathologist examination of a tissue biopsy. Biopsies can be collected as part of a
standard post-operative care routine, or in response to observed abnormalities in
the organ or its function.
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In this procedure, pathologists examine a slide-mounted slice of the biopsy
and measure three factors; lymphocytic infiltrate, structural compromise of the
tissue, and blood vessel damage. Pathologist readings result in gradings that label
the current state of the tissue on a scale of rejection, such as the Banff scale. We shall
refer to this method of detecting rejection as detecting rejection by histology. A
diagrammatic overview of the current clinical process is provided in (Figure 1.2).

When information about the underlying pathology of the sample is not
provided, the histology of rejection is often difficult or impossible to distinguish
from contact hypersensitivity (CHS), insect bites or dermatophyte infections
(Kanitakis et al. Transplantation 2000).

From the perspective of managing patient immunosuppression, detecting
rejection by histology suffers from serious drawbacks:

* The measured factors reflect damage that has already occurred (following
indicators), and the factors become visible as the damaging runaway
inflammation is approaching its peak (as inflammation activity is
exponentially accelerating).

* Once advanced rejection has been detected by histology rescue by a bolus of
immunosuppressants, such as corticosteroids, is usually required.

* Histopathological changes associated with rejection are very similar to
several common inflammatory dermatoses (e.g. contact hypersensitivity)

The detection of rejection by histology followed by one or more rescue bolus
treatments sets the stage for undesirable potential outcomes:

* Opportunistic infection allowed by a weakened immune system
* Chronic rejection from vasculopathy caused by damage from inflammation
* Inappropriate treatment for inflammation from a different source (e.g. CHS)

Failure to properly identify and manage rejection carries substantial
penalties in mortality and financial cost associated with rehospitalizations.

Because of the high human and financial cost of rejection the standard
clinical practice has become treatment with high levels of multiple
immunosuppressants, commonly termed multi-drug or triple therapy. This therapy
commonly applies a corticosteroid (e.g. Prednisone), calcineurin inhibitor (e.g.
Tacrolimus), and anti-proliferative agent (e.g. Azathioprene).

Although this approach often prevents the manifestation of rejection, over
immunosuppression creates its own serious problems that can be just as serious as
rejection. Opportunistic infections in patients with weakened immune systems often
lead to morbidities, and routinely requires rehospitalization. The
immunosuppressant regimen is also toxic to many of the body’s organs, especially
the kidney. Transplant recipients (of any kind) frequently require downstream
kidney transplants due to immunosuppressant toxicity.

The conflicting objectives of preventing rejection and minimizing
immunosuppression create a situation where clinicians and their patients must
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balance on a razor’s edge. An imbalance in therapy leading to over or under
immunosuppression can rapidly and permanently affect patient morbidity and
mortality.

Adding to the difficulty of the task is the lack of methods to assess the effect
that any given level of immunosuppression will have on a patient’s immune system.
Inevitably this has led to the clinical standard becoming a trial-and-error method to
try to find the appropriate balance of immunosuppression and quality of life.

The amount of immunosuppression in a patient is measured as a
combination of regular dose amounts and trough levels in the patient’s body.
Clinicians attempt to achieve a delicate balance between immunosuppression and
rejection by optimizing immunosuppressant dose, immunosuppressant trough level,
rejection, morbidity, and patient quality of life. Immunosuppressant dose is the
driving factor for these tightly linked effects. Changes in dosing will affect
immunosuppressant trough levels, which in turn will affect rejection, morbidity, and
patient quality of life. This can also be seen as optimizing the balance between
immunosuppression and rejection.

Changes in dosing can take up to several days to affect trough levels. Changes
in immune system activity allowed by changes in trough levels in turn can take from
one to three additional days to manifest at the histological level. Thus it can take up
to a week (or possibly more) for a clinician to assess changes to
immunosuppression therapy. This effectively limits the ability of clinicians to be
responsive to the fluid and evolving immunologic state of an individual. It also locks
clinicians into a reactive management mode that encourages error on the side of
over immunosuppression.

Patients with inadequate immunosuppression develop a clear rejection
pathology for which grading has been well established. Clinicians currently infer the
extent to which a patient is over-immunosuppressed on a case-by-case basis
through morbidity and quality of life measures.
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What is Needed

While effective sampling, marker quantitation, and immune suppression
options are available, the missing piece for clinicians is a system that can guide them
in making decisions about immunosuppressant dosing (Figure 1.3). This system
needs to provide information about whether rejection has developed in tissue
before the damage manifests visibly (histologically), and it needs to be able to
provide immediate feedback about the downstream effects of changes in dosing. The
system also must be robust to false positives from inflammation that is not
associated with rejection.

Marker

\ Marker ejection Therapeutic
Sampling Quantificatio ASsessment Agents

Figure 1.3 Accurate and information rich assessment of rejection state and trend is needed

A reduction in the time needed to assess treatment changes would allow
clinicians to much more rapidly home in on the correct dosing regimen for each
individual patient. A turnaround time of one to two days would allow novel
approaches such as immunomodulation, minimal immunosuppression, and
tolerogenic protocols to become a common clinical reality.

Although far more information than the factors currently measured by
pathologists is now available, these additional dimensions of data have not yielded
the improved predictive power they seem to promise. The primary factor
contributing to this is the complexity of the immune system itself.

The Approach of this Work

The immune system is truly a complex adaptive system, and our
understanding of it is still in its infancy. The immune system is ubiquitous and
continuously active. It operates on multiple scales, is an integral part of homeostasis
in nearly all tissues, and is the coordinating system for responses to pathologies.
These complexities, with interdependent variables, context dependence, and the
scarcity of mechanistic information have all made the area challenging to further
elucidate with traditional methods described in the immunology or transplant
literature.

However, new computational methods that have enabled significant
advances in complex symmetrical problems from other areas of science, such as
language technologies and machine learning, have the potential to enable significant
improvements in modeling the immunology and transplant areas. The application of
these methods requires an understanding of immunology, complexity, and
computer science, as it is necessary to adapt the utility of computational algorithms
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to the actual biology, and it is likewise necessary to translate the numerical results
into biologically relevant (and accurate) elucidations.

The application of the methods described in this work provides a framework
with which the current standard clinical process of monitoring and responding to
rejection (Figure 1.2) may be transformed. By changing the metric of rejection from
tissue damage to the biochemical signaling patterns that are the signature of
rejection, the ability to identify and differentiate inflammation, as well as use
existing therapies more effectively, becomes immediately available to clinicians. One
diagrammatic example of how this technology can be applied in practice is provided
in (Figure 1.4), where tissue damage is not visually assessed and the only metric of
assessment is immune signaling.

Further development may also lead to an important new therapeutic
capability, the direct intervention in regulatory immune signaling pathways through
highly targeted cytokines, chemokines, or other agents with specific immune
signaling regulatory functions. The ability to elucidate and differentiate specific
states associated with specific conditions, to modulate specific signaling pathways,
and the ability to rapidly observe the response to these interventions could enable
an entirely new paradigm for more effective rejection management.

While this thesis demonstrates the application of these methods specifically
to rejection management, it is clear that the ability to analytically map and intervene
in specific regulatory and inflammatory immune signaling pathways would have
enormous implications for many other areas of immunology and medicine such as
oncology, autoimmunity, infectious disease, trauma and burn, and others.
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Thesis Hypotheses

This thesis examines the validity of three key hypotheses that lead to a
system utilizing computational modeling methods applied to immune signaling
(cytokine) profiles quantified from tissue samples that provides information about
rejection before damage manifests visibly (histologically), and which provides rapid
feedback about the effects of changes in dosing.

Hypothesis 1: Detection of rejection

The onset of rejection can be reliably and accurately detected in advance of the
current clinical standard by measuring proteomic immune signaling factors
associated with inflammation, and using computational models to predict whether
these factors are indicative of rejection.

Hypothesis 2: Separation of tissues
Immune signaling patterns that drive rejection within each tissue are distinct.

Hypothesis 3: Isolating Specific Forms of Inflammation in a Heterogeneous Set
Cytokine patterns of inflammation associated with rejection can be distinguished
from other unspecific, wound-induced, or immunosuppressed patterns.

All three of these hypothesis were confirmed, as discussed in greater detail in the
remainder of this dissertation.



Chapter 2 Literature Review

This work builds upon the current state of the art in multiple fields of science
and medicine. A historically oriented introduction to the areas of solid organ
transplantation, composite tissue transplantation, and computational /statistical
literature most relevant to this work is provided.

Organ Transplantation

The concept of replacing organs or limbs that have become diseased or
damaged is a deeply rooted human dream, so old it that has been incorporated into
our mythology in chimeric beings like the Hindu Ganesha(Narain 1991). The oldest
recorded attempted transplant was the use of skin from a donor to conduct a
reconstructive rhinoplasty on another man, performed by the classical Indian
surgeon Sushruta, sometime between 1000 and 600 BCE (Ackerknecht 1982;
Hauben 1984; Saraf 2007). Throughout the ages surgeons have attempted
transplantation time and again, but it was not until key contributions from
Medawar, Brent, and Billingham at the turn of the 20t century that real progress in
understanding the biology underlying host-allograft interactions was
made(Medawar 1944; Billingham, Brent, and Medawar 1956; Billingham and Silvers
1961). At approximately the same time, important insights into the circulation and
role of lymphocytes in relevant immunologic response were being made(Gowans
1959; Farr 1951; PERRY et al. 1959; Keohane 1958; Hulse 1959). This essential
work came on the heels of important early descriptions of lymphocyte activity in
inflammation (Bunting 1921; Yoffey 1933; Yoffey 1936; Kolouch 1939).

As the scientific foundations for transplant biology rapidly evolved, the first
successful kidney transplant between identical twins was conducted in 1954
(Murray, Merrill, and Harrison 2001; Merrill et al. 1956). Although a surgical
success, little immunologic information was generated because the transplant was
not an allograft (or homograft). The monozygotic twins were genetically identical
and therefore shared the same major histocompatibility complex (MHC). Rejection
virtually never occurs in such cases. The identical twin transplant of 1954 was an
isograft, sidestepping entirely the potent unresolved issues of allogenicity, and
immunologically more similar to an autograft than an allograft. It would not be until
the 1960’s that appreciable graft survival was achieved in MHC mismatched patients
(Thomas E Starzl 1963; THOMAS E STARZL 1963; T E STARZL 1963; Murray,
Merrill, and Harrison 1963)

Throughout the 1960’s and 1970’s, attempts to control rejection included
irradiation of the recipient to neutralize the host immune system (Hulse 1959;
Hume, Magee, and Kauffman 1963; Gleason 1967; Wolf, McGavic, and Hume 1969;
Jones, Wilson, and Bealmear 1971; Penn and Starzl 1972), the administration of
azathioprine (Thomas E Starzl 1963; THOMAS E STARZL 1963; T E STARZL 1963;
Murray, Merrill, and Harrison 1963), and eventually treatment with anti-
lymphocyte globulin (ALG/ALS) (Lwason, Ellis, and Hodges 1966; Greaves et al.
1967; T. E. Starzl, Groth, and Brettschneider 1967; GRAY, MONACO, and RUSSELL
1964; Huntley et al. 1966). Although these were shown to have beneficial effects on
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graft survival, morbidities were extensive (RIFKIND, Marchioro, WADDELL, and
Starzl 1964; RIFKIND, Starzl, Marchioro, WADDELL, ROWLANDS, and HILL 1964; T.
E. Starzl, Marchioro, Porter, MOORE, RIFKIND, and WADDELL 1964), rejection was
still a threat (T. E. Starzl, Marchioro, Brittain, Holmes, and WADDELL 1964), and
graft-versus-host disease would sometimes overtake patients (Billingham 1966;
Glucksberg et al. 1974; G E Sale 1977; LAWLEY and PECK 1977; Korngold 1978;
Graze 1979; Shulman et al. 1980; Matsuoka 1981).

With the arrival of cyclosporine in the late 1970’s, a new era in the clinical
viability of transplantation as a therapeutic intervention dawned. Significant
improvements in outcome and graft survival were achieved first in liver (T. Starzl,
Klintmalm, and Porter 1981), then in kidney (Group 1983) patients. A new class of
immunosuppressant, cyclosporine was powerful enough to provide the high levels
of immunosuppression required for managing transplants, with fewer of the
morbidities associated with prior treatment regimens.

However, these improvements came with a price. Cyclosporine was shown to
be nephrotoxic over time (Shulman, Striker, and Kennedy 1981; Myers, Ross, and
Newton 1984; GoranBG 1981), and care still had to be taken to avoid the
morbidities associated with a suppressed immune system, such as infection
(Dummer, Hardy, and Poorsattar 1983). Despite these drawbacks, the level of
clinical improvement cyclosporine offered over previous methods was very
compelling, and cyclosporine fueled much of the explosive growth in
transplantation during the 1980s and beyond (Colombo and Ammirati 2011;
Furukawa 2004; Borel 2002).

In late 1987 a report from Japan introduced FK-506 (Tacrolimus) as a new
and potent immunosuppressive agent (Ochiai et al. 1987). Additional studies rapidly
followed in more animal models, confirming FK-506’s effectiveness in suppressing
and rescuing grafts from rejection (Venkataramanan et al. 1987; Zeevi et al. 1987;
Todo et al. 1987; Murase et al. 1987; Makowka et al. 1987; Nalesnik et al. 1987;
Thiru, Collier, and Calne 1987). Synergistic effects with cyclosporine were also
observed (Sanghvi et al. 1987; Zeevi et al. 1987). The potency of FK-506, and its
synergistic effects with other drugs, would open the door for future therapeutic
strategies to leverage immunosuppression dosage as a controller for modulating the
tolerance/rejection balance in transplants (T. E. Starzl 1988).

The search for cyclosporine’s mechanism of action began almost immediately
after it was shown to have clinical promise, but it was not until after the
introduction and clinical adoption of FK-506 in the early 1990’s that both FK-506
and cyclosporine were discovered to inhibit the calcineurin phosphatase pathway
(Schreiber and Crabtree 1992; Russell et al. 1992; Erlanger 1992; Siekierka and
Sigal 1992). Further studies rapidly elucidated additional mechanism details in
subsequent years.

Although mainstream clinical practice had vigorously adopted high-dose
combination immunosuppression therapy as the treatment of choice because of the
specter of rejection, in 1992 the notion that more immunosuppression was not
necessarily better emerged. A group of patients were discovered to have become
chimeric, or developed tolerance towards their allograft (T. E. Starzl et al. 1992),
helping to elucidate the fact that allografts carried passenger leukocytes that

10
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conducted an immune response against the host, much as the host carries out an
immune reaction against the allograft (Rao et al. 1996). This became known as the
double-immune response or clonal exhaustion and deletion (T. E. Starzl and Fung
2010). Further investigation of these cases revealed that moderate levels of
immunosuppression, carefully timed and tailored to each individual, was at least
partially successful in eliminating patient dependence on lifelong
immunosuppression (Shapiro et al. 2003). Prior to these observations the clinical
view was that the immune response needed to be quashed as early and completely
as possible, in order to prevent the leviathan of rejection from emerging. However
after the chimeric patients were discovered, the door to the consideration of more
nuanced application of immunosuppression was opened.

Organ transplantation has evolved from a non-existent field to one of the
most prominent disciplines in medicine over the past half century.

Rejection Marker Literature

Skin rejection is is of particular interest in this thesis because of its high
immunogenicity, and because the process of rejection in skin is likely to be
elucidating for other tissues. It is also a component of the composite tissue allograft
that has historically been more difficult to manage with minimal
immunosuppression protocols than other tissue (such as muscle).

The Banff 97 working classification of renal allograft pathology (Racusen et
al. 1999) provided a uniform basis for the grading rejection in allograft biopsies. It
has been subsequently updated, most recently by Banff 07 classification of renal
allograft pathology: updates and future directions (Solez et al. 2008). Grading
schemes relevant to skin and composite tissue allotransplantation were also defined
in The Banff 2007 Working Classification of Skin-Containing Composite Tissue
Allograft Pathology (Cendales et al. 2008).

Cytokines are signaling proteins that are essential to both organ and immune
function (Nicola 1995), influencing the behavior of cells by binding to surface
receptors (Ihle 1995). Suppressors of cytokine signaling and immunity (Kubo,
Hanada, and Yoshimura 2003)provides a thorough review of how suppression of
cytokine signaling can significantly alter an immune response, and provide
potential therapeutic alternatives to systemic immunosuppression.

A description of the properties of cytokine ligands and receptors, as well as a
listing of the currently known cytokines, is provided in (Murphy 2011). Several
signaling proteins that have a function in the immune system are sometimes also
classified as chemokines. A broad review of this class of signaling proteins is given
in (Charo 2006). Cytokines are generally considered the class of proteins involved
in regulation of immune activity (Brunton 2010), while chemokines are involved in
inducing cell movement (chemotaxis) (Murdoch and Finn 2000).

Cytokine expressions associated with CHS, and discussion of the role of
individual cytokines in the pathology of CHS, are given in (Piguet et al. 1991; Lu et al.
1998; Wang et al. 1999).

11
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Composite Tissue Allotransplantation

With the first human hand transplantation performed in the modern era of
immunosuppression in 1998 composite tissue allotransplantation (CTA) has
become a clinical reality. Over the past decade it has become a treatment option for
the many patients suffering from complex tissue injuries or defects not amenable to
conventional reconstruction (Dubernard et al. 1999). The more than 60
hand/forearm and most recently arm transplants as well as 12 face transplants
performed throughout the world have also shown that allograft survival with good
functional outcomes can be routinely achieved after CTA (Lanzetta et al. 2007;
Schneeberger and Ninkovic 2006; Cooney and Hentz 2001; Schuind et al. 2006;
Petruzzo et al. 2006). However, despite the fact that surgical procedures and
functional outcomes are highly successful, the need for long-term and high-dose
immunosuppression to enable graft survival and to treat/reverse acute rejection
episodes are the remaining and pace-limiting obstacles towards wide spread
application (Schneeberger, Zelger, Ninkovic, and Margreiter 2005; Abramowicz and
Schneeberger 2007). The toxicity profile of such drug treatment is considerable and
includes serious side effects, such as opportunistic infections, malignancy and end
organ damage (Stratta 1997; Hettiaratchy et al. 2004; Gander et al. 2006; First and
Peddi 1998).

CTA recipients are unique in that they undergo a transplant procedure for
what is considered to be a non-life-threatening condition. Therefore, there is a
critical need to develop immunosuppression minimization strategies to reduce the
risks of chronic immunosuppression.

The skin is the principal target of rejection after CTA transplantation, making
it an obstacle to tolerance induction or minimizing immunosuppression. On the
other hand, due to its external location, the skin provides a unique clinical
opportunity for monitoring, early diagnosis, prevention and treatment of CTA
rejection, including the possibility of therapies applied directly/topically to the skin.

Acute rejection in hand transplantation appears with maculopapular skin
lesions (Figure 2.1), which can be limited to a small area of the skin or can spread
over large parts of the transplant (Schneeberger and Ninkovic 2006; Cooney and
Hentz 2001; Cendales et al. 2006; Cendales et al. 2008; Schneeberger, Lucchina,
Lanzetta, Brandacher, Bosmiiller, Steurer, Baldanti, Dezza, Margreiter, and Bonatti
2005; Steinmuller 2001).

1 o
Figure 2.1 Examples of acute skin rejection

Clinical macroscopic manifestations can range from mild pink discoloration
or erythema to lichenoid papules, edema and onychomadesis. The main histological

12
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feature of acute rejection is a mononuclear cell infiltrate. It first appears in the
perivascular space of the dermis and then spreads to the interface between dermis
and epidermis and/or adnexal structures. A perivascular, cellular infiltrate within
the epidermis is typical for a moderate grade of rejection with the immunologic
response reaching the outermost layer. If rejection is not successfully treated at that
stage, necrosis of single keratinocytes can be observed, resulting in focal dermal-
epidermal separation and significant graft damage (Cendales et al. 2006;
Schneeberger, Lucchina, Lanzetta, Brandacher, Bosmiiller, Steurer, Baldanti, Dezza,
Margreiter, and Bonatti 2005; Steinmuller 2001). If rejection progresses further,
necrosis and loss of the epidermis, as the ultimate stage of skin rejection, are
considered irreversible. However, very limited information is available on the
involvement of components other than the skin in this acute rejection process
(Schneeberger, Lucchina, Lanzetta, Brandacher, Bosmiiller, Steurer, Baldanti, Dezza,
Margreiter, and Bonatti 2005). The histological findings in CTA patients are in line
with results from experimental studies indicating that the skin is highly
immunogenic and hence the primary/sentinel target for rejection. This is further
substantiated by the fact that immunological tolerance can be achieved towards all
components of a CTA experimentally except the skin. It was also shown that skin
alterations in a CTA are not exclusively limited to alloimmune-mediated injury. The
clinical and histopathological features of immune-related and non-rejection
processes are potentially overlapping or may coincide with acute rejection. The
underlying mechanisms are largely unknown and represent a current major clinical
challenge in differentiating between acute rejection and other forms of skin
inflammation.

Similarities in Early Skin Rejection and Other Sources of Skin Inflammation

Skin rejection in CTA presents with erythematous macules that may progress
if not treated to infiltrated scaly violaceous lichenoid papules covering the complete
surface of the graft (Kanitakis et al. 2000). These alterations are not specific for
rejection and may mimic inflammatory dermatoses. Kanitakis et al. emphasized the
diagnostic challenges in early or mild skin rejection. Early rejection (grades 1 and 2)
can be especially difficult to differentiate from contact dermatitis (Figure 2.2 and
Figure 2.3), insect bites, or dermatophyte infections. While the geographic limitation
of lesions to the skin of the allograft can be an important and helpful hint, atypical
cases of skin rejection with regard to the anatomical site, progression or the clinical
manifestation have been described (Kreczy, Brandacher, and Steurer 2004) and the
location alone cannot be considered proof. Early and accurate diagnosis, however,
are critical to either prevent progression of rejection or incorrect treatment of the
patient.

13
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Figure 2.2 The histopathology of CHS (left

Parallels between acute skin rejection and inflammatory dermatoses (e.g.
contact dermatitis, psoriasis and atopic dermatitis) also exist on the molecular and
cellular level. Allergic contact dermatitis for example is a T cell-mediated delayed
type hypersensitivity reaction that occurs upon hapten challenge in sensitized
individuals (Gober and Gaspari 2008). Therefore the differentiation mainly based on
histological and macroscopic criteria can be difficult. It has been demonstrated, that
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T-cells (CD4+ and CD8+ cells) are critical effectors and that elements of the innate
immune system (e.g. natural killer cells) may play a key role (Saint-Mezard et al.
2004). Epidermal Langerhans cells as the most powerful antigen presenting cells in
skin as well as keratinocytes are regulating this inflammatory process. Cytokines
derived from Langerhans cells (e.g. [L-12) and from T-cells (IFN-gamma, IL-4 and
IL-10) play a pivotal role in the induction and initiation of this common skin disease
(Gober and Gaspari 2008; Pastore et al. 2004).

Computational Literature

Concise and thorough coverage of the statistical inference and modeling
methods this thesis uses are given in (Wasserman 2010b) and (Wasserman 2010a).
Both discriminative and generative methods are important to this thesis.
Discriminative methods are often able to produce classifiers that have superior
performance to their generative counterparts, however generative methods allow
data to be generated from the model (effectively allowing in silico simulation of
changes in model parameters).

Initial discriminative efforts begin with a logistic regression implementation
and expand to other methods. Recall that a logistic classifier uses

f(Z):Tle_z

Equation 1 The logistic function

to take input of any real-numbered value and produce output R thatis 0 <R < 1.
Generally the input to this function is

z= o+ brx1 + Paza + ... + Prxy
where each beta represents a regression coefficient of each independent variable x.
Equation 2 A common logit definition

Although the parameters measured in this thesis are not independent,
logistic regression can still give useful results. These can provide the insight needed
to apply multi-variate regression and other generalized linear models (Freedman
2005)

Decision trees are useful for data exploration, classification along non-linear
decision boundaries, or in selectively applying other models. They can take the form
of classification trees, regression trees, or the hybrid classification and regression
(CART) trees (Breiman et al. 1984). As predictive models, the nodes represent
decision criterion, the branches represent conjunctions of parameters, and the
leaves are the final classes assigned by the decision tree function. Thorough and
accessible coverage of this area of statistical learning is given in (Hastie, Tibshirani,
and Friedman 2008a).

When decision trees are combined into an ensemble, the form the random
forest classifier (Liaw 2002). This method is particularly powerful and is able to
capture highly non-linear decision surfaces (Breiman 2001; Hastie, Tibshirani, and
Friedman 2008b). The methods by which random forests are grown and trained
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provide unbiased built-in estimation of performance because part of the data is left
out in each bootstrap sample, protecting against overfitting.

Feature transformation methods allow high dimensional data to be
understood in new and possibly more intuitive ways. Highly complex data sets
frequently contain important patterns that are obscured by the method of data
collection. For example, important immune signaling patterns may exist in a given
context, but because the features that can be measured are constrained, the raw
data may not provide a clear picture of what those important patterns are. Without
feature transformation methods, the data would be opaque to clinical interpretation,
and any decision criterion that statistical inference algorithms learn on the raw data
could be sub-optimal.

The feature transformation methods of most utility in this thesis are Singular
Vector Decompisition (SVD), Principle Component Analysis (PCA), and Multivariate
Analysis of Variance (MANOVA).

SVD decomposes a matrix by

M=UxV"
Where M is the original matrix, U is a unitary matrix, ), is a rectilinear diagonal

matrix, and VT is again a unitary matrix.
Equation 3 The SVD factorization

PCA makes use of this decomposition. A detailed account of the complete
decompisition and variations of it are given in (Strang 2005).

PCA is mathematically defined as an orthoganal linear transformation. PCA
seeks to find the linear combination of observed features that fits into the smallest
number of synthesized features possible. The effect of this is to “load” the maximum
amount of observed variance (along orthoganal bases) into the top synthesized
features. The actual transformation occurs by

YT = MTU
Where Y is the transformed matrix, M is the original data matrix, and U is the first

singular matrix yielded by SVD decomposition of M.
Equation 4 The PCA transform

Extensive coverage of PCA is given in (Jolliffe 2010).

While PCA seeks to find the combination of observed features that are most
informative of the underlying structure of variance, the MANOVA method seeks to
maximize the separation of labeled classes. It is often possible for the same classifier
to yield better classification performance with a MANOVA transformed data set than
with a PCA transformed data set. (Eriksson et al. 2006), (Hardle and Simar 2003),
and (Rencher 2002) provide insight and instruction in the method.

Alternative and Experimental Methods for Detecting Rejection
Interest in finding a better means of detecting or predicting rejection has
spawned a range of research approaches. Although none of these methods has found
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widespread clinical adoption, the technical innovations provide context for this
thesis and are informative of the challenges faced by the field.

Utilizing little or no tissue data, the psychiatric analysis described by (Owen
and Bonds 2006) concluded that although the features measured could be used to
identify certain risk factors for rehospitalization, they were not predictive of
rejection specifically. Rehospitalizations were due to a variety of causes, including
immunosuppression-associated infection.

A significant amount of ongoing research is being invested in finding genetic
markers for rejection. The most promising results to date have come from (Li et al.
2001) showing correlation between miRNA coding for cytotoxic proteins and
rejection, as well as (Snyder et al. 2011) showing strong correlation between donor
gene fragments in circulating blood and the progression of rejection. However in the
presented results there is a high degree of variance in key metrics measured, and
the detection of rejection is thought to occur at the onset of graft damage. This may
eventually provide an improvement over current clinical standards by reducing
unneccessary biopsies, and results from this thesis may eventually be adapted to
work with this method. Additional work in the area of genetic rejection detection
has been done by (Sindhi et al. 2008) and (Lande et al. 2007).

Cellular analysis is perhaps the most popular alternative approach to
assessing rejection. A large number of biomarkers have been identified and
catalogued by (Jain 2010), however in-vivo most biomarkers suffer from high false
positive rates, or are not cost-effective to assess. For kidney transplant cases, (Kotb
et al. 1999) describes a method that is a reliable indicator in about 62% of studied
cases. (Bishop et al. 1986) identifies cells associated with rejection in circulating
blood, but like (Snyder et al. 2011), these cells provide very limited or no predictive
value beyond what is technically achievable by pathologist examination of biopsy.

Doppler tissue imaging as described by (Stengel et al. 2001) may eventually
provide a non-invasive alternative to heart biopsy. As described, the system is
capable of 82% sensitivity but only 53% specificity, and again does not confer
predictive power.

Significant recent advances in proteomic analysis have been made by
(Phillips et al. 2004) who proposed a breath-test for heart transplant rejection that
is capable of 71.4% sensitivity and 62.4% specificity. (Maier et al. 2011) shows
excellent performance in predicting corneal transplant rejection with the
application of linear discriminant analysis to selected cytokines, reinforcing the
underlying approach of this thesis.

Efforts to map the measured semantic properties of rejection by (Stanley,
McManus, and Rockey) resulted in a system that shows promise in predicting post-
transplant mortality, but is not effective in predicting rejection or infection. A
literature derived networks of interactions between cells and cytokines was
described in (Shen-Orr et al. 2009), although this is primarily a data exploration
tool, as no mechanism for providing predictions or state assessments is present in
the system.

Additional literature and suggestions for further reading is provided in
Appendix E Related Literature
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Data available in the literature does not provide the necessary time points or
features required for the analyses presented in this work. To achieve statistical
significance and control for variance not related to the experiment design, large
quantities of original experimental data was collected from hind-limb composite
tissue transplants in an established rat small animal model. The concentration of
immune signaling proteins (cytokines) was quantified by Luminex multiplexing
platform, which provided the features for analysis by statistical and computational
methods. These patterns provide the discriminative classifiers substantial
predictive power.

Data from the Literature is Necessary but Not Sufficient

The literature is useful to this work by providing modeling parameters,
biological explanations for analytic results, and scientific context for this research.
While extensive information about the behavior of individual cytokines (or small
cliques of cytokines) is available in the literature, this data alone is not suitable for
the purpose of elucidating the hypothesis of this thesis.

Cytokines are by nature pleomorphic, and have a wide range of cellular
effects that are context dependent. For this reason, in vitro studies of specific
cytokine behaviors are often not consistent with in vivo observations. Similarly, in
vivo observations can be inconsistent with each other and vary with sampling
conditions, anatomical location, pathology, and many more factors.

The literature lacks data sets that contain measurements from a wide range
of cytokines, over time, sampled from a uniform surgical model. Therefore the
hypotheses proposed here can not be verified to the extent required for clinical
relevance from analysis of the literature alone.

Because of these factors, has been critical to incorporate a program into this
thesis to build a dataset that captures the high-dimensional information about in-
vivo cytokine profiles over time. This data is essential to separating the portions of
immune signaling meaningfully associated with rejection, from signaling activity
that is related to other types of inflammation or other body processes.

In vitro models of immune function are not sophisticated enough to capture
the inherent dynamism of a higher order living organism (e.g. small animal). The
influence of processes, both known and unknown, have substantial effect on the
development and regulation of immune system activity. Although complimentary in
vitro studies are helpful to clarify specific interaction or mechanism questions, in
vivo examination is a pre-requisite for accurate systems-level understanding of the
immune signaling associated with the experimental groups examined in this work.

The Necessity of the Small Animal Model

Because of the need to exert as much control over the number of variable
conditions as possible, it became clear that a small-animal surgical model is the only
platform able to provide data that controlled for genetic variation across animals. By
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utilizing animals of the same age, weight, and health, and by housing the animals
under identical conditions, as well as administering treatments at identical time
points, additional sources of variation are able to be moderated.

By observing the “similarities in the differences, and the differences in the
similarities” of the immune signaling in animals as the factors are varied across
groups, clarity about what is associated with the relevant immune response versus
what is associated with other biological functions became possible. This is
something that would not be possible to accomplish within reasonable time and
resource constraints in humans.

Experiment Design

Selection of Surgical Models

The primary tissues of interest in this thesis are the skin and muscle. Their
immediate visibility and the ease with which biopsies can be obtained make them
ideal tissues for the elucidation of the hypothesis in this thesis. Beyond the
convenient accessibility of the tissues, there are some important physiological
properties that make them relevant.

Skin is an epithelial tissue, with very high levels of resident immune cells
such as dendritic cells, macrophages, and others. This makes the skin a tissue with
powerful innate immunity capacities, as well as an unusually efficient initiator of the
adaptive immune response. These are properties that are shared to some extent by
all epithelial tissues, including those found in the lung, intestine, and in certain areas
of other solid organs or vessels.

Muscle on the other hand is not an epithelial tissue, and has a very different
cellular constitution. It is more extensively vascularized, and is not considered a
specialized immunologic barrier like skin.

Under routine immunosuppression, the muscle and bone components of a
composite tissue allograft (e.g. a complete rat hind limb) can be engrafted. However,
the skin component will often continue to experience episodes of rejection even
under immunosuppression, an effect widely observed and very problematic in
composite tissue transplantation. These episodes frequently require rescue
treatment with one or more large bolus doses of corticosteroids. This implies that
the immunologic mechanisms of the two tissues are distinct to some extent. This
thesis will seek to prove that the methods derived here will be applicable to both
tissues, despite their biological distinctiveness.

In order to verify that the distinctive immune signaling properties of
rejection observed in skin or muscle are also a valid basis for differentiation in other
solid organ contexts, additional samples were gathered from a rat cardiac transplant
model that included sampling from a wide range of organs. This will allow direct
comparison of the predictive methods across at least four tissue types: skin, muscle,
heart, and lung. It will also allow the features that are most predictive in each tissue
to be analyzed and compared.

The limb transplant model in rats is a standard model for investigating the
immune response towards a composite tissue allograft. This model has been
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established in the Lee/Brandacher/Schneeberger laboratory and is routinely
utilized to investigate inflammatory and immune phenomena, including
inflammation, ischemia reperfusion injury and CTA rejection. The limb allograft
carries all of the components that would comprise a composite tissue allograft such
as the hand. The Lewis (LEW) to Brown Norway (BN) combination is an established
rat strain combination providing predictable patterns of rejection. Without
treatment, early signs of acute rejection with edema and erythema of the skin can be
observed at 5 days after transplantation. Rejection then progresses resulting in
scaling and ultimately necrosis of the skin at POD 11-13.

Cohorts, Groups, and Sampling

To facilitate collaborative multi-center data collection with surgeons at the
University of Pittsburgh, Johns Hopkins Medical, and Carnegie Mellon University,
sample collection has been divided into cohorts, each of which provide data about a
specific inflammatory process.

Four cohorts of data were collected, each divided into further groups to
provide more information about relevant changes in signaling. A summary of the
cohorts and the conditions they represent are presented in table 1.

I Orthotopic 3.5.7,9, 11 Skin, | 230 Allograft, Isograft, Naive,

Hind limb Tx Muscle Immunosuppressed, Histology
Hind limb Tx . Allograft, Isograft, Naive,

2 3 and CHS ,2,3,4,5,6| Skin |>150 Unspecific Inflammation

3 2.3 Wounding N/A Skin, >3 Wound Healing, pnspeciﬁc
with shock Muscle Inflammation

4 [,2 in solid| Heterotopic 0.1.3,5.7,9 Heart, > 30 Allograft, Native

organ | heart/lung Tx Lung

Table 3 Summary of Experimental Groups

Cohort 1 was designed to provide a large amount of cytokine signaling data
about the distinguishing signaling characteristics of allogeneic, syngeneic, naive, and
immunosuppressed hind limb transplants. In untreated skin the adaptive immune
response takes approximately two to three days to develop and the course of
rejection runs over approximately 11 days, so samples will be taken at post-
operative days 3,5,7,9, and 11 in the untreated allogeneic and syngeneic groups. To
collect data about how immunosuppression alters immune signaling, samples from
treated allogeneic and syngeneic groups will also be taken at the same time points.
To observe how immunosuppression may have changed the immune signaling
process leading to rejection, immunosuppression is stopped in the treated groups at
POD 20, and samples are then taken at intervals synchronized to development of

20



Computational Modeling of Immune Signals Chapter 3: Methods

visible rejection grading criteria (such as erythema, etc). At each time point, biopsy
samples are taken from both skin and muscle. Surgery and sampling in collaboration
with surgeons from the University of Innsbruck School of Medicine, Johns Hopkins
School of Medicine Department of Plastic Surgery, and University of Pittsburgh
Medical Center Department of Plastic and Reconstructive Surgery.

Cohort 2 will provide information about the separation of inflammation
associated with rejection from unspecific inflammation. An induced contact
hypersensitivity and delayed type hypersensitivity model in hind-limb allograft,
hind-limb isograft, and naive animals provides information required to isolate
immune signaling patterns associated with unspecific inflammation. Samples are
taken from the skin and muscle at POD 1, 2, 3, 4, 5, and 6. Surgery and sampling in
collaboration with surgeons from the University of Innsbruck School of Medicine.

Cohort 3 elucidates wound healing, both with and without cardiogenic shock.
An unavoidable consequence of any transplant is surgical trauma, as well as
cardiogenic shock in the allograft. This cohort collects data about the associated
cytokine profiles. Surgery and sampling in collaboration with surgeons from the
University of Innsbruck School of Medicine and the University of Pittsburgh School
of Medicine.

Cohort 4 performs heterotopic heart and lung transplant. Because internal
solid organs are part of the program biopsy in this surgical model, additional
internal organs are sampled to develop a broad picture of complementary changes
in organ systems in response to rejection. The graft heart, native heart, graft lung,
native lung, skin, muscle, kidney, liver, spleen, lymph node, and plasma were
sampled. Heart and lung rejection reaches its necrotic stage earlier than skin, so
samples were taken at POD 1, 3, 5, 7, and 9. Surgery and sampling in collaboration
with surgeons from the Carnegie Mellon University Nuclear Magnetic Resonance
Center.

All animal procedures, care, and housing were reviewed and approved by the
University of Pittsburgh or Carnegie Mellon University Institutional Animal Care and
Use Committee, and followed the National Institutes of Health guidelines for the
care and use of laboratory animals.

Orthotopic Limb Transplantation

This procedure is used in the rat CTA model. In brief, the femoral nerve,
artery and vein are isolated and divided sharply, ensuring adequate length for
subsequent vascular anastomoses. The remaining thigh muscle groups, including
the sciatic nerve, are then transected to completely expose the mid-portion of the
femur. A transverse osteotomy is performed through the femur completing the
allograft harvest. Following amputation, the donor limb is perfused through the
femoral artery with 3 ml of lactated ringer flush. The recipient animal is prepared in
a similar fashion. Transplantation of the allograft starts with a femur osteosynthesis.
The femoral vein and then femoral artery are anastomosed. The sciatic as well as the
femoral nerve are apposed with 10-0 nylon sutures in an interrupted fashion. The
ventral and dorsal muscle groups are then repaired, and the skin closed.

Animals were monitored daily for signs of rejection. The primary clinical
diagnosis of rejection was based on Banff skin rejection criterion . Biopsies were
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fixed in 10% buffered formalin and processed routinely for H&E staining, and some
biopsies were preserved with RNALater for future immunohistochemical studies.

Figure 3.1 Hind-limb allograft (showing signs of rejection at POD 5)

Contact Hypersensitivity (CHS)

Type 1 T cells produce cytokines, which activate resident skin cells allowing the
production of inflammatory cytokines and chemokines. This is responsible for the
recruitment of leucocytes from blood to skin leading to the development of skin
lesions. This process is illustrated in Figure 3.2.

Sensitization phase:
1. Haptens penetrate the epidermis and are uptaken by skin LC
2. Which migrate to draining lymph nodes
3. Where they present haptenated peptides to T cells
4. Specific T cell precursors clonally expand in draining lymph nodes,
recirculate via the blood and migrate into tissues including the skin.

Elicitation phase:
5. When the same hapten is applied on the skin, it penetrates the epidermis and
is uptaken by epidermal cells, including skin LC and keratinocytes
6. Which can present haptenated peptides to recirculating T cells

Male LEW-rats are sensitized with 100ul of 1% DNFB (2,4-dinitro-1-
fluorobenzene) in 4:1 acetone/olive oil on the shaved abdomen. On day 5 the dorsal
surface of the right pinna is challenged with 50ul of 1% DNFB in 4:1 acetone/olive
oil whereas the left pinna is only treated with vehicle (acetone/olive oil). Every 24
hours (for 5 days) animals were sacrificed and the complete right and left pinna
harvested. Samples were then processed for histology, immunohistochemistry,
protein and RNA isolation.
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Figure 3.2 Illustration of the pathophysiology of contact hypersensitivity

This protocol is a modification of the footpad-swelling test described by (Catalina et

al. 1996; Engeman et al. 2000).

Delayed Type Hypersensitivity (DTH)

DTH is a form of contact hypersensitivity mediated by T cells (mainly CD4+
cells) that respond to protein antigens introduced by contact with the skin. In this
procedure, male LEW-rats are injected with 300pul mBSA (2 mg/ml) in PBS
+complete Freund's adjuvant as sensitization (intradermal/abdomen). After 7 days
(challenging) an injection of 100ul mBSA suspended in PBS is injected into footpad,
while the other footpad is given PBS only (Figure 3.3). Measurement of the footpad

swelling is taken with a digital caliper 24h to 48h after challenge.
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Figure 3.3 Footpad with induced DTH

Incisional Wound Healing

Lewis rats were anesthetized and an excision biopsy was taken from the
lateral aspect of the thigh on one of the hind limbs in each of the rats. In the “shock
group”, four Lewis rats were sacrificed with a fatal sodium pentobarbital (Lundbeck
Inc, Deerfield, IL) overdose and excision biopsy taken 15-30 seconds after cessation
of heartbeat. The surgical biopsy is itself considered the wounding event in both
groups. Tissue was drawn away from the body and held in forceps while surgical
scissors cut 15mm x 10mm of tissue from the lateral aspect of the thigh.

Heterotopic Heart and Lung Transplant

A working heart transplantation model with transplanting an en bloc heart
and lung from DA to BN as allograft. The surgical procedure has been described
elsewhere ((Ye et al. 2008; Wu et al. 2006)). In brief, donors were anesthetized by
inhalation of isofluorane (Abbott Laboratories, North Chicago, IL). The chest wall
was opened after injected 500U /kg body weight of heparin sodium into the inferior
vena cava (IVC). 10 ml of cold lactated Ringer’s solution (Abbott Laboratories, IL)
was infused into the IVC followed by ligation and division of the IVC. The left lung
was ligated and excised. The right superior vena cava (SVC) were ligated and
divided, and the ascending aorta was dissected and transected. The grafts were then
placed into cold lactated Ringer’s solution until transplantation.

The recipient rat was intubated and ventilated with 2% isoflurane in a 2:1
02: N20 gas mixture at 1.0 mL/100 g body weight and 60 bpm. Both the abdominal
aorta and the IVC were dissected and clamped. The graft aorta and SVC were
anastomosed to the recipient aorta and IVC respectively, in an end-to-side fashion
with continuous 8-0 polypropylene suture (Ethicon, Inc. Somerville, NJ). Rhythmic
heartbeats commenced spontaneously after unclamping. The transplanted hearts
exhibited similar cardiac output (working path) to that of native hearts. The
abdominal wall was sutured with 6-0 silk (Ethico. Inc.). Graft survival was
monitored daily following transplantation for one week, and then weekly by
palpating the transplanted heart.
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Rejection Grade Assessment
Rejection is graded by transplant surgeon assessment of biopsy histology,
according to the Banff 2007 criterion.

Figure 3.4 Allograft histology rejection grades

Grade 0: No or rare inflammatory cells

Grade I: Mild perivascular infiltration. No involvement of overlying epidermis
Grade II: Moderate. Perivascular inflammation with/without mild epidermal or
adnexal involvement (limited to spongiosis and exocytosis). No epidermal
dyskeratosis or apoptosis.

Grade III: Dense inflammation and epidermal involvement with apoptosis,
dyskeratosis and/or keratinolysis.

Grade IV: Necrotizing acute rejection. Frank necrosis of epidermis or other skin
structures.

Histology readings were conducted on tissue samples affixed to slides, where
physiological indicators such (as desquamation) are not available for consideration.
The transplant surgeon used these specific features in grading skin samples:

Grade 0: Normal skin, only few single infiltrating cells.

Grade 1: perivascular infiltrate, infiltrate around adnexal structures, mild infiltrate
in dermis and deep tissue.

Grade 2: Dense diffuse infiltrate in dermis, interface reaction, infiltrating cells also in
epidermis, single apoptotic keratocytes.

Grade 3: Dermal epidermal separation, dense infiltrate.

These features were used in the scoring of muscle samples:
Grade 0: Normal muscle, only single infiltrating cells.
Grade 1: Perivascular infiltrate, intact muscle.

Grade 2: Diffuse infiltrate, onset of fibrosis, degeneration.
Grade 3: Necrosis, fibrosis, degeneration of muscle fibers.
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Sample Selection, Quantification, and Mass Normalization

All tissue samples are immediately sectioned into < 0.5 cm3 pieces and placed
into individual sample tubes filled with RNALater™ and stored at -42C overnight,
then moved to -802C storage, as per manufacturer instructions.

For tissue processing, approximately 50 mg of the tissue is transferred to a
2.0 ml microcentrifuge tube containing 0.6 ml of 1x BioSource tissue extraction
reagent (San Diego, CA) supplemented with 10pl of 100mM phenylmethanesulfonyl
fluoride in ethanol as a protease inhibitor. The tissue is homogenized using a tissue
homogenizer for 25-45 seconds until the sample is in a consistent solution. The
sample is placed on ice, if processing multiple samples, then centrifuged at 4 C for
10 min at 10,000xg. After centrifugation, the supernatant is collected and placed in a
new microcentrifuge tube, placed on ice and assayed for protein content using the
biocinchoninic acid (BCA) protein assay (Pierce, Rockford, IL) according to the
manufacturer’s protocol.

Per sample protein levels are assessed by BCA assay and subsequently
titrated to a total protein concentration of 1 mg/ml. All samples were assayed for
inflammatory cytokines and chemokines using the Luminex™ multiplexing platform
(100 IS; MiraiBio, Alameda, CA) and a Millipore™ 14-plex rat cytokine bead set
(Millipore, Billerica, MA) that included interferon (IFN)-y, IL-1a, IL-1p, IL-2, IL-4, IL-
5, IL-6, IL-10, IL-12p70, IL-18, monocyte chemotactic protein (MCP-1), GRO/KC,
TNF-o, and granulocyte-macrophage colony stimulating factor (GM-CSF). These pro-
inflammatory cytokines/chemokines play important roles inflammation. While all
cytokines measured are not expected to play a major role in every context,
measurement of the uniform set provides a broad coverage of in-vivo inflammatory
activity, allowing important distinctions between groups and tissues to be learned.
Results were read in pg/ml, then subsequently normalized to total mass of sample
protein (pg cytokine/mg protein) for each of the 14 cytokines by the formula
x=(a/b)*1000, where x=(pg of cytokine/mg of protein), a= (pg/ml cytokine) and b=
(pg/ml protein).

Final raw data is aggregated into a matrix with each row representing an
individual observation, and each column representing a feature. The basic features
upon which analysis was conducted included tissue type and cytokine level
readings, with grouping variables for measure classifier performance. Additional
feature interaction variables were added as described in data conditioning below.

Computation Modeling and Analysis

Statistical analyses were performed using MathWorks MatLab™ and
Microsoft Excel™. Excel was used for data conditioning and preparation, while in-
depth statistical analysis and classification was conducted in MatLab. Where
possible, pre-existing MatLab classification routines were utilized and extended as
required. In this work the terms computational modeling, computational analysis,
statistical inference, and statistical analysis are used interchangeably. The fields of
computer science and statistics are both foundational to making this work possible.
The term computational modeling is used most prevalently because it evokes the
particular perspective of this work on the nature of the immune system.

26



Computational Modeling of Immune Signals Chapter 3: Methods

Data Conditioning

Data were organized into matrices where each row indicated a distinct
observation, and each column a feature (i.e. cytokine or interaction feature).
Categorical labels grouped data and all predictions were for these labels. All feature
values were real-valued numbers.

Performance of mass-normalized cytokine data versus [0,1] interval
normalized data were assessed across the majority of classifiers and groups. While
some improvement in the classification performance of a subset of classifiers was
seen (particularly in LDA and QDA), the improvements were not statistically
significant. Therefore, all results reported are from analysis conducted on the
unaltered mass-normalized scale of pg cytokine/mg protein.

In addition to the matrix of mass-normalized data, a hybrid matrix was
formed in both skin and muscle data sets by adding feature interaction variables to
the original 14 -ytokine feature set (Table 6.280, Table 6.281, Table 6.282, Table
6.283). The selection of these features was driven by the intuition that feature
interactions which are present in one group or the other but not both will provide
the additional information relevant to the separation of groups and consequently
improvement in classifier performance.

To minimize the risk of overfitting, after each feature interaction variable is
added performance is re-tested to evaluate improvement in accuracy, p-value, and
AUROC score. If the improvement is sufficient for stable performance, additional
feature interaction variables are not added. The maximum number of feature
interaction variables added in this work was up to four.

Three of these features were selected by partitioning the original data matrix
for each tissue by group (“rejecting” or “not rejecting”), then calculating the
Pearson’s r statistic for each matrix to measure pairwise correlation between the 14
cytokines, yielding a 14 x 14 square matrix of r values that represents intra-group
correlation among features.

1 & (X;-X\[Y,-Y
7_"-—12( Sx )( Sy )

where X, and sx represent the sample mean and sample standard deviation.
Equation 5 Pearson’s r statistic

For each tissue, the square matrix of r-values for each group was subtracted
from each other. For example, the matrix of r-values for the group “rejecting” was
subtracted from the matrix of r-values for “not rejecting.” This yielded a new 14 x 14
square matrix that represents pairwise correlation between features present in one
group but not both. Feature pairs with higher values (either positive or negative)
are more desirable. This process was performed for both muscle and skin data. By
this process, the interaction between GM-CSF, IL-2, and TNFa scored highly in skin
while the interactions between MCP-1, GRO/KC, and IL-18 scored highly in muscle.

To select the fourth feature interaction variable the MANOVA coefficients for
each cytokine’s contribution to the separation of groups were assessed. The
cytokine with the highest coefficients in the first and second canonical variable of
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the MANOVA analysis defines the first half of the new feature interaction variable.
The coefficient scores of this cytokine also define a point on a plot drawn with the X-
axis as the first canonical variable, and the Y-axis as the second canonical variable.
Next, a line is drawn from the origin (0,0) to the coordinates (termed Line 1). The
second feature selected for calculation of the feature interaction variable is the
cytokine with the next highest coefficients in the first and second canonical variable
and that is the most orthogonal to Line 1.

In skin (Table 6.280) the feature interactions selected by r-value comparison
were GM-CSF*TNFa and IL-2*TNFa, while in muscle (Table 6.281) they were MCP-
1*IL-18 and GRO/KC*IL-18.

In heart the feature interactions selected by r-value comparison (Table
6.282) were GM-CSF*IL-6, GM-CSF*TNFa, and IL-5*IFN-g, while the feature
interaction selected by MANOVA coefficient analysis (Figure 4.56) was GM-CSF*IL-5.
In lung the feature interactions selected by r-value comparison (Table 6.283) were
GM-CSF*IL-5, GM-CSF*GRO/KC, and GM-CSF*IL-1a, while the feature interaction
selected by MANOVA coefficient analysis (Figure 4.60) was IL-5*TNFa.

In this work, the terms extended feature space and hybrid feature space are
treated synonymously, and both refer to the original feature space plus feature
interaction variables as defined here.

Classification Tasks
The classification tasks to demonstrate the three hypotheses of this work are:

Hypothesis 1

In each tissue of skin and muscle, discriminate between allograft and isograft
groups, as well as between fk-treated and fk-treatment withdrawn groups. Make
this distinction when including all time points, when including only time points
earlier than POD 5, and when including only time points greater than or equal to
POD 5.

Hypothesis 2

For each surgical group measured, discriminate between skin and muscle
tissue. Make each of these distinctions when including all time points, when
including only time points earlier than POD 5, and when including only time points
greater than or equal to POD 5.

Hypothesis 3

In each tissue of skin and muscle distinguish between rejection-associated
inflammation and not rejection-associated inflammation. Also attempt to classify the
type of inflammation of each observation as rejection, wound healing, or unspecific
inflammation. Further, make these distinctions when including all time points, when
including only time points earlier than POD 5, and when including only time points
greater than or equal to POD 5.

Extension to Solid Organ
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To evaluate the effectiveness of the modeling approach described in this
work in detecting rejection in contexts beyond composite tissue allotransplantation,
the method with top performance marks on the composite tissue data set was then
applied to heterotopic heart and lung transplant data. In the solid organ context, the
ability to separate the transplanted organ (rejecting) from the native organ (not
rejecting) provides an indication of how this work may generalize to other settings.
Because rejection in heart and lung transplant can be visually discerned at POD 5,
only time points at or prior to POD 3 are included in this classification task.

Classification Methods

Linear Discriminant Analysis (LDA)

LDA seeks to find a linear combination of cytokines that separates the
categorically labeled data, and is used here as a linear classifier. One notable aspect
of LDA is that it assumes the conditional probability density functions of each class
are normally distributed, and that class covariances are full rank as well as identical.
This method provides data about the performance of a linear classifier under
various contexts. Although the normality and homoscedasticity assumptions are
violated in much of the cytokine data analyzed in this work, good performance in
discriminating groups can be seen in many contexts.

w-Tr <c

where

= X7 iy — fio)

where x = feature set, w = coefficients, mu = class means, c = threshold constant

between classes
Equation 6 Linear Discriminant Classifier

Quadratic Discriminant Analysis

The quadratic discriminant is an extension of LDA, where the assumption of
identical covariances is removed. This allows more flexible decision boundaries to
be learned, but requires enough observations from each class to properly calculate
the class covariance.

(% — o) "E;20(@ — fio) +1n [Syo| — (- i) TE;4 (F —fir) ~In [Zye| < T
where x = feature set, mu0,1 = class means, y = class, T = Threshold for classification
Equation 7 QDA Classifier

In some experimental groups examined, the additional flexibility in the
decision surface that the quadratic extension of LDA (QDA) allows provides slightly
better performance.

Multinomial Logistic Regression Classifier

This regression model generalizes logistic regression to allow more than two
classification outcomes. This method does not assume statistical independence of
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the features. The probability of membership in each class is compared, and the most
likely class is selected.

For the reference class,

P(Y,:l):%

1+ Zexp(zhi)

h=2
and for each of the m = 2... M classes,
P =my=— )
1+ exp(Z,)

h=2
where Z = x; * b;
where x; = observation i, and b; = coefficient i

Equation 8 Multinomial Logistic Regression

Classification Tree

The classification tree is constructed starting from a root node where the
binary distinction of the data that provides the most information (as calculated by
information gain) about the class is made. A new node is made for each distinction,
and for each node the process is repeated until a stopping criterion, such as purity
or minimum number of objects, is met. The resulting tree is then pruned with cross-
validation to control over-fitting. Generally, information gain is defined as

IG(T,a)=H(T) — H(T|a)
Where T = set of training examples, a = some feature, and H = entropy
Equation 9 Information Gain

H(X) = =) pla:)log, p(z:)
i=1

Equation 10 Shannon’s Entropy

Random Forest

An ensemble classifier that aggregates many individual decision trees and
makes a classification that is the mode of the classes output by the ensemble of
decision trees. Each tree in the ensemble is grown to make a decision on a subset of
the data set features, and a training set for the tree is selected by taking a bootstrap
sample. The remaining observations are used to estimate the error of the tree. For
each subsequent node in the tree, randomly choose another subset of features on
which to base the next split. This is continued until the tree is fully grown. This
method combines bootstrap aggregation (bagging), and random feature selection. It
is capable of very high classification accuracy in non-linear problem spaces.

Feature Transformation: Multivariate Analysis of Variance (MANOVA)
MANOVA is a generalization of the Analysis of Variance (ANOVA) method
that tests for the difference in two or more vectors of means. The primary advantage
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of MANOVA is its ability to measure changes to multiple dependent variables
simultaneously. The MANOVA method also generates a set of linear coefficients for
the features and calculates the orthogonal axes along which group separation is
maximized. An informal description of MANOVA is given by
The total sum of squares is split into the sum of squares between groups and within groups
SStot - SSbg + SSwg

The sum of squares between groups is then split into the variance for each independent variable and the in-
teraction between them. A series of computations yields a cross-product S matrix that is composed of

Stot = SIVI + SIVQ +...+ SIVn + Sinteraction + Swithin group error

Determinants of the S matrices are then found. Using Wilks’ A the variance accounted for by the best linear
combination of dependent variables 9
n=1-—A

Equation 11 Summary of the Multivariate Analysis of Variance (MANOVA) method

Manova helps to discern a coordinate space upon which group differentiation
may be more efficient, as well as to quantify the extent to which each cytokine is
contributing to the separation of classes.

Performance Evaluation Metrics

Classifier performance metrics are reported as accuracy, p-value, and the
confusion matrix. Accuracy is measured as a percentage, calculated by
(1-misclassification rate)*100.

Classification performance is compared to a numeric system baseline and the
gold-standard human performance baseline. The numeric system baseline is
random class selection, while the human performance baseline is transplant
surgeon classification and grading based on evaluation of histology (current gold
standard). All misclassification rates, error, or other performance metrics are
calculated by 10-fold cross validation. Complete confusion matrices are presented
for easy classifier error analysis. Random forest classification performance is also
evaluated against a stratified 30% held-out test set to provide additional
perspective on performance.

Statistical significance (p-values) are calculated by independent two-sample
t-test with unequal variance (Welch'’s t-test).

L X, - X,

{2
\-’ N1 + N2

Equation 12 Welch'’s t-test

ha

Where X is the sample mean, 5? is the sample variance and Vi is the sample
size. Sample one is the trace of the confusion matrix (correct classifications), and
sample two is the off-diagonal elements of the matrix (false classifications). Each
row of the off-diagonal elements is summed so that the vectors for correct and
incorrect classifications are equal in length (Figure 3.5).
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3 x 3 Confusion Matrix Example

E1 E2 E3
E4 E5 E6
E7 E8 E9

Eelements of X1

E1 E2 E3
E4 ES E6
E7 E8 E9

Eelements of X2

Yielding the vectors:

X1 X2
(Correct) (Incorrect)
E1 E2+E3
E5 E4+E6
E9 E7+ES8

Figure 3.5 Diagram illustrating the calculation of p-values from the confusion matrix

Receiver Operating Characteristic (ROC) plots were created for select
classifiers. The ROC plot is a representation of the true positive versus false positive
rate, and is well established as a tool for selecting optimal classifiers in diagnostic
decision-making. These plots were made by forming a plane with the interval 0 to 1
on both the X and Y-axes, then plotting the ratio of true positives in the classified-as-
positive group over false positives in the classified-as-negative group. The X-axis
represents the false positive rate and the Y-axis represents the true positive rate.
Point-wise bootstrap confidence intervals are computed by with the bias corrected
and accelerated percentile method, utilizing 100 replicas. A complete description of
this method is provided in (Efron 1987). The bootstrapping method is justified in
this case because there is insufficient data for more traditional statistical inference,
and the theoretical distribution underlying the cytokine distributions is unknown
and possibly highly complex. Area under the ROC curve values were also calculated
for the ROC plots using trapezoidal approximated to estimate the area.
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The area under the curve between j and i can be estimated by the equation
| — 1
T = jT [f(xo) F2f(x1) 4o+ 2f (1) + f2n)
where T = the total area estimated, n = the number of trapezoids, xo =1, X1 ... X, are
the x-coordinates (equally spaced) of the right edges of trapezoids 1 ... n, and f(x) is

the function to calculate the area of a trapezoid.
Equation 13 Approximation of the area under a curve with the trapezoid rule

The area of a trapezoid can be calculated by

- (bl—l—b?)h
2

where a = the area of the trapezoid, by and b; are the lengths of each base, and h is
the height of the trapezoid.

Equation 14 Area of a trapezoid

The data used to generate the ROC plots and the AUROC values were the
results of leave-one-out, or jackknifing, cross-validation. In jackknifing cross-
validation, the entire data set except for one instance is used for training the model,
and the held out observation is classified with that model. The held out observation
is then replaced and a new observation is held out for classification. This process is
repeated until each observation in the data set has been held out for classification.
This method is identical to k-fold cross validation where k is equal to the number of
observations in the data set.

Baseline Performance

To help assess performance of the modeling approaches presented in this
work, baseline classification performance for experiment is provided here. Baseline
performance is measured by random selection, linear discriminant analysis (LDA),
and quadratic discriminant analysis (QDA).

For each experiment, LDA and QDA classification was performed in the
original feature space, a 5-feature selected space (selected with OOB feature
importance), as well as in a MANOVA transformed space (where cytokine features
were replaced with the canonical variables of the MANOVA transform). The original
feature space consistently yielded the best results and the MANOVA transformed
space yields nearly equivalent results to the original feature space. The feature-
selected space expresses bias as well as lower overall accuracy rates, however
retains a level of accuracy that is more than proportional to the reduction in
dimensionality, and is therefore worth consideration.
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Because of the scale of this work, we refer to figures that are both in-line with
text and provided as supplemental material in appendices. This allows systematic
elucidation of the results while maintaining accessibility to key findings. Results are
presented by section for each of the hypothesis 1 (early detection), 2 (each tissue is
distinct), and 3 (identify specific type of inflammation) that are confirmed. Raw
cytokine concentrations and features are presented first. Next, Hypothesis 2 is
presented, as the separation of skin and muscle provides a convenient structure for
elucidation of further findings. The results for hypothesis 1 are then shown,
followed finally by the results of the most challenging tasks from hypothesis 3.

To summarize the results, skin and muscle tissue are separated (hypothesis
2) at all timepoints with strong statistical significance by MANOVA analysis (Figure
4.13, Figure 4.16, Figure 4.19) as well as successful classification with random forest
classifier at 92.28% average accuracy (Figure 4.8, Table 4.16).

In skin, the classifier with top performance for hypothesis 1 at all timepoints
is the random forest classifier using the feature space that includes interaction
variables (hybrid features) achieving accuracy of 96.15% (Table 4.34), and an
AUROC score of .995 (Figure 4.30). The top performer for hypothesis 3 at all
timepoints for the differentiation of rejection associated inflammation from not
rejection associated inflammation is the random forest classifier, using hybrid
features achieving accuracy of 92.55% (Table 4.54) and an AUROC score of .968
(Figure 4.41). A model where skin an muscle are considered together performs
poorly compared to the models where they are considered separately.

In muscle, the classifier with top performance for hypothesis 1 at all
timepoints is the random forest classifier using the feature space that includes
interaction variables (hybrid features) achieving accuracy of 95.16% (Table 4.38),
and an AUROC score of .9895 (Figure 4.32). The top performer for hypothesis 3 at
all timepoints for the differentiation of rejection associated inflammation from not
rejection associated inflammation is the random forest classifier, using hybrid
features achieving accuracy of 86.80% (Table 4.58) and an AUROC score of .955
(Figure 4.43).

Histology

The mode of allograft and Isograft samples at or prior to POD 5 is zero, while
after POD 5 the mode of allografts was three or greater (Table 4.1). The average
grade of allograft and Isograft samples were less than one at or prior to POD 5. After
POD 5 the Isograft average remained close to zero and the allograft average
increased to three (Table 4.2).

Group Mode of grade

(skin) POD<=5 POD>5

Allograft 0 3

Isograft 0 0
Table 4.1
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Group Average grade

(skin) POD<=5 POD>5

Allograft 0.765 3

Isograft 0.133 0.104
Table 4.2

In muscle the mode of allograft and Isograft groups were zero at or prior to
POD 5, while at three in allografts and zero in isografts after POD 5 (Table 4.3).
Average grade levels in muscle were below one at or prior to POD 5, and after POD 5
remained below one in Isografts and elevated to over two in allografts (Table 4.4).

Group Mode of grade
(muscle) POD<=5 POD>5
Allograft 0 3
Isograft 0 0
Table 4.3
Group Average grade
(muscle) POD<=5 POD>5
Allograft 0.467 2.222
Isograft 0.1875 0.75
Table 4.4

While being treated with FK-506 groups in skin had a mode of grade 0 (Table
4.5) and average grade below one (Table 4.6). In the five days following withdrawal
of treatment the mode remained at zero but the average grade increased to over
one. Beyond five days after treatment with FK-506 was stopped, the mode of grade
becomes three, and the average grade is over two.

Group (skin) Mode of grade
FK-Treated 0
FK-Withdrawn (Early) 0
FK-Withdrawn (Late) 3
Table 4.5
Group (skin) Average grade
FK-Treated 0.436
FK-Withdrawn (Early) 1.143
FK-Withdrawn (Late) 2.286
Table 4.6

Muscle groups treated with FK-506 have a similar pattern to that seen in
treated skin. Mode of grade is 0 under treatment (Table 4.7) and average grade is
near zero under treatment (Table 4.8). Within the five days following cessation of
treatment, the mode remains zero, and average grade of rejection increases to over
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one. Beyond five days after treatment was withdrawn, the mode of grade becomes 2
and average grade increases to over 2.

Group (muscle) Mode of grade
FK-Treated 0
FK-Withdrawn (Early) 0
FK-Withdrawn (Late) 2
Table 4.7
Group (muscle) Average grade
FK-Treated 0.1
FK-Withdrawn (Early) 1.214
FK-Withdrawn (Late) 2.438
Table 4.8

The transplant surgeon made additional notes when reading muscle samples:

* The ATC group showed severe signs of rejection after day 9.

* The same was observed in the FK animals after day 25-27 (including
infiltration and so on).

* Interestingly, the ISO group showed signs of degeneration after day 27,
hardly any infiltrate (no rejection, of course). In grade 3 hardly any muscle
was left, but a lot of fibrosis and connective tissue (Bindegewebe) - this
phenomenon was not found to the same degree in all animals, but all showed
at least some degree of degeneration.

Details of the readings for Allograft group are in (Table 6.1), Isograft in (Table 6.2),
FK-Treated groups in (Table 6.3), and FK-Withdrawn groups in (Table 6.4).

Raw Cytokine Concentrations

In Cohort 1 skin, high concentrations of IL-1a and IL-18 were seen in all
groups (Figure 4.1). Allografts display particularly elevated levels of IL-6, IL-1b, and
GRO/KC. Larger variance and more outliers are also characteristics of the allograft

group.
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Cohort 1 Allograft Skin Cytokine Levels (All Timepoints)
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Cohort 1 Isograft Skin Cytokine Levels (All Timepoints)
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Figure 4.1 Cohort 1 Raw Skin Cytokine Levels of Allograft, Isograft, Tacrolimus Treated, and Naive.

In the box plots presented above, the bisecting line of each box represents

represents the cytokine median concentration. The edges of box itself represent the
25t and 75t percentile, the whiskers represent extreme data points not considered
outliers, and the plus symbols represent data points considered outliers. No outliers
were eliminated from examination in this work.

A different set of cytokines appears to be activated in the muscle of Cohort 1

(Figure 4.2). There is little overlap with the cytokine profiles of skin, and there are
clearly distinct cytokine profiles between each group. IL-18 or IL-1b also seem to
play an important role in muscle. Similar to what is seen in skin, high levels of

variance in cytokine levels are also a characteristic of allograft muscle.

37



Computational Modeling of Immune Signals

Cohort 1 Allograft Muscle Cytokine Levels (All Timepoints)
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Cohort 1 Isograft Muscle Cytokine Levels (All Timepoints)

TNFa + TNFa +
GRO/KC I+ + + GROKC | +# +
IL-18 HoT 4 + + IL-18 H=1 +
IFN-g ¥ IFN-g =+
IL-5 | IL-5 +
IL-12 p7( | IL-12p7d #
é IL-10 (] + o+ + é IL-10 I
%u.-e 0+ +  ++ _«élL-e # o+
IL-2 I o|L-2 b
IL-1b I IL-1b - +
IL-4 | IL-4 I
MCP-1 i3 MCP-1 +
IL-1a 1 IL-1a -+
GM-CSF + ‘ ‘ ‘ ‘ ‘ GM-CSF| +
0 6000 12000 18000 24000 30000 0 2000 2000 6000 8000 10000 12000
pg cytokine/ml pg cytokine/ml
Cohort 1 Tacrolimus Treated Muscle Cytokine Levels
(All Timepoints) Cohort 1 Naive Muscle Cytokine Levels (All Timepoints)
TNFa i ' ' ' TNFa ' ' ' ' ' ' '
GROKC I+ GrRoke| LJ- ¢
IL-18 — + I1e | ¥ ‘ Fo oo )
IFN-g I IFN-g | I
IL-5 | IL-5 ¥
IL-12 p7( | IL-12p7q |
é IL-10 I+ é IL-10 -+
éIL—G 0+ _én_-s T+ +
3 3
IL-2 + IL-2 0
IL-1b b IL-1b I+
IL-4 t IL-4 }
MCP-1 b McP-1 | (H +
IL-1a [ iL-1a | (0 -
GM-CSF + ‘ ) . . . . GM-CsFLI . . . . . .
0 5000 10000 15000 20000 25000 30000 0 1000 2000 3000 4000 5000 6000
pg cytokine/ml pg cytokine/ml

Figure 4.2 Cohort 1 Raw Muscle Cytokine Levels of Allograft, Isograft, Tacrolimus Treated, and Naive.

Skin allograft and isograft groups in Cohort 2 display qualitative similarities,
as do CHS and DTH groups. However the allograft and isograft groups are visually
distinct from the CHS and DTH groups (Figure 4.3). Many of the prominent
cytokines shown are shared with cohort 1, although MCP-1 appears to be more
pronounced in cohort 2.
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Cohort 2 Allograft Skin Cytokine Levels (All Timepoints) Cohort 2 Isograft Skin Cytokine Levels (All Timepoints)
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Figure 4.3 Cohort 2 Raw Skin Cytokine Levels of Allograft, Isograft, Contact Hypersensitivity (CHS) and
Delayed Type Hypersensitivity (DTH).

The wound healing and associated reperfusion injury (shock) response
shows a distinct overall cytokine expression (Figure 4.4). Several cytokines
prominent in other cohorts (such as IL-1a, IL-18, and IL-6) are also seen here.
However, the delta in the scale of cytokine activity between the wound and the
shock groups is large, and may provide an important clue to the range of the wound-
healing inflammatory response.
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Cohort 3 Shock Skin Cytokine Levels (All Timepoints)
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Cohort 3 Wound Skin Cytokine Levels (All Timepoints)
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Cohort 3 Shock Muscle Cytokine Levels (All Timepoints)
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Cohort 3 Wound Muscle Cytokine Levels (All Timepoints)
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Figure 4.4 Cohort 3 Raw Skin and Muscle Cytokine Levels.

The cytokines prominent in heart rejection show a different profile from that
seen in lung rejection (Figure 4.5). Heart rejection and lung rejection are also
distinctive from skin or muscle rejection. [L-1a, which is prominently expressed in
the skin and muscle of other cohorts, is not found in high concentrations in this

cohort.
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Cohort 4 Graft Heart Cytokine Levels (All Timepoints)
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Cohort 4 Native Heart Cytokine Levels (All Timepoints)
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Figure 4.5 Cohort 4 Raw Heart and Lung Cytokine Levels.
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Although some patterns in inflammation present themselves at a qualitative
level during visual analysis of this data, more comprehensive and quantitative
information about the changes in cytokine network profiles under the different
experimental conditions is needed. The following sections provide this deeper
analysis in relation to the relevant hypothesis.

Tissue Specific Patterns of Inflammation

Baseline Performance for Separation of Tissues

CTA Allograft Skin vs Muscle Random Classification (all time points)

Accuracy Confusion Matrix

46.81% Classified As

p-value Muscle Skin

.8438 19 22 Muscle
26 27 Skin

True
Class

Table 4.9 Baseline: Random classifier performance in allograft skin vs muscle
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CTA Isograft Skin vs Muscle Random Classification (all time points)

Accuracy Confusion Matrix

47.90% Classified As

p-value Muscle Skin

2999 27 30 Muscle % g

32 30 Skin =~ ©

Table 4.10 Baseline: Random classifier performance in isograft skin vs muscle

CTA Allograft Skin vs Muscle Linear Discriminant (all time points)

Accuracy Confusion Matrix

74.47% Classified As

p-value Muscle Skin

1663 39 2 Muscle % g
22 31 Skin =~ 0

Table 4.11

CTA Allograft Skin vs Muscle Quadratic Discriminant (all time points)

Accuracy Confusion Matrix

71.28% Classified As

p-value Muscle Skin “

.0433 31 10 Muscle % g
17 36 Skin =0

Table 4.12

CTA Isograft Skin vs Muscle Linear Discriminant (all time points)

Accuracy Confusion Matrix

86.56% Classified As

p-value Muscle Skin .

0161 54 3 Muscle % g
13 49 Skin =0

Table 4.13

CTA Isograft Skin vs Muscle Quadratic Discriminant (all time points)

Accuracy Confusion Matrix

92.44% Classified As

p-value Muscle Skin “

0261 48 9 Muscle % g
0 62 Skin =0

Table 4.14
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Naive Skin vs Muscle Linear Discriminant

Accuracy Confusion Matrix

70.37% Classified As

p-value Muscle Skin -

2699 6 3 Muscle § g
5 13 Skin =

Table 4.15

LDA classifiers were able to achieve moderate but unstable success in
separating tissue at all time points in allograft (Table 4.11), isograft (Table 4.13),
and Naive (Table 4.15) groups. Similar results are seen for time points at or prior to
POD 5 in allograft (70%, Table 6.103) and isograft (93.75%, Table 6.113), as well as
after POD 5 in allograft (85.29%, Table 6.107) and isograft (87.32%, Table 6.117).
QDA classifiers achieved marginally higher accuracy than LDA, but significantly
higher significance in allograft (Table 4.12) and isograft (Table 4.14) when
evaluating samples from all time points.

Enhanced Performance for Separation of Tissues

Following the intuition that different tissue types may express different
inflammation patterns, the data was separated into sub-matrices grouped by tissue
(i.e. skin and muscle). This ultimately enables significant gains in accuracy and
significance in the isolation of specific forms of inflammation.

Distinctive cytokine network patterns in skin and muscle are shown here for
each experimental condition, specifically allograft, isograft, under Tacrolimus
treatment, withdrawn from Tacrolimus treatment, and naive.

The naive tissue expresses the narrowest margin of difference between skin
and muscle tissue, but the distinction is evident even at the level of qualitative visual
analysis of cytokine concentration levels (Figure 4.6). Quantitative analysis with
MANOVA reveals the groups to follow significantly different distributions (Figure
4.7).1L-5 and IL-12p70 are important drivers of this distinction (Figure 6.148).
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Figure 4.6 Parallel plot of skin and muscle cytokine concentrations in naive
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Figure 4.7 Skin and muscle cytokine network patterns follow significantly different distributions in
naive as determined by MANOVA (p<0.05)

The underlying distinction between skin and muscle in naive animals that is
clearly evident in the MANOVA transformed space is less evident in the original
untransformed feature space, as can be seen by the performance of the baseline LDA
classifier at approximately 70% (Table 4.15), as well as the logistic classifier with
accuracy at about 74% (Table 6.125). The decision tree (85.19%, Table 6.126,
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Figure 6.149 and Figure 6.150) is more successful in capturing the distinction, while

the random forest (Table 4.16, Figure 4.8) classifier is most accurate.

Random Forest Classification Performance

Naive Skin vs Muscle
o ‘ ‘ ‘ 30% Heldout Test
— — — 10-fold Cross-validation
035 1
0.3 —
§ 0251 B
015 ' —“ —
01l T e \ ]
005 R T % T
Number of trees
Figure 4.8
Naive Skin vs Muscle Random Forest (50 trees)
Accuracy Confusion Matrix
85.19% Classified As
p-value Muscle Skin -
)
1718 7 2 Muscle S &
. S
1 17 Skin
Table 4.16

[sograft animals also showed distinction in cytokine expression between skin
and muscle components that was qualitatively evident (Figure 4.9) as well
quantitatively evident (Figure 4.10), with the distinction being driven largely by IL-
5, TNFa, and GM-CSF (Figure 6.127).
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Figure 4.9 Parallel plot of skin and muscle cytokine concentrations in isograft
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Figure 4.10 Skin and muscle cytokine network patterns follow significantly different distributions in
isograft as determined by MANOVA (p<0.01)

Logistic (94.12%, Table 6.111), decision tree (96.64%, Table 6.112, Figure
6.128 and Figure 6.129), and random forest (97.48%, Table 4.17, Figure 4.11)
classifiers are all able to separate the cytokine patterns of skin from muscle in

isografts at all time points.
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Random Forest Classification Performance

Isograft Skin vs Muscle (all timepoints)
0.35 T T T T T

— 30% Heldout Test

— — — 10-fold Cross-validation

031 | -

0.1 \ —
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Figure 4.11

CTA Isograft Skin vs Muscle Random Forest (all time points, 50 trees)

Accuracy Confusion Matrix

97.48% Classified As

p-value Muscle Skin "

.0013 56 1 Muscle % g
2 60 Skin = O

Table 4.17

[sograft tissues also have separate distributions at time points at or prior to
POD 5 (Figure 6.130, Figure 6.131, Figure 6.132), as well as after POD 5 (Figure
6.136, Figure 6.137, Figure 6.138). Logistic (77.08%), decision tree (97.92%), and
random forest (98.5%) achieve good performance at or prior to POD 5 (Table 6.114,
Table 6.115, Table 6.116, and Figure 6.133, Figure 6.134, Figure 6.135) as well as
after POD 5 with logistic (88.73%), decision tree (97.18%), and random forest
(98.59%) (Table 6.118, Table 6.119, Table 6.120, and Figure 6.139, Figure 6.140,
Figure 6.141).

The distinction between skin and muscle continues to hold in allografts with
the additional source of inflammation introduced by rejection (Figure 4.12 and
Figure 4.13). This process is driven by a more complex plurality of cytokines that
includes IL-12p70, TNFa, IL-5, GM-CSF, and others (Figure 6.112).
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Figure 4.12 Parallel plot of skin and muscle cytokine concentrations in allograft

Allograft Skin and Muscle
on MANOVA Defined Axes (all timepoints)
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Figure 4.13 Skin and muscle cytokine network patterns follow significantly different distributions in

allograft as determined by MANOVA (p<0.01)

Skin and muscle tissue in allograft continue to follow separate distributions
at time points prior to and including POD 5 (prior to visible rejection, Figure 6.115,
Figure 6.116, and Figure 6.117), as well as after POD 5 (Figure 6.121, Figure 6.122,

and Figure 6.123).

The logistic (86.17%, Table 6.101), decision tree (95.74%, Table 6.102,
Figure 6.113 and Figure 6.114), and random forest (94.68%, Table 4.18, Figure
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4.14) classifiers are able to separate the cytokine patterns of skin from muscle in
allografts at all time points.

Random Forest Classification Performance

Allograft Skin vs Muscle (all timepoints)
0.4 T T T T T

30% Heldout Test
— — — 10-fold Cross-validation

VA
03}~ | -

5 025 ! B

Classification el

0.2 “\ -

0.15-

01

0.05 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of trees

Figure 4.14

CTA Allograft Skin vs Muscle Random Forest (all time points, 50 trees)

Accuracy Confusion Matrix

94.68% Classified As

p-value Muscle Skin -

.0233 38 3 Muscle % g
2 51 Skin = O

Table 4.18

Good performance at or prior to POD 5 is also achieved in logistic (78.33%),
decision tree (98.33%), and random forest (96.67%) (Table 6.104, Table 6.105,
Table 6.106, and Figure 6.118, Figure 6.119, Figure 6.120) as well as after POD 5 in
logistic (76.47%), decision tree (91.18%), and random forest (91.18%) (Table
6.108, Table 6.109, Table 6.110, and Figure 6.124, Figure 6.125, Figure 6.126).

Muscle and skin components retain their distinctiveness under active
immunosuppression (Figure 4.15 and Figure 4.16). IL-5 appears to play the
principal distinguishing role under conditions of immunosuppression (Figure
6.142).
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Figure 4.15 Parallel plot of skin and muscle cytokine concentrations in FK-Treated
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Figure 4.16 Skin and muscle cytokine network patterns follow significantly different distributions in FK-
Treated as determined by MANOVA (p<0.01)

Reasonable separation of tissues can be achieved with the logistic classifier
(74.42%, Table 6.121), although better separation is achieved with the decision tree
(90.97%, Table 6.122, Figure 6.143, Figure 6.144) and best stable performance with
random forest (86.05%, Table 4.19, Figure 4.17).
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Figure 4.17

30 35 40

45 50

CTA FK-Treated Allograft Skin vs Muscle Random Forest (all time points
under treatment, 50 trees)

Accuracy Confusion Matrix

86.05% Classified As a

p-value Muscle Skin S

.0104 18 3 Muscle 2
1 21 Skin =

Table 4.19

Even after immunosuppression is withdrawn skin and muscle continue to
express distinctive cytokine patterns (Figure 4.18 and Figure 4.19). A larger
plurality of cytokines appears to drive the distinctions than under conditions of
immunosuppression, although TNFa and IL-5 again are primary contributors
(Figure 6.145).
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Figure 4.18 Parallel plot of skin and muscle cytokine concentrations in FK-Treatment Withdrawn
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Figure 4.19 Skin and muscle cytokine network patterns follow significantly different distributions in FK-
Treatment Withdrawn as determined by MANOVA (p<0.01)

The additional inflammation enables excellent separation of skin and muscle
tissue by logistic classifier (95.00%, Table 6.123), decision tree (100%, Table 6.124,
Figure 6.146, Figure 6.147), and random forest (98.33%, Table 4.20, Figure 4.20).
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Random Forest Classification Performance

FK-Treatment Withdrawn Allograft Skin vs Muscle (all timepoints)
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Figure 4.20

CTA FK-Treatment Withdrawn Allograft Skin vs Muscle Random Forest (all
time points treatment withdrawn, 50 trees)

Accuracy Confusion Matrix

98.33% Classified As

p-value Muscle Skin .

<.0001 30 0 Muscle % g
0 30 Skin =

Table 4.20

Identification of Rejection in Allograft vs Isograft

Differences in concentration of IL-1a, IL-1b, IL-6, [L-18, and MCP-1 are
evident from the parallel plot of allograft versus isograft in skin (Figure 4.21), and
MCP-1, IL-1b, IL-6, and IL-18 in muscle (Figure 4.23).

When transformed by MANOVA and the samples plotted on the axis defined
by the first and second canonical variable of the MANOVA transformation, the
degree of separation between allograft and Isograft becomes clearer in both skin
(Figure 4.22) and muscle (Figure 4.24). On the MANOVA defined axes separation of
groups in skin is driven primarily by IL-12p70, IFN-g, TNFa, IL-4, GM-CSF, and IL-5
(Figure 6.1), and in muscle separation is driven primarily by IL-5, [L-12p70, GM-CSF,
TNFa, and IFN-g (Figure 6.48).

When feature interaction variables are added to the data set, the MANOVA
transformed plot shows even greater contrast between groups (Figure 6.11), driven
primarily by IL-12p70, IFN-g, IL-4, GM-CSF, and TNFa (Figure 6.12).
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Figure 4.24

In allograft samples that are either immunosuppressed or withdrawn from
immunosuppression and rejecting show differences in concentration of I[L-1a, IL-6,
IL-18, and GRO/KC in the parallel plot of rejecting versus suppressed in skin (Figure
4.25). Differences in the concentration of MCP-1, IL-1b, IL-6, and IL-18 are evident in
the parallel plot of muscle sample cytokine concentrations (Figure 4.26).
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When transformed by MANOVA and the samples plotted on the axis defined
by the first and second canonical variable of the MANOVA transformation, the
separation between rejecting and suppressed becomes clearer in skin (Figure 4.27)
and muscle (Figure 4.28). On the MANOVA defined axes separation of groups in skin
is driven primarily by IL-5, IL-12p70, TNFa, and IL-4 (Figure 6.95), and in muscle
separation is driven primarily by IL-12p70, IL-5, TNFa, GM-CSF, and IFN-g (Figure
6.104).
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Figure 4.26
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CTA Rejecting vs Suppressed in Muscle
on MANOVA Defined Axes (all timepoints)
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Figure 4.28

Baseline Performance for Identification of Allograft vs Isograft

Random classification was able to select the correct class approximately half
the time in both skin and muscle with very little bias (Table 4.21, Table 4.22). When
considering samples from all time points, LDA classification performed at about
80% accuracy in skin (Table 4.23) with an AUROC score of .885 (Figure 6.15), and in
muscle accuracy was also about 80% (Table 4.27) with an AUROC score of .714
(Figure 6.62). QDA classification achieved about 81% accuracy in skin (Table 4.24)
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with an AUROC score of .915 (Figure 6.16), and about 86% accuracy in muscle
(Table 4.28) with AUROC of .832 (Figure 6.63). The confusion matrices show
evidence of bias in both cases.

Adding feature interaction variables to the data improved the AUROC score
of LDA in skin to .873 (Figure 6.20), and QDA in skin to .921 (Figure 6.21). Similar
improvements were seen in muscle with the AUROC score of LDA in muscle
increasing to .833 (Figure 6.67), and QDA in muscle reaching .869 (Figure 6.68).

CTA Allograft vs Isograft in Skin Random Classification (all time points)

Accuracy Confusion Matrix

50.64% Classified As

p-value Allograft Isograft o

3828 35 44 Allograft S g
38 39 Isograft =0

Table 4.21 Baseline: Random classifier performance in skin allograft vs isograft

CTA Allograft vs Isograft in Muscle Random Classification (all time points)

Accuracy Confusion Matrix

52.42% Classified As

p-value Allograft Isograft o

8922 35 36 Allograft S g
25 28 Isograft =0

Table 4.22 Baseline: Random classifier performance in muscle allograft vs isograft

CTA Allograft vs Isograft in SKin Linear Discriminant (all time points)

Accuracy Confusion Matrix

80.77% Classified As

p-value Allograft Isograft o

.0457 60 17 Allograft Qé S
8 71 Isograft =0

Table 4.23 CTA Allograft vs Isograft in Skin Linear Discriminant (all time points)

Feature selected (69.87%, Table 6.5), MANOVA transformed (80.12%, Table 6.6)

CTA Allograft vs Isograft in Skin Quadratic Discriminant (all time points)

Accuracy Confusion Matrix

81.41% Classified As

p-value Allograft Isograft o

.0387 56 21 Allograft Qé S
8 71 Isograft =0

Table 4.24

Feature selected (71.15%, Table 6.7), MANOVA transformed (84.41%, Table 6.8)

CTA Rejecting vs Suppressed in Skin Linear Discriminant (FK Groups)
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Accuracy Confusion Matrix

82.69% Classified As

p-value Rejecting Suppressed

.0017 21 5 Rejecting % g
4 22 Suppressed | &= ©

Table 4.25

Feature selected (75.00%, Table 6.43), MANOVA transformed (82.69%, Table 6.44)

CTA Rejecting vs Suppressed in Skin Quadratic Discriminant (FK Groups)

Accuracy Confusion Matrix

86.54% Classified As

p-value Rejecting Suppressed o

0122 24 2 Rejecting % S
5 21 Suppressed | & ©

Table 4.26

Feature selected (78.85%, Table 6.45), MANOVA transformed (84.62%, Table 6.46)

CTA Allograft vs Isograft in Muscle Linear Discriminant (all time points)

Accuracy Confusion Matrix

70.16% Classified As

p-value Allograft Isograft o

3018 27 26 Allograft S g
11 60 Isograft =~ O

Table 4.27

Feature selected (73.39%, Table 6.53), MANOVA transformed (73.39%, Table 6.54)

CTA Allograft vs Isograft in Muscle Quadratic Discriminant (all time points)

Accuracy Confusion Matrix

78.23% Classified As

p-value Allograft Isograft o

1526 34 19 Allograft % S
8 63 Isograft =0

Table 4.28

Feature selected (70.97%, Table 6.55), MANOVA transformed (80.65%, Table 6.56)

CTA Rejecting vs Suppressed in Muscle Linear Discriminant (FK Groups)

Accuracy Confusion Matrix

80.39% Classified As

p-value Rejecting Suppressed o

.0010 21 5 Rejecting % 8
5 20 Suppressed | &= ©

Table 4.29

Feature selected (72.55%, Table 6.91), MANOVA transformed (82.35%, Table 6.92)
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CTA Rejecting vs Suppressed in Muscle Quadratic Discriminant (FK Groups)

Accuracy Confusion Matrix

84.31% Classified As

p-value Rejecting Suppressed o

.0008 22 4 Rejecting % S
4 21 Suppressed | & ©

Table 4.30

Feature selected (62.75%, Table 6.93), MANOVA transformed (84.31%, Table 6.94)

In addition to analysis at all time points, baseline performance was measured
at or prior to POD 5 in skin with LDA (76.92%, Table 6.17), feature selected LDA
(61.54%, Table 6.18), MANOVA LDA (69.23%, Table 6.19), and feature selected QDA
(60.44%, Table 6.20), as well as in muscle with LDA (81.57%, Table 6.65), feature
selected LDA (68.42%, Table 6.66), MANOVA LDA (82.89%, Table 6.67), and feature
selected QDA (71.05%, Table 6.68).

After POD 5 baseline performance in skin was measured by LDA (93.85%,
Table 6.30), feature selected LDA (84.62%, Table 6.31), MANOVA LDA (90.77%,
Table 6.32), and feature selected QDA (95.38%, Table 6.33), as well as in muscle by
LDA (87.50%, Table 6.78), feature selected LDA (87.50%, Table 6.79), MANOVA LDA
(89.53%, Table 6.80), and feature selected QDA (91.67%, Table 6.81). The original
feature space yields the best results, MANOVA nearly equivalent to the original
feature space, and feature selected space the least accurate. Baseline performance
trends indicate early classification is the more challenging task.

Performance in separating tissue under immunosuppression from tissue
withdrawn from immunosuppression (rejecting) was also measured in skin by LDA
(75.00%, Table 6.43), feature selected LDA (82.65%, Table 6.44), MANOVA LDA
(78.85%, Table 6.45), and feature selected QDA (84.62%, Table 6.46). Performance
in muscle with LDA (72.55%, Table 6.91), feature selected LDA (82.35%, Table
6.92), MANOVA LDA (62.75%, Table 6.93), and feature selected QDA (84.31%, Table
6.94) were also measured.

Enhanced Performance for Identification of Allograft vs Isograft

When analyzing all time points in skin, in the original feature space the
logistic classifier is able to separate allograft from isograft groups with good
performance (83.97% accuracy) and significance (Table 4.31) with an AUROC of
915 (Figure 6.17), but some bias towards misclassification of isografts as allografts
is evident. The addition of feature interaction variables slightly improves AUROC to
919 (Figure 6.22). In the decision tree classifier (Figure 6.2) the inverse bias is seen
although the stable accuracy increases to 91.03% (Table 4.32, Figure 6.3) with
AUROC of .956 (Figure 6.18). Feature interaction variables do not improve the
decision tree AUROC (.953, Figure 6.23). Superior performance (95.55% accuracy)
and significance is achieved with the random forest classifier grown to 50 trees
(Table 4.33, Figure 6.4) with AUROC of .989 (Figure 6.19). The accuracy increases
further to 96.15% if the extended feature interaction variables are added (Table
4.34, Figure 4.29) and AUROC reaches .995 (Figure 4.30).
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CTA Allograft vs Isograft in SKkin Logistic Classifier (all time points)

Accuracy Confusion Matrix

83.97% Classified As

p-value Allograft Isograft o

0175 60 17 Allograft Qé S
8 71 Isograft =0

Table 4.31

Feature selected (80.77%,Table 6.9), MANOVA transformed (83.33%,Table 6.10),
Hybrid features (82.69%,Table 6.11)

CTA Allograft vs Isograft in Skin Decision Tree (all time points, pruned tree)

Accuracy Confusion Matrix

91.03% Classified As

p-value Allograft I[sograft

0069 72 5 Allograft 38
13 66 Isograft =0

Table 4.32

Feature selected (91.67%,Table 6.12), MANOVA transformed (91.67%,Table 6.13),
Hybrid features (89.10%,Table 6.14)

CTA Allograft vs Isograft in Skin Random Forest (all time points, 50 trees)

Accuracy Confusion Matrix

95.55% Classified As

p-value Allograft Isograft o

.0005 74 3 Allograft Qé S
2 77 Isograft =0

Table 4.33

Feature selected (95.55%,Table 6.15), MANOVA transformed (92.31%,Table 6.16)

CTA Allograft vs Isograft in Skin Random Forest (all time points, hybrid

features, 50 trees)

Accuracy Confusion Matrix

96.15% Classified As

p-value Allograft Isograft

0002 74 3 Allograft 38
3 76 Isograft =0

Table 4.34
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Random Forest Classification Performance
Allograft vs Isograft in Skin (all timepoints, hybrid features)
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ROC Curve of Random Forest Classifier
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Parallel plot (Figure 6.24) and MANOVA transformation (Figure 6.25) show
distinction between allograft and Isograft groups in skin at or prior to POD 5, driven
primarily by IL-12p70 (Figure 6.26).

In skin, at or prior to POD 5 logistic classification separates allograft from
[sograft groups with 83.52% accuracy with statistical significance and little bias
(Table 6.21). MANOVA transformation does not significantly alter these results
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(Table 6.23), while feature selection (Table 6.22) reduces accuracy to 76.92% and
introduces some bias towards misclassifying allograft as Isograft.

The decision tree classifier (Figure 6.27) improves accuracy to 82.42%, but
without statistical significance and introduces bias towards misclassifying [sograft
as allograft (Table 6.24, Figure 6.28), which are problems also seen with
performance on feature selected data (81.32% accuracy, Table 6.25, Figure 6.30,
Figure 6.31). Performance on MANOVA transformed data is much better at 84.62%
accuracy with statistical significance and less bias (Table 6.26, Figure 6.33, Figure
6.34).

Better performance (93.41% accuracy) and significance is seen in random
forest classifier grown to 50 trees (Table 6.27, Figure 6.29), which is effectively the
same performance seen with random forest on MANOVA transformed data (Table
6.29, Figure 6.35). Accuracy on feature-selected data is 91.21% with significance
(Table 6.28, Figure 6.32).

Distinction between allograft and Isograft groups after POD 5 in skin is also
evident in the parallel plot (Figure 6.36) and MANOVA transformation (Figure 6.37),
driven primarily by IFN-g, IL-4, and TNF-a, as well as a second level of influence by
IL-12p70, IL-5, GM-CSF, and MCP-1 (Figure 6.38).

After POD 5 in skin, logistic classification separates allograft from Isograft
groups with 92.31% accuracy with statistical significance and little bias (Table
6.34). MANOVA transformation reduces accuracy and significance slightly (Table
6.36), while feature selection (Table 6.35) increases accuracy to 93.85% but reduces
significance and introduces some bias towards misclassifying allograft as Isograft.

The decision tree classifier (Figure 6.39) reaches 96.92% accuracy with
statistical significance (Table 6.37, Figure 6.40), while on feature selected data it
achieves perfect accuracy (Table 6.38, Figure 6.42, Figure 6.43). Performance on
MANOVA transformed data is 96.92% accuracy with statistical significance (Table
6.39, Figure 6.45, Figure 6.46).

Better performance (96.92% accuracy) is seen in random forest classifier
grown to 50 trees (Table 6.40,Figure 6.41), which is effectively the same
performance seen with random forest on MANOVA transformed data (Table 6.42,
Figure 6.47). Nearly perfect accuracy on feature-selected data with significance is
also achieved (Table 6.41, Figure 6.44).

In muscle analysis including all time points, logistic classification separates
allograft from isograft groups with an AUROC of .792 (Figure 6.64), 75.81%
accuracy, low significance, and evident bias towards classification of isografts as
allografts (Table 4.35). With feature interaction variables the AUROC of logistic
regression increases to .801 (Figure 6.69). The decision tree classifier (Figure 6.49,
Figure 6.50) reaches an AUROC of .896 (Figure 6.65), improves accuracy to 83.87%,
reduces the bias and improves significance (Table 4.36, Figure 6.51). With feature
interaction variable, decision tree AUROC decreases to .893 (Figure 6.70). Better
performance (95.97% accuracy) and significance is seen in random forest classifier
grown to 50 trees (Table 4.37) with an AUROC of .987 (Figure 6.66), and the best
performance (95.16% accuracy with improved significance) is seen when the
extended feature interaction variables are added to the data matrix (Table 4.38,
Figure 4.31) with AUROC of .9895 (Figure 4.32).
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CTA Allograft vs Isograft in Muscle Logistic Classifier (all time points)

Accuracy Confusion Matrix

75.81% Classified As

p-value Allograft Isograft o

2306 30 23 Allograft S g
7 64 Isograft =0

Table 4.35

Feature selected (75.81%,Table 6.57), MANOVA transformed (78.23%,Table 6.58),

Hybrid features (78.23%,Table 6.59)

CTA Allograft vs Isograft in Muscle Decision Tree (all time points, pruned tree)

Accuracy Confusion Matrix

83.87% Classified As

p-value Allograft Isograft o

0733 39 14 Allograft Qé S
11 60 Isograft =0

Table 4.36

Feature selected (80.65%,Table 6.60), MANOVA transformed (82.26%,Table 6.61),

Hybrid features (84.68%,Table 6.62)

CTA Allograft vs Isograft in Muscle Random Forest (all time points, 50 trees)

Accuracy Confusion Matrix

95.97% Classified As

p-value Allograft I[sograft o

.0403 47 6 Allograft Qé S
2 69 Isograft =0

Table 4.37

Feature selected (91.94%,Table 6.63), MANOVA transformed (87.10%,Table 6.64)

CTA Allograft vs Isograft in Muscle Random Forest (all time points, hybrid
features, 50 trees)

Accuracy Confusion Matrix

95.16% Classified As

p-value Allograft Isograft o

0352 48 5 Allograft S g
2 69 Isograft =0

Table 4.38
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Random Forest Classification Performance
Allograft vs Isograft in Muscle (all timepoints, hybrid features)
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ROC Curve of Random Forest Classifier
in Muscle Allograft vs Isograft (hybrid features, 50 trees)
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Figure 4.32

At or prior to POD 5 in muscle, the parallel plot (Figure 6.71) and MANOVA
transformation (Figure 6.72) show distinction between allograft and isograft, driven
primarily by IL-12p70, IL-5, and GM-CSF (Figure 6.73).

At POD 5 or earlier in muscle, logistic classification separates allograft from
Isograft groups with 77.63% but without statistical significance (Table 6.69).
MANOVA transformation increases accuracy to 81.58% with significance (Table
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6.71), while feature selection (Table 6.70) reduces accuracy to 60.53% and also
reduces significance.

The decision tree classifier (Figure 6.74) reaches 85.53% accuracy with
strong significance (Table 6.72, Figure 6.75), while on feature selected data it
achieves 77.63% accuracy with strong significance (Table 6.73, Figure 6.77, Figure
6.78). Performance on MANOVA transformed data is 82.90% accuracy again with
statistical significance (Table 6.74, Figure 6.80, Figure 6.81).

Better performance (98.68% accuracy) is seen in random forest classifier
grown to 50 trees (Table 6.75, Figure 6.76), on MANOVA transformed data the
accuracy was 84.21% (Table 6.77, Figure 6.82), while with feature-selected data
accuracy reached 94.74% (Table 6.76, Figure 6.79), all with significance.

After POD 5 in muscle, the parallel plot (Figure 6.83) and MANOVA
transformation (Figure 6.84) show distinction between allograft and isograft, driven
primarily by TNFa and IL-5 (Figure 6.85).

In muscle after POD 5, logistic classification separates allograft from Isograft
groups with 91.67% but without statistical significance (Table 6.82). MANOVA
transformation increases accuracy to 95.83% although still without significance
(Table 6.84), while feature selection (Table 6.83) further increases accuracy to
97.92%, also without significance.

The decision tree classifier (Figure 6.86) reaches 95.83% accuracy but
without significance (Table 6.85, Figure 6.87), while on feature selected data it
achieves 93.75% again without significance (Table 6.86, Figure 6.89, Figure 6.90),
and on MANOVA transformed data performance is 93.75% accuracy but again with
no statistical significance (Table 6.87, Figure 6.92, Figure 6.93).

Better performance (97.92% accuracy) is seen in random forest classifier
grown to 50 trees (Table 6.88, Figure 6.88), on MANOVA transformed data the
accuracy was 93.75% (Table 6.90, Figure 6.94), while with feature-selected data
accuracy reached 95.83% (Table 6.89, Figure 6.91), all nearly significant but with
definitive confusion matrices.

In allograft skin, when separating tissue that is under immunosuppression
from tissue that has been withdrawn from immunosuppression and is rejecting,
logistic classifier performance is 88.46% accurate and stable (Table 4.36). The
decision tree (Figure 6.96) is also 88.46% accurate, although slightly more biased
towards misclassifying rejecting samples and suppressed (Table 4.37, Figure 6.97).
The random forest classifier grown to 50 trees achieves the best stable performance
at 92.31% accuracy (Table 4.38, Figure 4.33).

CTA Rejecting vs Suppressed in Skin Logistic Classifier (FK Groups)

Accuracy Confusion Matrix

88.46% Classified As

p-value Rejecting Suppressed o

<.0001 23 3 Rejecting § S
3 23 Suppressed | & ©

Table 4.39

Feature selected (88.46%,Table 6.47), MANOVA transformed (80.77%,Table 6.48)
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CTA Rejecting vs Suppressed in Skin Decision Tree (FK Groups, pruned tree)

Accuracy Confusion Matrix

88.46% Classified As

p-value Rejecting Suppressed

0101 25 1 Rejecting 28
4 22 Suppressed | &= ©

Table 4.40

Feature selected (84.62%,Table 6.49), MANOVA transformed (94.23%,Table 6.50)

CTA Rejecting vs Suppressed in Skin Random Forest (FK Groups, 50 trees)

Accuracy Confusion Matrix

92.31% Classified As

p-value Rejecting Suppressed o

0041 25 1 Rejecting S g
3 23 Suppressed | & ©

Table 4.41

Feature selected (84.62%,Table 6.51), MANOVA transformed (90.38%,Table 6.52)

Random Forest Classification Performance
Rejecting vs Suppressed in Skin (FK Groups)

— 30% Heldout Test
— — — 10-fold Cross-validation

0.45

04 -

03 \ -

Classification error
o
i
&
T
1

o
N}
T
1

0.15 ! B

0.1 —

0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of trees

Figure 4.33

In allograft muscle, when separating tissue that is under immunosuppression
from tissue that has been withdrawn from immunosuppression and is rejecting, the
logistic classifier is 78.43% accurate (Table 4.42). Decision tree classifier (Figure
4.34) performance is the most stable and at 96.08%, the most accurate (Table 4.43,
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Figure 4.35). Random forest grown to 50 trees reaches 86.27% accuracy (Table

4.44, Figure 6.105).

CTA Rejecting vs Suppressed in Muscle Logistic Classifier (FK Groups)

Accuracy Confusion Matrix

78.43% Classified As

p-value Rejecting Suppressed o

0151 7 19 Rejecting S g
21 4 Suppressed | & ©

Table 4.42

Feature selected (70.59%,Table 6.95), MANOVA transformed (74.51%,Table 6.96)

CTA Rejecting vs Suppressed in Muscle Decision Tree (FK Groups, pruned

tree)

Accuracy Confusion Matrix

96.08% Classified As

p-value Rejecting Suppressed

.0006 23 3 Rejecting % g
2 23 Suppressed | &= ©

Table 4.43

Feature selected (74.51%,Table 6.97), MANOVA transformed (94.12%,Table 6.98)

CTA Rejecting vs Suppressed in Muscle Random Forest (FK Groups, 50 trees)

Accuracy Confusion Matrix

86.27% Classified As

p-value Rejecting Suppressed o

.0008 22 4 Rejecting % S
4 21 Suppressed | & ©

Table 4.44

Feature selected (72.55%,Table 6.99), MANOVA transformed (88.24%,Table 6.100)
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Cost (misclassification error)

Pruned Decision Tree
Rejecting vs Suppressed in Muscle
(FK Groups)
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Figure 4.34

Pruned Decision Tree

Chapter 4: Results

Rejecting vs Suppressed in Muscle (FK Groups)
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20

Identifying Specific Forms of Inflammation in a Heterogeneous Set

Differences in concentration of IL-1a, MCP-1, IL-6, IL-10, IL-18, and GRO/KC
are evident from the parallel plot of inflammation associated with rejection versus
inflammation not associated with rejection in skin (Figure 4.36), and MCP-1, IL-1b,
IL-6, IL-10IL-18, and GRO/KC in muscle (Figure 4.38).
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When transformed by MANOVA and the samples plotted on the axis defined
by the first and second canonical variable of the MANOVA transformation, the
degree of separation between groups with rejection associated inflammation from
those with inflammation not rejection associated becomes clearer in skin (Figure
4.37) driven primarily by IL12-p70, IL-5, and TNFa (Figure 6.151), and in muscle
(Figure 4.39) driven primarily by IL-12p70, IL-5, GM-CSF, TNFa, and IFNg (Figure
6.199).

Rejection vs Not Rejection in Skin
(all timepoints, quartiles shown)
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Rejection vs Not Rejection in Skin
on MANOVA Defined Axes (all timepoints)
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Figure 4.37
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Rejection vs Not Rejection in Muscle

(all timepoints, quartiles shown)
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Rejection vs Not Rejection in Muscle
on MANOVA Defined Axes (all timepoints)
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Figure 4.39

Baseline Performance for Detection of Rejection Associated Inflammation

In a heterogeneous set of inflammation samples, those with rejection-
associated inflammation are separated from those with inflammation that is not
associated with rejection.
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Random classification was able to select the correct class slightly less than
half the time in both skin and muscle with very little bias (Table 4.45, Table 4.46).
When considering samples from all time points, LDA classification performed at
about 68.09% accuracy without significance in skin (Table 4.47) with an AUROC
score of .257 (Figure 6.165), and in muscle accuracy was 70.56% (Table 4.49) with
an AUROC score of .275 (Figure 6.214). QDA classification achieved about 77.66%
accuracy in skin with no significance (Table 4.48) with an AUROC score of .123
(Figure 6.166), and about 72.59% accuracy in muscle without significance (Table
4.50) with AUROC of .185 (Figure 6.215).

Adding feature interaction variables to the data improved the AUROC score
of LDA in skin to .265 (Figure 6.170), and QDA in skin to .139 (Figure 6.171). Similar
improvements were seen in muscle with the AUROC score of LDA in muscle
increasing to .213 (Figure 6.219), and to .202 with QDA in muscle (Figure 6.220).

Rejection vs Not Rejection in Skin Random Classification (all time points)

Accuracy
45.74%
p-value
1.000

Confusion Matrix

Classified As

Not Rejection Rejection
88 91 Not Rejection
50 53 Rejection

True
Class

Table 4.45 Baseline: Random classifier performance in rejecting vs not rejecting skin

Rejection vs Not Rejection in Muscle Random Classification (all time points)

Accuracy
44.67%
p-value
8748

Confusion Matrix

Classified As

Not Rejection Rejection
56 62 Not Rejection
39 40 Rejection

True
Class

Table 4.46 Baseline: Random classifier performance in rejecting vs not rejecting muscle

Rejection vs Not Rejection in Skin Linear Discriminant (all time points)

Accuracy Confusion Matrix

68.09% Classified As

p-value Not Rejection Rejection

.3887 142 37 Not Rejection % g
53 50 Rejection =~ O

Table 4.47

Feature selected (64.89%,Table 6.127), MANOVA transformed (68.09%,Table

6.128)

Rejection vs Not Rejection in Skin Quadratic Discriminant (all time points)

Accuracy

Confusion Matrix
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77.66% Classified As

p-value Not Rejection Rejection

3651 172 7 Not Rejection % §
56 47 Rejection =0

Table 4.48

Feature selected (71.28%,Table 6.129), MANOVA transformed (76.60%,Table

6.130)

Rejection vs Not Rejection in Muscle Linear Discriminant (all time points)

Accuracy Confusion Matrix

70.56% Classified As

p-value Not Rejection Rejection

.3668 102 16 Not Rejection % g
42 37 Rejection =9

Table 4.49

Feature selected (67.51%,Table 6.211), MANOVA transformed (73.10%,Table

6.212)

Rejection vs Not Rejection in Muscle Quadratic Discriminant (all time points)

Accuracy Confusion Matrix

72.59% Classified As

p-value Not Rejection Rejection

.3315 104 14 Not Rejection % §
40 39 Rejection =0

Table 4.50

Feature selected (71.28%,Table 6.129), MANOVA transformed (76.60%,Table
6.130)

In addition to analysis at all time points, baseline performance was measured
at or prior to POD 5 in skin with LDA (72.25%,Table 6.139), feature selected LDA
(66.47%,Table 6.140), MANOVA LDA (71.01%,Table 6.141), QDA (75.14%,Table
6.142), feature selected QDA (66.47%,Table 6.143), and MANOVA QDA
(74.57%,Table 6.144), as well as in muscle with LDA (74.29%,Table 6.221), feature
selected LDA (67.62%,Table 6.222), and MANOVA LDA (74.29%,Table 6.223).

After POD 5 baseline performance in skin was measured by LDA (80.00%,
Table 6.154), feature selected LDA (67.88%,Table 6.155), MANOVA LDA
(76.36%,Table 6.156), QDA (83.64%,Table 6.157), feature selected QDA
(77.58%,Table 6.158), and MANOVA QDA (84.24%, Table 6.159), as well as in
muscle by LDA (77.19%,Table 6.233), feature selected LDA (69.30%,Table 6.234),
and MANOVA LDA (80.70%,Table 6.235). The original feature space once more
yields the best results in this experiment, while MANOVA provides nearly equivalent
results to the original feature space, and the feature-selected space performs least
well. Baseline performance indicates differentiation amongst groups at an early
time point remains more challenging than differentiation at a late time point.
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Enhanced Performance in Detection of Rejection Associated Inflammation

When analyzing samples at all time points in skin, the logistic regression
classifier achieves 70.57% accuracy while evincing bias and lack of significance
(Table 4.51) with an AUROC of .775 (Figure 6.167). Adding feature interaction
variables to the data improved the AUROC score of the logistic classifier to .877
(Figure 6.268). The decision tree (Figure 6.152) yields an AUROC score of .893
(Figure 6.168), improves accuracy to 87.59%, ameliorates bias, and improves
significance (Table 4.52, Figure 6.153) but not to significant levels. Adding feature
interaction variables changed the AUROC score of the decision tree to .885 (Figure
6.269). Random forest grown to 100 trees reaches an AUROC of .970 (Figure 6.174),
93.62% accuracy with significance and little bias (Table 4.53, Figure 6.154). When
feature interaction variables were included Random Forest AUROC increased to
.977 (Figure 4.41), accuracy slightly changes to 92.55% accuracy but with no
substantial change in significance although cross validation results indicate slightly
improved performance (Table 4.54, Figure 4.40).

Rejection vs Not Rejection in Skin Logistic Classifier (all time points)

Accuracy Confusion Matrix

70.57% Classified As

p-value Not Rejection Rejection

4637 19 160 Not Rejection % §
39 64 Rejection =3

Table 4.51

Feature selected (68.09%,Table 6.131), MANOVA transformed (72.70%,Table
6.132), Hybrid features (76.95%,Table 6.133)

Rejection vs Not Rejection in Skin Decision Tree (all time points, pruned tree)

Accuracy Confusion Matrix

87.59% Classified As

p-value Not Rejection Rejection

1122 158 21 Not Rejection % §
19 84 Rejection =0

Table 4.52

Feature selected (79.08%,Table 6.134), MANOVA transformed (81.56%,Table
6.135), Hybrid features (87.59%,Table 6.136)

Rejection vs Not Rejection in Skin Random Forest (all time points, 100 trees)

Accuracy Confusion Matrix

93.62% Classified As

p-value Not Rejection Rejection

.0829 169 10 Not Rejection % g
9 94 Rejection =~ O

Table 4.53
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Feature selected (84.04%,Table 6.137), MANOVA transformed (87.23%,Table
6.138)

Rejection vs Not Rejection in Skin Random Forest (all time points, hybrid
features, 100 trees)

Accuracy Confusion Matrix

92.55% Classified As

p-value Not Rejection Rejection

.0852 172 7 Not Rejection % §
9 94 Rejection =S

Table 4.54

Random Forest Classification Performance
Rejection vs Not Rejection in Skin (all timepoints, hybrid features)
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Figure 4.40
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ROC Curve of Random Forest Classifier for Rejection
in Heterogenous Skin Inflammation (hybrid features, 100 trees)
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Figure 4.41

At or prior to POD 5 in skin, the parallel plot (Figure 6.175) and MANOVA
transformation (Figure 6.176) show distinction between rejection and not rejection
associated inflammation, driven primarily by TNFa, IL-4, I[L-12p70, GM-CSF, and IL-
5 (Figure 6.177).

In skin at or prior to POD 5, logistic classification separates rejection from
not rejection associated inflammation with 74.57% but without statistical
significance (Table 6.145). MANOVA transformation enables 72.83% accuracy still
without significance (Table 6.147), while feature selection (Table 6.146) allows
accuracy of 68.21%, also without significance.

The decision tree classifier (Figure 6.178) reaches 80.92% accuracy but
without significance (Table 6.148, Figure 6.179), on feature selected data it achieves
78.61% again without significance (Table 6.149, Figure 6.181, Figure 6.182), and on
MANOVA transformed data performance is 87.86% accuracy but again with no
statistical significance (Table 6.150, Figure 6.184, Figure 6.185).

Random forest grown to 100 trees reaches 95.95% accuracy (Table 6.151,
Figure 6.180), on MANOVA transformed data the accuracy was 91.33% (Table
6.153, Figure 6.186), both are near significance but with definitive confusion
matrices. Feature-selected data accuracy reached 84.39% (Table 6.152, Figure
6.183), without significance.

After POD 5 in skin, the parallel plot (Figure 6.187) and MANOVA
transformation (Figure 6.188) show distinction between rejection and not rejection
associated inflammation, driven primarily by IL-12p70 (Figure 6.189).

In skin after POD 5, logistic classification separates rejection from not
rejection associated inflammation with 76.97% but without statistical significance
(Table 6.160). MANOVA transformation enables 80.00% accuracy still without
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significance (Table 6.162), while feature selection (Table 6.161) allows accuracy of
72.12%, also without significance.

The decision tree classifier (Figure 6.190) reaches 88.48% accuracy but
without significance (Table 6.163, Figure 6.191), on feature selected data it achieves
83.03% again without significance (Table 6.164, Figure 6.193, Figure 6.194), and on
MANOVA transformed data performance is 86.06% accuracy but again with no
statistical significance (Table 6.165, Figure 6.196, Figure 6.197).

Random forest grown to 100 trees reaches 93.94% accuracy (Table 6.166,
Figure 6.192), and feature-selected data accuracy reached 90.91% (Table 6.167,
Figure 6.195), both near significance but with definitive confusion matrices. On
MANOVA transformed data the accuracy was 89.09% (Table 6.168, Figure 6.198),
without significance.

Analyzing samples at all time points in muscle, logistic regression reaches
AUROC of .777 (Figure 6.216), and 75.63% accuracy but again with bias and no
significance (Table 4.55). With feature interaction variables logistic regression
yields an AUROC of .816 (Figure 6.221). Decision tree (Figure 6.200) accuracy
reaches 80.20%, but still shows bias and some insignificance (Table 4.56, Figure
6.201) and yields an AUROC of .845 (Figure 6.217). With feature interaction
variables the AUROC is .827 (Figure 6.222). Random forest grown to 100 trees
(Figure 6.202) achieves an AUROC of .944 (Figure 6.218) with 89.85% accuracy and
significance, but still shows some signs of bias in classifying rejecting samples as not
rejecting (Table 4.57). When feature interaction variables are included, Random
Forest accuracy decreases to 86.55% while significance increases slightly (Table
4.58, Figure 4.42) and the AUROC changes to .955 (Figure 4.43).

Rejection vs Not Rejection in Muscle Logistic Classifier (all time points)

Accuracy Confusion Matrix

75.63% Classified As

p-value Not Rejection Rejection

2728 106 12 Not Rejection % §
36 43 Rejection =0

Table 4.55

Feature selected (74.11%,Table 6.213), MANOVA transformed (74.11%,Table
6.214), Hybrid features (77.16%,Table 6.215)

Rejection vs Not Rejection in Muscle Decision Tree (all time points, pruned

tree)

Accuracy Confusion Matrix

80.20% Classified As

p-value Not Rejection Rejection

1937 100 18 Not Rejection % §
30 49 Rejection =0

Table 4.56

Feature selected (78.17%,Table 6.216), MANOVA transformed (73.60%,Table
6.217), Hybrid features (79.70%,Table 6.218)
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Rejection vs Not Rejection in Muscle Random Forest (all time points, 100

trees)

Accuracy Confusion Matrix

89.85% Classified As

p-value Not Rejection Rejection

.0844 114 4 Not Rejection Qé §
14 65 Rejection =3

Table 4.57

Feature selected (86.29%,Table 6.219), MANOVA transformed (88.32%,Table

6.220)

Rejection vs Not Rejection in Muscle Random Forest (all time points, hybrid

features, 100 trees)

Accuracy Confusion Matrix

86.80% Classified As

p-value Not Rejection Rejection

0.0779 110 8 Not Rejection Qé §
14 65 Rejection =3

Table 4.58

Classification error

0.4

0.35

03

Random Forest Classification Performance
Rejection vs Not Rejection in Muscle (all timepoints, hybrid features)
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ROC Curve of Random Forest Classifier for Rejection
in Heterogenous Muscle Inflammation (hybrid features, 100 trees)
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Figure 4.43

At or prior to POD 5 in muscle, the parallel plot (Figure 6.223) and MANOVA
transformation (Figure 6.224) show distinction between rejection and not rejection
associated inflammation, driven primarily by TNFa, IFN-g, IL-12p70, GM-CSF, and
IL-5 (Figure 6.225).

In muscle at or prior to POD 5, logistic classification separates rejection from
not rejection associated inflammation with 70.48% but without statistical
significance (Table 6.224). MANOVA transformation enables 68.57% accuracy still
without significance (Table 6.226), while feature selection (Table 6.225) allows
accuracy of 73.33%, also without significance.

The decision tree classifier (Figure 6.226) reaches 81.90% accuracy near
significance (Table 6.227, Figure 6.227), on feature selected data it achieves 73.33%
again without significance (Table 6.228, Figure 6.229, Figure 6.230), and on
MANOVA transformed data performance is also 73.33% accuracy but again with no
statistical significance (Table 6.229, Figure 6.232, Figure 6.233).

Random forest grown to 100 trees reaches 88.57% accuracy (Table 6.230,
Figure 6.228) just on the threshold of significance, while on MANOVA transformed
data the accuracy was 86.67% (Table 6.232, Figure 6.234), near significance.
Feature-selected data accuracy reached 83.81% (Table 6.231, Figure 6.231),
without significance.

After POD 5 in muscle, the parallel plot (Figure 6.235) and MANOVA
transformation (Figure 6.236) show distinction between rejection and not rejection
associated inflammation, driven primarily by IL-TNFa, and IL-5 (Figure 6.237).

In muscle after POD 5, logistic classification separates rejection from not
rejection associated inflammation with 87.72% near statistical significance (Table
6.236). MANOVA transformation enables 87.72% accuracy also near significance
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(Table 6.238), while feature selection (Table 6.237) allows accuracy of 64.04%,
without significance.

The decision tree classifier (Figure 6.238) reaches 82.46% near significance
(Table 6.239, Figure 6.239), on feature selected data it achieves 85.96% without
significance (Table 6.240, Figure 6.241, Figure 6.242), and on MANOVA transformed
data performance is 83.33% accuracy but again with no statistical significance
(Table 6.241, Figure 6.244, Figure 6.245).

Random forest grown to 100 trees reaches 88.60% accuracy (Table 6.242,
Figure 6.240), and feature-selected data accuracy reached 85.96% (Table 6.243,
Figure 6.243), both near significance but with strong confusion matrices. On
MANOVA transformed data the accuracy was 88.60% (Table 6.244, Figure 6.246),
near significance and also with a strong confusion matrix.

Baseline in Identification of Inflammation Type

Going one step beyond the ability to differentiate rejection from not rejection
associated inflammation, the ability to separate and identify three different classes
of inflammation is examined. In a heterogeneous set of inflammation samples with
three group labels, the class label (inflammation type) of each sample is predicted.

Differences in concentration of IL-1a, MCP1, IL-1b, IL-6, IL-18, and GRO/KC
are evident from the parallel plot of allograft versus isograft in skin (Figure 4.44),
and MCP-1, IL-1b, IL-6, IL-18, and GRO/KC in muscle (Figure 4.46).

When transformed by MANOVA and plotted on the axis defined by the first
and second canonical variable of the MANOVA transformation, the degree of
separation between allograft and Isograft becomes clearer in skin (Figure 4.45)
driven primarily by IL-5, TNFa, and IL-12p70 (Figure 6.248), as well as clearer in
muscle (Figure 4.47) driven primarily by IL-5, TNFa, [L-12p70, GM-CSF and IFNg
(Figure 6.304).
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Type of Inflammation in Skin
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Type of Inflammation in Muscle
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Random classification was able to identify the type of inflammation correctly
28.72% of the time in skin and 28.43% of the time in muscle with very little bias
(Table 4.59, Table 4.62). The identification of rejection is isomorphic to the task of
differentiating rejection from not rejection described in the previous section, and is
therefore not repeated here.

When considering samples from all time points, LDA classification performed
with 64.54% accuracy without significance in skin (Table 4.60). In skin LDA yielded
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AUROC scores of .827 (Figure 6.261) in identifying wound healing, and .870 (Figure
6.270) in identifying unspecific inflammation in the original feature space, and
yielded AUROC scores of .819 (Figure 6.266) in identifying wound healing, and
.871(Figure 6.275) in identifying unspecific inflammation with feature interaction
variables. In muscle LDA classification performed with 63.45% accuracy without
significance (Table 4.63). In muscle LDA yielded AUROC scores of .675 (Figure
6.318) in identifying wound healing, and .633 (Figure 6.327) in identifying
unspecific inflammation in the original feature space, and yielded AUROC scores of
.723 (Figure 6.322) in identifying wound healing, and .682 (Figure 6.331) in
identifying unspecific inflammation with feature interaction variables.

QDA classification performed with 64.54% accuracy without significance in
skin (Table 4.61). In skin QDA yielded AUROC scores of .894 (Figure 6.262) in
identifying wound healing and .792 (Figure 6.271) in identifying unspecific
inflammation in the original feature space, while yielding AUROC scores of .891
(Figure 6.267) in identifying wound healing and .808 (Figure 6.276) in identifying
unspecific inflammation with feature interaction variables. In muscle QDA
classification performed with 63.45% accuracy without significance (Table 4.64). In
muscle QDA yielded AUROC scores of .760 (Figure 6.319) in identifying wound
healing, and .539 (Figure 6.323) in identifying unspecific inflammation in the
original feature space, and yielded AUROC scores of .773 (Figure 6.328) in
identifying wound healing, and .576 (Figure 6.332) in identifying unspecific
inflammation with feature interaction variables.

Type of Inflammation in Skin Random Classification (all time points)

Accuracy Confusion Matrix
28.72% Classified As
p-value Rejection Unspecific Wound
1407 Inflammation | Healing 2
31 38 34 Rejection S
v
19 22 15 Unspecific g
Inflammation | &
33 44 46 Wound
Healing

Table 4.59 Baseline: Random classifier performance for identifying type of inflammation in skin

Type of Inflammation in Skin Linear Discriminant (all time points)

Accuracy Confusion Matrix
64.54% Classified As
p-value Rejection Unspecific Wound
2878 Inflammation | Healing
46 21 36 Rejection
a
11 38 7 Unspecific S
Inflammation | o
12 13 98 Wound Z
Healing
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Table 4.60
Feature selected (50.71%,Table 6.169), MANOVA transformed (64.18%,Table
6.170)

Type of Inflammation in Skin Quadratic Discriminant (all time points)

Accuracy Confusion Matrix
67.73% Classified As
p-value Rejection | Unspecific Wound
2696 Inflammation | Healing
50 22 31 Rejection
4
5 32 19 Unspecific S
Inflammation | o
4 10 109 | Wound Z
Healing
Table 4.61

Feature selected (59.57%,Table 6.171), MANOVA transformed (67.02%,Table
6.172)

Type of Inflammation in Muscle Random Classification (all time points)

Accuracy Confusion Matrix
28.43% Classified As
p-value Rejection Unspecific Wound
2210 Inflammation | Healing a
30 26 23 Rejection S
v
11 4 7 Unspecific £
Inflammation | =
32 36 28 Wound
Healing

Table 4.62 Baseline: Random classifier performance for identifying type of inflammation in muscle

Type of Inflammation in Muscle Linear Discriminant (all time points)

Accuracy Confusion Matrix
63.45% Classified As
p-value Rejection Unspecific Wound
4930 Inflammation | Healing
33 10 36 Rejection
a
1 11 10 Unspecific S
Inflammation | o
9 6 81 Wound £
Healing =~
Table 4.63

Feature selected (57.36%,Table 6.245), MANOVA transformed (62.44%,Table
6.246)
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Type of Inflammation in Muscle Quadratic Discriminant (all time points)

Accuracy Confusion Matrix
67.51% Classified As
p-value Rejection Unspecific Wound
3749 Inflammation | Healing
42 10 27 Rejection
4
7 8 7 Unspecific S
Inflammation | o
8 5 83 Wound g
Healing &~
Table 4.64

Feature selected (58.89%,Table 6.247)

In addition to analysis at all time points, baseline performance was measured
at or prior to POD 5 in skin with LDA (65.32%,Table 6.181), feature selected LDA
(49.13%,Table 6.182), MANOVA LDA (64.16%,Table 6.183), QDA (69.36%,Table
6.184), feature selected QDA (47.40%,Table 6.185), and MANOVA QDA
(71.10%,Table 6.186), as well as in muscle with LDA (54.29%,Table 6.256), feature
selected LDA (55.24%,Table 6.257), and MANOVA LDA (51.43%,Table 6.258).

After POD 5 baseline performance in skin was measured by LDA (75.76%,
Table 6.196), feature selected LDA (52.12%,Table 6.197), MANOVA LDA (76.36%,
Table 6.198), QDA (78.79%,Table 6.199), feature selected QDA (63.64%,Table
6.200), and MANOVA QDA (80.61%,Table 6.201), as well as in muscle by LDA
(64.04%,Table 6.268), feature selected LDA (57.89%,Table 6.269), and MANOVA
LDA (65.79%,Table 6.270). Again original feature space results are best, MANOVA
nearly equivalent, and feature-selected least accurate. Early time point samples
remain more challenging to accurately classify than late time point samples.

Performance in Enhanced Identification of Inflammation Type

Analyzing samples from all time points in skin, the logistic classifier identifies
the sample inflammation type 68.09% of the time, but not with significance (Table
4.65). The logistic classifier delivers an AUROC of .885 (Figure 6.263) in the
detection of wound healing in the original feature space, and an AUROC of .877
(Figure 6.268) when the feature interaction variables are included. It also delivers
an AUROC of .893 (Figure 6.272) in the detection of unspecific inflammation in the
original feature space, and an AUROC of .886 (Figure 6.277) with feature interaction
variables.

Decision tree (Figure 6.249) identifies the sample inflammation type 77.66%
of the time, with near significance (Table 4.66, Figure 6.250). The decision tree
yields an AUROC of .843 (Figure 6.264) in the detection of wound healing in the
original feature space, and an AUROC of .885 (Figure 6.269) when the feature
interaction variables are included. It also delivers an AUROC of .878 (Figure 6.273)
in the detection of unspecific inflammation in the original feature space, and an
AUROC of .877 (Figure 6.278) with feature interaction variables.
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Random forest identifies the sample inflammation type 82.98% of the time
with significance (Table 6.179, Figure 6.213), and with feature interaction variables
reaches 90.43% accuracy with significance (Table 4.68,Figure 4.48). Random forest
yields an AUROC of .973 (Figure 6.265) in the detection of wound healing in the
original feature space, and an AUROC of .977 (Figure 4.49) when the feature
interaction variables are included. It also delivers an AUROC of .992 (Figure 6.274)
in the detection of unspecific inflammation in the original feature space, and an
AUROC of .987 (Figure 4.50) with feature interaction variables.

Type of Inflammation in Skin Logistic Classifier (all time points)

Accuracy Confusion Matrix
68.09% Classified As
p-value Rejection Unspecific Wound
2964 Inflammation | Healing
61 16 26 Rejection
a
15 23 18 Unspecific S
. O
Inflammation | o
6 9 108 | Wound =
Healing &~
Table 4.65

Feature selected (60.99%,Table 6.173), MANOVA transformed (68.09%,Table
6.174), Hybrid features (70.21%,Table 6.175)

Type of Inflammation in Skin Decision Tree (all time points, pruned tree)

Accuracy Confusion Matrix
77.66% Classified As
p-value Rejection Unspecific Wound
1316 Inflammation | Healing
76 7 20 Rejection
a
18 26 12 Unspecific S
. (S
Inflammation | o
9 7 107 | Wound £
Healing &~
Table 4.66

Feature selected (75.18%,Table 6.176), MANOVA transformed (71.28%,Table
6.177), Hybrid features (79.43%,Table 6.178)

Type of Inflammation in Skin Random Forest (all time points, 100 trees)

Accuracy Confusion Matrix
89.01% Classified As
p-value Rejection Unspecific Wound
0259 Inflammation | Healing a
93 0 10 Rejection S
v
9 43 4 Unspecific 2
Inflammation | =
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7 3 113 Wound
Healing
Table 4.67
Feature selected (82.98%,Table 6.179), MANOVA transformed (82.98%,Table
6.180)
Type of Inflammation in Skin Random Forest (all time points, hybrid features,
100 trees)
Accuracy Confusion Matrix
90.43% Classified As
p-value Rejection Unspecific Wound
0231 Inflammation | Healing
93 0 10 Rejection
(%)
7 45 4 Unspecific é
Inflammation | o
5 1 117 | Wound Z
Healing
Table 4.68

Classification error

0.1
0

0.5

0.45

04 |

0.35

03

Random Forest Classification Performance
in Skin (all timepoints, hybrid features)

Type of Inflammation

— 30% Heldout Test
— — — 10-fold Cross-validation

Figure 4.48
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ROC Curve of Random Forest Classifier for Wound Healing
in Heterogenous Skin Inflammation (hybrid features, 100 trees)
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ROC Curve of Random Forest Classifier for Unspecific Inflammation
in Heterogenous Skin Inflammation (hybrid features, 100 trees)
1
Tt . | — — —95% Confidence Interval
1Y N AN A ]
ISl
1
,
08f 1,7 -
I
|
0.7 1 -
I
J
0.6 ! -
2 |
& I
2 I
Z 051! E
I |
) I
E |
04! B
I
:
03! -
W
|
! .
0ol AUROC: i
K 0.986686
0
0.1+ —
0 1 1 1 1 1 1 1 1 1

0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

Figure 4.50

At or prior to POD 5 in skin, the parallel plot (Figure 6.279) and MANOVA
transformation (Figure 6.280) show distinction between rejection and not rejection
associated inflammation, driven primarily by TNFa, IL-4, [L-12p70, GM-CSF, IL-2,

and IL-5 (Figure 6.281).

In skin at or prior to POD 5, logistic classification separates rejection from
not rejection associated inflammation with 68.79% accuracy in the original feature
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space (Table 6.187), MANOVA transformation enables 65.32% accuracy (Table
6.189), while feature selection (Table 6.188) allows accuracy of 54.34%, all with
significance.

The decision tree classifier (Figure 6.282) reaches 73.41% accuracy in the
original feature space (Table 6.190, Figure 6.283), on feature selected data it
achieves 63.58% (Table 6.191, Figure 6.285, Figure 6.286), and on MANOVA
transformed data performance is 73.99% (Table 6.192, Figure 6.288, Figure 6.289),
all with significance.

Random forest grown to 100 trees reaches 86.71% accuracy (Table 6.193,
Figure 6.284) with significance, on MANOVA transformed data the accuracy was
87.28% (Table 6.195, Figure 6.290) with significance, and on feature-selected data
accuracy reached 79.19% (Table 6.194, Figure 6.287) with significance.

After POD 5 in skin, the parallel plot (Figure 6.291) and MANOVA
transformation (Figure 6.292) show distinction between rejection and not rejection
associated inflammation, driven primarily by IL-12p70, TNFa, and IL-5 (Figure
6.293).

In skin after POD 5, logistic classification separates rejection from not
rejection associated inflammation with 81.21% (Table 6.202), and MANOVA
transformation enables 81.21% accuracy (Table 6.203), both without siginificance.
Feature selection (Table 6.204) allows 62.42% with statistical significance.

The decision tree classifier (Figure 6.294) reaches 78.18% in the original
feature space (Table 6.205, Figure 6.295), and on feature selected data it achieves
77.58% (Table 6.206, Figure 6.297, Figure 6.298), both with significance. On
MANOVA transformed data performance is 64.48% accuracy but with no statistical
significance (Table 6.207, Figure 6.300, Figure 6.301).

Random forest grown to 100 trees reaches 89.70% accuracy (Table 6.208,
Figure 6.296), feature-selected data accuracy reached 87.27% (Table 6.209, Figure
6.299), and MANOVA transformed data the accuracy was 86.06% (Table 6.210,
Figure 6.302), all with strong significance.

Analyzing muscle samples from all time points, the logistic classifier
identifies the sample inflammation type 68.02% of the time, but not with
significance (Table 4.69). The logistic classifier delivers an AUROC of .738 (Figure
6.320) in the detection of wound healing in the original feature space, and an
AUROC of .745 (Figure 6.324) when the feature interaction variables are included. It
also delivers an AUROC of .641 (Figure 6.329) in the detection of unspecific
inflammation in the original feature space, and an AUROC of .677 (Figure 6.333)
with feature interaction variables.

Decision tree (Figure 6.305) identifies the sample inflammation type 70.56%
of the time, without significance (Table 4.70, Figure 6.306). The decision tree yields
an AUROC of .727 (Figure 6.321) in the detection of wound healing in the original
feature space, and an AUROC of .748 (Figure 6.325) when the feature interaction
variables are included. It also delivers an AUROC of .529 (Figure 6.330) in the
detection of unspecific inflammation in the original feature space, and an AUROC of
.529 (Figure 6.334) with feature interaction variables.

Random forest identifies the sample inflammation type 81.73% of the time
with significance (Table 4.71, Figure 6.307), and with feature interaction variables
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reaches 83.25% accuracy with better significance (Table 4.72, Figure 4.51). Random
forest yields an AUROC of .936 (Figure 4.52) in the detection of wound healing in the
original feature space, and an AUROC of .923 (Figure 6.326) when the feature
interaction variables are included. It also delivers an AUROC of .863 (Figure 4.53) in
the detection of unspecific inflammation in the original feature space, and an AUROC
of .856 (Figure 6.335) with feature interaction variables.

Type of Inflammation in Muscle Logistic Classifier (all time points)

Accuracy Confusion Matrix
68.02% Classified As
p-value Rejection Unspecific Wound
4140 Inflammation | Healing
46 3 30 Rejection
a
5 6 11 Unspecific S
Inflammation | o
10 4 82 Wound =
Healing =~
Table 4.69

Feature selected (59.90%,Table 6.248), MANOVA transformed (67.01%,Table
6.249), Hybrid features (67.51%,Table 6.250)

Type of Inflammation in Muscle Decision Tree (all time points, pruned tree)

Accuracy Confusion Matrix
70.56% Classified As
p-value Rejection Unspecific Wound
3737 Inflammation | Healing
48 2 29 Rejection
a
5 5 12 Unspecific =
. O
Inflammation | o
13 5 78 Wound =
Healing &~
Table 4.70

Feature selected (68.53%,Table 6.251), MANOVA transformed (73.10%,Table
6.252), Hybrid features (68.02%,Table 6.253)

Type of Inflammation in Muscle Random Forest (all time points, 100 trees)

Accuracy Confusion Matrix
81.73% Classified As
p-value Rejection Unspecific Wound
1532 Inflammation | Healing
66 2 11 Rejection
4
3 8 11 Unspecific =
. \S)
Inflammation | o
6 3 87 Wound g
Healing &~
Table 4.71
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Feature selected (79.19%,Table 6.254), MANOVA transformed (79.19%,Table
6.255)

Type of Inflammation in Muscle Random Forest (all time points, hybrid
features, 100 trees)

Accuracy Confusion Matrix
83.25% Classified As
p-value Rejection Unspecific Wound
1350 Inflammation | Healing a
70 0 9 Rejection S
O
V
2 8 12 Unspecific £
Inflammation =~
5 1 90 Wound
Healing
Table 4.72

Random Forest Classification Performance
Type of Inflammation in Muscle (all timepoints, hybrid features)

T
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Figure 4.51

91



Computational Modeling of Immune Signals

True Positive Rate

True Positive Rate

ROC Curve of Random Forest Classifier for Wound Healing
us Muscle Inflammation (100 trees)

in Heterogeno
T

Chapter 4: Results

0.9

0.8

0.6

o
o

o
=~

0.3

01

T =

AUROC:
0.935386

T —=—71 T

T T
e _ — ROC Curve
S —— — — —95% Confidence Interval

0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

Figure 4.52

0.7 0.8

(100 trees)

0.9

ROC Curve of Random Forest Classifier for Unspecific Inflammation

0.9

0.8

0.6

o
5}

o
Y

0.3

0.2

0.1

0.7 0.8

in Heterogenous Muscle Inflammation
T . T ; T T T T
~ //\ !
N -
[ /\
/ "
A ht \\ﬁ jT T T T
! N
N \
[AWAN !
e
|
AUROC:
0.862987
1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate
Figure 4.53

0.9

At or prior to POD 5 in muscle, the parallel plot (Figure 6.336) and MANOVA
transformation (Figure 6.337) show distinction between rejection and not rejection
associated inflammation, driven primarily by TNFa, [L-12p70, and IL-5 (Figure

6.338).

In muscle at or prior to POD 5, logistic classification separates rejection from
not rejection associated inflammation with 60.95% accuracy but without statistical
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significance (Table 6.259). MANOVA transformation enables 63.81% accuracy still
without significance (Table 6.260), while feature selection (Table 6.261) allows
accuracy of 61.90%, also without significance.

The decision tree classifier (Figure 6.339) reaches 66.67% accuracy (Table
6.262, Figure 6.340), on feature selected data it achieves 64.76% (Table 6.263,
Figure 6.342, Figure 6.343), and on MANOVA transformed data performance is also
65.71% accuracy but all without statistical significance (Table 6.264, Figure 6.345,
Figure 6.346).

Random forest grown to 100 trees reaches 74.29% accuracy (Table 6.265,
Figure 6.341) near significance, while on MANOVA transformed data the accuracy
was 76.19% (Table 6.267, Figure 6.347), with significance. Feature-selected data
accuracy reached 78.10% (Table 6.266, Figure 6.344), with significance.

After POD 5 in muscle, the parallel plot (Figure 6.348) and MANOVA
transformation (Figure 6.349) show distinction between rejection and not rejection
associated inflammation, driven primarily by IL-TNFa, and IL-5 (Figure 6.350).

In muscle after POD 5, logistic classification separates rejection from not
rejection associated inflammation with 74.46% without statistical significance
(Table 6.271). MANOVA transformation enables 74.56% accuracy also without
significance (Table 6.272), while feature selection (Table 6.273) allows accuracy of
70.18%, without significance.

The decision tree classifier (Figure 6.351) reaches 70.18% (Table 6.274,
Figure 6.352), on feature selected data it also reaches 70.18% (Table 6.275, Figure
6.354, Figure 6.355), and on MANOVA transformed data performance is 77.19%
accuracy all with no statistical significance (Table 6.276, Figure 6.357, Figure 6.358).

Random forest grown to 100 trees reaches 79.82% accuracy (Table 6.277,
Figure 6.353), and feature-selected data accuracy reached 77.19% (Table 6.278,
Figure 6.356), both near significance. On MANOVA transformed data the accuracy
was 82.46% (Table 6.279, Figure 6.359), with significance.

Combined Tissue Model Performance

To verify the tissue-specific models are superior to combined tissue models,
data from both muscle and tissue (all time points) were merged into a single matrix
for analysis. In this framework no information about tissue, time (POD), or
pathology is available as a feature in the data; the only features were concentrations
of the fourteen cytokines quantified. Initial results for the detection of rejection in
allograft vs. isograft groups were promising (Table 4.73) but below those of the
tissue-specific models (Table 4.31, Table 4.32, Table 4.33 in skin and Table 4.35,
Table 4.36, Table 4.37 in muscle).

Classifier Accuracy p-Value
Logistic 81.07% .0775
Decision Tree 88.93% .0129
Random Forest 94.64% .0109

Table 4.73 Classifier performance for allograft vs isograft in combined tissue set
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When the rejecting samples were mixed with a more heterogenous sample
set that included various wound healing and unspecific inflammation samples,
results for the detection of rejection in the combined tissue model were less
compelling for logistic and decision tree classifiers, although random forest
continued to perform, despite the added noise (Table 4.74). The performance marks
of these models remains below those of the tissue specific models (Table 4.51, Table
4.52, and Table 4.53 in skin or Table 4.55, Table 4.56, and Table 4.57 in muscle).

Classifier Accuracy p-Value
Logistic 70.35%  .4888
Decision Tree  84.34% 1281
Random Forest 92.69% .0689

Table 4.74 Classifier performance in identifying rejection
associated inflammation in heterogeneous combined tissue set

In the most challenging task of correctly classifying samples among three
forms of inflammation (rejection, wound healing, and unspecific inflammation),
logistic and decision tree classifiers performed poorly, while the random forest
classifier continued to show decent performance (Table 4.75). Again, the tissue
specific models are superior performers (Table 4.65, Table 4.66, and Table 4.67 in
skin or Table 4.69, Table 4.70, and Table 4.71 in muscle).

Classifier Accuracy p-Value
Logistic 68.48% .3409
Decision Tree 74.73% .1685
Random Forest 88.10% .0608

Table 4.75 Classifier performance in identifying specific
inflammation type in heterogeneous combined tissue set

Solid Organ Performance

Rejecting allograft and not-rejecting native organs were compared in
heterotopic heart and lung transplantation to evaluate performance of these
methods in the solid organ context.

Baseline Heart Performance

Differences in concentration of IL-4 and IL-18 are evident from the parallel
plot of allograft versus native heart (Figure 4.54). When transformed by MANOVA
and the samples plotted on the axis defined by the first and second canonical
variable of the MANOVA transformation, the degree of separation between allograft
and native groups becomes clearer (Figure 4.55). On the MANOVA defined axes
separation of groups in heart is driven primarily by IL-5 and GM-CSF (Figure 4.56).
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The LDA classifier was able to correctly identify the rejecting heart 70% of the time
and with little evidence of bias (Table 4.76).

Allograft vs Native Heart with LDA (POD <= 3, Original Feature Space)

Accuracy Confusion Matrix

%70.00 Classified As

p-value Not Rejecting Rejecting

.0630 9 4 Not Rejecting Qé g
5 12 Rejecting = ©

Table 4.76

Enhanced Heart Performance

In heart, the accuracy reached 96.67% with significance with the random
forest classifier on the MANOVA transformed hybrid feature space (Table
4.77,Figure 4.57).

Allograft vs Native Heart with Random Forest (POD <= 3, MANOVA on hybrid
features, 50 trees)

Accuracy Confusion Matrix
%96.67 [ Classified As [ E x50 |
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Baseline Lung Performance

Differences in concentration of MCP-1, IL-6, IL-10, IL-18, GRO/KC, and IFNg
are evident from the parallel plot of allograft versus native lung (Figure 4.58). When
transformed by MANOVA and the samples plotted on the axis defined by the first
and second canonical variable of the MANOVA transformation, the degree of
separation between allograft and native groups becomes clearer (Figure 4.59). On
the MANOVA defined axes separation of groups in lung is driven primarily by IL-5,
TNFa, and GM-CSF (Figure 4.60).
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The LDA classifier was able to correctly identify the rejecting lung approximately
70% of the time and did not show signs of bias (Table 4.78).

Allograft vs Native Lung with LDA (POD <= 3, Original Feature Space)

Accuracy Confusion Matrix

%70.37 Classified As

p-value Not Rejecting Rejecting

.0082 10 4 Not Rejecting % g
4 9 Rejecting =

Table 4.78

Enhanced Lung Performance

In lung, the random forest classifier on the MANOVA transformed hybrid
feature space reached 85.19% accuracy with significance (Table 4.79,Figure 4.61).

Allograft vs Native Lung with Random Forest (POD <= 3, MANOVA on hybrid
features, 50 trees)

Accuracy Confusion Matrix

%88.89 Classified As

p-value Not Rejecting Rejecting

.0019 13 1 Not Rejecting % g
1 12 Rejecting =

Table 4.79
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Chapter 5 Discussion

Separation of Tissues

Hypothesis 2 of this thesis states that: “immune signaling patterns that drive
rejection within each tissue are distinct.” This work demonstrates that indeed the
immune signaling patterns that drive rejection within each tissue are distinct, as
measured by the 14 pro-inflammatory cytokines and chemokines described in the
methods section. This means that patterns of rejection follow different patterns of
expression that are dependent on the type of tissue within which the inflammation
is occurring.

Hypothesis 2 was originally proposed as a consequence of the observation
that different tissues are comprised of significantly different populations of cells,
and that this would logically have an effect on the composition and strength of the
local immune response.

Despite the general knowledge that different types of tissue are composed of
distinct cell populations, quantitative analysis of the differences in skin and muscle
immune signaling profiles has not been found in the literature. This tissue-specific
variation in immune signaling has likely been a confounding factor in the analysis of
immune signaling, and no doubt has contributed to the reputation of immune
signaling as notoriously difficult to model.

Hypothesis 2 was proposed to demonstrate that differences in tissue type are
an important source of variance, and that the information content of immune signals
is linked to the tissue-context. Incorporating this concept resolves a potentially large
source of variance within the data, and provides a structured approach for analyzing
the immune signaling associated with rejection and other types of inflammation in
the appropriate tissue-context.

The results of the experiments testing separation of tissues provides strong
evidence that, holding experimental and sampling conditions constant, skin and
muscle coordinate and regulate immune activity distinctly from each other, yet
maintain high intra-group consistency.

This is most intuitively obvious in the MANOVA group plots of naive (Figure
4.7), Isograft (Figure 4.10), allograft (Figure 4.13), and immunosuppressed tissue
(Figure 4.16). The same separation of skin from muscle is reliably made by logistic
regression, decision tree, and random forest classifiers as described in the results.
This separation holds when all time points are analyzed together, when only time
points at or prior to POD 5 are considered, or when only time points after POD 5 are
considered.

The naive model is the closest experimental condition to a healthy and stable
natural state currently available. Under these conditions inflammation is expected
to be minimal although some animal-to-animal variance and biopsy-induced
inflammation is unavoidable. We also see that it is more challenging to separate
skin from muscle in the naive case than in any of the other experimental conditions.
We also see that separating skin from muscle in the immunosuppressed tissue is
more challenging than in the allograft, post immune suppression rejecting, or even

101



Computational Modeling of Immune Signals Chapter 5: Discussion

[sograft tissue. Allografts and post immunosuppression rejecting tissue are most
easily distinguishable. This seems to imply that the basal state of tissue is most
similar to each other, and that as inflammation is induced the dynamics specific to
each tissue become more and more clear.

Although it may be technically possible to learn this distinction implicitly in
a machine learning model with enough data, such as in a combined tissue random
forest model, the time and financial cost involved in collecting sufficient number of
samples to learn this distinction under all possible conditions makes such an
approach unrealistic. By incorporating knowledge that context (tissue) is essential
for interpreting the meaning of immune signals, better modeling decisions are being
made, and therefore more accurate models can be built with less data.

Separation of allograft from Isograft

Hypothesis 1 of this thesis states that: “The onset of rejection can be reliably
and accurately detected in advance of the current clinical standard by measuring
proteomic immune signaling factors associated with inflammation, and using
computational models to predict whether these factors are indicative of rejection.”

The findings in this work demonstrates that indeed rejection can be reliably
detected in advance of the current clinical gold standard of histologic evaluation, by
modeling the 14 pro-inflammatory cytokines and chemokines described in the
methods section. This means that patterns of rejection follow different patterns of
expression that are dependent on the type of tissue within which the inflammation
is occurring.

Baseline performance of linear discriminant and quadratic discriminant
classifier’s in skin are approximately 80 to 81% accurate, with robust statistical
significance. This indicates that the patterns of cytokine expression in skin are
fundamentally different in [sograft and allograft skin tissue, and this difference can
be captured with reasonable performance by computationally efficient linear
algorithms such as LDA or QDA. Baseline performance in discriminating between
immunosuppressed and post immunosuppression rejecting tissue is even stronger,
at approximately 82% accuracy with LDA And approximately 86% with QDA
respectively, both with high statistical significance. Again, the implication of the
strong baseline outcomes is that the cytokine expression patterns of skin tissue
under immunosuppression are fundamentally different from those expressed by
skin tissue that has been withdrawn from immunosuppression and is now rejecting.
The consistency with which this distinction is made across a rather complex set of
features implies a high level of biological significance. In other words, not only is the
specific cytokine or immune signaling protein important, but the specific
combination of cytokines in the local cytokine milieu plays a determinative role in
the nature and progression of inflammation expressed.

These baseline results can be improved upon significantly by more
sophisticated classifiers. The logistic classifier achieves almost 84% accuracy in
skin, the decision tree achieves over 91% accuracy, and random forest achieves over
95% accuracy with very high statistical significance. The addition of feature
interaction variables improves the random forest performance to over 96%, and
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improves statistical significance, lending validity to the method by which the feature
interaction variables were selected. This also implies that there are specific cytokine
interactions that are relevant only under certain conditions, and that these
interactions can be leveraged to more effectively interpret cytokine network
meaning. The identification and elucidation of additional feature interaction
variables would most likely further improve the results presented in this work.
Based on the observations and findings in this work, it is also likely that there are
other feature interactions beyond those identified here, including amongst
cytokines that have a predominantly immunologic role and other signaling proteins
that are not commonly identified with the immune system.

The significance of the accuracy with which allograft can be separated from
[sograft is highlighted when the mode of the grade of rejection at or prior to POD 5
is considered. In this time segment both Isograft and allograft samples, in both skin
and muscle, are read at grade 0 or 1 and cannot be distinguished from one another.
It is interesting to note that such high levels of classification accuracy can be
achieved even when no information about time is provided to the algorithm.

Isolating Specific Forms of Inflammation in a Heterogeneous Set

Hypothesis 3 of this thesis states that “Cytokine patterns of inflammation
associated with rejection can be distinguished from other unspecific, wound-
induced, or immunosuppressed cytokine patterns of inflammation.” The findings
reported here confirm this hypothesis and show that specific types of inflammation
can be distinguished from one another through the analysis of cytokine expression
patterns. This is demonstrated by 2 experiments.

In the first experiment, inflammation that is associated with rejection is
separated from inflammation that is not associated with rejection in a heterogenous
sample set that includes multiple types of inflammation (such as wound healing,
endotoxic shock, contact hypersensitivity, etc.). This experimental configuration is
different from separation of allograft from Isograft, because of the additional noise
introduced by the various types of inflammation, and is therefore a more complex
task.

In the second experiment, the heterogenous sample set is grouped into 3
types of inflammation; rejection, wound healing, and unspecific inflammation. The
classification task is to identify the type of inflammation associated with each
sample. Although the focus of this thesis is on the identification of rejection-
associated inflammation, the results of this experiment imply the conversational
modeling of cytokine signals has application far beyond transplantation.

Separation of Rejection from Not Rejection Associated Inflammation

LDA and QDA classifiers only achieved 68% and 77% accuracy in skin
respectively, and with no statistical significance. In muscle LDA achieved 70% while
QDA achieved 72% accuracy. The poor performance of baseline classifiers indicates
that while the difference between Isograft and allograft samples may be clear and
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relatively linear, consideration of additional forms of inflammation introduces
nonlinear decision boundaries.

This is reinforced by contrasting the performance of the logistic classifier in
skin, which reaches only 70% accuracy and no statistical significance, with the
decision tree classifier, which reaches 87% accuracy and almost reaches statistical
significance. Random forest is the classifier most able to capture nonlinear decision
boundaries, and perhaps for this reason is also the top performer with over 93%
accuracy and statistical significance. When additional feature interaction variables
are provided to the random forest classifier, there is a slight reduction in the
misclassification of “not rejection” as “rejection” (Table 4.54).

Going One Step Further: Identification of Inflammation Type

When analyzing samples from all time points, the LDA classifier is 64%
accurate (not statistically significant) in identifying sample inflammation type in
skin, while QDA is 67% accurate (also not statistically significant) in skin. In muscle
accuracy is diminished with LDA reaching only 63% (not statistically significant),
while QDA again reaches 67% accuracy (again not statistically significant).

The logistic classifier achieves 68% accuracy in skin - not much improved
beyond that of the baseline LDA model. The decision tree improves to 77% accuracy
and almost reaches statistical significance, but the best performance is provided by
random forest, with 89% accuracy and statistical significance. When feature
interaction variables are incorporated, random forest delivers over 90% accuracy
with very high statistical significance.

In muscle the logistic classifier again reaches 68% accuracy (with no
statistical significance), while the decision tree reaches 70% accuracy (with no
statistical significance). The decision tree performs more poorly in muscle than in
skin, implying that identification of information type in muscle is a more complex
task than in skin. Random forest is able to achieve 81% accuracy, but does not quite
achieve statistical significance. When feature interaction variables are incorporated
random forest improves to over 83% accurate, and almost reaches statistical
significance.

A closer analysis of the confusion matrix of the random forests with hybrid
features reveals the largest source of error to be a bias for misclassifying unspecific
inflammation samples as wound healing. The next largest source of error is
misclassification of rejection as wound healing. Interestingly, the accuracy of the
random forest when only analyzing samples at or prior to POD 5 is approximately
74%, while analyzing only samples after POD 5 the accuracy is approximately 79%.
In both cases statistical significance is not quite achieved. However the bias in
misclassification does change between early and late time points, with rejection
almost never being misclassified as wound healing and a larger number of wound
healing samples being misclassified as unspecific inflammation at early time points.
This could indicate the classification labels that show excellent performance in skin
do not as accurately reflect the underlying inflammation patterns of muscle,
however sufficient accuracy is achieved to show that distinctive cytokine patterns
are indeed expressed under different inflammatory conditions.
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Because muscle is more extensively perfused than skin, and because the
native population of immune cells has important differences from that of the skin
(such as the absence of Langerhans cells), it is reasonable to expect that the
immune reaction in muscle is being driven by a different set of primary factors from
those driving the immune reaction in skin. The features primarily responsible for
separation of groups in MANOVA transformation of muscle are more extensive than
the features responsible for separation of groups in skin, specifically including GM-
CSF and IFNg. Both of these cytokines are highly multifunctional, and could be
indicative of additional processes regulating immune function and muscle that are
not present in skin. The intuitive interpretation of these findings is that although
muscle is less immunogenic than skin, reduced immunogenicity actually makes a
distinction between types of inflammation more complex. It may be possible that
the skin, being a natural immunologic barrier organ, has evolved more sophisticated
and effective immune responses. It may also be possible that because of the large
surface area of the skin and its exposure to the external environment that
consequently skin has evolved a more sophisticated immunologic repertoire in
order to both provide specific, effective, contained responses to antigen, as well as
provide a more challenging target for adversarial adaptation by pathogens and
parasites.

Extension to Solid Organs

The methodology that yields high-performance in the composite tissue
allograft approach also provides high-performance in the heterotopic heart and lung
transplant models. Baseline performance with LDA classifier in both heart and long
is approximately 70%, however with random forest using the extended feature set,
accuracy is able to reach 96.67% in heart, and 88.89% in lung, both with statistical
significance. This indicates that the fundamental approach described in this work of
relating patterns in the cytokine features with outcome in pathology holds true in
solid organs as well as in skin and muscle.

The specific features selected differ in heart, lung, skin, and muscle,
reinforcing the finding that each tissue type follows distinct inflammation activity,
and this is reflected in the cytokine expression patterns since they are one of the
primary communication channels of the immune system.

Interestingly, separation of allograft from native organ is more complicated
in the lung than heart, as evidence by the accuracy rate and confusion matrix. This
may have its biological roots in the fact that the long has extremely dense
populations of alveolar macrophages, and therefore has higher native levels of
immune activity than the heart, which is primarily a muscle and is not known to
have particularly high levels of basal immune activity.

Further elucidation of the specific cellular composition of a tissue, and
incorporating that information into the feature interactions and weightings of a
model, is likely to provide even further improvements in accuracy and
generalization across a wide range of contexts.
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Future Work

My hope is that the findings of this thesis will be rapidly extended into
human data, validated, and applied in the clinic to improve the lives of transplant
patients. The ability to interpret the communication stream of the immune system
at a computational level is an exciting development that should be pursued and
elucidated. Through the application of the techniques described in this thesis, and
the reconciliation of the findings described herein with the literature, it may be
possible to identify novel methods for diagnosing, treating, and ultimately curing a
variety of immune system centric illnesses.

An area requiring additional elucidation is the discovery, incorporation, and
optimization of interactions amongst the features, both at an explicit level (such as
represented in pairwise r-statistics), as well as through a latent entity (such as a
common emitter, regulator, or receiver cell). This work provides one approach that
has been shown to work empirically, but a more formal exploration of the
underlying mechanics at a biological and mathematical level would be worthwhile.

The development of a classifier able to identify rejection from cytokine
expression patterns enables the development of a new generation of noninvasive
diagnostic devices. The National Endowment for Plastic Surgery and the
Department of Plastic Surgery at Johns Hopkins Medical School have already
provided funding for the development of a noninvasive skin rejection diagnostic
based on this work. Preliminary results are very promising, and suggest that even
more advanced noninvasive detection methods are possible for solid organ
application, including a cytokine breath test capable of detecting rejection as early
and reliably as direct biopsy methods.

The application of the analytic methods and approach described in this
thesis to further elucidate the cellular infiltration and regulation dynamics in heart
and lung transplant are being pursued at the Pittsburgh NMR Center as part of its P
41 grant renewal proposal, as well as new R01 and other NIH applications. The
collaboration with the Pittsburgh NMR Center has led to the early exploration of a
novel potential combination immunosuppression therapy, as well as a method by
which the local cell population of the sample can be inferred from the cytokine
signaling activity measured. We have just scratched the surface of the potential for
this technology to enhance and extend the capabilities of bioimaging.

Ongoing work with Prof. Nyberg (Language Technologies Institute, Carnegie
Mellon University) into methods by which the results of numerical analysis in
biological experiments can be reconciled with observations reported in the
literature has also yielded exciting and novel extensions of information
representation and learning methods that may be able to more effectively answer
questions from researchers, as well as more effectively represent information
gained from biological experiments.
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Chapter 6 Summary and Conclusion

This work has demonstrated that patterns of inflammation, particularly
those associated with rejection, are specific to the type of tissue within which they
occur (their context). Frequently the immunological characteristics of tissue are
generalized in source texts and the literature, giving the impression that the
immune response is similar across a variety of tissues and pathologies. However,
the experimental data gathered here emphasizes that different tissue types behave
with distinct immune signaling characteristics that when taken into account,
improve modeling performance markedly. MANOVA analysis determined that skin
and muscle tissue followed distinct distributions (p < 0.05,Figure 4.7). Random
forest was 97.48% (p<0.05,Table 4.17) accurate in separating skin from muscle in
[sograft groups, 94.68% (p<0.05, Table 4.18) accurate in allograft, and 86.05%
accurate (p<0.05, Table 4.19) even when tissue was treated with
immunosuppression (FK-506). This may be an important factore to take into
consideration when modeling and interpreting immune signals or cell activity
patterns in future work.

Another main finding of this work is that rejection can be detected well in
advance of the current clinical gold standard of histology through the application of
statistical inference models to capture distinctive patterns in immune signaling
expression. The combinatorial complexity of these immune signaling patterns
makes them intractable to human analysis, but the patterns inherent to the data are
sufficiently distinct that classifiers such as the random forest are able to achieve
very high levels of accuracy, statistical significance, and low false-positive/false-
negative rates. This is particularly true when feature interaction variables are added
to the original set of quantified cytokine signal features. Several combinations of
classifiers and feature transformation methods are provided to show the
progressive changes in accuracy as each method is applied to the data, to help
provide additional insight into the characteristics of immune signaling and how
those characteristics relate to the pathology. The most successful method in
identifying rejection at all timepoints was the random forest classifier applied to the
data set that included feature interaction variables.

When comparing the immune signaling patterns of untreated allograft with
isografts, very high levels of classification accuracy are reached. In skin MANOVA
analysis determined that allograft and Isograft groups follow separate distributions
(p<0.05,Figure 4.26), and the random forest classifer is able to separate allograft
from Isograft 96.15% of the time (p<0.05,Table 4.34). After withdrawal of
immunosuppression random forest performs with 92.31% accuracy (p<0.05,Table
4.41). In muscle, MANOVA analysis also shows allograft and Isograft follow different
distributions (p<0.05, Figure 4.28) and random forest is 95.16% accurate (p<0.05,
Table 4.38) when separating the groups. After immunosuppression is withdrawn,
performance is 86.27% accurate (p<0.05,Table 4.44). The random forest classifier
reaches an AUROC score of .9947 in skin (Figure 4.30), and .9895 in muscle (Figure
4.32).
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Beyond separating allograft from Isograft, this work shows that immune
signaling patterns can be used to differentiate and identify different types of
inflammation, including the classification of inflammation in samples at stages that
are not currently differentiable through histologic analysis. The clinical gold
standard of histologic evaluation is currently unable to differentiate between early
signs of rejection (at approximately POD 5 in skin or muscle), and other unspecific
causes of inflammation such as infection, mechanical stress, insect bites, or other
wounding. However, the random forest classifier, particularly when provided with
feature interaction data, is able to correctly identify inflammation patterns
associated with rejection, wound healing, and unspecific inflammation. This implies
that the approach and methods described in this work have application well beyond
the field of transplant immunology. In skin, MANOVA analysis indicated that
rejection associated inflammation followed a different distribution from
inflammation not associated with rejection (p<0.05,Figure 4.37), and the random
forest classifier was 92.55% accurate (p = 0.0852,Table 4.54). It reached an AUROC
score of .9684 for rejection (Figure 4.41),.9768 for wound healing (Figure 4.49),
and .9867 for unspecific inflammation (Figure 4.50). In muscle, MANOVA analysis
indicated that rejection associated inflammation followed a different distribution
from inflammation not associated with rejection (p<0.05,Figure 4.39), and the
random forest classifier was 86.80% accurate (p = 0.0779,Table 4.58). It reached an
AUROC score of .9684 for rejection (Figure 4.43),.9354 for wound healing (Figure
4.52), and .8630 for unspecific inflammation (Figure 4.53).

These findings are also effective in identifying rejection at early time points
in the solid organ context. In the heterotopic heart and lung transplant model, the
rejecting heart allograft was able to be distinguished from the non-rejecting native
heart, and the rejecting lung allograft was distinguished from the non-rejecting
native lung with very high accuracy and statistical significance. In heart, MANOVA
analysis shows allograft and native organs follow different distributions
(p<0.05,Figure 4.55), and the random forest classifier on the extended feature space
is 96.67% accureate (p<0.05, Table 4.77). In lung, MANOVA analysis shows allograft
and native organs follow different distributions (p<0.05, Figure 4.59), and the
random forest classifier on the extended feature space is 88.89% accureate (p<0.05,
Table 4.79).

Perhaps most importantly this work has demonstrated that patterns in the
communication and coordination of the immune system, as expressed through
immune signaling proteins, can be modeled successfully as a fundamentally
computational system where the features and the determination of the roles that
they play in predicting outcome may be determined through inference, rather than
exclusively modeling based on physical interactions, spatial location, or signaling
pathways.

A generic procedure for deriving computational models that will be able to
provide separation between groups where the features are composed primarily of
immune signaling factors (such as cytokines) has also been derived by this work:

1) Measure pro-inflammatory cytokine or other biomarkers of inflammation.

2) Measure correlation coefficients for each group within the sample space (r-

value).
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3) Subtract r-values from each other to find the highest inter-group r-values (i.e.
values that are high in one group or another but not both).

4) Multiply the features identified from procedure (3) above to create new
"interaction features".

5) Add these features to the original feature space.

6) Apply MANOVA transformation to the extended (hybrid) feature data matrix.

7) Apply a classifier to the MANOVA transformed extended feature space.

This procedure represents a first generation modeling methodology
characteristic of computational immunology. Improvements to this methodology,
and the development of additional approaches, will benefit from additional future
work in exploring feature interactions as well as correlation of numeric analysis
with biological function.

Computational immunology, represented in part by the approaches and
methods described in this work, makes tractable the use of data and patterns that
may otherwise be intractably sparse, complex, or noisy, and provides a structured
approach to derive from that data potential biomarkers, novel therapies,
compounds, or conclusions of high practical value.
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Histology
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Table 6.1

Group Number POD Skin grade Muscle grade

o

Isograft 4 0 0
Isograft 6 0 0 0
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Isograft 8 0 0 0
Isograft 10 0 0 0
Isograft 16 0 0 0
Isograft 18 0 0 0
Isograft 1 3 1 0
Isograft 2 3 0 1
Isograft 4 3 0 0
Isograft 7 3 0 0
Isograft 10 3 1 1
Isograft 3 5 0 1
Isograft 5 5 0 0
Isograft 6 5 miss. 0
Isograft 8 5 0 0
Isograft 9 5 0 0
Isograft 1 7 2 1
Isograft 2 7 0 0
Isograft 4 7 0 0
Isograft 7 7 0 0
Isograft 10 7 0 0
Isograft 3 9 0 0
Isograft 5 9 0 0
Isograft 6 9 1 0
Isograft 8 9 0 0
Isograft 9 9 0 1
Isograft 1 11 2 1
Isograft 2 11 0 0
Isograft 3 11 0 1
Isograft 4 11 0 0
Isograft 5 11 miss. 0
Isograft 10 11 0 0
Isograft 6 20 0 0
Isograft 7 20 0 1
Isograft 8 20 0 1
Isograft 9 20 0 0
Isograft 13 20 0 0
Isograft 14 20 0 0
Isograft 17 20 0 0
Isograft 20 20 0 0
Isograft 11 23 0 0
Isograft 12 23 0 0
Isograft 15 23 0 1
Isograft 16 23 0 1
Isograft 18 23 0 0
Isograft 13 25 0 0
Isograft 14 25 0 miss.
Isograft 17 25 0 1
Isograft 19 25 0 1
Isograft 20 25 0 1
Isograft 11 27 0 2
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Isograft 15 27 0 2
Isograft 16 27 0 2
Isograft 18 27 0 0
Isograft 13 29 0 0
Isograft 14 29 0 2
Isograft 17 29 0 2
Isograft 20 29 0 1
Isograft 11 31 0 1
Isograft 12 31 0 1
Isograft 15 31 0 3
Isograft 20 31 0 3
Isograft 13 34 0 1
Isograft 14 34 0 3
Isograft 15 34 0 2
Table 6.2

Group Number POD Skin grade Muscle grade
FK-Treated 1 0 0 0
FK-Treated 4 0 0 0
FK-Treated 5 0 0 0
FK-Treated 7 0 0 0
FK-Treated 13 0 0 0
FK-Treated 19 0 0 0
FK-Treated 11 3 0 0
FK-Treated 12 3 0 0
FK-Treated 15 3 0 0
FK-Treated 16 3 0 0
FK-Treated 17 3 0 0
FK-Treated 13 5 0 0
FK-Treated 14 5 0 0
FK-Treated 18 5 0 0
FK-Treated 19 5 1 0
FK-Treated 20 5 1 0
FK-Treated 11 7 0 0
FK-Treated 12 7 0 0
FK-Treated 15 7 0 0
FK-Treated 16 7 0 0
FK-Treated 17 7 1 0
FK-Treated 13 9 1 0
FK-Treated 14 9 2 0
FK-Treated 18 9 0 1
FK-Treated 19 9 0 0
FK-Treated 20 9 1 0
FK-Treated 11 11 0 0
FK-Treated 12 11 3 0
FK-Treated 13 11 1 1
FK-Treated 14 11 1 0
FK-Treated 15 11 1 1
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FK-Treated 16 11 miss. 0
FK-Treated 17 11 0 0
FK-Treated 18 11 0 0
FK-Treated 19 11 1 0
FK-Treated 20 11 0 0
FK-Treated 3 20 0 0
FK-Treated 7 20 0 0
FK-Treated 8 20 0 0
FK-Treated 10 20 3 1
Table 6.3

Group Number POD Skin grade Muscle grade
FK-Withdrawn 1 23 2 0
FK-Withdrawn 2 23 1 0
FK-Withdrawn 5 23 0 0
FK-Withdrawn 6 23 0 0
FK-Withdrawn 3 25 2 2
FK-Withdrawn 4 25 1 0
FK-Withdrawn 7 25 0 1
FK-Withdrawn 8 25 0 1
FK-Withdrawn 10 25 3 3
FK-Withdrawn 1 27 3 3
FK-Withdrawn 2 27 2 3
FK-Withdrawn 5 27 2 3
FK-Withdrawn 6 27 0 1
FK-Withdrawn 9 27 0 0
FK-Withdrawn 3 29 2 2
FK-Withdrawn 4 29 2 2
FK-Withdrawn 7 29 2 2
FK-Withdrawn 8 29 2 2
FK-Withdrawn 10 29 3 3
FK-Withdrawn 1 31 3 3
FK-Withdrawn 2 31 3 2
FK-Withdrawn 4 31 3 2
FK-Withdrawn 5 31 3 3
FK-Withdrawn 6 31 1 2
FK-Withdrawn 9 31 2 2
FK-Withdrawn 2 34 3 3
FK-Withdrawn 5 34 3 3
FK-Withdrawn 6 34 3 2
FK-Withdrawn 7 34 3 3
FK-Withdrawn 9 34 3 3

Table 6.4
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Hypothesis 1 Skin
Allograft vs Isograft

All Time Points

CTA Allograft vs Isograft in Skin Linear Discriminant (all time points, feature

selected)

Accuracy Confusion Matrix

69.87% Classified As

p-value Allograft Isograft “

3264 56 21 Allograft S g
9 70 Isograft =~ 0

Table 6.5

CTA Allograft vs Isograft in SKkin Linear Discriminant (all time points, MANOVA

transformed)

Accuracy Confusion Matrix

80.12% Classified As

p-value Allograft Isograft

0535 61 16 Allograft 28
10 69 Isograft =~ O

Table 6.6

CTA Allograft vs Isograft in Skin Quadratic Discriminant (all time points,

feature selected)

Accuracy Confusion Matrix

71.15% Classified As

p-value Allograft Isograft “

2602 40 37 Allograft S g
8 71 Isograft =~ 0

Table 6.7

CTA Allograft vs Isograft in Skin Quadratic Discriminant (all time points,

MANOVA transformed)

Accuracy Confusion Matrix

84.41% Classified As

p-value Allograft Isograft

0387 56 21 Allograft 38
8 71 Isograft =0

Table 6.8
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CTA Allograft vs Isograft in Skin Logistic Classifier (all time points, feature

selected)

Accuracy Confusion Matrix

80.77% Classified As

p-value Allograft Isograft “

0350 56 21 Allograft S g
9 70 Isograft =0

Table 6.9

CTA Allograft vs Isograft in Skin Logistic Classifier (all time points, MANOVA

transformed)

Accuracy Confusion Matrix

83.33% Classified As

p-value Allograft Isograft "

0091 61 16 Allograft S g
10 69 Isograft =0

Table 6.10

CTA Allograft vs Isograft in Skin Logistic Classifier (all time points, hybrid

features)

Accuracy Confusion Matrix

82.69% Classified As

p-value Allograft Isograft “

0123 60 17 Allograft S g
10 69 Isograft =0

Table 6.11

CTA Allograft vs Isograft in Skin Decision Tree (all time points, pruned tree,
feature selected)

Accuracy Confusion Matrix

91.67% Classified As

p-value Allograft Isograft “

0011 73 4 Allograft S g
8 71 Isograft =0

Table 6.12

CTA Allograft vs Isograft in Skin Decision Tree (all time points, MANOVA

transformed, pruned tree)

Accuracy
91.67%
p-value
.0011

Confusion Matrix

Classified As
Allograft Isograft
70 7 Allograft

True

Class
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74

| Isograft

Table 6.13

CTA Allograft vs Isograft in Skin Decision Tree (all time points, hybrid
features, pruned tree)

Accuracy Confusion Matrix

89.10% Classified As

p-value Allograft Isograft

0123 71 6 Allograft 28
17 62 Isograft =~ O

Table 6.14

CTA Allograft vs Isograft in Skin Random Forest (all time points, 50 trees,
feature selected)

Accuracy Confusion Matrix

95.55% Classified As

p-value Allograft Isograft “

0002 72 5 Allograft S g
5 74 Isograft =~ 0

Table 6.15

CTA Allograft vs Isograft in Skin Random Forest (all time points, MANOVA

transformed, 50 trees)

Accuracy Confusion Matrix

92.31% Classified As

p-value Allograft Isograft “

0003 69 8 Allograft S g
4 75 Isograft =0

Table 6.16
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CTA Allograft vs Isograft in Skin Linear Discriminant (POD <= 5)

Accuracy Confusion Matrix

76.92% Classified As

p-value Allograft Isograft "

0596 38 16 Allograft S g
5 32 Isograft =0

Table 6.17

CTA Allograft vs Isograft in SKkin Linear Discriminant (POD <=5, feature

selected)

Accuracy Confusion Matrix

61.54% Classified As

p-value Allograft Isograft “

A702 25 29 Allograft S g
6 31 Isograft =~ O

Table 6.18

CTA Allograft vs Isograft in SKkin Linear Discriminant (POD <=5, MANOVA

transformed)

Accuracy Confusion Matrix

69.23% Classified As

p-value Allograft Isograft

1032 35 19 Allograft 28
9 28 Isograft =0

Table 6.19

CTA Allograft vs Isograft in Skin Quadratic Discriminant (POD <=5, feature

selected)

Accuracy Confusion Matrix

60.44% Classified As

p-value Allograft Isograft “

4467 26 28 Allograft S g
8 29 Isograft =~ 0

Table 6.20

CTA Allograft vs Isograft in Skin Logistic Classifier (POD <= 5)

Accuracy Confusion Matrix

83.52% Classified As

p-value Allograft Isograft

0509 45 9 Allograft 28
6 31 Isograft =0

Table 6.21
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CTA Allograft vs Isograft in Skin Logistic Classifier (POD <= 5, feature selected)

Accuracy Confusion Matrix

76.92% Classified As

p-value Allograft Isograft “

0596 38 16 Allograft S g
5 32 Isograft =0

Table 6.22

CTA Allograft vs Isograft in Skin Logistic Classifier (POD <= 5, MANOVA

transformed)

Accuracy Confusion Matrix

83.52% Classified As

p-value Allograft Isograft "

0626 46 8 Allograft S g
7 30 Isograft =0

Table 6.23

CTA Allograft vs Isograft in Skin Decision Tree (POD <= 5, pruned tree)

Accuracy Confusion Matrix

82.42% Classified As

p-value Allograft Isograft “

6308 52 2 Allograft S g
29 8 Isograft =0

Table 6.24

CTA Allograft vs Isograft in Skin Decision Tree (POD <= 5, pruned tree, feature

selected)

Accuracy Confusion Matrix

81.32% Classified As

p-value Allograft Isograft “

4089 53 1 Allograft S g
22 15 Isograft =0

Table 6.25

CTA Allograft vs Isograft in Skin Decision Tree (POD <= 5, pruned tree,

MANOVA transformed)

Accuracy Confusion Matrix

84.62% Classified As

p-value Allograft Isograft “

.0378 45 9 Allograft % g
4 33 Isograft =~ 0
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CTA Allograft vs Isograft in Skin Random Forest (POD <=5, 50 trees)

Accuracy Confusion Matrix

93.41% Classified As

p-value Allograft Isograft

0370 51 3 Allograft 28
2 35 Isograft =0

Table 6.27

CTA Allograft vs Isograft in Skin Random Forest (POD <=5, 50 trees, feature

selected)

Accuracy Confusion Matrix

91.21% Classified As

p-value Allograft Isograft “

0507 51 3 Allograft S g
4 33 Isograft =~ 0

Table 6.28

CTA Allograft vs Isograft in Skin Random Forest (POD <=5, 50 trees, MANOVA

transformed)

Accuracy Confusion Matrix

93.41% Classified As

p-value Allograft Isograft "

0384 49 5 Allograft S g
3 34 Isograft =0

Table 6.29

130




Computational Modeling of Immune Signals

POD >5
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CTA Allograft vs Isograft in Skin Linear Discriminant (POD > 5)

Accuracy Confusion Matrix

93.85% Classified As

p-value Allograft Isograft "

1140 20 3 Allograft % S
1 41 Isograft =0

Table 6.30

CTA Allograft vs Isograft in SKkin Linear Discriminant (POD > 5, feature

selected)

Accuracy Confusion Matrix

84.62% Classified As

p-value Allograft Isograft “

2801 13 10 Allograft S g
0 42 Isograft =0

Table 6.31

CTA Allograft vs Isograft in SKkin Linear Discriminant (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

90.77% Classified As

p-value Allograft Isograft

1512 18 5 Allograft 28
1 41 Isograft =0

Table 6.32

CTA Allograft vs Isograft in Skin Quadratic Discriminant (POD > 5, feature

selected)

Accuracy Confusion Matrix

95.38% Classified As

p-value Allograft Isograft “

0684 23 0 Allograft S g
3 39 Isograft =0

Table 6.33

CTA Allograft vs Isograft in Skin Logistic Classifier (POD > 5)

Accuracy Confusion Matrix

92.31% Classified As

p-value Allograft Isograft “

0927 21 2 Allograft S g
3 39 Isograft =0

Table 6.34
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CTA Allograft vs Isograft in Skin Logistic Classifier (POD > 5, feature selected)

Accuracy Confusion Matrix

93.85% Classified As

p-value Allograft Isograft “

1347 19 4 Allograft S g
0 42 Isograft =0

Table 6.35

CTA Allograft vs Isograft in Skin Logistic Classifier (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

90.77% Classified As

p-value Allograft Isograft "

1286 19 4 Allograft S g
2 40 Isograft =0

Table 6.36

CTA Allograft vs Isograft in Skin Decision Tree (POD > 5, pruned tree)

Accuracy Confusion Matrix

96.92% Classified As

p-value Allograft Isograft “

.0705 23 0 Allograft % S
2 40 Isograft =0

Table 6.37

CTA Allograft vs Isograft in Skin Decision Tree (POD > 5, pruned tree, feature

selected)

Accuracy Confusion Matrix

100% Classified As

p-value Allograft Isograft “

.0759 23 0 Allograft % S
0 42 Isograft =0

Table 6.38

CTA Allograft vs Isograft in Skin Decision Tree (POD > 5, pruned tree, MANOVA

transformed)

Accuracy Confusion Matrix

96.92% Classified As

p-value Allograft Isograft

0820 22 1 Allograft 28
2 40 Isograft =0

Table 6.39
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CTA Allograft vs Isograft in Skin Random Forest (POD > 5, 50 trees)

Accuracy Confusion Matrix

96.92% Classified As

p-value Allograft Isograft "

.0705 23 0 Allograft % S
2 40 Isograft =~ 0

Table 6.40

CTA Allograft vs Isograft in Skin Random Forest (POD > 5, 50 trees, feature

selected)

Accuracy Confusion Matrix

100% Classified As

p-value Allograft Isograft “

.0730 23 0 Allograft % S
1 41 Isograft =~ 0

Table 6.41

CTA Allograft vs Isograft in Skin Random Forest (POD > 5, 50 trees, MANOVA

transformed)

Accuracy Confusion Matrix

96.92% Classified As

p-value Allograft Isograft “

0849 22 1 Allograft S g
1 41 Isograft =~ 0

Table 6.42
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CTA Rejecting vs Suppressed in Skin Linear Discriminant (FK Groups, feature

selected)

Accuracy Confusion Matrix

75.00% Classified As

p-value Rejecting Suppressed “

2366 14 12 Rejecting S g
1 25 Suppressed | & ©

Table 6.43

CTA Rejecting vs Suppressed in Skin Linear Discriminant (FK Groups,
MANOVA transformed)

Accuracy Confusion Matrix
82.69% Classified As o
p-value — &
0017 Re];cltlng Supp;essed R S
ejecting %
4 22 Suppressed | &
Table 6.44

CTA Rejecting vs Suppressed in Skin Quadratic Discriminant (FK Groups,

feature selected)

Accuracy Confusion Matrix
78.85% Classified As %
p-value Rejecting Suppressed =
.0938 P ©
17 9 Rejecting ]
2 24 Suppressed =
Table 6.45

CTA Rejecting vs Suppressed in Skin Quadratic Discriminant (FK Groups,
MANOVA transformed)

Accuracy Confusion Matrix
84.62% Classified As
p-value Rejecting Suppressed
0061 23 3 Rejecting S 3
~ =
5 21 Suppressed | & ©
Table 6.46

CTA Rejecting vs Suppressed in Skin Logistic Classifier (FK Groups, feature

selected)

Accuracy Confusion Matrix

88.46% | Classified As | B30
p-value
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.0194 Rejecting Suppressed
5 21 Rejecting
25 1 Suppressed
Table 6.47

CTA Rejecting vs Suppressed in Skin Logistic Classifier (FK Groups, MANOVA

transformed)

Accuracy Confusion Matrix

80.77% Classified As

p-value Rejecting Suppressed "

<.0001 5 21 Rejecting S g
21 5 Suppressed | & ©

Table 6.48

CTA Rejecting vs Suppressed in Skin Decision Tree (FK Groups, pruned tree,
feature selected)

Accuracy Confusion Matrix

84.62% Classified As

p-value Rejecting Suppressed "

0194 25 1 Rejecting S g
5 21 Suppressed | & ©

Table 6.49

CTA Rejecting vs Suppressed in Skin Decision Tree (FK Groups, pruned tree,
MANOVA transformed)

Accuracy Confusion Matrix

94.23% Classified As

p-value Rejecting Suppressed "

<.0001 23 3 Rejecting S g
3 23 Suppressed | & ©

Table 6.50

CTA Rejecting vs Suppressed in Skin Random Forest (FK Groups, 50 trees,

feature selected)

Accuracy Confusion Matrix

84.62% Classified As

p-value Rejecting Suppressed “

0019 25 1 Rejecting S g
5 21 Suppressed | & ©

Table 6.51

CTA Rejecting vs Suppressed in Skin Random Forest (FK Groups, 50 trees,
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MANOVA transformed)

Accuracy Confusion Matrix

90.38% Classified As

p-value Rejecting Suppressed "

0101 25 1 Rejecting Qé g
4 22 Suppressed | & ©

Table 6.52
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Hypothesis 1 Muscle
Allograft vs Isograft

All Time Points

CTA Allograft vs Isograft in Muscle Linear Discriminant (all time points,
feature selected)

Accuracy Confusion Matrix

73.39% Classified As

p-value Allograft Isograft “

3206 26 27 Allograft S g
6 65 Isograft =0

Table 6.53

CTA Allograft vs Isograft in Muscle Linear Discriminant (all time points,

MANOVA transformed)

Accuracy Confusion Matrix

73.39% Classified As

p-value Allograft Isograft

2979 27 26 Allograft 38
7 64 Isograft =~ O

Table 6.54

Allograft vs Isograft in Muscle Quadratic Discriminant (all time points, feature

selected)

Accuracy Confusion Matrix

70.97% Classified As

p-value Allograft Isograft “

3496 25 28 Allograft S g
8 63 Isograft =0

Table 6.55

CTA Allograft vs Isograft in Muscle Quadratic Discriminant (all time points,

MANOVA transformed)

Accuracy Confusion Matrix

80.65% Classified As

p-value Allograft Isograft

1616 34 19 Allograft 38
5 66 Isograft =0

Table 6.56
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CTA Allograft vs Isograft in Muscle Logistic Classifier (all time points, feature

selected)

Accuracy Confusion Matrix

75.81% Classified As

p-value Allograft Isograft “

1861 32 21 Allograft S g
9 62 Isograft =0

Table 6.57

CTA Allograft vs Isograft in Muscle Logistic Classifier (all time points, MANOVA

transformed)

Accuracy Confusion Matrix

78.23% Classified As

p-value Allograft Isograft "

1526 34 19 Allograft S g
8 63 Isograft =0

Table 6.58

CTA Allograft vs Isograft in Muscle Logistic Classifier (all time points, hybrid

features)

Accuracy Confusion Matrix

78.23% Classified As

p-value Allograft Isograft “

1727 33 20 Allograft S g
7 64 Isograft =~ O

Table 6.59

CTA Allograft vs Isograft in Muscle Decision Tree (all time points, pruned tree,
feature selected)

Accuracy Confusion Matrix

80.65% Classified As

p-value Allograft Isograft “

0385 42 11 Allograft S g
15 56 Isograft =0

Table 6.60

CTA Allograft vs Isograft in Muscle Decision Tree (all time points, MANOVA

transformed, pruned tree)

Accuracy
82.26%
p-value
1672

Confusion Matrix

Classified As
Allograft Isograft
33 20 Allograft

True

Class
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62

| Isograft

Table 6.61

CTA Allograft vs Isograft in Muscle Decision Tree (all time points, hybrid

features, pruned tree)

Accuracy Confusion Matrix

84.68% Classified As

p-value Allograft Isograft "

1284 36 17 Allograft S g
6 65 Isograft =0

Table 6.62

CTA Allograft vs Isograft in Muscle Random Forest (all time points, 50 trees,
feature selected)

Accuracy Confusion Matrix

91.94% Classified As

p-value Allograft Isograft “

0309 47 6 Allograft S g
6 65 Isograft =0

Table 6.63

CTA Allograft vs Isograft in Muscle Random Forest (all time points, MANOVA

transformed, 50 trees)

Accuracy Confusion Matrix

87.10% Classified As

p-value Allograft Isograft “

0394 44 9 Allograft S g
9 62 Isograft =~ O

Table 6.64
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CTA Allograft vs Isograft in Muscle Linear Discriminant (POD <= 5)

Accuracy Confusion Matrix

81.57% Classified As

p-value Allograft Isograft "

0299 28 10 Allograft S g
4 34 Isograft =0

Table 6.65

CTA Allograft vs Isograft in Muscle Linear Discriminant (POD <=5, feature

selected)

Accuracy Confusion Matrix

68.42% Classified As

p-value Allograft Isograft

3861 17 21 Allograft 28
3 35 Isograft =0

Table 6.66

CTA Allograft vs Isograft in Muscle Linear Discriminant (POD <=5, MANOVA

transformed)

Accuracy Confusion Matrix

82.89% Classified As

p-value Allograft Isograft “

0194 29 9 Allograft S g
4 34 Isograft =0

Table 6.67

CTA Allograft vs Isograft in Muscle Quadratic Discriminant (POD <= 5, feature

selected)

Accuracy Confusion Matrix

71.05% Classified As

p-value Allograft Isograft “

2000 21 17 Allograft S g
5 33 Isograft =~ O

Table 6.68

CTA Allograft vs Isograft in Muscle Logistic Classifier (POD <= 5)

Accuracy Confusion Matrix

77.63% Classified As

p-value Allograft Isograft

0101 28 10 Allograft 28
7 31 Isograft =~ O
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CTA Allograft vs Isograft in Muscle Logistic Classifier (POD <=5, feature

selected)

Accuracy Confusion Matrix

60.53% Classified As

p-value Allograft Isograft “

4453 17 21 Allograft S g
9 29 Isograft =0

Table 6.70

CTA Allograft vs Isograft in Muscle Logistic Classifier (POD <=5, MANOVA

transformed)

Accuracy Confusion Matrix

81.58% Classified As

p-value Allograft Isograft "

0035 30 8 Allograft S g
6 32 Isograft =~ O

Table 6.71

CTA Allograft vs Isograft in Muscle Decision Tree (POD <= 5, pruned tree)

Accuracy Confusion Matrix

85.53% Classified As

p-value Allograft Isograft "

0007 33 5 Allograft S g
6 32 Isograft =0

Table 6.72

CTA Allograft vs Isograft in Muscle Decision Tree (POD <=5, pruned tree,
feature selected)

Accuracy Confusion Matrix

77.63% Classified As 9

p-value Allograft Isograft S

.0007 33 5 Allograft 2
6 32 [sograft =

Table 6.73

CTA Allograft vs Isograft in Muscle Decision Tree (POD <=5, pruned tree,

MANOVA transformed)

Accuracy Confusion Matrix

82.90% Classified As “
p-value Allograft Isograft S g
0017 27 11 Allograft =~ 0
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| 10

28

| Isograft

Table 6.74

CTA Allograft vs Isograft in Muscle Random Forest (POD <=5, 50 trees)

Accuracy Confusion Matrix

98.68% Classified As v

p-value Allograft [sograft S

<.0001 36 2 Allograft S
2 36 Isograft =~

Table 6.75

CTA Allograft vs Isograft in Muscle Random Forest (POD <=5, 50 trees, feature

selected)

Accuracy Confusion Matrix

94.74% Classified As

p-value Allograft [sograft

0012 34 4 Allograft 38
2 36 Isograft =G

Table 6.76

CTA Allograft vs Isograft in Muscle Random Forest (POD <=5, 50 trees,

MANOVA transformed)

Accuracy Confusion Matrix

84.21% Classified As

p-value Allograft Isograft

0025 34 4 Allograft S 2

~ =

6 32 [sograft =

Table 6.77

142




Computational Modeling of Immune Signals

POD >5

Appendix A: Data Tables

CTA Allograft vs Isograft in Muscle Linear Discriminant (POD > 5)

Accuracy Confusion Matrix

87.50% Classified As

p-value Allograft Isograft "

2152 11 4 Allograft S g
2 31 Isograft =0

Table 6.78

CTA Allograft vs Isograft in Muscle Linear Discriminant (POD > 5, feature

selected)

Accuracy Confusion Matrix

87.50% Classified As

p-value Allograft Isograft “

2487 10 5 Allograft % S
1 32 Isograft =~ O

Table 6.79

CTA Allograft vs Isograft in Muscle Linear Discriminant (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

89.53% Classified As

p-value Allograft Isograft

2151 11 4 Allograft 28
1 32 Isograft =0

Table 6.80

CTA Allograft vs Isograft in Muscle Quadratic Discriminant (POD > 5, feature

selected)

Accuracy Confusion Matrix

91.67% Classified As “

p-value Allograft [sograft é

1109 15 0 Allograft )
4 29 Isograft =

Table 6.81

CTA Allograft vs Isograft in Muscle Logistic Classifier (POD > 5)

Accuracy Confusion Matrix

91.67% Classified As

p-value Allograft [sograft é

1313 14 1 Allograft §
3 30 Isograft =

Table 6.82
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CTA Allograft vs Isograft in Muscle Logistic Classifier (POD > 5, feature

selected)

Accuracy Confusion Matrix

97.92% Classified As

p-value Allograft Isograft “

1368 14 1 Allograft S g
0 33 Isograft =0

Table 6.83

CTA Allograft vs Isograft in Muscle Logistic Classifier (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

95.83% Classified As

p-value Allograft Isograft “

1344 14 1 Allograft S g
1 32 Isograft =~ O

Table 6.84

CTA Allograft vs Isograft in Muscle Decision Tree (POD > 5, pruned tree)

Accuracy Confusion Matrix

95.83% Classified As

p-value Allograft Isograft

2155 11 4 Allograft 28
0 33 Isograft =~ O

Table 6.85

CTA Allograft vs Isograft in Muscle Decision Tree (POD > 5, pruned tree,

feature selected)

Accuracy Confusion Matrix

93.75% Classified As

p-value Allograft Isograft “

2155 11 4 Allograft S g
0 33 Isograft =0

Table 6.86

CTA Allograft vs Isograft in Muscle Decision Tree (POD > 5, pruned tree,

MANOVA transformed)

CV Accuracy Confusion Matrix

93.75% Classified As

p-value Allograft Isograft “

2155 11 4 Allograft % g
0 33 Isograft =~ O

Table 6.87
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CTA Allograft vs Isograft in Muscle Random Forest (POD > 5, 50 trees)

Accuracy Confusion Matrix

97.92% Classified As

p-value Allograft [sograft §

1368 14 1 Allograft E
0 33 [sograft E

Table 6.88

CTA Allograft vs Isograft in Muscle Random Forest (POD > 5, 50 trees, feature

selected)

Accuracy Confusion Matrix

95.83% Classified As

p-value Allograft Isograft

1368 14 1 Allograft 28
0 33 Isograft =~ O

Table 6.89

CTA Allograft vs Isograft in Muscle Random Forest (POD > 5, 50 trees,
MANOVA transformed)

Accuracy Confusion Matrix

93.75% Classified As

p-value Allograft Isograft “

1580 13 2 Allograft S g
1 32 Isograft =0

Table 6.90
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CTA Rejecting vs Suppressed in Muscle Linear Discriminant (FK Groups,

feature selected)

Accuracy Confusion Matrix

72.55% Classified As

p-value Rejecting Suppressed “

1629 15 11 Rejecting S g
3 22 Suppressed | & ©

Table 6.91

CTA Rejecting vs Suppressed in Muscle Linear Discriminant (FK Groups,
MANOVA transformed)

Accuracy Confusion Matrix

82.35% Classified As

p-value Rejecting Suppressed "

0046 22 4 Rejecting S g
5 20 Suppressed | & ©

Table 6.92

CTA Rejecting vs Suppressed in Muscle Quadratic Discriminant (FK Groups,

feature selected)

Accuracy Confusion Matrix

62.75% Classified As

p-value Rejecting Suppressed “

6134 24 2 Rejecting S g
17 8 Suppressed | & ©

Table 6.93

CTA Rejecting vs Suppressed in Muscle Quadratic Discriminant (FK Groups,

MANOVA transformed)

Accuracy Confusion Matrix

84.31% Classified As

p-value Rejecting Suppressed “

.0008 22 4 Rejecting S g
4 21 Suppressed | & ©

Table 6.94

CTA Rejecting vs Suppressed in Muscle Logistic Classifier (FK Groups, feature

selected)

Accuracy Confusion Matrix

70.59% Classified As

p-value Rejecting Suppressed “

0817 10 16 Rejecting S g
20 5 Suppressed | & ©

Table 6.95
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CTA Rejecting vs Suppressed in Muscle Logistic Classifier (FK Groups,
MANOVA transformed)

Accuracy Confusion Matrix

74.51% Classified As

p-value Rejecting Suppressed “

0201 8 18 Rejecting S g
20 5 Suppressed | & ©

Table 6.96

CTA Rejecting vs Suppressed in Muscle Decision Tree (FK Groups, pruned tree,

feature selected)

Accuracy Confusion Matrix

74.51% Classified As

p-value Rejecting Suppressed “

0282 17 9 Rejecting S g
6 19 Suppressed | & ©

Table 6.97

CTA Rejecting vs Suppressed in Muscle Decision Tree (FK Groups, pruned tree,

MANOVA transformed)

Accuracy Confusion Matrix

94.12% Classified As

p-value Rejecting Suppressed "

4319 12 14 Rejecting S g
7 18 Suppressed | & ©

Table 6.98

CTA Rejecting vs Suppressed in Muscle Random Forest (FK Groups, 50 trees,

feature selected)

Accuracy Confusion Matrix

72.55% Classified As

p-value Rejecting Suppressed “

0019 19 7 Rejecting S g
7 18 Suppressed | & ©

Table 6.99

CTA Rejecting vs Suppressed in Muscle Random Forest (FK Groups, 50 trees,

MANOVA transformed)

Accuracy Confusion Matrix

88.24% Classified As

p-value Rejecting Suppressed “

0036 23 3 Rejecting % g
4 21 Suppressed | & ©

Table 6.100
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Hypothesis 2 Allograft

All Time Points

CTA Allograft Skin vs Muscle Logistic Classifier (all time points)

Accuracy Confusion Matrix

86.17% Classified As

p-value Muscle Skin “

0254 35 6 Muscle % E
7 46 Skin =0

Table 6.101

CTA Allograft Skin vs Muscle Decision Tree (all time points, pruned tree)

Accuracy Confusion Matrix

95.74% Classified As

p-value Muscle Skin “

0260 38 3 Muscle % g
1 52 Skin =0

Table 6.102

POD <=5

CTA Allograft Skin vs Muscle Linear Discriminant (POD <= 5)

Accuracy Confusion Matrix

70.00% Classified As

p-value Muscle Skin “

1429 22 4 Muscle % g
14 20 Skin =0

Table 6.103

CTA Allograft Skin vs Muscle Logistic Classifier (POD <= 5)

Accuracy Confusion Matrix

78.33% Classified As

p-value Muscle Skin “

.0406 20 6 Muscle % g
7 27 Skin =0

Table 6.104

CTA Allograft Skin vs Muscle Decision Tree (POD <= 5 pruned tree)

Accuracy Confusion Matrix

98.33% Classified As

p-value Muscle Skin “

0316 24 2 Muscle % g
0 34 Skin =0

Table 6.105

148




Computational Modeling of Immune Signals Appendix A: Data Tables

CTA Allograft Skin vs Muscle Random Forest (POD <=5, 50 trees)

Accuracy Confusion Matrix

96.67% Classified As

p-value Muscle Skin “

0235 25 1 Muscle % E
0 34 Skin =0

Table 6.106
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CTA Allograft Skin vs Muscle Linear Discriminant (POD > 5)

Accuracy Confusion Matrix

85.29% Classified As

p-value Muscle Skin “

0169 14 1 Muscle % g
4 15 Skin =<

Table 6.107

CTA Allograft Skin vs Muscle Logistic Classifier (POD > 5)

Accuracy Confusion Matrix

76.47% Classified As

p-value Muscle Skin

0630 10 5 Muscle % g
6 13 Skin =~ O

Table 6.108

CTA Allograft Skin vs Muscle Decision Tree (POD > 5 pruned tree)

Accuracy Confusion Matrix

91.18% Classified As

p-value Muscle Skin

0316 13 2 Muscle % g
1 18 Skin =<

Table 6.109

CTA Allograft Skin vs Muscle Random Forest (POD > 5, 50 trees)

Accuracy Confusion Matrix

91.18% Classified As

p-value Muscle Skin

0417 13 2 Muscle % g
0 19 Skin = O

Table 6.110
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Hypothesis 2 Isograft

All Time Points

CTA Isograft Skin vs Muscle Logistic Classifier (all time points)

Accuracy Confusion Matrix

94.12% Classified As

p-value Muscle Skin

.0015 54 3 Muscle % g
4 58 Skin =<

Table 6.111

CTA Isograft Skin vs Muscle Decision Tree (all time points, pruned tree)

Accuracy Confusion Matrix

96.64% Classified As

p-value Muscle Skin

0014 55 2 Muscle % g
3 59 Skin =~ O

Table 6.112

POD <=5

CTA Isograft Skin vs Muscle Linear Discriminant (POD <= 5)

Accuracy Confusion Matrix

93.75% Classified As

p-value Muscle Skin “

0101 24 0 Muscle % g
3 21 Skin = O

Table 6.113

CTA Isograft Skin vs Muscle Logistic Classifier (POD <= 5)

Accuracy Confusion Matrix

77.08% Classified As

p-value Muscle Skin “

0194 18 6 Muscle % E
8 16 Skin =~ O

Table 6.114

CTA Isograft Skin vs Muscle Decision Tree (POD <= 5 pruned tree)

Accuracy Confusion Matrix

97.92% Classified As

p-value Muscle Skin

.0009 24 0 Muscle % g
1 23 Skin =<
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Table 6.115

CTA Isograft Skin vs Muscle Random Forest (POD <=5, 50 trees)

Accuracy Confusion Matrix

98.50% Classified As

p-value Muscle Skin

0041 24 0 Muscle % g
2 22 Skin = O

Table 6.116
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CTA Isograft Skin vs Muscle Linear Discriminant (POD > 5)

Accuracy Confusion Matrix

87.32% Classified As

p-value Muscle Skin “

0329 33 0 Muscle % E
9 29 Skin = O

Table 6.117

CTA Isograft Skin vs Muscle Logistic Classifier (POD > 5)

Accuracy Confusion Matrix

88.73% Classified As

p-value Muscle Skin “

.0043 30 3 Muscle % E
5 33 Skin =0

Table 6.118

CTA Isograft Skin vs Muscle Decision Tree (POD > 5 pruned tree)

Accuracy Confusion Matrix

97.18% Classified As

p-value Muscle Skin

.0055 32 1 Muscle % g
1 37 Skin = O

Table 6.119

CTA Isograft Skin vs Muscle Random Forest (POD > 5, 50 trees)

Accuracy Confusion Matrix

98.59% Classified As

p-value Muscle Skin “

.0049 33 0 Muscle % E
0 38 Skin =0

Table 6.120
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Hypothesis 2 FK-Treated

CTA FK-Treated Allograft Skin vs Muscle Logistic Classifier (all time points
under treatment)

Accuracy Confusion Matrix

74.42% Classified As

p-value Muscle Skin

0014 17 4 Muscle % g
4 18 Skin =<

Table 6.121

CTA FK-Treated Allograft Skin vs Muscle Decision Tree (all time points under

treatment)

Accuracy Confusion Matrix

90.97% Classified As

p-value Muscle Skin

0133 17 4 Muscle % g
2 20 Skin =<

Table 6.122

Hypothesis 2 FK-Treatment Withdrawn

CTA FK-Treatment Withdrawn Allograft Skin vs Muscle Logistic Classifier (all

time points treatment withdrawn)

Accuracy Confusion Matrix

95.00% Classified As

p-value Muscle Skin “

0011 26 4 Muscle % g
5 25 Skin =0

Table 6.123

CTA FK-Treatment Withdrawn Allograft Skin vs Muscle Decision Tree (all time

points treatment withdrawn)

Accuracy Confusion Matrix

100% Classified As

p-value Muscle Skin “

<.0001 30 0 Muscle % E
0 30 Skin =0

Table 6.124
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Naive Skin vs Muscle Logistic Classifier

Accuracy Confusion Matrix

74.07% Classified As

p-value Muscle Skin “

.3884 6 3 Muscle % g
7 11 Skin =<

Table 6.125

Naive Skin vs Muscle Decision Tree (pruned tree)

Accuracy Confusion Matrix

85.19% Classified As

p-value Muscle Skin

1692 7 2 Muscle % g
2 16 Skin =0

Table 6.126
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Hypothesis 3 Skin
Rejection vs Not Rejection

All Time Points

Rejection vs Not Rejection in SKkin Linear Discriminant (all time points, feature

selected)

Accuracy Confusion Matrix

64.89% Classified As

p-value Not Rejection Rejection

5954 154 25 Not Rejection | 3 &
74 29 Rejection =0

Table 6.127

Rejection vs Not Rejection in Skin Linear Discriminant (all time points,

MANOVA transformed)

Accuracy Confusion Matrix

68.09% Classified As

p-value Not Rejection Rejection

3792 141 38 NotRejection | 3 &
52 51 Rejection =0

Table 6.128

Rejection vs Not Rejection in Skin Quadratic Discriminant (all time points,
feature selected)

Accuracy Confusion Matrix

71.28% Classified As

p-value Not Rejection Rejection

5267 172 7 Not Rejection | 3 &
74 29 Rejection =0

Table 6.129

Rejection vs Not Rejection in Skin Quadratic Discriminant (all time points,

MANOVA transformed)

Accuracy Confusion Matrix

76.60% Classified As

p-value Not Rejection Rejection

3838 171 8 NotRejection | 3 &
58 45 Rejection =0

Table 6.130
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Rejection vs Not Rejection in Skin Logistic Classifier (all time points, feature

selected)

Accuracy Confusion Matrix

68.09% Classified As

p-value Not Rejection Rejection

.5816 12 167 Not Rejection % g
25 78 Rejection =0

Table 6.131

Rejection vs Not Rejection in Skin Logistic Classifier (all time points, MANOVA

transformed)

Accuracy Confusion Matrix

72.70% Classified As

p-value Not Rejection Rejection

4104 18 161 Not Rejection | 3 &
44 59 Rejection =0

Table 6.132

Rejection vs Not Rejection in Skin Logistic Classifier (all time points, hybrid

features)

Accuracy Confusion Matrix

76.95% Classified As

p-value Not Rejection Rejection

3304 15 164 Not Rejection | 3 &
52 51 Rejection =0

Table 6.133

Rejection vs Not Rejection in Skin Decision Tree (all time points, feature

selected, pruned tree)

Accuracy Confusion Matrix

79.08% Classified As

p-value Not Rejection Rejection

1426 138 41 Not Rejection % §
26 77 Rejection =S

Table 6.134

Rejection vs Not Rejection in Skin Decision Tree (all time points, MANOVA

transformed, pruned tree)

Accuracy
81.56%
p-value
2249

Confusion Matrix

Classified As

Not Rejection Rejection
157 22 Not Rejection
38 65 Rejection

True

Class
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Rejection vs Not Rejection in Skin Decision Tree (all time points, hybrid
features, pruned tree)

Accuracy Confusion Matrix

87.59% Classified As

p-value Not Rejection Rejection

1417 159 20 Not Rejection | 3 &
25 78 Rejection =0

Table 6.136

Rejection vs Not Rejection in Skin Random Forest (all time points, feature

selected, 100 trees)

Accuracy Confusion Matrix

84.04% Classified As

p-value Not Rejection Rejection

1095 153 26 NotRejection | 3 &
19 84 Rejection =S

Table 6.137

Rejection vs Not Rejection in Skin Random Forest (all time points, MANOVA
transformed, 100 trees)

Accuracy Confusion Matrix

87.23% Classified As

p-value Not Rejection Rejection

0942 161 18 NotRejection | 3 &
14 89 Rejection =S

Table 6.138
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Rejection vs Not Rejection in Skin Linear Discriminant (POD <= 5)

Accuracy Confusion Matrix

72.25% Classified As

p-value Not Rejection Rejection

3023 90 29 Not Rejection | 3 &
19 35 Rejection =0

Table 6.139

Rejection vs Not Rejection in Skin Linear Discriminant (POD <=5, feature

selected)

Accuracy Confusion Matrix

66.47% Classified As

p-value Not Rejection Rejection

.5406 96 23 Not Rejection % g
35 19 Rejection =0

Table 6.140

Rejection vs Not Rejection in Skin Linear Discriminant (POD <=5, MANOVA

transformed)

Accuracy Confusion Matrix

71.01% Classified As

p-value Not Rejection Rejection

3216 89 30 Not Rejection | 3 &
20 34 Rejection =0

Table 6.141

Rejection vs Not Rejection in Skin Quadratic Discriminant (POD <= 5)

Accuracy Confusion Matrix

75.14% Classified As

p-value Not Rejection Rejection

2226 88 31 Not Rejection | 3 &
12 42 Rejection =0

Table 6.142

Rejection vs Not Rejection in Skin Quadratic Discriminant (POD <= 5, feature

selected)

Accuracy Confusion Matrix

66.47% Classified As

p-value Not Rejection Rejection

6081 103 16 NotRejection | 3 &
42 12 Rejection =S
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Rejection vs Not Rejection in Skin Quadratic Discriminant (POD <= 5, MANOVA

transformed)

Accuracy Confusion Matrix

74.57% Classified As

p-value Not Rejection Rejection

2265 87 32 Not Rejection | 3 &
12 42 Rejection =0

Table 6.144

Rejection vs Not Rejection in Skin Logistic Classifier (POD <= 5)

Accuracy Confusion Matrix

74.57% Classified As

p-value Not Rejection Rejection

4435 108 11 NotRejection | 3 &
33 21 Rejection =3

Table 6.145

Rejection vs Not Rejection in Skin Logistic Classifier (POD <=5, feature

selected)

Accuracy Confusion Matrix

68.21% Classified As

p-value Not Rejection Rejection

6202 110 9 NotRejection | 3 &
46 8 Rejection =~ O

Table 6.146

Rejection vs Not Rejection in Skin Logistic Classifier (POD <=5, MANOVA

transformed)

Accuracy Confusion Matrix

72.83% Classified As

p-value Not Rejection Rejection

4558 105 14 Not Rejection | 3 &
33 21 Rejection =0

Table 6.147

Rejection vs Not Rejection in Skin Decision Tree (POD <= 5, pruned tree)

Accuracy Confusion Matrix
80.92% | Classified As | B30
p-value
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3195 Not Rejection Rejection
103 16 Not Rejection
23 31 Rejection
Table 6.148

Rejection vs Not Rejection in Skin Decision Tree (POD <=5, feature selected,

pruned tree)

Accuracy Confusion Matrix

78.61% Classified As

p-value Not Rejection Rejection

3850 100 19 NotRejection | 3 &
27 27 Rejection =0

Table 6.149

Rejection vs Not Rejection in Skin Decision Tree (POD <= 5, MANOVA
transformed, pruned tree)

Accuracy Confusion Matrix

87.86% Classified As

p-value Not Rejection Rejection

2243 104 15 Not Rejection | 3 ‘é
15 39 Rejection =~ O

Table 6.150

Rejection vs Not Rejection in Skin Random Forest (POD <=5, 100 trees)

Accuracy Confusion Matrix

95.95% Classified As

p-value Not Rejection Rejection

1505 116 3 Not Rejection | 3 ‘é
6 48 Rejection =~ O

Table 6.151

Rejection vs Not Rejection in Skin Random Forest (POD <=5, feature selected,

100 trees)

Accuracy Confusion Matrix

84.39% Classified As

p-value Not Rejection Rejection

2320 108 11 Not Rejection | 3 &
16 38 Rejection =0

Table 6.152

Rejection vs Not Rejection in Skin Random Forest (POD <=5, MANOVA
transformed, 100 trees)

Accuracy
91.33%

Confusion Matrix

\ Classified As

‘&L:m
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p-value Not Rejection Rejection

1943 112 7 Not Rejection
12 42 Rejection

Table 6.153

162



Computational Modeling of Immune Signals

POD >5

Appendix A: Data Tables

Rejection vs Not Rejection in Skin Linear Discriminant (POD > 5)

Accuracy Confusion Matrix

80.00% Classified As

p-value Not Rejection Rejection

3251 104 12 NotRejection | 3 &
21 28 Rejection =S

Table 6.154

Rejection vs Not Rejection in Skin Linear Discriminant (POD > 5, feature

selected)

Accuracy Confusion Matrix

67.88% Classified As

p-value Not Rejection Rejection

5991 102 14 Not Rejection | 3 &
39 10 Rejection =0

Table 6.155

Rejection vs Not Rejection in Skin Linear Discriminant (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

76.36% Classified As

p-value Not Rejection Rejection

3845 102 14 Not Rejection | 3 &
25 24 Rejection =0

Table 6.156

Rejection vs Not Rejection in Skin Quadratic Discriminant (POD > 5)

Accuracy Confusion Matrix

83.64% Classified As

p-value Not Rejection Rejection

2917 108 8 Not Rejection | 3 &
19 30 Rejection =~ 0

Table 6.157

Rejection vs Not Rejection in Skin Quadratic Discriminant (POD > 5, feature

selected)

Accuracy Confusion Matrix

77.58% Classified As

p-value Not Rejection Rejection

4504 111 5 Not Rejection % §
32 17 Rejection =S

163




Computational Modeling of Immune Signals

Table 6.158

Appendix A: Data Tables

Rejection vs Not Rejection in Skin Quadratic Discriminant (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

84.24% Classified As

p-value Not Rejection Rejection

2828 108 8 Not Rejection | 3 &
18 31 Rejection =0

Table 6.159

Rejection vs Not Rejection in Skin Logistic Classifier (POD > 5)

Accuracy Confusion Matrix

76.97% Classified As

p-value Not Rejection Rejection

3813 13 103 NotRejection | 3 &
24 25 Rejection =3

Table 6.160

Rejection vs Not Rejection in Skin Logistic Classifier (POD > 5, feature

selected)

Accuracy Confusion Matrix

72.12% Classified As

p-value Not Rejection Rejection

5804 4 112 NotRejection | 3 &
7 42 Rejection =S

Table 6.161

Rejection vs Not Rejection in Skin Logistic Classifier (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

80.00% Classified As

p-value Not Rejection Rejection

3463 10 106 Not Rejection | 3 &
26 23 Rejection =0

Table 6.162

Rejection vs Not Rejection in Skin Decision Tree (POD > 5, pruned tree)

Accuracy Confusion Matrix

88.48% Classified As

p-value Not Rejection Rejection

1675 9% 20 NotRejection | 3 &
5 44 Rejection =3

Table 6.163
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Rejection vs Not Rejection in Skin Decision Tree (POD > 5, feature selected,
pruned tree)

Accuracy Confusion Matrix

83.03% Classified As

p-value Not Rejection Rejection

4906 111 5 Not Rejection | S ‘é
35 14 Rejection =0

Table 6.164

Rejection vs Not Rejection in Skin Decision Tree (POD > 5, MANOVA

transformed, pruned tree)

Accuracy Confusion Matrix

86.06% Classified As

p-value Not Rejection Rejection

2639 105 11 Not Rejection | 3 &
16 33 Rejection =~ O

Table 6.165

Rejection vs Not Rejection in Skin Random Forest (POD > 5, 100 trees)

Accuracy Confusion Matrix

93.94% Classified As

p-value Not Rejection Rejection

1623 108 8 NotRejection | 3 &
5 44 Rejection =3

Table 6.166

Rejection vs Not Rejection in Skin Random Forest (POD > 5, feature selected,

100 trees)

Accuracy Confusion Matrix

90.91% Classified As

p-value Not Rejection Rejection

1775 107 9 Not Rejection | 3 &
7 42 Rejection =0

Table 6.167

Rejection vs Not Rejection in Skin Random Forest (POD > 5, MANOVA
transformed, 100 trees)

Accuracy Confusion Matrix

89.09% Classified As

p-value Not Rejection Rejection

2028 107 9 NotRejection | 3 &
10 39 Rejection =~ O

Table 6.168
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Type of Inflammation

All Time Points

Type of Inflammation in Skin Linear Discriminant (all time points, feature
selected)

Accuracy Confusion Matrix
50.71% Classified As
p-value Rejection | Unspecific Wound
9764 Inflammation | Healing
17 27 59 Rejection
4
16 8 32 Unspecific S
Inflammation | o
2 3 118 | Wound £
Healing &~
Table 6.169

Type of Inflammation in Skin Linear Discriminant (all time points, MANOVA
transformed)

Accuracy Confusion Matrix
64.18% Classified As
p-value Rejection Unspecific Wound
3035 Inflammation | Healing
45 21 37 Rejection
4
9 38 9 Unspecific S
Inflammation | o
12 13 98 | Wound Z
Healing
Table 6.170

Type of Inflammation in Skin Quadratic Discriminant (all time points, feature
selected)

Accuracy Confusion Matrix
59.57% Classified As
p-value Rejection | Unspecific Wound
6335 Inflammation | Healing
28 34 41 Rejection
4
4 26 26 Unspecific =
. O
Inflammation | o
1 8 114 | Wound =
Healing &~
Table 6.171
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Type of Inflammation in Skin Quadratic Discriminant (all time points,
MANOVA transformed)

Accuracy Confusion Matrix
67.02% Classified As
p-value Rejection | Unspecific Wound
2939 Inflammation | Healing
48 26 29 Rejection
4
6 32 18 Unspecific =
. O
Inflammation | o
4 10 109 | Wound Z
Healing
Table 6.172

Type of Inflammation in Skin Logistic Classifier (all time points, feature
selected)

Accuracy Confusion Matrix
60.99% Classified As
p-value Rejection | Unspecific Wound
2905 Inflammation | Healing
58 5 40 Rejection
a
32 1 23 Unspecific S
Inflammation | o
10 0 113 | Wound Z
Healing
Table 6.173

Type of Inflammation in Skin Logistic Classifier (all time points, MANOVA
transformed)

Accuracy Confusion Matrix
68.09% Classified As
p-value Rejection Unspecific Wound
3515 Inflammation | Healing
62 15 26 Rejection
4
11 23 22 Unspecific S
Inflammation | o
6 20 107 | Wound Z
Healing
Table 6.174

Type of Inflammation in Skin Logistic Classifier (all time points, hybrid
features)

Accuracy Confusion Matrix
70.21% [ Classified As [ &~ 59
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p-value Rejection Unspecific Wound
3817 Inflammation | Healing
65 14 24 Rejection
10 25 21 Unspecific
Inflammation
6 10 107 Wound
Healing
Table 6.175

Type of Inflammation in Skin Decision Tree (all time points, feature selected,
pruned tree)

Accuracy Confusion Matrix
75.18% Classified As
p-value Rejection Unspecific Wound
1986 Inflammation | Healing
80 4 19 Rejection
4
23 18 15 Unspecific S
Inflammation | o
16 4 103 | Wound £
Healing &~
Table 6.176

Type of Inflammation in Skin Decision Tree (all time points, MANOVA
transformed, pruned tree)

Accuracy Confusion Matrix
71.28% Classified As
p-value Rejection | Unspecific Wound
.0790 Inflammation | Healing
73 13 17 Rejection
4
15 35 6 Unspecific S
. S}
Inflammation | o
13 9 101 | Wound =z
Healing
Table 6.177

Type of Inflammation in Skin Decision Tree (all time points, hybrid features,
pruned tree)

Accuracy Confusion Matrix
79.43% Classified As
p-value Rejection Unspecific Wound ¢
0604 Inflammation | Healing é’
81 9 13 Rejection O
S
~
13 35 8 Unspecific =~
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Inflammation

12 7 104 Wound
Healing

Table 6.178

Type of Inflammation in Skin Random Forest (all time points, feature selected,
100 trees)

Accuracy Confusion Matrix
82.98% Classified As
p-value Rejection | Unspecific Wound
0719 Inflammation | Healing
90 0 13 Rejection
a
21 30 5 Unspecific S
Inflammation | o
11 1 111 | Wound Z
Healing
Table 6.179

Type of Inflammation in Skin Random Forest (all time points, MANOVA
transformed, 100 trees)

Accuracy Confusion Matrix
82.98% Classified As
p-value Rejection Unspecific Wound
0421 Inflammation | Healing
84 1 18 Rejection
4
13 39 4 Unspecific S
Inflammation | o
10 3 110 | Wound Z
Healing
Table 6.180
POD <=5
Type of Inflammation in Skin Linear Discriminant (POD <= 5)
Accuracy Confusion Matrix
65.32% Classified As
p-value Rejection Unspecific Wound
0724 Inflammation | Healing
29 7 18 Rejection
q
12 34 10 Unspecific S
Inflammation | o
9 4 50 Wound g
Healing =
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Table 6.181

Appendix A: Data Tables

Type of Inflammation in Skin Linear Discriminant (POD <= 5, feature selected)

Accuracy Confusion Matrix
49.13% Classified As
p-value Rejection Unspecific Wound
9579 Inflammation | Healing
15 13 26 Rejection
4
14 14 28 Unspecific S
Inflammation | o
1 6 56 Wound 2
Healing =~
Table 6.182

Type of Inflammation in Skin Linear Discriminant (POD <= 5, MANOVA

transformed)
Accuracy Confusion Matrix
64.16% Classified As
p-value Rejection | Unspecific Wound
.0593 Inflammation | Healing
30 6 18 Rejection
a
13 33 10 Unspecific =
. (&)
Inflammation | o
11 4 48 Wound £
Healing &~
Table 6.183
Type of Inflammation in Skin Quadratic Discriminant (POD <= 5)
Accuracy Confusion Matrix
69.36% Classified As
p-value Rejection | Unspecific Wound
.0552 Inflammation | Healing
31 5 18 Rejection
a
8 35 13 Unspecific =
. (&)
Inflammation | o
0 9 54 Wound g
Healing &~
Table 6.184

Type of Inflammation in Skin Quadratic Discriminant (POD <=5, feature

selected)

Accuracy

Confusion Matrix
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47.40% Classified As
p-value Rejection Unspecific Wound
8636 Inflammation | Healing
14 11 29 Rejection
4
11 15 30 Unspecific S
. S}
Inflammation | o
3 7 53 Wound £
Healing &~
Table 6.185

Type of Inflammation in Skin Quadratic Discriminant (POD <=5, MANOVA
transformed)

Accuracy Confusion Matrix
71.10% Classified As
p-value Rejection Unspecific Wound
0432 Inflammation | Healing
32 4 27 Rejection
4
8 36 12 Unspecific S
Inflammation | o
1 7 55 Wound £
Healing &~
Table 6.186
Type of Inflammation in Skin Logistic Classifier (POD <= 5)
Accuracy Confusion Matrix
68.79% Classified As
p-value Rejection Unspecific Wound
0578 Inflammation | Healing
27 11 16 Rejection
4
5 39 12 Unspecific =
. (]
Inflammation | o
3 8 53 Wound £
Healing &~
Table 6.187

Type of Inflammation in Skin Logistic Classifier (POD <= 5, feature selected)

Accuracy Confusion Matrix
54.34% [ Classified As [ &~ 59
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p-value Rejection Unspecific Wound
0159 Inflammation | Healing
15 19 20 Rejection
15 22 19 Unspecific
Inflammation
1 5 57 Wound
Healing
Table 6.188

Type of Inflammation in Skin Logistic Classifier (POD <= 5, MANOVA
transformed)

Accuracy Confusion Matrix
65.32% Classified As
p-value Rejection Unspecific Wound
0515 Inflammation | Healing
27 11 16 Rejection
4
10 37 9 Unspecific S
Inflammation | o
5 9 49 Wound N
Healing &~
Table 6.189
Type of Inflammation in Skin Decision Tree (POD <=5, pruned tree)
Accuracy Confusion Matrix
73.41% Classified As
p-value Rejection Unspecific Wound
0127 Inflammation | Healing
38 6 10 Rejection
4
17 35 4 Unspecific S
Inflammation | o
5 6 52 Wound g
Healing =~
Table 6.190

Type of Inflammation in Skin Decision Tree (POD <=5, feature selected,
pruned tree)

Accuracy Confusion Matrix
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63.58 Classified As
p-value Rejection Unspecific Wound
0427 Inflammation | Healing
31 12 11 Rejection
4
19 34 3 Unspecific S
Inflammation | o
8 6 49 Wound g
Healing &~
Table 6.191

Type of Inflammation in Skin Decision Tree (POD <= 5, MANOVA transformed,

pruned tree)

Accuracy Confusion Matrix
73.99% Classified As
p-value Rejection Unspecific Wound
0024 Inflammation | Healing
42 7 5 Rejection
4
10 38 8 Unspecific S
Inflammation | o
6 6 51 Wound g
Healing &~
Table 6.192
Type of Inflammation in Skin Random Forest (POD <=5, 100 trees)
Accuracy Confusion Matrix
86.71% Classified As
p-value Rejection Unspecific Wound
0001 Inflammation | Healing
47 2 5 Rejection
4
5 49 2 Unspecific S
Inflammation | o
3 3 57 Wound g
Healing &~
Table 6.193

Type of Inflammation in Skin Random Forest (POD <= 5, feature selected, 100

trees)

Accuracy

Confusion Matrix
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79.19% Classified As
p-value Rejection Unspecific Wound
0011 Inflammation | Healing
43 2 9 Rejection
4
13 41 2 Unspecific =
. (]
Inflammation | o
6 4 53 Wound g
Healing &~
Table 6.194
Type of Inflammation in Skin Random Forest (POD <= 5, MANOVA
transformed, 100 trees)
Accuracy Confusion Matrix
87.28% Classified As
p-value Rejection Unspecific Wound
0008 Inflammation | Healing
45 3 6 Rejection
4
5 47 4 Unspecific S
Inflammation | o
2 2 59 Wound g
Healing &~
Table 6.195
POD >5
Type of Inflammation in Skin Linear Discriminant (POD > 5)
Accuracy Confusion Matrix
75.76% Classified As
p-value Rejection Unspecific Wound
0300 Inflammation | Healing
27 11 11 Rejection
4
3 49 4 Unspecific S
Inflammation | o
6 5 49 Wound g
Healing =~
Table 6.196

Type of Inflammation in Skin Linear Discriminant (POD > 5, feature selected)

Accuracy
52.12%
p-value
9151

Confusion Matrix

Classified As
Rejection Unspecific Wound
Inflammation | Healing
5 19 25 Rejection

True

Class
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5 22 29 Unspecific
Inflammation

0 1 59 Wound
Healing

Table 6.197

Type of Inflammation in Skin Linear Discriminant (POD > 5, MANOVA
transformed)

Accuracy Confusion Matrix
76.36% Classified As
p-value Rejection Unspecific Wound
0230 Inflammation | Healing
27 11 11 Rejection
4
2 49 5 Unspecific R
. (]
Inflammation | o
5 5 50 Wound g
Healing &~
Table 6.198
Type of Inflammation in Skin Quadratic Discriminant (POD > 5)
Accuracy Confusion Matrix
78.79% Classified As
p-value Rejection Unspecific Wound
0031 Inflammation | Healing
38 6 5 Rejection
4
4 40 12 Unspecific S
Inflammation | o
3 5 52 Wound £
Healing =~
Table 6.199

Type of Inflammation in Skin Quadratic Discriminant (POD > 5, feature
selected)

Accuracy Confusion Matrix
63.64% Classified As
p-value Rejection | Unspecific Wound
2697 Inflammation | Healing
20 17 12 Rejection
4
2 32 22 Unspecific =
. S}
Inflammation | o
1 6 53 Wound g
Healing &~
Table 6.200
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Type of Inflammation in Skin Quadratic Discriminant (POD > 5, MANOVA

transformed)
Accuracy Confusion Matrix
80.61% Classified As
p-value Rejection Unspecific Wound
0016 Inflammation | Healing
40 5 4 Rejection
4
3 41 12 Unspecific S
Inflammation | o
3 5 52 Wound 2
Healing =~
Table 6.201
Type of Inflammation in Skin Logistic Classifier (POD > 5)
Accuracy Confusion Matrix
81.21% Classified As
p-value Rejection Unspecific Wound
2429 Inflammation | Healing
36 10 3 Rejection
4
3 45 8 Unspecific S
Inflammation | o
2 5 53 Wound £
Healing &~
Table 6.202

Type of Inflammation in Skin Logistic Classifier (POD > 5, feature selected)

Accuracy Confusion Matrix
62.42% Classified As
p-value Rejection Unspecific Wound
0091 Inflammation | Healing
10 21 18 Rejection
4
3 35 18 Unspecific S
. O
Inflammation | o
0 4 56 Wound £
Healing &~
Table 6.203
Type of Inflammation in Skin Logistic Classifier (POD > 5, MANOVA
transformed)
Accuracy Confusion Matrix
81.21% Classified As v g
p-value Rejection Unspecific Wound RS
2123 Inflammation | Healing =0
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34 10 5 Rejection
2 44 10 Unspecific
Inflammation
1 5 54 Wound
Healing

Table 6.204

Type of Inflammation in Skin Decision Tree (POD > 5, pruned tree)

Accuracy Confusion Matrix
78.18% Classified As
p-value Rejection | Unspecific Wound
0018 Inflammation | Healing
36 7 6 Rejection
a
12 39 5 Unspecific S
. O
Inflammation | o
5 8 47 Wound g
Healing &~
Table 6.205

Type of Inflammation in Skin Decision Tree (POD > 5, feature selected, pruned
tree)

Accuracy Confusion Matrix
77.58% Classified As
p-value Rejection | Unspecific Wound
0103 Inflammation | Healing
30 10 9 Rejection
4
9 44 3 Unspecific =
. O
Inflammation | o
6 12 42 Wound g
Healing &~
Table 6.206

Type of Inflammation in Skin Decision Tree (POD > 5, MANOVA transformed,
pruned tree)

Accuracy Confusion Matrix
68.48% Classified As
p-value Rejection | Unspecific Wound
5655 Inflammation | Healing
3 17 29 Rejection
a
0 47 9 Unspecific S
. O
Inflammation | o
2 7 51 Wound g
Healing &~
Table 6.207
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Type of Inflammation in Skin Random Forest (POD > 5, 100 trees)

Accuracy Confusion Matrix
89.70% Classified As
p-value Rejection | Unspecific Wound
0006 Inflammation | Healing
46 0 3 Rejection
4
5 51 0 Unspecific S
. O
Inflammation | o
5 4 51 Wound g
Healing &~
Table 6.208

Type of Inflammation in Skin Random Forest (POD > 5, feature selected, 100
trees)

Accuracy Confusion Matrix
87.27% Classified As
p-value Rejection Unspecific Wound
0001 Inflammation | Healing
43 1 5 Rejection
4
4 50 2 Unspecific S
Inflammation | o
6 1 53 Wound g
Healing &~
Table 6.209

Type of Inflammation in Skin Random Forest (POD > 5, MANOVA transformed,
100 trees)

Accuracy Confusion Matrix
86.06% Classified As 9
p-value Rejection Unspecific Wound =
0004 Inflammation | Healing E
40 3 6 Rejection g
&=
4 50 2 Unspecific
Inflammation
8 2 50 Wound
Healing
Table 6.210
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Hypothesis 3 Muscle
Rejection vs Not Rejection

All Time Points

Rejection vs Not Rejection in Muscle Linear Discriminant (all time points,
feature selected)

Accuracy Confusion Matrix

67.51% Classified As

p-value Not Rejection Rejection

3516 94 24 Not Rejection | 3 &
40 39 Rejection =0

Table 6.211

Rejection vs Not Rejection in Muscle Linear Discriminant (all time points,

MANOVA transformed)

Accuracy Confusion Matrix

73.10% Classified As

p-value Not Rejection Rejection

3301 105 13 NotRejection | 3 &
40 39 Rejection =0

Table 6.212

Rejection vs Not Rejection in Muscle Logistic Classifier (all time points, feature

selected)

Accuracy Confusion Matrix

74.11% Classified As

p-value Not Rejection Rejection

5445 107 11 NotRejection | 3 &
54 25 Rejection =S

Table 6.213

Rejection vs Not Rejection in Muscle Logistic Classifier (all time points,

MANOVA transformed)

Accuracy Confusion Matrix

74.11% Classified As

p-value Not Rejection Rejection

3009 105 13 Not Rejection | 3 &
38 41 Rejection =0

Table 6.214

Rejection vs Not Rejection in Muscle Logistic Classifier (all time points, hybrid

features)
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Accuracy Confusion Matrix

77.16% Classified As

p-value Not Rejection Rejection

2082 103 15 NotRejection | 3 &
31 48 Rejection =0

Table 6.215

Rejection vs Not Rejection in Muscle Decision Tree (all time points, feature

selected, pruned tree)

Accuracy Confusion Matrix

78.17% Classified As

p-value Not Rejection Rejection

1409 93 25 Not Rejection | 3 &
26 53 Rejection =~ O

Table 6.216

Rejection vs Not Rejection in Muscle Decision Tree (all time points, MANOVA

transformed, pruned tree)

Accuracy Confusion Matrix

73.60% Classified As

p-value Not Rejection Rejection

1890 94 24 Not Rejection | 3 &
30 49 Rejection =0

Table 6.217

Rejection vs Not Rejection in Muscle Decision Tree (all time points, hybrid

features, pruned tree)

Accuracy Confusion Matrix

79.70% Classified As

p-value Not Rejection Rejection

1073 101 17 Not Rejection | 3 &
21 58 Rejection =0

Table 6.218

Rejection vs Not Rejection in Muscle Random Forest (all time points, feature
selected, 100 trees)

Accuracy Confusion Matrix

86.29% Classified As

p-value Not Rejection Rejection

0710 114 4 NotRejection | 3 &
14 65 Rejection =0

Table 6.219
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Rejection vs Not Rejection in Muscle Random Forest (all time points, MANOVA

transformed, 100 trees)

Accuracy Confusion Matrix

88.32% Classified As

p-value Not Rejection Rejection

0.0682 107 11 NotRejection | 3 &
13 66 Rejection =~ O

Table 6.220

POD<=5

Rejection vs Not Rejection in Muscle Linear Discriminant (POD <= 5)

Accuracy Confusion Matrix

74.29% Classified As

p-value Not Rejection Rejection

2987 57 10 NotRejection | 3 &
17 21 Rejection =S

Table 6.221

Rejection vs Not Rejection in Muscle Linear Discriminant (POD <=5, feature

selected)

Accuracy Confusion Matrix

67.62% Classified As

p-value Not Rejection Rejection

3815 52 15 Not Rejection | 3 &
19 19 Rejection =0

Table 6.222

Rejection vs Not Rejection in Muscle Linear Discriminant (POD <=5, MANOVA

transformed)

Accuracy Confusion Matrix

74.29% Classified As

p-value Not Rejection Rejection

3216 58 9 Not Rejection | 3 &
18 20 Rejection =0

Table 6.223

Rejection vs Not Rejection in Muscle Logistic Classifier (POD <= 5)

Accuracy Confusion Matrix

70.48% Classified As

p-value Not Rejection Rejection

.3857 56 11 Not Rejection % g
20 18 Rejection =0

Table 6.224
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Rejection vs Not Rejection in Muscle Logistic Classifier (POD <=5, feature

selected)

Accuracy Confusion Matrix

73.33% Classified As

p-value Not Rejection Rejection

3701 59 8 NotRejection | 3 &
20 18 Rejection =~ O

Table 6.225

Rejection vs Not Rejection in Muscle Logistic Classifier (POD <=5, MANOVA

transformed)

Accuracy Confusion Matrix

68.57% Classified As

p-value Not Rejection Rejection

4686 57 10 Not Rejection | 3 &
23 15 Rejection =0

Table 6.226

Rejection vs Not Rejection in Muscle Decision Tree (POD <= 5, pruned tree)

Accuracy Confusion Matrix

81.90% Classified As

p-value Not Rejection Rejection

.1543 57 10 Not Rejection % g
10 28 Rejection =~ O

Table 6.227

Rejection vs Not Rejection in Muscle Decision Tree (POD <=5, feature
selected, pruned tree)

Accuracy Confusion Matrix

73.33% Classified As

p-value Not Rejection Rejection

.6567 67 0 Not Rejection % §
34 4 Rejection =S

Table 6.228

Rejection vs Not Rejection in Muscle Decision Tree (POD <=5, MANOVA
transformed, pruned tree)

Accuracy
73.33%
p-value
.5365

Confusion Matrix

Classified As

Not Rejection Rejection
65 2 Not Rejection
28 10 Rejection

True

Class
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Rejection vs Not Rejection in Muscle Random Forest (POD <=5, 100 trees)

Accuracy Confusion Matrix

88.57% Classified As

p-value Not Rejection Rejection

.1097 62 5 Not Rejection % g
6 32 Rejection =0

Table 6.230

Rejection vs Not Rejection in Muscle Random Forest (POD <=5, feature

selected, 100 trees)

Accuracy Confusion Matrix

83.81% Classified As

p-value Not Rejection Rejection

1725 59 8 NotRejection | 3 &
11 27 Rejection =3

Table 6.231

Rejection vs Not Rejection in Muscle Random Forest (POD <= 5, MANOVA
transformed, 100 trees)

Accuracy Confusion Matrix

86.67% Classified As

p-value Not Rejection Rejection

1351 63 4 Not Rejection | 3 &
8 30 Rejection =0

Table 6.232

POD >5

Rejection vs Not Rejection in Muscle Linear Discriminant (POD > 5)

Accuracy Confusion Matrix

77.19% Classified As

p-value Not Rejection Rejection

3990 71 2 NotRejection | 3 &
24 17 Rejection =S

Table 6.233

Rejection vs Not Rejection in Muscle Linear Discriminant (POD > 5, feature

selected)

Accuracy Confusion Matrix

69.30% Classified As Loy S
= o

p-value Not Rejection | Rejection =30 a

4260
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61

12

Not Rejection

23

18

Rejection

Table 6.234

Rejection vs Not Rejection in Muscle Linear Discriminant (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

80.70% Classified As

p-value Not Rejection Rejection

3184 71 2 Not Rejection | 3 &
20 21 Rejection =0

Table 6.235

Rejection vs Not Rejection in Muscle Logistic Classifier (POD > 5)

Accuracy Confusion Matrix

87.72% Classified As

p-value Not Rejection Rejection

1275 67 6 NotRejection | 3 &
8 33 Rejection =S

Table 6.236

Rejection vs Not Rejection in Muscle Logistic Classifier (POD > 5, feature

selected)

Accuracy Confusion Matrix

64.04% Classified As

p-value Not Rejection Rejection

6583 65 8 NotRejection | 3 &
33 8 Rejection =0

Table 6.237

Rejection vs Not Rejection in Muscle Logistic Classifier (POD > 5, MANOVA

transformed)

Accuracy Confusion Matrix

87.72% Classified As

p-value Not Rejection Rejection

.1409 68 5 Not Rejection % g
9 32 Rejection =0

Table 6.238

Rejection vs Not Rejection in Muscle Decision Tree (POD > 5, pruned tree)

Accuracy
82.46%

Confusion Matrix

| Classified As

‘&L:m ‘
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p-value Not Rejection Rejection

1460 62 11 Not Rejection
10 31 Rejection

Table 6.239

Rejection vs Not Rejection in Muscle Decision Tree (POD > 5, feature selected,

pruned tree)

Accuracy Confusion Matrix

85.96% Classified As

p-value Not Rejection Rejection

1821 69 4 NotRejection | 3 &
12 29 Rejection =0

Table 6.240

Rejection vs Not Rejection in Muscle Decision Tree (POD > 5, MANOVA
transformed, pruned tree)

Accuracy Confusion Matrix

83.33% Classified As

p-value Not Rejection Rejection

2100 63 10 NotRejection | 3 &
14 27 Rejection =S

Table 6.241

Rejection vs Not Rejection in Muscle Random Forest (POD > 5, 100 trees)

Accuracy Confusion Matrix

88.60% Classified As

p-value Not Rejection Rejection

1460 71 2 Not Rejection % §
9 32 Rejection =S

Table 6.242

Rejection vs Not Rejection in Muscle Random Forest (POD > 5, feature

selected, 100 trees)

Accuracy Confusion Matrix

85.96% Classified As 9

p-value Not Rejection Rejection S

.1378 66 7 Not Rejection L
9 32 Rejection =

Table 6.243

Rejection vs Not Rejection in Muscle Random Forest (POD > 5, MANOVA
transformed, 100 trees)
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Accuracy Confusion Matrix

88.60% Classified As

p-value Not Rejection Rejection

1309 69 4 NotRejection | 3 &
8 33 Rejection =0

Table 6.244

Type of Inflammation

All Time Points

Type of Inflammation in Muscle Linear Discriminant (all time points, feature

selected)
Accuracy Confusion Matrix
57.36% Classified As
p-value Rejection | Unspecific Wound
7078 Inflammation | Healing
28 11 40 Rejection
4
4 7 11 Unspecific =
. (&)
Inflammation | o
11 7 78 Wound £
Healing &~
Table 6.245

Type of Inflammation in Muscle Linear Discriminant (all time points, MANOVA

transformed)
Accuracy Confusion Matrix
62.44% Classified As
p-value Rejection | Unspecific Wound
5031 Inflammation | Healing
34 10 35 Rejection
a
2 11 9 Unspecific S
Inflammation | o
9 9 78 Wound g
Healing B~
Table 6.246

Type of Inflammation in Muscle Quadratic Discriminant (all time points,

feature selected)

Accuracy
58.89%
p-value
7117

Confusion Matrix

Classified As

Rejection

Unspecific
Inflammation

Wound
Healing

True

Class
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19 9 51 Rejection
3 10 9 Unspecific
Inflammation
3 6 87 Wound
Healing

Table 6.247

Type of Inflammation in Muscle Logistic Classifier (all time points, feature
selected)

Accuracy Confusion Matrix
59.90% Classified As
p-value Rejection Unspecific Wound
2419 Inflammation | Healing
30 2 47 Rejection
a
7 2 13 Unspecific =
. S}
Inflammation | o
7 3 86 Wound g
Healing &~
Table 6.248

Type of Inflammation in Muscle Logistic Classifier (all time points, MANOVA
transformed)

Accuracy Confusion Matrix
67.01% Classified As
p-value Rejection | Unspecific Wound
4099 Inflammation | Healing
45 5 29 Rejection
4
4 7 11 Unspecific =
. S}
Inflammation | o
10 6 80 Wound =
Healing &~
Table 6.249

Type of Inflammation in Muscle Logistic Classifier (all time points, hybrid
features)

Accuracy Confusion Matrix
67.51% Classified As
p-value Rejection | Unspecific Wound
4476 Inflammation | Healing
47 5 27 Rejection ¢
3
4 7 4.4 Unspecific E
Inflammation | =
10 7 79 Wound &~
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| | | Healing | |

Table 6.250

Type of Inflammation in Muscle Decision Tree (all time points, feature
selected, pruned tree)

Accuracy Confusion Matrix
68.53% Classified As
p-value Rejection Unspecific Wound
4031 Inflammation | Healing
49 0 30 Rejection
a
9 4 9 Unspecific S
Inflammation | o
20 1 75 | Wound =
Healing =~
Table 6.251

Type of Inflammation in Muscle Decision Tree (all time points, MANOVA
transformed, pruned tree)

Accuracy Confusion Matrix
73.10% Classified As
p-value Rejection | Unspecific Wound
2624 Inflammation | Healing
49 2 28 Rejection
a
5 10 7 Unspecific =
. S}
Inflammation | o
11 4 81 Wound S
Healing &~
Table 6.252

Type of Inflammation in Muscle Decision Tree (all time points, hybrid
features, pruned tree)

Accuracy Confusion Matrix
68.02% Classified As
p-value Rejection | Unspecific Wound
3093 Inflammation | Healing
55 3 21 Rejection
a
7 5 10 Unspecific =
. (&)
Inflammation | o
15 6 75 Wound g
Healing &~
Table 6.253

Type of Inflammation in Muscle Random Forest (all time points, feature
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selected, 100 trees)

Accuracy Confusion Matrix
79.19% Classified As
p-value Rejection | Unspecific Wound
1654 Inflammation | Healing
64 1 14 Rejection
4
5 8 9 Unspecific S
Inflammation | o
10 1 85 Wound £
Healing &~
Table 6.254

Type of Inflammation in Muscle Random Forest (all time points, MANOVA
transformed, 100 trees)

Accuracy Confusion Matrix
79.19% Classified As
p-value Rejection Unspecific Wound
1530 Inflammation | Healing A
65 0 14 Rejection S
S}
v
6 9 7 Unspecific g
Inflammation | =
11 1 84 Wound
Healing
Table 6.255
POD <=5
Type of Inflammation in Muscle Linear Discriminant (POD <= 5)
Accuracy Confusion Matrix
54.29% Classified As
p-value Rejection Unspecific Wound
7438 Inflammation | Healing
15 5 18 Rejection
4
3 8 11 Unspecific S
Inflammation | o
5 6 34 Wound N
Healing &~
Table 6.256

Type of Inflammation in Muscle Linear Discriminant (POD <= 5, feature
selected)

Accuracy Confusion Matrix
55.24% [ Classified As | & ~59
p-value
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6890 Rejection Unspecific Wound
Inflammation | Healing
18 0 20 Rejection
3 6 13 Unspecific
Inflammation
9 2 34 Wound
Healing
Table 6.257

Type of Inflammation in Muscle Linear Discriminant (POD <= 5, MANOVA
transformed)

Accuracy Confusion Matrix
51.43% Classified As
p-value Rejection Unspecific Wound
9234 Inflammation | Healing
13 7 18 Rejection
4
4 6 12 Unspecific S
Inflammation | o
6 4 35 Wound £
Healing &~
Table 6.258
Type of Inflammation in Muscle Logistic Classifier (POD <= 5)
Accuracy Confusion Matrix
60.95% Classified As
p-value Rejection Unspecific Wound
3640 Inflammation | Healing a
22 4 12 Rejection S
v
2 11 9 Unspecific £
Inflammation |
6 8 31 Wound
Healing
Table 6.259

Type of Inflammation in Muscle Logistic Classifier (POD <= 5, feature selected)

Accuracy Confusion Matrix
61.90% Classified As
p-value Rejection Unspecific Wound
3033 Inflammation | Healing
20 0 18 Rejection "
g
3 8 11 Unspecific E
Inflammation | =
6 2 37 Wound B~
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| | | Healing | |

Table 6.260

Type of Inflammation in Muscle Logistic Classifier (POD <= 5, MANOVA
transformed)

Accuracy Confusion Matrix
63.81% Classified As
p-value Rejection Unspecific Wound
3317 Inflammation | Healing
22 2 14 Rejection
a
2 11 9 Unspecific S
Inflammation | o
6 5 34 Wound N
Healing =~
Table 6.261

Type of Inflammation in Muscle Decision Tree (POD <= 5, pruned tree)

Accuracy Confusion Matrix
66.67% Classified As
p-value Rejection Unspecific Wound
2275 Inflammation | Healing
28 0 10 Rejection
4
2 7 13 Unspecific S
Inflammation | o
3 5 37 Wound N
Healing &~
Table 6.262

Type of Inflammation in Muscle Decision Tree (POD <= 5, feature selected,
pruned tree)

Accuracy Confusion Matrix
64.76% Classified As
p-value Rejection Unspecific Wound
2641 Inflammation | Healing
25 4 9 Rejection
4
4 10 8 Unspecific S
Inflammation | o
10 6 29 Wound £
Healing &~
Table 6.263

Type of Inflammation in Muscle Decision Tree (POD <= 5, MANOVA
transformed, pruned tree)
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Accuracy Confusion Matrix
65.71% Classified As
p-value Rejection Unspecific Wound
3169 Inflammation | Healing
29 2 7 Rejection
4
6 6 10 Unspecific S
Inflammation | o
9 4 32 Wound £
Healing =~
Table 6.264

Type of Inflammation in Muscle Random Forest (POD <=5, 100 trees)

Accuracy Confusion Matrix
74.29% Classified As
p-value Rejection Unspecific Wound
1177 Inflammation | Healing
36 2 0 Rejection
4
4 9 9 Unspecific S
Inflammation | o
2 7 36 Wound £
Healing =~
Table 6.265

Type of Inflammation in Muscle Random Forest (POD <=5, feature selected,

100 trees)
Accuracy Confusion Matrix
78.10% Classified As
p-value Rejection Unspecific Wound
0904 Inflammation | Healing
31 2 5 Rejection
a
5 11 6 Unspecific S
Inflammation | o
6 2 37 Wound g
Healing &~
Table 6.266
Type of Inflammation in Muscle Random Forest (POD <= 5, MANOVA
transformed, 100 trees)
Accuracy Confusion Matrix
76.19% Classified As
p-value Rejection | Unspecific Wound “
0561 Inflammation | Healing é’
31 0 7 Rejection O
S
~
2 14 6 Unspecific =~
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Inflammation
7 6 32 Wound
Healing
Table 6.267
POD >5

Type of Inflammation in Muscle Linear Discriminant (POD > 5)

Accuracy Confusion Matrix
64.04% Classified As
p-value Rejection | Unspecific Wound
4393 Inflammation | Healing
16 3 22 Rejection
a
2 11 9 Unspecific S
Inflammation | o
2 3 46 Wound g
Healing =~
Table 6.268

Type of Inflammation in Muscle Linear Discriminant (POD > 5, feature
selected)

Accuracy Confusion Matrix
57.89% Classified As
p-value Rejection | Unspecific Wound
6564 Inflammation | Healing
16 3 22 Rejection
4
6 6 10 Unspecific =
. S}
Inflammation | o
6 1 44 Wound g
Healing &~
Table 6.269

Type of Inflammation in Muscle Linear Discriminant (POD > 5, MANOVA
transformed)

Accuracy Confusion Matrix
65.79% Classified As
p-value Rejection Unspecific Wound
3749 Inflammation | Healing
17 3 21 Rejection "
IS
0 12 10 Unspecific E
Inflammation | =
2 3 46 Wound =~
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Healing | |

Table 6.270

Type of Inflammation in Muscle Logistic Classifier (POD > 5)

Accuracy Confusion Matrix
74.46% Classified As
p-value Rejection Unspecific Wound
4484 Inflammation | Healing
28 4 9 Rejection
(g
1 12 9 Unspecific S
. S}
Inflammation | o
4 2 45 Wound g
Healing &~
Table 6.271

Type of Inflammation in Muscle Logistic Classifier (POD > 5, feature selected)

Accuracy Confusion Matrix
70.18% Classified As
p-value Rejection Unspecific Wound
2456 Inflammation | Healing
21 2 18 Rejection
a
3 10 9 Unspecific =
. S}
Inflammation | o
1 1 49 Wound S
Healing &~
Table 6.272

Type of Inflammation in Muscle Logistic Classifier (POD > 5, MANOVA
transformed)

Accuracy Confusion Matrix
74.56% Classified As
p-value Rejection Unspecific Wound
5578 Inflammation | Healing
30 2 9 Rejection
4
1 11 10 Unspecific S
Inflammation | o
4 3 44 Wound g
Healing &~
Table 6.273

Type of Inflammation in Muscle Decision Tree (POD > 5, pruned tree)

Accuracy Confusion Matrix
70.18% [ Classified As [ &~ 59
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p-value Rejection Unspecific Wound
3487 Inflammation | Healing
28 4 9 Rejection
6 3 13 Unspecific
Inflammation
2 1 48 Wound
Healing
Table 6.274

Type of Inflammation in Muscle Decision Tree (POD > 5, feature selected,

pruned tree)

Accuracy Confusion Matrix
70.18% Classified As
p-value Rejection Unspecific Wound
7078 Inflammation | Healing
21 0 20 Rejection
(%)
%)
5 0 17 Unspecific S
Inflammation | o
2 0 49 Wound N
Healing =~
Table 6.275
Type of Inflammation in Muscle Decision Tree (POD > 5, MANOVA
transformed, pruned tree)
Accuracy Confusion Matrix
77.19% Classified As
p-value Rejection Unspecific Wound
5031 Inflammation | Healing
25 0 16 Rejection
a
5 9 8 Unspecific S
Inflammation | o
4 0 47 Wound 2
Healing &~
Table 6.276
Type of Inflammation in Muscle Random Forest (POD > 5, 100 trees)
Accuracy Confusion Matrix
79.82% [ Classified As [ &~ 59
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p-value Rejection Unspecific Wound
1440 Inflammation | Healing
32 3 6 Rejection
4 9 9 Unspecific
Inflammation
1 4 46 Wound
Healing
Table 6.277

Type of Inflammation in Muscle Random Forest (POD > 5, feature selected,
100 trees)

Accuracy Confusion Matrix
77.19% Classified As
p-value Rejection Unspecific Wound
1312 Inflammation | Healing
32 3 6 Rejection
4
5 10 7 Unspecific S
Inflammation | o
7 2 42 Wound £
Healing &~
Table 6.278
Type of Inflammation in Muscle Random Forest (POD > 5, MANOVA
transformed, 100 trees)
Accuracy Confusion Matrix
82.46% Classified As
p-value Rejection Unspecific Wound
0546 Inflammation | Healing
35 0 6 Rejection
4
3 14 5 Unspecific =
. O
Inflammation | o
5 3 43 Wound g
Healing &~
Table 6.279
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Cytokine Intergroup r Statistic Values

Pearson's r statistic values for the goup "Not Rejecting" subtracted from "Rejecting" in Skin

GM-CSF IL-1a
GM-CSF 0.000 -0.631
IL-1a 0.000
MCP-1

L4

IL-1b

L2

L6

IL-10

1L-12 p70

L5

IFN-g

1L-18

GRO/KC

TNFa

MCP-1
0.546
-0.301
0.000

IL-4 IL-1b IL-2 IL-6 IL-10 IL-12 p70
-0.807 0.164 0.808 0.150 0.105 -0.283
-0.235 0.437 0.293 0.180 -0.692 0.084
-0.280 -0.190 0.865 -0.300 0.467 -0.089
0.000 0.202 0.101 0.139 -0.730 0.105

0.000 0.617 -0.028 0.080 0.084
0.000 0.420 0.824 0.592

0.000 0.050 0.229

0.000 -0.348

0.000

Appendix A: Data Tables

IFN-g
0.334
0.152
0.004
0.220
-0.049
0.467
0.035
-0.338
-0.102
0.047
0.000

GRO/KC
0.740
0.307
0.154
0.307
-0.197
0.742
-0.367
0.639
0.319
0.278
0.335
0.324
0.000

Table 6.280 Intergroup r statistic values for skin. Yellow highlight indicates feature pairs that are good
candidates for inclusion in the hybrid matrix.

Pearson's r statistic values for the goup "Not Rejecting" subtracted from "Rejecting" in Muscle

GM-CSF IL-1a
GM-CSF 0.000 0.477
IL-1a 0.000
MCP-1

IL-4

IL-1b

-2

IL-6

IL-10

1L-12 p70

IL-5

IFN-g

IL-18

GRO/KC

TNFa

McCP-1
0.898
0.514
0.000

IL-4 IL-1b IL-2 IL-6 IL-10 IL-12 p70
-0.205 0.199 -0.477 0.717 1.001 0.232
0.004 -0.165 -0.020 0.429 0.517 -0.108
-0.330 -0.647 0.280 -0.099 0.942 0.393
0.000 -0.455 -0.354 -0.433 0.022 -0.311

0.000 0.531 -0.552 0.380 0.382
0.000 0.384 0.378 0.115

0.000 0.985 0.419

0.000 0.452

0.000

IFN-g
0.080
0.009
0.497
-0.156
0.538
0.082
0.563
0.580

GRO/KC
0.144
0.105
-0.573
-0.357
-0.922
-0.008
-0.519
0.274
0.059
-0.269
0.089
-0.528
0.000

Table 6.281 Intergroup r statistic values for muscle. Yellow highlight indicates feature pairs that are
good candidates for inclusion in the hybrid matrix.

Pearson's r statistic values for the goup "Not " suk i from " " in Heart

GM-CSF IL-1a MCP-1 IL-4 IL-1b IL-2 IL-6 IL-10 IL-12 p70
GM-CSF 0.000 1.054 0.283 0.596 0.845 0.617 1.293 0.838 -0.082
IL-1a 0.000 -0.288 0.199 0.169 -0.419 0.619 0.795 -0.033
MCP-1 0.000 0.483 0.601 0.151 0.174 0.543 0.319
IL-4 0.000 0.675 0.167 0.018 0.019 -0.010
IL-1b 0.000 -0.079 0.274 0.638 -0.141
-2 0.000 0.075 0.680 0.058
IL-6 0.000 0.529 -0.299
IL-10 0.000 -0.225
IL-12 p70 0.000
IL-5
IFN-g
IL-18
GRO/KC
TNFa

IL-5
0.709
1.108
0.347
0.752
0.016
0.506
1.083
0.873
-0.122
0.000

IFN-g
1.087
0.046
-0.153
0.069
0.282
-0.329
0.552
0.679
-0.281
1.133
0.000

GRO/KC
0.989
0.298
0.077
0.250
0.280
-0.075
0.984
0.905
0.118
1.101
0.367
-0.142
0.000

Table 6.282 Intergroup r statistic values for heart. Yellow highlight indicates feature pairs that are
candidates for inclusion in the hybrid matrix.

Pearson's r statistic values for the goup "Not " sub i from " " in Lung

GM-CSF IL-1a MCP-1 -4 IL-1b -2 IL-6 IL-10 IL-12 p70
GM-CSF 0.000 -1.224 -0.423 -0.149 -0.527 -0.702 -0.918 -0.867 -0.229
IL-1a 0.000 0.059 0.088 0.053 -1.002 -0.483 -0.171 -0.006
MCP-1 -0.787 -0.051 -0.152 -0.517 0.267 -0.598
-4 -0.818 0.572 -0.312 -0.175 -0.354
IL-1b 0.000 -0.039 -0.298 0.496 -0.584
-2 0.000 -0.223 -0.908 0.798
IL-6 0.000 -0.418 -0.049
IL.-10 0.000 0.029
IL-12 p70 0.000
IL-5
IFN-g
IL-18
GRO/KC
TNFa

IFN-g
0.013
0.237
-0.285
-0.585
0.116
0.646
0.214
0.266
0.622
-0.099
0.000

GRO/KC
-1.012
-0.128

TNFa
1.183
0.507
0.099
-0.155
0.104
0.199
0.033
0.514
-0.244
0.903
0.450
-0.250
0.781
0.000

good

Table 6.283 Intergroup r statistic values for lung. Yellow highlight indicates feature pairs that are good
candidates for inclusion in the hybrid matrix.
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Allograft vs Isograftin Skin (all time points)

Original 14-Dimensional Feature Space

0.1

0.05 —

Component 2
o

~0.05 IFN-g

-0.15

0
Component 1

Figure 6.1

Pruned Decision Tree
Allograft vs Isograft in Skin
(all timepoints)

MCP-1 < 38.6747 /AMCP-1 >= 38.6747

isograft TNFa < 1.26455 2\TNFa >= 1.26455

IL-1b < 41.0257 N\IL-1b >= 41.0257

isograft

IL-1a < 154.673 2\L-1a >= 154.673

isograft

isograft IL-1a <2457.54

alloSraft IFN-g < 9.65038

isograft allograft

Figure 6.2
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Pruned Decision Tree
Allograft vs Isograft in Skin (all timepoints)

05
Cross-validation
— — — Resubstitution
Min + 1 std. err.
0.45- O Best choice
041 B
035 B
% oal Bl
5
$
]
7 0251 B
E
3
E
2 02 B
o
0.151- B
01 -
0.05- BN R B
0 1 1 1 1 1 1 1 1 1
0 2 4 6 10 12 14 16 18 20
Number of terminal nodes
Figure 6.3
Random Forest Classification Performance
Allograft vs Isograft in Skin (all timepoints)
04—
| ‘ ‘ ‘ ‘ ‘ — 30% Heldout Test
| — — — 10-fold Cross-validation
035l | B
03l -
\
\\
0.25( '

Classification error
o
N
T

015 |
01— —
sTTN ===
N NN 3
N__~
0.05— -
0 I I I
[ 5 10 15 20 25 30 35 40 45 50

Number of trees

Figure 6.4

5-Dimensional Feature Selected Space
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Cost (misclassification error)

Pruned Decision Tree
Allograft vs Isograft in Skin
(all timepoints, feature selected)
MCP-1 < 38.6747 AMCP-1 >= 38.6747

TNFa < 1.26455 X\TNFa >= 1.26455

Appendix B: Hypothesis 1 Figures

isograft
. IL-1b < 41.0257 2\IL-1b >= 41.0257
isograft
isodraft IL-6 < 201.325 2\IL-6 >= 201.325
allograft IL-10 < 82.6719 22\IL-10 >= 82.6719
isograft allograft
Figure 6.5
Pruned Decision Tree
Allograft vs Isograft in Skin
(all timepoints, feature selected)
05 :
‘ ‘ ‘ ‘ ‘ Cross-validation
— — — Resubstitution
Min + 1 std. err.
0451 O Best choice il
041 B
0351 B
0.3 —
0.25— -
0.2 —
0.15 —
0.1 —
0.05— *
0 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18
Number of terminal nodes
Figure 6.6
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Random Forest Classification Performance
Allograft vs Isograft in Skin
(all timepoints, feature selected)

0.45 T T T T T

30% Heldout Test
— — — 10-fold Cross-validation

04— 1

03

o

I

o
T

Classification error

0.15—

Number of trees

Figure 6.7

MANOVA Transformed Feature Space

Pruned Decision Tree
Allograft vs Isograft in Skin
(all timepoints, MANOVA transformed)

1>=0.135545

C6 <0.348181 4<C6 >= 0.348181

C13>=1.63519

C1<-0.247689 \C1 >= -0.247689

allograft allograft

C4 < -0.127372 /\C4 >= -0.127372

allograft

allograft isograft

Figure 6.8
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Pruned Decision Tree
Allograft vs Isograft in Skin (all timepoints, MANOVA transformed)

0.5
Cross-validation
— — — Resubstitution
Min + 1 std. err.
0451~ Best choice
0.4r- —
0.351- .

031

02~

Cost (misclassification error)
o
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o
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015 —
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0.05 —
0 | | | | _ | | | | |
0 2 4 6 8 10 12 14 16 18 20
Number of terminal nodes
Figure 6.9
Random Forest Classification Performance
Allograft vs Isograft in Skin (all timepoints, MANOVA transformed)
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Figure 6.10

Hybrid Feature Space
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CTA Allograft vs Isograft in Skin
on MANOVA Defined Axes (all timepoints, hybrid features)
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Pruned Decision Tree
Allograft vs Isograft in Skin
(all timepoints, hybrid features)

MCP-1 < 38.6747 /A\MCP-1 >= 38.6747

IL-10*TNFa < 80.1274 2\IL-10"TNFa >= 80.1274

isograft

isograft allograft

Figure 6.13

Pruned Decision Tree
Allograft vs Isograft in Skin (all timepoints, hybrid features)

05 :

T
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— — — Resubstitution
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0.4

0.35
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Number of terminal nodes

Figure 6.14

ROC Curves in Skin

Original Feature Space
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ROC Curve of LDA Classifier
in Skin Allograft vs Isograft

Appendix B: Hypothesis 1 Figures
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Figure 6.15

ROC Curve of QDA Classifier
in Skin Allograft vs Isograft
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Figure 6.16

205

0.7 0.8 0.9 1



Computational Modeling of Immune Signals

ROC Curve of Logistic Classifier

Appendix B: Hypothesis 1 Figures

in Skin Allograft vs Isograft
1 T T T i — S
777777777777 7= = - - - -
s
0.9 . I —
0.8 —
0.7 -
//
1
06~ , B
©
g }
ZosH | R
o i
S
= |
04 B
I
I
0.3 I -
|
0ol | AUROC: B
| . 0.914598
I
0.1 I -
| |
/ I
/
ol ‘ | | | | | | | |
0 0.1 02 03 0.4 05 06 07 0.8 09 1
False Positive Rate
Figure 6.17
ROC Curve of Decision Tree Classifier
in Skin Allograft vs Isograft
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ROC Curve of Random Forest Classifier
in Skin Allograft vs Isograft (50 trees)
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ROC Curve of QDA Classifier

in Skin Allograft vs Isograft (hybrid features)
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ROC Curve of Decision Tree Classifier

in Skin Allograft vs Isograft (hybrid features)
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CTA Allograft vs Isograft in Skin
on MANOVA Defined Axes (POD <= 5)
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Pruned Decision Tree
Allograft vs Isograft in Skin
(POD <= 5, feature selected)
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CTA Allograft vs Isograft in Skin
on MANOVA Defined Axes (POD > 5)

o allograft
O isograft

o
27 o
s
g o
3 ° o
5
g o o
o
o
o
1k
o o
o
iy
3 I I I I I I I I I I
-6 -5 -4 -3 -2 -1 0 1 2 3 4
Canonical Variable 1
Figure 6.37
0.08 [~
TNFa
0.06 —
0.04 -
IL-12 p70
0.02—
GM-CSF IFN-g
~
€
o
5 0
<3
5 MCcP-1
o
L-5
-0.02-
-0.04 -
-0.06
-0.08 -
I I I I I I I I
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Component 1
Figure 6.38

216



Computational Modeling of Immune Signals

Pruned Decision Tree
Allograft vs Isograft in Skin
(POD > 5)

MCP-1 < 73.4767 /X\MCP-1 >= 73.4767
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Figure 6.142 Cytokine contribution to MANOVA canonical variables 1 and 2 in FK-Treated. Vector
direction indicates which variable the cytokine is contributing to, while length indicates the strength of
contribution.
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Figure 6.145 Cytokine contribution to MANOVA canonical variables 1 and 2 in FK-Treatment Withdrawn.
Vector direction indicates which variable the cytokine is contributing to, while length indicates the
strength of contribution.
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Figure 6.148 Cytokine contribution to MANOVA canonical variables 1 and 2 in naive. Vector direction
indicates which variable the cytokine is contributing to, while length indicates the strength of
contribution.
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Rejection vs Not Rejection in Skin
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ROC Curves in Skin: Rejection

Rejection in Original Feature Space
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ROC Curve of Logistic Classifier for Rejection
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ROC Curve of Decision Tree Classifier for Rejection
in Heterogenous Skin Inflammation
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ROC Curve of QDA Classifier for Rejection
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ROC Curve of Logistic Classifier for Rejection
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Rejection vs Not Rejection in Skin
(POD <= 5, quartiles shown)
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MANOVA Transformed Feature Space
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Rejecting vs Not-Rejecting in Skin (POD <=5, MANOVA transformed)
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Appendix E Related Literature

The scientific literature is growing at an exponential rate. Highly active areas
such as immunology, transplantation, and computer science seem to be growing
even faster than most. This section provides references to literature, organized by
area. This is not a comprehensive listing of all literature related to the themes in this
thesis, but rather literature that was reviewed and most relevant to this work.
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